The mechanism of glucose-induced RCAN1 expression in β-cells

Rakhvinder Kaur Kashmir Singh

(BSc, Hons)

A thesis submitted in partial fulfilment of the requirements for the award of the degree

of Masters of Biotechnology (Research)

March 28, 2012

Supervisor: Dr. Damien Keating

Centre for Neuroscience,

Department of Human Physiology,

Flinders University

School of Medicine,

Adelaide, South Australia.

Dedication

This thesis is dedicated to my mother

Harcharan Kaur Dhillon

(1937-2011)

This work contains no material which has been accepted for the award of any other degree or diploma in any university of other tertiary institution and, to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Rakhvinder Kaur Kashmir Singh

March 2012

Acknowledgements

I would like to express my gratitude by thanking the following people who have supported and helped me throughout the year.

First and foremost, my utmost gratitude to my supervisor Dr.Damien Keating, whose encouragement, guidance and support from the initial to the final level I will never forget. Dr. Keating has helped me see this project through as I hurdle all the obstacles in the completion of this research work.

Dr. Mary-Louise Rogers, my co-supervisor who always had kind concern and consideration regarding my research work. Her unselfish, unfailing support and friendship meant a lot to me.

The members of the Molecular and Cellular Neuorscience Laboratory; Dr. Ravinarayan Raghupathi for his advice, time, experience and friendship during this journey, Dr. Heshan Pieris for his patience and time in sharing his knowledge of RT-PCR, Dr. Claire Jessup for her cheerful nature which always made everything seem easy; my fellow lab mates; Petra Unteweger and Leah Zelkas; for their friendship, the stimulating "discussions", and for all the fun we have had in the last year.

Dr. Michael Duffield for his patience, motivation, enthusiasm, immense knowledge and best of all his friendship and coffee/lunch chats; the best friend anyone could ever ask for. Most of all for reading the many drafts of this thesis patiently. I also thank Pam Simpson and Robyn Flook for all the kind words and pick-me-up hugs throughout the year. My greatest appreciation goes to my husband, Vishnu Prathap Nair who has been my pillar of strength throughout this period, and my daughters Myrna and Nithaa Nair. You have each allowed me to be a student more than I was a wife or a mother. My time is all yours now.

Within the Department of Human Physiology I would like to acknowledge Dr. Nick Spencer, Dr. Rainer Haberberger, Dr. William Blessing, and members of their respective laboratories for their continued support and friendship. I would also like to thank Dr. Jonathan Gleandle Dr. Tim Chataway, Dr. Hakan Muyderman, Dr. Neil Sims and the members of their respective laboratories for their support. My sincere appreciation to Dr. Michael Jackson for his kind generosity in donating the MIN6 cells.

My final appreciation goes to the one above all of us, the omnipresent God, for answering my prayers for giving me the strength to plod on despite my constitution wanting to give up and throw in the towel, thank you so much Dear Lord.

Table of Contents

Dedication.		i
Acknowledg	gements	iii
Table of Co	ntents	1
Table of Fig	ures	X
ABSTRAC	Γ	xiii
Commonly	Used Abbreviations	XV
1 INTE	RODUCTION	1
1.1 The	Pancreas and β cells	1
1.1.1	Glucose uptake and metabolism by β-cells	2
1.1.2	Glucose Stimulated Insulin Secretion (GSIS) in β-cells	5
1.2 Gluc	ose Homeostasis	8
1.3 Diab	etes Mellitus	11
1.3.1	Type 1 diabetes	12
1.3.2	Type 2 diabetes	13
1.4 β cel	l dysfunction in Type 2 diabetes	15
1.4.1	Oxidative Stress	16
1.4.2	Apoptosis	19
1.4.3	Changes in gene expression	20
1.5 Calci	ineurin and NFAT pathway	21
1.5.1	Calcineurin	21

1.5.2	Nuclear Factor of T-activated cells (NFAT)	
1.5.3	The calcineurin/NFAT pathway in β-cells	
1.5.4	Calcineurin inhibitors	
1.6 Regu	ulator of Calcineurin 1 (RCAN1)	
1.6.1	Structure and Location	
1.6.2	Interaction between RCAN1 and Calcineurin	
1.6.3	Regulation of RCAN1 via phosphorylation	
1.7 RCA	AN1 and diseases	
1.8 RCA	AN1 and β cells	
1.8.1	RCAN1 and mitochondrial function	39
1.8.2	RCAN1 and exocytosis	41
1.8.3	RCAN1 and oxidative stress	41
1.9 Нур	oxia in β -cells and RCAN1	
1.10 Insu	lin producing cell lines	46
1.11 Con	clusion	49
1.12 Aim	s and Significance	49
2 MA	TERIALS AND METHODS	51
2.1 Mate	erials	51
2.2 Cell	Culture	54
2.2.1	Culture of MIN6 cells	54
2.2.2	Cell Counting	55

2.3 Calcium Imaging		
2.4 RNA	A Extraction and Analysis	57
2.4.1	Preparation for RNA analysis	57
2.4.2	RNA extraction using RNeasy [®] Mini Kit (Qiagen, Australia)	57
2.4.3	Total RNA Analysis	58
2.5 cDN	A synthesis	60
2.6 Quar	ntitative Real-Time PCR (qRT-PCR)	61
2.6.1	Real-Time PCR Primer Design	61
2.6.2	Quantitative Real-Time PCR (qRT-PCR)	61
2.6.3	Validation of Quantitative Real-Time PCR primers	62
2.6.4	Real Time PCR data analysis	63
2.7 Imm	unohistochemistry	67
2.7.1	Treatment for cover slips	67
2.7.2	Coating of coverslips with PDL and Laminin	67
2.7.3	Preparation & Fixation of Cells on Coverslips	68
2.7.4	Treatment of cells for each individual experiment	68
2.7.5	Fixation of cells onto coverslips	68
2.7.6	Antibody treatment	68
2.7.7	Antibodies used for Immunohistochemistry	70
2.8 West	tern blotting	70
2.8.1	Preparation of protein samples from MIN6 cells	70

	2.8.2	Protein Quantification of protein lysates7	1
	2.8.3	Immunoblotting7	1
	2.9 Statis	tical Analysis7	3
3	RESU	JLTS7	4
	3.1 RCA	N1 is expressed in MIN6 cells7	4
	3.2 MING	5 cells are responsive to glucose7	5
	3.3 High	glucose increases the expression of RCAN1 in MIN6 cells7	7
	3.3.1	Quantification of RNA using Real-Time PCR7	7
	3.4 Gluce	ose-induced expression of RCAN1 8	0
	3.4.1	Glucose-induced increase expression of RCAN1 seen via RT-PCR 8	0
	3.4.2	Glucose-induced expression of RCAN1 protein observed by	
	Immuno	bhistochemistry	2
	3.4.3	Glucose-induced increase in RCAN1 protein expression detected via	
	Westerr	n Blotting	4
	3.5 Mech	anisms underlying the glucose-induced expression of RCAN1 in MIN6	
	cells. 89		
	3.5.1	Effect of each treatment on the glucose-induced expression of RCAN1	
	at the ge	ene level	9
	3.5.2	Oxidative stress, Ca ²⁺ entry and activation of calcineurin decreased	
	total RC	CAN1 protein in Immunohistochemistry	5
	3.5.3	Oxidative stress, Ca ²⁺ entry and calcineurin activation regulate	
	glucose	-induced expression of RCAN1-1 and RCAN1-4 protein	1

3.6 Hypoxia does not induce the expression of RCAN1 in MIN6 cells
3.6.1 1% oxygen in 25mM glucose for 24 hours has no effect on the
expression of RCAN1 106
3.6.2 1% oxygen in 5.5mM glucose for 24 or 48 hours has no effect on the
expression of RCAN1 107
3.6.3 5% oxygen in 5.5mM glucose for 24 hours has no effect on the
expression of RCAN1
3.6.4 2% oxygen in 5.5mM glucose for 4 days has no effect on the
expression of RCAN1
4 DISCUSSION 111
4.1 Expression of RCAN1 in MIN6 cells 112
4.2 RCAN1 expression is induced by high glucose in MIN6 cells
4.3 Glucose-induced RCAN1 expression is ROS dependent
4.4 Glucose-induced RCAN1 expression is Ca ²⁺ -dependent
4.5 Glucose-induced RCAN1 expression is related to calcineurin activity 120
4.6 Hypoxia does not effect RCAN1 gene expression
4.7 Conclusion
4.8 Future Directions
REFERENCES111
APPENDIX 1: Primer Sequences

Table of Figures

Figure 1-1: Cellular composition of an islet of Langerhans1
Figure 1-2: The tricarboxylic acid (TCA) cycle with Ca2+-sensitive dehydrogenase.
Figure 1-3: Mechanism of glucose-induced insulin secretion
Figure 1-4: Biphasic insulin secretion7
Figure 1-5: Relevant sites of production of reactive oxygen species (ROS) and
antioxidant systems in a generic cell type17
Figure 1-6: Domain structure of calcineurin A
Figure 1-7: The calcineurin/NFAT signalling pathway
Figure 1-8: Chromosome 21: DSCR1 (Adapt78) is located on chromosome 21 in the
region q22.12
Figure 2-1: Electropherogram (a) and virtual gel (b) of RNA sample60
Figure 2-2: Raw real-time PCR fluorescence amplification plot65
Figure 2-3: Location of the cycle threshold (Ct) with regard to log of normalised
florescence versus cycle number
Figure 3-1: RCAN1 is expressed in insulin producing Min6 β-cells74
Figure 3-2: Ca^{2+} response to stimulation with high glucose and high K ⁺ in MIN6
cells
Figure 3-3: Agarose gel showing real time PCR products obtained in control and
treated samples
Figure 3-4: A representative melt curve of RCAN1-NS (red) and 18S RNA (blue). 80
Figure 3-5: Increased expression of RCAN1-4 transcript in 5.5mM glucose
compared to 25mM glucose after 6 days81

Figure 3-6: Staining of MIN6 cells cultured for 6 days in either 5.5mM glucose or
25mM glucose
Figure 3-7: Image of the TGX Stain Free Gel before transfer, after transfer and an
image of the blot obtained85
Figure 3-8: Western Blot of protein samples from MIN6 cells cultured in either
5.5mM glucose or 25mM glucose
Figure 3-9: Quantification of RCAN1-1 and RCAN1-4 protein in MIN6 cells
cultured for 6 days in 5.5mM or 25mM glucose87
Figure 3-10: Comparison of RCAN1-1 and RCAN1-4 protein in MIN6 cells cultured
for 6 days in 5.5mM glucose
Figure 3-11: RCAN1 expression in MIN6 cells is reduced in the presence of the
antioxidant, NAC
Figure 3-12: RCAN1 gene expression is reduced via blockade of L-type Ca ²⁺
channels
Figure 3-13: RCAN1 1-4 gene expression is reduced by inhibition of calcineurin
activity94
Figure 3-14: Immunohistochemistry staining of MIN6 cells cultured for 6 days in
25mM glucose or 25mM glucose with NAC96
Figure 3-15: Immunohistochemistry staining of MIN6 cells cultured for 6 days in
25mM glucose or 25mM glucose with Nifedipine
Figure 3-16: Immunohistochemistry staining of MIN6 cells cultured for 6 days in
25mM glucose or 25mM glucose with calcineurin inhibitors
Figure 3-17: Western blot image of RCAN1-1 in various conditions
Figure 3-18: Optical density of RCAN1-1 in samples from various conditions102
Figure 3-19: Western blot image of RCAN1-4 in various conditions

Figure 3-20: Optical density of RCAN1-4 in samples from various conditions104
Figure 3-21: Expression of RCAN1 is unchanged in MIN6 cells after 24 hours in
1% oxygen and 25mM glucose106
Figure 3-22: Electropherogram of RNA degradation in 1% oxygen and 5.5 mM
glucose108
Figure 3-23: Expression of RCAN1 genes is unchanged in MIN6 cells after 24 hours
in 5% oxygen and 5.5mM glucose109
Figure 3-24: Expression of RCAN1 genes is unchanged in MIN6 cells after 4 days in
2% oxygen and 5.5mM glucose110

ABSTRACT

Regulator of calcineurin 1 (RCAN1) is a gene located on chromosome 21 that is highly expressed in the brain, heart, and also in numerous endocrine cells. RCAN1 is an endogenous inhibitor of the protein phosphatase calcineurin which is essential for β cell function and circulatory insulin levels. Changes in RCAN1 expression regulate exocytosis, mitochondrial function, apoptosis, proliferation and susceptibility to oxidative stress. Previous work with RCAN1 in β cells, showed that elevated expression of RCAN1 has a profound effect on β cell function resulting in altered gene expression, elevated ROS accumulation, reduced insulin secretion, hypoinsulinemia and fasting hyperglycemia. Furthermore, an increase in RCAN1 expression is also seen in chronic hyperglycemia in pancreatic islets. However, the mechanisms underlying this in β cells are unknown. As RCAN1 expression is induced by oxidative stress in neuronal cultures and oxidative stress can occur in β cells during periods of cell stress such as hypoxia, there could potentially be a role of RCAN1 in hypoxia. Hence, the aims of this study were firstly to investigate potential mechanisms underlying the glucose-induced expression of RCAN1 followed by the effects of hypoxia on the expression of RCAN1 in MIN6 β cells.

Glucose induction of both the RCAN1 isoforms, RCAN1-1 and RCAN1-4, was dependent on the production of ROS and Ca^{2+} entry in the MIN6 β cells at the gene and protein level. This is because reversal of the glucose-induction of these RCAN1 isoforms was seen in the presence of antioxidants and Ca^{2+} channel blockers. However, the inhibition of calcineurin via the usage of FK506 and Cyclosporine A was seen to effect the expression of RCAN1-4 significantly at the gene and protein level but not that of RCAN1-1. These results suggest a common ROS and Ca²⁺-associated pathway for the control of both RCAN1 isoforms but a calcineurin-associated pathway regulating RCAN1-4 expression but not RCAN1-1. Hypoxia at various levels and durations had no effect on the expression of either of the RCAN1 isoforms. This study provides new insights into the mechanisms by which glucose induces the expression of RCAN1. Given that increased RCAN1 has negative effects on β cell function and induces diabetes, the findings further our understanding of the mechanisms linking chronic high glucose and β cell dysfunction.

Commonly Used Abbreviations

|--|

ADP	Adenosine diphosphate
ANT	Adenine nucleotide translocator
AP-1	Activator protein-1
Arx	Aristaless related homeobox
ATP	Adenosine triphosphate
Bcl-2	B-cell lymphoma-2
bp	Base pairs
Cabin1	Calcineurin binding protein 1
CDK4	Cyclin-dependent kinase 4
CoQ	Coenzyme Q
CPT-1	Carnitine-palmitoyl transferanse-1
CsA	Cyclosporine A
DAPI	4',6-diamino-2-phenylindole,dihydrochloride
DNA	Deoxyribose nucleic acid
DMEM	Dulbecco's Minimal Essential Medium
DMSO	Dimethyl sulphoxide

ELISA	Enzyme-linked immunosorbent assay
FAD	Flavin adenine dinucleotide
FFA's	Free fatty acids
FKBP	FK-binding proteins
FLIP	FLICE inhibitory protein
GAD	Glutamic acid carboxylase
GLUT1	Glucose transporter 1
GLUT2	Glucose transporter 2
GLUT4	Glucose transporter type 4
GSK-3β	Glycogen synthase kinase 3β
GTP	Guanosine triphosphate
Hes-1	Hairy and Enhancer of split homologue-1
HLA	Human leucocyte antigen
HNF	Hepatocyte nuclear factor
IA-2	Islet specific antigen-2
IL	Interleukin
Insm1	Insulinoma-associated 1
IRS	Insulin receptor substrate
K _{ATP}	ATP sensitive potassium channels

K _m	Michaelis constant
kDa	Kilo Dalton
LC-CoA	Long-chain acyl-CoA esters
MaFA	Musculoaponeurotic fibrosarcoma oncogene homolog A
MIN6	Mouse Insulinoma
mg	Milligram
ml	Millilitre
mM	Millimolar
MODY	Maturity-onset diabetes of the young
mRNA	Messenger ribonucleic acid
NAD	Nicotinamide adenine dinucleotide
NEFA	Non-esterified fatty acids
Neurod-1	Neurogenic differentiation-1
NFAT	Nuclear factor of activated T-cells
Ng3	Neurogenin 3
NHR	NFAT homology region
NLS	Nuclear localisation sequence
nm	Nanometre
PAX4	Paired box gene 4

PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
Pdx-1	Pancreatic and duodenum homeobox 1
РКС	Protein-kinase C
PP1	Protein phosphtase-1
PP2	Protein phosphtase-2
PPARγ	Peroxisome proliferator-activated receptor gamma
PPI	Peptidyl-propyl cis-trans isomerase
Ptf1a	Pancreas transcription factor 1 alpha
RCAN1	Regulator of calcineurin 1
RCANs	Regulators of calcineurin
ROS	Reactive oxygen species
RRP	Readily releasable pool
RT-PCR	Reverse transcription polymerase chain reaction
SIRT1	sirtuin – (silent-mating type information regulation 2- homolog)-1)
SNAP-25	Synaptosomal-associated protein 25
SNARE	Soluble NSF attachment protein receptor
TBE	Tris boric acid EDTA buffer
TBS	Tris buffered saline

TCA Tricarboxylic acid

VDCC Voltage dependent Calcium channels