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Abstract
Active contours (deformable curves), also known as "snakes", were introduced as a general tool
for delineating boundaries in computational image analysis. Snakes are considered one of the
most successful variational models used in image segmentation. The aim of this method is to
segment an image into a finite number of important regions. The theoretical basis of the method
is drawn from the calculus of variations theory. Many adaptations of the original method have
been introduced over the years using mathematical properties and efficient numerical schemes,
usually at the implementation level to improve performance on particular types of problems.
Snakes are energy minimising and they balance internal forces that oppose deformation and
image forces that pull it towards object contours. This thesis introduces snakes specialised to
incorporate bilateral symmetry. The purpose of the study is to develop a theoretical basis for
the method of active contours specific to the biological and medical application that directly
takes into account first order bilateral symmetry. Human-made objects are often constructed
with exact bilateral symmetry; however, in biology, bilateral symmetry is common as a first
approximation but not necessarily at all levels of detail. Most vertebrates exhibit bilateral
symmetry, as do, for example, the leaves of many plants. This theoretical study proceeds by
constructing definitions of functionals and deriving properties analytically. First, an analytical
solution are derived from first principles. Second, a discrete solution is derived from the ana-
lytical solution to implement the method on real data. Next, a computer program is written in
Matlab to implement the bilateral snake. Finally, the computer code is validated on an example
image of a human face.
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1 Introduction
Automatic segmentation of medical images has captured the attention of many researchers.
Over the past 35 years, many methods have been developed for the automatic segmentation
of medical images. Typically, medical images such as X-rays, magnetic resonance imaging
(MRI), positron emission tomographic (PET) images and ultrasound, as well as images related
to biological problems, differ substantially from images encountered in areas such as industrial
applications, security, non-destructive evaluation and military applications of computational
image analysis. Accordingly, there is scope to re-evaluate the basic theoretical basis for active
contours to develop variations that are better suited for biological and medical applications.
It is possible to segment images manually, but this often takes a long time and is subject to
operator variability. Therefore, the manual method is not considered viable in situations where
large throughput is required or where objectivity and consistency are important. However,
significant problems must be overcome to achieve good segmentation [30].

Snakes can solve the problem of segmenting images through the minimisation of energy involv-
ing region and boundary functionals. Using the standard methods of the calculus of variations
and the corresponding Euler-Lagrange equations, we can study a large class of region function-
als with appropriate boundary conditions. Snakes segment the images by accurately localising
the lines and edges. They provide a unified account of a number of visual problems, including
detection of edges, lines and subjective contours [13]. In addition, snakes cover objects with
poorly defined boundaries by using the technique of curve evolution to find objects in a given
image. The main idea of this model is to develop a curve (contour) that starts around the
object to be detected, moves towards the interior of the object and stops on its boundary [5].

In general, there are two main types of active contour models: edge-based and region-based.
Edge-based models apply the image gradient information to stop the evolving contours on the
boundaries of the object. These models have an edge-based stopping term to control the motion
of the contour. The disadvantage of these models is that they are very sensitive to the initial
curve and noise. As a result, they have limited applications in practice. Region-based models
apply the region information of the image to segment different regions. They provide better
performance for images with weak object boundaries, and they are less sensitive to initial con-
tours. The disadvantage of these models is that they depend on intensity homogeneity, so the
segmentation of images fails if there is intensity inhomogeneity. To overcome this problem, dif-
ferent models have been introduced that use local information, for example, the region-scalable
fitting (RSF) model in [17] and the local Gaussian distribution fitting (LGDF) model in [28].

To guide the active contour, a variety of image features are applied. These typically include
region statistics, image gradient, colour and texture [31]. Further, many techniques have been
proposed in the literature to extract the features in images. For example, in [24], Sarti and
Malladi used the concept of level-set methods for the filtering and segmentation of echocardio-
graphic images. This approach uses regularisation to fill in the edge-gaps and improve edge
fidelity. In [22], Paragios, Mellina-Gottardo and Ramesh combined the integration of the gra-
dient vector flow and the geodesic active contour with a geometric boundary-based flow for
boundary extraction and image segmentation. When such a flow is implemented using a stable
numerical method that has real-time performance, it can deal naturally with topological change,
it exhibits certain desirable characteristics and it is relatively free of the initial conditions. In
[7], Cohen made the curve model behave like a balloon by introducing a pressure force. To
obtain more stable results, Cohen modified the definition of external forces deriving from the
gradient of the image.

The outline of this paper is as follows. Chapter 2 provides the background on active contour
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models (e.g., parametric models) and includes an example of the behaviour of traditional de-
formable contours and geometric models. Chapter 3 presents a brief review of the calculus of
variations needed to understand snakes. Formulas for snakes are derived in Chapter 3, and
the original snake as introduced by Kass is described in Chapter 4, along with examples-in
particular, demonstrating the effectiveness of original snakes. Chapter 5 presents the main
contribution of this thesis—namely, the development of the bilateral snake. This technique is
demonstrated by showing the results of boundary detection in a face image. Chapter 6 presents
brief concluding remarks and discusses directions for future work.

2 Snakes: Active Contour Models

2.1 Background

Since image processing began, many researchers have addressed the issue of image segmenta-
tion, which consists of dividing an image into disjoint regions. Previously, filters were used
to detect edges as approaches for image segmentation (e.g., Sobel filter [27] and Canny filter
[1]). Using pixel classification, there are two types of object boundaries: edge and non-edge
pixels based on a threshold [12]. Data of the image can be easily analysed using the locating
boundaries of objects and any method of variation-for example, variations that include sensor
noises, variations in photometric and background conditions or perspective distortion or certain
distortion, concealment of target objects by other objects, and motion or deformation of target
objects. If there are problems with models that have geometric properties, these problems can
be solved more easily. However, in many practical situations, traditional methods such as rigid
models are unsuitable because objects of the same class are not identical and even the objects’
shape can vary over time. To overcome this problem, different models have been introduced in
the past few decades, including Fourier series shape models, finite element models, statistical
shape models and deformable template models [14].

In general, there are two types of active contours–parametric active contour and geometric
active contour–both of which are based on the theory of curve evolution implemented through
level-set techniques. Many modifications and enhancements have been made to improve their
performance and change their behaviour. Parametric active contours are formulated by min-
imising an energy functional that takes a minimum when contours are smooth and match the
object boundaries. Solving the energy minimisation problem results in a dynamic equation
that has both internal and external forces. The external forces resulting from this formulation
are deemed conservative because they can be written as gradients of scalar potential functions.
Many types of external forces have been developed over the years, including the well-known
pressure force and the Gaussian potential force. Geometric active contours were introduced as
the solution to the problem of required topological changes during curve evolution. In geometric
models, the evolution of the level-set function is first computed, followed by the parametric rep-
resentations of the curves themselves [6]. The geometric contour can split and incorporate the
contour to detect multiple objects in the image, and to model the features of complex shapes,
such as sharp corners [20]. Geometric active contours have been deemed the most significant
tool in computer vision, and it is widely applied in motion analysis, visual tracking and object
recognition [35].

Many researchers have examined the relationship between parametric and geometric active
contours. For example, in [4], Caselles et al. found that their geometric active contours were
equivalent to a special class of classical parametric active contours. Further, in [6], Chenyang et
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al. found that the general formulations of parametric active contours were equivalent to those
of geometric active contours. This equivalence included rigidity and highlighted the Lagrangian
nature of parametric active contours and the Eulerian nature of geometric active contours.

2.2 Parametric models

Snakes are considered a special case of deformable model. The deformable contour model is
mapped as follows

r : Ω = [0, 1]→ R2

s 7−→ r(s) = (x(s), y(s)).

A deformable model is defined as a space of admissible deformations A and a functional E. This
functional represents the energy of the model that will be minimised, and it has the following
form E : A→ R.

E(r)snake =

∫ 1

0

(
α

2
||rs||2 +

β

2
||rss||2 + Eext(r(s))

)
ds, (2.2.1)

where α and β are positive control parameters [8]. Here, rs(s) and rss(s) are the first and
second derivatives of r(s) with respect to s.
To emphasise that E represents both internal and external energy, Equation (2.2.1) may be
written as a force balance equation

E = Eint + Eext, (2.2.2)

where

Eint =

∫ 1

0

(
α

2
||rs||2 +

β

2
||rss||2)ds,

and Eext has a small value in the homogeneous region of the image and a large value near
the edge. The internal force makes the snake smooth, and the external force pulls the snake
towards the desired image features [18].
Agrey-level image F (x, y) is viewed as a function of continuous position variables (x, y). User-
imposed constraint forces guide the snake near features of interest. Typical external energies
that are modelled to lead an active contour towards a boundary are

E1
ext = −|∇F (x, y)|2,

E2
ext = −|∇(Gσ(x, y) ∗ F (x, y))|2, (2.2.3)

where ∇ is the gradient operator and Gσ is a two-dimensional Gaussian function with standard
deviation σ, and (∗) denotes convolution. If the image is a line drawing (black on white), then
appropriate external energies include

E3
ext(x, y) = F (x, y),

E4
ext = Gσ(x, y) ∗ F (x, y), (2.2.4)

Ei
ext = v(x). (2.2.5)

Here the edge map
f(x, y) = Ei

ext

7



where i = 1, 2, 3 or 4. The gradient vector flow (GVF) field v(x) is an equilibrium solution to
the following vector diffusion equation

ut = µ∇2u− |∇f |2(u−∇f),

u(x, 0) = ∇f(x).

To minimise E(r), the snake should satisfy the Euler-Lagrange equation

αr
′′
(s, t)− βr′′′′(s, t)−∇Eext(r) = 0. (2.2.6)

To solve (2.2.6), the snake needs to be treated as a function of time t and solved in dynamic
system. Thus, Equation (2.2.6) becomes

−∂r(s, t)
∂t

= αr
′′
(s, t)− βr′′′′(s, t)−∇Eext. (2.2.7)

The term ∂r(s,t)
∂t

vanishes when the solution of (2.2.6) stabilises, and the solution of (2.2.7) is
achieved. Further, a numerical solution can be found by solving (2.2.7) iteratively. Most im-
plementations of deformable contour use either a parameter that multiplies ∇Eext in order to
separate control of the external force strength, or a parameter that multiplies xt, which controls
the step-size temporarily [33].

2.3 Geometric models

Geometric models define the contour as the zero-level set of a higher dimensional function. The
evolution of the function is then computed as an initial value problem [9].
To solve (2.2.1) by using Casella’s formulation, let O be an object defined as functions of t.
The geometrical active contours based on the level-set evolution curvetake the following form

∂u

∂t
= g(x)|∇u|(div(

∇u
|∇u|

) + v), (2.3.1)

(t, x) ∈ [0,∞[×R2,

u(0, x) = u0(x), x ∈ R2. (2.3.2)

g(x) =
1

1 + |∇(Gσ(x, y) ∗ F (x, y))|2
, (2.3.3)

where u0 indicates the distance of the initialised active contour curve, |∇u|div( ∇u|∇u|) , (t, x) ∈
[0,∞[×R2 describes the level sets of the mean curvature motion of the function u, {u(t, x) =
k, k ∈ R}, which evolve following the normal direction with speed depending on the mean
curvature. v > 0 is a constant that works to attract curve towards the boundary by increasing
the speed of evolution. G represents a Gaussian kernel. O is an object contour with the
Gaussian Gσ = Cσ−

1
2 exp(−|x|2/4σ). Gσ ∗ F is the convolution of the image F . u0 is the

initial data taken from the function 1−xc as a smoothed version, where xc is the characteristic
function of a set, C, containing O. g(x) is a function that is used to stop the level set to
reproduce the desired snake [2]. Thus, the magnitude of the high gradient that denotes the
possible existence of an edge is mapped by g to small values, whereas flat regions in the image
are mapped by g to one [15]. Object edges boundaries can reach boundaries by calculating just
one iteration in Equation (2.3.3) at the beginning. This keeps the step iteration unchanged.
Moreover, the edge map function g(x) is 1 inside or outside a homogeneous region, and 0 on
the boundary of the edge. The term (∇Gσ ∗ F ) is 0 everywhere, except where the gradient of
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the image changes to a higher value. Thus, g(x) ≈ 1 is away from boundaries, and it declines
to 0 near sharp changes in the image gradient [10].

To interpret the model in (2.3.1) geometrically, let k be a real number and the boundary of the
zero-level set of u(t, x, y) ∈ C2

∂c(t) = {(x, y) : u(t, x, y) = k},

also consider
∂C = {(x(s), y(s)) : s ∈ [0, L(∂C)]},

where L(∂C) is the length of C (where C is sets that contains the object), as u(t, x(s), y(s)) = k.
Thus

u
′

xx
′

s + u
′

yy
′

s = 0, (2.3.4)

y
′

s = λu
′

x,

x
′

s = λu
′

y.

In case λ > 0, taking the derivative to (2.3.4) with respect to s gives that

u
′′

xx(x
′

s)
2 + 2u

′′

xyx
′

sy
′

s + u
′′

yy(y
′

s)
2 + u

′

xx
′′

s + u
′

yy
′′

s = 0

The curvature ρ of ∂C at the point (x(s), y(s)) can be written as

ρ(s) =
x

′
sy

′′
s − y

′
sx

′′
s

((x′
s)

2 + (y′
s)

2)
1
2

Written in terms of u, this becomes

ρ(x) = λ2
u

′′
xx(u

′
y)

2 − 2u
′′
xyu

′
xu

′
y + u

′′
yy(u

′
x)

2

((x′
s)

2 + (y′
s)

2)
1
2

Lastly, since (x
′
s)

2 +(y
′
s)

2 = 1 = λ2((u
′
x)

2 +(u
′
y)

2), the curvature ρ of ∂C at the point (x(s), y(s))
becomes [2]

ρ = div(
∇u
|∇u|

)

.The geometrical interpretation of this model is detailed below

1. The term |∇u|(div( ∇u|∇u|) guarantees that the grey-level set( A grey-level set is a set of the
form {p : X(p) = c} for a fixed c.) at a point in ∂C will evolve proportionally towards the
boundary curvature at this point.
2. The constant v is a correction term that is selected to keep the term |∇u|(div( ∇u|∇u|) + v)

always positive. Hence, the grey-level at a point at ∂C will increase (going from black to grey),
and it can be expected that the ∂C will transcribe the boundary of object O. Further, when
the curvature of ∂C becomes null or negative, the constant v can work as a force pushing ∂C
towards 0.
3. The term |∇u| is accountable for the regularising effect of the model. It guarantees that the
function u barely changes its grey-level, except on the neighbourhood of ∂C.
4. The term g(x) controls ∂C moves by controlling the speed. When ∂C nears the boundary
of object O, |∇Gσ ∗ F | is large and ∂C stops.
5. The image F is convolved to remove the effect of noise on the motion of ∂C. This coefficient
reduces the growth of the function u near the boundary of the object O, and it stops just within
the boundary if the boundary is a regular curve [3].
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2.4 Basic Snake Behaviour

Since active contour were introduced by Kass, Witkin and Terzopoulos, many researchers have
been studied their behaviour. This section discusses some of researchers who addressed a prob-
lem with U-shaped objects.

The traditional snake performs well if the boundary of the object is convex or nearly so. The
standard snake often does not follow boundaries well into concavities of objects. An example of
this problem in a traditional deformable contour is displayed in Fig. 1, where Fig. 1(a) displays
a (64 × 64) pixel line-drawing of a U-shaped object (in grey) that has concave boundary at
the top of the shape. The figure also displays a sequence of curves (in black) that iteratively
describes the progression of a traditional snake towards the boundary with α = 0.6 and with
no pressure forces (β = 0.0). Fig. 1(b) presents a potential force field −∇E4

ext and σ = 1.0
pixels. Thus, the final solution resolves the Euler equations of the snake formulation, but the
split remains across the concave boundary.

There are two main reasons for the poor convergence in Fig. 1(a). First, the capture range is
limited in Fig. 1(b), and the magnitude of the external forces decreases rapidly away from the
object’s boundary. Increasing σ in (2.2.4) will increase this range; however, the localization of
the boundary will become less accurate and different, and the concavity will therefore become
too large. Second, a close-up of the external force field within the boundary concavity causes
poor convergence of the deformable contour. The boundary concavity of the forces points
horizontally in opposite directions to the object boundary, whereas the external forces point
towards the object boundary. Therefore, the deformable contour is pulled away towards each
edge of the U-shape, but not made to progress downward into the concave boundary. There
are no values of α and β that will correct this problem [34].

In [8], Cohen and Cohen proposed an external force model that critically raised the capture

Figure 1: Standard snakes and concavity. (a) shows a concave object and a sequence of itera-
tions of a standard snake. The snake does not enter deeply into the concavity. (b) shows the
magnitudes of the external forces. (c) shows a close-up view of the external forces within the
concavity. Sourced from [34].

range of a traditional deformable model. These forces will be referred to as distance potential
forces to distinguish them from traditional potential forces. These forces are the negative gra-
dient of a potential function that is computed using a Euclidean or chamfer distance map.
Fig. 2(a) displays both the U-shaped object (in grey) and a sequence of contours (in black)
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to describe the progression of the snake from its initialisation far from the object to its final
configuration. Fig. 2(b) presents distance potential forces that have vectors with large magni-
tudes away from the object, describing why the range of capture is large for this external-force
model. Fig. 2(c) displays distance potential forces, which are similar to traditional potential
forces. These forces also point horizontally in opposite directions to the object boundary, and
they pull the snake apart, but not downward into the concave boundary. Cohen and Cohen’s
modification applies a nonlinear transformation to the distance map. This changes the forces’
magnitudes, but not the direction of the forces. As a result, the snake fails to converge to the
boundary concavity. This can be explained by checking the magnified portion of the distance
potential forces in Fig. 2(c).

In [34], Xu and Prince proposed a novel external force model for deformable models called the

Figure 2: snakes with distance potential forces and concavity. (a) shows a concave object and a
sequence of iterations of a standard snake. The snake does not enter deeply into the concavity.
(b) the magnitudes of the distance potential forces. (c) a closeup view of the distance potential
forces within the concavity. A snake cannot converge to concave regions with distance potential
forces field. Sourced from [33].

GVF field, which allows for flexible initialisation of the deformable model.
Fig. 3(a) displays the U-shaped object (in grey-level) corrupted by additional white Gaussian
noise; the signal-to-noise ratio is 6 dB. Fig. 3(b) displays an edge map that was computed
using f 2(x, y) = |∇(Gσ(x, y) ∗ F (x, y))|2 with σ = 1.5 pixels. Fig. 3(c) shows the computed
GVF field. The weaker gradients are smoothed out and the stronger edge-map gradients are
retained. Fig. 3(d) displays the GVF deformable contours sequence (in a shade of grey) and
the result of the GVF deformable contour (in white). Despite the initialisation from far away,
as well as the image noise and the boundary concavity, the result shows excellent convergence
to the boundary.

A different example of problem is displayed in Fig. 4 with α = 1.5, β = 0, γ = 1, τ = 0.5,
λ = 1.5, λ1 = λ2 = 1. This example uses different parameter values than others example
presented in this thesis.
In [16], Li and Acton proposed a vector field convolution (VFC) model. A parametric active
contour model replaces the original external force in Equation (2.2.3), which is a potential force,
with a non-potential force

fV FC(x, y) = [uV FC(x, y), vV FC(x, y)], (2.4.1)
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Figure 3: The GVF snake and concavity (a) shows a noisy 64 × 64-pixel image of the object.
(b) shows the edge-map |∇(Gσ ∗ F )|2 with σ = 1.5 pixels. (c) shows a close-up view of the
GVF external force field. (d) the GVF forces within the concavity. A snake converges perfectly
to concave regions with the GVF external force field. Sourced from [34].

which is computed by convolving the vector field kernel k(x, y) and the edge map of the image
is Ei

ext(x, y), as follows

fV FC(x, y) = Ei
ext(x, y) ∗ k(x, y)

= [Ei
ext(x, y) ∗ uk(x, y), Ei

ext(x, y) ∗ vk(x, y)], (2.4.2)

where k(x, y) = [uk(x, y), vk(x, y)], and k(x, y) = m(x, y)n(x, y). Here m(x, y) is the magnitude
of the vector field kernel k(x, y) and is defined as a decreasing positive function of distance
from the kernel origin. n(x, y) is the unit vector pointing to the kernel origin (0, 0), and it is
calculated by

n(x, y) = [−x/r,−y/r],

where the distance from the origin is r =
√
x2 + y2. The final evolution function of the VFC

snake is

∂v(s, t)

∂t
= αr

′′
(s, t)− βr′′′′(s, t) + fV FC(r(s, t)). (2.4.3)

Fig. 4(a) shows that VFC is still sensitive to noise and can be easily trapped in cluttered
regions of an image because it only considers edge information.

In [5], Chan and Vese proposed fitting energy based on the techniques of curve evolution,
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Mumford–Shah functional for segmentation and level sets. This model uses the geometric ac-
tive contour framework and is not based on an edge function to stop the evolving curve on the
desired boundary. It can detect object whose boundaries are not necessarily defined by the
gradient, or very smooth. This model can be written as

F1(r) + F2(r) =

∫
Ω

|F (x, y)− c1|2dxdy +

∫
Ω

|F (x, y)− c2|2dxdy, (2.4.4)

where Ω is inside curve r and Ω is outside r. c1 and c2 are the average intensities of the regions
inside and outside contour r respectively. The fitting energy definition is used to define a region
information map for a point on the contour r as −λ1(F − c1)2 + λ2(F − c2)2. To generate a
valid force field in order to be embedded into a parametric active contour model, its outward
normal is multiplied by the value of the map at this point. Thus, the region force becomes

freg(x, y) = n(x, y)(f1(x, y) + f2(x, y))

= n(x, y)(−λ1(F (x, y)− c1)2 + λ2(F (x, y)− c2)2) (2.4.5)

where n(x, y) is the normal vector at point (x, y), f1(x, y) = −λ1(F (x, y)− c1)2 and f2(x, y) =
λ2(F (x, y)− c2)2. For a point (x, y) in the domain of image F , if this point is inside the desired
object, F (x, y) is similar to c1. However, there is a relatively large difference between F (x, y)
and c2. Hence, f1(x, y) is approximately 0 and f2(x, y) is larger than 0, assuming λ1 = λ2.
f1 +f2 is positive, and when multiplied by the outward normal, the direction of the region force
points outwards to pull this point towards the object boundary. If the point (x, y) is outside
the object, f2(x, y) is approximately 0 and f1(x, y) is smaller than 0. f1 +f2 is negative and the
direction of the force points inwards. λ1 and λ2 are positive weighting parameters that control
the strength of shrinking or expanding the contour.

The Chan-Vese model could segment the U-shaped object as two separate regions, considering
only the region force. The evolution function then becomes

∂r(s, t)

∂t
= αr

′′
(s, t)− βr′′′′(s, t) + λfreg(r(s, t)) (2.4.6)

Fig. 4(b) demonstrates that because of a lack of edge information and weak boundary infor-
mation, the contour leaks through the right side.

In [32], Xie and Mirmehdi proposed the region-aided geometric snake (RAGS). This model is
independent of any particular segmentation technique, but it is dependent on the quality of
the regions produced. The model integrates the gradient flow forces with region constraints,
which are composed of the image region vector flow forces obtained through the diffusion of
the region segmentation map. The final level-set representation of RAGS is as follows

ut = g(|∇F |)(ρ+ α)|∇u|+∇g(|∇F |) · ∇u− βR̄ · ∇u, (2.4.7)

where R̄(z) = (w(z), v(z)), z = (x, y) is a two-dimensional vector field. α and β work as trade-
offs between gradient forces and region forces.

Fig. 4(c) is the result of the RAGS model. It shows that the noise is so small that it is merges
into the background. As a result of the region segmentation map, it would not be influenced
by the noisy spot. However, the contour also fails to converge into the concavity. In this case,
the contour would first leak through the right side of the U-shape, even when the weight of the
region force increases.
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In [25], Sun, Ray and Zhang proposed a new model that has also been implemented in the
parametric active framework. They added the region force with the VFC force to generate the
final external force, or the final evolution function, as follows

∂r(s, t)

∂t
= αr

′′
(s, t)− βr′′′′(s, t) + γfV FC(r(s, t)) + λfreg(r(s, t)), (2.4.8)

where γ and λ are weighting parameters that control the strength of the VFC force and region
force respectively. The numerical solution can be applied using the finite difference method to
solve Equation (2.4.8). Updating of the contour can be computed using the following equation

(F − τA)rt+1 = r + τ(γf tV FC + λf treg), (2.4.9)

where A is an n × n pentadiagonal banded matrix used to compute the internal force, fV FC
and freg are n× 2 matrices denoting the forces at points on the contour. τ is constant.

Fig. 4(d) shows the novel active contour model combining edge and regional information called
VFCCV method, which converges to the correct boundary of U-shape and is strong to the
noise. For the edge force to control the evolution, γ must be large and λ must be small in
Equation (2.4.9). This model not only has a large capture range and the ability to converge
into concavities, but it is also robust to noise and a cluttered image background.

Figure 4: Comparison using image with U-shaped gradient object. A snake convergence to
concave regions, (a) with the VFC which is easily affected by noise, (b) Chan-Vese snake, the
contour leaks through the right side with weak boundary information, (c) RAGS, the contour
leak through the right side of the U shape even the noise is so small that it is merged into the
background, and (d) VFCCV, the contour converges to the correct U-shape boundary and is
robust to the noise. Sourced from [25].

Note that, on all the past work there are no methods that dealt with bilateral symmetry
specific with active contour.

3 A brief review of the calculus of variations
The theory of snakes is based on the calculus of variations. There are many variations of the
Euler-Lagrange equations, including the number of derivatives in the functional, the number
of functions and the number of independent variables. This chapter reviews three variations in
detail and follows work by Sagan [23], Van Brunt [26], Logan [19], Gelfand et al. [11], Weinstock
[29] and Morrey Jr [21].

14



3.1 The extrema of functionals

Definition:
Let A = {y ∈ C2[x0, x1] : y(x0) = y0, y(x1) = y1} be a set of admissible functions where (C2

means that the function is twice continuously differentiable). Suppose J is a functional defined
on A. J has a local minimum at y ∈ A if there exists a number ε > 0 such that
J(y) 6 J(ŷ), for all functions ŷ ∈ A, such that ‖ŷ − y‖ < ε.
Local maxima are defined in a similar way.

3.2 The simplest case of the Euler-Lagrange Equation

Consider J : A→ R defined by

J(ϕ) =

∫ x1

x0

f(x, ϕ, ϕ
′
)dx, for ϕ ∈ A. (3.2.1)

Here ϕ′
= dϕ

dx
, and f is a smooth function that includes three variables, x, ϕ, ϕ′ , explicitly,

but the arguments of f are the variable x and the functions ϕ and ϕ′ viewed as independent
variables.
Suppose the set H is defined by

H = {η ∈ C2[x0, x1] : η(x0) = 0, η(x1) = 0}. (3.2.2)

Proposition(1)
Let y be the function that minimises Equation (3.2.1). For all ŷ ∈ A, there exists η ∈ H, such
that

ŷ = y + εη.

Proof. Set η = (ŷ − y)/ε. Since y ∈ C2[x0, x1] and ŷ ∈ C2[x0, x1], η ∈ C2[x0, x1].
Since y(t0) = y0 and ŷ(t0) = y0, η(t0) = (y0 − y0)/ε; thus, η(y0) = 0.
Similarly, η(t1) = 0. Hence, η ∈ H.

Using Taylor’s theorem to find a formula for f(x, ŷ, ŷ
′
) expanded about a = (x, y, y

′
), results

in the following expression

f(x, ŷ, ŷ
′
) = f(x, ŷ + εη, ŷ

′
+ εη

′
)

= f(x, y, y
′
) +

∂f

∂x
|a(x̂− x) +

∂f

∂y
|a(ŷ − y) +

∂f

∂ŷ
|a(ŷ

′ − y′
) (3.2.3)

+ ........

Given that:
ŷ − y = (y + εη)− y

and
ŷ

′ − y′
= (ŷ + εη

′
)− y′

Equation (3.2.3) becomes

f(x, ŷ, ŷ
′
) = f(x, y, y

′
) +

∂f

∂y
|a(εη) +

∂f

∂ŷ
|a(εη

′
) +O(ε2).
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Thus:

J(ŷ)− J(y) =

∫ x1

x0

f(x, ŷ, ŷ
′
)dx−

∫ x1

x0

f(x, y, y
′
)dx

=

∫ x1

x0

(
f(x, y, y

′
) + ε{η∂f

∂y
+ η

′ ∂f

∂y′ }+O(ε2)− f(x, y, y
′
)

)
dx

=

∫ x1

x0

ε{η∂f
∂y

+ η
′ ∂f

∂y′ }dx+O(ε2). (3.2.4)

The first variation of J , is defined by

δJ(η, y) =

∫ x1

x0

{η∂f
∂y

+ η
′ ∂f

∂y′ }dx. (3.2.5)

Thus
J(ŷ)− J(y) = εδJ(η, y) +O(ε2). (3.2.6)

Proposition(2)
If η ∈ H, then −η ∈ H.

Proof. Since η ∈ C2[x0, x1],−η ∈ C2[x0, x1]. Since η(x0) = 0,−η(x0) = 0 and since η(x1) =
0,−η(x1) = 0, thus −η ∈ H.

For sufficiently small ε, the sign of the righ-hand side of Equation (3.2.6) is determined by
the first term (linear term) unless this term is zero. The left-hand side of Equation (3.2.6) is
nonnegative since J has a local minimum at y. If the right side of (3.2.6) is nonnegative for
some η ∈ H, then it is negative for −η. This shows that the right-hand side is psitive for all η.
The conclusion is that the linear term in (3.2.6) is zero. Hence

0 =

∫ x1

x0

{η∂f
∂y

+ η
′ ∂f

∂y′ }dx. (3.2.7)

To solve the above equation, the integration is first applied by part to the second term. Thus∫ x1

x0

η
′ ∂f

∂y′ dx = η
∂f

∂y′

∣∣∣x1
x0
−
∫ x1

x0

η
d

dx

∂f

∂y′ dx

= −
∫ x1

x0

η
d

dx

∂f

∂y′ dx.

Thus

0 =

∫ x1

x0

η
∂f

∂y
dx−

∫ x1

x0

η
d

dx

∂f

∂y′ dx.

This equation can be written as

0 =

∫ x1

x0

η{∂f
∂y
− d

dx

∂f

∂y′ }dx. (3.2.8)

This can be written as

0 =

〈
η,
∂f

∂y
− d

dx

∂f

∂y′

〉
.
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This equation holds for all η ∈ H.
Generally, if 〈η, g〉 = 0, then η and g are orthogonal, but does not say much about either η or
g individually. The situation is different if 〈η, g〉 = 0 for all η ∈ H.

The zero inner product lemma
Assume that g is a continuous function on [x0, x1] and that 〈η, g〉 = 0 for every
η ∈ H. Then g(x) = 0 for all x ∈ [x0, x1].

Proof. Suppose g(c) > 0 for some c ∈ [x0, x1]. Since g is continuous, there exist a
and b such that x0 6 a < b 6 x1 and g(x) > 0 for x ∈ (a, b). Function η is defined by

η(x) =


0 x ∈ [x0, a]

[(x− a)(b− x)]3 x ∈ (a, b)

0 x ∈ [b, x1]

The objective is to show that η ∈ H. Obviously, η(x0) = η(x1) = 0. Computing η′′

on (a, b) is tedious, but it can be simplified as follows

η
′
= 3[(x− a)(b− x)]2(−2x+ b+ a) = [(x− a)(b− x)]2P1(x),

where P1(x) is a polynomial (of degree 1). Further

η
′′

= [(x− a)(b− x)]2P
′

1(x) + 2(x− a)(b− x)(−2x+ (b+ a))P1(x)

= (x− a)(b− x)P2(x),

where P2(x) is a polynomial (of degree 2).

This shows that limx↓a η
′′ = limx↑b η

′′ = 0. Obviously η′′ is zero outside (a, b), and
so η′′ is continuous on all of [x0, x1]. This proves that η ∈ H. Note that a+b

2
is the

only critical point for η and that η(x) > 0 on (a, b). Consider that

〈η, g〉 =

∫ x1

x0

η(x)g(x)dx =

∫ b

a

η(x)g(x)dx > 0.

But 〈η, g〉 = 0 for all η ∈ H; thus, there is a contradiction. This means that the
assumption of the existence of a number c ∈ [x0, x1], for which g(c) > 0, must be
wrong.
A similar contradiction is found if the assumption is made that g(c) < 0 for some
c ∈ [x0, x1]. Thus the only option is that g(x) = 0 for all x ∈ [x0, x1].

Applying the zero inner product lemma to Equation (3.2.8) shows that

0 =
∂f

∂y
− d

dx

∂f

∂y′ . (3.2.9)

Equation (4.2.4) is known as the Euler-Lagrange equation.
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3.3 Functionals comprising higher derivatives

Consider the functional

J(y) =

∫ x1

x0

f(x, y, y
′
, y

′′
, ..., y(n))dx. (3.3.1)

The set of admissible functions is
A = {y ∈ C2n[x0, x1] : y(x0) = y0, y(x1) = y1, y

′
(x0) = y

′
0, y

′
(x1) = y

′
1, ......, y

(n−1)(x0) =

y
(n−1)
0 , y(n−1)(x1) = y

(n−1)
1 }.

Suppose that the set H is defined by
H = {η ∈ C2n[x0, x1] : η(x0) = 0, η(x1) = 0, η

′
(x0) = 0, η

′
(x1) = 0, ......η(n−1)(x0) = 0, η(n−1)(x1) =

0}.

The proof follows the steps of the proof for the n = 1 case, and gives the following equation

d(n)

dx(n)

∂f

∂y(n)
− d(n−1)

dx(n−1)

∂f

∂y(n−1)
+

d(n−2)

dx(n−2)

∂f

∂y(n−2)
− ...+ (−1)n

∂f

∂y
= 0.

In particular, for n = 2, the Euler-Lagrange equation is

d2

dx2

∂f

∂y′′ −
d

dx

∂f

∂y′ +
∂f

∂y
= 0.

3.4 Functionals comprising multiple functions

A functional may depend on more than one function. To be specific, consider n separate func-
tions yi, i = 1, 2, ..., n. These may be viewed as components of a function. Let Y denote the
vector valued function Y (x) = (y1(x), y2(x), ..., yn(x)) : R→ Rn. Here, we consider functionals
of the form

J(Y ) =

∫ x1

x0

f(x, y1, y
′

1, y2, y
′

2, ..., yn, y
′

n)dx. (3.4.1)

With set of admissible functions A

A = {Y ∈ C2([x0, x1]) : yi(x0) = ai, yi(x1) = bi, i = 1, 2, ..., n} (3.4.2)

If Y is a local minimum on A for J , then there exists ε > 0 such that

J(Ŷ )− J(Y ) ≥ 0

for all Ŷ ∈ A with |Ŷ − Y | < ε.

Suppose that the set H is defined by

H = {η = (η1, η2, ..., ηn) ∈ C2([x0, x1]n) : ηi(x0) = ηi(x1) = 0, i = 1, 2, ..., n}. (3.4.3)

Using Taylor’s theorem

f(x, ŷ1, ŷ
′

1, ŷ2, ŷ
′

2, ..., ŷn, ŷ
′

n) = f(x, y1, y
′

1, y2, y
′

2, ..., yn, y
′

n)

+ε{η1
∂f

∂y1

+ η
′

1

∂f

∂y
′
1

+ η2
∂f

∂y2

+ η
′

2

∂f

∂y
′
2

+ ...+ ηn
∂f

∂yn
+ η

′

n

∂f

∂y′
n

}+O(ε2)
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Thus

J(Ŷ )−J(Y ) = ε

∫ x1

x0

{η1
∂f

∂y1

+η
′

1

∂f

∂y
′
1

+η2
∂f

∂y2

+η
′

2

∂f

∂y
′
2

+ ...+ηn
∂f

∂yn
+η

′

n

∂f

∂y′
n

}dx+O(ε2). (3.4.4)

This equation holds for all η = (η1, η2, ..., ηn) ∈ H.

For sufficiently small ε, the sign of the right-hand side of Equation (3.4.4) is determined by the
first term (linear term) unless this term is zero.
By setting η1 = 0, η2 = 0, ..., ηi−1 = 0, ηi+1 = 0, ..., ηn = 0, Equation (3.4.4) becomes

J(Ŷ )− J(Y ) = ε

∫ x1

x0

{ηi
∂f

∂yi
+ η

′

i

∂f

∂y
′
i

}dx+O(ε2). (3.4.5)

If this integral is positive for ηi, then it is negative for −ηi. This contradicts the fact that the
left-hand side of Equation (3.4.5) is always nonnegative. This shows that

0 =

∫ x1

x0

{ηi
∂f

∂yi
+ η

′

i

∂f

∂y
′
i

}dx.

Applying the integration by part to the second term gives

0 =

∫ x1

x0

ηi{
∂f

∂yi
− d

dx

∂f

∂y
′
i

}dx.

Using the zero inner product lemma

0 =
∂f

∂yi
− d

dx

∂f

∂y
′
i

,

for i = 1, 2, 3, ..., n.

4 Kass’s Snake
In 1987, Kass, Witkin and Terzopouloi first presented the idea of snakes being used to extract
features in images using the idea of energy-minimising curves. The first and most famous model
of active contour is edges-based object extraction, which uses the magnitude of the image gra-
dient to derive the external forces. These characterise a boundary as the maximal value of the
magnitude of the gradient of the image [5]. In a broad sense, snakes are an example of using
the means of energy minimisation as a technique for linking an image to a deformable model.
If we present the basic mathematical behaviour of snakes, we find that the basic snake model
is a directed continuity spline under the effect of external constraint forces and image forces.
Internal spline forces thrust the snake towards salient image features such as edges, lines and
subject contours. Forces of external constraint can, for example, come from automatic atten-
tional mechanisms, a user interface or high-level interpretations. These forces are responsible
for setting the snake near the required local minimum [13].

4.1 The Euler-Lagrange equations for Kass’s snake

A snake may be represented as a parametrised curve r(s) = (x(s), y(s)) in R2. The curve mod-
elled as a physical object with elasticity is given by α||rs||2, and flexibility is given by β||rss||2.
These two quantities are referred to in the literature as the internal properties of the snake.
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In addition, the snake is meant to find edges in an image F ; thus, the snake is designed to
minimise an edge image.

Many other characteristics may be included, such as terms to find lines instead of edges and
terminal points of boundaries, etc. In addition, various edge images may be considered. Only
the basic snake is of interest here; therefore, these extensions will not be developed here, and
only the simple edge image ||∇F (x(s), y(s))||2 will be considered.

The basic curve minimises the functional

J(r) =

∫ 1

0

(
α

2
||rs||2 +

β

2
‖rss||2 − ||∇F (r)||2)ds, (4.1.1)

where rs = dr
ds

and rss = d2r
ds2

. Here, α||rs||2 is elasticity, β||rss||2 is flexibility, F is the image
and ∇F is the edge image.

Equation (4.1.1) can be simplified as

J(x, y) =

∫ 1

0

(
α

2
(x2

s + y2
s) +

β

2
(x2

ss + y2
ss)− F 2

x (x, y)− F 2
y (x, y))ds. (4.1.2)

The functional J(x, y) is a functional of one independent variable s and two dependent func-
tions x, y. The boundary conditions depend on the problem to be treated. In this case, the
boundary is r(0) = r(1) = r0 because closed curves are needed. Here functionals are of the form

J(x, y) =

∫ s1

s0

f(s, x, xs, xss, y, ys, yss)ds.

Note that
f =

α

2
(x2

s + y2
s) +

β

2
(x2

ss + y2
ss)− F 2

x (x, y)− F 2
y (x, y).

The Euler-Lagrange equations (3.2) for finding the extrema for J are

∂f

∂x
− d

ds

∂f

∂xs
+

d2

ds2

∂f

∂xss
= 0, (4.1.3)

∂f

∂y
− d

ds

∂f

∂ys
+

d2

ds2

∂f

∂yss
= 0. (4.1.4)

Written in terms of x and y, Equations (4.1.3) and (4.1.4) become

βxssss − αxss −
∂

∂x
(F 2

x + F 2
y ) = 0, (4.1.5)

βyssss − αyss −
∂

∂y
(F 2

x + F 2
y ) = 0. (4.1.6)
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4.2 Numerical Solutions

To find numerical solutions, Kass and others researches recommended viewing the Euler-
Lagrange equations as the stable limit of a dynamic system. Thus, x and y are viewed as
functions of both s and t.
The dynamic versions are given by

−∂x(s, t)

∂t
= βxssss(s, t)− αxss(s, t)−

∂

∂x
(F 2

x (s, t) + F 2
y (s, t)), (4.2.1)

−∂y(s, t)

∂t
= βyssss(s, t)− αyss(s, t)−

∂

∂y
(F 2

x (s, t) + F 2
y (s, t)). (4.2.2)

Note that x(s) and y(s) form an equilibrium for Equations (4.2.1) and (4.2.2). This means that
they are solutions to (4.1.5) and (4.1.6). Hence, computing the limit t→∞ or limit t→ −∞
of (4.2.1) and (4.2.2) leads to finding solutions to (4.1.5) and (4.1.6).

Note that, the negative signs on the left-hand side of (4.2.1) and (4.2.2) are used because the
equilibrium appears stable as t→ −∞ and unstable as t→∞.

This concept is applied to the functions x(s) and y(s) at time t, and the functions x(s) and
y(s) are viewed as vectors xt = (x1, x2, x3, ..., xn) and yt = (y1, y2, y3, ..., yn), where n denotes
the number of points used to discretise the snake r(s, t).

The discrete derivatives along the curve r(x, y) are as follows
xs = xi+1 − xi,
xss = (xi+1 − xi)− (xi − xi−1) = xi+1 − 2xi + xi−1,
xsss = (xi+2 − 2xi+1 + xi)− (xi+1 − 2xi + xi−1) = xi+2 − 3xi+1 + 3xi − xi−1,
xssss = (xi+2 − 3xi+1 + 3xi − xi−1)− (xi+1 − 3xi + 3xi−1 − xi−2),
= xi+2 − 4xi+1 + 6xi − 4xi−1 + xi−2.

Similarly for y

ys = yi+1 − yi,
yss = (yi+1 − yi)− (yi − yi−1) = yi+1 − 2yi + yi−1,
ysss = (yi+2 − 2yi+1 + yi)− (yi+1 − 2yi + yi−1) = yi+2 − 3yi+1 + 3yi − yi−1,
yssss = (yi+2 − 3yi+1 + 3yi − yi−1)− (yi+1 − 3yi + 3yi−1 − yi−2),
= yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2.

Thus, the discretised versions of βxssss(s, t)− αxss(s, t) and βyssss(s, t)− αyss(s, t) are

β(xi+2 − 4xi+1 + 6xi − 4xi−1 + xi−2)− α(xi+1 − 2xi + xi−1)

= βxi+2 + (−α− 4β)xi+1 + (2α + 6β)xi + (−α− 4β)xi−1 + βxi−2

= βyi+2 + (−α− 4β)yi+1 + (2α + 6β)yi + (−α− 4β)yi−1 + βyi−2.

The discretised versions of −dx(s,t)
dt

and −dy(s,t)
dt

are

−xt+1 − xt
4t

,

and
−yt+1 − yt

4t
.
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Taking this discretisation into account, Equations (4.2.1) and (4.2.2) become

−xt+1 − xt
4t

= Axt −
∂

∂x
(F 2

x (s, t) + F 2
y (s, t)), (4.2.3)

−yt+1 − yt
4t

= Ayt −
∂

∂y
(F 2

x (s, t) + F 2
y (s, t)), (4.2.4)

where A is n× n five-banded wrap around the matrix defined as follows. Let a = 2α+ 6β and
b = −α− 4β. Then

A =



a b β 0 0 0 · · · 0 0 0 β b
b a b β 0 0 · · · 0 0 0 0 β
β b a b β 0 · · · 0 0 0 0 0
0 β b a b β · · · 0 0 0 0 0
...

...
...

...
... · · · ...

...
...

...
0 0 0 0 0 0 · · · β b a b β
β 0 0 0 0 0 · · · 0 β b a b
b β 0 0 0 0 · · · 0 0 β b a


(4.2.5)

Equations (4.2.3) and (4.2.4) become

xt+1 = xt − A4txt +
∂

∂x
(F 2

x (s, t) + F 2
y (s, t))t. (4.2.6)

yt+1 = yt − A4tyt +
∂

∂y
(F 2

x (s, t) + F 2
y (s, t))t. (4.2.7)

4.3 Experimental Results for Kass’s snake

The formulas in Equations (4.2.6) and (4.2.7) were implemented successfully, as shown in Fig-
ure 5. These formulas are not the same as those used by Kass, who applied the matrix A to
xt+1 instead of xt and seemed to have misplaced the stepsize 4t. In any event, attempts to
implement Kass’s version exactly were not successful. All computations and programs were
performed in Matlab TM.

The program MBasicSnake.m was written to implement Equations (4.2.6) and(4.2.7). The
program was tested on an image of a pear downloaded from the internet, as shown in Figure
5. The program was run within the program KassPearDemo.m.

The program KassPearDemo.m loaded a grayscale image called Pear.mat, which was pre-
viously adapted from a colour image downloaded from the internet. The image was padded
to allow room for a circular initial snake. The image was blurred using a Gaussian filter size
241× 241 with σ = 20. An initial snake was created that comprised 100 points evenly spaced
on a circle of radius 140 pixels and roughly centred on the pear. The blurred image and the
coordinates of the initial snake were passed to the program MBasicSnake.m.

Equations in (4.2.6) and (4.2.7) were used to update the snake coordinates, and 500 time itera-
tions were computed with α = 0.2 and β = 0.2. Many initial attempts failed because the edge
image did not contribute significantly to the updated snake coordinates. Finally an artificial
factor of 10 was used to boost the contribution of the edge image to obtain the results shown
in Figure 5.
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Original image Initial snake

Intermediate snakes Final snake

Figure 5: Kass’s snake

5 Bilateral snake
This section introduces a new snake called Bilateral Snake. This snake can be achieved from
five steps.
1. Two snakes are considered r1 and r2. To encourage bilateral symmetry, two terms are added
to Kass’s version. Thus, the minimising calculation includes four functions: x, y, u and v.
2. Four Euler-Lagrange equations are computed.
3. From the Euler-Lagrange equations to the dynamic system, new vectors w(s) and z(S) are
constructed. The first vector contains x and y, and the second vector contains y and v.
4. The discrete derivatives along the curve r(x, y)) and r(u, v) are computed to obtain two
matrices. The first matrix M is not wrap around, as in the Kass’s version, and the second
matrix N is an identity matrix.
5. Updating the snake at iteration i can be achieved using a new formula, that obtained from
the previous step.

The above steps will be calculated manually. MATLAB will be used, then to confirm the
results.

5.1 The Euler-Lagrange equations for Bilateral Snake

Consider the parametric position of two snakes by the curves r1(t) = (x(t), y(t)) and r2(t) =
(u(t), v(t)) in R2. To encourage bilateral symmetry about the axis x = 0, penalty terms are
introduced for x(t) to be different from −u(t) and for y(t) to be differet from v(t). The bilateral
snake minimises the functional

J(r) =

∫ 1

0

(
α

2
(||r1s||2 + ||r2s||2) +

β

2
(||r1ss||2 + β||r2ss||2) +
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γ

2
(||x+ u||2 + ||y − v||2)− ||∇F (r1)||2 − ||∇F (r2)||2)ds. (5.1.1)

Numbers 1 and 2 are used to indicate ∂F
∂x

and ∂F
∂y

respectively, thus to avoid confusion
between coordinates x and y as a placeholdesr in the image and the functions x(s) and y(s),
which specify the coordinates of the snake at parameter s.

Equation (5.1.1) can be viewed as a functional of the four functions x, y, u and v. It may
be written as

J(x, y, u, v) =

∫ 1

0

(
α

2
(x2

s + y2
s + u2

s + v2
s)+

β

2
(x2

ss + y2
ss + u2

ss + v2
ss)+ (5.1.2)

γ

2
((x+ u)2 + (y − v)2)

−(F 2
1 (x, y) + F 2

2 (x, y))− (F 2
1 (u, v) + F 2

2 (u, v)))ds.

The character F1 denotes partial differentiation in the first component, and F2 denotes partial
differentiation in the second component.

Here, functionals are considered of the form

J(x, y, u, v) =

∫ s1

s0

f(s, x, xs, xss, y, ys, yss, u, us, uss, v, vs, vss)ds.

Note that
f =

α

2
(x2

s + y2
s + u2

s + v2
s) +

β

2
(x2

ss + y2
ss + u2

ss + v2
ss)+

γ

2
((x+ u)2 + (y − v)2)− (F 2

1 (x, y) + F 2
2 (x, y))− (F 2

1 (u, v) + F 2
2 (u, v)).

Note that Fx = Fu and Fy = Fv, so it is enough to compute Fx and Fy.

The four Euler-Lagrange equations for finding the extrema for J are

∂f

∂x
− d

ds

∂f

∂xs
+

d2

ds2

∂f

∂xss
= 0,

∂f

∂y
− d

ds

∂f

∂ys
+

d2

ds2

∂f

∂yss
= 0,

∂f

∂u
− d

ds

∂f

∂us
+

d2

ds2

∂f

∂uss
= 0,

∂f

∂v
− d

ds

∂f

∂vs
+

d2

ds2

∂f

∂vss
= 0.

In terms of x, y, u and v, the Euler-Lagrange equations are

βxssss − αxss −D1(F 2
1 (x, y) + F 2

2 (x, y)) + γ(x+ u) = 0,

βussss − αuss −D1(F 2
1 (u, v) + F 2

2 (u, v)) + γ(x+ u) = 0,

βyssss − αyss −D2(F 2
1 (x, y) + F 2

2 (x, y)) + γ(y − v)) = 0,

βvssss − αvss −D2(F 2
1 (u, v) + F 2

2 (u, v))− γ(y − v) = 0.
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Here, D1 and D2 indicate partial differentiation in the first and second coordinates x and
y respectively. Note that the partial derivatives of the image F with respect to x are the same
as partial derivatives with respect to u, and the partial derivatives of the image F with respect
to y are the same as the partial derivative with respect to v. Hence, notation is reduced by
setting

G1 = D1(F 2
1 + F 2

2 )

and
G2 = D2(F 2

1 + F 2
2 ).

The quantities G1 and G2 are fixed throughout the iterations. They are just evaluated at
different points as the iterations take place.

5.2 Numerical Solutions for Bilateral Snake

Viewing x, y, u and v as functions of both s and t, the dynamical system is given by

−∂x(s, t)

∂t
= βxssss(s, t)− αxss(s, t)−G1(x(s, t)) + γ(x(s, t) + u(s, t)),

−∂u(s, t)

∂t
= βussss(s, t)− αuss(s, t)−G1(u(s, t)) + γ(x(s, t) + u(s, t)),

−∂y(s, t)

∂t
= βyssss(s, t)− αyss(s, t)−G2(y(s, t)) + γ(y(s, t)− v(s, t)),

−∂v(s, t)

∂t
= βvssss(s, t)− αvss(s, t)−G2(v(s, t))− γ(y(s, t)− v(s, t)).

The first two equations are related because the functions x and u appear explicitly in both
equations. Similarly, the last two equations are related because the functions y and v, appear
explicitly in both equations. This means that the functions x and u, as well as y and v, must
be updated at the same time.
To implement this strategy, construct new vectors

w =

(
x
u

)
and

z =

(
y
v

)
By comparing n points at each snake (the (x, y) snake and the (u, v) snake), the updating of
the snakes at iteration i can be computed using the following equations

wt+1 = wt −4t(−P1 ∗ wt +G1(wt)), (5.2.1)

zt+1 = zt −4t(−P2 ∗ zt +G2(zt)), (5.2.2)

where P1 and P2 are matrices of size 2n× 2n given by

P1 =

(
M N
N M

)
, P2

(
M −N
−N M

)
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and M and N are matrices of size n× n given by

N =


γ 0 0 · · · 0
0 γ 0 · · · 0
0 0 γ · · · 0
...

...
... · · · ...

0 0 0 · · · γ



M =



a b β 0 0 0 · · · 0 0 0 0 0
b a b β 0 0 · · · 0 0 0 0 0
β b a b β 0 · · · 0 0 0 0 0
0 β b a b β · · · 0 0 0 0 0
...

...
...

...
...

... · · · ... ...
...

...
...

0 0 0 0 0 0 · · · β b a b β
β 0 0 0 0 0 · · · 0 β b a b
b β 0 0 0 0 · · · 0 0 β b a


.

Here the matrix N is γ times the n× n identity matrix. The matrix M is not a wrap-around
matrix, otherwise, M is similar to matrix A in Equation (4.2.5).

5.3 Experimental Results for Bilateral Snake

Original image Initial snake

Intermediate snakes Final snake

Figure 6: Bilateral Snake

The formulas in Equations (5.2.1) and (5.2.2) were implemented, as shown below.

MBasicSnake1.m was written to implement Equations (5.2.1 ) and (5.2.2). The program was
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tested on an image of a human face downloaded from the internet Figure 6. The program was
run within the programme KassPearDemo1.m.

KassPearDemo1.m loaded a grayscale image called face.mat, which was previously adapted
from a colour image downloaded from the internet. The image was padded to allow room for a
circular initial snake. The image was blurred using a Gaussian filter size 241×241 with σ = 20.
An initial snake comprising 50 points evenly spaced on a circle of radius 190 pixels and roughly
centred on the face was created. The blurred image and the coordinates of the initial snake
were passed to the program MBasicSnake1.m.

Equations in (5.2.1) and (5.2.2) were used to update the snake coordinates, and 500 time iter-
ations were computed with α = 0.0001 , β = 0, and γ = 0.0001. Many initial attempts failed
because the edge image did not contribute significantly to the updated snake coordinates. Fi-
nally, an artificial factor of 10 was used to boost the contribution of the edge image to obtain
the results shown in Figure 6.

Figure 6. shows that the curves are not correct (lower right panel), and many attempts were
made to discover the cause of this. However, no explanation was found for this. The values
of the parameters were changed many times, including time step and boost. Different pictures
and different-sized pictures were examined, and x, y, u and v were computed separately, as in
a previous version. Further, terms such as x+ u and y + v were changed many times.

6 Conclusion and future work
The external force in a GVF model were designed and then the snake was implemented using
diffusion equations. GVF model can offer advantages over balloons and distance-based snakes,
including a larger capture range and the ability to capture concavities by diffusing the gradi-
ent vectors of an edge map generated from the image. Symmetry in biology is the balanced
distribution of duplicate body parts or shapes within the body of an organism. In nature and
biology, symmetry is always approximate (e.g., plants, freshwater algae).Scientists believe that
bilateralism might occur in complex central nervous systems, such as the human spinal cord
and its vast network of nerves funnelling into the brain. Bilateralism also fosters the develop-
ment of improved sensory organs, such as ears and eyes, that help to support the intentional
and focused movements of which these types of symmetrical bodies are capable. For example,
a starfish has one axis about which it can be equally divided. This paper presented a new
active contour model, called the bilateral snake, for image segmentation. The main goal of
performing projections is to find a method that can help find the missing symmetrical part of
any image or shape in cases where the part is damaged or does not appear. For example, if a
lizard loses one of its legs, it can be found using the bilateral snake method. This method can
make contributions in many medical and biology areas. The bilateral snake is calculated as two
snakes, which are connected by two new terms that encourage bilateral symmetry. Examples
on (simulated) and real images were presented. The experimental results indicated that either
the equation statement or the code displayed contained an error. In future research, the GVF
snake should be implemented to avoid the problem of the snake not ‘seeing’ the edge. Further,
future research should develop a method to take into account several boundaries at once. For
example, in automatic delineating of a cell on a microscope slide, artefacts and other compo-
nents in the sample may lead to a false positive identification of a cell, or the outline of a true
cell may be missed. If the cells in question are known to contain a single nucleus, for example,
then the simultaneous delineation of both the cell boundary and the nucleus boundary may

27



reduce the number of errors in each of these steps alone.
The GVF model is designed
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