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Preface

The present thesis is concerned with a branch of mathematics which is presently
rapidly evolving and which is called Noncommutative Analysis. Noncommuta-
tive analysis appears as a result of applying abstract methods of Banach space
theory to the spaces that naturally appear in operator theory. Such spaces
appear in quantum mechanics and serve as a natural counterparts of classical

Banach spaces.

A corner-stone of classical analysis is the theory of differentiability. During
the twentieth century, a great effort was made in attempt to describe and clas-
sify various classes of differentiable functions. This led to what we currently
know as the Lipschitz and Holder spaces, the Sobolev spaces, the Besov and
Lizorkin-Triebel spaces, see [47,49,59, 65,66]. On the other hand, replacing
scalar functions with functions of self-adjoint linear operators, we naturally ar-
rive to the question about differentiable properties of such operator functions
and their relation with the classical spaces of differentiable functions. Due to the
more complex structure of operator functions, the classes of (operator) differen-
tiable functions which appear are more diverse and require deeper investigation

than their classical counterparts, see e.g. [38-40].

Let us use the classical LP-spaces to exhibit and compare classical and opera-
tor differentiability properties of functions. We shall consider only the Lipschitz
property.

Recall that the spaces LP := LP(R), 1 < p < oo consist of all Lebesgue
measurable functions with integrable p-th power, if 1 < p < 0o, and which are

essentially bounded, if p = co.

Fix a (classical) Lipschitz function f : R +— C, i.e. a function for which there

exists a constant c; > 0, such that
|f(t1) = fta)| < cplts —tal, ti,ta €R.

iii
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Let us take € L*. We denote by %% (or z’) the derivative of x, taken in

the sense of tempered distributions, see [58, Sections 6.11-6.12]. Let us recall

that the chain rule says that, for every Lipschitz function f,
1d , 1dx
gﬁ(f(l“)) = f'(z)- idr

where f’ is the derivative of the tempered distribution f. If %‘Cil—“t" € LP for

some 1 < p < oo, then the latter identity implies that 14 (f(z)) € L as well

(0.0.1)

and 1d 1d
X
;@(f(x)) T dt

where ¢y is the Lipschitz constant of the function f. The latter relation may

S Cf
Lr

b

Lr

serve as a criterion for a function f to be Lipschitz. Indeed, let us introduce the

following definition.

A function f : R+ C is called p-Lipschitz, for some 1 < p < oo, if and only

if there is a constant cf, such that

1d Lde
i dt

T @) (0.0.2)

S cCrp
Lp

Lp
for every x € L* such that %Z—f € LP. The latter inequality should be read
as follows. If x € L° and the derivative %‘fi—f is a function in LP, then the
composition f(z) is a tempered distribution such that the derivative 14 (f(z))
is a function in L? and the inequality (0.0.2) holds.

The definition of p-Lipschitz function above still contains some elements of
the classical analysis. To eliminate this and to present the latter definition in a

purely operator language, let us consider the linear operator D = %% : D(D) —

L?, where

i dt

Let us recall that an element of L°° may be regarded as a bounded linear

f%Dy:{feﬁ:ykeL%.

operator mg on L?, where
mg(€) =z, v L™, ¢cL?
is a multiplication operator. From this point of view, we clearly have

(D, 2(§) := Dx(§) — zD(§)

1d 1 de

ST
1

=1, geI2

i dt



We shall give strict meaning to the manipulations above in Section 2.2.1 below.
What is currently important is the fact that the derivative %% is now inter-
preted in the operator sense. Thus, the definition of p-Lipschitz function may

be now reformulated as follows.

A function f: R~ C is called p-Lipschitz, for some 1 < p < oo, if and only

if there is a constant ¢y, such that

1D, f@)l e < erp 1D 2] o (0.0.3)

for every x € L such that [D,z] € LP. The latter inequality should be read
as follows. If x € L* and the commutator [D,z] exists and belongs to L?,
then the commutator [D, f(z)] exists also and belongs to LP. Moreover, the
inequality (0.0.3) holds.

The following result describes relation between the notion of (classical) Lip-

schitz function and a p-Lipschitz function.

Theorem 0.0.1. Let f : R — C be a function. The following statements are

equivalent:

(i) the function f is Lipschitz;
(ii) the function f is p-Lipschitz, for some 1 < p < oo;

(iii) the function f is p-Lipschitz, for every 1 < p < co.

After this introduction, we shall discuss the subject of the manuscript with
more details. At the heart of noncommutative analysis is the notion of a von
Neumann algebra M. Basic examples of von Neumann algebras are the alge-
bra L™ acting as multiplication operators on the corresponding L? space and
the collection M,,, n > 1 of all n X n-matrices with complex entries. The theory
of von Neumann algebras was developed as a significant part of operator the-
ory in the mid-twenties, see [36,61,62]. Most of the text deals with semi-finite
von Neumann algebras. The latter means that the algebra possesses a normal
semi-finite trace which is a positive linear functional 7 possessing the additional
property that

r(ay) = 7(y2), @y e M,

and which has certain continuity properties familiar from classical integration
theory. The trace plays the role of a measure in the noncommutative analysis.
It is usually referred to as the noncommutative measure. In the case that the
algebra M is L*°, the trace is given by Lebesgue integration and in the case
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that the algebra M is M,,, n > 1 the trace is given be the standard trace on
matrices, i.e. the functional which is equal to sum of all diagonal entries of a
matrix. In noncommutative analysis, the couple (M, 7), where M is a semi-finite
von Neumann algebra and 7 is a normal semi-finite trace on M, plays the same
role as the couple (R, dt), where R is the real line and dt is Lebesgue measure,

does in the classical analysis.

Having the couple (M, 7) at our disposal, we can construct an analogue of
measurable functions — 7-measurable operators, see Section 1.1.4. The collec-
tion of all 7-measurable operators is frequently denoted by M. The collection M
serves as a source for construction of all noncommutative analogues of classi-
cal symmetric function spaces. For instance, the noncommutative LP-space,
1 < p < oo, which we shall denote as LP = LP(M, 1), are defined as

Lr = {x eM: [r(|z")]F < oo}.
The space LP is equipped with the norm
1
l#ller = [r(|z")]” .

We shall also consider noncommutative symmetric spaces of measurable opera-
tors which are analogues of the classical rearrangement invariant (r.i.) function
spaces, see Section 1.4. The reader can find the study of classical r.i. func-
tion spaces in [42-44]. Let us denote a noncommutative symmetric space
by &€ = E(M, 7). In the case M = L, the spaces LP coincide with the classical
LP-spaces and in the case M = M,,, n > 1, the spaces LP consist of all n X n
matrices equipped with p-th Schatten-von Neumann norm. These classes are

frequently denoted by CP and are studied in [31].

Let a and b be two self-adjoint linear operators. Suppose that a —b € LP, for
some 1 < p < oo. The first problem to be studied is the description of functions
such that f(a) — f(b) € LP and for which the following estimate holds

1f(a) = FO)l e < cf lla—bllen (0.0.4)

for some positive constant cy > 0.

A related problem is obtained if the Lipschitz type estimate in (0.0.4) is
replaced with estimates on commutators. That is, let D be a linear self-adjoint
operator and z be a bounded linear self-adjoint operator. If [D,x] € LP, then
we study when [D, f(x)] € LP and there is a constant ¢y depending on f such
that

1D, f(@)]ller < ep 1D, 2] er - (0.0.5)
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One of the first efforts to study these questions was made by Davies [19], who
established that the estimate (0.0.4) holds for the absolute value function in the
setting of M = M,,, n > 1. It was proved by Kosaki [41] that in the latter setting
the Lipschitz estimate (0.0.4) is equivalent to the commutator estimate (0.0.5)
for the absolute value function. Subsequently, the authors of [27], extended the
Lipschitz and commutator estimates to the setting of an arbitrary semi-finite
von Neumann algebra under the assumption that the operators a, b and D
in (0.0.4) and (0.0.5) are T-measurable.

Let us now look at the estimate (0.0.5) in the setting of the algebra M = M,
n > 1. Let us suppose for simplicity that the operator x is diagonal, i.e.

n
a}:Z/\kEk, Ak € R,
k=1

where Fy, 1 < k < n are diagonal matrix units. Let f : R — C. We consider

the function

Yr(Ap) = W A#p and (A A) = 0.

We have the following chain of identities

[D,f(l‘)] = Z E; [D’f(x)]Ek

jk=1

:ZEJ
7, 1

Ey,

DY f(A) Es
s=1

=~
Il

(f(Nj) = f(\)) E;DE

i 1

V(N Ak) (Aj — Ak) EjDE,

=

Ly

Vr(Aj, Ak) Ej
1

[
= 70= 1

D,zn:)\s E,
s=1

= Vr(Njs Ak) B; (D, ] Ey,
7, 1
= wa [D, x]), (0.0.6)

7

=7

>
Il

where T}, is the linear operator defined by

n

Ty, (y) == Y ¥s(Aj, Ax) BjyEx, y € M.
jk=1
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Thus, we readily obtain the estimate (0.0.5) as soon as we have that the oper-
ator Ty, is bounded. The operator Ty, is an example of what is known as a

double operator integral.

M. Birman and M. Solomyak developed the theory of double operator inte-
grals in the setting of type I von Neumann algebras in the series of papers [6-8].
Subsequently, they established, [9], the estimates (0.0.4) and (0.0.5) in the set-
ting of type I von Neumann algebras, for every function f such that the deriva-

tive f’ is of bounded total variation and for every 1 < p < co.

The double operator integral technique has been recently extended to the
type II setting in [21,22,24], where the estimates (0.0.4) and (0.0.5) are obtained
in the setting of general symmetric operator spaces € and general semifinite
von Neumann algebras M. However, in the case of reflexive noncommutative
L,-spaces on M, the results obtained in those articles are weaker than the
corresponding results of [9] due to the restrictive assumption of 7-measurability
imposed on the operators a, b and D in those papers. The fact that this assump-
tion is restrictive is clearly seen from the fact that in all interesting applications
of the estimates (0.0.4) and (0.0.5) in quantum mechanics (see e.g. [11]) and in
noncommutative geometry (see e.g. [17]) it is not satisfied. In fact, even in the
simplest example of interest (see Section 2.2.1), when the algebra M = L (R)
acts on H = Ly(R) via multiplication and the operator D is given by the differ-
%%, it is clear that D does not belong to the algebra M (furthermore,
it is not even affiliated with M). The problem of obtaining the estimates (0.0.4)

and (0.0.5) for general self-adjoint operators and not just for 7-measurable and

entiation

for not necessarily continuously differentiable functions f is non-trivial: the
difference in the assumptions renders many existing techniques inapplicable.
For example, the fact that our functions are not C! prevents us from using
the approach developed in [21] (based, in turn, on an earlier idea from [1]),
which ultimately views the first inequality in (0.0.5) as a statement that f
is an operator differentiable function and thus must be continuously differen-
tiable. It is, perhaps, also instructive to refer to [12] where a problem, arising in
the type II quantized calculus similar to the estimates (0.0.4) and (0.0.5), has
a completely different resolution depending on whether operators in question
were T-measurable or just affiliated (see [12, Theorem 0.3 (i) and (ii)] and the

discussion on p.144).

In Chapter 2, we establish the estimates (0.0.4) and (0.0.5) for every function
with derivative of bounded total variation in the general semi-finite setting with-

out the restriction of 7-measurability, (see Theorem 2.3.3 and Theorem 2.3.20).
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We now briefly explain the technical difficulties (and our strategy) arising
in the setting of commutator estimates. Suppose that the operator D is not
T-measurable and that € M. Among various definitions of the symbol [D, z]
in the literature (allowing the treatment of the situation when all three opera-
tors, D, x and [D,z] may be unbounded), we have chosen the least restrictive
approach articulated in [11], allowing us to consider a wider class of operators
than those in [21] and [12]. We say that [D,z] € € if and only if the sub-
space x1(2(D)) N 2(D) contains a core of the operator D which is invariant
under the unitary group {e®P};cg and the operator Dx — zD, initially de-
fined on that subspace, is closable with closure [D, 2] belonging to LP. Assume
(for brevity) that the core above coincides with 2(a) (it is of interest to ob-
serve that the latter assumption is automatically satisfied in the type I setting
and more generally, when LP C M, see Lemma 2.0.8 below). Then for a (7-
measurable) operator y := [a, 2] € € with a 7-dense domain (see Chapter 1), we
have 2(D) C 2(y). Now, according to our general strategy in proving the es-
timate (0.0.5) we consider the double operator integral T, (see Definition 1.7.3
below for a generalized approach to the operator appearing in (0.0.6) above),

which is bounded on LP and for which the relation
(D, f(2)] =Ty, (D, z]), (0.0.7)

holds. The double operator integral T, is a bounded linear operator on LP
defined via a complicated process of vector-valued integration with respect to
a finitely additive measure and the relationship between the domain of the
image 2 := Ty, ([D,7]) and that of D is not clear. On the other hand, if
(0.0.7) were to hold, we should have (at the very least) that 2(D) C 2(z)
and (f(z))"1(2(D)) N 2(D) # 0. This is a serious obstacle, which is specific
to the type II setting. Indeed, if M is a type I factor, then the operator z
is necessarily bounded (due to the obvious embedding C? C M) and so, the
embedding Z(D) C Z(z) = H is trivial.

We solve this problem and achieve a complete extension of the type I result
of [9] to a general semifinite von Neumann algebra M under the additional
assumption that the latter algebra is acting on H in standard form. In many
circumstances the latter assumption is automatically satisfied and in many cases
our results may be transferred to general von Neumann algebras. We illustrate
this in Section 2.4 of this manuscript suggesting a simple and straightforward
variant of the proofs of corresponding type I results (see Section 2.4.3), yielding
an additional insight into methods used in [9] and those in [21,22,24], (see
Sections 2.4.1 and 2.4.2).
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In Chapter 3, we establish converse results to those of Chapter 2. Namely,

we construct an example of a C'-function such that the estimate
I[D, f(x)lle < c|l[D,]lle (0.0.8)

fails for some operators D and x and any constant ¢ > 0. The example for the
special case & = L™ was constructed by A. McIntosh [45] (see also the recent
development of this example in [67]). We shall extend this example to symmetric
spaces & with trivial Boyd indices. The latter includes the space & = L'.

The results given in this thesis are partially published in [34,53-56] and pre-
sented at Special session in Harmonic Analysis, AustMS2005, September 27-30,
2005, Perth, Western Australia; CMA/AMSI Research Symposium “Asymp-
totic Geometric Analysis, Harmonic Analysis, and related topics” Murrama-
rang, NSW, 21-24, February 2006; CMA Workshop “Spectral Theory”, 2-5,
April 2007.
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Chapter 1

Introduction

In this preliminary chapter, we gather necessary material to present the results
of the thesis. While this material is mostly well-known, some of the results on

double operator integrals in Sections 1.7— 1.11 are new.

1.1 Locally convex topologies on Banach spaces

In this section we give a very brief summary of several important locally convex
topologies we shall frequently use hereafter. Let X be a Banach space with
norm | - ||x. (X), stands for the unit ball in the space X, i.e.

(X); ={reX: |z||lx <1}
Let X* be the dual Banach space, equipped with the dual norm || - || x+, i.e.

[fllx+ = sup [f(z)]

z€(X),

Apart from the norm topology, the dual space X* induces several weaker
topologies on the space X. Namely, if FF C X* is a linear (possibly not closed)
subspace, then the (X, F')-topology is the locally convex topology defined by
the family of semi-norms {py} rcr such that

ps(x) =|f(z)|, feF, zeX.

That is, the net {z,} C X converges to z € X if and only if
pf(xa_x): |f(za —2)| — 0, f€F

1
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In particular, the o(X, X*)-topology is called the weak topology.

Let X be a Banach space, X* be the dual and X** := (X*)* be the bidual.
It is known that the space X isometrically embeds into the bidual X C X**.
Besides the weak topology on X*, we shall consider the o(X*, X)-topology,
called the weak™ topology. For the latter topology, we have

Theorem 1.1.1 (Alaoglu, cf. [69, Theorem II.A.9]). The closed unit ball (X*)1

of X* is weakly* compact.

Lemma 1.1.2 ([61, Lemma 1.2]). Let X be a Banach space and F' be a (possibly
not closed) linear subspace of X*. F stands for the closure of F in the norm of
the dual X*. If f is a linear functional on X, then

(i) f is o(X, F)-continuous if and only if f € F;
(ii) f is o(X, F)-continuous on (X), if and only if f € F;
(iii) the topologies o(X, F) and o(X, F) coincide on (X),;

(iv) if F = F and f is o(X, F)-continuous on (X)
continuous on X.

then [ is o(X,F)-

17

If X, Y be two normed spaces, then B(X,Y) stands for the collection of
all bounded linear operators X — Y. The space B(X,Y) equipped with the

operator norm

IT|ex,y):= sup | Tz|y
z€(X),

is a Banach algebra, provided Y is a Banach space. For the sake of brevity, we

write B(X) := B(X, X).

An operator T € B(X,Y) is called one-dimensional if and only if it admits
the representation

Ty =z@z"(y) :=2"(y)z, z,ye X, " € X*.

An operator T € B(X,Y) is called finite dimensional if and only if it is repre-
sented as a finite sum of one-dimensional operators.

Lemma 1.1.3. Let X be a Banach space and let FF C X* be a linear subspace.
Let T € B(X). If the operator T is continuous with respect to the o(X, F)-
topology, then the space F' is invariant with respect to the adjoint operator T &
B(X*), i.e. T*(F) C F. If, additionally, F = F, then T*|r € B(F) and T*|r

is o(F, X)-continuous.
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Proof. Let f € F. Consider the linear form
s (T*f)(@) = f(T2), w€X.

Since the operator T is o(X, F')-continuous, the latter form is also o(X, F)-
continuous. Consequently, according to Lemma 1.1.2.(1), T*f € F. Thus, we
proved that T*(F) C F.

If F = F, then F is a Banach space isometrically embedded into X*.
Since T* € B(X*) and T(F) C F, we readily see that T*|p € B(F).

To show that T* is o(F, X)-continuous, it is sufficient to note that the op-
erator T*, as any adjoint operator, is o(X™*, X)-continuous. Thus, clearly, the
restriction T*|p is o(F, X )-continuous. The proof is finished. O

Besides the topologies mentioned above, the Banach space B(X,Y") possesses
the strong topology, that is, the locally convex topology defined by the collection

of semi-norms {p,}.cx given by
pe(T) = |Tally, X, TeB(X,Y).

Thus, the net {T,,} € B(X,Y) converges to an element T' € B(X,Y) in the
strong topology if and only if

po(Ta —T) = |[Taz — Tzlly — 0, z€X, TeB(X,Y).

Let X, Y be Banach spaces. Let 2 C X be a linear (possibly not closed)
subspace. It is said that the linear operator T' is defined on the subspace 2 if
and only if the mapping T': Z — Y is given and

T(x1+azy) =T(x) +aT(x2), 1,22 € P, a€C.

The subspace 2 is called the domain of the operator 7" and denoted by 2(T).

It is said that an operator S : Z(S) — Y extends an operator T': Z(T) — Y
if and only if 2(T) C 2(S) and T'(z) = S(z), for every x € P(T'), in this case
we shall write T C S. The operator T and S are equal (T = S) if and only
ifTCSand SCT.

An operator T : Z(T) — Y is called (strongly) densely defined if and only if
the subspace 2(T) is dense in X. An operator T : Z(T) — Y is called weakly
(resp. weakly®) densely defined if and only if the subspace 2(T') is weakly (resp.
weakly™) dense in X.
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An operator T : 2(T) — Y is called (strongly) closed if and only if the
subspace I'(T) := {(z,T(z)) : « € 2(T)} is closed in the space X @Y. If
the subspace I'(T') is closed in X @& Y equipped with the weak (resp. weak*)
topology, then the operator T is weakly (resp. weakly*) closed.

An operator T is called (strongly) closable when there is a closed operator T”
such that 7 C T’. If the operator T is closable, then the closure T is a linear
operator T : 2(T) — Y such that T' C T", for every closed linear operator 7"
with 7' C T”. Similarly, the operator T is called weakly (resp. weakly*) closable
if and only if it has weakly (resp. weak*) closed extension.

A linear subspace 2 C 2(T) is called a core (resp. weak, weak™ core) of
the operator T' if and only if the closure (resp. weak, weak* closure) of the
operator T} := T|y extends T, i.e. T C Tj.

Let X be a Banach space. A mapping U; : R — B(X) is called a group of

operators if and only if

Ut'USZUt+S, (]0:].7 t7S€R

A group {U; }1er is called strongly continuous if and only if the mapping ¢ —

U, is continuous in the strong topology.

A group {U; }1er is called weakly (resp. weakly*) continuous (see [11]) if and
only if|

(i) for every x € X, the mapping ¢t — U(x), t € R is continuous in the weak
(resp. weak™) topology;

(ii) for every t € R, the mapping = — U(z), x € X is weakly (resp. weakly™)

continuous.

Let {U¢}ier be a strongly (resp. weakly, weakly*) continuous group of op-
erators on X. Let us define the subspace Z(§) C X as the collection of all
vectors € X such that the limit

U.(z) —
lim 775(33) m’
t—0 t
taken in the strong (resp. weak, weak*) topology, exists. For every z € Z(9),
let us now define the mapping = — 6(z) € X by
U.(z) —
§(z) := lim y

t—0

The linear operator ¢ : 2(8) — X is called a strong (resp. weak, weak*) gener-
ator of the group {U;}ter.
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Lemma 1.1.4. The domain 2(8) of the strong (resp. weak, weak®) genera-
tor 0 of the strongly (resp. weakly, weakly*) continuous group U = {U;}ier 1

invariant with respect to the group U, i.e.
U/ 2(5)) C 2(6), teR.

Proof. Let us prove the lemma when the group U is strongly continuous. For
the other cases, the argument is similar. Since Uy is a continuous linear operator
with continuous inverse, for every t € R, we obtain
. Us(x)— =
z € 2(§) < lim Us(z) —
5—0 S
Uirs(z) — Us(z
o Urts(@) = Vi)
s—0 S

— U(z) € 2(0), teR.

exists

exists

O

Theorem 1.1.5 ([11, Corollary 3.1.8]). Ewery weakly continuous group is
strongly continuous and its weak and strong generators coincide.

The resolvent set p(d) of a linear operator 6 : Z() — X is the collection of
all numbers A € C such that the operator A — § := A1 — ¢ is invertible, i.e., for
every A € p(9), there is an operator R (d) € B(X) such that

(i) Ra(0)(X) € 2(6);
(ii) RA(0)(Ax —d(x)) =z, x € D(0);

(iii) ARA(0)(z) — 6(RA(d)(x)) = =, x € X, see [11, Definition 2.2.1].

The operator Ry(6) is called the resolvent of the operator 6. The comple-
ment () := C\ p(9) is called the spectrum of the operator d.

Theorem 1.1.6 ([11, Proposition 3.1.6] and [48, Lemma 3.2]). Let U = {U, }+er

be a strongly (resp. weakly™) continuous group of contractions, i.e.
||UtHB(X) <1, te R.
If 6 : 2(5) — X is the strong (resp. weak*®) generator, then

(i) the domain P(0) is strongly (resp. weakly*) dense in X ;

(i) the operator ¢ is strongly (resp. weakly*) closed;
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(iii) {A e C: |RA >0} C p(d);
(iv) [RA(O)lBx) < IRATE, X e p(6);

(v) for every x € X, limy_,00 ARA()(x) = x, where the limit converges in the

norm topology (resp. weakly*);

(vi) the resolvent Rx(9) is given by the Laplace transform:
Ra(0)(z) = / MUY dt, A€ p(d), € X.
0
The latter integral converges in the norm topology (resp. weakly*).

Theorem 1.1.7 (|20, Theorem 1.9] and [11, Corollary 3.1.7]). Letd : 2(5) — X
be the generator of a group U = {Us}ter. If the subspace 9 C P(0) is strongly
(resp. weakly, weakly*) dense in X and is invariant with respect to U, then 9
is a strong (resp. weak, weak™) core of the operator 0.

1.2 Interpolation of linear operators

Let X and X; be normed spaces. Recall that the couple (X, X;) is called
compatible if and only if there is a Hausdorff topological space X such that X; C
X, 7j=0,1.

Lemma 1.2.1 ([5, Lemma 2.3.1]). Let (Xo, X1) be a compatible couple of

normed spaces.

(i) The space Xo N X1 equipped with the norm
7]l xonx, == max{|[z]|x,, lz]x, }, =€ XoNXy
18 a mormed space.
(ii) The space Xo + X1 equipped with the norm
%]l xo+x, == _inf (llzollx, + lz1llx,), =€ Xo+ Xy
r=x0+T1
18 also a normed space.

Let (X0, X1) be a compatible couple of normed spaces. A normed space X
is called an intermediate space with respect to the couple (X, X1) if and only
if

XoNX; CXCXy+ Xy
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An intermediate space X with respect to the couple (X, X1) is called an inter-

polation space with respect to (Xg, X1) if and only if, for every linear operator
T: Xo+ X1~ Xo+ X1,

such that
T(X;) € X; and T|x, € B(X;), j=0,1, (1.2.1)
it follows that
T(X)C X and T|x € B(X).

In the present section, we briefly recall two methods of constructing of in-

terpolation spaces and their basic properties.

1.2.1 The complex interpolation method

let X := (Xo, X1) be a compatible couple of Banach spaces. Let
S:={zeC: 0<Rz<1}.
Let us consider the class F(X), which consists of all functions
f:8— Xo+ Xy,

bounded and continuous in the closed strip S and holomorphic in the open
strip S such that, for every j = 0,1, the mapping ¢t — f(j +it), t € R is
continuous function with values in X; vanishing when |t| — co. The class F(X)

equipped with the norm
[ fll7(x) == maxsup || f(j + it)|| x,
=01 teRr

is a Banach space, see [5, Lemma 4.1.1].

Let 0 < @ < 1. Let us consider the space Xg = (Xo, X1)g which is the
collection of all elements x € X+ X such that there is f € F(X) with f(0) = =
and

Izl x, == inf {[[flrx): feFX), f(0) =z} <+oo. (1.2.2)

Theorem 1.2.2 ([5, Theorem 4.1.2]). If X = (Xo, X1) is a compatible couple

of Banach spaces, then

(i) the space Xg equipped with the norm | - |, defined above, is a Banach
space, for every 0 <60 <1;
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(ii) the Banach space Xg is an interpolation space, for every 0 < 6 < 1.
Moreover,

1Tl 5(%0) < ITN 50 1T 1B (x0)s

for every linear operator T : Xo + X1 — Xo + X1, provided (1.2.1) holds.

We shall now show that the argument in the proof of the theorem above

may be extended to a much wider setting as shown by the following theorem.

Theorem 1.2.3. Let X = (Xo, X1) and Y = (Yo, Y1) be two compatible Banach
couples. Let
T:Cx (X0+X1> I—>Y0+Y1

be a function, such that

(i) the mapping
T.:x—T(z,z), v€Xo+ X1

s a linear operator, for every z € C;

(ii) the mapping
z—T,€ B(Xo+X1,Y0+Y1), z€C

is a function holomorphic in S and bounded in S;
(iii) for every j = 0,1, the mapping
t— Tj+it S B(Xj,}/}'), teR

18 continuous.

If

M] = sup “Tj+it||B(Xj,}/j) < +o09, .7 =0,1,
teR
then, for every 0 < 6 < 1, the operator Ty : Xg — Yy is bounded and

IToll 5, vy < Mg~ MY

Proof. Fix z € Xg. For every ¢ > 0 there is a function f. € F(X) such
that fe(f) = z and

[fellr) — € < llzllx, < Ilfellzx)- (1.2.3)

Let us consider the function

ge(2) = MF ' M5 T, (f.(2)), z€C.



1.2. INTERPOLATION OF LINEAR OPERATORS 9

It is not difficult to see that g. € F(Y) and

19ell 2wy < [ fell 7 (x)- (1.2.4)

According to (1.2.2), the element g.(#) belongs to Yy and

19¢Dlvy < gellzevy < el 7(x)- (1.2.5)

On the other hand,
ge(0) = MU= M Ty ().

Combining (1.2.3), (1.2.4) and (1.2.5) yields
ITo(2)lly, < Mi~"M3 (|lzllx, +e), €>0.

Letting € — 0 proves the lemma. O

1.2.2 The real interpolation method

In this section, we shall consider another well-known interpolation method.

Let X = (X, X1) be a compatible couple of normed spaces. Let us recall
that

K(Lx) = (||:r,0||X0+t||x1||X1), t>0, re Xo+ X3

inf
T=x0+T1

Let us also recall that, for every 0 < 6 <1 and 1 < ¢ < o0,

Q=

wuar0) = | [T ) ] g <o

and

Dy oo (f(-)) == esssup [t f(1)).
>0

Let Xp, = (X0, X1)a4, 0 < 0 < 1,1 < g < oo be the collection of all ele-
ments r € Xy + X such that

7] %, , = Poq(K(2)) < +o0. (1.2.6)

Theorem 1.2.4 ([5, Theorem 3.1.2]). If X = (X0, X1) be a compatible couple

of normed spaces, then

(i) the space Xy, equipped with the norm (1.2.6) is a normed space, for ev-
ery0<6<1,1<qg<o00;
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(ii) the normed space Xg,q 18 an interpolation space with respect to the cou-
ple X, for every 0 <0 <1 and 1< q < oo;

(iii) every linear operator T : Xo + X1 — Xo + X; satisfying (1.2.1), acts
invariantly on Xg 4, i.e. T(Xp.q) C Xp,q and

1Tl 50,0 < 1715 1T x0-

In regard to the real interpolation method, we shall use the following result.

Theorem 1.2.5 (The duality theorem [5, Theorem 3.7.1]). Let (Xo,X1) be a
compatible couple of Banach spaces such that the space Xo N X1 norm dense in
both Xo and X1. If0 <0 <1 and 1 < q < oo, then

(X0, X1)o4]" = (X§,X7)a,g (norms are equivalent),
where q' is the conjugate exponent, i.e.

qa g

1.3 Briefly on von Neumann algebras

In this section we fix a Hilbert space H with a scalar product (-, -). We consider
the Banach algebra B(H) := B(3, H) with the operator norm || - || := || - || (3¢
We refer to the strong topology in the space B(H) as to the strong operator
topology or, equivalently, the so-topology.

If the net {z,} C B(H) tends to the element x € B(H) with respect to the
so-topology, then it does not necessarily imply that the net {z%} tends to z*
with respect to the so-topology. We shall say the the net {z,} C B(H) tends
to € B(JH) with respect to the so*-topology if and only if

so —limz, =z and so —limz), = ™.
« «

Let us consider the linear functional we , € B(H)*, {,n € H defined by

wEﬂ?(x) = <l‘(f)717>, T € B(ﬂ{)

Let B(H)~ be the linear subspace in the dual B(H)* generated by the col-
lection {we p}tenerc and let also B(H), be the closure of B(H). in the norm
topology of B(H)*. We shall refer to the o(B(H), B(H).~.)-topology as the weak
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operator topology or the wo-topology, and to the o(B(H), B(H).)-topology as
to the ultra-weak topology or the uw-topology.

A x-subalgebra M C B(H) is called a von Neumann algebra acting on H if
and only if 1 € M and M is closed with respect to the wo-topology.

Let A C B(H) be a non-empty subset of B(H), the commutant A’ of A is

the collection of all operators commuting with every operator in A, i.e.
A':={z € B(H): wzy=yz for every y € A}.
We have the following result.

Theorem 1.3.1 ([61, Theorem 3.2, Corollaries 3.3, 3.4]). (i) Let A be non-
empty subset A C B(H) such that A* = A. The commutant A’ is a von

Neumann algebra acting on H;
(ii) of M C B(H) is a von Neumann algebra, then the second commutant

of M coincides with M, i.e. M = M.

Theorem 1.3.2 ([61, Theorem 1.10]). Let M be a von Neumann algebra acting
on H. If

Mo = {f|M : f < B(}C)N} and M* = {f'M : f € B(g{)*}’

then

(i) the restrictions of the wo- and ww-topologies onto M coincide with the

o(M,M.)- and o(M, M,)- topologies, respectively;
(ii) the closure of M~ with respect to the norm of M* coincides with M, ;

(iii) the Banach space M equipped with the operator norm is isometrically iso-
morphic to the dual space (M,)*, that is, every bounded linear functional ¢
in (My)* has the form

o(f) = ¢.(f) := f(x), f €M, for somex €M, and H(bH(M*)* = ||z]|.

Combining Lemma 1.1.2 and Theorem 1.3.2 we obtain

Corollary 1.3.3. The wo- and uw- topologies coincide on the unit ball of a von

Neumann algebra.
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The following result shows that the space M, is unique with respect to the

claim (iii) in Theorem 1.3.2.

Theorem 1.3.4 ([62, Corollary IT1.3.9]). Let M be a von Neumann algebra. If X
is a Banach space such that X* = M, then the Banach space X is isometric
to M,.

The Banach space M, equipped with the norm || - ||~ is called the predual

of the von Neumann algebra M.

Next we shall discuss the notions of states, weights and traces. We fix a
von Neumann algebra M. Let M™ be the collection of all positive elements in
the C*-algebra M. A linear functional ¢ € M, is called positive if and only
if ¢(z) >0, for all z € M+,

A weight on a von Neumann algebra M is a mapping ¢ : M+ — [0, oo, the

extended positive real half-line, satisfying

¢z +y) = o(z) + o(y),
dlax) =ao(z), a>0, z,yc M". (1.3.1)

Here, we adopt the convention that 0-(400) = 0. We associate with a weight ¢
the sets
Py i={r € M : ¢(z) < 400}, my :=spanpg,

ng :={xeM; z"x € py}.
Observe that a positive element ¢ € M is a weight such that ¢(1) < +oo.
The weight ¢ is called faithful if x = 0, provided ¢(z) = 0, x € ps. The

weight ¢ is called semi-finite if the linear subspace mgy is wo-dense in M. The
weight ¢ is called normal if ¢(x) = lim ¢(z4 ), provided {zo} C py is a monotone

increasing net of operators and z = limz, € py.

We have the following simple observation

Lemma 1.3.5. If ¢ is a weight on the algebra M, then

(1) pp + Py C Py, Py C py, @ > 0 and y € py, provided y < x, T € Dy,
y e M*;

(ii) ng is a left ideal in the algebra M;

(ili) zy € my provided x,y € ng.
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Proof. If x,y € py, then for every o > 0, it is readily follows from (1.3.1) that
d(z+y) = o(x) + ¢(y) < 400 and ¢(ax) = ag(x) < +oo.
Consequently, py + pp € pp and apg C py.
If 2 € py and y € M such that y < z, then it is clear that
x—y >0 and ¢(x—y)>0.
Thus, it follows from (1.3.1) that
P(y) = ¢(z) — oz —y) < ¢(x) < +o0.
Hence, y € py. The claim (i) is proved.

Let us prove (ii). Let us first verify that ng is a linear space. If z,y € ng,
and « € C, then it follows from (1.3.1) that

¢((az)*(ax)) = lafd(z"z) < +oo.
Thus, ax € ng. Furthermore, we have
@+y)(@+y) =2z +yy+a’y+y'a
and
(z—y)(z—y)=z"z+y'y—az"y—y"z>0.
The latter two relations imply that

(z+y)"(x+y) <2 2z +y"y).

Hence, since z,y € ng it follows from (i) that  + y € ng. Let us now show
the ideal property. Let x € M and y € ng. From elementary considerations, we
have that

|lz]|*1 — z*z > 0.

Multiplying by y* and y from left and right, respectively, we obtain that
lzPyy = y*a*ay” = (zy)* (zy).
Consequently, 2y € ny. Hence, the claim (ii) is proved.

The claim (iii), now clearly follows from (ii) and the polarization identity

3

sz(x +i*y)*(z +i*y), x,y € M.
k=0

y'r =
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A weight ¢ has a unique extension over the linear subspace my. We shall
denote this extension as ¢ also. A weight ¢ is called a state if p, = M
and ¢(1) = 1. We have the following description of normal states on a von

Neumann algebra M.

Theorem 1.3.6 ([37, Theorem 7.1.11]). If ¢ is a state on a von Neumann

algebra M, then the following are equivalent

(i) ¢ is normal;

(il) ¢ is wo-continuous on the unit ball of M.

Thus, Theorem 1.3.6 and Lemma 1.1.2 imply

Corollary 1.3.7. The collection of all normal states is precisely the set
{peMf: ¢(1) =1}

A one-to-one mapping 7 : M +— M is called *-automorphism of the algebra M
if and only if

7+ ay) =m(z) + anly), w(ey) = () m(y)
w(z*) =(m(x)*, z,yeM, acC. (1.3.2)

Theorem 1.3.8 ([61, Corollary 5.13]). Every x-automorphism of a von Neu-

mann algebra is is uw-continuous.

Let ¢ be a weight on a von Neumann algebra M and let ¢ = {o}1cr be a
group of x-automorphisms of M. The weight ¢ satisfies the modular condition

with respect to the group o if and only if (see [37, Section 9.2])

(1) oi(ps) € py and ¢(o4(x)) = ¢(z), for every t € R, = € py;

(ii) for every z,y € ngyNngy*, there is a function f, , : S — C, where S = {z €
C: 0< Sz <1}, such that f,, is holomorphic in S, bounded in S and

fz,y(t) = ¢(Ut($) y) and fﬂc,y(t + 7/) = ¢(y O't(.’L')), teR.

Theorem 1.3.9 ([37, Section 9.2]). For every weight ¢ on a von Neumann
algebra M there is a unique group of x-automorphisms of M o = 0% = {af}teR

such that ¢ satisfies the modular condition with respect to o®.
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The group o? is called the modular group of the weight ¢.

Let ¢ be a weight on a von Neumann algebra M and let v € M be a uni-
tary operator. We set ps, = upyu* and ¢,(r) = ¢(u*zu), © € pg,. The
functional ¢, is also a weight. The following straightforward lemma explains

relation between the modular automorphism groups of the weights ¢ and ¢,,.

Lemma 1.3.10. The modular automorphism group oc%» = {¢f“}teR 18 given
by
ol =wol(uzu)ut, xeM.

Proof. We have to verify the modular conditions (i)—(ii) set out above.

(i) Let = € pg,,. Clearly, u*zu € py. Thus,

T € Do, = U TU E Py

@

= o] (v zu) € py

¢

= uoy (uzu)u* € py,

— o (x) € py,, tER.

(ii) Since ¢® is the modular group of the weight ¢, we have that, for ev-
ery z,y € mg Nng*, there is a function f, , such that (ii) holds with respect
to ¢ and the group o?. It is now easy to show that the condition (ii) will hold
for the weight ¢, and the group o®* with the function fmy ‘= furzu,uryu, fOT
every x,y € ng, Nng,™. O

Among all possible weights we shall distinguish those possessing the trivial
modular group. Namely, the weight 7 is called a tracial weight (or, simply, a
trace) if the corresponding modular group is trivial, i.e. o] = 1, for every t € R.
We then have

Lemma 1.3.11. A weight 7 is tracial if and only if T(xy) = 7(yx), for every
Z,Y € Ng.

Proof. Let T be a tracial weight, i.e. 0™ = 1. Let
S:={zeC: 0<S8z<1}.

Since 7 satisfies the modular condition with respect to the group ¢”, we have
that, for every z,y € n,, there is a function f, , : S — C holomorphic in S and
bounded in S such that

fay(t) = 7(0f (2)y) and foy(t+1i) =7(yo](x)), teR.
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Thus, since 7 is tracial, we readily see that
foyt) =7(zy) =co and fp,(t+1i) =7(yz) =c1,
i.e. the function f, , is constant on the lines
{zeC: $2z=0} and {z€C: Sz=1}.

Let us show that the function f; , is a constant throughout the strip S. Indeed,
let
Sp:={zeC: -1<S8z<0}

and let y and x; be the characteristic functions of the strips S and S;. We shall
consider the function

f1(2) = fuy(2) x(2) + foy(—2) x1(2), 2 € SUS;.

The function f; is holomorphic in the strip .S and in the interior of the strip S.
Moreover, the function f; is continuous and bounded throughout S U S;. Con-
sequently, see e.g. [37, Lemma 9.2.11], the function f; is holomorphic in the
interior of the strip S U S;. Furthermore, the function f; is a constant on the
boundary of the domain S U S;. Thus, according to the maximum modulus
principle, the function f; is a constant throughout the domain S U S;. The
latter, in particular, implies that the function f, , is a constant throughout the
domain S, and therefore
T(zy) = 7(yz).

The direct statement is proved.

The converse statement is simple. If the weight 7 satisfies the identity

T(xy) =7(yz), Y€ n.,

then it is clear that the weight 7 satisfies the modular condition with respect
to the group o = 1 with f,, = 7(zy), ,y € n,. Due to the uniqueness (see
Theorem 1.3.9) it readily follows that o™ = 1. O

A von Neumann algebra M equipped with a normal semi-finite faithful
(n.s.f.) trace 7 is called semi-finite von Neumann algebra. If there is no semi-
finite trace on M, then the algebra M is called purely infinite.

Let z : Z(x) — JH be a linear operator. If z is densely defined, then we may
construct the adjoint operator z* : P(x*) — H as follows. The subspace 2(z*)
is the collection of all vectors £ € H such that the linear functional n — (£, z(n))
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defined on the subspace Z(x) is bounded. Since the subspace 2(x) is dense
in H, we obtain that, for every £ € ZP(x*) there is a unique vector, which we
call z*(&), such that

(@*(&),m) = (& x(n)), for every n € D(x).

Theorem 1.3.12 ([57, Theorem VIIL.1]). Let = : P(x) — H be a densely
defined linear operator. The adjoint operator x* : D (x*) — H is closed. The
adjoint operator x* is densely defined if and only if the operator x is closable in

which case T = x**. If x is closable, then (T)* = x*.
An operator z : Z(x) — H is called self-adjoint if and ounly if x = z*.
Theorem 1.3.13 ([61, Proposition 9.28]). If z : Z(x) — H is a closed linear

operator, then the operator x*x is positive and self-adjoint.

Let us recall next the spectral theorem for self-adjoint operators. Let #(R)
be the o-algebra of all Borel subsets of R. The mapping e : Z(R) — B(H) is

called a spectral measure if and only if
(i) e(B) is an orthogonal projection for every B € Z(R) and e(B)e(B’) =0
provided BN B’ = (J;
(ii) e(U2,Bk) = > pey e(By), provided B; € B(R), ByNBj =0, k # j. The

latter series converges in the so-topology.

Theorem 1.3.14 ([57, Theorem VIIL6)). Let z : Z(x) — H be a self-adjoint
linear operator. There is a unique spectral measure e*(-) : B(R) — B(H) such
that

&€ P(x) if and only if /R)\d||e§(§)||§c < 400 (1.3.3)

and

(6) :/R)\def\(g), ¢ € Ia), (1.3.4)

where €5 = e”(—o0, A|. The latter integral converges in the norm of 3. If x is

bounded, then
z://\dei
R

and the integral converges in the so-topology.

The relations (1.3.3) and (1.3.4) suggests that the latter result may be con-

versed.
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Theorem 1.3.15 ([57, Theorem VIIL6]). Let e(-) : B(R) — B(H) be a spectral
measure, as erplained above. There is a unique self-adjoint linear operator x :
P(x) — H such that its spectral measure €*(-) guaranteed by Theorem 1.3.1}

coincides with e(-).

Recall that the space B(R) stands for the class of all bounded Borel functions

on R equipped with the uniform norm
[fllec =sup[f(#)], [ € B(R).
teR

The theorem below defines the B(R)-calculus of self-adjoint operators.

Theorem 1.3.16 ([57, Theorem VIIL5]). Let z : Z(x) — H be a self-adjoint
linear operator and f € B(R). The integral

flo)i= [ fOVdes
R
converges in the so-topology. Thus, f(x) € B(H). Moreover,

(i) The mapping f — f(z) is a x-homomorphism from the algebra B(R) to
the algebra B(H). The latter homomorphism is bounded, i.e.

£ @) < 1fllso-

(i) If {fu}3z: € (B(R)), , fn — 0 pointwise, then fn(x) — 0 in the so-
topology.

Besides the spectral theorem, there is another distinguished property of self-
adjoint operators — Stone’s Theorem — which connects a self-adjoint operator

with a unitary group.

Theorem 1.3.17 (Stone, cf. [57, Theorems VIIL.7 and VIIL8]). Let z : Z(z) —
H be a self-adjoint linear operator. If {€'},cr is the corresponding unitary
group, then the strong (equivalently, the weak) generator of this group coincides
with x. Conversely, if {7Vt }ter s a weakly continuous group on a Hilbert space 3,
then there is a self-adjoint linear operator x : P (z) — H such that e* = ~;,
teR.

A linear subspace Z C H is called affiliated with the algebra M if and only
if
$€9 — ue9,
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for every unitary operator u € M’. In the latter case, we shall write M. A
linear (possibly unbounded) operator z : Z(x) — H is called affiliated with M
if and only if u*zu = x for every unitary operator u € M’. The latter means
that (i) the subspace Z(x) C H is affiliated with M and (ii) u*zu(§) = x(§), for
every £ € Z(x). Clearly, it follows from Theorem 1.3.1 that if z € B(H) and «
is affiliated with M, then x € M. If the operator = : Z(z) — H is affiliated
with M, then we write shall xnM. Let us note that

Lemma 1.3.18. If z : 9(x) — H is a linear self-adjoint operator and M is
a von Neumann algebra acting on H, then xnM if and only if e*(B) € M for
every B € Z(R).

Proof. Let z : 2(x) — H be a linear self-adjoint operator affiliated with M.
Let €”(-) be the corresponding spectral measure. Let us show that e*(B) € M
for every B € A(R).

Let us fix v € M'. We consider the spectral measure ¢'(-) := u*e(-)u.
According to Theorem 1.3.15, there is a linear self-adjoint operator ' : 2(z') —
H such that

¢ € 9(2') if and only if /R)\dHe’)\(ﬁ)H%C < 400

and

2O = [ M@, ¢< o).
R
We shall show that = 2. Indeed,
€€ 2 = [ MleA(©IB < +o0
= / MNd||u*esu(€)]3 < +oo
R
— / | u(€) |3 < +oo
R
—u(é) € 9(r) =€ € 2(x).
Furthermore,
7€) = [ Naeh(©) = [ aurdeguce)
=uzu(§) = z(§), §€ Z(x)=2().

Thus, it follows from uniqueness in Theorem 1.3.14 that €’(-) = e*(-). The
direct statement is proved. The proof of the converse assertion is similar. O
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Now, let us show how to extend a *-automorphism 7 to self-adjoint op-
erators znM. Let xnM and let = be self-adjoint. To extend the mapping w
to x, we use the spectral theorem. Indeed, let e*(-) be the spectral measure of
the operator z. Since 7 is a *-isomorphism, the family 7(e®(-)) is a spectral
measure. Thus, according to Theorem 1.3.15, there is a self-adjoint linear oper-
ator, which we call 7(z) such that e™®)(-) = 7(e*(-)). Moreover, according to
Lemma 1.3.18, the operator 7(x) is also affiliated with the algebra M.

The following lemma immediately follows from the definition set out above

and the functional calculus, see Theorem 1.3.16.

Lemma 1.3.19. If nM, then f(7(x)) = n(f(x)), for every f € B(R).

Alternatively, the operator 7(z) may be defined via Stone’s theorem and the
group {e"*};cg, provided x = x*nM.

Lemma 1.3.20. Let xnM and let x be self-adjoint. The group v = {vi}ter

given by v, := w(e'®) is strongly continuous. The generator of the group -y

is im(x).

Proof. Tt follows from Theorem 1.3.16.(ii) that the group {e!*®};cg is strongly
continuous. The latter implies that the function

t—e’ teR
is wo-continuous. Since the latter function is uniformly bounded, it is also
uw-continuous, see Corollary 1.3.3.

It follows from Theorem 1.3.8, that the mapping 7 : M +— M is ww-

continuous. Consequently, the function
t m(e™), teR
is uw-continuous and therefore the mapping
t (™)), teR

is weakly continuous (in H), for every £ € H. On the other hand, it is clear

that the mapping
§rm(e) (), €eX

is weakly continuous (in H), for every ¢t € R. Thus, we obtain that the group 7
is weakly continuous. It now follows from Theorem 1.1.5, that the group -~ is

also strongly continuous. The first part of the lemma is proved.
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Let us note that it is immediately follows from Lemma 1.3.19 that
v = etT@ e R, (1.3.5)

Let 2’ be the generator of the group «. Let us consider the resolvent Ry (z') =
(A — ')~ By Theorem 1.1.6 we have

Ra(a')(€) = / T e M6 di
[(1.3.5)] = /0 Y @) (&) dt
— (A —ir(@)

The last identity is due to the fact that

1 p—
X—ip

/ e Metdt, X>0, peR
0

and Theorem 1.3.16. Thus, the operators i7(z) and 2’ have the same resolvents

which implies that i7(z) = ' O

Remark 1.3.21. Tt is a straightforward observation, that the construction of the
operator 7(z), = x*nM and the results set out in Lemmas 1.3.19 and 1.3.20
are also applicable to any #-isomorphism, i.e. a one-to-one mapping 7 : M — My
such that (1.3.2) holds, where M and M; are two (*-isomorphic) von Neumann

algebras.

1.4 Noncommutative symmetric spaces of mea-
surable operators

Here we recall the construction of noncommutative symmetric spaces with re-
spect to semi-finite von Neumann algebra. We shall start with the classical

rearrangement invariant and symmetric function spaces.

Let L(R) = L(R,\) be the class of all A-measurable functions f : R — C,
where ) is Lebesgue measure. For every f € L(R), the distribution function is
defined by

AM(f) = MteR: |f&)| >}, 7>0.

The decreasing rearrangement f* of the function f € L(R), such that A\(f) #
400, is defined by

ff@) :=inf{r >0: X(f)<t}, t>0.
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A (quasi-)Banach space E C L(R) is called a rearrangement invariant (r.i.)
function space if and only if y € E and ||y||g < ||z||g provided z € E, y € L(R)
and y*(t) < z*(t), t > 0. At this point our terminology is slightly different from
that of [44].

Let z,y € (L' + L*)(R). It is said that = is submajorized by y in the sense
of Hardy, Littlewood and Polya, when

t t
/ ¥ d\ < / y* dA.
0 0

In this case, we shall write y << z. Is known that, see [42, Formula (2.17),
p. 91]
(x+y)" =<z" +y". (1.4.1)

A Banach r.i. function space E is called a symmetric function space if and
only if ||y|lg < ||z||g provided x,y € E and y << x, see [13,26-28]. A Banach
r.i. function space E is called a fully symmetric function space if and only
if y € F and ||y||g < ||z||g provided z € E, y € L' + L> and y << z, see [28].

The primary examples of Banach r.i. function spaces are the function LP
spaces, 1 < p < o0, i.e.

LPR) :={f € LR): |[fllrrw) < +oo},

where the norm || - || z»(g) is defined by

2|l v ) == [/ |z(¢)|P d)\(t)] , 1<p<
R
and

||| oo () := esssup |z(t)].
teR

The next theorem describes interpolation properties of Banach r.i. and sym-

metric function spaces.

Theorem 1.4.1 ([42, Theorems 4.1, and 4.3]). (i) Fvery Banach r.i. func-
tion space E is an intermediate space in the couple (L*(R), L= (R)), i.e.

we have the continuous embeddings
L' R)NL=(R) C E C L*(R) + L*=(R).
(ii) If E is an intermediate Banach space in the couple (L*(R), L>(R)),

then E is an interpolation space with interpolation constant 1 in this couple

if and only if E is fully symmetric.
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Another classical example of r.i. function spaces are Lorentz spaces LP"(R),

1 < p,r < oo, which are given by the following norms

2o ) = U (/72 (1)) %(t) T l<r<oo (1.4.2)
R

and

@] oo () = Sl;gtl/” z*(t), r=oo. (1.4.3)
>

For every 1 < p < oo, we have LPP(R) = LP(R). In general Lorentz spaces are
quasi-Banach spaces. Nonetheless, for p > 1 the Lorentz norm may be replaced

with an equivalent Banach norm (see Corollary 1.4.4 below).

Let us next recall interpolation properties of the classical LP-spaces and

those of the Lorentz spaces.

Theorem 1.4.2 ([5, Theorem 5.1.1]). For every 1 < p; < oo, j = 0,1 and
every 0 <0 <1,

(LPo,LPY)g = LP (norms are identical),

where ) 1_¢ 0
=t —. (1.4.4)
p Po b1

Theorem 1.4.3 ([5, Theorem 5.3.1]). For every 1 < p;j,q; < o0, j = 0,1 and
every 0 <0 <1,

(LPodo [Prav), = LP9  (norms are equivalent),

where ) L 0
S="— 4L and 1<qg< o0, ifpo#p
p Po P1

or
1 1-6 0
p=po=p1 and 5=

do q1
Let us mention two implications of Theorem 1.4.3.

Corollary 1.4.4. For every1 <p; < o0, j=0,1 and every 0 <6 <1

(i) (LPo,LP ), = L (norms are equivalent), where p is given in (1.4.4);

(ii) (LPo,LP)g 4 = LP? (norms are equivalent), provided py # p1, where p is
given in (1.4.4) and 1 < ¢ < oo;
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(iii) The quasi-norm in the Lorentz space LP? for 1 < p < oo is equivalent
to a norm and equipped with this norm the space LP? is a Banach space,

provided 1 < p < oo.

The norm in the r.i. function space E is called order-continuous if and only
if |xn ||z | O for every x,, | 0 C E.

Lemma 1.4.5. The r.i. function space E is separable if and only if the norm || -

& is order-continuous.

Let E be a r.i. function space. The Kéthe dual E* is defined by
E* :={x e LR): |z||gx <+oo} (1.4.5)

and

|zl = sup /Rx(t)y(t)d)\(t).

ye(E),
Theorem 1.4.6 ([42, Theorem 4.9]). The Kdithe dual of a r.i. function space

s a fully symmetric function space.

For the Kothe dual space E*, we can construct the second dual E**.
Clearly, we have the continuous embedding £ C E**. If the space F is separa-
ble, then the latter embedding is isometric, i.e. ||z||g = ||z||gxx, x € E.

It is said that a r.i. function space E has a Fatou norm if and only if, for
every 0 <z, 1n ¢ C E, ||z||g = sup,, ||| g- A r.i. function space F has Fatou
norm if and only if the embedding £ C E** is isometric. If E has Fatou norm

then E is symmetric.

It is said that a r.i. function space E has the Fatou property if and only if,
for every {z,} C E, such that z,, 1, * € L' + L*® and sup,, ||z,||r < oo, it
follows that « = sup,, x, € E exists and ||z,||g Tn ||2||g- A r.i. function space E
has the Fatou property if and only if £ = E**. If E has the Fatou property,
then FE is fully symmetric.

1.4.1 Noncommutative symmetric spaces

Let us now consider the noncommutative counterparts of the spaces E. We fix

a semi-finite von Neumann algebra M with n.s.f. trace 7.

Let  : Z2(x) — H be a closed densely defined linear operator affiliated
with M. An operator x is called 7-measurable if and only if for every ¢ > 0
there is a projection p = p. € M such that p(H) C Z(x) and 7(1 —p) < e.
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The distribution function of the operator xnM with respect to the pair (M, 7)
is defined by (see [30])
As(z) := 7(el®!(s, +00)).

Lemma 1.4.7 ([30]). Let xnM. The following are equivalent

(i) = is T-measurable;
(ii) As(z) < 400 for some s > 0;

(iii) As(z) — 0 when s — +o0.

Let M be the collection of all 7-measurable operators. Let us recall that, for

every x € M, the generalized singular value function is given by

ue(x) :=inf{s > 0: As(z) <t}. (1.4.6)

The measure topology is the topology generated by the collection of neighbor-
hoods of the origin {N (e, §)}e,5>0, where N (e, d) is the set of all closed densely
defined linear operators = : Z(x) — H affiliated with with M such that there is
a projection p € M satisfying p(H) C Z(z), 7(1 — p) < € and ||zp|| <.

Alternatively, lim, x4 = x, To,x € M with respect to the measure topology
if and only if

lién pe(re —x) =0, for every t > 0.

Theorem 1.4.8 ([46]). The collection M is a complete topological *-algebra
with respect to the measure topology.

Let E = E(R) be a r.i. function space and M be a fixed semi-finite von
Neumann algebra. The corresponding noncommutative space E(M, 7) is defined
by

EM,7):={zeM: pu(z)ec ER)}. (1.4.7)

If E is fully symmetric, then the norm in the space E(M,7) is given by

lzllzover) = @) e-

Theorem 1.4.9 ([25,29], see also [13]). If E = E(R) is a fully symmetric
Junction space, then the space E(M,T) equipped with the norm || - || gov,r) is a

Banach space.
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As for the classical spaces, the Holder inequality is valid in the noncommu-
tative LP-spaces, cf. [30, Theorem 4.2.(i)], i.e.

1 1 1
co < lzles Iylless ===+, 1< s,p,q <o (14.8)
S p q

[yl

Let E = E(R) be a fully symmetric function space. We shall frequently
denote the corresponding (noncommutative) space E(M, 7) as €. In particular,

we shall write LP, 1 < p < oo for the (noncommutative) LP-spaces.

Let £ = E(R) be a fully symmetric function space and let E* be the corre-
sponding Kéthe dual space defined in (1.4.5). It is proved in [26, Proposition 5.3]
that, if €% := E*(M, 1), then

&< ={aeM: abe L', whenever be &}

and

lallex = sup |7 (ab)]. (1.4.9)
be(€),NLINL

According to (1.4.9), every element a € £* generates the continuous linear form
fa:x—7(azx), z€E

and

[ falle= = llallex-

Thus, the Kothe dual space €* naturally embeds into the dual £*. In the present
manuscript, we frequently identify the element a € £* with the corresponding
form f, € €*.

Let us note, that, if LP := LP(M, 1), 1 < p < o0, then

1 1
(er)* =27, ~ 4 =1
p

/
and also
(L Loy =Ltne>, (LPnL=) =Lt 4 0. (1.4.10)

Lemma 1.4.10. Elements in L' N L separates points in L' + L=, i.e.,
if 21,09 € LY+ L% and (x1,y) = (w2,y), for every y € LY N L, then 11 = x.

Proof. The proof is immediately seen from the observation (1.4.10) and (1.4.9).
However, it is instructive to present a direct elementary proof also.
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Let z € L1 + L£°°. Tt is sufficient to prove that
T(zy) =0, Vy e L' NL>® = z=0. (1.4.11)

Since the algebra M is semi-finite, there is a net of projections p, To 1 C

L1 N L. Consider the polar decomposition of the operator
r=ulz|, ueM.

It is clear that pou* € L' N L>, for every a. Consequently, it follows from the
hypothesis in (1.4.11) that

T(zpou®™) =0, Va.

On the other hand

1/2 1/2)

0=rT1(zpau”) = 7(|2[pa) = T(|2]""~ pa |7

1/2 2 _

Since the operator |z|%/2p, |z|"/? is positive, we obtain that |z|'/2p, |z|
1/2 Pal|z|/? T4 |x| and that the space L' +

£ has the Fatou norm which imply that || = 2 = 0. The lemma is completely

for every . Now, we observe that |z|

proved. O
Let us next recall some properties of the noncommutative symmetric space &

with respect to a fully symmetric function space with an order-continuous norm.

Theorem 1.4.11 ([13, Proposition 2.1]). If the symmetric function space E
has order-continuous norm, then As(x) < 400 for every s > 0, provided x € E.

Equivalently, poo(z) := lims—, o0 pe(x) = 0, provided x € €.

Theorem 1.4.12 ([13, Proposition 2.5]). Let € be a noncommutative symmetric
operator space with respect to a fully symmetric function space with an order-
continuous norm. If {ps} C M is a net of projections such that p, | 0, then
lim, ||zpalle =0, for every x € €.

Let us note, that, if the space € does not have order-continuous norm, then

we have the following weaker result.

Lemma 1.4.13. Let {z,} C (M), be a net. If wo —lim, zo =0, then
(&, &%) —limyx, =0(€,8°) —limz,y =0, y €. (1.4.12)

In particular, the space L' N L> is o(€,EX)-dense in €.
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Proof. The proof is straightforward. Since the net {z,} is uniformly bounded,
it readily follows from Corollary 1.3.3 that

uw — limx, = 0.
«

On the other hand, for every y € € and z € €%, it is clear that zy,yz € L',
see (1.4.9). Thus, the limit above implies that

lim7(zazy) =lim7(zayz) =0, ye &, z€ EX.

The latter is equivalent to (1.4.12).

For the second claim, observe the following. For every z € &, there is a

sequence of projections {p"}n21 such that
pn, — 1 and p, € L' NL>.
On the other hand, it follows from (1.4.12) that
o(&,&%) — nllrgox(l —pn) =0 <= o(&E&")— nler;Oxpn =z.

The lemma is proved. O

Lemma 1.4.14. (i) If the space E has order-continuous norm, then the
space L1 N L™ is norm dense in &. In particular, the space L' N L™

is norm dense in LP, 1 < p < oc.

(ii) Since L' N L> is dense in L, it follows from Lemma 1.1.2 and Corol-
lary 1.3.3 that the wo-topology, the uw-topology, the o(L°°, LY)-topology
and the o (L%, LY N L>)-topology coincide on (L°°), = (M),.

Proof. (i) Let z € & We set p, := el (%,n), n > 1. According to Theo-
rem 1.4.11, {p,}52, C L' N L. Moreover, according to Theorem 1.3.16, the
operators zp,, € L, for every n > 1. Consequently, zp,, = (zp,)-pn € L1NL>,
for every n > 1. On the other hand, it is clear that p, T e|‘”‘(0, +00) as n — 0.
Thus, it follows from Theorem 1.4.12 that

lim zp, = ze®(0, +00) = 2(1 — €l*1(0)) = 2(1 — €7(0)) = =,

n—oo

where the limit is taken with respect to the norm topology of €. The claim (i)

is proved.

(ii) This claim readily follows from Corollary 1.3.3, the fact that M, = L!
and the claim (i) together with Lemma 1.1.2. O
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Lemma 1.4.15. If z € L' + L% and if 2 C H is a dense subspace affiliated

with M and 2’ = z|p, then 2/ = z.

Proof. Since DnM, it follows that z'nM. Since D is dense and 2z’ C z, we
have z* C 2’*. The operator z* is T-measurable, therefore, z’* is T-measurable
also and z™* = z*, cf. [32, Lemma 2.1]. Passing to the second adjoints, we

obtain z/ = 2/** = z** = 2. O

1.4.2 Trace scaling x-automorphisms of a von Neumann
algebra

Let us consider a x-automorphism of the algebra M. The mapping 7 is uw-

continuous, see Theorem 1.3.8. Let us assume that
(LI NL®) C LI NL™® and 7(n(z)) =aT(z), € lLPnNL>®,  (1.4.13)

for some v > 0. Such an automorphism is call trace scaling with the factor o.. For

the special case a = 1, a trace scaling *-automorphism is called trace preserving.

Lemma 1.4.16. A trace scaling *-automorphism m of a semi-finite von Neu-
mann algebra with a factor a > 0 is continuous with respect to the measure

topology.

Proof. Let us fix x € M and consider the action of the automorphism 7 on the
distribution function A;(x). We clearly, have that
As(m()) =7(el™N(s, +00)
=r(m(el"l (s, +00)))
=ar(el(s, +))
=aXs(x).

This permits us to consider the action of the automorphism 7 on the func-

tion u(x), namely

pr(m(2))

inf{s >0: A(m(z)) <t}
inf{s>0: al(z) <t}
:inf{s>0: )\s(x)gt}

().

The latter implies that the mapping 7 is continuous with respect to the measure

=p

t
o

topology. Thus, the lemma is proved. O
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Let 7 be the unique extension of m to the algebra M and let 7€ be the

restriction of the operator 7 onto the space &. In particular, let 7 := 7~".

Lemma 1.4.17. Let w be a trace scaling *-automorphism of a semi-finite von

Neumann algebra with a factor o > 0.

(i) The space L>° (resp. L) is invariant with respect to the operator ©°

(resp. w), i.e.
(L) C L™= (resp. mH(L) C LY)

and

Imllpwy =1, (resp. 'l 5 = o).

(i) If € is a fully symmetric noncommutative space, then w(€) C € and 7€ €
B(&).

Proof. The proof follows from (1.4.13), the fact that 7 is an *-automorphism
and interpolation. O

In the case of trace preserving x-automorphism the results presented above
are proved in [21].

Remark 1.4.18. If the operator = is 7-measurable, then its spectral resolu-
tion (1.3.4) converges with respect to the measure topology. The latter implies
that the extension 7 coincides with the one discussed in the end of Section 1.3,

i.e., for every self-adjoint € M, we have that 7(z) = 7(z).

Remark 1.4.19. The construction of the extension 7 given in the present sec-
tion without any changes carries to the setting of an arbitrary trace scaling
s-isomorphism 7 : M — My, where M; is another semi-finite von Neumann

algebra.

1.4.3 Interpolation of spaces of measurable operators

Let us recall the following result, which will allow to carry the classical inter-
polation results stated in Theorems 1.4.2 and 1.4.3 and Corollary 1.4.4 to the

setting of noncommutative spaces of measurable operators.

Theorem 1.4.20 ([28, Corollary 2.7], see also [52, Corollary 2.2]). If E :=

(Fo, E1) be a compatible couple of symmetric function spaces, then
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(i) the couple & = (€9, &1) = (Eo(M, 7), E1 (M, 7)) is compatible;
(ii) Ep(M,7) = &y, for every 0 < 6 < 1;
(iil) Epq(M,7) = Eyq, for every 0 <0 <1 and every 1 < q < co.

Corollary 1.4.21. The classical spaces LP and LP9, 1 < p,q < oo may be
replaced with their noncommutative counterparts LP and LP9 in the statements
of Theorems 1.4.2 and 1.4.8 and Corollary 1.4.4.

Combining the interpolation Theorem 1.4.3 in the noncommutative setting
with the duality theorem (see Theorem 1.2.5), we obtain that

Theorem 1.4.22. The dual space (LP9)* coincides with L7 (norms are
equivalent), provided 1 < p < co and 1 < g < oo (orp=q=1). In particular,
for every 1 <p < oo, 1< qg< oo (orp=gq=1), there is a constant c, 4 > 0
such that

[T(@y)l < cpgllelleralylerma, zelP? yelr . (1.4.14)

The classical version of the latter result is proved in [3, Corollary 4.8].

Let us note that, it follows from [30, Lemma 2.5] that, for every z € M,

pa(@) = (e(j2*)'?, teR.

Consequently, for every 2 < p,q < oo,

fllna = [ [ ()" 2]
[ (Ermeap) 5]

1/2
= [ |2?[l 5 2sar @ € L7, (1.4.15)

1
2

Q[

Thus, the identity (1.4.15) implies that

layllee = [r(l2y[?)]?
= [r(l=lly* )]

1/2 * 1/2
[see (L4.14)] < |l arso 1y PRI oo
=|z|lcor |yllas, € LPT, yelLd (1.4.16)

where 2 < p,q,7,s < 0o and

1 1 1

p— 1 p—
2 p q r s
The identity (1.4.16) generalizes (1.4.8) for the Lorentz spaces.
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1.5 The regular representations of a semi-finite
von Neumann algebra

Let M be a semi-finite von Neumann algebra equipped with n.s.f. trace 7 acting
on H. If E := E(R) is the fully symmetric function space, then € := E(M, 1)
stands for the corresponding operator space, in particular, LP := LP(M, ),

1 < p < oo are the noncommutative LP-spaces.

Remark 1.5.1. Let us note that the space L2 is Hilbert. The corresponding

sesquilinear form is given by
(&m =7(&n").

In the present section, we shall discuss the representations of the algebra M

as a left (or right) multiplication operators on the Hilbert space L£2.

Let anM. We consider the operators L,, R, € B(£?) defined by
L) =z-& and R, (&) =¢-x, £l
Let us also consider the mappings L, R : M +— B(L?) given by
L(z):=L, and R(x)=R,;, z€M.
We set My, := L(M) and Mg := R(M).
In the first part of the present section, we shall prove

Theorem 1.5.2. The image My, (resp. Mg) is a von Neumann algebra acting
on L2 and the mapping L : M +— My, (resp. R : M +— Mg) is a uw-continuous
x-isomorphism between the algebras M and My, (resp. Mg).

The latter theorem follows from Theorem 1.3.1 and Lemma 1.5.5 and The-

orem 1.5.3 below.

Theorem 1.5.3 ([62, Ch. V, Theorem 2.22]). The commutant My’ of My,
is Mg (and similarly Mg' = Mp).

To prove Lemma 1.5.5 we need the following simple result.
Lemma 1.5.4. Ifz € M and there is a constant ¢ > 0 such that
lzyllez < cllyllez, for everyy € L?

then © € M and ||z| < c.
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Proof. The claim of the lemma readily follows from

]l = |l=* /2

= sup [r(z"z2)]
ZE(L}#%

1/2

= sup [T(zl/2x*mzl/2)]l/2
ZG(L‘}#%

1/2

sup |jzz
ZG(L}F)l

llc2

<c sup [z'/?

ze(L}),

HLz =cC

O
Lemma 1.5.5. The mapping L : M — My (resp. R : M — Mpg) is a *-

isomorphism of the algebra M onto the von Neumann algebra My, (resp. Mg ).

Proof. We shall prove the lemma only for the mapping L; for the mapping R,

argument is similar. We readily see that

L(z + ay)(§) = (z + ay) § = 2§ + ayé = La(§) + aLy(§)

and
Lay(€) = (2y) € = Lo (Ly(€)), z,yeM, £€L? acC.

Furthermore,

(Lo(€)m) = T(xn*) = 7(E(2™n)*) = (&, Ly (n)), &meL? e
Thus, we obtain that the mapping L : M — B(L?) is a *-homomorphism and

L(zx+ay)=Ly +aL,, Ly, =L,L,, L,=L(z").

x

The latter, in particular, means, that the image My, is a *-subalgebra of B(L?).
The fact that the mapping L is injective follows from Lemma 1.5.4. O

The algebra M, (resp. Mp) is called the left (resp. right) reqular represen-
tation of the algebra M. From now on we shall discuss only the left regular
representation, the reader can easily reconstruct the corresponding notions and

results for the right regular representation.

The algebra My, is equipped with n.s.f trace 77, given by

m(x) = 7(L7 x)), =€ M.
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Having defined 7r,, the mapping L : M +— M becomes a trace preserving x-
isomorphism. Let L:M ML be the extension of the latter isomorphism
to the algebra of T-measurable operators (see Section 1.4.2). The next lemma

describes the mapping L.

Lemma 1.5.6. The mapping L : M — My, is given by f/(x) = L,, z €M,
where Ly : 2(Ly) — L2 is the operator defined by

D(L,) :={¢cL?: z-£cL?} (1.5.1)

and

Lo(€) =x2-€ &€ D(Ly). (1.5.2)

Proof. Let us fix x € M. We shall show first that the operator L, defined
in (1.5.1) and (1.5.2) is closed. Let

{6,152, CP(L,), lim &, =& € L? and lim L,(&,) =n € L?,

where the limits converge with respect to the norm topology of £2. We shall
show that £ € Z(L,) and L,(§) = = - £ = n which will imply that L, is closed.
To this end, let us consider the collection of projections {p,,}5°_; € M such
that

Pm 11, asm — oo and |pmz| <m, m>1.

We have the following chain of relations

[2€]lg2 = sup [[pmag]|ee
m>1

=sup sup T(pmz&(Q)
m>1¢e(L2),

= sup sup lim T(pmxfng)
m21¢e(L?), "

=sup sup lim 7(pyL.(&)C)
m>1¢e(L2), "o

= sup sup T(pm"?C)
mleG(ﬁz)l

<lnllea.

Consequently, € € L2, and hence, £ € Z(L,). Furthermore, since z¢ € L2, it
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follows from Theorem 1.4.12 that

7(La(8) ¢) =7(x€ )
= lim_r(pna€C)

= lim lim 7(p,&, )

m—00 N—00

= lim hHéC T(mex(gn) C)

m—o0 Nn—

= W}EHOOT(PmﬂC)
=7(n¢), ¢ek?

Consequently, it follows from Lemma 1.4.10 that L,(§) = n. Thus, it is proved
that the operator L, is closed.

Let us next show that the operator L, is 77-measurable. Let ¢ > 0. Since the
operator z is T-measurable, there is a projection p € M such that 7(1 — p) < e
and p(H) C Z(z). Since the operator x is closed, the latter implies that the
operator zp is bounded. Consequently, we have that the operator p := L(p) is
a projection in My, such that 77(1 — p) < € and, for every ¢ € L2, we clearly
have that

lzp(&)llee = [lzp€llez < [lzp] [I€]le2 < +o0. (1.5.3)
Hence, p(L?) C 2(L,), and therefore the operator L, is T7-measurable.

Let us recall that L : M — M, is the unique continuous extension of the
operator L : M — Mp. Let us remind that x € M. Observe that the iden-
tity (1.5.3) shows that, for every projection p € M such that p(H) C Z(x), we
have the estimate

[Lzp|l < [lzp]-

Consequently, for every 2 € M and every €, 8 > 0, we obtain the implication
x € N(e,0) = L, € Np(¢,0),

where {NL (¢, 0)}e 650 is the collection of neighborhoods of the origin in M; with
respect to the measure topology defined by 7. Since, the mapping x +— L, is
linear, we readily see this mapping is continuous with respect to the measure
topology. Thus, we have established that the mapping x — L, is continuous
and coincides with the isomorphism L on the dense subspace M C M. The
latter immediately implies that L(x) = Ly, for every € M. O

It follows from Lemma 1.4.17 that the mapping L¢ is an isometry between
the the spaces &€ = E(M,7) and & := E(Mp, 1) for every fully symmetric
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function space F = FE(R). From now on, we shall denote the mappings L
and L& simply by L. The latter lemma ensures that this will not lead to any
ambiguity.

Let us also recall that L stands for the extension of the isomorphism L :
M — My, to the class of self-adjoint operators affiliated with M, see discussion
at the end of Section 1.3. We set L, := L(z), for every x = 2*nM. Lemma 1.5.6
yields that L(z) = L(z) for every = z* € M.

1.6 Basic examples of von Neumann algebras
and noncommutative symmetric spaces

In this section, we consider several basic examples of von Neumann algebras

and their properties we need in the sequel.

1.6.1 M = L®(9M,m)

We first consider the commutative example. Let (9%, m) be a o-finite measure
space with o-additive measure m. The space LP(M,m), 1 < p < oo stands for

the collection of all m-measurable functions f : 9t — C such that

s = [ 1FOP dm(t) < e, 1<p <o

and

| fIlLoe (o, m) := ess sup | f(t)] < oo.
tem

The space L (9, m) is a *-algebra with respect to the pointwise operations
and complex conjugation.

To every function f € L°°(9,m), we assign the multiplication opera-
tor mg € B(L?(9M,m)), given by

mg(€) =f-& €€ LM m).

Thus, the *-algebra L>° (9, m) becomes a subalgebra of B(L2(9,m)). We shall
identify function f € L° (9, m) and the corresponding operator my .
It is known that (L>°(9,m))’ = L (9, m), e.g. [36, Example 5.1.6]. Thus,

we readily see that M = L°° (90, m) is a von Neumann algebra acting on H =
L2(9, m).
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It follows from [36, Example 5.1.6] that, if an operator x : Z(x) — L?(9, m)
is affiliated with the algebra L°°(90%,m), then there is an m-measurable func-
tion f such that

E€cPx) = f-£cL*Mm) and z(¢) = f-¢, €€ D(x).
The algebra M is equipped with the distinguished trace
— [ s®dme). 1€ p, = Lm)
e

The algebra M = L (9, m) consists of all m-measurable functions f such
that A(f) # +o0o. We shall denote the symmetric space E(M, 1) as E(9, m).
Clearly, if E = L?, 1 < p < oo, the latter spaces turn into LP (9%, m) as defined

above.

Let us note that if (9, m) = (R, \), then the spaces F (91, m) are the classical
symmetric function spaces. If (9, m) = (N, v), where v is the counting measure,
then we shall denote the space E(9,m) as ¢F. In particular, for £ = LP,
1 < p < o0, the space ¢F coincides with the classical sequence space 7.

1.6.2 M=DB({2), n> 1.

Having fixed the standard basis (¢;)}_, in the Hilbert space /5, the algebra B((},)
may be identified with the algebra of all n X n-matrices. That is, for every = €
B(f?), we assign the matrix (zjk)} =1 such that xj, = (2(ex) ;). If & =
(Ek)g=1:m=(n;)}=1 € 22 and n = x(£), it then follows that

n
N szjkﬁj, 1<j<n.

k=1

It is easily seen that M’ = C 1.

There is a tracial weight Tr on the algebra M, called the standard trace,
defined by

Tr((w1) ],k 1) E Ljj-

Any linear functional ¢ on M has the form

o(x) = Tr(z D), (1.6.1)
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where ® is a matrix. By the Holder inequality and polar decomposition, the

norm of such a functional ¢ is given by

[6llae- = Tr(|®]).

The predual M, identifies with the space B(¢2) equipped with the norm [|-||5¢, =
Tr(]-|). The functional ¢ is positive if and only if the corresponding matrix @
is positive.

Consequently, any weight ¢ on M has the form (1.6.1), where ® is a positive
matrix. Let us show that the modular automorphism group for such a weight ¢
is given by

ol (z) = "2 d ", zeM. (1.6.2)
Note that, without loss of generality, we may assume that the positive matrix ®
is diagonal, see Lemma 1.3.10. Let (qu);?‘;l be the diagonal entries of ®. Accord-
ing to Theorem 1.3.9, the modular group is unique, thus, it is sufficient to show

that the group above satisfies the modular condition, see (i)—(ii) on page 14. It
follows from (1.6.1) and (1.6.2) that

o(of () = Tr(®zd "®) = Tr(z®) = ¢(z), =€ M.
Furthermore, for every x,y € M, let us consider the function f, , given by
foy(2) = Tr(@T#2d%y), 2 € C.

Since

n
fow(2) = > ) windy Fyn,

Jk=1

it is clear that the function f, , is holomorphic in the strip
S:={zeC: 0<Sz<1}
and bounded in the closed strip S. Moreover,

foyt) = (b(of(a:) y) and fo,(t+1) = ¢(y ‘7?(1‘))7 teR.

Consequently, the weight ¢ satisfies the modular condition with respect to the
group (1.6.2).

Let x = (z;)} ;-1 € M. The generalized singular value function i (z) with

respect to the standard trace Tr is a step function given by

sp(x), fk—1<t<k, 1<k<n,
pe(z) = .
0, otherwise,
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where (sx(z))7_; is the sequence of singular values of the operator x taken in

decreasing order and counted according to multiplicities.

Let CF := E(M,Tr). In particular, let C? := LP(M,Tr). The space CF is
the space of all n xn-matrices equipped with the norm of the symmetric ideal C¥
of compact operators, see the example below. In particular, the space C2, 1 <
p < oo is the space of all n x n-matrices with the p-th Schatten-von Neumann

norm
|zller = (Tr(jz|?)7, z€M, 1<p< oo

and || - [lege = I| - [I-

1.6.3 M = B(?).

This example is the natural extension of the example above. Having fixed the
standard basis (¢;)32, in £* the element x € M identifies with the infinite
matrix ()75, where @, = (zex, €x).

On the cone M™Tof all positive matrices we have the tracial weight T'r, given
by

Tr((ik)35%=1) = D _ Tjj,
j=1

which we call the standard trace.

2

no

bra B(¢%) as a Banach subspace of the algebra M. The union U, B(f2) is
wo-dense in M. The latter implies that M’ = C1. It also implies that every

The space £2, n > 1 is a subspace of ¢2. Thus, we may consider the alge-

bounded normal (equivalently, uw-continuous) functional ¢ € M, have the form
o) =Tr(z®), xeM,

where @ is the matrix such that Tr(]®|) < oo. Therefore, the predual M,
identifies with the class of all infinite matrices ® such that Tr(|®|) < co. The
denote this class as C! and call the trace class.

Let us note that Tr(p), where p € B({2) is a projection, is a positive integer.
Thus, if z € M, then, according to Lemma 1.4.7, Ay(x) = 0 for some s > 0
or, equivalently, x € B({3). Hence, we see that for the algebra M = B({3)
the algebra of measurable operators M coincides with M. In particular, every

symmetric space E(M, 1) C M.

Let us recall that the closure of all finite-dimensional operators in M is called
the class of compact operators and denoted by C*°. Let E = E(R) be a fully
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symmetric function space, and € = E(M, 1) be the corresponding operator
space. If the space E = E(R) is separable, then the norm | - ||¢ is order-
continuous. Therefore, every operator z € &£ is compact, i.e. € C C*. In this
case, we shall call the space & the symmetric ideal of compact operators and
denote by C¥.

If x € C*°, then the generalized singular value function pu(z) is given by

ue(x) = sp(z), if k—1<t<k, k>1,

where (s;j(r))32; is the decreasing sequence of singular values of the matrix z
counted with multiplicities. Thus, C¥ identifies with the class of all compact
operators x such that

[zlles = lls(@)lle= < oo

In particular, when E = LP, 1 < p < oo, the classes C? := C¥ equipped with

the norm )

llz|lcr := lZ(sn(x))p] z '

n=1
The class CP is called the p-th Schatten-von Neumann ideal. We refer the reader

to [31] for more on the symmetric ideals of compact operators.

Before we continue considering examples of von Neumann algebras, let us

first recall the notion of the crossed product.

1.6.4 Continuous crossed product

Let M be a von Neumann algebra acting on a Hilbert space H and let a =
{a: }ier be a weak™ continuous group of x-automorphisms on M. In the present
section we shall consider construction of the continuous crossed product M x, R

and its basic properties.
Let us recall that LP = LP(R) stands for the classical LP spaces.

We shall consider the tensor product Hilbert space 7 := L? ® 3. Alterna-
tively, the space 7 consists of all functions £ : R — H such that

€]l = / I dt < oo.

We shall also consider the tensor product von Neumann algebra B (LQ) QM C
B(s7).
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For every € M, we define the “diagonal” operator 7(x) € B(L?) @ M by

(m(2)E)(t) := a_t(z)(&(t)), tER, €.
The mapping 7 : © — w(z) is a *-isomorphism of the algebra M onto a von
Neumann subalgebra (M) C B(L?) @ M.

The translation operators A, t € R on L? are defined by
(ME)(s) :=E&(s— 1), seR, £e L’

We set Ay := X\, ® 1 € B(L?) @ M.

The continuous crossed product R := M X, R is the minimal von Neumann
subalgebra of B(L?) ® M containing the operators A, t € R and (), z € M.
We immediately have the following straightforward lemma.

Lemma 1.6.1. The group & := maw ! on the algebra 7(M) is implemented by

the unitary group X := {A¢}ier, i-e.

Gi(m(z)) = Ty tr(z) = mlag(x)) = Afm(x)Ay, 2 €M, tER.  (1.6.3)

Recall that the Fourier transform and its inverse are defined by ([58, Sec-
tion 7.1])

(FhH() = \/%/Rf(s) e~ ds and (ﬁlf)(s) — \/%/Rf(t) eits dt

where t,s € R and f, f € L'(R). It follows from the Plancherel theorem ([58,
Theorem 7.9]) that the mapping .# may be extended to a unitary operator
on L?*(R). Moreover, we shall also denote by .Z the extension of the Fourier
transform to the class of tempered distributions ([58, Definition 7.14]).

Let 7 = Z(L?) be the minimal von Neumann subalgebra of B(L?) gen-
erated by the operators Ay, t € R. The algebra 7 is #-isomorphic to the

algebra L*° via the Fourier transform .%. Equivalently, if
myp=F 'mpF = wo — / f(t))\tdt, f=Zf felL>
R
then
T ={m; € B(L*): fe&L>*}.

Indeed, it is sufficient to observe that the algebras 7 and L*° are the minimal
von Neumann algebras generated by the unitary group {\:},cp and {e:},cp,
respectively, where e, is a multiplication operator by e**() on L?(R) and that the
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latter unitary groups are isomorphic via Fourier transform, i.e. \; = . le.%,
t € R. On the other hand, it is clear, that the algebra .7 may be viewed as a von
Neumann subalgebra of R via the mapping x — z®1, x € . Consequently, the

algebra L°° may be viewed as a von Neumann subalgebra of R via the mapping

fompeleRr, felL™.

The crossed product algebra R is built in a purely abstract way as the
minimal algebra containing the operators A;, t € R and 7(z), z € M. Before
we proceed further, let us mention another, more constructive, approach to the
algebra R which expressed by the following lemma.

Let us consider the class K (M) which is a collection of all wo-continuous
functions x : t € R — z; € M with compact support. For every z € K(M), we
define the integral

#(z) = /RAtw(act)dt. (1.6.4)

Lemma 1.6.2 ([63, Ch. X, Lemma 1.8]). The integral (1.6.4) converges with
respect to the wo-topology. The image 7(K(M)) is wo-dense in R.

Let ¢ be a weight on the algebra M. The dual weight on the algebra R is
defined by

o(7(x) 7 (x)) == /qu(x:xt)dt, x € K(M). (1.6.5)

Lemma 1.6.3 ([64, §2, Lemma 1]). If ¢ is normal (resp. semi-finite, tracial)

then the dual wez’ghté is normal (resp. semi-finite, tracial).

1.6.5 LP spaces for arbitrary algebras

Let us fix a von Neumann algebra M acting on a Hilbert space 3. In the present
section we exhibit the construction of noncommutative L? spaces associated with

an arbitrary M. The construction is due to U. Haagerup, cf. [64].

Let us also fix a n.s.f. weight ¢ on the algebra M. Let ¢ := {U?}te]R be
the corresponding modular automorphism group. We shall consider the crossed
product R := M x,4 R. The latter algebra acts on the Hilbert space 57 :=
L? ® H. Recall that for every x € M the operator m(z) € R is given by

(m(2)€)(t) = o2, (2)(E(t)), €€ A, teR.
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Let us define the unitary group of operators w := {wi}ier C B(J) as

follows

(we€)(s) = €"*¢(s), s €R.

The latter group defines the group of #-automorphisms 0 := {0; };cg on R given

by

O (x) == w; xwy, x€R.

The group 6 = {0;},.p is called the dual action. Clearly,

[0 (7 (2)) ()] (s) = [wim(2)w:(£)](5)
' ©I(

Thus,

We also have

[0:A5(6)](1) = [wi Aswy (€)](1)
ﬂ”[/\ w(§)](1)
e uwy ()1 — 5)
— e itltU=9)g(] — )
=e A1), E€ I, t,s1ER,

Hence,
0:(As) = e A, t,seR.

Consequently,

Oi(7(x)) = /Re*its Agm(zs)ds, =€ K(M).

(1.6.6)

(1.6.7)

Let 9 be a n.s.f. weight on M and let ¢ be the dual weight. It now follows
from the identity (1.6.7) and the definition of the dual weight 1, see (1.6.5) that

v=100, teR.

(1.6.8)
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Indeed,

<

(0 (7 ()" 7 (2))) = (0 (7 (2 )) 0. (7 (2 )))

The next fundamental result displays a distinguished feature of the crossed

product with modular group.
Theorem 1.6.4 ([37, Section 13.3]). There is a n.s.f. trace T on the algebra R
such that
(i) Tob, =€ 1, t € R;
(i) ¢(x) = 7(Dx), where D =1n; @1 and f(t) =¢', t € R, x € R;
(iii) 6;(D) =e™'D.
Let us recall that M, is the predual to the algebra M. The space M., consists

of all normal bounded linear functionals on M. M stands for the collection of

all positive elements of M,.

Let ¢ be a n.s.f. weight on M and let 1& be the corresponding dual weight.
Let D, be the operator affiliated with the algebra R such that

P(x) = 7(Dyx), € R (1.6.9)
We immediately have, that

7(0:(Dy) ) = (9t(Dw 0-4(x)))

[Theorem 1.6.4.(1)] =e '7(Dy 0_4(x))
[(1.6.9)] =e~"(6- ( )
(L68)] =e ()
[(1.6.9)] = tT( px), teER, zeM.

In particular,
Qt(D,/,) = €7tD,¢,, t e R.
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Theorem 1.6.5 (U. Haagerup). (i) If ¢ € M, then the operator Dy, is T-

measurable and

1Dl = [[1Dyllroo(®,7)-

(ii) The mapping ¥ — Dy, extends linearly to an isometric embedding of M.
into LV (R, 7).

(iii) For every element x € LY (R, 1) such that 0,(z) = e"'z, t € R, there is
a functional ¢ € M, such that x = Dy,.

The latter result suggests how an approach to the definition of a noncom-

mutative LP-spaces might be defined. Indeed, we set
LP(M) := {m eR: O(z)=ePr, teR, |z|P € LV°(R, 7')} . (1.6.10)

The norm || - || r(y) is given by

"=

I2llze vy = (I 2P 1o (m,m) ™ s 2 € LP(N).

According to the definition of the spaces LP>*°, see (1.4.3), the latter definition

is equivalent to
LP(M) = {x € LP®(R,7): Oy(x)=e Pz, te R}
and
IzllLe vy = [[#ll Lo (®,7), @ € LP(M).

To support the claim that the introduced spaces LP (M) indeed deserve to carry

the name noncommutative LP-spaces, we have
Lemma 1.6.6. L'(M) = M. and L= (M) = M.

Proof. Clearly, the former follows from Theorem 1.6.5. The latter follows
from [64, Proposition 10]. O

The reader may have observed that in the notation LP(M) we did not men-
tioned the weight ¢ and this is not accidental. The following result clarifies the

matter

Theorem 1.6.7. Let M be a von Neumann algebra acting on H and let ¢;,
Jj=1,2 be two different n.s.f. weights on M
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(i) If Rj, j = 1,2 are the corresponding crossed products with respect to the
groups 0%, j = 1,2, then there is a so-continuous function t € R — u; €
B(H), where u; is unitary, t € R and the unitary operator U € B(3)
given by

(UM = wi(E(t), LR, ¢,

such that the mapping x — U*xU 1is *-isomorphism between the alge-
bras R;, j =1,2.

ii) If 75, j = 1,2 are the traces on the algebras R;, j = 1,2 guaranteed by
J J
Theorem 1.6.4, then

T1(x) = (U*2U), z € Ry.
(iii) The mapping x — U*zU, x € Ry extends into an isometry between the
spaces LP>°(R;,1;), j = 1,2, for every 1 < p < oo.
(iv) The mapping x — U*zU, x € Ry commutes with 0;, t € R, i.e.
U0s(x)U = 0,(U*zU), z € Ry, t€R.
(v) The mapping x — U*zU, x € Ry implements an isomorphism between the

spaces Lf(ﬂ\f[), j = 1,2, where Lf(]\f[) s the moncommutative LP-spaces

defined in (1.6.10) with respect to the weights ¢;, j = 1,2, respectively.

1.7 Double Operator Integrals

Let us fix a semi-finite von Neumann algebra M acting on H equipped with a
n.s.f. trace 7 and fix two self-adjoint operators a, bpM. Let e(-) and €’(-) be the
corresponding spectral measures. We also fix the noncommutative symmetric
space € = E(M, 7).

For every Borel set B € %(R), we consider the projections P¢(B),Q%(B) €
B(€&) defined by

P¢(B)x =e"(B)x, Q%(B)x=xe"B), z€é. (1.7.1)
We let P := P¢, and Qf, =Q%,, 1 <p<oo.

Lemma 1.7.1. The mappings P¢,Q% : B(R) — B(&) are projection-valued

measures, that is

P < L_Jl Bn> = 2_:1 P¢(B,,), Qlé ( L_Jl Bn> = z_:l Qlé (Bn),
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B, € B(R), B,NB, =10, n#m.

The above series converge in the sense that the series

Z (y P¢(B ZT st ))
n=1 n=1

converge for every x € € andy € . If the space E is separable, then the series

converge with respect to the strong topology, i.e.

D PE(Bn)(z), Y Qi(Bn)()
n=1 n=1

converge in &, for every x € €.

Proof. 1t is apparent that the values of the mappings P¢ : Q% : B(R) —
B(€&) are projections in B(€). Thus, we have to prove o-additivity only. The
latter follows from the fact that e?(-) and e®(-) are spectral measures, see p. 17,
together with Lemma 1.4.13 (Theorem 1.4.12, if € is separable). O

Let x € &, y € €* and B € #(R). We have the following simple identities

T(P¢(B)(z)y) =7(e*(B)zy) =T(zye*(B)) = 7(z Q¢ x (B)(y))
and
7(Q%(B)(x)y) = T(ze"(B)y) = 7(z P« (B)(y)).

Consequently, we readily see that (recall that the space €% is regarded as a
subspace of the dual £*, see Section 1.4.1)

(PE(B))*|ex = Q¢x(B) and (Q¢(B))"[ex = Pex(B), B e ABR). (1.7.2)

Let 7 (R?) be the algebra generated by the collection of all Borel rectan-
gles A x B, A, B € #(R). We define the product measure Pg ® Q% : o/ (R?) —
B(€E) by

P¢ Q%A x B) = P¢(A)-Q%(B), A, BecAR). (1.7.3)

The identities (1.7.2) imply that

(P¢©Qe(Ax B))*lex = Pex ®Qix(Bx A), A BeHBR).  (L74)

Theorem 1.7.2 ([24, Remark 3.1] and the references therein). The product

measure P§ @ QY extends to a unique spectral measure over #(R?). That is
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(i) Ps®Q5(B) is an orthogonal projection in B(L?), for every B € %(R?);
(i) P ®@Q5(B)- P2 Q5 B') =0, for every B, B’ € (R?) and BN B’ = {);

(iii) if B, € B(R?), n > 1 such that B, N B,, =0, n # m, then
rroQy(Un) =Y reeis,),
n=1 n=1
where the series converges in the so-topology of the space B(L?).

Let us note that the latter result is not valid when p # 2, see Example 1.9.1
below.

Let B(R?) be the class of all complex-valued bounded Borel functions on the
plane R2. Recall that the space B(R?) is equipped with the uniform norm

[@lloc := sup [@(A, ).

A HER2
Theorem 1.7.2 together with the spectral theorem (Theorem 1.3.14) implies that
for every ¢ € B(R?), the integral
¢d(P5 ® Q3)
R2

converges in the so-topology. Thus, if we define the linear operator Tg ’3 (L2
L? as
Te@) = [ odPf o Qo). we s,

then, it follows from Theorem 1.7.2 and the spectral theorem (Theorem 1.3.14)
that T’y € B(L?) and
a,b
ITe8 5 < 16]o: (1.75)

Extending the observation above, we arrive at

Definition 1.7.3. A function ¢ € B(R?) is integrable with respect to the
measure P¢ ® Q% if and only if there is a bounded linear operator T € B(&)

satisfying the following conditions:
(i) T(L2NE)CLZNE and T*(L2NEX) CLENEX;
(ii) for every z € L2NE and y € L2 N EX

(Ta,y) = / 00w d(PE @ Q). (1.7.6)
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The notion introduced in Definition 1.7.3 was thoroughly studied in [24].
In particular, the present definition is a special case of [24, Definition 2.9] (see
also [24, Proposition 2.12] and the discussion there on pages 81-82).

Lemma 1.7.4. For every ¢ € B(R?) there is at most one operator T' satisfying
Definition 1.7.3.

Proof. Let us assume that there are two operators T; € B(€), j = 1, 2, satisfying
Definition 1.7.3. Obviously, we then have

(Tyz;y) = (Tha;y), x€LPNE, yeLPnéEX. (1.7.7)
Observe that the functional
= (Tixsy) = (2,1 y)

is o(&, &X)-continuous, for every j = 1,2 and y € L2 N €*. Observe also that
the space L2 N & is o(&,E€*)-dense in €, see Lemma 1.4.13. Consequently, the
identity (1.7.7) may be extended to the case that € €. To finish the proof,
we need to note that £2 N € separates points in € (cf. Lemma 1.4.10). Thus,
T, =1Ts. O

From now on, we shall denote the operator T' from Definition 1.7.3 as Tg’g.

For the special case & = LP, 1 < p < oo, we set Tg:ﬁ = T:;’E,,.

Lemma 1.7.5. Let &5, j = 1,2 be two noncommutative symmetric spaces. If
the function ¢ € B(R?) is integrable with respect to ng ® Q’éj, j=1,2, then

b b
Tg:gl(m) = Tg:EQ(.’E), re & NEs.
Proof. For the sake of brevity, we let T; := ;,éjv j=12 Fixze &N
&o. There is a spectral approximation z, = xem(%, n) € L1 N L% such that

lim,, oo ©,, = &, where the limit converges with respect to the (&1 N €2, & +
&X)-topology (see Lemma 1.4.13). Consequently, for every y € L1 N L%, we
obtain

(Tj(n),y) = (e, Tj (y)) — (2, T5 (y)) = (Ti(@),y), =12

Let us note that we used the fact that T (y) € €)' N €S, see Definition 1.7.3. Tt
is also apparent from Definition 1.7.3 that

<T1(:C7L)7y> = <T2(In)vy>7 RS o NnL>=.
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Letting n — oo, we arrive at
(Ty(z),y) = (Ta(z),y), yeLnL>.

To finish the proof we have to note that L1 NL> separates the points of £ NE,
(see Lemma 1.4.10). O

Let us introduce ®(€) as the class of all functions ¢ € B(R?) integrable with
respect to P¢ ® Q’é for every a,bnM, a = a*, b = b*; ®4(€) is the subclass of
all ¢ € ®(€) such that ¢(\, p) = d(p, A).

By the following result, the class ®(€) is an algebra.

Theorem 1.7.6 ([24, Proposition 2.8]). Let € be a noncommutative symmetric
space and a,bnM be self-adjoint linear operators. The mapping ¢ — Tg’g s an
algebra homomorphism from ®(&€) to B(E), where the class P(E) equipped with

pointwise operations.

The following duality result for Double Operator Integrals was proved in [53].

Theorem 1.7.7. If € is a noncommutative symmetric space with order-contin-
uous norm and the Fatou property, then ®4(&) = ®4(E*). Moreover, Tg,’g* =
(Tye)* and Tjyg = (Ty's.)*|et, provided ¢ € B(€) = D, (E*).

Proof. By the assumption, we have €% = &* and £*X = €. Fix ¢ € ®,(€) and
set T := T(z’?:, for brevity. Let us first show that ®4(€) C ®,(E*), to this end it
is sufficient to show that

TSg. =T (1.7.8)
Fix
relPNE=L2NE, yel?ne =L2NnEx. (1.7.9)

By Definition 1.7.3,
T(L2PNE)CLENE, THL*NEX)CL*NE™

and

T@.) = [ o) d(PE o Q3 ).

I Hereafter, we identify the elements of & with their canonical images in £**.
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Recall that x,y are fixed in (1.7.9). Passing to the adjoint operator T* in the

latter identity, we obtain
@T W)= [ o) diPle © Qfe(@))
see (1T4] = [ 000 dla e & Qhe (1)

ince 6010 = 6(u. V] = [ o) dle Pox © Qloxly))- (1710)

Thus, to finish the proof of (1.7.8), according to Definition 1.7.3, we only need
to show that
T (L*NnéE) C Liné.

The latter is apparent, since T' € B(€) and therefore
T%(z)=T(z), z€&.
Thus, we have established that ®,(&) C & (E*).
We now fix ¢ € ®,(&*) and set T := T%, = T%, € B(&*). To prove

that ®4,(E*) C ®,(€) it is sufficient to show ti’;t T*|g¢(;f)incides with Tg_”g, ie.
T5g =T e.
Let us again fix
rel?NE =L%NEX, yel?n&=L%NnEXX.
According to Definition 1.7.3,
T(LEPNEX)CLENEX, T*(L*NE)CL?NE (1.7.11)

and

T@).9) = [ 60w d(Ph © Qt(a).0).
Taking the adjoint T™*, similarly to (1.7.10), we obtain
@ T W) = [ o0m) dle.Pg @ QL)
Thus, according to Definition 1.7.3, we need only to show that T* € B(€) and
T (L3N EX) CL>NEX.
For the latter embedding, it is sufficient to note that T' € B(E*) and therefore

T*(z) = T(z), €& =¢&X.



52 CHAPTER 1. INTRODUCTION

For the former, we first show that T*(£) C €. Indeed, suppose that z €
&. Since F is separable, there exists a sequence {2z}, C L2 N &, such
that limg_, o zx = z, where the limit converges with respect to the norm topol-
ogy in &, see Lemma 1.4.14.(i). Since T* € B(E**) and & C &** isometrically,

we obtain that

lim T (z) = T*(2), (1.7.12)

where the limit converges with respect to the norm topology in £**. In partic-
ular, {T*(zx)}x>1 is a Cauchy sequence in €**. On the other hand, it follows
from (1.7.11),

{T"(z) 1720 C €

Since, & C &** isometrically, the latter sequence is also Cauchy in €. Con-
sequently, from (1.7.12), T*(z) € €. Thus, we have showed that T%(€) C E.
Let us recall that T* € B(€**). Consequently, referring to the isometric em-
bedding & C £** again, we obtain that T* € B(€). The lemma is completely
proved. O

Lemma 1.7.8. Let € be a noncommutative symmetric space and a,bnM be self-
adjoint linear operators. If ¢(A, ) = a(N) (resp. p(A\, ) = B(p)), where f €
B(R) (resp. g € B(R)), then ¢ € ®(€) and

Tg:g(z) = afa)x (resp. Tg:g(z) =z6(b)), zek.

Proof. Let us prove only the first part of the claim. Note that

a(a):/Ra()\) de$,

where the integral converge in the so*-topology and hence in the uww-topology.
Hence, if ¢p(\, ) = a(N), for every z € L2 N € and y € L2 N X, we have

(a(a) ) = / a(X) (de? zde,, y)

R2

= - ¢d<Pa Y Qb(z)7y>

The latter integral converges according to Lemma 1.4.13. The claim of the

lemma follows. O
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1.8 Some boundedness criteria for Double Op-
erator Integrals

Let us fix a semi-finite von Neumann algebra M with a n.s.f. trace 7 and the self-
adjoint operators a,bnpM. € = E(M, 7) stands for a noncommutative symmetric
space. For the sake of brevity, in this section we adopt the notation T ¢ := Tg’g
b

and Ty, := Tg’p, 1<p< .

Let us first note that the estimate (1.7.5) provides the complete description
of the class ®(L?) (see also [22]).
Theorem 1.8.1. Every function ¢ € B(R?) is integrable with respect to P°®Q°,
i.€.

®(L?) = B(R?).
Moreover, for every ¢ € B(R?),

,b
sup (|75 1| Be2) = 1]l
a,bnM

Proof. The estimate (1.7.5) readily implies that

,b
sup T35 1 p(e2) < [16lloo-
a,bnM

Let us show the converse inequality. Observe that for fixed A, u € R, we have
15" (x) = (A, p) . (1.8.1)
Indeed, the spectral measure of th operator A1 is condensed in the point A, i.e.
e*(B)=1 < )eB.

Consequently, the spectral measure P ® Q4 ! is condensed in the point (A, ),
ie.

Py (B)=1 < (\p)eB

Thus, we obtain (1.8.1) from the fact that

e OO el



54 CHAPTER 1. INTRODUCTION

The converse inequality now follows from

,b b
sup [|T5 ez = sup  sup [Ty ()| ez
a,bnM a,bnM xe(L2?),

\%

sup  sup ||T(;‘712’“1(:c)||52
AuER ze(L2),

sup  sup  [[¢(A, 1) x|g2
AuER zE(L2),

16]loc-
The theorem is proved. O

Note, that the argument of the proof above is applicable to an arbitrary

noncommutative symmetric space €. Consequently, we readily have that

Lemma 1.8.2. If € is a noncommutative symmetric space, then ®(€) C B(R?)

and the latter embedding is continuous, i.e.

b
[8lloc < |9llace) == sup [[TyellBee)-
a,bnM

Let us consider two functions «, 8 € B(R). Let ¢(\, ) = a(N) B(n) € B(R?),
it follows from Theorem 1.7.6 and Lemma 1.7.8 that

Tye(x) =ala)zp(b), €. (1.8.2)

Therefore, we obtain that the function ¢(\, p) = a(\) B(n) € ®(&) for every a,
B € B(R) and every noncommutative symmetric space &, and

1Ts,ellBce) < llallool|Blloo- (1.8.3)

Let us recall that the projective tensor product B(R)®B(R) (see [51]) is the
class of functions ¢ € B(R?) such that ¢ admits the representation

(b()‘?ﬁ') = Zan()‘) Bn(“)v (184)

where -
S flanllocliBalloe < 00, s Ba € B(R), n > 1.
n=1

The space B(R)®B(R) is equipped with the norm

19 peene =t Y lanllsolBals,

n=1
where the inf runs over all possible representations (1.8.4). Thus, from (1.8.2)
and (1.8.3), we obtain
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Theorem 1.8.3. Let € be an arbitrary noncommutative symmetric space. Every
function ¢ € B(R)®B(R) is integrable with respect to P* ® Q°, i.e.
B(R)®B(R) C ®(&).

Moreover, for every ¢ € B(R)®B(R)

1Ts,e

1Be) < 1l srysB®)-

The converse result in the special case M = B(¢2), n > 1 is proved in [4,
Theorem 6.4].

Theorem 1.8.4 ([4, Theorem 6.4]). Let a,b be two unbounded self-adjoint
linear operators on (%. If the function ¢ € B(R?) is integrable with respect
to P*® Q" in the space B(¢?), i.e. if ¢ € ®(B(¢?)) for every operators a,b, then
¢ € B(R)®B(R) and

a,b
19l sy BE®R) < sup 175" | Be2)— B(e2)-
The following observation immediately follows from Theorems 1.7.7, 1.4.1
and 1.4.20.

Lemma 1.8.5. If € is a fully symmetric noncommutative space, then
P, (L) =D (LY C D, (8).

Proof. Fix ¢ € ®,(L') = &,(L>). Let Ty and T, be the corresponding dou-
ble operator integrals, i.e. the linear operators satisfying Definition 1.7.3 with

respect to the spaces L' and £, respectively. According to Lemma 1.7.5
Ty (z) = Too(x), € LPnL>™.

The latter means that the operators 77 and T, are the restrictions of an ad-
missible operator T : L1 + L — L1 + L% i.e.

TILl :Tl and T|Loo :Too-

Interpolating the operator T' we obtain that the operator Te := T'|¢ is a bounded
linear operator € — €. We need to show that the operator T¢ satisfies Defi-
nition 1.7.3 with respect to the function ¢. To see (i-ii), we observe that the
operators T and T* restricted on £? are bounded and that T = T*|¢. For (iii),
recall that the operator T coincides with Ty and T on L! and £, respectively.
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Consequently, we readily have that the identity (1.7.6) holds for the operator T'

when either
relLINL? yel™®nL? or xeL>®NL? yellnkL?

Combining the latter two together, we obtain that

To.9) = [ o0 (P2 © Qhay) (185)

for every
reé&nkL? and yeLlnL™.

Since the the left and the right hand sides in (1.8.5) are continuous linear func-
tionals on L2 for every fixed z € € N L2, we can uniquely extend the equal-
ity (1.8.5) to y € €X' N L2 by continuity. The lemma is proved. O

Let us now consider the case € = LP, 1 < p < 0o, p # 2. In contrast with
Theorems 1.8.1 and 1.8.3 which completely characterize the class ®(£2), for the

other classes ®(LP), with p # 2, we have only sufficient criteria.

We firstly recall that a function f € B(R) is called of bounded 3-variation,
1 < 0 < oo if and only if

+oo
I£llvy =sup Y Ja(X;) = a(Xj1)]? < oo, (1.8.6)
j=—00
where the sup runs over all possible increasing two-sided sequences {A; }j‘;"iw C

R. V3 will stand for the class of all functions of bounded 3-variation, 1 < 8 < oo.
The class Vp is equipped with the norm || - ||y, defined in (1.8.6). We also
define V, := B(R) equipped with the uniform norm.

Let us also consider the class L>(Vp) of all functions ¢ € B(R?) such that

[0l zoe vy == sup |9 (A, ) [lv; < o0 (1.8.7)
AER

The following result is the best known sufficient criterion for the boundedness

of Double Operator Integrals in noncommutative LP-spaces.
Theorem 1.8.6 ([24, Proposition 4.6]). For every function ¢ € L>=(Vg), 1 <
B < 00, the operator Ty , admits the estimate

1Tspll Bery < cpll@llno(vs)

provided |27 —p~1| < (28)71. Thus, L>=(V5) C ®(LP), whenever |27 —p~t| <
(26)~"
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Remark 1.8.7. Let us recall the Marcinkiewicz multiplier theorem. Let f :

[—m,7) — C. Let {f(k)}?>__. be the corresponding Fourier transform, i.e.

f(k) - L ﬂf(t)e_““tdt, keZ.

~or e

The Marcinkiewicz theorem asserts that, for every 1 < p < oo, there is a

constant ¢, > 0 such that

> (k) et

k=—o0

<l fllze,

Lp

for every f € L? and for every sequence {A;}72 _ _ such that

om+l_q
sup [ Akl +sup Y Ak = Akl + Mg = A <1 (1.8.8)
kezZ m>1

Comparing condition (1.8.8) with the definition of L>°(V;) norm (see (1.8.7)), it
is seen that Theorem 1.8.6 is a noncommutative analogue of the Marcinkiewicz
multiplier theorem. Note that the Marcinkiewicz multiplier theorem may be ex-
tended to general vector-valued function spaces L,(X), if the Banach space X
possesses the UMD property, see [10]. It is the vector-valued Marcinkiewicz
multiplier theorem which is the cornerstone in the proof of Theorem 1.8.6,
see [15,23,24]. Tt is interesting to comment that the condition (1.8.8) in the
classical (scalar) Marcinkiewicz multiplier theorem is weakened to a wider con-
dition

ilelglkkl + sup [{ e Yom <k <2m+1 [lvas (1.8.9)

where

1
m 2
{3 =1 [lv = sup [Z I u;+1l2]

s=1
and the maximum is taken over all subsequences {p}72; C {p}r_;, see [16]
(see also [34] for some further development). It is also interesting to note that
M. Birman and M. Solomyak in [7, Theorem 6.4] claimed that there is a similar
weakened version of Theorem 1.8.6 (where the V; condition is replaced with

the V4 condition), but they never exhibited a proof.

Let f : R — C be a Borel measurable function. We shall consider the

function

(A p) = f(/\;\:i(ﬂ) and (AN A) =0, \peR. (1.8.10)
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Let € be a noncommutative symmetric space. We shall introduce the
class F(€) as the class of all Borel measurable functions f : R — C such
that ¢y € ®(E). The next results reformulate the above results in terms of

the class §(€). We start with an observation which follows from Theorem 1.8.1.

Lemma 1.8.8. (i) ¥y € B(R?) if and only if f is Lipschitz, that is, there is

a constant cy, such that
lF) = F)l <cp[A=pl, ApeR;

(i) f € F(L?) if and only if f is Lipschitz.
Theorem 1.8.9 ([22,50]). Let B?

ber L < p,q < 00, s> 0 be the homogeneous
Besov classes, [49].

(i) If f € BL, and f is Lipschitz, then ¢y € B(R)&B(R);
(ii) If f € BL, and f is Lipschitz, then f € §(&), for every fully symmetric

noncommutative space .

Corollary 1.8.10 ([22, Corollary 7.6]). (1) If f is a continuously differen-
tiable function, ||f’||cc < 0o and f’ is Hoélder condition with exponent € >

0, i.e. there is a constant cy . such that
') = ff(1)] < crelA—plS, A\ peR,
or

(ii) if f is a function such that Ff' € L*(R), where f' is the derivative in the

sense of tempered distributions and % is the Fourier transform,

then f € §(&), for every noncommutative symmetric space €.
Lemma 1.8.11 ([24]). (i) If f' € V3, 1 < B < o0, then ¢y € L™= (Vp);

(ii) If f' € V3, 1 < B < o0, then f € F(LP), whenever |271 —p~1| < (26)71.

Proof. Tt is apparent that (ii) follows from (i) and Theorem 1.8.6. Let us

prove (i). To this end, we consider the identity

wf(AM):f(A)_f(”)

A—p
1 r
_H/ﬂ F(8) dt

:/0 Flsh+(1—s)p)ds.
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Consequently, for every increasing sequence {fu}72 it follows from the tri-

—0?

angle inequality that

[ > b k) = (N prg)l? "<

k=—oc0

-

1+ 1
/0 { > |f'(SA+(1—S)uk)—f'(8>\+(1—8)uk+1)ﬁ} ds

k=—o
1
< [ 18, ds = 1£ v,
Hence, it follows that

Yy € L®(Vp) and [[9f]lpoevy) < I vy

The lemma is proved. O

1.9 Double Operator Integrals for matrices

Let M = B(£2), n > 1. Let us recall that the algebra M may be identified with
the space of all n x n-matrices. The corresponding noncommutative symmetric
space C¥ := E(M, 1) is a space of all n x n-matrices equipped with an appro-
priate symmetric norm (see Section 1.6.2). Let {e;x}7;_; be the collection of
matrix units. Let us consider the self-adjoint linear operators a and b given by

a= Zajejj and Zﬁkekk.
j=1 k=1
Clearly, the spectral measures e?(B) and e*(B), B € %(R) are given by
ea(B) = Z €55, eb(B) = Z €Lk -
{j: a;€B} {k: BreB}
Let P(-) and Q(-) be the projections on CF of left and right multiplication
by e%(-) and €®(-), respectively. We readily see that

PYB)= Y  Pi(B) and Q(B)= Y  Qu(B), BeZBR),
{j:a;€B} {k:BreB}
where P; and Qg, 1 < j, k < n are the projections of left and right multiplication
by e;; and e, respectively. The projection P; vanishes all matrix rows except
the j-th one and the projection @y vanishes all matrix columns except the k-th
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one. Thus, the projection P;Q) vanishes all matrix entries except the (j, k)-th
one. The product measure P* ® Q*(B), B € #(R?) is given by

PreQ"B)= Y, PiQ (1.9.1)

J.k:(a;,8k)EB

Let ¢ € B(R?). Let us consider the double operator integral
T:= / wd(P* @ Q).
R2

It immediately follows from (1.9.1) that the operator T is given by

n

T =" o(a;,B) P Q.
Jk=1
Since P;Qy is the projection on the (j, k)-th matrix entry, the latter identity is
equivalent to
T(x)=®ox, xc B(l?),

where @ = {¢(};, ﬁk)}?,k:1 and o stands for the entrywise product of matrices
(the latter product is typically referred to as Schur or Schur-Hadamard product).
Therefore, we see that the theory of Double Operator Integrals extends the
theory of Schur multipliers on CZ.

Example 1.9.1. In [33], matrices @y, 1 < p < 00, n > 1 are constructed
such that, if
Cnpi= sup || Pyppoxfer, n>1, 1<p< o0,
IG(CP)l

then

lim ¢, , =00, provided p # 2.
n—oo

The latter example shows that Theorem 1.8.1 cannot be extended to the
spaces LP, unless p = 2. In other words, this example shows that not every
bounded Borel function ¢ € Z(R?) is double operator integrable in the space L,
unless p = 2.

1.10 Double Operator Integrals and trace scal-
ing x-automorphisms

Let M be a semi-finite von Neumann algebra acting on H. Let 7 be a n.s.f. trace
on M. Recall that E = E(R) stands for a symmetric function space and & :=

E(M, 1) is the corresponding noncommutative symmetric space.
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We consider a trace scaling sx-automorphism 7 : M +— M with the fac-
tor o > 0, see Section 1.4.2. Let us recall that 7 stands for the extension of the
mapping 7 to the class of all self-adjoint operators affiliated with M constructed
at the end of Section 1.3. Recall also that 7 is an extension of 7 to the space &
and 7 — to the algebra 3\7[, see Section 1.4.2 for all relevant results.

1

Let us note that the mapping 7" is also a trace scaling *-automorphism

with factor a~!. We shall denote the corresponding extensions by (7=1), (7=1)¥
and (7—1), respectively. Since the latter extensions are unique, we clearly have

that (7=1) =771, (77 1) = (zF)~ ! and (1) =7~ L.

Let a, bnM be self-adjoint linear operators. We consider the operator Tg’g,
where ¢ € ®(&). The relation between the operator Tg;g and the mapping w is
expressed by the following lemma.

Lemma 1.10.1. Let a,bpM and let o’ := 77 1(a), V' := 7). If ¢ € ®(€),
then

Proof. Let us fix x € ENL? and y € €X N L2 Let us first show that, for
every B € #(R?),

X

(P¢ ® Q% (B)(x"(2),y) = o™ (P ® Q% (B)(x), (v ") (y)).  (1.10.1)

According to Theorem 1.7.2, it is sufficient to verify the latter identity for B =
A1 X AQ, Aj S %(R), j = 1,2

Due to the definition of the measure P¢, see (1.7.1), we immediately obtain
that

Pg(Ar)(n"(2)) =e* (A1) 7" ()

=P (n7 (e"(Ar))x)
=7P(Pg (A))(z)), A € BR). (1.10.2)
Similarly,
Q% (A2)(r(z)) = 77(Q¥ (A2)(w)), Az € B(R). (1.10.3)

Let us also observe that the fact that 7 is trace scaling implies

(7 (), v) =r(x"(w)v) = a (u(x") 7} (v)

=a  (u, (77 ) (w)), weL?nE velineX. (1.10.4)
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Thus, the definition of the product measure P¢ ® Q%, see (1.7.3), together with
relations (1.10.2), (1.10.3) and (1.10.4) proves the identity (1.10.1), for B =
Ay x Ag, Aj € B(R), j = 1,2 and therefore for every B € B(R?).

Let ¢ € ®(€). Tt follows from Definition 1.7.3 that

TEeE @) = [ od(PE @ Qi(x"(2)),)

and
(T3 @) (=) ) = | odlPer © Q¢ (@), (")~ (w)).

Consequently, (1.10.1) and (1.10.4) implies that

(Tge (7% (2)),y) = a TG (@), (7)) = (e (157" (2)), ).

The fact that the space €% N L2 separates points in € (see Lemma 1.4.10),
finishes the proof of the lemma. O

1.11 Double Operator Integrals for arbitrary al-
gebras

In this section, we shall consider the extension of Double Operator Integrals

over the LP spaces associated with arbitrary algebras.

Let M be a von Neumann algebra and let p be a n.s.f. weight on M. We again
consider the crossed product R := M x,» R equipped with the distinguished
trace 7 (see Theorem 1.6.4). Let E' = E(R) be a function space and € := E(R, 7)
be the corresponding noncommutative symmetric space with respect to the semi-
finite couple (R, 1), in particular LP and LP-? stands for the operator LP- and
Lorentz spaces, 1 < p,q < co. Let 6 := {6; }+cr be the group of x-automorphisms
given in (1.6.6).

Let us fix t € R. The mapping 6; : R — R is a trace scaling *-automorphism

with the factor e=* (see Theorem 1.6.4.(i)). Lemma 1.10.1 immediately implies

Lemma 1.11.1. Let a,bnR be self-adjoint linear operators. Let a; == 0_;(a)
and by := 0_(b). If ¢ € ®(E), then

T5g 00, =0, 0Ty, teR.

Recall that 7 : M — R is a *-representation of the algebra M as a “diagonal”

subalgebra of R, see Section 1.6.4. Let & be the extension of the mapping 7
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to the class of all self-adjoint linear operators affiliated with M introduced at
the end of Section 1.3. Let anM. The spectral measure of the operator 7(a)
belongs to 7(M). Consequently, the latter spectral measure is invariant with
respect to the group 6. On the other hand, if the spectral measure of an operator
is invariant with respect to 6, so is the operator itself. Thus, we readily obtain
that

0:(7(a)) = 7(a), a=a*nM, t€R.

The latter observation together with Lemma 1.11.1 proves the following theo-

rem.

Theorem 1.11.2. Let a,bnm(M) be linear self-adjoint operators. If ¢ €
O(LP>), for some 1 < p < oo, then

a,b _ a,b
Tqb’ﬁp,(x, ] 925 = 9,5 o Tqﬁ,vam .

Recalling the definition of the noncommutative spaces LP(M) (Section 1.6.5)

now yields

Theorem 1.11.3. If a,bnm(M) linear self-adjoint operators and ¢ € ®(LP>°),
for some 1 < p < oo, then

T3 o (LP(M) C LP(M) and T3¢, | Lo(ar) € B(LP(M)). (1.11.1)

It is the latter restriction (1.11.1), which we shall call the Double Operator
Integral on the space LP(M).
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INTRODUCTION



Chapter 2

Lipschitz and commutator
estimates

We fix a semi-finite von Neumann algebra M acting on a Hilbert space H
with n.sf. trace 7. Let F = E(R) be a fully symmetric function space
and & := E(M, 1) be the corresponding noncommutative symmetric space, in
particular L? := LP(M, 1), 1 < p < 00, L= =M.

Let D : (D) — H be a linear self-adjoint operator such that
(D1) P ge~P € L°° whenever z € L, t € R;

(D2) 7(e*P xe mP) = 7(z), whenever z € L' N L.

During this chapter we shall work with the following definition (and its
variants). Definitions 2.0.4 and 2.0.6 are derived from [11, Proposition 3.2.55]

where the authors consider bounded commutators.

Definition 2.0.4. Let a,bnM be self-adjoint linear operators and let = € M.
We shall say that the operator ax — xb is well defined and belongs to € if and
only if

(i) there is a core Z C 2(b) of the operator b such that
x(2) € Z(a);
(ii) the operator ax — xb, initially defined on 2, is closable;
(iii) the closure ax — xb belongs to €. In this case.

65
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The symbol ax — xb also stands for the closure ax — xb.

Let f:R+— C, z = 2* € M. The first problem we shall study in the present

chapter is
Problem 2.0.5. When is it correct that f(a)xr —xf(b) € € whenever ax —xb €
e?

We also shall work with the commutators [D,z] defined by the following

definition.

Definition 2.0.6. Let x € M. We shall say that the commutator [D, x] is well
defined and belongs to € if and only if

(i) there is a core Z C Z(D) of the operator D such that

x(2) € 2(D);

(ii) the operator Dz — z D, initially defined on 2, is closable;

(iii) the closure Dx — xD belongs to €.
In this case, the symbol [D, z] stands for the closure Dz — zD.

The second problem we shall study concurrently in the present chapter is

Problem 2.0.7. When is it correct that [D, f(x)] € & whenever [D,x] € €7

The following observation shows that the appearance of a core in the defi-
nition of the symbol [D, z] (respectively, axz — zb) in the special case & = L>
is excessive, that is, without loss of generality, we may assume that 2 = 2(D)
(respectively 2 = Z(b)). Thus, in the special case & = L Definitions 2.0.4
and 2.0.6 are reduced to those studied in [11].

Lemma 2.0.8 ([11, Proposition 3.2.55]). (i) Let a,bnM be self-adjoint lin-

ear operators and x € M. If the operator ax — xzb is bounded, then

z(2(b)) € Z(a).

(ii) Let D : (D) — H be a self-adjoint linear operator and x € M. If [D, x]
is bounded, then x(2(D)) C (D).
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Proof. Clearly, (ii) follows from (i). Let us prove (i). Let y := ax — xb. From
the definition of the symbol ax — xb we have that there is a core 2 C 2(b) such
that £(2) C Z(a) and

(y(&),n) = (az(§),n) — (xb(§),m), &n€ L.

For every fixed ¢ € 9, both sides are bounded linear functionals with respect
to n € H, which coincide for n € 2. Consequently, they coincide for every n €
H, i.e.

(&), m) = (x(&),a(n)) — (b(&),z"(n)), §E€Z, n€ Pa).

Now, for every fixed n € 2(a), it follows that the linear form

£ = (0(&), 2" (n))

is bounded, that is *(n) € 2(b"*), where b’ = b|y is the restriction of b onto 2.
Since Z is a core, b’ = b (see Theorem 1.3.12) Thus, z*(n) € Z(b), for every n €

P(a), i.e.
2" (2(a)) C 2(b).

Furthermore, the sesquilinear form

(&, (@%a = bz")(n)) = (y(&),n), §€H, neP(a)

is bounded. Consequently the operator y' := bz* — z*a, defined on Z(a), is
bounded and

/ *

y=-y.

Repeating the argument again for the operator bz* — z*a gives the claim of the

lemma. O

The relation z(2(D)) C 2(D) in the case &€ = LP; 1 < p < oo may fail
as it is shown in the example with the differentiation operator below. On the
other hand, the weaker relation (2) C 2(D) for some core ¥ C 2(D) is much
easier to attack and, more importantly, is sufficient for the applications we shall

study.

2.1 Commutators with the differentiation oper-
1d
ator ;-
In the present section we fix M = L°(R) and 7(-) = [(-) d¢, see Section 1.6.1.
For the sake of brevity, we let £ = E = E(R), LP = LP = LP(R).
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Let us consider the operator D := %% : 9(D) + L2, with the domain given
by
1d¢
P(D):=3¢el?: ——>¢€lL?
) ={ecr: (Eer),

where %% is the derivative in the sense of tempered distributions. The do-

main (D) has an alternative description as the collection of all absolutely con-
tinuous functions € € L? such that the classical derivative %% € L? (see [70]).
Lemma 2.1.1. (i) The operator D is self-adjoint.

(ii) The unitary group of the operator D is given by translations, i.e.

e"P(E)(s) =E(s+1), €€’ t,seR

(iii) The operator D satisfies (D1)-(D2) on page 65.

Proof. (i) The argument is rather standard, we refer the reader to [58] for all
relevant notions. Let .# and %! be the Fourier transform and its inverse,
see [58, Section 7.1], i.e.

(FE(t) = \/%/Rg(s) e ds and (ﬁlé)(s) — \/%/Ré(t) eits dt,

where t,s € Rand ¢,£ € L'(R). It follows from the Plancherel theorem, see [58,
Theorem 7.9], that the mapping .# may be extended to a unitary operator on L?.

Let d(t) = ¢, t € R. Consider the multiplication operator m, defined by
P(ma) ={£€ L?: d-£ € L?} and mq(§) =d-&, € € D(ma).
We have the following identities, see [58, Theorem 7.15]
FmgF ' =—-D and FDF ' =my. (2.1.1)

That is, the operator D is induced by the identity function (via the Fourier
transform) to the multiplication operator. Consequently, the operator D is
self-adjoint.

(ii) Let es(s) := €'*, s,t € R and let \; be the translation operator, i.e.
M(2)(s) =x(s —t), s,t€R, 2 €Ll +L>.
Clearly, it follows from (2.1.1) (see also [58, Theorem 7.2]), that

etP = Fetma gl — P, T =)\, teR.
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The claim (ii) follows.
(iii) Let = € L>. We readily obtain that

e"Pmge™"P(€)(s) = (mge™"P(€))(s + 1)
= (s +1) (7P (€))(s + 1)
=x(s+1)&(s), s,tE€R, &L
Thus, we obtain that

e Pmye P = my_, ) € L™, for every x € L™.

The latter implies that the operator D satisfies (D1). Moreover,

T(eitD —1tD) T(m/\ o )
= / )\ t
R
= / x
R
=71(my), € L'NL>®.
Consequently, the operator D satisfies (D2). The lemma is proved. O

Recall that every linear operator affiliated with L°° is a multiplication oper-
ator. It follows from spectral theorem (see Theorem 1.3.14) that, if a self-adjoint
operator z is affiliated with an algebra M, then {e®®},cg C M. Clearly, the
translations {\:}ter cannot be represented as multiplication operators. Thus,
it follows from Lemma 2.1.1 that the operator D is not affiliated with the alge-
bra L*°.

Let x € L*°. From now on we shall identify the symbol x € L* with the
corresponding multiplication operator m,. Assume that [D,z] € LP, 1 < p <
00, i.e. assume that the operator [D,z] is a multiplication operator generated
by a function in LP. The latter, according to the preceding section, means, in
particular, that there is a core 2 C 2(D) such that

2(2) C 2(D).

Let us now consider the operator Dx—xD on 2. Let us assume for the moment
that we have the product rule. We then obtain that

1d 1d§  ldx

S w2 =g e (2.1.2)

(Dz —2D)(£) = i dt i dt
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Thus, if [D, 2] € LP in the sense of Definition 2.0.6, then [D, z] is a multiplication
operator by the the function %‘fi—f and therefore %z—f e Lr.

Hence, we obtain that [D,z] € LP, 1 < p < oo, € L™ if and only if there
is a core 2 C 9(D) such that

() C (D) and ld—x e L.
i

Furthermore, let us note that (2) C 2(D) means: for every function £ € 2,
the function z - £ is differentiable in the sense of tempered distributions and
1d
——(x- L2, 2.1.3
ACHIE (213)
Since x - %% € L2, for every £ € (D), x € L™, it follows from the last identity
in (2.1.2) that (2.1.3) is equivalent to the condition

1ldx 9
EE.SEL’ §£€ 2(D)

provided we have the product rule for %%(mg). The latter means that, if 2 C
2(D) is a core, then

ldz
i dt
Moreover, [D,z] € L7, 1 < p < oo if and only if there exists a core 2 C (D)
such that

x(2) C 2(D) (2) C L~ (2.1.4)

1dx 1dx
—— el -—(2)C L. 1.
ithL and idt(@)_L (2.1.5)

Thus, in general, a verification of the statement [D,z] € LP, 1 < p < o0
consists of two steps whose nature is quite different. A verification of the (gen-
eralized) condition %% € L? is carried out in the literature almost exclusively
via methods related to Banach space geometry (Schur multipliers, double op-
erator integrals, vector-valued Fourier multipliers [15,23,24,27]). However, the
second condition in (2.1.5) has an operator-theoretical nature and does not cor-
respond to the methods listed above. We outline an approach to this problem
when D = %%.

Let us first consider when [D,z] € L? if 2 < p < co. We shall show that
in the present setting, the required core 2 appears very naturally due to the
fact that the underlying Hilbert space L? possesses the additional Banach space

structure induced by the LP-scale. Indeed, let us set

1 1
2 :=2(D)N LY where 3= » +-. (2.1.6)
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Clearly, when 2 < p < oo, the Holder inequality (1.4.8) implies that

ldo
i dt

lda

: <
<[

l€llLe < +o0, for every £ € 2
Lr

and therefore, (2.1.5) holds for the subset 2 and any z € L such that %f% €
LP. We shall verify that 2 is a core of D in Lemma 2.3.19 below. What we
would like to emphasize is that the core & is found purely by a Banach space

construction. Thus, we see that in the case 2 < p < 0o, we have

1dx
Dzxlel? <— -— €LP.
D, 7] i dt
Finally, we comment on the case 1 < p < 2. Here, the problem of finding the
core 2 satisfying the first condition in (2.1.5) cannot be resolved by a purely
Banach space approach as in (2.1.6) above. Indeed, let C'(R) be the class of
all continuous functions on R. We note that 2(D) C C(R), [59, Theorem 2,

p. 124]. We now consider any function x € L* such that

1dz 1dx

- — €L’ but —— ¢ L3 . 2.1.

T S bt g @ Lo (2.1.7)
Such a function exists due to 1 < p < 2. Indeed, let fy(t) = t=2if0<t <1
and fo(t) = 0 otherwise. Set

Aty =3 27" fot = n).
nez
The function f; € LP, 1 < p < 2. On the other hand, the function f; is not
square integrable in the neighborhood of every integral point t = n € Z C R.
Setting

o0

f(t) =) 27" fi(2")

n=1

gives an example of the function such that

felLP, but f&L?

loc®

Let .
(1) ;z/ £(s)ds.
—o0
Since f € L', we immediately obtain that x € L. Moreover the function z

satisfies (2.1.7). For the function x constructed above it follows that

1
;C(% €¢I forevery &€ P(D), £#0.
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Indeed, since 2(D) C C(R), it follows that for every £ € 2(D), € # 0, there is
an indicator function x of an interval such that

1dx ¢l > 1dz
el P
— |idt

S , for some € > 0.
i

X

The latter function is not in L? due to the fact that 292 ¢ L2 . That means,

loc*
see (2.1.4), that despite the fact that the derivative %‘fl—f exists in the sense
of tempered distributions and belongs to LP, there is no core such that the

commutator [D, z] may be defined according to Definition 2.0.6.

2.2 Preliminaries

As we note in the beginning of the chapter, we shall consider the Problems 2.0.7
and 2.0.5 concurrently. Following the example above, we shall single out three
different cases p = 00, 2 < p < oo and 1 < p < 2. Before we start considering

Problems 2.0.7 and 2.0.5, we give some preliminary results.

The following lemma was established in the type I setting in [8].

Lemma 2.2.1 ([24, Lemma 7.1]). Let a,bnM be self-adjoint linear operators

and let e = e*([-n,n]), 2 = e?([-n,n]), n > 1, be the corresponding spectral
projections. If f € F(E), then, for every x € &,

quj;bg (aelzel —elabel) = f(a)elael —elaf(b)el, n>1. (2.2.1)

The following proposition complements the result of Lemma 2.2.1. It re-

places the assumption z € & with the assumption ax — zb € €. Recall that

the fundamental function of a rearrangement invariant space E is given by

dE(t) = |Ixp.0llE, t > 0.

Proposition 2.2.2. Let & = (&,)*, where &, is a noncommutative symmetric
space with an order-continuous norm and the Fatou property. If the fundamental

function ¢g satisfies

£ —o, (2.2.2)

t—o00 t

then, for every complez-valued function f on R such that f € F(E€), we have
Ty (ax — ab) = f(a)a — x(b), (2.2.3)

for all self-adjoint operators a,b € M and all operators x € M such that ax—xb €
E.
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Proof. Let us first recall that it follows from [24, Proposition 6.6] that there is
a net of projections {pg} C M such that

ps 11, 7(ps) <oo and |bps —pgblle < 1.
Let us first show that
lién(bpg —pgb) =0, (2.2.4)

where the limit is taken in the o (&, £,)-topology (=0 (€, £*)-topology). Indeed,
since the net

{bps — psb} (2.2.5)
is uniformly bounded with respect to the norm of &, without loss of generality,
we may assume that the limit (2.2.4) exists, see Theorem 1.1.1. Hence, we need

only to show that the latter limit vanishes. Since pg T 1, we readily have that
wo — li[ran(bpﬁ —pgb) = 0. (2.2.6)

Furthermore, since the collection (2.2.5) is uniformly bounded with respect
to the operator norm, we see that the limit (2.2.6) vanishes with respect to
the (&, L' N L>)-topology (see Lemma 1.4.14.(ii)). Thus, to finish the proof
of (2.2.4), we need only to note that the o(&, L NL>)-topology is weaker than
the o (&, £, )-topology.

Let us next show that
lién(axpg — zpgh) = ax — xb, (2.2.7)

where the limit is taken respect to the o(&, £,)-topology. It is clear that we
have the following identity

axpg — xpgb = (ax — xb) pg + x(bpg — pgb).

Consequently, (2.2.7) follows from (2.2.4), Lemma 1.4.13 and the fact that ax —
xb € &.

Let us note that, since 7(pg) < +oc and x € M, it is readily follows
that xpg € LYNL> C &. Therefore, we are in a position to apply Lemma 2.2.1
(note, that a,b € M by the assumption). The latter implies that

T} (axps — apgb) = f(a) zps — aps f(b). (2.2.8)

Let us note that it follows from Theorem 1.7.7 that the operator TqZ;be iso(&, Ey)-
continuous. Consequently, from (2.2.7), we immediately obtain that

lién TQZ;’bg (axpg — xpgb) = Tf;fbg (az — xb), (2.2.9)
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where the limit is taken with respect to the o (&, &.)-topology. On the other
hand, since pg T 1 and (2.2.8), we see that

lién T;;% (axps — xpgb) = 1%11 f(a)xpg — xpg f(b)
=f(a)z —z f(b),

where the limit is regarded with respect to the wo-topology. Recall that the
net {f(a)zpg — zpg f(b)} is uniformly bounded with respect to the operator
norm. Thus, it follows from Lemma 1.4.14.(ii) that the latter limit converges
with respect to the o (&, L1 N L>)-topology also. The latter topology is weaker
than the o (&, &,)-topology. Together with (2.2.9) this proves that

a,b
Ty, ¢ (ax — xb) = f(a)x — z f(b).
The lemma is completely proved. O

Corollary 2.2.3. Let a, bnM be self-adjoint, e¢ and e’ , n > 1 be spectral projec-
tions as in Lemma 2.2.1 and let € satisfy the assumptions of Proposition 2.2.2.
If v € M, aetxel —elabel € €, n>1 and f € F(€), then

n—

Tgf’_’bg (aelael —elabel) = f(a)elael —elaf(b)el, n > 1.

n?

b

Proof. Setting a,, = ae®, b, = be’ and z, = e2xe’, n > 1, we have (by

n’
assumption)
b

anTn — Tpb, = aelze’ —etxbeb € €.

Applying Proposition 2.2.2 to the operators a,,, b, and z,, we obtain
Qb
T, (an®n — Tpbn) = flan)Ty, — 0 f(by). (2.2.10)
To finish the proof, we note that, if y, is the characteristic function of the
interval [—n,n] and ¥, (A, 1) = xn(A) xn (1), A, 4 € R, then
Ay b n n
T )= | O ary @ Qo)

(Theorem 13.14] = [ () 9501) %) 4P © Q1)

oL a,b
[Definition 1.7.3] :T%wf’g(y)

[Theorem 1.7.6] = T:Zf’f)g (Tiiig (v))

[Lemma 1.7.8] :Tgf’,bg(eflyef;), yel, n>1.

Combining the latter identity with (2.2.10) we obtain the claim of the corollary.
O
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The next lemma will be used several times in the sequel.

Lemma 2.2.4. Let &€ and F be noncommutative symmetric spaces and vy :=
{Vt}ter be a group of contractions in both € and F. If v is a strongly (resp.,
weakly*) continuous group in &, P(8) is the domain of the strong (resp., weak*)
generator of v in &, and the function t — ||v(§)||s is Lebesgue measurable,
for every & € (F),, then the set 2(5) N (F), is invariant with respect to v and
norm (resp., weak®) dense in EN(F),. In particular, if F is a noncommutative
symmetric space with the Fatou norm such that €N F is norm (resp., weak*)
dense in € and v is o(F,F*)-continuous in F, then the subspace P(6) NTF is

norm (resp., weak*) dense in E.

Proof. We prove the assertion when < is strongly continuous and outline the

changes needed for a weak* continuous group at the end of the proof.

Since the space Z(0) is invariant under ~y, see Lemma 1.1.4, and due to the
hypothesis 7:((F);) C (F),, we have

W(2(5) N (9),) € 2(6) N (F),, teR.

Let Ry := R)(d) be the resolvent of the operator §, then, according to
Theorem 1.1.6,

Rx(§) € 2(5), R\ = /OO e_)‘t%(f) dt, A>0 (2.2.11)
0
and
/\lim ARN(E) =&, €€& A>0, (2.2.12)

where the limit is taken in the norm topology of €.

Let € € (F),. Since the function ¢ — [|7:(£)||s is Lebesgue measurable, we
have the elementary inequality

IARA(©)]5 < A / e (©) | dt < (€]l A > 0.

Consequently,
ARA(E) € (F)y, A>0.

Combining the latter statement with (2.2.11), we obtain that
ARA(&) € 2(6) N (F), provided & € €N (F),.

Thus, it follows from (2.2.12) that 2(5) N (F); is norm dense in € N (F);.
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For the second part, we note that, since v is o(F, F*)-continuous,

T(n€) = lm 7(n7:(€)), £€F, neI”.

On the other hand, since ¥ has the Fatou norm,

1€l = sup|7(n&)] < liminf [ ()]s, ¢ €.

n 5><§1

The latter means that the function ¢t — || (€)||5, £ € F is semi-continuous and,

hence, measurable. The claim is proved.

For the weak™ assertion, the argument is the same, except we have to apply

the weak* version of Theorem 1.1.6. O

2.3 Main results

As we have seen in the example with the operator D = %%, see Section 2.1, a

meaningful resolution of Problem 2.0.7 requires locating a core & of the opera-
tor D satisfying the first condition in (2.1.4). As we indicated in that example,
a possible candidate on the role of such Z is the space

2(D)NL N L.

Unfortunately, in general, the expression above is senseless, since the do-
main 2(D) C H may have an empty intersection with the space L' N L.
We shall show below that this is not the case when M is taken in the left
regular representation (see Lemma 2.3.19).

Let My, stand for the left regular representation of the algebra M. The
algebra My, equipped with n.s.f. trace 7. Let E = E(R) and &, := E(Myg, 71.),
in particular L := LP(My, 7,), see Section 1.5.

2.3.1 Lipschitz estimates

For an operator anMy,, we introduce the subspace

Do(a) == Z(a) NL NL> C L2 (2.3.1)

Lemma 2.3.1. If anMp, then the subspace Zy(a) is affiliated with My, and it

is a core of the operator a.
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Proof. Since anMy, it is readily clear that 2(a)nMpy. The latter means that,
for every unitary operator R, € (Mp) = Mg (see Theorem 1.5.3),

Ru(Z(a)) € Z(a).
On the other hand, since u € M, we clearly have that
R,(L'NL>) = (L'NL®)u C L NL™,

Consequently,
Ru(@()(a)) - @0(&), R, € (ML)/.
The latter means that the subspace %y(a) is affiliated with My,.

Furthermore, since anMy, it follows from Lemma 1.3.18 that e¥® € M.
The latter means that there is a unitary group {u;}:er C€ M such that

e (&) =wE, £ekL® teR.
Consequently, e (L1 N L>) C LY N L> and the restriction
{eim\leLw Hrer

is a o(L1NL>, L1 4 L°)-continuous group of contractions on the space L1 NL>.
Applying Lemma 2.2.4 to the group {e®%};cr, € = L2 and F = L1 N L>, we
obtain that %(a) is dense in £L2. On the other hand, %(a) is invariant with
respect to e®® ¢t € R. Thus, it follows from Theorem 1.1.7 that %y(a) is a core
of a. O

Let a,bnMy, be self-adjoint linear operators and let x € M. For the pur-
poses of the present section, we adapt Definition 2.0.4 of the symbol ax — xb for

the setting of the left regular representation.

Definition 2.3.2. We shall say that the operator ax — zb is well-defined and
belongs to € if and only if

(i) there is a core 2 C L' N L of the operator a such that 2(2) C Z(a);
(ii) the operator ax — xb, defined on 2, is closable;

(iii) the closure ax — b belongs to ..

The symbol ax — xb stands for the closure ax — zb.
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Lemma 2.3.1 shows that the restriction 2 C L' N L™ is rather mild.

Recall that F(E) is the class of all Borel measurable functions f : R — C
such that ¢y € ®(Er), where ®(E) is the class of all double operator integrable
functions, see Section 1.7. The answer to the Problem 2.0.5 for the space L7 is

given by
Theorem 2.3.3. Let a,bnMy, be self-adjoint linear operators. Let 2 < p < oo
(resp. 1 <p<2),let f € FLY) and let x € My,. If
ar —xb € LY (resp. ax —xb € LP NL?),
then
fla)z —zf(b) € LY (resp. f(a)x —xf(b) € LL NLI)

and
[f(a)x —zf®)ller < cppllaz —ab|gr.

The latter result immediately follows from the more general result given in

Theorem 2.3.4 applied to the spaces £ = L7, 1 < p < oo.

The answer to the Problem 2.0.5 for the space £ with Fatou norm is given
by

Theorem 2.3.4. Let €5, be a noncommutative symmetric space with Fatou
norm and let 2 < p < co. Let a,bnMy, be self-adjoint linear operators and x €
M. If

ar —xbe &L NLY and feF(Er)NF(LY),

then f(a)x —xf(b) € EL NLY and
[f(@)x —xfO)lle, <cppllaz—ablle,,

where
b
crp= sup [Ty %Ber)-
a,bnML
Proof. Let y := ax — xb. According to Definition 2.3.2, there is a core ¥ C
LY N L% such that

y(&) = ax(§) —ab(§), £€ . (2.32)

Let 78 := (1 +iea)~! and 7® := (1 +ieb)™!, € > 0 be the resolvents of
the operators a and b. Let us also set a. := ar® and b, := br®. According to
Theorem 1.3.16 and Lemma 1.3.18, we clearly obtain that a.,b. € My and

1 1
”aE” < -, ||be|| < —, €>0.
€ €
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Let us also note that, according to functional calculus, Theorem 1.3.16,
7% =1 —iea. and 7° =1 —ieb., €>0. (2.3.3)
Letting y. := reyr®, € > 0, we obtain from (2.3.2) and (2.3.3), that

ye() =reaxrl(€) — réwbre(€)
=a.x(l —ieb)(§) — (1 — ieac)xbe(§)
=aca(€) —xb(€), £ (r))" (D), e>0.
(2.3.4)

Let us note that according to the definition of the resolvent operator, see page 5,
we clearly have that
r’(L?) = 2(b), €>0.

b
€

Noting that the operator a.z—xb. is bounded, we obtain that the identity (2.3.4)

may extended uniquely over £2. Thus, we proved

Consequently, the preimage (r%)71(2) is norm dense in L2 for every ¢ > 0.

Ye = aex — The, € > 0. (2.3.5)

Recall that y. = ryrb. Since 72,72 € (M),, ¢ > 0 and y € L} N &y, we

€7 €

readily obtain that the operators y., € > 0 are uniformly bounded in both £
and LY, i.e.

leller <llyller, llyelle < llylle,-

Applying Proposition 2.2.2 to the operator y. = a.x — xb., we obtain that
the operators

2e = flad)w — 2 f(be) = Ty (acw — wbe)

are also uniformly bounded in both L and €, i.e.

lzeller <crpllyller and |zelle, < ecrrllylle,- (2.3.6)

Let us note that the unit ball (L7), is o(LY, L’g)—compact, see Theo-
rem 1.1.1. Consequently, we may assume that the operators {z,}¢~o converging
with respect to the o(LF, LY )-topology, in other words, let z € L such that

2oy < erplylley and o(&],L5) ~ lim = = = (23.7)

Let us show that z € €. Since the space £ possesses a Fatou norm, we
obtain that

Izller = llzlle, <~ = sup 71 (2w0).
we(€f),NLENLE
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Recall that z. is uniformly bounded in £y, see (2.3.6). Consequently,
TL(zw) = lin%TL(zew) < max lzelle,, we(EF), NLL NLS.

Thus,
ze & and |zlle, <crelylle,-

Next, we show that for Zy(f (D)), defined in (2.3.1), we have

2(Zo(f (b)) € Z(f(a)). (2.3.8)

Fix £ € Zo(f(b)). To prove (2.3.8) it is sufficient to show that the linear form

e (@(€), fla)(m), ne€ Z(fla) (2.3.9)

is continuous. Indeed, if this is so, then z(§) € Z((f(a)lg,(f(a)))") and hence,
since Zy(f(a)) is a core of the operator f(a), z(£) € 2(f(a)). According to the

functional calculus, Theorem 1.3.16, we have
s0—1limr® =1 and so— limr? =1.
e—0 e—0
Consequently, we obtain

(), Fa)(m)) = T (rea(€). Fla)()
= (f(a0)(€).m)
= lim((f(a)e — 2/ (b)) (), )
+ T (e f (b)), )

+(fO)(E),z* (), n € Do(f(a)). (2.3.10)
By (2.3.1) we have
LeLi € LLNLE C LY for every €€ Zo(f(b)), n € Zo(f(a)).
Consequently, if 7 € Zo(f(a)), it follows from (2.3.7) that

lim (), ) = limy 72, (2 Le Ly) = (2Le ;) = (2(6), ).

€—

Continuing (2.3.10), we then obtain that

(@(€), f(a)(m) = (2(&),m) + (fF(B)(€), 2" (n)), n € Do(f(a)). (2.3.11)
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Since the operator z is bounded, we clearly have that the linear form

= (F(0)(), 2" (n), neL?

is continuous. To finish the proof that the form (2.3.9) is continuous, we now

need only to show that the form

n = (2(6),m), 1€ Po(f(a)) (2.3.12)

is continuous. For the latter, let us recall that z € L7, 2 < p < co and § €
LY N L%, therefore it follows from the Hélder inequality (see (1.4.8)) that

[(2(€); | =7 (2Le Ly)| < |2Lelle3 [1Lnllez
<llzlley I Lelleg lInlle2
<llzller lEllerneeelnlle, (2.3.13)

where
1 1 1
p o < d - == =
||Z||LL [€le1ne oo and o ’ + .
Consequently, the linear form (2.3.12) is continuous and therefore (2.3.9) is also

continuous. Thus, we proved (2.3.8).

Since the space Zy(f(a)) is norm dense in £2, the identity (2.3.11) now turns
into

2(§) = fla)x(§) =z f(b)(§), &€ Zo(f)(b).

Since Zo(f)(b)nM, see Lemma 2.3.1, the closure of the operator on the right
is z, see Lemma 1.4.15. The proof is finished. O

Let us look at the proof of Theorem 2.3.4 again. Inspecting the proof shows
that there are two places where the geometry of the space L7 make the proof

possible. These are

(i) the place, where we claim the existence of the limit (2.3.7), at this stage it
is important that the space Ui, 2 < p < o0 is dual to a noncommutative
symmetric space and therefore the unit ball (£4), is o(Lf, L} )-compact,

see Theorem 1.1.1;

(ii) the place, where we proved that the linear form (2.3.12) is continuous,
here, the important tool is the Holder inequality (1.4.8), see the chain of
inequalities (2.3.13).
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Further inspection shows that these two points in the proof are the only places
where the special geometric properties of the space L7 are needed. Conse-

quently, the following generalization holds

Theorem 2.3.5. The claim of Theorem 2.3.4 remains correct, if the space LY

1s replaced with any noncommutative symmetric space F such that

(i) Fr is dual, i.e. there is a noncommutalive symmetric space Gy such
that .rfL = (SL)*,‘

(i) xy € L2, for every x € Fr, and every y € L1 N L.
Recalling Theorem 1.4.22 and the inequality (1.4.16), Theorem 2.3.5 is read-

ily applicable to the Lorentz spaces L7'? with 2 < p,q < co. Thus, we obtain
the following result.

Theorem 2.3.6. Let £, be a noncommutative symmetric operator space with
the Fatou property and let 2 < p,q < co. Let a,bnMy be self-adjoint linear
operators and x € My. If

ar —azbe ELNLYT and f e F(Er)NFLYY),
then f(a)x —xf(b) € €L NLYT and

[f(@)z —zfO)lle, < cppllar—zbe,,

where

Cf,E = Sup \|T$’bg IB(eL)-
L‘L,bnML hHeL

Applying the latter result to €, = L7'? we obtain the following corollary.

Corollary 2.3.7. Let a,bnMy be self-adjoint linear operators. Let 1 < p,q <
oo. If either
ar —xb € LYY and 2 <p,q < oo,

orar —xzb e LY N L3, then f(a)x —zf(b) € LY and
I£(@)2 — ofB)lepe < crpq laz — ablcpe

The latter result will become of a particular interest when it comes to con-
siderations of Lipschitz type estimates in LP-spaces associated with an arbitrary

von Neumann algebra.
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2.3.2 Approximation of the commutator [D, z]

Let M be semi-finite von Neumann algebra acting on H with n.s.f. trace 7.
Let E = E(R) be a fully symmetric function space and € := E(M, 1) stands
for the corresponding noncommutative symmetric space, in particular LP :=

LP(M, 7) are the noncommutative LP-spaces.

Let D : 2(D) — H be a self-adjoint linear operator satisfying (D1)—(D2)
(see page 65). In the present section we shall consider the construction of an
approximation of the commutator [D, ] by means of the corresponding unitary
group {e"?}icp.

For illustration of the aforementioned approximation let us again consider
the example of the differentiation operator. If x € L>*(R) and D = %%, then
we have the well known relations

(M ldx
x(t+s)—x(s) =1 ——(s+7)dr, t,s€R, (2.3.14)
o ? dt
lde, . . x(s+1)—2x(s)

The aim of the present section is the extension of the latter relations over an
arbitrary operator D satisfying (D1)—(D2) (see page 65) and an arbitrary semi-
finite pair (M, 7).

Before we prove the relations above in general setting, let us study behavior
of the group z +— e®Pre P c L>® tcR.

2.3.3 The group (t,7) > ePge P

Let us consider the group of trace preserving s-automorphisms vy = {74 }ter of
the algebra M defined by

Yi(x) = e Pre P 2 c M. (2.3.16)

According to (D1)—(D2) (see page 65), the operator v; : M — M is a trace
preserving x-automorphism, for every ¢ € R. Let us consider the group ¥ =
{7 }ier and the group 7% = {yF}icr which are the unique extensions of the
group 7 to the algebra M and the space &, respectively, see Section 1.4.2. We
also set 7P :=~vL" 1 < p < oo for brevity. It is follows from Lemma 1.4.17 that

the group 7¥ is a group of isometries of the Banach space €.

In the present section, we state two results in regard to continuity properties

of the group 7.
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Theorem 2.3.8 ([21, Proposition 4.2]). Let E be a fully symmetric function
space and let € be the corresponding non-commutative space of T-measurable

operators. The group vF is o(&, EX)-continuous.

Clearly, the result above together with Theorem 1.1.5 implies that

Corollary 2.3.9. (i) If a symmetric function space E is separable, then the

group v is strongly continuous.

(ii) If a symmetric function space E is dual to a separable symmetric function
space, then the group v¥ is weakly* continuous.

(iii) The group v*° is weakly* continuous.

(iv) The group vP, 1 < p < oo is strongly continuous.

Let us note that, for p < oo, the group ~? is defined in abstract way. It
cannot be regarded as

V(z) = ePre Pz e L? (2.3.17)

due to the fact that the operator D is now affiliated with the algebra M. In the
second part of the present section, we shall show that the identity (2.3.17) is

valid when the algebra M is taken in its left regular representation.

Let My be the left regular representation of the semi-finite von Neumann
algebra M. The algebra My is equipped with the n.s.f. trace 7. The
space LY = LP(Mp,71), 1 < p < oo is a noncommutative LP-space associ-
ated with the couple (My,7). Let D : 2(D) — L2 be a self-adjoint linear
operator satisfying (D1)—(D2) (see page 65).

Lemma 2.3.10. Let y € L7, Let £ € LN L> be such that e P (€) € D(y).

If v = {1 }hier is a unique continuous extension of the group -y defined
in (2.3.16) to the space LY, then
ePye (&) = 2 (y)(€)- (2.3.18)

Proof. Since y € LY, there is a collection {e¥}22, of spectral projections such
that y, := ye¥ € L1 N L and

Jim oy, =y and  lim y,(§) = y(S), €€ 2(y), (2.3.19)

where the first limit converges with respect to the norm topology of L7 (see
Theorem 1.4.12) and the second one — with respect to the norm topology in £2
(see Theorem 1.3.14).
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Since y, € L} N LS and P coincides with (2.3.16) on L1 N L%, it is clear
that identity (2.3.18) is valid for y,, i.e. we have

L(e"Pyne P (€)) = 7/ (yn) Le. (23.20)
On the other hand, since e~ (¢) € 2(y) and using the second limit of (2.3.19),
for the left hand side of the latter identity, we obtain that
lim L(eitDyne—itD (5)) _ L(eitDye—itD (6))7

n— 00
where the limit is taken with respect to the norm topology in £2. Furthermore,
since Le € L9° and the first limit of (2.3.19), for the right hand side of (2.3.20),
it follows that
Jim 57 (yn) Le = 2" (y) Le
where the limit is taken with respect to the norm topology in L. Moreover,
the latter two limits certainly converge with respect to the o(L} + £%°, L1 N
L5°)-topology. Let us recall that £} N L3° separates points in L} + £3°, see
Lemma 1.4.10. Consequently, combining the limits above with (2.3.20), we
readily see that
L(e"Pye™"P(€)) = 77 (y)Le.

The latter implies (2.3.18) (see Lemma 1.5.6). O

From now on, the symbol 6% stands for the weak* (resp. strong) generator
of the group ¥, provided the space & is dual to a noncommutative symmetric
space (resp. the space € has order-continuous norm). In particular, 6%, 1 <p <

00, is the generator of the group 7.

2.3.4 Approximation of the commutator [D,z] in L
Let us now study the identities (2.3.14) and (2.3.15) in the general setting. Let
us first show that the integral identity (2.3.14) implies the relation (2.3.15).

Let us recall that M is a semi-finite von Neumann algebra acting on H and
equipped with n.s.f. trace 7. Recall that D : 2(D) — H is a self-adjoint linear
operator satisfying (D1)—-(D2) (see page 65) and x € M.

Lemma 2.3.11. Let E be a fully symmetric function space and & be the corre-

sponding operator space. Let © € M and [D, x| € €. If the identity
t
ePpe 0 _ g = z/ vE(ID, z]) ds (2.3.21)
0

holds, where the integral converges with respect to the o(&,E*)-topology, then



86 CHAPTER 2. LIPSCHITZ AND COMMUTATOR ESTIMATES

| eftDgeitD _ 4
() t <D, 2]l
e
 gitDge—itD _ 5 o ‘
(ii) }m(l) ; = i[D, x|, where the limit converges with respect to the

a(&,E%)-topology.

If the space E is separable and the integral in (2.3.21) converges with respect to
the norm topology in E, then so does the limit.

Proof. Let us show the proof for the norm topology; for the o(&, £*)-topology

the proof is similar. The function
tsyF(z), teR (2.3.22)

is uniformly bounded for every « € €. Consequently, the identity (2.3.21) implies
that
lePwe"P — || <t max v ([D, z])lle < tI[D, 2]

The latter implies (i). For (ii) let us consider the function

t
Glt) = z/ ~E(ID, 2]) ds.
0
It then follows from (2.3.21) that

etPre=D _ ¢ dG
lim ——— = —(0).
i ar

Since the function (2.3.22) is norm continuous, the claim (ii) follows from the

Newton-Leibniz theorem. O

Let us first consider the case & = L.

Theorem 2.3.12. Let D : (D) — H be a self-adjoint linear operator, satis-
fying (D1)-(D2) (see page 65) and let x € M. If [D,z] € L=°, then

(i) %i’"(w)—x:i/o 2(ID. 2]} ds, t € R;

(@) —x

t <D, a]lleos;

Lo

o

(i) wo — lim 28 =T i .
t—0 t
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where the integral converges with respect to the wo-topology.

Proof. Tt immediately follows from Lemma 2.3.11 that (i) implies (ii)—(iii).

Let us prove (i). Clearly, the group v*° coincides with the initial group =
defined in (2.3.16). We fix t € R and introduce the operators

t
T:=ePge P g .= z/ e"P[D, x]e” P ds.
0

To prove (i), it is sufficient to establish that

(T(€),m =(5(&),m), £€2(D),neX. (2.3.23)
Indeed, since the operators T and S are bounded and Z(D) is dense in 3, the
identity (2.3.23) will imply (i).
Let us fix £ € Z(D) and n € H. For the right hand side of (2.3.23), let us
note that, since the function

t — "P[D,zle P teR (2.3.24)

is wo-continuous, see Corollary 2.3.9, the scalar product and the integration

may be interchanged and hence
t
(€ =1 [ (PID,ale P (e)n) ds. (23.25)
0

Let us consider the left hand side. The function
u(t) == ePre P (), teR

satisfies the elementary identity

u(t 4 9) = ult) __rgn, e PP E) — P ()
s s
Jap €D () — ae ()
s
Since [D,x] € L, we have x(2(D)) C 2(D) (see Lemma 2.0.8). Let us
also note that the group {eP};cr acts invariantly on the space 2(D), i.e.
P (9 (D)) C 2(D), for every t € R, see Lemma 1.1.4. Consequently,

+ , teR, s#0.

! T “(t + S) — u<t)
w(t) = lim —————

= P a(~iDe P (€)) + P (iD) (e P (¢)
=ie"P[D, x]e” P (¢), teR.
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According to the Newton-Leibniz theorem, since the function (2.3.24) is wo-

continuous, we obtain
(" Pre™"P(€),n) — (x(&),n) = (u(t),n) — (u(0),n)

= /Ot u'(s)ds

t
=i [ (D ale P ) ) s
0
Together with (2.3.25), the latter gives (2.3.23). The theorem is proved. O

Let us note the following converse statement.

Theorem 2.3.13. Let D : 2(D) — H be a self-adjoint linear operator, satis-
fying (D1)-(D2) (see page 65) and let x € M. If the limit

ezthefztD _r

R | e —— (2.3.26)
t—0 t
exists, then [D,z] € L and
itD ., —itD _
wo — lim &6 7% _ i[D, z].
t—0 t

Proof. Let us assume that the limit (2.3.26) is equal to y € £°°. We shall first
prove that
z(2(D)) C 2(D). (2.3.27)

To this end, let us fix £ € Z(D) and consider the linear form
n(x(§), D)), ne2D). (2.3.28)

Clearly, we have

(#(€), D() = limy

~ lm eltDIeiitD(g) _ x(g)
t—0 Zt 1
) —itD _
— lim { ¢*PzS (5) g,n>
t—0 1t
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Thus, since the operator y is bounded and & € Z(D), we obtain that the
linear form (2.3.28) is continuous. This implies that z(§) € 2(D) and there-
fore (2.3.27) is established. Furthermore, the latter identity says that

—i(y(€),n) = (Dx(§) —xD(&),n), &ne€ Z(D).

Consequently, the operator Dax—aD defined on (D) is closable and the closure
is —iy. The theorem is proved. O

Theorem 2.3.12 and Theorem 2.3.13 give the complete description of the
generator 6% : 2(5°) — L of the weak* continuous group v*° in terms of

commutators with the operator D. Namely,
2(6%°) ={zx e L>: [D,z] € L™} (2.3.29)

and
0 (x) =i[D,x], x € D(56>). (2.3.30)

See also the comments at the end of this chapter.

2.3.5 Approximation of the commutator [D,z| in LP, pro-
vided 1 <p< 0

Let M be a semi-finite von Neumann algebra and 7 be n.s.f. trace 7. As we
discussed in Section 2.1, the natural framework to deal with the commuta-
tor [D,x] € LP, when 1 < p < oo, is the setting of the left regular representation.
Let (M, 1) be the corresponding left regular representation. £, := E(Mp, 1)
stands for the noncommutative symmetric space corresponding to the fully sym-
metric function space £ = E(R), in particular, L7 := LP(My, 7). In the
present section, we shall extend Theorem 2.3.12 to the spaces L7, 1 < p < co.

Before we proceed, let us make the following two remarks which explain the

our next step.

(i) The important point in the proof of Theorem 2.3.12 is the fact that the
domain Z(D), where the operator [D,z] € L% is defined initially, is
invariant with respect to the group {e?”};cg. On the other hand, if we
have the commutator [D,z] € L7 and p < oo, then the core 2, where,
according to Definition 2.0.6, the operator [D, x| is initially defined, lacks

this invariance.
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(ii) The core 2 where the operator [D, x| is defined initially (see again Defini-
tion 2.0.6) is merely related to the Banach space structure of the spaces L7 .

Keeping these two remarks in mind, we modify Definition 2.0.6 of the sym-

bol [D, z| in the setting of the left regular representation as follows.

Definition 2.3.14. We shall say that the commutator [D,z] is defined and
belongs to € if and only if

(i) there is a core 2 C L1 N L> of D which is invariant under e®P for
every t € R, i.e. €''P(2) C 9, such that 2(2) C 2(D);

(ii) the operator Dx — 2D, defined on 2, is closable;

(iii) the closure Dx — xD belongs to €.
The symbol [D, z] stands for the closure Dz — zD.

It follows from Section 2.1 that, for the special case M = L*> and D = %%7
the commutator [D,z] is defined and belongs to LP, for some 1 < p < oo, for

some x € L, if and only if 14 € LP and either 2 < p < oo or there is a

core 2 C L' N L> of the operator %% such that

Lda

c L2
i dt (7)<

Recall that 67, 1 < p < oo stands for the generator of the group P, see
Section 2.3.3.

Theorem 2.3.15. Let D : 2(D) v+ L2 be a self-adjoint linear operator satis-
fying (D1)-(D2) (see page 65) and let x € My,. Let

RA,q = R/\(éq)v 1<g¢< oo A>0
be the resolvent of the operator 6. If [D,xz] € L | for some 1 < p < oo, then

(D, Ryoe(2)] = Rap(ID,2]), A> 0. (2.3.31)

Proof. According to Definition 2.3.14, since [D,z] € LV, we have a core 2 C
2(D) of D such that

P CLINL>®, €P(P)C P, teR and z(2) C 2(D).
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We fix t € R. Let us first show that

(D, 7= (@))(§) =7/ ([D,z])(§), €€ 2. (2.3.32)

Since the group v*° coincides with (2.3.16) and 2(Z) C 2(D), we clearly have
that

[D,7*(2))(€) = "P[D,zle”"P(¢), £€ 2. (2.3.33)
Thus, the identity (2.3.32) immediately follows from Lemma 2.3.10.

Now let us prove (2.3.31). According to Theorem 1.1.6, the resolvent R) ,
admits the representation

Ry 4(y) = / e Myl(y)dt, ye L, 1<q< . (2.3.34)
0

If ¢ = oo the latter integral converges with respect to the wo-topology; other-
wise, it converges with respect to the norm topology. Let us emphasize that the
integral (2.3.34) converges uniformly with respect to y € LI and 1 < ¢ < oo.
The latter means, that, for every n > 1, there is a finite partition {t,(c")};;:1 and
Riemannian sum

n (™ n n
R (y) = 3" e 0750 () (1 — )

n

(n)
k=2 b
such that
Tim R (y) = Raq(y) (2.3.35)

uniformly with respect to y € L9 and 1 < ¢ < oco. Clearly, the latter limit
converges with respect to the wo-topology if ¢ = oo; otherwise, it converges
with respect to the norm topology L£4.

For the sake of brevity, let us set x) := AR o (z) and xf\n) = )\RE\")(:L"). It
follows from (2.3.35) that
wo — lim ch\n) =T). (2.3.36)

n— oo

Let us consider the linear form
o5 (&) = (25" (©), D)) — (" D(&),m), €1 € D(D).
Relation (2.3.36) implies,

lim (" (&,m) = ((D,2:(€),n), €€ P, ne D(D).

n—0oo



92 CHAPTER 2. LIPSCHITZ AND COMMUTATOR ESTIMATES

On the other hand, it is an easy computation to see that

o (€m) = ARMV(ID, 2))(€),n), €€ 2, ne 2(D).

Indeed, for the latter identity, it is sufficient to replace ¢t with t,(cn) in (2.3.32),
multiply the identity with e (t,(cn) — t,(;i)l) and take the sum over all 2 <
k < n. Thus, we obtain that

lim (AR ([D, 2])(€), 1) = (D, 2:)(€).1), €€ 2, ne (D).  (2.3.37)

n—oo

On the other hand, it follows from (2.3.35), that

lim 77 (w AR ([D, 2])) = 71.(w AR ,([D, 2])), w e LE.

n—oo

If&ne P C L NL>, then L L} € Lg. Consequently,
lim AR((D, 2])(€),n) = lim 7Ly Le AR ([D, )
=71 (L Le AR p([D, z]))
= (AR p([D, 2]) (), n)-

Combining the latter limit with (2.3.37), we obtain that

(AR, ([D, 2])(§),m) = ([D, 2:](€),m), &me .

Since the operator on the right hand side is bounded and the core 2 is dense
in £2, we obtain that the operator ARy ,([D,z]) is also bounded and

)\R/\,P([Dvx}) = [D,LL‘)\L A>0.
The theorem is completely proved. O

Theorem 2.3.16. Let D : 2(D) — L? be a self-adjoint linear operator, sat-
isfying (D1)-(D2) (see page 65) and let x € My,. If [D,z] € LY, 1 < p < o0,
then

t
(i) ePre P — g = z/ V2([D,x])ds, t € R;
0

eitD pe—itD _

t

. x
(i) <D, 2lley 5
LT

itD
(iif) lim —
t—0 t

e—ztD —

=i[D,z];

where the integral and the limit converge with respect to the norm topology in LY .
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Proof. According to Lemma 2.3.11, it is sufficient to prove only the claim (i).
Let
R)\7q = R)\((;q), 1<q¢g<o0, A>0

be the resolvent of the generator §¢ of the group 7?. Let us fix A > 0. The oper-
ator Ry oo(x) belongs to the domain Z(6°°), see Theorem 1.1.6. Consequently,
it follows from (2.3.29) that [D, Rx ()] € £3°. Thus, we are in a position to
apply Theorem 2.3.12, which readily gives that

)\R)\,oo(e”Dace_itD —2) =7 (ARx 00 (7)) — AR 00 (2)

— A 2 (1D, Rooo (2)]) ds. (2.3.38)

Furthermore, it follows from Theorem 2.3.15 that

Vs ([D; B oo (2)]) = 75° (Bap([D, 2])) = Rap(([D,2])), se€R. (2.3.39)

Let us note that the operator Ry , is continuous on the space L and the integral

/ 2D, 2] ds

converges with respect to the norm topology of the space L7 . Consequently,
combining (2.3.38) and (2.3.39), we obtain that

¢
ARy oo (P2 P — 2) = ARy, (/ ~2([D, x]) ds> .
0

The only step we need to finish the proof is to let A — co. The claim (i) readily
follows from Theorem 1.1.6. O

2.3.6 Commutator estimates

Let us recall that we have fixed the pair (M, 7) and we are in the setting of the
left regular representation (Mz, 7). Let D : 2(D) +— L2 be a linear self-adjoint
operator satisfying (D1)-(D2) (see page 65).

Let us again consider the subspace
P0(D) := 2(D)N L' NL> C L2 (2.3.40)

Unfortunately, in the general case when the operator D is not affiliated with the
algebra My, there is no hope to expect that the latter subspace is a core of the
operator D. On the other hand, as soon as the operator D is affiliated with the
algebra My, according to Lemma 2.3.1, the subspace Zy(D) turns into a core.
The key point in the proof of Lemma 2.3.1 is the following hypothesis.
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(D3) The subspace L' N L% C L2 is invariant with respect to {e"*P}cR, i.e.
eI NL>®) CLinL™, teR,;

the operator € |g1np is continuous with respect to the norms of the

spaces L1 and L%, i.e.
[P (©)ller < [i€ller and [eP(E) e < [€lles € € LINL™; (2.3.41)

and the group

= {uster, ur:=e"P|pinpe, tER (2.3.42)

is o(L1 N Lo LY + L°)-continuous, i.e.
(i) for every & € L' N L%, the mapping
t—w(), teR
is o(L1 N L LY + L°°)-continuous;
(ii) for every t € R, the mapping
€ u(€), zellnL®™

is also o(L1 N L, LY + L°°)-continuous.

If the operator D is affiliated with My, then {e®P};cg € Mp. The latter
means that there is a strongly continuous group of unitaries {w; }ser € M such
that e? = L(w;), t € R. Consequently, it is clear that the operator DnMp,
satisfies (D3). On the other hand, if D = 1 then the group {e"P}icp is
a group of translations, i.e. e*? = 7, t € R, see Lemma 2.1.1.(ii). Thus, the
operator D = %% satisfies (D3) and therefore the condition (D3) is weaker than
the assumption that DnMy.

The assumption (D3) implies that the group {e**?};cr is a diffusion group,
see [35,60].

Lemma 2.3.17. Let D : 2(D) — L? be a linear self-adjoint operator satisfy-
ing (D1)-(D3). Let the group u = {u;}ser C B(L1 N L) satisfy (2.3.42).

(i) The adjoint operator u} leaves the space L' + L°° invariant, i.e.

uf (L L) C L+ L%, teR.
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(i) Let us set
Vg 1= uit|L1+Lw, teR. (2343)

The collection v = {vs }yer C B(LY + L°°) is a group of contractions.

(iii) for every t € R, the mapping
£ uy(€), E€Ll 4L

is o (L1 + L0 LY N L) -continuous.

(iv) For every £ € L1 + L°°, the mapping
t— (), telR

is o (L1 + L0, L1 N L%°)-continuous;

(v) The group v extends the group {eP},cp, i.e.

vi(€) = P (€), €€ L? teR.

Thus, the group v is a o(L1 + L, LY N L) -continuous group of contractions
in the space L' + L which extends the unitary group of the operator D.

Proof. Let us note that the space L! + L may be regarded as a norm closed
subspace in the dual (L' NL>)*. Thus, the claims (i), (ii) and (iii) immediately
follow from Lemma 1.1.3, which we can apply thanks to the assumption (D3).

(iv) We have
lim (v, (€),m) = lim (u”(€), )

t—
1 <§,u ¢+(n))
Z(S,n% Eell+L>® neltnL™,
The latter identity is due to the fact that the group wu is U(Ll nLe>e Ll L%)-

continuous. Consequently, the claim (iv) readily follows.

(v) For this claim, let us slightly modify the latter chain of identities, namely

(v (§)n*) = (ve(€),m) = (& u—e(n))
= (& e " P () = (P (&), m)
=7(eP(&)n), €eL? neltnLee.

Hence, the claim follows from the fact that the space L1 N L separates points
in L1 + £, see Lemma 1.4.10. O
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Lemma 2.3.18. Let € be a noncommutative symmetric space.

(i) The space & is invariant with respect to the operator ve, i.e. v:(€) C &,
t € R.

(ii) We set
v i=wvile, tER. (2.3.44)
The operator vF is bounded, i.e. vF € B(&); the collection v¥ = {vF}icr

is a o(&, L N L®)-continuous group of contractions in E.

(iii) If the space & is dual to a separable noncommutative symmetric space,
i.e. €= (&,)*, then the group v¥ is a weak* continuous group of contrac-

tions.

Proof. Tt follows from Lemma 2.3.17.(v) and (2.3.41) that
v 1= v g € B(L™®) and v} = v|e1 € B(LY).

Consequently, since € is an interpolation space with respect to (L°°, L), we
immediately obtain that v € B(€), t € R and v¥ is a group of contractions in
the space €. The fact that v¥ is (&, L1 N L>)-continuous immediately follows
from the fact that the group v is o(L! + £°°, L1 N £°°)-continuous. Thus, we
proved (i) and (ii).

(iii) If € = (€4)*, for some noncommutative symmetric space &,, then, for
every t € R, we readily obtain that

(WE)*(€),m) = (&, vZ; ()
[Lemma 2.3.17.(v)] Eu_y(n))
[(2.3.43)] = (ve(&),m
[(2.3.44)] =(vF(&),n), €€& neltnL™.

=

Ny

(
=
=
=
Consequently, it follows from Lemma 1.4.10, that

Thus, the mapping

£ (6), €8
is 0(&, €.)-continuous for every t € R. Finally, if £ € €, then the function ¢ +—
vF(€) is norm bounded, hence, it follows from Lemma 1.1.2, that (ii) implies
that the mapping

t—vf(¢), teR
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is continuous with respect to the o (€, £,)-topology. The lemma is completely

proved. O

We now can show that the assumption (D3) (see page 94) is sufficient to
establish that the subspace Z(D) is a core of the operator D. Moreover, we shall
establish that the closure in an appropriate weak topology of the subspace Zy(D)
(which is not affiliated with M, in general) is affiliated with M.

Lemma 2.3.19. Let D : 2(D) — L? be a linear self-adjoint operator sat-
isfying (D1)-(D3)(see pages 65 and 94). The subspace Do(D) is a core of
the operator D. Furthermore, Zo(D) N (£?%), is o(LY N L>, L2 + LP)-dense
in LY N LN (L2),, for every 1 < p < 2. In particular, for every n € L1 N L
and every 1 < p < 2, there is a net {1} C Zo(D) such that

sup [[nalle2 < llnllez, and limne =,
«

where the limit is taken with respect to the o(L' N L, LP)-topology.

Proof. The first part is similar to the proof of Lemma 2.3.1.

Let us now prove the second part of the lemma. Let & = £2 N LP, where p’
is the conjugate exponent and &, = L2 4+ LP. Clearly, & = (£,)* and €% =

2 .
2 .= v*" and v®. According

€.. Let us consider the groups of contractions v
to Theorem 1.3.17 and Theorem 1.1.5, the operator D is the weak (=weak*)

generator of the group v2. In particular,

€ 2(D) = tlg% % exists. (2.3.45)

The limit is taken with respect to the o(£2, £2)-topology. On the other hand, ac-
cording to Lemma 2.3.18.(iii), the group v¥ is weak* continuous. Consequently,

if § is the weak™ generator of v¥, then

% exists, (2.3.46)

£e920) = tlin%

where the limit is regarded with respect to the o(E, €,)-topology. Thus, we
readily see that

2(6)NB,. C 2(D)NB,, (2.3.47)

where

B, = (L), n(L'NL>®),, r>0.

7
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On the other hand, applying Lemma 2.2.4 to the spaces & and F, := L2 N
(r(L' N L)) and the group v¥, we obtain that the set 2(8) N B, is (&, &.)-
dense in € N B,. Combining the latter fact with (2.3.47), we obtain that the
set Z(D)N B, is also o(&, £,)-dense in €N B,.. Taking the union over all r > 0,
yields that Zy(D) N (L?), is (&, &,)-dense in L' N L N (L2),. The lemma is
proved. O

The answer to Problem 2.0.7 when for the symmetric spaces & N LY,

2 < p < oo is given by

Theorem 2.3.20. Let &5, be a noncommutative symmetric space with Fatou
norm. If x € My,

[D,z] e LY néEp, feFLY)NF(EL), 2<p< o,

then
(D, f(z)] e LLNEL
and
1D, f(@)]ller < crellD,]lle,,

where

crp= sup [T .

fE= sup 1Ty ellBes)
Proof. Let us first prove that

f(x)(Z2y(D)) C 2(D). (2.3.48)

Let y = [D, z]. From Theorem 2.3.16, we see that operators
et pe—itD _ 4
Yyp=——-—-" telR
it

are uniformly bounded in the norms of L} and &, i.e.

lveller < Myllee, lyelle, < llylle,, tE€R.

Applying Proposition 2.2.2 to z; = e*Pze~"*P, z and 1, we obtain

B eith(m)eﬂ‘tD . f(x) _ qoie eitD po—itD _ o
B it Ty it

2t

are also uniformly bounded in £} and &, and

Izelley <erpllyllers lzlle, <crelylle,, teR.
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Since the unit ball of L7 is J(Li,ﬁ’g)—compact, see Theorem 1.1.1, one can
assume that there exists z € L such that

I2llee <crpllyller, o(L7.L7)— }ET(I) 2=z (2.3.49)

To show that z € €, let us note that the space £ has Fatou norm. This
implies (see (1.4.9))

zller = llzlle, o = sup T (zuw).
uwe(EF),NLENLS

Consequently, since z; is uniformly bounded in €, we obtain that
71 (zuw) = }iH(l) T (zpuw) < max l2elle,, wwe (EF), NLLNLE.
— €

Thus,
z€&r, and |zlle, <crplylle,-

If now (-,-) is the scalar product in £2, then a simple computation shows that

(D, 0y (e)) = @, L DO 2T
= (n, z(£)) (2.3.50)

— (n,e"P f(x) ), &me L

it
Let us note that for the last term, according to Theorem 1.3.17 we have

lim 761'@ (5) —¢

t—0 7

=D(§), £€2(D).

Furthermore, since L¢ Ly € L’i/ provided &, € 2y(D), we have, thanks to the
second condition in (2.3.49),

}5%077 Zt(g» = %E}% TL(ZtLgL:;) = TL(ZLEL;;)
=(n,2(6)), &ne (D)L nL™.

Letting ¢ — 0 in (2.3.50) gives
(D), f(2)(€)) = (n,2(£)) + (0, f(2)D(E)), & € Zo(D). (2.3.51)

For every fixed £ € 9y(D), the linear functional

n— (n, f(x)D(E)), neL?
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is continuous. Moreover, since z € LV, and § € L1 N L%, we obtain that,
see (1.4.8),

[(m, 2(EN] = |7L(Lnz"Le)| < || Lnllez 12 Lell o2
<lnllezllzlle [ Lell o2

<linllezllzles 1Elerines, ne€L?

where
1 1 1
||Z||L§||§Halrw°° < oo and 5= » + 7

Thus, the linear functional

n— (n,2(€), nel?

is continuous. It follows from (2.3.51), the linear functional

is also continuous. Consequently, we readily obtain that

f(@)(€) € 2((Dlzyp))")-
Furthermore, since Zy(D) is a core of D, it follows that
(Dlgy(p))" = D* = D.

Thus, f(z)(§) € 2(D) and therefore (2.3.48) is established. Moreover, it now
follows from (2.3.51)

(f(x)D = Df(x))(§) = 2(8), &€ Zo(D).

Let us consider the operator 2’ = f(z)D — D f(x) with the domain 2(z') =
Po(D). Let us show that z* = z*. This will finish the proof of the theo-
rem, because then we would have 2/ = 2/** = z** = 2z (see Theorem 1.3.12).
Since z' C z, it is sufficient to show that 2((z2')*) C 2(z*). It follows from
the definition of the adjoint operator that £ € Z((z)*) if and only if there is a
constant ¢(€) such that

7 ((z" Le) L)l = |7o(Le(2Ln) ") = [(&, 2" ()] < () Inlle2, 1 € Zo(D).

Since 2* € L and ¢ € L2, it follows that 2*L¢ € L%, where ¢7! =271 4+ p~!
and 1 < ¢ < 2, see (1.4.8). On the other hand, it follows form Lemma 2.3.19
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that for every n € L' N L there is a net {n,} C Zo(D) such that n, — 7 in
the o(L1 N L%, L9)-topology and sup, [|17allc2 < ||7]lc2. Hence, we obtain that

7L ((z"Le) L) < () Imllez, me LENL.

The latter means that z*L¢ € £2 and, in particular, £ € 2(z%). O

Applying this result for the spaces £, = L7, 1 < p < co and taking into
account that ®(&) C ®(L2%) = B(R?), we obtain

Corollary 2.3.21. If2<p < oo (resp. 1 <p<2), feFLY) and z € M
such that [D,x] € LY (resp. [D,x] € L2 NLY ), then

D, F@)lley < epplllDsa]lles -

2.4 Applications

Let us recall that (M, 7) is a semi-finite von Neumann algebra equipped with a
n.s.f. trace 7 acting on J, My, is the corresponding left regular representation.
The spaces € and £, stand for the noncommutative symmetric spaces corre-
sponding to the function space E = E(R) and the algebras (M, 7) and (M, 1),
respectively. In particular, L7 and L7, 1 < p < oo are the noncommutative LP-
spaces with respect to (M, 7) and (M, 71,), respectively.

In the present section we shall present a number of applications of the results
set out in Theorem 2.3.4 and 2.3.20 and Corollaries 2.3.3 and 2.3.21.

We shall start with discussion the relation between Definitions 2.0.4 and 2.0.6
of the symbols axz — zb and [D, ], and their counterparts in the setting of the
algebra My, given in Definitions 2.3.2 and 2.3.14.

2.4.1 Lipschitz case

Let us first consider applications of the results from Theorem 2.3.4 and Corol-
lary 2.3.3.

Let us fix a, bnM self-adjoint linear operators, x € M, D : Z(D) — H is a

self-adjoint linear operator.

For the symbol ax — xb, the relation between the definition in the algebra M
and the counterpart in the setting of the left regular representation My, is given

in the next two lemmas.
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Lemma 2.4.1. Ifax—xb € LP, then LoLy—L,Ly € LY, 2 < p < 0o. Moreover,

L(ax — ab) = LyL, — L, Lp.

Proof. As in the proof of Theorem 2.3.4, we shall use the resolvent approxima-
tion of the unbounded operators a,b. Let 7% := (1+iea) ™" and r® := (1+ieb) !,
€ > 0 be the resolvents of the operators a, bnM. We set a. := ar® and b, := br?.
Clearly, a.,b. € M and

lacl < =, [lbell < =, €>0.

a | =
| =

Moreover, it follows from the spectral theorem, see Theorem 1.3.14, that
lim L<ae)(77) = La(n)v ne @(La)

e—0

and

lim L)) = Lo(©). € € Z(Ly) (2.4.1)
Let us first show that, for Zy(L;) defined in (2.3.1), we have
L.(%0(Ly)) C D(La). (2.4.2)
To this end, fixing £ € (L), we consider the linear form

n = (La(&), La(n)), 1€ Po(La). (2.4.3)

We then have

= lim((L(ac) Ly — Ly L(be))(€),m)
+ i (L, (b)), )
= lim(L(acz - b)(€).7)
+ (Lo Ly (§), 1) (2.4.4)
For the latter limit, let us recall the identity, see (2.3.5),
r®(ax — xb)r® = acx — xb., € > 0. (2.4.5)
Thus, it follows from Theorem 1.4.12 that

liH(l) L(acx — xb.) = L(az — xb) € LY,
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where the limit is taken with respect to the norm topology of L7 . Furthermore,
for every & € Zo(Ly) and n € Zo(La), we have that L¢L; € LLnge cor.
Thus, the preceding identity, in particular, implies that

hrr(l)(L(aE:c —xb)(§),n) = lir% 7r(L(aex — xbe) LeLy)

=71 (L(ax — xb) L¢Ly)
= (L(az — xb)(£), 7).

Consequently, from (2.4.4), we obtain that

(L2 (§), La(n)) = (L(ax — zb)(£),m) + (LaLs(£),m), 1€ Zo(La).  (2.4.6)
Clearly, the form
n— <L1Lb(£)an>a n € LQ

is continuous. On the other hand, it follows from the Hélder inequality that

[1L(az — xb)(§)]|> = [[(ax — zb)¢]| 2
<llaz — 2bllerlI€] 2o

<llaz — abller €l eragee < oo

Thus, the form
0+ (L(az —ab)(€),n), neL?

is also continuous. Consequently, the identity (2.4.6) implies that the linear

form (2.4.3) is continuous and therefore (2.4.2) is proved.

Having (2.4.2) proved, the identity (2.4.6) readily yields that

(LaLx - Lbe)(f) = (ax - l‘b)f, f € -@O(Lb)'

That is, the operator L,L, — L,L; defined on %y(Ly) is a multiplication
operator by ax —xb € LP, which in turn implies that the operator L,L, — L, Ly
is closable and the closure belongs to L7 . The proof is finished. O

Next, we establish the converse result. Due to the fact that there are no
means to deal with the domain of the operator D when the algebra M is not
taken in the left regular representation, the Banach space technique can only

prove the result for the case p = co.

Lemma 2.4.2. If L L, — L;L, € L9°, then ax — a2b € L™ and

L(ax — 2b) = LoL, — L, L.
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Proof. For the sake of brevity, let us set
a:="L,, b:=1L,, x:=1L,.
Similarly to the preceding lemma, let us first prove that
z(2(b)) C Z(a). (2.4.7)
To this end, we consider the identity

(@(€),a(n) = lim (ze; (€), ae; (1))

n—oo

= lim ((e%axe’ — e2abel)(£),n)

n
n—oo

+(b(&), " (). (2.48)

Repeating the argument from the preceding lemma, it sufficient to show that

the operators
b

Yn = e2azel —elabel, n>1

are uniformly bounded in £°°. Let us recall that

ax —xb € L%, and eP(L?) C 2(b).

Since eP(L2) C 2(b), we readily obtain that
en(ax — xb)ep (€) = epaxey (€) — epxbep(€), €€ L2,

or

b

a b__ _a a b _
es(ax — xb)e, = edaxe, — e2xbe, =L, .

Thus, the operators y,, are uniformly bounded in £°° and (2.4.7) is proved.

It follows from the latter identity that

wo — lim y, = L™ '(ax — xb).

n—oo

Letting n — oo in the identity (2.4.8) implies that the operator axz — b defined
on Z(b) is given by
(aw = ab)(€) = Tim ya(E) = L~ (ax — xb)(¢).

The latter means that the operator ax—xb extends to a bounded linear operator.
The proof is finished. O

At the moment, we are fully equipped to resolve Problem 2.0.5 for the
space € = L without referring to the left regular representation. The an-

swer is given in the following theorem.
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Theorem 2.4.3. Let a,bnM be self-adjoint linear operators, let x € M and f €
F(L>). If ax — xb € L, then f(a)x — f(b)x € L= and

[f(a)r =z fd)le~ < cf [laz — 2bl|go.
Proof. The proof is now simple. According to Lemma 2.4.1

ar —axbe L = L,L,— L,L, € LY.
Next, Theorem 2.3.4 guarantees that
f(La)Le — Lo f(Ly) € LT

and
| f(La)Lo — Lo f (L)l e < ¢fi0 [[LaLle — LaLp|lgoe.

Clearly,
Ly La — LoLg) = f(La)Lo — Lo f(Ls) € LT (2.4.9)

Finally, from Lemma 2.4.2, we come back from left regular representation,
Lf(a)Lw — Lfo(b) S Lzo - f(a) T — :cf(b) e L™,

The theorem is proved. O

A similar argument together with Corollary 2.3.3 resolves Problem 2.0.5 for
the space &N L.

Corollary 2.4.4. Let a,bnM be self-adjoint linear operators, let x € M and f €
F(L>). If ax —xb € ENL™, then

fla)xr —xf(b) € ENL™

and
[f(a)z —zf(b)lle < cyellax — xblle.

For the rest of the section, let us assume that self-adjoint operators a, b are
T-measurable and let x € M. Since the class of all T-measurable operators M is
a *-algebra, we readily see that az — xb € € in the sense of the Definition 2.0.4
if and only if the element az — zb € M belongs to €. Obviously, the same
is true for the algebra M and Definition 2.3.2 i.e., if a = a*,b = b* € M,
and x € My, then ax — xb € €, in the sense of Definition 2.3.2 if and only
if the element az — zb € My, belongs to €. Thus, the following result is an

immediate consequence of Lemmas 1.4.17 and 1.5.6.
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Lemma 2.4.5. Let a,b € M be self-adjoint linear operators. Let x € M.

(i) if ax —xb € &, then LyL, — L,Ly € E1;

(ii) #f LoL, — Ly Ly € €1, then ax — xb € E.

In either case, we also have

L(ax — xb) = LoL, — L, Lp.

The latter lemma, together with Theorem 2.3.4 solves Problem 2.0.5 for the
space € N LP and the special case a,b € M.

Theorem 2.4.6. Let € be a noncommutative symmetric space with Fatou norm
and let 2 < p < oco. Leta=a*b=b" € M and x € M. If ax — xzb € ENLP
and f € F(E€)NF(LP), then f(a)x —xf(b) € ENL? and

[f(a)r —zfO)lle <cypllaz —zble,

where

b
Cf,E: sup ||T1(Zf75||3(8)'
a,bnM

In particular, when € = LP, we have that

Theorem 2.4.7. Let a = a*,b = b* € M and x € M. Let 1 < p < oo.
If f € F(LP) and either ax — ab € LP N L2 or ax — xb € LP and p > 2,
then f(a)x —xf(b) € LP and

(@) —xf®)|ler < cppllaz — zb] o,

where

Cfp = Sup HT:ZJ)LPHB(LP)-
a,bnM o,

2.4.2 Commutator case

Let us now consider applications of the results stated in Theorem 2.3.20 and
Corollary 2.3.21. Let us recall that (M, 7) is semi-finite von Neumann algebra
acting on 3. Let D : 2(D) — H be a self-adjoint linear operator satisfy-
ing (D1)—(D2)(see page 65), let € M. In the present section we shall consider

the results similar to those of Section 2.4.1 for the commutator [D, z].
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Before we can prove the analogue of Lemma 2.4.1, we have to construct the
operator which will play the role of D in the left regular representation, as the
operator L, does for an operator anM. In the present section, as the counterpart
of the operator D in the the left regular representation we take D := 62, the

generator of the strongly continuous group 72

Lemma 2.4.8. The operator D : (D) — L2 is a self-adjoint linear operator
satisfying (D1)-(D3)(see pages 65 and 94).

Proof. Tt readily follows from Stone’s theorem (Theorem 1.3.17) the unitary
group {e"Pl,cp is given by the group v2. Let us consider the following chain

of identities

(eitDLme_itD)(f) _ eitD (Lze_itD)(g)e_itD
_ eith(efitD (5))67itD
_ eithefitheitDefitD

(eithe—itD)g

=L(e"Pre” P (&), zeM, €L nL™.

Consequently,
eitDLze—itD _ L(’}/OO(J?)), reM

and therefore the operator D satisfies (D1). Since v*° coincides with 4! on £1n
L, we obtain that

(P Loe™"P) =71 (L(7(2))) = 7(+' (2))

=7(x)=71.(Ly), x€ Linee>

and hence the operator D satisfies (D2). Finally, the operator e!'P =~2 ¢t € R
coincides with v~ M~ 41 and 4> on L' N L%, L! and L%, respectively.
Therefore, it follows from Theorem 2.3.8, that

(1) L' N L2 is invariant with respect to e'P, t € R;

(ii) the group
; 1 o
{e"™P]einee ber =75 (2.4.10)

is (L1 N L, L1 + L£°°)-continuous group of contractions on L1 N L%

(iii) the group (2.4.10) is continuous with respect to the norms of the spaces £*
and L°°.
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These observations yield that the operator D satisfies (D3). O
Now it is time for the analogue of Lemma 2.4.1. Unfortunately, in the case
when the operator D is not affiliated with M, we have a weaker result.
Lemma 2.4.9. If [D,z] € LP, 2 < p < o0 and
etD pe—itD _ 4.

lim &2 7T D, 4,
t—0 t

then [D, L) € LY. The limit is taken in the norm topology if p < oo and the

wo-topology otherwise. Moreover,

L(D.a]) = [D, L,).

Proof. We shall first show that
L.(20(D)) € 2(D). (2.4.11)
To this end we fix £ € Zy(D) and consider the linear form
— (z£,D(n)), ne 2(D). (2.4.12)

Let us consider the identity

(2, D(n)) = lim <x5, D<7t7>—n>

( —1tD * ztD n*)

ztD —ztD
= lim7 ( — 28 *)
t—0
li e"tP e — QL' ’Lth —itD
— T "
ztD —itD
+hm7<x ge 577*)7 n € (D).

(2.4.13)

Since £ € Zy(D), we have that

i eitDé-efitD _ 6
m --—--—-
t—0 t

=D(9).

Furthermore, from the hypothesis, we also have that

itD ., —itD
. e"Pre —x
lim —— =[D,z].
t—0 t
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Thus, from (2.4.13), we obtain that

(x¢,D(n)) = ([D,z]¢§,n) + (2D(&),m), 1€ 2(D). (2.4.14)

Since £ € Zp(D) and x € M, the linear form

n— (zD(),n), nekL?

is continuous. Moreover, let us recall that ¢ € L1 N L, see (2.3.40). Conse-

quently, applying Holder inequality, (1.4.8), we obtain that

1D, zlelle2 < D ]l[erll€llea <D, 2]llerll€llernes= < oo,

where

Thus, the linear functional

n+— ([D,z]¢,n), neL?

is continuous. Altogether, (2.4.14) now implies that the form (2.4.12) is continu-
ous. Therefore, L,(§) € 2(D) and consequently (2.4.11) is valid. Furthermore,
the identity (2.4.14) now means that

([D,z]¢,m) = (D(x€),n) — (zD(§),n), &€ Zo(D), n€ Z(D).

Since (D) is norm dense in L2, we immediately obtain that
DL,(¢) — L,D(¢) = [D,z]¢, &€ Zo(D). (2.4.15)

The latter means that the operator DL, — L, D defined on Z,(D) coincides with
the left multiplication by [D, 2] and therefore closable. The last part of the proof
is to establish that the closure DL, — L,D coincides with left multiplication
by [D,z]. This is somewhat similar to that of the proof of Theorem 2.3.20 (see
the end of the proof).

Let y := L([D,z]) € LP and vy = DL, — L,D with the domain %y(D).
Let us show that y* = y*. The latter is sufficient to finish the proof, since
y = (y')** = y** =y, see Theorem 1.3.12. Let us note that the identity (2.4.15)
means that y’ C y. Thus, we need only to show that 2((y")*) C 2(y*). For the
latter, recall that £ € 2((y')*) if and only if there is a constant ¢(§) such that

&y )] < e(€) Inlle, m € Zo(D).



110 CHAPTER 2. LIPSCHITZ AND COMMUTATOR ESTIMATES

Clearly, we have that £ € 2((y')*) if and only if

ITL((y" Le) Ly)| < c(€) 1 Lyllez, n € Zo(D). (2.4.16)

Recall that y* € L7 and L¢ € L2. Consequently, according to the Hélder
inequality (1.4.8), y*L¢ € L2, where g7 =271 +p~1, 1 <p < 2. On the other
hand, it follows from Lemma 2.3.19 that, for every n € L! N L, there is a
net {na} C Zy(D) such that

sup [|1al| ez < f[nfle> and limn, =,

where the limit is taken with respect to the o(L1NL>, L9)-topology. The latter
means that the estimate (2.4.16) may be extended to L' N L>, i.e.

7L ((y"Le) Ly)| < c(©)lmllez, ne L NL>.

Taking the maximum over all € L' N L and recalling that the space £? is
a space with Fatou norm, we obtain that y*L¢ € L? which, in turn, implies
that £ € Z(y*). The latter means, that Z((y")*) C 2(y*) and therefore (y')* =
y*. The theorem is completely proved. O

Combining Lemma 2.4.9 with Theorem 2.3.12, we obtain

Lemma 2.4.10. If [D,z] € L%, then [D, L] € L and

L(D.a]) = [D, L,).

Now we prove the converse result. For the same reasons as in Lemma 2.4.2,

we consider only the case p = oco.

Lemma 2.4.11. If [D, L,] € L9°, then [D,z] € L= and

L([D,z]) = [D, Ly].

Proof. Proceeding again in a similar fashion, we shall first establish that
x(2(D)) C 2(D). (2.4.17)
To this end, we fix £ € Z(D) and consider the linear form

n e (x(§), D)), ne2(D). (2.4.18)
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Clearly, we have the following identity

eitD () —
(@(€), D()) = lim <m(§), <nt>77>

I e UEE.C R

t—0 it
) D po—itD _ 4

t—0 it

— lim <e“%W,n>, ne 2(D). (2.4.19)

Since £ € Z(D), we clearly have that

) e—itD (5) —
i = Dek
On the other hand, since [D, L,| € £, it follows from Lemma 2.4.8 and The-
orem 2.3.12 that
itD ., —itD _
wo —lim 2%~ % _ -1 (wo — lim
t—0 t t—0

eitDLzefitD _ Lz
—
=L YD, L,)).

Consequently, if we set y := L™([D, L,]) for brevity, the identity (2.4.19) im-
plies that

(x(£), D(n)) = (y(&),m + («D(&),m), &ne D(D). (2.4.20)

Since z,y € L and £ € Z(D), the linear forms

n— (y&),n), neH

and
n— (xD(),n), neH

are continuous. Thus, the form (2.4.18) is continuous. Consequently, (2.4.17) is

valid.

Now, it immediately follows from (2.4.20) that

(y(€),m) = (Dz —xD)(§),n), &ne Z(D).

Since Z(D) is norm dense in H, we obtain that

y(&) = (Dz—xD)(§), &€ 2(D).
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Finally, since y is bounded linear operator, the operator Dz —x D is also bounded

and

[D,.’I,‘] =Yy= L_l([Dva])'

The theorem is completely proved. O

A direct combination of Lemmas 2.4.10 and 2.4.11 with the main result of
Section 2.3.20 yields

Theorem 2.4.12. Let € be a noncommutative symmetric space with Fatou
norm. Let D : 9(D) — H be a self-adjoint linear operator satisfying (D1)-
(D2)(see page 65), let x = x* € M and f € F(L>®). If [D,z] € €N L™,
then [D, f(x)] € ENL™ and

ID; f@)lleo <crl[D;allle, [MD; f@)lle <cppllDallle.  (2.4.21)

Proof. The proof again goes through the left regular representation. Firstly,
from Lemma 2.4.10, we have

[D,z] € L = [D, L,] € LY

and

[D, Lz] = L([Dv‘r])

The latter means that [D,L,] € & N L. Next, Theorem 2.3.20 shows
that [D, f(Ls)] € €L N LT and

1D, f(La)lleg < e lID; Lalllezs D, f(La)llle, < crm 1D Lellle. -
Finally, Lemma 2.4.11 shows that
D, f(La)] € LT = [D, f(x)] € £7

and
[D, f(x)] = L™H(D, f(Ly)])

The latter means, that [D, f(z)] € €N L> and the norm estimates (2.4.21)
follow. O
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2.4.3 Applications to B(H)

Finally, let us consider the application of the results in Section 2.3 to the alge-
bra M = B(H), where K is a separable Hilbert space, see Section (1.6.3). A
distinguished feature of this case is the fact that the £°°-norm is the weakest
among the LP-norms, 1 < p < co. The latter observation allows to exploit the
results of Section 2.4 and carry the symbols ax — b and [D, z] from the left
regular representation My, to the algebra M not only for the special case p = oo,

as it is done in the preceding section, but for all 1 < p < oc.

Theorem 2.4.13. Let 1 < p < oo, let a: P(a) — H and b : 2(b) — H be
self-adjoint linear operators and let x € B(H). If

ax —ab e C? and f € F(CP),

then
fla)z —zf(b) €CP
and

[f(a)x —zfO)ller < cppllaz —abl|co.

Proof. The proof is straightforward. Since CP C C*°, for every 1 < p < o0, it
follows from Lemma 2.4.1 that

ar —2beCP CC® = L,L, — L,L, € C7°

and
L(ax — 2b) = LyL, — L, L.

Consequently, we also have that
L,L, — L,Ly, €CY.

Applying Theorem 2.3.4 to the space £, = L7, when 2 < p < oo (resp, &1, = L2,
when 1 < p < 2) and noting that C? N C? = CP, provided 1 < p < 2, we readily
obtain that

f(La)Ly — Lo f(Ly) € CF

and
1f(La)Lz — wa(Lb)HC{ < ¢ip

Finally, it follows from Lemma 2.4.2 that

|LaLo — Lo Lyce-

L)Ly — LaLypy € CY CCP¥ = fla)z—x f(b)eC™
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and
ar —xb= L " (LoLy — L,Ly).
Consequently,
ax — xb € CP.
Together with (2.4.9), it finishes the proof of the theorem. O

Similarly, for the Problem 2.0.7 in B(H) we have

Theorem 2.4.14. Let D : 2(D) — H be a self-adjoint linear operator and
let x be bounded operator, let 1 < p < oo and let f € F(CP). If [D,z] € CP,
then [D, f(x)] € CP and

1D, f(@)]ller < cpp D5 2]lle -

2.4.4 Applications to LP-spaces with respect to an arbi-
trary von Neumann algebra

In the present section, we shall consider implications for LP spaces constructed
with respect to an arbitrary von Neumann algebra which follow from the results

in the preceding sections.

Let M be a von Neumann algebra and let ¢ be a n.s.f. weight on M. Let 0® =
{o?}er be the corresponding modular automorphism group. We set R :=
M x4 R. Recall that R is a semi-finite von Neumann algebra equipped with
the distinguished trace on R, see Theorem 1.6.4. Let E := E(R) be a fully
symmetric function space. We set € := E(R, 1), for brevity. In particular, L :=
LP(R,7) and LP? := LP9(R,7) are noncommutative LP- and Lorentz spaces,
1<p, g <oo. Let LP(M) C LP>° be the noncommutative LP spaces associated
with the algebra M, i.e.

LP(M) = {xGU’m: Gs(x):e_t/px,teR}, 1<p<oo,

where the group of x-automorphisms 6 = {0;}+cr on R is defined in (1.6.6). We
refer the reader to Section 1.6.5 for all relevant notations and results.

Let us recall that Ry, := L(R) stands for the left regular representation of
the algebra R and &, = L(&) = E(Ry, 7). In particular, LY = LP(Rp,7r)

and L7 = LP9(Rp, 71). Let us also introduce the space

L5 (M) = L(LP(M) C L3
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In the present section we shall consider only the application of Theorem 2.3.4
to the setting of the space L (M), which is isomorphic to the noncommutative
LP-space LP(M). We shall present a simple result relating the setting of the
space LY (M) with the space LP(M). Considerations of the commutator es-
timates and applications of the results of Section 2.3.6 to the setting of the
space LP(M) goes beyond of the scope of the present manuscript.

We start with the definition of the symbol ax — zb in the space LY (M),
1<p<oo

Definition 2.4.15. Let a,bpM be self-adjoint linear operators and let x € M.
We shall say that the operator az — xb is well defined and belongs to L (M), if

and only if az — zb € L1°° in the sense of Definition 2.3.2 and

0,(ax — xb) = e~ */P (ax — ab), teR.

A direct application of the results in Section 2.3.1 yields

Theorem 2.4.16. Let a,bn(m(M))r be self-adjoint linear operators and let x €
T(M)r. Let 2 < p < oo and let f € FLY™). If ax — xb € LY (M), then
fla)z — zf(b) € LL (M) and

[f(a)z —zf(b)llry vy < crp laz — bl e ()
Proof. We set y := ax — xb. Clearly,
y €LY and 6;(y) =e Py, tER. (2.4.22)

Since ax — xb € LP*° and f € F(LP*°), it readily follows from Theorem 2.3.7
that f(a)z — zf(b) € LP>° and

|f(@)x = 2fB)ller= < crplaz - abllore.
Let us set z = f(a)x — zf(b). To finish the proof, we need to show that
0:(z) =e VP2, teR.
Let us recall that it was shown in the proof of Theorem 2.3.2 (see also the

discussion before Theorem 2.3.5) that if 7¢ := (1 +iea)™! and r? := (1 +ieb) ™!,

€ > 0 are resolvents of the operators a and b, then

Ye := riyrt € Lo N LP>® (2.4.23)
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and

. e»be
z= !1_1% ze, where a := ar?, b :=brl, 2 := T:Zf’L,L),oc (Ye) (2.4.24)

and the limit converges with respect to the o(LP*°, U’l’l)—topology.

Since the operators a and b are affiliated with the algebra (7(M))z, it im-
mediately follows that
%1l ac,be € (1(M))

€)' el

and

Oi(rd) =1r¢ Gt(rf) =t

€

Oi(ae) = ae, Oi(be) =be, teR, €>0.
Consequently, it follows from (2.4.22) and (2.4.23) that

0:(ye) = ety teR, €>0.
Furthermore, it now follows from (2.4.24) and Lemma 1.11.1 that

0¢(ze) = e t/r Ze, tER, €>0.

Finally, let us note that the x-automorphism 6; is o(€p, &} )-continuous for
every t € R and every noncommutative symmetric space €. Consequently, it
follows from (2.4.24) that

0:(z) = liII(l) O1(zc) = lin(l) e Py =Py teR.
Thus, we proved that
2€LP® and 0,(2) =e P2, teR.

In other words z € LY (M). The proof of the theorem is finished. O

Let us now discuss the relations between the statements ax — xb € LP(M)
and L,L,—L,L, € L% (M). The next two lemmas are straightforward corollaries
of Lemmas 2.4.1 and 2.4.2.

Lemma 2.4.17. Let a,bnm(M) be linear self-adjoint operators and let © €
©(M). If ax — xb e LY (M), then LoLy — LyLy € LY (M).

Lemma 2.4.18. Let a,bnm(M) be linear self-adjoint operator and let x € w(M).
If LoL, — LyLy € LY (M), then ax — xb € L®(M).

In the special case when a = a*,b = b* € (M), Theorem 2.4.16 together
with Lemmas 2.4.17 and 2.4.18 readily implies that
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Theorem 2.4.19. Leta =a*,b=>b* € 7(M) and let x € 7(M). Let 2 < p < 00
and let f € FLP>). If ax — xb € LP(M), then f(a)x — zf(b) € LP(M) and

| f(a)z —zf(b)llrov) < cfp llaz — bl e vy

Let us note that even in this restrictive setting and even when a and b are

bounded, the latter result is quite new.

2.5 Comments

(i)

(iii)

(iv)

In the special case when = 1, Theorem 2.3.4 and Corollary 2.3.3 together
with Lemma 1.8.11 reduce to the inequalities

1f(a) = fF®O)lley <erplla=Dbller, 1<p<oo,

provided a — b € L} N L%, and f is a function with the derivative of
bounded total variation, where a,b are arbitrary self-adjoint operators
affiliated with My, and ¢y, is a constant depending of f and p only. This
result extends [24, Corollary 7.5] and [27, Corollary 3.5].

If a = b are as in (i) above and © € M, then
lllal, z]lley < epllla,2llley, 1<p<oo,

provided [a,x] € LY N L%, where ¢, is a constant depending on p only.
This complements the result of [27, Theorem 2.2] and provides a type II
extension of [9, (6.6)].

If, in addition, a = b has a bounded inverse, then, for every noncommu-

tative symmetric space €, we have

HHCLV"I]”EL < CE,a,r |[a7x”|6L’ 0<r<1,

whenever [a, 2] € €1, N U}J, for some 2 < p < oo, where the constant cg 4
does not depend on x. This result extends similar inequalities for the
case E = L, obtained earlier in [14, Lemma 1.4] (see also [18,68]) by
different methods.

The relations (2.3.29) and (2.3.30), which describes the generator of the
group v in terms of commutators [D,z] € L are similar to those ob-
tained in [11, Section 3.2.5], in particular [11, Proposition 3.2.55]. The
argument in Theorem 2.3.12 is essentially a repetition of that of [11, Sec-
tion 3.2.5].
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(v)

(viii)
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Section 2.3 is partially contained in [53]. However, Theorems 2.3.4, 2.3.16
and 2.3.20 are now proved in a more general context. Section (2.4) where
we considered a number of applications from a unified point of view is
new (the results in Subsection 2.4.3 were established in [53] via different

approach).

The approximation results in Section 2.3.5 extends those of [21, Section 7]
established of £°°, to the setting of the space LP for every 1 < p < oc.

Theorems 2.4.13 (a variant of the latter theorem for type II is given in
Theorem 2.4.3) and 2.4.14 were proved in [9, Theorems 3.5 and 4.4 (see
also Section 6)] by a different method highly depending on structure of
algebras of type L.

Corollary 2.4.4 and Theorem 2.4.12 are proved in [21, Corollaries 6.9
and 7.5] under a more restrictive assumption: the function f is required

to be continuous.

When the operators a and b are T-measurable the results in Theorems 2.4.6
and (2.4.7) are proved in [27] for the absolute value function and in [24]

for arbitrary function with derivative of bounded total variation.



Chapter 3

Commutator estimates for
the spaces with trivial Boyd
indices

In the present chapter we discuss the Double Operator Integrals in the set-
ting of the finite matricial algebras B(¢2), n > 1. For the sake of brevity,
we set M,, := B({2), n > 1. The algebra M, is equipped with the stan-
dard trace Tr. Let F := E(R) be a symmetric function space. The corre-
sponding noncommutative symmetric space E(M,,,Tr) is a symmetric ideal of
compact operators which we shall denote as CZ. In particular the operator LP-
space LP(M,,,Tr), 1 < p < oo is the p-th Schatten-von Neumann class CP, see
Section 1.6.2.

Let us take the diagonal matrix B € M, with diagonal entries {\;}7_;
and the Borel measurable function f : R — C. The present chapter entirely
addresses the study of the operator 7T ff’g B We introduced in Section 1.7 (see
also Section 1.9). The results of the chapter are published in [56]. Let

B = i A P
j=1

be the spectral resolution of the operator B. The operator TIZ”% 5 is given by

Tyee= > wr(\ M)PXPy. (3.0.1)

1<j5,k<n

On the other hand, as we saw in Section 1.9, if X = {Ijk}?,k:p Y = {yjk};'l,kzl

119
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and Y = Tff’ﬁg(X), then

Yir = V(N M) zje, 1<,k <n.
That is the operator Tqﬁ’f} 5 is the “entrywise” multiplier. In this chapter, we
set
B,B
My(B) =T}

Let X € M,,. It follows from the proof of Theorem 2.4.13 that
My (B)([B, X]) = [f(B), X]. (3.0.2)

The latter identity may be also shown directly based on Section 1.9. Indeed,

Mi(B)(B.X)) = Y U M)P [ APL X P

1<j,k<n i
- Z wf(/\ja /\k)(/\j - )\k)PjXPk
1<j5,k<n
= 3 (fO) — FOW)PX P
1<j5,k<n
= > B [Zf(As)Ps,X]Pk = [f(B), X].
1<j,k<n  s=1

3.1 Symmetric spaces with trivial Boyd indices.

Let L(0,00) be the space of all Lebesgue measurable functions. Recall that the
dilation operator o, : L(0,00) — L(0,00), 7 > 0 is defined by

(o)) = f(r7), t>0.

If E = E(0,00) is a r.i. Banach function space, then the lower (respectively,
upper) Boyd index ag (respectively, 8g) of the space E is defined by

B log [0 || B(E)
ag —

log ||o
TS0 log 7 (reSpeCtively’ Br = lim g”B(E)) '

T—+00 log T

We say that the space E has trivial lower (respectively, upper) Boyd index
when ag = 0 (respectively, Bg = 1). It is known that, if ag = 0 (re-

spectively, S = 1), then the space E is not an interpolation space in the
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pair (L', LP) for every p < oo (respectively, (L9, L>°) for every 1 < q), [44, Sec-
tion 2.b]

Let us also recall that ¢ stands for the symmetric sequence space, in par-
ticular /P, 1 < p < oo stands for the space of all complex sequences summable
with p-pth degree, 1 < p < oo and ¢*° stands for the space of all uniformly
bounded sequences, see Section 1.6.1. We shall say that the sequence space £¥

has trivial Boyd indices when the corresponding function space F does.

Proposition 3.1.1 ([44, Proposition 2.b.7]). If (¥ is a symmetric sequence
space and ap = 0 (respectively, Bg = 1), then for every e > 0 and every
n € N, there exist n disjointly supported vectors {z; };7’:1 in £¥, having the same

distribution, such that for every scalars {aj}?zl the following holds

Jmax Jay| < HZ%%H (1+2) max |a|

<respectwely, 1—¢) Z la;| < ”Z ajxjH < Z |aJ|>
(3.1.1)

If E is separable then x; can be chosen to be finitely supported.

Proposition 3.1.2. Let (¥ be a separable symmetric sequence space and o = 0
(respectively, Bp = 1). For every scalar € > 0 and every positive integer n € N
there exist linear operators %, and _#, such that

(i) A, In: M, — My, , where {ky}n>1 is a sequence of positive integers;

n’

(ii) the operators &, #, map diagonal (respectively, self-adjoint) matrices
to diagonal (respectively, self-adjoint) matrices;

iii) if M¢(B), M¢(Z(B)) are the Schur multiplier associated with the di-
f f
agonal matrices B € M, %,(B) € My, and the function f, then
In(My(B)X) = My(I(B)) n(X) for every matriz X € M,,;

(iv) [Xlle= < [Zn(X)ller < (14 e)[[Xlle (respectively, (1 — e)[|X]ler <
| Z0n(X)|lce < || X|lc1) for every matriz X € M,.

Proof. Let n be a fixed positive integer and ¢ > 0 be a fixed positive scalar.
Let {z; };":1 be a sequence of finitely and disjointly supported vectors, having
the same distribution such that (3.1.1) holds. Let Xy be the matrix given
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by Xo = diag{z;(k)}r>1, i.e. Xp is the finite diagonal matrix in C¥ that
corresponds to the decreasing rearrangement z} in /£. Let I be the identity
matrix of the same size as X. We define the linear operators .#, and _#, by

I(X):=X®1, and Z,(X):=X®X,, X €M,.

The claims (i), (ii), now, follow immediately from the definition of .#, and _#,
and the claim (iii) follows from (3.0.1).

Let us prove (iv). For every matrix X € M, there exist unitary matrices
U,V such that
UXV = diag{s1,S2,...,5n}

Now, it follows from elementary properties of tensors, that

In(U) Jn(X)In(V) = (U@ (X @ Xo)(V ® 1)
= (UXV)® Xo = 7, (UXV) = diag{s; Xo}7_,,

and so
| Zn(X)ller = [|2n(U) F0n(X)I20(V)llce

n
= |[diag{s; Xo}jllex = |3 55
j=1

B

Now, the claim in (iv) for ag = 0 (respectively, g = 1) follows from combining
the equality above with the first estimate in (3.1.1) (respectively, the second
estimate in (3.1.1)). O

The operators .%,, #, are very similar to those, constructed in the proof
of [2, Theorem 4.1].

3.2 Basic estimates.

From now on let h : R — R be a function with the following properties

(a) h(t) € CHR\ {0});

(b) R(t) = h(—t) when t £ 0, h(0) > 0
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(c) h() is increasing function on (0, 00);
(d) h(f£oo) = +o0;
(e) 0 <R/ (t)/h(t) <1 when t € (0,00).

Proposition 3.2.1. Let h(t) be a function that satisfies the conditions (a)—(e)

above. If f is a function defined as follows

_ J1tl(RQog|t))) =t if lt] <1, t #0,
f@k—{Q Ft=0. (3.2.1)

then f(t) € CY(—1,1) and f'(t) > 0 for every t € (0,1).

Proof. The function given in (3.2.1) is even so it is sufficient to consider only
the case t > 0. It follows from the definition of the function f that, for every
t € (0,1), function f is continuously differentiable. To calculate the derivative
at zero, we use the definition

(d)

f1(0) = }%w = }iilg)(h(logt))’l = 0.

In order to verify that f'(¢) — 0 when ¢t — +0, we note first that

1 (logt)
~ h(logt)

f@—aw%w>(1 >,0<t<L

Since h(t) > 0 for every ¢t € R, together with the property (e), it now follows
that for every ¢ € (0,1)

0 < f'(t) < 2(h(logt))™ — 0, as t — +0.

O
Let matrices D,V € M,,, and A, B € M, be defined as follows
D = diag{e ', e72, ..., ™},
V= {vjk};'rszla
(k= j) e +e )L, if j #k,
Vip =

’ 0, ifj=k"

(3.2.2)

P L) 023
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The following proposition provides commutator estimates in the norm of the
ideal of compact operators which are very similar to those established in [67]
and [45].

Proposition 3.2.2. For any function f:R — R given by (3.2.1), there exists
an absolute constant K¢ such that for every m > 3 and for every scalar0 < p <1

the following estimates hold

(1) B, Alllc= <,

pKo

_ PBo 4,
h(m — logp) 65"

(i) [ILf(pB), Allle > 5

Proof. The first item is proved in [67, the proof of Lemma 3.6], so we need to
establish only the second one. Let us first note, since the function f is even, it
follows from definition of matrices A, B that

JwB)A = AfB) = | 1oy 0 VD) f(pD)V . VipD)]

SO

If(pB), Alllc= = [[f(pD), Vllic>=- (3.2.4)

It S ={sjk}i%-1 = f(pD)V = Vf(pD) € My, then

flpe™) = flpe™™) ,
W ey = LEREEm

If 1 < j < k < m, then, since functions h(t) and e’ are monotone, we have

o= pe”’ _ pe”* e e Ry Lk — )L
e (h(j —logp) (k- logp))( e )T (k=)

> oy (267 (=)

p(1—e™1) S p(l—e 1)
~ 2h(k —logp)(k —j) ~ 2h(m —logp)(k — j)

Now, using 25;11 % > log k, we have
m k—1 —1 k—1 -1
p(l—e™) 1 p(l—e™)
e > i > > log k.
ZSJ’“ = Zsjk ~ 2h(m —logp) 2:: k—j — 2h(m —logp) o8

j=1 =1 j=1

<.
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Finally, letting x = (m_l/g,m_1/2, .. .,m_l/g) € C™, we obtain
1 o= 2 1 p*(l—e "
Sl = 150l = — 3 (D) = b > (logk)?
1S3 > [|Se] m;ﬂ? ;:1:5” Z o A(h(m 1ogp 2408

1 pPPl—e!)? & 2
>— - - J log k
~ m4(h(m —logp))? k_[z:m( °sk)

1 p*(1—e')? m(log@)Q

= m4(h(m —logp))? 2 2

Setting Ko = v/2(1 — e~')/4, we have

D p}<0 m
V o = o O — —

which, together with (3.2.4), completes the proof. O

Together with (3.0.2), Proposition 3.2.2 provides a lower estimate for the oper-
ator norm of Schur multiplier associated with the function f, given by (3.2.1),
and diagonal matrix pB given by (3.2.2) and (3.2.3) for every scalar 0 < p <1
and every integer m > 3. Now we extend that lower estimate to a larger class
of ideals.

Proposition 3.2.3. Let E be a separable symmetric sequence space with triv-
ial Boyd indices. For every m > 3, let Ay, By € May, be given by (3.2.2)
and (3.2.3), Jom, Fom be the operators from the Proposition 3.1.2 for the
e = 1/2. There exists an absolute constant K1 such that for every scalar se-
quence 0 < p,, < 1, and for the sequence of the diagonal matrices Wy, =
I (PmBm) € My, the following estimate holds

K

log X m >3
—— log—, m
h(m —log pm) J

1My (W) e > S w3,

where f: R — R is an arbitrary function given by (3.2.1).

Proof. Letting

1
= [mem7 7Am}7 m Z 37
p

m

we infer from Proposition 3.2.2 and from (3.0.2) that for every m > 3

HX |C°° S T,

m |
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1M (0 B ) (X2 le = 11 (P Bon), iAmnuw
Ky

L — L
N h<m - logpm,) & -

2

It follows from the definition of Schur multiplication and duality that

1My (pmBum)llctcr = 1M (pmBm) || coe e

s Ko Mmoo sg
~ wh(m —log pm) &9 =

The last estimate implies that there exists a sequence of X}, € My, such that

M (pmBm) (X} K
1My (oo B (X8l b g™ ss
1XE Nl 27 h(m — log pm) 2
Suppose now, that ap = 0 and set X,,, = Zo,, (X)) for every m > 3. It follows
from Proposition 3.1.2 that, for every m > 3, W,,, is a finite diagonal self-adjoint
matrix such that

IV (W eoer > I OVo)Xmller _ | Fom{ My (o Bon) (X0} lce

[Xonller [ Fom (X5 e
L 2B (KDl 2K om
3 Xe e~ Buh(m —logpn) * 2

If we put Ky = 2K,/(3w), that completes the proof of the case g = 0. The
only difference in treating the case 3g = 1 is that we need to use X}, instead

of X2° in the above estimates. O

The following proposition proves that if a function f : R — R is given by (3.2.1)
and the multipliers My (W,,) are not uniformly bounded in CF, then this func-

tion is not commutator bounded in the sense of [39].

Proposition 3.2.4. Let E be a separable symmetric sequence space. If f is a
C'-function and W,, € My, is a sequence of diagonal matrices (m > 3) such
that

| M (W) llcemce — oo, (3.2.5)

then there exist self-adjoint operators W, X, acting on {2, such that

W.X]ec?, [f(W),X]¢cC".
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If, in addition, the norms ||[Wp|lce are uniformly bounded, then W(2(X)) C
2(X), and if the following series converges

S Wonlles

m>3

then operator W belongs to C¥ and

Wllez < > IWinllce.

m>3

Proof. Tt follows from (3.2.5) that there exists a subsequence of positive integers

m, (r > 1) and a sequence of self-adjoint matrices X" € My, such that
MW XD) e > 23| XD e, 721, (3.2.0)

where we let, for brevity, k;. = kp,, and W) = W, € My, . Let r» > 1 be fixed,
let {)\; }§;1 be the sequence of eigenvalues of the matrix W/, and let {P; }?;1 be
the collection of corresponding one-dimensional spectral projections. For A € R,

Q= > P

1<j<k!
Aj=A

we set

There are only a finite number of non-zero projections among {Qx}aer, let
us denote them as {Qj};le, 1 < s < k! and the corresponding sequence of
eigenvalues as {\;}%_;, the scalars X are mutually distinct. We consider the

self-adjoint matrices
X =3 QXQ;, and X =X - X,.
j=1
It follows from (3.0.1) that

M W)(X,) = > (A, M)PX, P
1<5,1<k,

=5 S v ANPQXDQ P

t=11<5,I<k!.

= Z Z 1/)f(>\t7 )‘t)Qtanl)Qt =0,

t=1 1<4,1<kl
A==
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and so
My (Wi)(X2) = Mp(W))(X,"). (3.2.7)

Now, noting that || X,|[cz < [|X|lce (see [31, Theorem IIL.4.2]) and, hence

IXP e <2[| XM ce, X2, we infer from (3.2.7) and (3.2.6)

IMp (W)X ler = 2| X2 e (3.2.8)
We set
X = 3 MPXPR,
1<5,1<k;.
where
0, Aj = A,
/\jl = —1
i £ A
)\] Y ) 7 7é l

The matrix X is self-adjoint and

X = Y PXPP=i Y. M\ilh-NPXPP

1<GI<k, 1< 1<k,
- / /
=i Y AP(WX® - XPW))P,
1<jI<k,

:z‘[W,,(, > /\ijij’Pl}:i[WT’,,Xf)].
1<j,1<k!.
(3.2.9)

Finally, we let

X, =r?| X2z X8 (3.2.10)

For every r > 1 we have constructed so far the finite self-adjoint matrices W/,
X, such that

(3.2.10) _ _
W7, Xelle= < W7 Xollles = 7 21 X2 2o W), X2 lce
(3.2.9) _ _ 1
= XX s =

(3.2.11)
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and

3.2.10
IFw), Xollles O2 )7“*2\\X7‘~2)Hc_éll[f(Wé),X?)]IICE

(3:0.2) o i .
=X 2 lgs | M (W (W], X)) e

(3.2.9) _ _
=2 X2 s 1M (W (X2 e

2 XN IXE s
> X I s 2 7

(3.2.12)

Now, we set H = @, C¥, X = @, X, and W = @,., W/. Recall, that
by the definition we have

H= {{57'}7'21 : §T € Ck;a Z ||£7H2 < OO},

r>1

2(X) ={6={&}r21 € H o X(§) = {X(&)}r21 € HY,
-@(W) = {5 = {57"}7’21 e H: W(f) = {Wr(fr)}rzl € 9{}

W, X are self-adjoint operators, acting on the separable Hilbert space H and

(3.2.11) 1
I, Xlles <D IW Xolles <D -5 <o,

r>1 r>1

V), X]lles 2 mass £ 97, X, s P2 oc.

If we assume that

S Winlles < oo,

m>3
then

Wllee <D I1Willes < ) [Wanlles < oo

r>1 m>3

If we assume that sup,,>1 [|[Winllce < M < oo, then, by (3.2.11), for every
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§=1[&]r>1 € 2(X),

(S 1o |2) = (S 1w ) - v xR

N[=

r>1 r>1
3
<u(X ||Xr<sr>|2)
r>1
s |7 Xl (Y ||£r|2) <.
r>1
Hence W (€) € 2(X). The claim is proved. O

It follows from Propositions 3.2.3 and 3.2.4 that any function f : R — R

given by (3.2.1) with the function h satisfying the condition %

as m — oo (here {py, }m>0 is some scalar sequence satisfying 0 < p,, < 1) is not

— 00,

commutator bounded in any separable symmetrically normed ideal with trivial
Boyd indices. In other words, there exist self-adjoint operators W, X, acting
on a separable Hilbert space H, such that [W, X] € C¥ but [f(W), X] ¢ CE.
We shall now show how further adjustments to the choice of the function h and
the sequence {p;, }m>0 can be made in order to guarantee that the operator W
above belongs to C¥. First, we need the following auxiliary results.

Proposition 3.2.5. For every € > 0 there exists a function x. such that

(i) x- € C'(R),
(11) Xs(t) =0,ift <0,
(iil) xe(t) =1, ift > 1,
(iv) 0<xL<1l+e.
Proof. Let & (t) be the continuous function such that {.(¢) =0, ift <Oort¢ > 1,

E(t)=1+¢ife/(1+€) <t <1/(1+¢€) and linear elsewhere. It then follows,
that the function

t
t) = / é(T)dr, teR,
satisfies the assertion. O

Proposition 3.2.6. Let s,,, ¢ (m > 0) be two increasing sequences such that
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(i) 8m — 400, 59 =0,
(ll) dm — +OO, qdo = 1;

(111) a = sup 1Og dm — log dm—1
m>1 Sm — Sm—1

<1.

Then there exists a function h that satisfies the conditions (a)—(e) (preceding
Proposition 3.2.1) and such that h(Sm,) = qm for every m > 0.

Proof. Let ¢ = 1/a — 1, and x. be the function from Proposition 3.2.5. For
every t > 0 we define

H(t) = X€<t_87m71)(10ng — 108 gm—1)- (3.2.13)

We have that > s,,—1 (respectively, x < s,,) if and only if

T — Sy T — Sy
—omel 5 (respectively, = omel o 1).
s

Sm — Sm—1 m — Sm—1
Now, it follows from above that for every fixed ¢ > 0 the sum (3.2.13) is finite,
H(so) = H(0) = 0 =log qo,
and for every k > 1
Sk — Sm—1

H(sp) =) Xe<7>(10g Gm — 10g gm—1)
m>1
k

Sm — Sm—1

= > (logqm —logqm—1) = logqy.

3
l

We set h(t) := exp(H(t)) for every t > 0 and h(t) = h(—t) for every ¢ < 0, then
h(sm) = qm for every m > 0. Let us check the conditions (a)—(e).

(a) Function H is a C'-function as a finite sum of C'-functions, so h is a
C'-function for every t # 0;
(b) this item holds by the definition of h(t), and h(0) = exp(H(0)) = 1;

(c) for every t > 0 function H(t) is increasing, because it is the sum of in-

creasing functions, so the function h is increasing also;
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(d) since the sequence h(s;,) = ¢ tends to infinity and since h(:) is an in-

creasing even function, we have h(£oo) = +o0;

(e) for every ¢ > 0 there exists an integer k > 1 such that sx_1 <t < s, thus
it follows from Proposition 3.2.5, that

— Sy— 1 —1 _
H/(t): ZX;( t— Sm—1 ) Og qm 0g dm 1’

Sm — Sm— Sm — Sm—
m>1 m m—1 m m—1

, ( t— Sk—1 )loqu —logqp—1

= Xe
Sk — Sk—1 Sk — Sk—1
<a(l+e¢) =1,
and so o
h(t
0< H'(t) = <1
1) = Jp) <

Now, we are in a position to prove our main result.

Theorem 3.2.7. For every separable symmetric sequence space E with trivial
Boyd indices, there exists a C*-function fg, self-adjoint operators W, X, acting

on a separable Hilbert space H such that

W e P, [W.X]eCP, W(Z(X)CX), [fs(W).X]¢CP.

Proof. Let m > 0, g, := (log(m + €))'/2, B, be the diagonal matrices, given
by (3.2.2) and (3.2.3), Fam, _Fom be the operators from Proposition 3.1.2 for
€ =1/2. Let {pm }m>0 be a sequence that satisfies the following five conditions

(i) pm is decreasing to zero;
(ii) 0 <pm <1
(ifi) po =1;

1
(iv) — > m2|\f2m(Bm)||cE, m > 1;
p/n’l
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We construct such a sequence by induction. If the numbers pg,p1, ..., Pm—1
satisfy the conditions above, then p,, can be taken to be any positive number
for which

1 1 a 1
2 {1 2 S (B, P
Pm Pm—1 €m—1 Pm—1

It follows from (v) above, that

Pm-1 O
- 2 b
DPm 9m—1

and, taking logarithms,

1
14 log — —log

m m—1

> 2(log ¢m — log gm—1)-

Putting s,,, = m — log p,,, we have

S 10g dm — IOg gm—1
Sm — Sm—1

0

1

Thus, we have verified that the sequences {gm }m>0 and {sm }m>0 satisfy the

conditions of Proposition 3.2.6, and so there exists a function hg(t) such that
hi(m —1ogpm) = hi(sm) = 4m = (log(e +m))'/2.

If fg is the function, given by (3.2.1), with the above choice of hg, W,, =
Fom (DmBm) € My, , where B,, given by (3.2.2) and (3.2.3), is the finite diag-

onal matrix then it follows from Proposition 3.2.3

m )

K 1 2
1 log ™ — K, 082

M (W, —CcE 2 o
I f( m)llerce > L 2 1(10g(m+€))1/2

(m —1og pm)
On the other hand, by our choice of p,, (see ((iv)) above) we have that

1
||WmHC°° < ||Wm||CE :pm”ﬂQm(Bm)HCE < W’ m > 3.

Now the assertion of Theorem 3.2.7 follows from Proposition 3.2.4. O

3.3 Domain of a generator of an automorphism
flow

Let E be a separable symmetric sequence space with trivial Boyd indices, let C¥

be the corresponding symmetrically normed ideal and let X be a self-adjoint
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operator (may be unbounded), acting on a separable Hilbert space 3. We

consider a group o = {ay }ser of *-automorphisms on CF defined given by
a(t)T =X Te X T eCF teR.

It follows from separability of C¥ that « is a Cy-group, [21, Corollary 4.3]. The

infinitesimal generator § of a(t) is defined by

9() = {T € C"  there exists | - s — Jimy “T
1) —-T
o(T) =+ ller — limy % for every T € 2(6).

J is a closed densely defined symmetric derivation on C¥, i.e. densely defined
closed linear operator such that §(7*) = 6(T)* and 6(T'S) = §(T) S+T4(S5), for
allT, S € 2(0), see e.g. [21, Proposition 4.5]. It is proved in [67, Proposition 2.2],
that

200)={TeCf: T(2(X)) C2(X), [T,X]cCF}.

Now, Theorem 3.2.7 yields

Corollary 3.3.1. For every separable symmetric sequence space E with trivial
Boyd indices, there erists a C'-function fg, a self-adjoint operator W € C¥,
acting on a separable Hilbert space H, and closed densely defined symmetric
derivation § on C¥, such that W € 9(5) but

feW) ¢ 2(5).
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