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ABSTRACT 

For autonomous system, it is often useful to know the position and velocity of nearby objects for 

tasks such as obstacle avoidance or object tracking. The hidden states of an object, such as velocity, 

can be estimated by knowing the mathematical model that describes the relationship between the 

measurable state and the hidden state. Hence, both position and velocity of the object can be found 

by object position measurement. For autonomous Micro-Aeria-Vehicle (MAV), various research 

investigated in using camera for real-time object state estimation as it is a low-cost and low-

complexity alternative of ranging sensors. However, little literature is available when the scope is 

narrowed down to a moving object and moving MAV, despite the position of ground object can be 

obtained with the camera on MAV. This project aims to develop real-time object velocity 

estimation system, only using strapdown camera for the exteroceptive sensor, to be integrated onto 

a MAV (or other aerial system). The project assumes the object is a ground vehicle, on a flat surface 

with known altitude, moving at a constant acceleration. The system must be robust to measurement 

noise for practical application and must be applicable for object at a long-range (i.e. 100 m+). The 

ground vehicle (for the object) and MAV was simulated at maximum of 30 and 50 m/s of speed. 

Considering the reviewed literatures, this project initially proposed to use the pin-hole camera 

model, with Extended Kalman Filter (EKF) as a baseline, and to fuse with optical flow model for 

inertial state-estimation by Unscented Kalman Filter (UKF). The baseline EKF was developed and 

tested on a sample dataset, then in depth analysis of EKF was done to assess its suitability for 

velocity estimation using a strapdown monocular camera. The dataset for system analysis was 

extracted which consisted of scenarios with stationary vehicle, vehicle in linear and angular motion 

in a combination of different MAV motion. The baseline system was able to achieve all project aim 

in the tested scenarios except achieving robust performance under measurement noise; it was found 

the system has significantly high sensitivity to noise in MAV orientation. It was assumed that the 

system sensitivity is caused from the measurement model. The rotation matrices, that contains 

MAV orientation and camera parameters, in the measurement model is highly non-linear. EKF uses 

linear approximation of model which is not as effective to highly non-linear model where UKF 

performs better in such cases. As the future work, including system application to UKF, a list of 

tasks was identified to improve the system and further analyse the system performance. 
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1. INTRODUCTION 

1.1. Background 

Autonomous systems often need a sensor to detect distance to any nearby objects or obstacles. The 

information is used for tasks such as obstacle avoidance, state estimation, etc (Siegwart, et al., 

2011). The state estimation can be done for the estimation of inertial state of the autonomous 

system (Grau & Pansiot, 2012; He, et al., 2017) or the state of a nearby object (Strydom, et al., 2015) 

with appropriate measurement and system model. For object state estimation, the global position of 

the object can be derived from the range measurement using appropriate model (Strydom, et al., 

2015). Furthermore, the velocity of an object can be also estimated from the position estimate; 

although, it cannot be taken from a single instance as it must be estimated from the position changes 

over a certain time due to the concept of velocity. 

A good object velocity estimation using a monocular camera and on-board INS can often be 

estimated by differentiating target position. The object position estimation on an autonomous 

system is often derived from two types of measurements which are the states of the autonomous 

system (i.e. position and attitude) and the range/bearing measurement to the object. The range and 

bearing measurement can be taken from either using a ranging sensors such as LiDAR (Javanmardi, 

et al., 2019; Kubelka, et al., 2015) or a camera with aid of computer vision under a list of 

assumptions (Pagello, et al., 2004; Gunawan, et al., 2019). A camera is often integrated onto an 

autonomous system due to the advantage that the visual field contains more information than a 

range and bearing to the object, including object type, pose or the scene context (Szeliski, 2011). 

However, it may require a significant processing time for real-time application depending on the 

algorithm. In contrast, ranging sensor often provides more accurate measurement at a faster update 

rate where the quality may still vary by the cost. It is advantageous for an autonomous system to 

obtain any measurements at a fast update rate to react to the nearby objects in real-time; a ranging 

sensor may be more appropriate for such applications, although, it is often costly compared to a 

camera where the cost increases with the sensor quality. 

  



 

2 

1.2. Project Motivation 

Multiple research projects have successfully investigated using camera to perform real-time state 

estimation on an autonomous platform (Gunawan, et al., 2019; Pan, et al., 2023). Among the goals 

of research are to achieve such capability at a lower cost and to reduce system complexity by 

involving no ranging sensor; the camera also can be used for other capabilities concurrently. When 

the context is limited to a camera attached on a Miniature Aerial Vehicle (MAV) platform, the 

current research mainly focuses on the inertial state estimation rather than an object state 

estimation.  

It is usually in context of a limited camera and object motion when the context is narrowed down to 

the object state estimation. These research with the limit in motion, such as a stationary camera and 

ground vehicle moving at a known linear path, investigates problems specifically for traffic control 

(Gunawan, et al., 2019; Ning, et al., 2022). Some deploy a mathematical model of the camera 

projection to convert a certain image coordinate to the global coordinate system using the MAV 

states to measure the global coordinate of a ground object (Barber, et al., 2006; Beard & McLain, 

2012; Cai, et al., 2022). Furthermore, any states that are not directly measurable, such as velocity of 

an object, can be estimated by developing a mathematical state model and filtering the measurement 

according to the model (Rigatos, 2010; Ullah, et al., 2020; Wang, et al., 2015). Despite the points, 

literatures on object velocity estimation with less limitation is not readily available. 

The currently available methodologies are capable to perform real-time velocity estimation of a 

ground object from camera on a MAV, with fewer assumptions and limitations on camera and 

object motion. This further allows for a decrease in cost and system complexity to build a MAV (or 

capability extension for existing MAV with camera with no ranging sensors) for the real-time object 

velocity estimation and availability for further capability extension through development of 

computer vision algorithms. 
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1.3. Project Outline 

1.3.1. Terms and Clarification 

This report uses the term ‘object’ and ‘vehicle’ interchangeably due to the project using a ground 

vehicle to simulate a moving object. The term ‘filter’ and ‘system’ was also used interchangeably. 

The model that converts image coordinates to world coordinates is referred to as Geolocation Model 

or Position Measurement Model. Any ranging sensors mentioned in this report indicates those 

ranging sensors used or required to take ranging measurement to the object. Note that an MAV may 

still be integrated with a ranging sensor dedicated for altitude or other inertial state measurement.  

1.3.2. Aim  

This project aims to develop an object velocity estimation system applicable to a MAV camera to 

detect a single ground object. The system must be able to estimate the object velocity under the 

following conditions: 

 Real-time detection 

 Noises in all measurements 

 Non-stationary MAV and object 

 No prior knowledge of the object trajectory 

 No limitation from the distance to the object 

The conditions are set to ensure the system to be available for wider range of application and not 

limited to specific scenarios. The system will be capable to be paired to any object detection system, 

if the required input is provided, although, the performance of the estimation may be affected by the 

performance of the object detection. The real-time capability enables the MAV to perform other 

tasks concurrently, for example, it may use the object velocity information to improve the object 

tracking performance. 

The project aim was set in anticipation to achieve: 

 a reduction in development cost and system complexity of a MAV by eliminating the need 

to integrate a ranging sensor dedicated to the estimation task; 

 a capability extension to existing MAVs with integrated camera without a ranging sensor. 
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1.3.4. Scope and Objectives 

This project was planned to progress through below objectives to achieve the project aim: 

1. Develop the real-time object velocity estimation system in a simulated environment. 

2. Investigate the estimation performance under different types of MAV and vehicle motion. 

3. Assess whether the system is applicable at a long-range (operatable at 100 m or a longer 

distance) and in real-time (100 Hz or higher update rate). 

4. (Extended Scope) Test the system on a MAV hardware. 

This project focuses on the development of a methodology to process the object bounding box for 

object velocity estimation. The project scope does not include the development and performance 

analysis of the object detection system.  

1.3.5. Assumptions 

This project was conducted based on a list of assumptions as follows: 

 Flat-surface assumption 

o It was assumed that the problem would become extremely challenging to simulate an 

object in a map with dynamic altitude. To simplify the problem, for the project to be 

feasible within the given time limit, it was assumed that the ground vehicle placed in 

an environment with constant altitude. 

o This project represents coordinates in North-East-Down convention. 

 MAV 

o The simulated MAV was assumed to move at maximum of 50 m/s (180 km/h) 

o Any inertial state of the MAV was assumed to be accessible for the estimation. 

Those states include global position, attitude or other MAV states that is required for 

the estimation.  

 Camera 

o This project assumes that the camera is strapdown to a MAV and the relative 

position and attitude of the camera to the MAV is kept constant throughout the 

estimation (i.e. no gimbal involved).  

o The camera parameters are also known prior to the estimation. 

 Object 

o The simulated object is a ground vehicle which is assumed to move at a constant 

linear or angular acceleration. 

o The vehicle is assumed to move at a maximum 30 m/s (108 km/h) of speed. This is 

to ensure the system to be functional for measuring an object moving at a high speed. 
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2. LITERATURE REVIEW 

This section reviews the works relevant to the project to achieve the project aim based on the scope 

and assumptions. The papers were selected with consideration that the system must be applicable 

for real-time, long-range and sensors with noise in addition to satisfying the project assumptions. 

Initially, a several camera types and its models were investigated to identify the suitable 

methodology to visually measure the object position, which is to be differentiated into velocity 

information. To achieve a system robust to measurement noise, examples of state estimation filters 

and their general performance were reviewed to be applied for the most appropriate camera model 

identified from the review of camera types and models. Lastly, other applicable methodologies were 

investigated to extract the object velocity measurement to be fused with the differentiated position 

estimate to seek possible improvement in the velocity estimation.  

2.1. Camera Types and Models 

Focusing on object position measurement using camera vision, there are various approaches 

available where the available options differ by the camera types due to the different projection 

properties (Guo & Li, 2022; Kim, et al., 2020; Trigkakis, et al., 2020). The different types of 

camera vision are reviewed in this section to determine the type of vision that would be the most 

efficient to achieve the project aim. 

A binocular camera is one of the visual sensors frequently used for visual-ranging tasks on 

autonomous systems (Lee & Yoon, 2018; McGuire, et al., 2017; Strydom, et al., 2015). The 

distance to an object from the camera is measured by the difference in object position on the two 

imaging planes with a known baseline (i.e. the distance between the parallel perspectives) and 

camera parameters, using trigonometry, similar to the model shown in Figure 1 (Krotkov, et al., 

1990; Ma, et al., 2019; McGuire, et al., 2017). 

 

Figure removed due to copyright restriction 

Figure 1: Example model for binocular camera projection geometry (Ma, et al., 2019) 

This method is applicable in real-time under the camera and object motion; however, it is not often 

applied for a range beyond 10 m maximum (Lee & Yoon, 2018) (McGuire, et al., 2017) (Strydom, 

et al., 2015).  This is due to the feasible range being proportional to the baseline which causes the 

measurement to be noisy at a long-range (Strydom, et al., 2015) or requiring the baseline distance to 
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be increased which causes the sensor to grow to the size infeasible for a small vehicle (e.g. MAV). 

Thus, it is expected that this methodology would not be applicable for long ranges. Also binocular 

cameras are often more costly than monocular cameras in both processing time and cost (Engel, et 

al., 2014; Trigkakis, et al., 2020), although, the processing time can be varied depending on the 

approach.  

 

Figure removed due to copyright restriction 

Figure 2: Object (left) distorted in image (right) by translational motion due to rolling shutter 

effect (Kim, et al., 2020) 

A monocular camera with a rolling shutter returns an image distorted by the rolling shutter (RS) 

effect as shown in Figure 2. In Chun, et al. (2008), Fan, et al. (2021), Lao, et al. (2018), Wu, et al 

(2021), researchers attempted to remove the unwanted distortion to ease image processing tasks 

(e.g. object detection). It was shown that the image distortion can be corrected and can be utilised to 

extract information such as the depth map (Fan, et al., 2021), the inertial motion of the camera 

(Grau & Pansiot, 2012) and the motion (e.g. position, velocity, etc) of the object (Ait-Aider, et al., 

2006; Kim, et al., 2020). It is assumed that the restored image would still consist of distortion on an 

object moving at a fast speed across the imaging plane, although, in the project context, a ground 

vehicle seen from a MAV at a maximum of 300 m distance brings a concern that it would not 

always move considerably fast in the image to cause the distortion. Furthermore, the literature 

mostly focuses on extracting depth maps on stationary objects/backgrounds or stationary cameras 

that seem to require a significant knowledge to understand and utilise the RS effect. It was assumed 

that the given project time would be insufficient to investigate the RS effect in the appropriate detail 

to achieve extracting velocity information from the project scenario where both camera and the 

object move at varying speeds. 

A global shutter on a monocular camera provides detailed visual information with minimal 

distortion in the image compared to the RS cameras as all part of images are taken at a single 

instance; note that different types of distortion (e.g. motion blur, camera lens distortion) may still 

exist (Fan, et al., 2021). This property ensures that the image of an object is taken at a constant 

time-interval regardless of the object position in the image. The time-interval can slightly vary in 

RS camera images due to the rolling-shutter effect. The global shutter camera provides more simple 
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solution than RS camera in estimating object velocity from the differentiated object position. This is 

because the accuracy in estimated velocity is sensitive to the time measurements.  

 

Figure removed due to copyright restriction 

Figure 3. Pinhole camera projection model (Beard & McLain, 2012) 

The pinhole camera model, as shown in Figure 3, is one of a camera model that is often used to 

extract the object position relative to the camera under certain assumptions (Fan, et al., 2021; Grau 

& Pansiot, 2012; Kim, et al., 2020). Those assumptions include that the object is on a flat surface 

with the camera parameters known prior to the estimation and the MAV position and attitude to be 

accessible for the time that each image was taken (Barber, et al., 2006; Cai, et al., 2022; Pan, et al., 

2023; Trigkakis, et al., 2020). Note that all the listed assumptions do align with the project 

assumption. The advantage of using the monocular global shutter camera by the pinhole camera 

model is that the maximum measurable range is not dependent on the sensor size as opposed to the 

binocular camera (from the baseline distance requirement). Thus, the maximum measurable range is 

dependent on the detection range of the object detector/classifier, which is often much longer than 

the maximum measurable range of stereo cameras (Strydom, et al., 2015). 

Based on the camera model review, it was expected that using the monocular global shutter camera 

would be best suited for the project out of all camera types, that meets the requirement, within the 

given project duration.  
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2.2. State Estimation Filters 

It is essential to have a system robust to noise. Any noise in the measurement, regardless of the 

system model, can easily cause errors in the estimation. These must be filtered. The performance of 

the filter and whether it is applicable for the system, varies by the system model. For this project 

four types of filters were reviewed: Kalman Filter (KF) (Kalman, 1960), Extended Kalman Filter 

(EKF) (McGee, et al., 1962), Unscented Kalman Filter (UKF) (Julier & Uhlmann, 2004) and 

Particle Filter (PF) (Del-Moral, 1996), with consideration that the system uses the pinhole camera 

model for position measurement, as identified in Section 2.1. 

KF and its variants (Julier & Uhlmann, 2004; Kalman, 1960; McGee, et al., 1962) are one of the 

most frequently used state filters for those estimation problems that uses a mathematical model of 

the state and the measurement, with assumption that the noise in both state and measurement is 

Gaussian. KF improves the estimation by interchanging between state prediction and update phase. 

It is a filter that can efficiently reduce noises in the linear system with the predict-update concept 

which has a low calculation cost (Kim, 2023). However, KF is not often used for autonomous 

systems since most of them are nonlinear, and KF cannot be applied to nonlinear system, unless it 

can be linearised (Maley, 2015; Sun, et al., 2015; Zhang, et al., 2005; Zhang, et al., 2010). The 

pinhole camera model is linear, although, converting the relative position to a global position 

involves multiple rotation matrices which is a nonlinear process. To overcome this issue, a number 

of variations of KF was developed to apply the same concept to the nonlinear system (Julier & 

Uhlmann, 2004; McGee, et al., 1962). 

Extended Kalman Filter (EKF) is one of the KF variants developed for a nonlinear system. It 

linearise the system using the Jacobian matrix of the system state transition and measurement model 

to update the covariance matrices (McGee, et al., 1962). EKF is one of the filters that has been 

dominantly used over multiple decades for autonomous systems due to its low-cost and high-

efficiency performance to the nonlinear system regardless of the system platform (McElhoe, 1966; 

Suddath, et al., 1967; Wu & Karkoub, 2019). However, EKF is often not suitable for highly non-

linear systems due to the possibility of divergence in the estimation due to the linear approximation 

of highly nonlinear systems (Garcia, et al., 2019; Julier & Uhlmann, 2004; Maley, 2015). EKF also 

uses an assumption that the system noise is Gaussian (McGee, et al., 1962) which may not be 

appropriate to filter the noise from a visual measurement (Benini, et al., 2012), although there are a 

few successful cases of using EKF on visual estimation (Jeon, et al., 2022; Wu & Karkoub, 2019). 

Thus, EKF may show the best for the project as the proposed system uses visual measurements (i.e. 

object detection and optical flow estimate) as the prime source for the object velocity estimation 

with highly non-linear system model (i.e. rotation matrices). 
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Unscented Kalman Filter (UKF) is another KF variant for nonlinear system. It uses unscented 

transformation (UT) to estimate the probability distribution of noise in individual state vectors 

(Julier & Uhlmann, 2004). The filter does not approximate the system but rather estimates the state 

distribution by mapping sigma points throughout the state spaces which preserves the nonlinear 

properties of the system. This supports the filter to achieve a better performance compared to EKF 

for highly nonlinear system (Fang & Huang, 2013; Garcia, et al., 2019). Despite the Gaussian noise 

assumption, the filter also successfully filtered visual measurements in some research (Cha & J. G. 

Chen, 2016; Sun, et al., 2015; Zhang, et al., 2005). Furthermore, the performance can almost be 

similar to EKF with higher processing cost in some cases, although, the UKF tends to converge 

much faster than EKF (Garcia, et al., 2019). Considering the points, it is expected that the UKF 

would perform better for the project than EKF for the appropriate system approximation and to 

achieve a fast recovery of the error from the processing delay. 

Particle Filter (PF) is a measurement filter that can estimate the noise distribution of a nonlinear 

system without being limited by the gaussian model by plotting sampled estimation from the 

estimated probability (Del-Moral, 1996). The performance is proportional by the amount of 

sampling done for the estimation which can often achieve high accuracy on any nonlinear system as 

it does not take any assumption on the system or the noise unlike EKF (system approximation) and 

UKF (Gaussian assumption) (Del-Moral, 1996); however, due to the computational cost from the 

sampling approach, it is often not best suitable for real-time applications and still needs solution for 

processing optimisation which is a continuing issue of PF despite the advances in current 

technology (Moreno, et al., 2009; Saha, et al., 2010; Wahrudin, et al., 2019; Zhang, et al., 2010). 

Thus, it is assumed that PF is not suitable to satisfy the project aim in having a fast estimation 

system for real-time application. 

Overall, the literature suggests that UKF would be the most suitable state filter for the project as KF 

and PF are expected not to be able to satisfy one or more of the project requirements (i.e., nonlinear 

system model for KF and real-time capability for PF) where EKF is still applicable to the project 

but expected to perform less effectively compared to UKF. Nevertheless, this project aims to 

investigate the performance of the system model under both EKF and UKF where the model is to be 

applied to EKF, prior to UKF, as a baseline. 
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2.3. Velocity Measurement 

The filter performance depends on whether what system model it is applied to and what 

measurements are available, where the performance often improves with having more measurement 

available than less (Del-Moral, 1996; Julier & Uhlmann, 2004; Kalman, 1960; McGee, et al., 1962). 

The existing methodology to achieve the object velocity estimation has been identified in previous 

sections, and additional reviews were done to identify other methodologies to extract the object 

velocity information from the visual field to be fused with the differentiated position in anticipation 

to achieve a better system performance. 

The methodology to estimate the object velocity from image sequence is actively being investigated 

with various approaches, including extracting the velocity information from the motion blur (Lin, 

2005; Lin & Li, 2004; Mohammadi, et al., 2010) or the flow in visual field, which is also referred as 

optical flow (Ashraf, et al., 2018; He, et al., 2017; Ho, et al., 2017). 

 

Figure removed due to copyright restriction 

Figure 4. Clear (left) and blurred (right) object image due to object motion (Lin, 2005) 

The motion blur in the image, as shown in Figure 4 for example, is a capture of a visual motion that 

appeared during the short exposure time of the camera shutter (Mohammadi, et al., 2010). It is often 

an undesired distortion for tasks such as object detection, although, it can be processed into a 

velocity information of an object by measuring the magnitude and direction of the blur (Lin, 2005; 

Lin & Li, 2004; Mohammadi, et al., 2010). However, all reviewed works assume the camera to be 

stationary and no literature was founded on its application for moving cameras. The additional blur 

component from the camera motion causes difficulty in decoupling the blur caused by two different 

motions (i.e. camera motion and object motion). It may be possible to use this methodology, with 

detailed investigation to decouple the blur effect from camera/object motion, although, it is 

expected to be difficult to develop such system within the due time with the limited literature 

available. 

 

Figure removed due to copyright restriction 

Figure 5. Visualisation of optical flow between current and previous image frame (He, et al., 

2017) 
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Optical flow is the flow in the visual field that can be measured from consecutive images (Szeliski, 

2011). The optical flow in the image stream, when the camera is facing the ground, can be used to 

derive the inertial velocity of the camera (e.g. MAV) as it is a measure of movement in the image 

due to the camera motion (Ashraf, et al., 2018; He, et al., 2017; Ho, et al., 2017). This alternatively 

means that relative velocity of the ground can be found with respect to the camera and ultimately, it 

is possible in some cases that the same methodology can be applied to measure the relative velocity 

of the object to the camera with measuring the flow on the object imagery. He, et al (2017) has 

developed and tested such algorithm to estimate the velocity of the moving vehicle with moving 

camera, as shown in Figure 5, which performed well for relative speed of up to 70 m/s; although, 

the test was conducted under a simulated environment only with maximum 5% noise in the optical 

flow measurement with no noise added to the camera state which does not guarantee the same 

performance for the identical scenario with real-world results (He, et al., 2017).  

The optical flow is calculated based on the assumption that the intensity I of the point at world 

coordinate x is constant over the time which is represented by the optical flow equation as shown by 

Eq. (1) (Beauchemin & Barron, 1995):  

𝑰(𝒙, 𝒕) ≈ 𝑰(𝒙 + 𝜹𝒙, 𝒕 + 𝜹𝒕)       ( 1 ) 

Eq. (1) is under-constrained which requires additional constraint and there are approaches that apply 

different constrains to solve the problem. For example, the classical methods (e.g. template 

matching, Lukas-Kanade) constrains Eq. (1) assuming that the brightness pattern of an object is 

constant and rich in texture or the flow between consecutive images is appropriately small for 

Taylor Series approximation (Lucas & Kanade, 1981; Szeliski, 2011). Both of these constraints may 

not be applicable to the project as the object (i.e. ground vehicle) in the image is expected to often 

move significantly due to the motion, and the brightness of a world point in the image can often be 

easily affected by the camera movement and other noise (Szeliski, 2011).  

It is speculated that the model/equation for the estimation of inertial velocity of a camera (Andersh, 

et al., 2015; Zhong & Chirarattananon, 2020) would still be applicable for the object velocity 

estimation, if the flow is measured from a stationary camera. Another speculation is that, using the 

object position estimate on the previous xt-1 and current time xt, the two world coordinates can be 

converted into image coordinates of the same image using the pinhole camera model and the 

difference between the two image coordinates may be possible to be represented as the estimated 

optical flow 𝛿𝐼 as shown in Figure 6. 
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Figure 6. Diagram representation of the speculation on optical flow estimation 

To speculate, the velocity estimate from the method (Figure 6) and differentiated position could be 

the same measurement that goes through two different models. This may result in better, similar, or 

even worse performance in comparison to using only the position differentiation. The two model 

can be complementary to one another, for example, one model can be sensitive to a variable while 

the other is not. Unless the two models are complementary as such, it is expected the system 

performance would significantly decrease due to the position error with its effect amplified through 

the two model. Despite the uncertainty, it was planned to review the mentioned optical-flow 

methodology once the baseline EKF (i.e., EKF with differentiated object position) is developed. 

Note that this method may be disregarded when any flaw in the above methodology is found in the 

further review. 

2.4. Summary 

In summary, it was found from the literature that there is range limitation to the position estimation 

using binocular camera, whereas using the RS camera would be difficult to achieve within the given 

project time. Thus, the pinhole camera model was selected to be used to derive the object position 

measurement that can be differentiated for the object velocity estimation. Multiple state estimation 

filters were reviewed for the resultant system to be robust to the noises. EKF and UKF were 

selected for the implementation due to being applicable for nonlinear system and applicable for 

real-time. The model is to be applied to EKF prior to UKF as a baseline to be compared with the 

proposed system. Further review and research are to be done on taking velocity measurement by 

optical flow once the baseline system (EKF with differentiated object position) has been 

implemented. 
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3. METHODOLOGY 

Based on the discussion on the project methodology (i.e. Section 2), the baseline and proposed 

system were planned to be designed as shown in Figure 7 and Figure 8 respectively. This section 

describes the development process of the baseline system. Note that it was not possible to develop 

the proposed system (Figure 8) within the given project time. This will be included in the future 

work. 

 

Figure 7. Baseline System Diagram 

 

Figure 8. Proposed System Diagram 
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3.1. Equipment and Settings 

3.1.1. Hardware 

All the software and scripts were used in a remote desktop with the following specifications: 

 OS – Ubuntu 20.04.6 LTS 

 Processor – Intel Xeon (R) Platinum 8362 CPU @ 2.80GHz x 16 

 RAM – 64 GiB 

 GPU – 8GB slice of V100s 

This hardware was capable to run the required software and scripts, although, there was a frequent 

latency and crashes while running a software for dataset extraction as the imaging tasks were highly 

demanding in graphics and processing in a certain environment. 

3.2.2. Software 

The software used for the project are listed below with a description of the purpose: 

 Python (v3.8.10) 

o All scripts used and developed for this project is written in python programming 

language. 

o Refer Appendix A for list of packages and the versions used for this project. 

 Airsim (v1.8.1 - Linux) 

o This software was used to generate imagery of the simulated environment where the 

environment settings for each development process are described in Section 3.3 and 

3.4. 

o This software was used by downloading the binaries with no other installation 

process involved. 

o Refer Appendix A for list of python packages and the versions used for this 

software. 

 Ardupilot Simulation-in-the-Loop (SITL) 

o This software was used to simulate flight dynamics of the MAV to generate a sample 

dataset to test the system model. More detail is to be discussed in Section 3.3. 

o The software was pulled from git with last update on 6th September 2023. 

o ArduPlane (v.4.5.0-dev) was used for the dynamics of simulated vehicle. 

o Refer Appendix A for list of python packages and the versions used for this 

software. 
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3.2. System Development Procedure 

Refer Appendix B for the project Gantt chart to see the project timeline. 

3.2.1. Geolocation Model Description 

The project was commenced with implementation of the model that converts image coordinate to 

world coordinates, referred as Geolocation Model. This project used the geolocation model that 

Beard, et al (2012) describes in Section 13.3. The model is described as follows. 

Based on the Pinhole Camera Model (Figure 3), let the unit vector, in any frame of reference, that 

represents the direction from camera to the object be denoted as 𝓵̌ that is consisted of horizontal (x), 

vertical (y) and depth (z) component where 𝓵 is the same directional vector with magnitude 𝕃 with 

the relationship as shown in Eq. (2). 

𝓵̌ ≜ (

𝓵̌𝒙

𝓵̌𝒚

𝓵̌𝒛

) ≜
𝓵

𝕃
                                                   ( 2 ) 

Based on Eq. (2), the described unit vector in camera frame 𝓵̌𝒄 then can be represented as Eq. (3) 

where 𝜖𝑥 and 𝜖𝑦is the horizontal and vertical displacement of the image coordinate from the image 

centre coordinate and 𝑓 is the focal length of the camera. The displacement of the object image 

coordinate from the image centre can be found by subtracting the object bounding box centre to the 

image centre; the focal length 𝑓 is a constant parameter of a camera which can be found by Eq. (4) 

with field-of-view 𝑣 and image width (in pixel) 𝑀. 

ℓ𝑐̌ =
ℓ𝑐

|ℓ𝑐|
=

1

√𝜖𝑥
2+𝜖𝑦

2+𝑓2
(

𝜖𝑥

𝜖𝑦

𝑓
)      ( 3 ) 

𝑓 =
𝑀

2tan(
𝑣

2
)
       ( 4 ) 

The unit vector in Eq. (3) needs to be converted from camera frame to vehicle frame to obtain the 

inertial coordinate of the object where such conversion can be done by multiplying rotation matrix 

to the coordinate as shown in Eq. (5). Note that a rotation matrix R for conversion from A frame to 

B frame is represented as 𝑅𝐴
𝐵 and the orientation of the vehicle frame is equivalent to inertial frame 

with its origin at the vehicle position. 

ℓ𝑣̌ = 𝑅𝑐
𝑣ℓ𝑐̌       ( 5 ) 
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The generic property of a rotation matrix is that if there is a rotation matrix to convert C to B and B 

to A, the conversion from C to A is also possible as shown in Eq. (6). In addition, the inverse of a 

rotation matrix is the rotation matrix for conversion in inverse direction as shown by Eq. (7).  

𝑅𝐶
𝐴 = 𝑅𝐵

𝐴𝑅𝐶
𝐵       ( 6 ) 

𝑅𝐴
𝐵 = (𝑅𝐵

𝐴)−1       ( 7 ) 

The rotation matrices to convert body to vehicle, gimbal to body and camera to gimbal frame are 

shown in Eq. (8), (9) and (10) respectively where 𝜙, 𝜃 and 𝜓 is the roll, pitch and yaw of the MAV 

body and 𝛼𝑒𝑙 /𝛼𝑎𝑧  is the elevation and azimuth angle of the gimbal, which is equivalent to the 

elevation and azimuth of the strapdown camera to MAV; meaning that those matrices can be 

simplified into a single equation to represent the equation to convert a vector in camera frame to 

inertial frame as Eq. (11). Note that the cosine and sine notation was shorted to c and s respectively 

for Eq. (8). Refer Beard, et al (2012) for detailed derivation of the rotation matrices.  

𝑅𝑣
𝑏(𝜙, 𝜃, 𝜓) = (

𝑐𝜃𝑐𝜓 𝑐𝜙𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

)   ( 8 ) 

𝑅𝑏
𝑔
(𝛼𝑒𝑙, 𝛼𝑎𝑧) = (

cos(𝛼𝑒𝑙) cos⁡(𝛼𝑎𝑧) cos(𝛼𝑒𝑙) sin(𝛼𝑎𝑧) − sin(𝛼𝑒𝑙)

− sin(𝛼𝑎𝑧) cos(𝛼𝑎𝑧) 0

sin(𝛼𝑒𝑙) cos(𝛼𝑎𝑧) sin(𝛼𝑒𝑙) sin(𝛼𝑎𝑧) cos⁡(𝛼𝑒𝑙)

)   ( 9 ) 

𝑅𝑔
𝑐 = (

0 1 0
0 0 1
1 0 0

)      ( 10 ) 

ℓ𝑣̌ = 𝑅𝑐
𝑣ℓ𝑐̌ = 𝑅𝑏

𝑣𝑅𝑔
𝑏𝑅𝑐

𝑔
ℓ𝑐̌=(𝑅𝑣

𝑏)−1(𝑅𝑏
𝑔
)−1(𝑅𝑔

𝑐)−1ℓ𝑐̌                ( 11 ) 

Using the unit vector of relative position of object from MAV, the object position Pobj, in inertial 

frame, can be found by scaling the vector by appropriate length 𝕃 and offsetting the unit vector by 

the MAV inertial position PMAV as shown in Eq. (12). 

𝑃𝑜𝑏𝑗
𝑖 =𝑃𝑀𝐴𝑉

𝑖 + 𝕃(𝑅𝑐
𝑣ℓ𝑐̌)          ( 12 ) 

The length 𝕃 can be calculated with the assumption that the vehicle is always at an altitude of 0 m 

(i.e. flat-surface) as it allows the relative position of the object in z axis is the inverse of the MAV 

altitude. Letting ki to be the z axis component of a vector, Eq. (13) shows that 𝕃 is the ratio of the 

MAV altitude to the z axis component of the relative position unit vector. 
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𝕃 =
−(𝒌𝑖∙𝑃𝑀𝐴𝑉

𝑖 )

𝒌𝑖∙𝑅𝑐
𝑣ℓ𝑐̌            ( 13 ) 

Finally, combining Eq. (11), (12) and (13), the object position can be found using the centre of the 

object bounding box, camera parameters and MAV states by Eq. (14). 

𝑃𝑜𝑏𝑗
𝑖 =𝑃𝑀𝐴𝑉

𝑖 +
−(𝒌

𝑖
∙𝑃𝑀𝐴𝑉

𝑖 )

𝒌
𝑖
∙𝑅𝑐

𝑣ℓ𝑐̌
(𝑅𝑐

𝑣ℓ𝑐̌)     ( 14 ) 

Overall, Eq. (14) is the geolocation model used in this project to calculate the raw position 

measurement and for the state estimation filter as the measurement model. 

3.2.2. Geolocation Model Implementation 

Once the model (i.e. Eq. (14)) was implemented to a script, to verify the implementation, a sample 

dataset was obtained from a single instance. The dataset was obtained from Airsim in AirsimNH 

environment, which has multiple ground vehicles, with simulated MAV that can be either 

controlled manually by keyboard or by the script. Four states were obtained from the simulation 

which are ground truth object position, MAV position, MAV orientation and object bounding box 

in the image taken at the corresponding MAV states. Note that the camera parameters were 

accessible and adjustable by Airsim commands. For true object position, the position of the world 

objects spawned in the environment was not accessible, thus, the MAV was manually controlled to 

be directly above a vehicle and the North and East coordinate of the MAV was recorded assuming it 

for the true object position with 0 m for the altitude. The MAV was then commanded in a script to 

move to a point near the same object, as shown in Figure 9, and an image request was sent to airsim 

while recording the current MAV state. The image, as in Figure 10, was saved and the bounding 

box of the object was found by manually adding rectangular shape to the image using OpenCV. All 

the recorded values were saved into a JSON file. 

 

Figure 9. MAV and Vehicle Position for Geolocation Model Test 
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Figure 10. Image taken from Airsim camera with manually identified object bounding box 

The calculated object positions from the obtained variables were printed on the terminal to check 

whether they match with the ground truth object position, noting the calculated position may 

slightly vary from the ground truth. The model script was modified until the calculated position 

matched with the ground truth position. The main code to bind the recorded data is shown in 

Appendix C, the model script is shown in Appendix D and the script with the Airsim commands are 

shown in Appendix E. Note that they are the latest versions of the script (as the original script used 

during the development could not be recovered) and may perform differently with the followed 

description. 

3.2.3. Sample Dataset Extraction 

To test the model on a moving MAV, a list of scripts was provided to obtain a sample dataset. The 

scripts use Ardupilot to simulate the MAV flight dynamics to command and obtain simulated MAV 

states which is used to set the camera state in Airsim to obtain the image at the MAV states (with 

azimuth and elevation offset to represent strapdown camera). The image is then used to track the 

object bounding box in the image where the object bounding box must be initially selected by 

manually clicking the bounding box that contains the object where the bounding box is returned 

from blob detection filtered by colour threshold. The script uses the object bounding box to identify 

the object position, using Eq. (14), and commands the MAV to approach the object position 

estimated by the given states without any filtering which goes back to the commanding phase and 

loops throughout the simulation. Figure 11 shows the connection of the software to the script and 

the flow of the process with the list of variables extracted from the script to the dataset file.  
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Figure 11. Flow Diagram for Sample Dataset Extraction 

 

3.2.4. Framework Implementation 

Initially, the dataset at single instance was stored in separate files (which were combined into one 

for convenience in the later part of the development). To be able to read multiple datafiles, multiple 

Python scripts were created with different purpose which were connected as shown in Figure 12. 

The code corresponding to the Dataset Reader, Data Processor and Filter Script Selector are shown 

in Appendix F, Appendix G and Appendix H respectively, where the class definition used for the 

scripts are shown in Appendix I and ‘EKF script’ was interchangeable between different model 

scripts if correct variables were provided from the Filter Script Selector. Note that the MAV state 

was later extracted from the visual environment (Airsim) due to an issue mentioned in Section 

3.2.5. 
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Figure 12. Flow Diagram for Sample Dataset Processing 

3.2.5. Model Design and Implementation to Estimation Filters 

The concept of KF and EKF was revisited prior to design the mathematical model for the estimation 

filter. KF is a filter that provides predicted state mean 𝑥 and the covariance P based on Bayes rule 

with gaussian distribution (Kalman, 1960). One of the properties of gaussian properties is that, 

suppose a gaussian distribution is linearly transformed as shown in Eq. (15), the distribution of 

linearly transformed variables then becomes Eq. (16) (Kim & Ristic, 2023).  

𝒙~𝓝(𝒙̅, 𝑷𝒙) ⁡→ 𝒚 = 𝑨𝒙 + 𝒃     ( 15 ) 

𝒚̅ = 𝑨𝒙̅ + 𝒃,⁡⁡⁡⁡𝑷𝒚 = 𝑨𝑷𝒙𝑨
𝑻      ( 16 ) 

KF has predict equation for state and covariance as shown in Eq. (17) and (18) respectively with 

update equation Eq. (19) and (20); 𝒙̂ is the estimated state, 𝑭 is the state transition matrix, 𝑷 is the 

state covariance, 𝑸 is the state transition noise, 𝒛 is the measurement, H is the measurement model, 

K is the Kalman gain that is calculated as shown in Eq. (21) and S is referred as ‘innovation term’ 

calculated as Eq. (22) where R is the measurement noise (Kim & Ristic, 2023). The subscript k 

indicates the variables at current timestamp and k+1 is for the next timestamp.  



 

21 

𝒙̂𝒌+𝟏|𝒌 = 𝑭𝒌𝒙̂𝒌|𝒌                 ( 17 ) 

𝑷𝒌+𝟏|𝒌 = 𝑭𝒌𝑷𝒌|𝒌𝑭𝒌
𝑻 + 𝑸𝒌              ( 18 ) 

𝒙𝒌+𝟏|𝒌+𝟏 = 𝒙̂𝒌+𝟏|𝒌 + 𝑲𝒌+𝟏(𝒛𝒌+𝟏 − 𝑯𝒌+𝟏𝒙̂𝒌+𝟏|𝒌)⁡        ( 19 ) 

𝑷𝒌+𝟏|𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌 − 𝑲𝒌+𝟏𝑺𝒌+𝟏𝑲𝒌+𝟏
𝑻             ( 20 ) 

𝑲𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 𝑺𝒌+𝟏

−𝟏               ( 21 ) 

𝑺𝒌+𝟏 = 𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 + 𝑹𝒌+𝟏                    ( 22 ) 

Comparing the KF equations and the linear transformation, it can be found that KF filter uses the 

linear transformation of gaussian distribution to predict and update the state and covariance, thus, 

KF is only applicable to a system with linear state transition model and linear measurement model. 

EKF enables KF to be applicable to a nonlinear system by using Jacobian matrices of the state and 

measurement model only where the model is required to be in matrix form (i.e. calculating Kalman 

gain and covariance). With notation for Jacobian matrix for state and measurement model as shown 

in Eq. (23) and (24) where 𝒇 and h is the nonlinear state and measurement model, the EKF predict 

equations for state and covariance are shown in Eq. (25) and (26), and the update equations are as 

shown in Eq. (27) and (28) respectively, note that it uses the same calculation for Kalman gain K 

and innovation term S. 

𝑭𝒌 = [𝛁𝒙𝒌
𝒇𝑻(𝒙𝒌)]

𝑻
      ( 23 ) 

𝑯𝒌 = [𝛁𝒙𝒌
𝒉𝑻(𝒙𝒌)]

𝑻        ( 24 ) 

𝒙̂𝒌+𝟏|𝒌 = 𝒇(𝒙̂𝒌|𝒌)                 ( 25 ) 

𝑷𝒌+𝟏|𝒌 = 𝑭𝒌𝑷𝒌|𝒌𝑭𝒌
𝑻 + 𝑸𝒌              ( 26 ) 

𝒙𝒌+𝟏|𝒌+𝟏 = 𝒙̂𝒌+𝟏|𝒌 + 𝑲𝒌+𝟏[𝒛𝒌+𝟏 − 𝒉(𝒙̂𝒌+𝟏|𝒌)]⁡        ( 27 ) 

𝑷𝒌+𝟏|𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌 − 𝑲𝒌+𝟏𝑺𝒌+𝟏𝑲𝒌+𝟏
𝑻             ( 28 ) 

The Jacobian matrices can be mathematically calculated, although, it is often calculated numerically 

in practice for those system with complex system equations (Beard & McLain, 2012). Due to the 

difficulties in mathematically calculating the Jacobian matrix of the measurement model, Eq. (14), 

this project decided to use the numerical approach. The code implementation of the numerical 

approach for Jacobian calculation is shown in Appendix J.  
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With the understanding of these concepts, it was commenced to develop the system model. Several 

different models were tested with the dataset obtained from Section 3.2.3. First, the model from 

Chapter 13.3 of Beard, et al (2012) was referred which assumes that the object is stationary; 

although this project aims to have a moving vehicle, this was referred initially to gradually proceed 

to the larger scope and the sampled dataset also uses stationary vehicle. The model described in 

Chapter 13.4 of Beard, et al (2012) was also attempted to be implemented, although, it was 

unsuccessful, and the trend of filtered state estimation did not match with the unfiltered state 

estimation.  

Multiple different combination of state and measurement models were tested where a few important 

decisions were made from the results. One of the decisions is to extend the object state variable 

from 2D vector with North and East coordinate to NED coordinate. This was to check if the flat-

surface assumption is applied correctly to the model where it was expected that the Down 

coordinate must be zero at all times. This decision was made when testing the model with state and 

measurement as shown in Eq. (29) and (30) respectively which was a modified model from Beard, 

et al (2012) where state vector of the model contains the inertial position (NE) of the object 

⁡𝒑̂𝒐𝒃𝒋
𝒊 ⁡and the distance to the object from the MAV 𝕃⁡̂ as shown in Eq. (29). When the model was 

implemented with the line-of-sight measurement 𝓵̌ as Eq. (30), obtained from the image coordinate 

by Eq. (3), it is found that the estimation diverges rapidly when without having the distance 𝕃⁡̂ in 

the state vector as the line-of-sight vector does not provide any information of the depth component 

(i.e. distance to the object) of the image. This was noticed when the object position was extended 

from 2D to 3D coordinate, the Down coordinate was not fixed to 0 but rather increased from 0 to a 

large number (e.g. 10000 m). 

𝒙̂ = {⁡𝒑̂𝒐𝒃𝒋(𝟐×𝟏)
𝒊 , 𝕃⁡̂}

𝑻
              ( 29 ) 

z = {𝓵̌(𝟑𝒙𝟏)}
𝑻
        ( 30 ) 

Throughout the development, multiple combinations of variables were put to the state vector as a 

test. The object states were extended to velocity and acceleration based on Eq. (31) and (32) where 

p, v, a is the position, velocity and acceleration with NED components respectively and T is the 

sampling time interval.  MAV position and orientation were also put to the state vector in 

anticipation to help in reducing measurement prediction error; the state vector of the tested model 

with combination of MAV and object states are shown in Eq. (33) where 𝚯 indicates the orientation 

in roll, pitch and yaw. 
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pt+1 =
𝟏

𝟐
at𝑻

𝟐 + vt𝑻 + pt      ( 31 ) 

vt+1 = at𝑻 + vt           ( 32 ) 

𝒙 = {⁡𝒑̂𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , ⁡𝚯̂𝑴𝑨𝑽(𝟑×𝟏)

𝒊 , 𝒑̂𝒐𝒃𝒋(𝟑×𝟏)
𝒊 , ⁡𝒗̂𝒐𝒃𝒋(𝟑×𝟏)⁡

𝒊 , ⁡𝒂̂𝒐𝒃𝒋(𝟑×𝟏)
𝒊 }

𝑻
        ( 33 ) 

The model was also tested with putting the relative states of object to the MAV which was inspired 

by Maley (2015) and Nielson, et al (2017) as shown in Eq. (34) where the states with arrow 

(e.g.⁡𝒑⃗⃗ ̂𝑶𝑩𝑱
𝒊 ) are the relative state of object to the MAV. 

𝒙̂ = {⁡𝒑⃗⃗ ̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , ⁡𝒗⃗⃗ ̂𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , ⁡𝒂⃗⃗ ̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
                ( 34 ) 

Despite the attempts on implementing different models, none of the attempts were successful. After 

those attempts, it was advised that it would be the best to keep the state vector only to be filled with 

the object states. The state vector was kept as shown in Eq. (35) with nearly constant acceleration 

model. The state transition matrix and noise model for the nearly constant acceleration model in 1-

dimension (i.e. Eq. (36)) are shown in Eq. (37) and (38) respectively where the same model was 

applied to North and East component of the object states with all Down components set to 0. dt is 

the sampling time interval between t and t+1 and q is the noise in object acceleration (DSTL, 2021). 

The derivation of Qt is shown in Appendix K. 

𝒙̂ = {𝒑̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , ⁡𝒗̂𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , ⁡𝒂̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
        ( 35 ) 

𝒙̂ = {𝒑̂𝒊, 𝒗̂𝒊, 𝒂𝒊}𝑻            ( 36 ) 

𝑭𝒕 = [
𝟏 𝒅𝒕

𝒅𝒕𝟐

𝟐

𝟎 𝟏 𝒅𝒕
𝟎 𝟎 𝟏

]⁡             ( 37 ) 

𝑸𝒕 =

[
 
 
 
 
𝒅𝒕𝟓

𝟐𝟎

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟑

𝒅𝒕𝟐

𝟐

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟐

𝟐
𝒅𝒕]

 
 
 
 

⁡ ∙ 𝒒𝟐               ( 38 ) 

The measurement vector used for the project is shown in Eq. (39) with measurement model as in 

Eq. (14). The measurement noise matrix R is a diagonal matrix with the diagonals filled with the 

covariance of respective measurement (δ2). 
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z = {𝜖(2𝑥1), ⁡𝒑̂𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , ⁡𝚯̂𝑴𝑨𝑽(𝟑×𝟏)

𝒊 }
𝑻
                   ( 39 ) 

The described model was implemented (code shown in Appendix L) and tested on the sample 

dataset which returned result as shown in Figure 13. Note that the result also shows the filtered 

result from KF; the KF implementation code (same state model, object position in NED for the 

measurement) was received as an example to refer while developing the state and measurement 

model for EKF, in addition, note that Figure 13 is missing the title for the horizontal axis which 

indicates time in seconds. 

 

Figure 13. Result from Sample Dataset 

Despite the effort in testing multiple different models, the filter was not able to give the expected 

accuracy. However, it was noted that the unfiltered state was having a strong noise and jumps 

between the measurement despite that the sampled dataset is not expected to have such a large noise; 

furthermore, the estimated North position of the object seemed biased to a larger value. It was 

initially assumed that it was from the object bounding box centre being not centred on the object 

(Figure 14), although, it was noticed that the bias should be present in East coordinate and be 

smaller than the actual bias. When the sampled dataset was revisited, multiple critical issues were 

found which caused the filtered state to be inaccurate.  

 

Figure 14. True (red) and measured (green) object bounding box centre with vehicle facing 

North (bottom-to-the-top) 
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Issue 1. MAV Orientation Assignment 

The orientation of the MAV was stored as a list with three items: roll, pitch and yaw. It was initially 

assumed that those orientation values were stored as sequence of [roll, pitch, yaw], although, due to 

the Airsim convention of storing orientation, the values were stored as [pitch, roll, yaw]. This was 

noted during the implementation of geolocation model (Section 3.2.2), however, this was 

completely disregarded during the implementation of filter model which caused a significant delay 

(i.e. 3 weeks) in the project progress. The effort, during those delays, was focused on re-designing 

the filter model as described previously as the result from unfiltered position was more accurate 

than the filtered position. This was due to the geolocation model used to display unfiltered position 

measurement was using correct values for roll, pitch and yaw which was not the case for the 

measurement model of the filter. Once the correct roll, pitch and yaw value was used for the filter 

model, the estimation in East position have improved, although, the unexpected jumps in the 

unfiltered measurement still existed (Appendix N). 

Issue 2. Timestamp Measurement 

Another issue with the sampled dataset was that the timestamp was recorded incorrectly. The 

timestamp was originally extracted from the PC clock time, although, it was later found that the 

simulation time (of Ardupilot) must have been used instead of the PC clock as the flight dynamic of 

the MAV was slowed down by 0.2 of speed by the provided script. The timestamp was corrected to 

be extracted from the simulation which reduced the jumping effect, although the effect still exsisted 

(Appendix O). 

Issue 3. Airsim State Lag 

The MAV command script (of Figure 11) commands the Airsim camera to be placed at the MAV 

position received from Ardupilot where the camera orientation is calculated to be at a certain 

elevation and azimuth to the MAV orientation. The last issue found from the dataset is that, when 

the Airsim receives the camera pose command, there is a delay in Airsim to update the camera 

orientation. This caused the estimation to diverge during the delay, as the measured MAV 

orientation (from Ardupilot) does not match with the actual MAV orientation when the image was 

taken (Airsim camera orientation update). The mismatch in the measurement could be treated as the 

measurement noise, although, the noise is not gaussian but is rather at a stair-like trend (Appendix 

M). Thus, the Airsim camera orientation was directly accessed, and the elevation and azimuth angle 

were removed to obtain the MAV orientation. The estimation result after the correction is shown in 

Figure 15. The unfiltered position estimate only contains noise within expectation with a little bias ( 

<±1 m) due to the bias in object bounding box centre. 
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Figure 15. Estimated position after MAV state correction (from Ardupilot to Airsim) 

Once the dataset issues were resolved, the filter parameters were adjusted accordingly. The filter 

initially assumes that the object is stationary (i.e. zero velocity and zero acceleration) at the initial 

position measurement, as Eq. (40), with initial covariance as shown in Eq. (41) where 

𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱⁡ is the maximum object position error, 𝒗𝒎𝒂𝒙𝑶𝑩𝑱
 is maximum object velocity and 

𝒂𝒎𝒂𝒙𝑶𝑩𝑱
 is maximum object acceleration. The covariance should be the square of standard 

deviation (σ) where it was assumed that σ would be roughly similar to the third of the maximum 

values as, in general, approximately 99.7% of samples fall within 3σ range (i.e. ≈ maximum 

deviation) of gaussian distribution. The maximum object velocity is set to 30 m/s, given by the 

project assumption, and the maximum position error was set to 10 m for both North and East 

component where the maximum values for Down components were set to 0 to indicate the filter that 

the object is not going to be taking any motion in Down component. The maximum object 

acceleration is temporarily set to 1.5 G and it is to be adjusted when the dataset with moving object 

is obtained; similarly, the object acceleration noise q (of Eq. (38)) was temporarily set to 1 ms-2. 

 𝒙𝟎̂ = {𝒑𝟎̂𝑶𝑩𝑱(𝟑×𝟏)
, 𝟎(𝟑×𝟏), 𝟎(𝟑×𝟏)}

𝑻

     ( 40 ) 

𝑷𝟎̂ = 𝒅𝒊𝒂𝒈 {(𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱/𝟑)𝟐
(𝟑×𝟏)

, (𝒗𝒎𝒂𝒙𝑶𝑩𝑱
/𝟑)𝟐

(𝟑×𝟏)
, (𝒂𝒎𝒂𝒙𝑶𝑩𝑱

/𝟑)𝟐

(𝟑×𝟏)
}        ( 41 ) 

The measurement noise matrix R was set as shown in Eq. (42) where 𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 is the maximum 

error of object bounding box centre (image coordinate), 𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
 is for the MAV position 

error and 𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
 is for the MAV orientation error at maximum. When the filter was tested 

with different combinations of measurement noise parameters, it was noticed that there was 

minimal impact to the filter behaviour when the MAV state noise was adjusted, and the behaviour is 



 

27 

only affected by changes in the image coordinate noise (Appendix P). It was assumed that, due to 

the MAV states being independent to the object states, the effect of the MAV state noise is 

considered irrelevant to the object state estimation, especially with the Jacobian matrix of the 

measurement model with respect to the object state (i.e. 
𝝏𝒉

𝝏𝒙
); if so, with the noisy MAV state, the 

expected image coordinate of a known coordinate P by the filter, would differ with the true image 

coordinate of point P as shown in Figure 16. This would cause error in the position estimate even 

with image coordinate measurement with a good accuracy. To compensate such error, it was noted 

to adjust 𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 parameter according to the MAV state error. 

𝑹 = 𝒅𝒊𝒂𝒈 {(𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓/𝟑)𝟐
(𝟐×𝟏)

, (𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
/𝟑)𝟐

(𝟑×𝟏)
, (𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

/𝟑)𝟐

(𝟑×𝟏)
}   ( 42 ) 

 

Figure 16. Effect of MAV State Error to the Expected Image Coordinate of Point P 

The filter parameter was adjusted to expect gaussian noise in measurement with maximum of 2 m 

and 0.2c (~ 10o) of error in all dimensions of MAV position and orientation respectively. There is no 

noise in the MAV states of the dataset, although, the noises were to be added as a in the later part of 

the project to test the final estimation system. The centre of the object bounding box were measured 

with the error of maximum of 32 pixel (calculated by the measured coordinate subtracted by the 

expected coordinate) without added noise to the MAV states. The noise parameter for the image 

coordinate were decided to be set as 64 pixels (i.e. safety factor of 2) to take account of the noise in 

the image coordinate measurement and the noise in the MAV state.  

Note that the proposed method for the optical flow measurement, flow estimation from current 

versus previous position in image, may not be accurate due to the effect shown in Figure 16. 

Different method to measure optical flow must be investigated where it must be light in 

computation and involves little image processing, if possible, to prevent a significant decrease in the 

system update rate.  
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3.3. Dataset Extraction 

Once all the dataset issue were resolved, there were little project time remaining to achieve the 

further milestones (i.e. model application to UKF, further literature review on optical flow) as a 

significant time were spent on the re-modelling (before recognising the dataset issue). It was 

decided for the remaining milestones to be put to the future work. The project moved directly to 

extracting dataset for the result analysis. The project aimed to extract the dataset from 8 scenarios 

(Figure 17). Scenario 0 and 1 has a stationary vehicle with MAV taking linear/circular motion 

respectively, Scenario 2, 3 and 4 has the vehicle in linear motion with MAV moving parallel in the 

same (2) and opposite (3) directions, and perpendicular (4) to the vehicle, and Scenario 5, 6 and 7 

has vehicle circling around with MAV approaching vehicle with linear motion (5) and circling 

directly above the vehicle in the same (6) and opposite (7) direction. 

 

 

 

Figure 17. Trajectory Plot of MAV (black) and Vehicle (blue) in Scenario 0 to 7 
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It is preferrable to keep Ardupilot to simulate MAV dynamics for the 8 scenarios, although, due to 

time limitation, the dynamics simulator was decoupled and the Airsim camera was directly moved 

by calculating MAV trajectory, as described in each scenario, with added elevation and azimuth 

angle to the desired MAV orientation. No roll or pitch were added to the MAV orientation for the 

scenario with linear MAV trajectories (i.e. all scenario except 1, 6 and 7). Note that those scenarios 

with circling MAV may not be appropriate to be tested in practice with strapdown camera at a 

certain elevation and azimuth to the MAV as the ground vehicle would not appear in the image with 

a certain range of angle (as a MAV must tilt to take circular trajecotry); those scenarios are purely 

for testing purpose in simulation. All scenarios were simulated with the same camera parameters 

with 1224 x 1024 image size and 45.4 degrees of field-of-view. The azimuth angle to the MAV was 

kept 0o, although, the elevation angle of -25o was used for the scenarios with linear MAV trajectory 

and -850 was used for those scenarios with the circular MAV trajectory; the vehicle was not able to 

be spotted in the image without the change in elevation. 

With the decoupled Ardupilot, a different method must be used to obtain the timestamp. Airsim 

does not provide any simulation time, although it has a function to run the simulation only for a 

certain amount of time; using this function, the dataset was extracted at 0.1 seconds of interval (i.e. 

10 Hz). In addition, it was noted that the OpenCV tracker failed to track a moving vehicle due to the 

high noise in the image background when the vehicle was simulated in AirsimNH environment; 

when the same script was used with Blocks environment of Airsim, the tracker was able to track the 

vehicle. For this reason, the dataset from the 8 scenarios was extracted from Blocks environment. 

Refer Appendix Q for example images from AirsimNH and Blocks environment. 
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Figure 18. Flow Diagram for Dataset Extraction 

The MAV Command script of Figure 11 were modified to extract dataset as shown in Figure 18 

where 8 different scripts were created to simulate each scenario. The script was run for 100 times to 

extract 100 datasets for each scenario. It was noted that the memory space taken by Airsim 

increased significantly and eventually crashed after running 3-4 runs by resetting the camera and 

vehicle pose, which did not occur when Airsim was restarted every run. A shell script was created 

to automatically open Airsim, run the camera command script to extract single dataset, and close 

Airsim for 100 times (Appendix R). 

The simulated vehicle in Airsim is possible to take up to 20 ms-2 of acceleration during the circular 

motion. The maximum acceleration for initial state covariance was updated to 20 ms-2 and the 

acceleration noise (q of Eq. (38)) was updated to 0.2 ms-2 for slow filter convergence. Note that the 

state noise parameter can be increased to achieve a faster convergence. The 800 datasets were 

processed through the filter.  
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 4. RESULTS AND DISCUSSION  

The result from the final system is shown in this section. Note that all the plots from unfiltered 

estimation are included in appendices. The trajectory plot of each scenario is shown in Figure 17 

Refer Appendix S for the sample images from those scenarios. 

The final system is the baseline EKF with the state vector and the measurement vector as shown in 

Eq. (43) and (44) respectively, where the state transition model and measurement model equation 

are shown in Eq. (45) and (46). The initial filter state and covariance are shown in Eq. (47) and 

(48). The state and measurement noise matrix are constant as shown in Eq. (49) and (50) 

respectively. 

𝒙̂ = {𝒑̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , ⁡𝒗̂𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , ⁡𝒂̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
            ( 43 ) 

z = {𝜖(2𝑥1), ⁡𝒑̂𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , ⁡𝚯̂𝑴𝑨𝑽(𝟑×𝟏)

𝒊 }
𝑻
                   ( 44 ) 

𝑷𝒐𝒃𝒋
𝒊 =𝑷𝑴𝑨𝑽

𝒊 +
−(𝒌

𝒊
∙𝑷𝑴𝑨𝑽

𝒊 )

𝒌
𝒊
∙𝑹𝒄

𝒗𝓵𝒄̌
(𝑹𝒄

𝒗𝓵𝒄̌)                ( 45 ) 

pt+1 =
𝟏

𝟐
at𝑻

𝟐 + vt𝑻 + pt        ( 46 ) 

𝒙𝟎̂ = {𝒑𝟎̂𝑶𝑩𝑱(𝟑×𝟏)
, 𝟎(𝟑×𝟏), 𝟎(𝟑×𝟏)}

𝑻

           ( 47 ) 

𝑷𝟎̂ = 𝒅𝒊𝒂𝒈 {(
𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
, (

𝒗𝒎𝒂𝒙𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
, (

𝒂𝒎𝒂𝒙𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
},⁡ 

𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱 = 𝟏𝟎⁡𝒎, 𝒗𝒎𝒂𝒙𝑶𝑩𝑱
= 𝟑𝟎⁡𝒎𝒔−𝟏, 𝒂𝒎𝒂𝒙𝑶𝑩𝑱

= 𝟐𝟎⁡𝒎𝒔−𝟐     ( 48 ) 

𝑸𝒕 =

[
 
 
 
 
𝒅𝒕𝟓

𝟐𝟎

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟑

𝒅𝒕𝟐

𝟐

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟐

𝟐
𝒅𝒕]

 
 
 
 

⁡ ∙ 𝒒𝟐, 𝒒 = 𝟎. 𝟐, 𝒅𝒕 = 𝟎. 𝟏   ( 49 ) 

𝑹 = 𝒅𝒊𝒂𝒈 {(𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓/𝟑)𝟐
(𝟐×𝟏)

, (𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
/𝟑)𝟐

(𝟑×𝟏)
, (𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

/𝟑)𝟐

(𝟑×𝟏)
}, 

⁡⁡𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 = 𝟔𝟒⁡𝒑𝒙, 𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
= 𝟐⁡𝒎, 𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

= 𝟎. 𝟐𝒄⁡          ( 50 ) 
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It was found that the dataset from 800 runs (100 runs each for 8 scenarios) contains 51189 timesteps 

of data which was processed by the system in 93.73 seconds including opening and closing the 

iterated log files. This gives an average of 546 Hz for the update rate purely from the system filter 

which suggests that the system is applicable for real-time application. Note that the current system 

does not involve any image processing and the filter update rate may significantly decrease when 

images are read/written during the process. Note that the measurement update rate for all the dataset 

is 10 Hz unless stated. 

The entire dataset was taken with the MAV on altitude of 100 m or higher, with vehicle at 0 m 

altitude, to test the estimation on the object at a range further than 100 m. This is to examine 

whether the system is applicable at a long distance. 

The dataset was obtained with no noise in MAV and camera states; the only noise in the dataset is 

in the object bounding box centre where additional noise can be added as desired before feeding the 

dataset into the filter. The exact distribution of the object bounding box noise could not be obtained, 

although, it was noted that the noise presented at most 10 m of error in calculating the vehicle 

position (Refer Appendix T). Furthermore, the noise distribution in the object bounding box is not 

gaussian and the average of the unfiltered position error is biased to non-zero value where the effect 

is less presented in the velocity and acceleration estimation (Appendix T). The focus of the analysis 

will be on the accuracy in object velocity estimation. 

Note that the time duration varies by the scenario due the object escaping the camera field-of-view 

at different timing. For error plots (e.g. Figure 19), ‘true’ plots were inserted to visualise the zero-

error line.  
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4.1. No MAV state noise 

4.1.1. Results 

Refer Appendix T and Appendix U for the state estimate plot of the entire dataset by system with no 

filter and with the baseline EKF respectively. Appendix V shows the average error from the 

baseline EKF in all scenarios using two different maximum object bounding box error  

𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓⁡⁡parameter and Appendix W shows the result from the filter with low and high q (i.e. 0.2 

and 1000) values. 

 

Figure 19. Baseline EKF velocity estimation error under no MAV state noise 

4.1.2. Discussion 

Despite having no measurement directly available for the object velocity and acceleration, the 

system was able to filter the noises in the velocity and acceleration estimate from differentiated 

position. It was assumed that the position error bias presents less effect to the velocity estimation as 

long as the object bounding box centre is at a constant offset from the vehicle because the velocity 

and acceleration information only depends on the change in the object position.  

The system was able to estimate within 1 m/s of velocity estimation error for scenarios with 

stationary vehicle which was significantly less error than those from the other scenarios (Figure 19). 

This is assumed that it is because that the initial assumption in the object motion is that the object 

will be stationary. The filter does not receive a measurement on the object velocity and acceleration 

and requires multiple measurements to converge the estimation close to the ground truth. The 

convergence of those state would be much faster with initial estimate close to the ground truth.  
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The error in the East position estimate is much less than the North position for Scenario 0. A wider 

field-of view (FOV) is available in the East direction than the North direction, as shown in Figure 

20, where the East direction is left to right and the North direction is bottom to top direction. In 

addition, the space covered by a single pixel in the image differs by the angle of camera view and 

the pixel location. Figure 21 shows that a ground represented by the grid on the left is transformed 

similar to the grid on the right with the given camera configuration which is a similar configuration 

used for the dataset; the grid with the area closer to the camera is projected larger than the area 

further from the camera where the effect is larger in the longitudinal direction. This indicates that, 

when an error in the object bounding box centre occurs equally in horizontal and vertical direction 

of image, the resulting position error in longitudinal direction could be larger than the error in 

lateral direction. It was assumed that the filter produced less error in East direction (lateral direction 

in image) in Scenario 0 and 4 by this reason. Furthermore, it was also noted that the geolocation 

model with pinhole camera is sensitive to the height of the measurement plane in general due to the 

homogenous coordinates (Mundy & Zisserman, 1992). Figure 22 shows the position error from the 

height difference in the geolocation model with flat-surface assumption and the actual height of the 

measurement plane for the project (i.e. visual object centre). The position error caused by the effect 

varies by the line-of-sight angle which is possible to add noise in the velocity and acceleration 

estimate. In some cases, it is crucial to provide a predicted object height information to the 

algorithm to remove such error (Cai, et al., 2022). Thus, it is recommended to provide the object 

height to the system, if known, for a better result. 

 

 

Figure 20. Sample Camera Image from Scenario 0 
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 Figure removed due to copyright restriction 

Figure 21. Deformation of Grid Projection in Camera Image (Gunawan, et al., 2019) 

 

 

Figure 22. Position Error with Correct Measurement 

For the scenarios with vehicle in linear motion, the vehicle was simulated in 30 m/s of speed (i.e. 

assumed maximum speed) in West to East direction. The velocity estimation successfully 

converged after minimum of 30 to maximum of 60 measurement updates (i.e. 3 and 6 seconds), as 

shown in Figure 19. The fastest convergence on East velocity estimate was achieved in Scenario 4, 

MAV trajectory perpendicular to the vehicle, and the slowest convergence with Scenario 2, MAV 

following the vehicle. The system is intendedly set with low q for strong filtering, although, note 

that a faster convergence can be achieved by increasing q. Appendix W shows that the filter 

converges with 15 measurements by increasing q to 1000. The expectation was that the system 

would converge better in Scenario 2 than in Scenario 3 (MAV moving parallel in opposite 

direction) as it observes the vehicle for longer duration. It also could use the information that the 

vehicle is moving at a similar speed and direction to MAV. However, it was noticed that the vehicle 

was simulated at a higher speed in Scenario 4 compared to Scenario 2 and 3. Due to the low 

flexibility in vehicle control in Airsim, the vehicle was simulated in different speeds. The 

convergence is expected to be similar for vehicle in the same speed in all scenarios. For velocity 

estimation in North component, the estimate temporarily diverges in the early few measurements in 

Scenario 4 where the velocity converged immediately to near 0 for Scenario 2 and 3. This was 

assumed that it is because the North axis was the longitudinal direction to the camera in Scenario 4 

unlike Scenario 2 and 3 (i.e. sensitivity in longitudinal position measurement). In general, the 

system was able to converge to near 0 error for all scenarios with vehicle in linear motion (Figure 

19).  

Scenarios with vehicle in circular motion returned the most unexpected result from the system; the 

estimation error does not converge and oscillates (Appendix U) where the unfiltered state is at 
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better accuracy (Appendix T). The oscillation is expected to be due to filter lag as the true North 

and East component of vehicle acceleration also oscillates. This was assumed that the state model 

used for the system only considers the translational acceleration and does not consider any angular 

acceleration. The dataset also contains a little noise. Although, note that the state model was able to 

estimate the state of manoeuvring object with giving higher state noise q (Appendix W). Thus, with 

the current system, it is suggested to increase the q values of EKF when the system is used for 

object with angular or rapidly changing acceleration. In addition, it was decided to modify and test 

the state transition model to represent the velocity and acceleration by magnitude and direction with 

respect to the vehicle heading. This is to remove the oscillating error in scenarios 5, 6 and 7 for the 

system to have a better performance on a similar scenario. 

The system was also tested with the noise parameter of maximum object bounding box changed 

from 64 to 32 px (for measurement noise as in Eq. (50)) as there is yet no noise in MAV states to 

see if the filter lag in Scenario 2, 3 and 4 can be decreased (Appendix V). The system performed 

similar to how it performed with the initial parameters, although, the East velocity and acceleration 

converged faster with the changed parameter as it provides less filtering with lower noise 

parameters and causes less filter lag.  

4.2. With MAV state noise 

4.2.1. Results 

Refer Appendix X for the average comparison plots of all scenarios. Note that ‘No Noise’ indicates 

there is no noise added to the MAV states (position and orientation), although, the dataset still has 

noise in the object bounding box. 

For summary of the result, the estimation in all object states were significantly affected by noise in 

MAV orientation whereas much less effect is applied to the estimation with the noise in MAV 

position. 

4.2.2. Discussion 

The estimation error increased with noise added to both MAV position and orientation, as per      

Eq. (50), where the estimation error significantly increased with the orientation noise compared to 

the position noise. This is because that the geolocation with the pin-hole camera model is highly 

sensitive to the MAV orientation noise, especially at a further distance to the object, due to the line-

of-sight error as shown in Figure 22 (Barber, et al., 2006). In addition, the current system does not 

account the MAV state noise significantly as they are independent from the object states and the 

only measurement dependent on the object states is the object bounding box, although, the true 
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object bounding box may not return true object position due to noisy MAV states (Figure 16). This 

also indicates the optical flow estimate by method, as shown in Figure 6, would not be valid with 

noisy MAV orientation as it is highly likely that the expected previous object position in the image 

would be incorrect. It was also expected that the approach would significantly decrease the filter 

update rate, without using the optical flow estimation method, due to requiring image processing. It 

was decided to reserve the optical flow approach as it is expected the approach would provide 

minimal benefit to the current system with adding a list of limitations. 

 

Figure 23. Resultant Position Error from MAV Position vs Orientation Noise 

Lastly, it is also possible that the linear approximation of EKF is inappropriate for the given 

measurement model. Kim and Ristic (2023) showed that the distribution estimate of polar-to-

Cartesian coordinates by linear approximation and unscented transformation. These are the methods 

used in EKF and UKF respectively for estimation of gaussian distribution through non-linear 

transform. Despite the polar-to-Cartesian transform involving less trigonometry terms compared to 

the system measurement model for the project, the distribution estimate from linear approximation 

is far less accurate than the estimate from unscented transform (Figure 24). Thus, as proposed, it is 

suggested to implement the same model to UKF for the future work to confirm whether the system 

performance can be improved. 

 

Figure removed due to copyright restriction 

Figure 24. Distribution estimation by linear approximation (left) vs unscented transform 

(right) (Kim & Ristic, 2023) 
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4.3. With lag in object bounding box measurement 

4.3.1. Results 

Refer Appendix Y for the average comparison plots of all scenarios. The result plots shows that the 

system performance significantly decreased in Scenario 3, 4 and 5 followed by Scenario 0, 2, 6 and 

7 and almost no impact is given to Scenario 1 with the 0.1 seconds of lag in the object bounding 

box. The system showed a similar performance with and without the lag in the object bounding box 

for scenario 1. A large lag was applied to the data to clearly view its impact to the estimation 

performance of the system, although, note that the sensor lag in practice can be much less than 0.1 

seconds. 

4.3.2. Discussion 

The main difference between Scenario 1 and the other scenarios is that the centre of the object 

bounding box does not differ significantly over the time in Scenario 1 as much as in other scenarios 

(Appendix S). The object bounding box measurement varies less when there is less change in the 

line-of-sight to the object from the camera, meaning line-of-sight rate close to 0. This reason 

explains the reason that the system performance is worst in Scenario 3 (i.e. MAV approaching in 

linear motion to the vehicle in linear motion from the opposite side) which is the scenario with the 

most rapidly changing line-of-sight. It was assumed that the lag in the other measurement would 

provide similar impact. The system is expected to be affected in scenarios with variation in line-of-

sight for MAV orientation lag, similar to the object bounding box lag. It is expected the scenarios 

with variation in relative position of MAV to the object will affect the system with MAV position 

lag; the effect is expected to be larger at the scenarios with rapid change in MAV altitude. It is used 

for calculating the range to the object and the system is sensitive any noise in the line-of-sight and 

the range measurement. 

4.4. Decrease in update rate 

4.4.1. Results 

Refer Appendix Z for the average comparison plots of all scenarios. In general, the estimation from 

2 Hz measurement was lagging, at maximum of 0.5 seconds compared to the estimation made by 10 

Hz measurement in all scenarios. In addition, due to the lag in the estimation, the system required a 

slightly longer time to converge for system with 2 Hz of measurement update rate compared to 10 

Hz of measurement update rate.  
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4.4.2. Discussion 

The system required a longer time to converge due to the lag in the estimation, although, it also 

means that the system was able to converge with less measurement steps. This was assumed that it 

is due to the system model to estimate the velocity and acceleration, which related to the rate of 

change in position and depends on the time scale. Furthermore, the impact of decrease in update 

rate is not as significant compared to the impact of the measurement lag. This was assumed that, 

because the velocity and acceleration measurement is sensitive to the time, the measurement lag 

causes error in estimation due to the inconsistency in time of the measurements where the decrease 

in update rate, although it provides less information, it returns the measurement with little error in 

time. The low update rate would not cause a significant error as it is expected the estimation would 

still converge, as opposed to the error caused by the measurement lag. 

4.5. Additional Analysis Plan 

The following list shows the variables that were planned to be measured for further analysis of the 

system performance as a stress test. However, it was not able to be achieved within the project time 

and are included for future work. 

 Maximum q of the Q matrix with fixed R without estimation divergence 

 Maximum prediction-step to update-step ratio without estimation divergence 

 Maximum no. of timesteps with no measurement (i.e. object out of camera field-of-view) 

without estimation divergence 

In addition, it was noticed that EKF may unexpectedly diverge when the P matrix becomes 

asymmetric which can occur due to the numeric error. Although, the Joseph formular can prevent 

the asymmetry in covariance matrix (Bucy & Joseph, 2005). Despite having no divergence 

observed from the dataset from the analysis yet, the Joseph formular is to be reviewed and applied 

to the current system to examine the effect, to ensure the system stability in practical applications. 
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CONCLUSIONS 

In summary, the baseline EKF system was able to estimate the object velocity with little noise in the 

object bounding box when the object at more than 100 m range. The system was able to filter the 

object position information to velocity and acceleration estimates with approximately 546 Hz of 

filter update rate. Note that the system behaviour differs depending on different filter parameters 

(i.e. Q and R matrices); a fine-tuning of the parameters is required for the system to perform at 

optimal condition for each application. The system was able to converge to a 0 m/s of velocity error 

with no noise in MAV states in all tested scenarios where the speed of convergence varies by the Q 

matrix. It is recommended to provide the object height to the system for better accuracy if known. 

The system is found to be sensitive to the line-of-sight and range error from the camera to the object 

due to the measurement model. Thus, the system performance significantly reduces with noise in 

MAV orientation followed by the MAV position which does not satisfy the project aim to have a 

system robust to measurement noises. It was assumed that UKF may perform better under such 

condition as EKF may have deformed the non-linear measurement model significantly due to the 

linearisation. The limitation of the current system is that it is only applicable to an object on flat 

surface with known altitude, known camera parameters where there is no noise or lag in MAV 

orientation. The system also cannot handle a significant lag in the object bounding box. The noise 

and lag in the MAV position measurement can be tolerated, although it still lowers the system 

performance. There is a delay in estimation with a decrease in the measurement update rate which is 

expected to be tolerable by adjusting Q matrices. From the observations, it is concluded that the 

system satisfies all project aims, except to be robust under measurement noise. The system is 

recommended to be improved as described in the following section. 

 

FUTURE WORK 

Assuming the continuation of the project, the current model is to be modified to have a velocity and 

acceleration represented with respect to the vehicle heading. The modified system is to be 

implemented to UKF and tested with a new dataset with the camera script coupled with the MAV 

dynamics simulator for more realistic movement of strapdown camera on MAV. The application of 

the Joseph form is to be investigated if it is later decided to use EKF instead of UKF once the result 

is obtained. The same analysis, as done in this report, is to be done with the modified system. The 

system is also to be tested to find the maximum q value for Q matrix, maximum prediction-step to 

update-step rate and maximum timesteps with no observation before the estimation diverges. Lastly, 

the system is to be tested on a drone hardware to be observed on a practical basis. 
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APPENDICES 

Appendix A. Python Package Information 

Name Version Related Software 

airsim 1.8.1 Airsim 

dronekit 2.9.2 

Ardupilot SITL MAVproxy 1.8.67 

pymavlink 2.4.40 

opencv-python 4.8.0.74 OpenCV 

json 2.0.9 

- 

math N/A 

matplotlib 3.7.2 

numpy 1.21.0 

scipy 1.3.3 

sys N/A 

time N/A 

N/A – Package version not available 

Appendix B. Project Gantt Chart 

  



 

48 

Appendix C. Main Code for Geolocation Model Implementation 

 

 

1 # Example Script for obtaining MAV camera image with position, orientation, timestamp 
2 import airsim 
3 import os 
4 import cv2 as cv 
5 import numpy as np 
6 import math 
7 import time 
8 import json 
9 
10 # To separate between airsim tools and algorithm-relevant logics 
11 from AirsimHandler import AirsimHandler 
12 from Camera import Camera 
13 
14 def initialise(sim): 
15 # Set sim camera parameters 
16 name = "MAV" # as per airsim settings.json 
17 elevation, azimuth = -np.pi/2, 0 # facing downwards 
18 relative_orientation = airsim.to_quaternion(elevation, azimuth, 0) 
19 distortion_params = {"K1": 0.0, "K2": 0.0, "K3": 0.0, "P1": 0.0, "P2": 0.0} # no distortion 
20 sim.initialiseCamera(name, relative_orientation, distortion_params) 
21 
22 # Initialise algorithm's camera parameters 
23 mav_cam = Camera(sim.field_of_view, sim.image_center, elevation, azimuth) 
24 return mav_cam 
25 
26 if __name__ == '__main__': 
27 # Takeoff and get to initial position, wait to stabilise 
28 sim = AirsimHandler() 
29 sim.client.moveToPositionAsync(55, 0, -30, 5).join() # call join() to wait for task to complete 
30 time.sleep(3) 
31 
32 # Initialise camera parameters and create mav camera 
33 mav_cam = initialise(sim) 
34 
35 # Update camera 
36 sim.updateCameraPoseWithMAV() 
37 mav_cam.update_states(sim.image, sim.MAV_position, sim.MAV_orientation, sim.timestamp) 
38 
39 # Object Coordinate Ground truth (replace with detector here) 
40 object_image_coordinate = [140,89] 
41 object_world_coordinate = [51,3,0] 
42 im = cv.circle(mav_cam.image, np.array(mav_cam.params.image_center, dtype=np.int32), 2, (0,255,0), 2) 
43 mav_cam.image = cv.circle(im, object_image_coordinate, 2, (0,0,255), 2) 
44 
45 # Perform Geolocation 
46 inertial = mav_cam.geolocation(object_image_coordinate, inertial=True) 
47 
48 print("Calculated Relative: {}".format(inertial-mav_cam.MAV.position)) 
49 print("Actual relative: {}".format(object_world_coordinate-mav_cam.MAV.position)) 
50 
51 # Save sample image and corresponding states 
52 cv.imwrite(r'.\drone_image.png', mav_cam.image 
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Appendix D.1. Camera Script for Geolocation Model Implementation (1) 

 

1 import numpy as np 
2 import cv2 
3 from scipy.spatial.transform import Rotation 
4 from numpy import cos, sin 
5 
6  
7 
8 """ 
9 
10 Parameter Classes 
11 
12 """ 
13 class CameraParameters: 
14 def __init__(self, field_of_view, image_center): 
15 # fov: float 
16 # image_center: 1D int vector [height/2, width/2] 
17 self.image_center = image_center 
18 self.focal_length = 2*(self.image_center[1]) / (2*np.tan(np.deg2rad(field_of_view)/2)) 
19 
20 class MAV_states: 
21 def __init__(self): 
22 self.position = [] 
23 self.orientation = [] 
24 self.velocity = [] 
25 self.prev_position = [] 
26 self.prev_orientation = [] 
27 
28 def update_states(self, position, orientation, velocity): 
29 """ 
30 position: 1D float vector [N,E,D] 
31 orientation: 1D float vector in quaternion[q1, q2, q3, q4] 
32 """ 
33 # Save current states to previous states 
34 self.prev_position = self.position 
35 self.prev_orientation = self.orientation 
36 
37 # Update current states 
38 self.position = position 
39 self.orientation = orientation 
40  
41 
42 class Object_states: 
43 def __init__(self): 
44 self.position = [] 
45 self.velocity = 0 
46 self.prev_position = [] 
47 self.prev_velocity = 0 
48 
49 def update_states(self): 
50 self.prev_position = self.position 
51 self.prev_velocity = self.velocity 
52 
53 class GeolocationCoefficients: 
54 def __init__(self, elevation, azimuth): 
55 # elevation, azimuth - floats in radian 
56 self.gimbal_to_camera = np.array([[0,1,0],[0,0,1],[1,0,0]]) 



 

50 

Appendix D.2. Camera Script for Geolocation Model Implementation (2) 

 

57 self.body_to_gimbal = self.btg_matrix(elevation, azimuth) 
58 self.rotation_matrix = [] 
59 
60 def btg_matrix(self, el, az): 
61 # el, az - floats in radian 
62 r1 = [cos(el)*cos(az), cos(el)*sin(az), -sin(el)] 
63 r2 = [-sin(az), cos(az), 0] 
64 r3 = [sin(el)*cos(az), sin(el)*sin(az), cos(el)] 
65 return np.array([r1,r2,r3]) 
66 
67 def update_rotation_matrix(self, vehicle_orientation): 
68 # vehicle_orientation - 1D float vector in pitch roll yaw (radian) 
69 
70 phi = vehicle_orientation[1] # roll 
71 theta = vehicle_orientation[0] # pitch 
72 psi = vehicle_orientation[2] # yaw 
73 
74 vehicle_to_body = np.array([ 
75 [cos(theta)*cos(psi) , cos(theta)*sin(psi) , -sin(theta)], 
76 [sin(theta)*sin(phi)*cos(psi) - cos(phi)*sin(psi) , 
sin(theta)*sin(phi)*sin(psi) + cos(phi)*cos(psi) , cos(theta)*sin(phi)], 
77 [cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi) , 
sin(theta)*cos(phi)*sin(psi) - sin(phi)*cos(psi) , cos(theta)*cos(phi)] 
78 ]) 
79 
80 rotation = np.matmul(self.gimbal_to_camera, np.matmul(self.body_to_gimbal,vehicle_to_body)) 
81 self.rotation_matrix = np.linalg.inv(rotation) 
82 
83 """ 
84 
85 Camera Class 
86 
87 """ 
88 class Camera: 
89 def __init__(self, field_of_view, image_center, elevation, azimuth): 
90 """ 
91 field_of_view, elevation, azimut: float 
92 image_center: 1D int vector [height/2, width/2] 
93 """ 
94 
95 # Create state variables 
96 self.image = [] 
97 self.prev_timestamp = 0 
98 self.timestamp = 0 
99 self.MAV = MAV_states() 
100 self.obj = Object_states() 
101 # Setup Parameters 
102 self.params = CameraParameters(field_of_view, image_center) 
103 self.geo_coeffs = GeolocationCoefficients(elevation, azimuth) 
104  
105 
106 def update_states(self, image, MAV_position, MAV_orientation, MAV_velocity, timestamp): 
107 """ 
108 image: 2D array 3 channel BGR 
109 MAV_position: 1D float vector [N,E,D] 
110 MAV_orientation: 1D float vector [pitch, roll, yaw] 

 



 

51 

Appendix D.3. Camera Script for Geolocation Model Implementation (3) 

 

  

111 MAV_velocity: 1D float vector [VN, VE, VD] 
112 timestamp: float 
113 """ 
114 self.prev_timestamp = self.timestamp 
115 self.MAV.prev_position = self.MAV.position 
116 self.MAV.prev_orientation = self.MAV.orientation 
117 
118 self.image = image 
119 self.timestamp = timestamp 
120 self.obj.update_states() 
121 self.MAV.update_states(MAV_position, MAV_orientation, MAV_velocity) 
122 self.geo_coeffs.update_rotation_matrix(MAV_orientation) 
123 
124 def geolocation(self, obj_x, obj_y): 
125 """ 
126 image_center: 1D vector [py, px] 
127 """ 
128 # Calculate distance from center 
129 px = -(obj_x - self.params.image_center[1]) # Image x axis inverted 
130 py = obj_y - self.params.image_center[0] 
131 image_coordinate = [px,py,self.params.focal_length] # Homogenous coordinate 
132 
133 # Calculate LOS vector (order corresponds to NED) 
134 LOS_vector = image_coordinate/np.linalg.norm(image_coordinate) 
135 LOS_vector = np.reshape(LOS_vector, (3,1)) 
136 
137 # Range from Flat Earth Model 
138 coefficients = np.matmul(self.geo_coeffs.rotation_matrix,LOS_vector) 
139 altitude = np.abs(self.MAV.position[2]) 
140 distance = altitude / coefficients[2] 
141 
142 relative_vector = np.reshape(distance*coefficients, (1,3)) 
143 self.obj.position = self.MAV.position + relative_vector 
144  
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Appendix E. Airsim Handler Script for Geolocation Model Implementation 

 

 

1 import numpy as np 
2 import airsim 
3 import time 
4 
5 class AirsimHandler: 
6 def __init__(self): 
7 # connect to the AirSim simulator 
8 client = airsim.MultirotorClient() 
9 client.confirmConnection() 
10 client.enableApiControl(True) 
11 client.armDisarm(True) 
12 client.takeoffAsync().join() 
13 time.sleep(1) 
14 
15 self.client = client 
16 
17 def initialiseCamera(self, camera_name, relative_orientation, distortion_parameters, ext=True): 
18 """ 
19 camera_name: string, as per simulation setting 
20 relative_orientation: airsim Quaternionr class (refer airsim/types.py) 
21 distortion_parameters: dictionary in form of {"K1": 0.0, "K2": 0.0, "K3": 0.0, "P1": 0.0, "P2": 0.0} 
22 ext: boolean 
23 """ 
24 
25 self.name = camera_name 
26 self.relative_orientation = relative_orientation 
27 self.external = ext 
28 
29 self.client.simSetDistortionParams(self.name, distortion_parameters, external=self.external) 
30 self.field_of_view = self.client.simGetCameraInfo(self.name, external=self.external).fov 
31 self.image_requester = [airsim.ImageRequest(self.name, airsim.ImageType.Scene, False, False)] 
32 
33 response = self.client.simGetImages(self.image_requester, external=self.external)[0] 
34 self.image_center = np.array([response.width/2, response.height/2]) 
35 
36 self.image = [] 
37 self.position = [] 
38 self.orientation = [] 
39 self.timestamp = [] 
40 
41 def updateCameraPoseWithMAV(self): 
42 # get current MAV position and move camera over 
43 MAV_states = self.client.getMultirotorState().kinematics_estimated 
44 position = MAV_states.position 
45 orientation = MAV_states.orientation + self.relative_orientation 
46 
47 cam_pose = airsim.Pose(position, orientation) 
48 self.client.simSetCameraPose(self.name, cam_pose, external=self.external) 
49 
50 # get image at the current position 
51 response = self.client.simGetImages(self.image_requester, external=self.external)[0] 
52 image_1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) 
53 self.image = image_1d.reshape(response.height, response.width, 3) 
54 
55 # update stored image and MAV states 
56 self.MAV_position = MAV_states.position.to_numpy_array() 
57 self.MAV_orientation = MAV_states.orientation.to_numpy_array() 
58 self.timestamp = response.time_stamp 
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Appendix F. Code for Dataset Reader during System Development 

 

1 import json 
2 import cv2 
3 import numpy as np 
4 from numpy import deg2rad as rad 
5 
6 """ 
7 Note every angle information is stored in radians 
8 """ 
9 
10 class Params: 
11 def __init__(self, param): 
12 self.target_pos = param["target_pos"] 
13 self.fov = param["fov"] 
14 center = param["image_center"] 
15 self.image_center = [center[0], center[1]] 
16 self.elevation = rad(param["elevation"]) 
17 self.azimuth = rad(param["azimuth"]) 
18 
19 class DataEntry: 
20 def __init__(self): 
21 self.image = [] 
22 self.states = None 
23 
24 class DatasetReader: 
25 def __init__(self): 
26 # Read dataset 
27 with open("./dataset/data_parameters.json") as json_file: 
28 self.parameters = Params(json.load(json_file)) 
29 with open("./dataset/dataset.json") as json_file: 
30 dataset = json.load(json_file) 
31 self.initialise_dataset(dataset) 
32 self.current_number = -1 
33 self.update() 
34 
35 def initialise_dataset(self, dataset): 
36 o = rad(np.array(dataset["MAV_ori"])) # deg to radian 
37 p,r,y = o[:,0], o[:,1], o[:,2] # pry to rpy 
38 dataset["MAV_ori"] = np.array([r,p,y]).T.tolist() 
39 dataset["Time"] = np.asarray(dataset["Time"])/1000 # ms to s 
40 self.dataset = dataset 
41 
42 def reset(self): 
43 # Read first dataset 
44 self.current_number = -1 
45 self.update() 
46 
47 def update(self): 
48 self.current_number+=1 
49 self.image = cv2.imread(r'./dataset/data_{}.png'.format(self.current_number)) 
50 self.timestamp = self.dataset["Time"][self.current_number] 
51 self.obj_bbox = self.dataset["OBJ_bbox"][self.current_number] 
52 self.cmd = self.dataset["Command"][self.current_number] 
53 self.pos = self.dataset["MAV_pos"][self.current_number] 
54 self.ori = self.dataset["MAV_ori"][self.current_number] 
55 self.vel = self.dataset["MAV_vel"][self.current_number] 
56 self.pqr = [0,0,0] 
57 self.uvwdot = [0,0,0] 
58 # self.uvwdot = self.dataset["MAV_trans_acc"][self.current_number] 
59 
60 def states(self): 
61 return self.image, self.cmd, self.pos, self.ori, self.vel, self.pqr, self.uvwdot, self.timestamp, self.obj_bbox 
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Appendix G.1. Code for Data Processor during System Development (1) 

 

1 import json 
2 import cv2 
3 import numpy as np 
4 from numpy import sin, cos 
5 import matplotlib.pyplot as plt 
6 import time 
7 import sys 
8 
9 from tools.DatasetReader import DatasetReader 
10 from tools.LPF import ImageCoordinate_LPF, Gyro_LPF 
11 from StateEstimator import StateEstimator 
12 
13 def bbox_center(bbox): 
14 # [down,right,h,w] 
15 right, down, w, h = bbox 
16 center = [int(down+0.5*h), int(right+0.5*w)] 
17 return center 
18 
19 def visualise(image, center, data, coordinate=None, current_number=None): 
20 cx,cy = data 
21 cx, cy = int(cx), int(cy) 
22 image_obj = cv2.circle(image, (cx+center[1], cy+center[0]), 2, (0, 255, 0), 2) 
23 image_obj = cv2.circle(image_obj, (center[1], center[0]), 1, (0, 0, 255), 1) 
24 
25 # Visualise estimated obj position 
26 if type(coordinate) != type(None): 
27 ex, ey = coordinate 
28 fy = center[1] + int(ex) # Horizontal right 
29 fx = center[0] + int(ey) # Vertical down 
30 image_obj = cv2.circle(image_obj, (fy, fx), 5, (0, 0, 255), 2) 
31 
32 # Display image unless current_number is parsed 
33 if type(current_number) == type(None): 
34 cv2.imshow("Image", image_obj) 
35 cv2.waitKey(0) 
36 else: 
37 # Save images 
38 if current_number < 10: 
39 cv2.imwrite("./video_and_images/frames/data_00{}.png".format(current_number), image_obj) 
40 elif current_number < 100: 
41 cv2.imwrite("./video_and_images/frames/data_0{}.png".format(current_number), image_obj) 
42 else: 
43 cv2.imwrite("./video_and_images/frames/data_{}.png".format(current_number), image_obj) 
44 
45 
46 if __name__ == '__main__': 
47 # Note that all image coordinates are indexed as [y, x] 
48 reader = DatasetReader() 
49 t_pos = reader.parameters.target_pos 
50 fov = reader.parameters.fov/2 
51 center = reader.parameters.image_center 
52 el = reader.parameters.elevation 
53 az = reader.parameters.azimuth 
54 
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Appendix G.1. Code for Data Processor during System Development (1) 

 

55 last_data_no = 200 
56 initial_time = reader.timestamp 
57 time_log = [] 
58 obj_PN_log = [] 
59 obj_PE_log = [] 
60 obj_PD_log = [] 
61 
62 obj_VN_log = [] 
63 obj_VE_log = [] 
64 obj_VD_log = [] 
65 
66 obj_AN_log = [] 
67 obj_AE_log = [] 
68 obj_AD_log = [] 
69 cov_log = [] 
70 use_ground_truth = False 
71 show_sigma = False 
72 # Uncomment one of the below three 
73 
74 # No filter 
75 filter = None 
76 
77 # Initial object state covariance 
78 max_position_error = 10 # m 
79 max_velocity = 20 # m/s 
80 max_acceleration = 1.5*9.81 # m/s^2 (around 1.5 G) 
81 initial_covariance = np.array([max_position_error/2, max_velocity/2, max_acceleration/2]) ** 2 
82 motion_noise = 1 ** 2 # near constant acceleration noise (m/s) 
83 
84 # # KF 
85 filter = 0 
86 measurement_noise = (max_position_error/2)**2 # pos 
87 
88 # # EKF 
89 filter = 1 
90 max_px_error = 64 # px 
91 max_uav_pos_error = 5 # m 
92 max_uav_att_error = 0.1 # radian 
93 measurement_noise = np.array([max_px_error/2, max_uav_pos_error/2, max_uav_att_error/2])**2 # pxpy, 
position, orientation 
94 
95 # Initialise State Estimator 
96 estimator = None 
97 if filter != None: 
98 estimator = StateEstimator(fov, center, el, az, initial_covariance=initial_covariance, otion_noise=motion_noise, 
measurement_noise=measurement_noise, filter=filter) 
99 else: 
100 estimator = StateEstimator(fov, center, el, az, filter=filter) 
101 
102 
103 # # Initialise LPF 
104 enable_Image_LPF = False 
105 LPF = None 
106 if enable_Image_LPF == True: 
107 LPF = ImageCoordinate_LPF() 
108 
109 
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110 # Set to 0 if filtering effect is not needed 
111 GLPF = Gyro_LPF(time_constant=0) 
112 # GLPF = Gyro_LPF(time_constant=15) 
113 
114 
115 init_t = time.time() 
116 while True: 
117 print("Processing Dataset {}/{}".format(reader.current_number, last_data_no)) 
118 
119 # Get the dataset, update estimatorera states and calculate center of the bounding box 
120 image, cmd, pos, ori, vel, pqr, acc, timestamp, obj_bbox = reader.states() 
121 
122 # if reader.current_number != 0: 
123 # GLPF.filter(estimator.timestamp - estimator.prev_timestamp, pqr) 
124 # pqr = GLPF.filtered 
125 
126 estimator.update_states(image, cmd, pos, ori, vel, pqr, acc, timestamp) 
127 coordinate = bbox_center(obj_bbox) 
128 
129 # Obtain filtered value of x,y image coordinate 
130 if enable_Image_LPF == True: 
131 LPF.filter_coordinate(timestamp - estimator.prev_timestamp, coordinate) 
132 filtered = np.array(LPF.filtered, dtype=int) 
133 
134 # Override x,y with filtered values if LPF is enabled 
135 if enable_Image_LPF == True: 
136 coordinate = filtered 
137 
138 # Calculate the State Estimates from Image Coordinate 
139 ex = (coordinate[1] - center[1]) # Horizontal left 
140 ey = (coordinate[0] - center[0]) # Vertical down 
141 
142 if use_ground_truth == True: 
143 relative_position = np.array([51.7,3.1,0]) - pos 
144 unit_LOS_vector = relative_position / np.linalg.norm(relative_position) 
145 unit_cam_vector = np.matmul(estimator.rot_matrices.calculate_rotation_matrix(ori,c2i=False), 
unit_LOS_vector) 
146 tx,ty,_ = (estimator.params.focal_length / unit_cam_vector[2]) * unit_cam_vector 
147 tx = int(tx) 
148 ty = int(ty) 
149 ex, ey = tx, ty 
150 # ex = int(np.random.normal(tx, 15)) 
151 # ey = int(np.random.normal(ty, 15)) 
152 
153 
154 estimator.state_estimation(ex,ey) 
155 # Print and log the state estimation 
156 time_log.append(round(reader.timestamp - initial_time,1)) 
157 obj_PN_log.append(estimator.OBJ.position[0]) 
158 obj_PE_log.append(estimator.OBJ.position[1]) 
159 obj_PD_log.append(estimator.OBJ.position[2]) 
160 obj_VN_log.append(estimator.OBJ.velocity[0]) 
161 obj_VE_log.append(estimator.OBJ.velocity[1]) 
162 obj_VD_log.append(estimator.OBJ.velocity[2]) 
163 obj_AN_log.append(estimator.OBJ.acceleration[0]) 
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164 obj_AE_log.append(estimator.OBJ.acceleration[1]) 
165 obj_AD_log.append(estimator.OBJ.acceleration[2]) 
166 if type(filter) != type(None): 
167 cov_log.append(list(estimator.state_filter.P)) 
168 
169 
170 """ 
171 Visualise 
172 """ 
173 if reader.current_number > 1 and filter != None and filter > 0: 
174 coord = estimator.state_filter.estimated_pxpy 
175 visualise(image, center, [ex,ey], coordinate=coord) 
176 ## Uncomment this and comment above to save video 
177 # visualise(image, center, [ex,ey], coordinate=coord, current_number=reader.current_number) 
178 else: 
179 visualise(image, center, [ex, ey], coordinate=None) 
180 # visualise(image, center, [ex, ey], coordinate=[tx,ty], current_number=reader.current_number) 
181 
182 
183 # End the program if all data has been processed 
184 if reader.current_number >= last_data_no: 
185 break 
186 
187 # Load dataset of the next time frame 
188 reader.update() 
189 print("Process took {} seconds for {} dataset - average {} Hz processing rate". format(round(time.time()-
init_t,2), last_data_no, round(1/((time.time()-init_t) / last_data_no),2))) 
190 
191 # Output Logs 
192 title_string = '' 
193 if filter == None: 
194 title_string = 'NoFilter' 
195 elif filter == 0: 
196 title_string = 'KF' 
197 elif filter == 1: 
198 title_string = 'EKF' 
199 
200 
201 # Log covariance if filter 
202 log=[] 
203 if filter == None: 
204 log = {"t": time_log, "PN": obj_PN_log, "PE": obj_PE_log, "PD": obj_PD_log, 
"VN": obj_VN_log, "VE": obj_VE_log, 
205 "VD": obj_VD_log, "AN": obj_AN_log, "AE": obj_AE_log, "AD": obj_AD_log} 
206 else: 
207 c_log = np.array(cov_log) 
208 PNcov = list(c_log[:,0,0]) 
209 PEcov = list(c_log[:,1,1]) 
210 VNcov = list(c_log[:,3,3]) 
211 VEcov = list(c_log[:,4,4]) 
212 ANcov = list(c_log[:,6,6]) 
213 AEcov = list(c_log[:,7,7]) 
214 log = {"t": time_log, "PN": obj_PN_log, "PE": obj_PE_log, "PD": obj_PD_log, "VN": obj_VN_log, "VE":  
obj_VE_log, 
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215 "VD": obj_VD_log, "AN": obj_AN_log, "AE": obj_AE_log, "AD": obj_AD_log, "PNcov":PNcov, "PEcov":PEcov, 
"VNcov":VNcov, "VEcov":VEcov, "ANcov":ANcov, "AEcov":AEcov} 
216 with open("./output/{}_Result.json".format(title_string), "w") as json_file: 
217 json.dump(log, json_file) 
218 
219 
220 
221 # Plot results 
222 fig, ax = plt.subplots(3, 3) 
223 
224 # Plot true states 
225 true_PN = np.full((len(time_log),), 51.7) 
226 true_PE = np.full((len(time_log),), 3.1) 
227 true_PD = np.full((len(time_log),), 0) 
228 true_V = np.full((len(time_log),), 0) 
229 true_A = np.full((len(time_log),), 0) 
230 
231 ax[0, 0].plot(time_log, true_PN, label='True') 
232 ax[1, 0].plot(time_log, true_PE, label='True') 
233 ax[2, 0].plot(time_log, true_PD, label='True') 
234 ax[0, 1].plot(time_log, true_V, label='True') 
235 ax[1, 1].plot(time_log, true_V, label='True') 
236 ax[2, 1].plot(time_log, true_V, label='True') 
237 ax[0, 2].plot(time_log, true_A, label='True') 
238 ax[1, 2].plot(time_log, true_A, label='True') 
239 ax[2, 2].plot(time_log, true_A, label='True') 
240 
241 # Plot resulting estimated states 
242 ax[0, 0].plot(time_log, obj_PN_log, label='Estimated') 
243 ax[1, 0].plot(time_log, obj_PE_log, label='Estimated') 
244 ax[2, 0].plot(time_log, obj_PD_log, label='Estimated') 
245 ax[0, 1].plot(time_log, obj_VN_log, label='Estimated') 
246 ax[1, 1].plot(time_log, obj_VE_log, label='Estimated') 
247 ax[2, 1].plot(time_log, obj_VD_log, label='Estimated') 
248 ax[0, 2].plot(time_log, obj_AN_log, label='Estimated') 
249 ax[1, 2].plot(time_log, obj_AE_log, label='Estimated') 
250 ax[2, 2].plot(time_log, obj_AD_log, label='Estimated') 
251 
252 
253 # Plot uncertainty region 
254 if type(filter) != type(None) and show_sigma == True: 
255 # Plot resulting estimated states 
256 c_log = 3*(np.array(cov_log)[:,0,0]**0.5) 
257 ax[0, 0].fill_between(time_log, obj_PN_log-c_log, c_log+obj_PN_log, alpha=0.2, label='3σ') 
258 c_log = 3*(np.array(cov_log)[:,1,1]**0.5) 
259 ax[1, 0].fill_between(time_log, obj_PE_log-c_log, c_log+obj_PE_log, alpha=0.2, label='3σ') 
260 c_log = 3*(np.array(cov_log)[:,3,3]**0.5) 
261 ax[0, 1].fill_between(time_log, obj_VN_log-c_log, c_log+obj_VN_log, alpha=0.2, label='3σ') 
262 c_log = 3*(np.array(cov_log)[:,4,4]**0.5) 
263 ax[1, 1].fill_between(time_log, obj_VE_log-c_log, c_log+obj_VE_log, alpha=0.2, label='3σ') 
264 c_log = 3*(np.array(cov_log)[:,6,6]**0.5) 
265 ax[0, 2].fill_between(time_log, obj_AN_log-c_log, c_log+obj_AN_log, alpha=0.2, label='3σ') 
266 c_log = 3*(np.array(cov_log)[:,7,7]**0.5) 
267 ax[1, 2].fill_between(time_log, obj_AE_log-c_log, c_log+obj_AE_log, alpha=0.2, label='3σ') 
268 
269 
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270 # Limit axis range 
271 # ax[0,0].set_ylim(45, 57) 
272 # ax[1,0].set_ylim(-20, 5) 
273 # ax[2, 0].set_ylim(-1, 1) 
274 # ax[0,1].set_ylim(-25, 35) 
275 # ax[1,1].set_ylim(-10, 25) 
276 # ax[2, 1].set_ylim(-1, 1) 
277 # ax[0,2].set_ylim(-20, 20) 
278 # ax[1,2].set_ylim(-10, 15) 
279 # ax[2, 2].set_ylim(-1, 1) 
280 
281 # Legend 
282 ax[0, 0].legend(loc=1, fontsize=8) 
283 ax[0, 1].legend(loc=1, fontsize=8) 
284 ax[0, 2].legend(loc=1, fontsize=8) 
285 ax[1, 0].legend(loc=1, fontsize=8) 
286 ax[1, 1].legend(loc=1, fontsize=8) 
287 ax[1, 2].legend(loc=1, fontsize=8) 
288 ax[2, 0].legend(loc=1, fontsize=8) 
289 ax[2, 1].legend(loc=1, fontsize=8) 
290 ax[2, 2].legend(loc=1, fontsize=8) 
291 
292 # Label Titles 
293 fig.suptitle('Estimated vs True Object States with {}'.format(title_string)) 
294 
295 # Label NED 
296 plt.setp(ax[0, 0], title='Position (m)', ylabel='North') 
297 plt.setp(ax[1, 0], ylabel='East') 
298 plt.setp(ax[2, 0], ylabel='Down') 
299 plt.setp(ax[0, 1], title='Velocity (m/s)') 
300 plt.setp(ax[0, 2], title='Acceleration (m/s^2)') 
301 
302 # Show plot 
303 plt.tight_layout(rect=[0, 0.03, 1, 0.95]) 
304 plt.show() 
305 
306 
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Appendix H.1. Code for Filter Script Selector during System Development (1) 

 

1 import numpy as np 
2 from numpy import sin, cos 
3 import time 
4 from tools.StateWrapper import CameraParameters, MAV_states, Object_states, RotationMatrices 
5 
6 from models.EKF import ObjectState_EKF as EKF 
7 from models.KF import ObjectState_KF as KF 
8 
9 class StateEstimator: 
10 def __init__(self, field_of_view, image_center, elevation, azimuth, initial_covariance=None, 
motion_noise=None, measurement_noise=None, filter=None): 
11 """ 
12 field_of_view, elevation, azimut: float 
13 image_center: 1D int vector [height/2, width/2] 
14 """ 
15 
16 # Create state variables 
17 self.image = [] 
18 self.prev_timestamp = 0 
19 self.timestamp = 0 
20 self.MAV = MAV_states() 
21 self.OBJ = Object_states() 
22 # Setup Parameters 
23 self.params = CameraParameters(field_of_view, image_center) 
24 self.rot_matrices = RotationMatrices(elevation, azimuth) 
25 self.filter = filter 
26 if self.filter != None: 
27 # Filter == 0 for KF, 1 for EKF 
28 if self.filter == 0: 
29 self.state_filter = KF(initial_covariance=initial_covariance, motion_noise=motion_noise, 
measurement_noise=measurement_noise) 
30 elif self.filter == 1: 
31 self.state_filter = EKF(self.params.focal_length, self.rot_matrices, initial_covariance=initial_covariance,  
motion_noise=motion_noise, measurement_noise=measurement_noise) 
32 
33 def update_states(self, image, MAV_command, MAV_position, MAV_orientation, MAV_velocity, MAV_pqr, 
MAV_acc, timestamp): 
34 """ 
35 image: 2D array 3 channel BGR 
36 MAV_position: 1D float vector [N,E,D] 
37 MAV_orientation: 1D float vector [pitch, roll, yaw] 
38 MAV_velocity: 1D float vector [VN, VE, VD] 
39 MAV_pqr: 1D float vector [p, q, r] (gyro reading) 
40 timestamp: float 
41 """ 
42 self.prev_timestamp = self.timestamp 
43 self.MAV.prev_position = self.MAV.position 
44 self.MAV.prev_orientation = self.MAV.orientation 
45 
46 self.image = image 
47 self.timestamp = timestamp 
48 self.OBJ.update_states() 
49 self.MAV.update_states(MAV_command, MAV_position, MAV_orientation, MAV_velocity, MAV_pqr, 
MAV_acc) 
50 
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Appendix H.2. Code for Filter Script Selector during System Development (2) 

 

51 def image_to_relative(self, image_coordinate): 
52 # Calculate LOS vector (order corresponds to NED) 
53 LOS_vector = (np.array(image_coordinate) / np.linalg.norm(image_coordinate)).T 
54 
55 # Range from Flat Earth Model 
56 rotation_matrix = self.rot_matrices.calculate_rotation_matrix(self.MAV.orientation, c2i=True) 
57 coefficients = np.matmul(rotation_matrix, LOS_vector) 
58 altitude = np.abs(self.MAV.position[2]) 
59 scale = altitude / coefficients[2] 
60 relative_vector = np.reshape(scale * coefficients, (1, 3))[0] 
61 return relative_vector 
62 
63 def state_estimation(self, ex, ey): 
64 """ 
65 ex, ey: center to right, center to down 
66 image_center: 1D vector [px, py], although OpenCV inverts axis (i.e. will be [py, px] for OpenCV) 
67 """ 
68 
69 image_coordinate = [ex,ey,self.params.focal_length] 
70 relative_position = self.image_to_relative(image_coordinate) 
71 object_position = (relative_position + self.MAV.position) 
72 Tp = self.timestamp - self.prev_timestamp 
73 
74 # Filter object_position with KF (0) or EKF Relative Model (1) EKF Decoupled Model (2) 
75 if type(self.filter) != type(None): 
76 # Filter position with KF 
77 if self.state_filter.initialised == False: 
78 # If performed geolocation for first time 
79 initial_Tp_estimate = 0.1 
80 initial_position_estimate_offset = [0, 0, 0] 
81 initial_velocity_estimate = [0, 0, 0] 
82 initial_acceleration_estimate = [0, 0, 0] 
83 self.state_filter.initial_state((object_position+initial_position_estimate_offset), initial_velocity_estimate, 
initial_acceleration_estimate) 
84 self.state_filter.predict(initial_Tp_estimate) 
85 else: 
86 self.state_filter.predict(Tp) 
87 if self.filter == 0: 
88 self.state_filter.update(object_position) 
89 else: 
90 self.state_filter.update(image_coordinate, self.MAV, Tp) 
91 object_position = self.state_filter.estimated_object_position() 
92 self.OBJ.position = object_position 
93 
94 
95 """ 
96 Velocity Estimation 
97 """ 
98 if self.filter == None: 
99 position_change = np.array(self.OBJ.position) - np.array(self.OBJ.prev_position) 
100 time_change = self.timestamp - self.prev_timestamp 
101 estimated_velocity = (position_change / time_change) 
102 self.OBJ.velocity = estimated_velocity 
103 else: 
104 if self.state_filter.initialised == True: 
105 self.OBJ.velocity = self.state_filter.estimated_object_velocity() 
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Appendix H.3. Code for Filter Script Selector during System Development (3) 

 

Appendix I.1. Code for Class Definitions during System Development (1) 

 

1 import numpy as np 
2 from numpy import cos, sin 
3 
4 
5 class CameraParameters: 
6 def __init__(self, field_of_view, image_center): 
7 # fov: float 
8 # image_center: 1D int vector [height/2, width/2] 
9 self.image_center = image_center 
10 self.focal_length = int((2*self.image_center[1]) / (2*np.tan(np.deg2rad(field_of_view)/2))) 
11 
12 
13 class MAV_states: 
14 def __init__(self): 
15 self.position = [0,0,0] 
16 self.orientation = [0,0,0] 
17 self.prev_position = [0,0,0] 
18 self.prev_orientation = [0,0,0] 
19 
20 # Required 
21 self.pqr = [0,0,0] # Angular Velocity in Body frame 
22 # self.uvw = [0,0,0] # Translational Velocity in Body frame 
23 self.uvw_dot = [0,0,0] # Translational Acceleration in Body frame 
24 
25 
26 def update_states(self, command, position, orientation, velocity, pqr, acc): 
27 """ 
28 position: 1D float vector [N,E,D] 
29 orientation: 1D float vector in quaternion[q1, q2, q3, q4] 
30 """ 
31 # Save current states to previous states 
32 self.prev_position = self.position 
33 self.prev_orientation = self.orientation 
34 
35 # Update current states 
36 self.command = command 
37 self.position = position 

 

106 
107 
108 """ 
109 Acceleration Estimation 
110 """ 
111 if self.filter == None: 
112 velocity_change = np.array(self.OBJ.velocity) - 
np.array(self.OBJ.prev_velocity) 
113 time_change = self.timestamp - self.prev_timestamp 
114 estimated_acceleration = (velocity_change / time_change) 
115 self.OBJ.acceleration = estimated_acceleration 
116 else: 
117 if self.state_filter.initialised == True: 
118 self.OBJ.acceleration = self.state_filter.estimated_object_acceleration 
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Appendix I.2. Code for Class Definitions during System Development (2) 

 

38 self.orientation = orientation 
39 self.velocity = velocity 
40 self.pqr = pqr 
41 self.uvw_dot = acc 
42 
43 
44 class Object_states: 
45 def __init__(self): 
46 self.iteration = 0 
47 self.position = [0,0,0] 
48 self.prev_position = [0,0,0] 
49 self.velocity = [0,0,0] 
50 self.prev_velocity = [0,0,0] 
51 self.acceleration = None 
52 
53 
54 def update_states(self, Tp=0.1, position=[0,0,0]): 
55 self.prev_position = self.position 
56 self.prev_velocity = self.velocity 
57 self.position = position 
58 
59 if self.iteration != 0: 
60 self.velocity = ((np.array(self.position) - np.array(self.prev_position))/Tp) 
61 if self.iteration == 3: 
62 self.acceleration = ((self.velocity-self.prev_velocity)/Tp) 
63 else: 
64 self.iteration+=1 
65 
66 
67 class Relative_states: 
68 def __init__(self): 
69 self.iteration = 0 
70 self.position = None 
71 self.prev_position = None 
72 self.velocity = None 
73 self.prev_velocity = None 
74 self.acceleration = None 
75 
76 
77 def update_states(self, Tp, position, MAV_down_vel): 
78 self.prev_position = self.position 
79 self.prev_velocity = self.velocity 
80 self.position = position 
81 
82 if self.iteration != 0: 
83 self.velocity = ((self.position - self.prev_position)/Tp) 
84 self.velocity[2] = -MAV_down_vel 
85 if self.iteration == 3: 
86 self.acceleration = ((self.velocity-self.prev_velocity)/Tp) 
87 else: 
88 self.iteration+=1 
89 
90 
91 class RotationMatrices: 
92 def __init__(self, elevation, azimuth): 
93 # elevation, azimuth - floats in radian 
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Appendix I.3. Code for Class Definitions during System Development (3) 

 

  

94 self.gimbal_to_camera = np.array([[0,1,0],[0,0,1],[1,0,0]]) 
95 self.body_to_gimbal = self.btg_matrix(elevation, azimuth) 
96 self.camera_orientation = [elevation, azimuth] 
97 self.rotation_matrix = [] 
98 
99 def btg_matrix(self, el,az): 
100 # el, az - floats in radian 
101 r1 = [cos(el)*cos(az), cos(el)*sin(az), -sin(el)] 
102 r2 = [-sin(az), cos(az), 0] 
103 r3 = [sin(el)*cos(az), sin(el)*sin(az), cos(el)] 
104 return np.array([r1,r2,r3]) 
105 
106 def calculate_rotation_matrix(self, vehicle_orientation, c2i=True): 
107 # vehicle_orientation - 1D float vector in theta phi psi (radian) 
108 
109 phi = vehicle_orientation[0] # phi 
110 theta = vehicle_orientation[1] # theta 
111 psi = vehicle_orientation[2] # psi 
112 
113 vehicle_to_body = np.array([ 
114 [cos(theta)*cos(psi) , cos(theta)*sin(psi) , -sin(theta)], 
115 [sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi) , 
sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi) , cos(theta)*sin(phi)], 
116 [cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi) , 
sin(theta)*cos(phi)*sin(psi) - sin(phi)*cos(psi) , cos(theta)*cos(phi)] 
117 ]) 
118 
119 # if c2i == True: 
120 # # Camera to Inertial 
121 # return np.matmul(np.linalg.inv(vehicle_to_body), 
np.linalg.inv(self.gimbal_to_camera)) 
122 # else: 
123 # # Inertial to Camera 
124 # return np.matmul(self.gimbal_to_camera,vehicle_to_body) 
125 
126 if c2i == True: 
127 # Camera to Inertial 
128 return np.matmul(np.linalg.inv(vehicle_to_body), 
np.matmul(np.linalg.inv(self.body_to_gimbal), 
np.linalg.inv(self.gimbal_to_camera))) 
129 else: 
130 # Inertial to Camera 
131 return np.matmul(self.gimbal_to_camera,np.matmul(self.body_to_gimbal, 
vehicle_to_body)) 

 

1 def jacobian(self, model, x): 
2 f = model(x) # f returns predicted rate in change of states 
3 m = f.shape[1] 
4 n = x.shape[1] 
5 
6 eps = 0.01 # deviation 
7 J = np.zeros((m,n)) 
8 for i in range(0,n): 
9 x_eps = np.copy(x) 
10 x_eps[0][i]+=eps 
11 f_eps = model(x_eps) 
12 df = (f_eps - f) / eps 
13 J[:,i] = df[0,:] 
14 
15 return J 
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Appendix J. Numerical Calculation of Jacobian Matrix 

 

Appendix K. Derivation of Motion Noise Matrix Qt 

Constant Acceleration with Noise q 

Acceleration Noise in Velocity 

Acceleration Noise in Position 
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1 def jacobian(self, model, x): 
2 f = model(x) # f returns predicted rate in change of states 
3 m = f.shape[1] 
4 n = x.shape[1] 
5 
6 eps = 0.01 # deviation 
7 J = np.zeros((m,n)) 
8 for i in range(0,n): 
9 x_eps = np.copy(x) 
10 x_eps[0][i]+=eps 
11 f_eps = model(x_eps) 
12 df = (f_eps - f) / eps 
13 J[:,i] = df[0,:] 
14 
15 return J 
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Appendix L.1. EKF Implementation Code (1) 

 

  

1 import numpy as np 
2 from numpy import tan 
3 from numpy import cos 
4 from numpy import sin 
5 
6 class ObjectState_EKF: 
7 def __init__(self, f, rotation_matrices, initial_covariance=[5, 5, 5], motion_noise = 2, 
measurement_noise=[1,1,0.1,10]): 
8 self.initialised = False 
9 self.rot_mat = rotation_matrices # For measurement prediction (body to camera frame) 
10 self.focal_length = f 
11 
12 # Object Initial State Covariance (mav_ori,mav_pos, pos, vel, acc) 
13 obj_pos_cov, obj_vel_cov, obj_acc_cov = initial_covariance 
14 self.P = np.diag([obj_pos_cov, obj_pos_cov, 0, obj_vel_cov, obj_vel_cov, 0, obj_acc_cov, obj_acc_cov, 0]) 
15 
16 self.q = motion_noise 
17 
18 # Object Image Pixel Noise (No noise on focal length) 
19 pxpy_noise, pos_noise, ori_noise = measurement_noise 
20 self.R = 
np.diag([pxpy_noise,pxpy_noise,pos_noise,pos_noise,pos_noise,ori_noise,ori_noise, ori_noise]) 
21 
22 def initial_state(self, OBJ_pos, OBJ_vel, OBJ_acc): 
23 N,E,D = OBJ_pos 
24 VN,VE,VD = OBJ_vel 
25 AN,AE,AD = OBJ_acc 
26 self.last_position = OBJ_pos 
27 self.x_hat = np.array([[N,E,D,VN,VE,VD,AN,AE,AD]]) 
28 self.initialised = True 
29 
30 """ 
31 MAV State Conversion Equations 
32 """ 
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Appendix L.2. EKF Implementation Code (2) 

 

33 def angular_rotation_matrix(self, phi, theta): 
34 # Body to Inertial 
35 return np.array([[1, sin(phi) * tan(theta), cos(phi) * tan(theta)], 
36 [0, cos(phi), -sin(phi)], 
37 [0, sin(phi) / cos(theta), cos(phi) / cos(theta)]]) 
38 
39 def translational_rotation_matrix(self, phi, theta, psi): 
40 # Body to Inertial 
41 return np.array([[cos(theta) * cos(psi), sin(theta) * sin(phi) * cos(psi) - cos(phi) * sin(psi), cos(phi) * sin(theta) * 
cos(psi) + sin(phi) * sin(psi)], 
42 [cos(theta) * sin(psi), sin(theta) * sin(phi) * sin(psi) + cos(phi) * cos(psi), sin(theta) * cos(phi) * sin(psi) - 
sin(phi) * cos(psi)], 
43 [-sin(theta), cos(theta) * sin(phi), cos(theta) * cos(phi)]]) 
44 
45 def Q(self, Tp): 
46 Q = np.array([[(1/20)*Tp**5, 0,0, (1/8)*Tp**4, 0,0, (1/6)*Tp**3, 0,0], 
47 [0, (1/20)*Tp**5, 0,0, (1/8)*Tp**4, 0,0, (1/6)*Tp**3, 0], 
48 [0, 0, 0, 0, 0, 0, 0, 0, 0], 
49 [(1/8)*Tp**4, 0,0, (1/3)*Tp**3, 0,0, (1/2)*Tp**2, 0,0], 
50 [0, (1/8)*Tp**4, 0,0, (1/3)*Tp**3, 0,0, (1/2)*Tp**2, 0], 
51 [0, 0, 0, 0, 0, 0, 0, 0, 0], 
52 [(1/6)*Tp**3, 0,0, (1/2)*Tp**2, 0,0, Tp, 0,0], 
53 [0, (1/6)*Tp**3, 0,0, (1/2)*Tp**2, 0,0, Tp, 0], 
54 [0, 0, 0, 0, 0, 0, 0, 0, 0]]) 
55 Q = self.q * Q 
56 return Q 
57 
58 def f_obj(self, Tp): 
59 f_obj = np.array([[1, 0, 0, Tp, 0, 0, 0.5*(Tp**2), 0, 0], 
60 [0, 1, 0, 0, Tp, 0, 0, 0.5*(Tp**2), 0], 
61 [0, 0, 0, 0, 0, 0, 0, 0, 0], 
62 [0, 0, 0, 1, 0, 0, Tp, 0, 0], 
63 [0, 0, 0, 0, 1, 0, 0, Tp, 0], 
64 [0, 0, 0, 0, 0, 0, 0, 0, 0], 
65 [0, 0, 0, 0, 0, 0, 1, 0, 0], 
66 [0, 0, 0, 0, 0, 0, 0, 1, 0], 
67 [0, 0, 0, 0, 0, 0, 0, 0, 0]]) 
68 return f_obj 
69 def state_prediction(self, x_hat): 
70 # OBJ States Prediction 
71 state_trainsition_matrix = self.f_obj(self.Tp) 
72 state = np.matmul(state_trainsition_matrix, x_hat.T).T 
73 return state 
74 
75 def predict(self, Tp): 
76 self.Tp = Tp 
77 self.x_hat = self.state_prediction(self.x_hat) 
78 F = self.f_obj(Tp) 
79 self.P = np.matmul(np.matmul(F,self.P),F.T) + self.Q(Tp) 
80 
81 def measurement_covariance(self,z): 
82 relative_position = self.x_hat[0][:3] - z[0,2:5] 
83 unit_LOS_vector = relative_position/np.linalg.norm(relative_position) 
84 
85 inertial_to_camera_matrix = self.rot_mat.calculate_rotation_matrix(z[0,5:8], c2i=False) 
86 unit_cam_vector = np.matmul(inertial_to_camera_matrix, unit_LOS_vector) 
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Appendix L.3. EKF Implementation Code (3) 

 

87 px, py, f = (self.focal_length/unit_cam_vector[2]) * unit_cam_vector 
88 
89 n,e,d = z[0,2:5] 
90 phi, theta, psi = z[0,5:8] 
91 predicted_measurement = np.array([[px,py,n,e,d,phi,theta,psi]]) 
92 return predicted_measurement 
93 
94 def calculate_covariance_matrix(self, z): 
95 cov_matrix = self.jacobian(self.measurement_covariance, z) 
96 cov_matrix[0,0], cov_matrix[1,1] = 1, 1 
97 return cov_matrix 
98 
99 def measurement_model(self,x_hat): 
100 # phi,theta, _ = self.MAV.prev_orientation 
101 # phi, theta, psi = self.MAV.prev_orientation + 
np.matmul(self.angular_rotation_matrix(phi,theta),np.array(self.MAV.pqr)) * 
self.Tp 
102 # n,e,d = self.MAV.prev_position + np.array(self.MAV.velocity)*self.Tp 
103 
104 n,e,d = self.MAV.position 
105 phi,theta,psi = self.MAV.orientation 
106 N,E,D = self.x_hat[0][3:6] 
107 relative_position = x_hat[0][:3] - [n,e,d] 
108 unit_LOS_vector = relative_position/np.linalg.norm(relative_position) 
109 
110 inertial_to_camera_matrix = 
self.rot_mat.calculate_rotation_matrix(self.MAV.orientation, c2i=False) 
111 unit_cam_vector = np.matmul(inertial_to_camera_matrix, unit_LOS_vector) 
112 px, py, f = (self.focal_length/unit_cam_vector[2]) * unit_cam_vector 
113 
114 predicted_measurement = np.array([[px,py,n,e,d,phi,theta,psi]]) 
115 return predicted_measurement 
116 
117 def update(self, image_coordinate, MAV, Tp): 
118 self.Tp = Tp 
119 self.MAV = MAV 
120 n,e,d = MAV.position 
121 r,p,y = MAV.orientation 
122 px, py, _ = image_coordinate 
123 
124 actual_measurement = np.array([[px,py,n,e,d,r,p,y]]) 
125 
126 C = self.jacobian(self.measurement_model, self.x_hat) 
127 cov = self.calculate_covariance_matrix(actual_measurement) 
128 noise_cov = np.matmul(np.matmul(cov, self.R), cov.T) 
129 term = noise_cov + np.matmul(np.matmul(C, self.P), C.T) 
130 
131 inverse_term = np.linalg.inv(term) 
132 self.kalman_gain = np.matmul(np.matmul(self.P, C.T),inverse_term) 
133 self.P = np.matmul((np.eye(9)-np.matmul(self.kalman_gain,C)), self.P) 
134 
135 
136 predicted_measurement = self.measurement_model(self.x_hat) 
137 prediction_error = (actual_measurement - predicted_measurement).T 
138 prev_pos = self.x_hat[0][:3] 
139 self.x_hat = self.x_hat + np.matmul(self.kalman_gain, prediction_error).T 
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Appendix L.4. EKF Implementation Code (4) 

 

 

 

140 self.last_px = px,py 
141 position_error = self.x_hat[0][:3] - prev_pos 
142 # print("Prediction Error in position: {}".format(position_error)) 
143 # print("Prediction Error in pxpy: {}".format(prediction_error[:2].T)) 
144 
145 self.estimated_pxpy = self.measurement_model(self.x_hat)[0][:2] 
146 
147 def estimated_object_position(self): 
148 estimated_obj_position = self.x_hat[0][:3] 
149 return estimated_obj_position 
150 
151 def estimated_object_velocity(self): 
152 estimated_obj_velocity = self.x_hat[0][3:6] 
153 return estimated_obj_velocity 
154 
155 def estimated_object_acceleration(self): 
156 estimated_obj_acceleration = self.x_hat[0][6:9] 
157 return estimated_obj_acceleration 
158 
159 
160 def jacobian(self, model, x): 
161 f = model(x) # f returns predicted rate in change of states 
162 m = f.shape[1] 
163 n = x.shape[1] 
164 
165 eps = 0.01 # deviation 
166 J = np.zeros((m,n)) 
167 for i in range(0,n): 
168 x_eps = np.copy(x) 
169 x_eps[0][i]+=eps 
170 f_eps = model(x_eps) 
171 df = (f_eps - f) / eps 
172 J[:,i] = df[0,:] 
173 
174 return J 



 

70 

 

Appendix M. MAV position, orientation, angular velocity and translational acceleration 

obtained from Airsim (top) and Ardupilot (bottom) 
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Appendix N.  Result from Sample Dataset after orientation correction 

 

Appendix O. Result from Sample Dataset after timestamp correction 
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Appendix P. Results from different MAV state (top) and image coordinate (bottom) noise 

parameters 

 

 

 

 

Appendix Q. Image from AirsimNH (left) and Blocks (right) Environment 
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Appendix R. Shell script for automated 100 Airsim simulation 

 

Appendix S.1. Sample Images from Dataset (Scenario 0) 

 

 

  

1 for i in {0..99} 
2 do 
3 echo Run $i 
4 gnome-terminal -e 'sh -c ~/Airsim/Blocks/LinuxNoEditor/Blocks/Binaries/Linux/Blocks 
-windowed' 
5 sleep 10 
6 python ~/Desktop/SRCE/dataset_generator/DATASET_circle_circle.py $i & 
7 pid=$! 
8 wait $pid 
9 kill $(pidof Blocks) 
10 done 
11 
12 
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Appendix S.2. Sample Images from Dataset (Scenario 1) 

 

Appendix S.3. Sample Images from Dataset (Scenario 2) 
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Appendix S.4. Sample Images from Dataset (Scenario 3) 

 

Appendix S.5. Sample Images from Dataset (Scenario 4) 
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Appendix S.6. Sample Images from Dataset (Scenario 5) 

 

Appendix S.7. Sample Images from Dataset (Scenario 6) 
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Appendix S.8. Sample Images from Dataset (Scenario 7) 

 

Appendix T.1. Unfiltered State Estimate Plots (Scenario 0) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix T.2. Unfiltered State Estimate Plots (Scenario 1) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix T.3. Unfiltered State Estimate Plots (Scenario 2) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix T.4. Unfiltered State Estimate Plots (Scenario 3) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix T.5. Unfiltered State Estimate Plots (Scenario 4) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix T.6. Unfiltered State Estimate Plots (Scenario 5) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix T.7. Unfiltered State Estimate Plots (Scenario 6) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix T.8. Unfiltered State Estimate Plots (Scenario 7) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix U.1. Baseline EKF State Estimate Plots (Scenario 0) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 



 

82 

 

Appendix U.2. Baseline EKF State Estimate Plots (Scenario 1) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix U.3. Baseline EKF State Estimate Plots (Scenario 2) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix U.4. Baseline EKF State Estimate Plots (Scenario 3) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix U.5. Baseline EKF State Estimate Plots (Scenario 4) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix U.6. Baseline EKF State Estimate Plots (Scenario 5) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix U.7. Baseline EKF State Estimate Plots (Scenario 6) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  
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Appendix U.8. Baseline EKF State Estimate Plots (Scenario 7) 

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual 

scenario  

 

Appendix V.1. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 0)
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Appendix V.2. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 1)

 

Appendix V.3. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 2)
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Appendix V.4. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 3)

 

Appendix V.5. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 4)
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Appendix V.6. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 5) 

 

Appendix V.7. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 6) 
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Appendix V.8. Baseline EKF State Estimation Average Error with different pixel noise 

parameter (Scenario 7)

 

Appendix W.1. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 0) 
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Appendix W.2. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 1) 

 

Appendix W.3. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 2) 
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Appendix W.4. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 3) 

 

Appendix W.5. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 4) 
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Appendix W.6. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 5) 

 

Appendix W.7. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 6) 
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Appendix W.8. Baseline EKF State Estimation Average Error with different acceleration 

noise q (Scenario 7) 

 

Appendix X.1. Baseline EKF average estimation error with MAV state noise (Scenario 0) 
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Appendix X.2. Baseline EKF average estimation error with MAV state noise (Scenario 1) 

  

Appendix X.3. Baseline EKF average estimation error with MAV state noise (Scenario 2) 
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Appendix X.4. Baseline EKF average estimation error with MAV state noise (Scenario 3) 

 

Appendix X.5. Baseline EKF average estimation error with MAV state noise (Scenario 4) 
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Appendix X.6. Baseline EKF average estimation error with MAV state noise (Scenario 5) 

 

Appendix X.7. Baseline EKF average estimation error with MAV state noise (Scenario 6) 
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Appendix X.8. Baseline EKF average estimation error with MAV state noise (Scenario 7) 

 

Appendix Y.1. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 0) 
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Appendix Y.2. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 1) 

 

Appendix Y.3. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 2) 
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Appendix Y.4. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 3) 

 

Appendix Y.5. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 4) 
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Appendix Y.6. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 5) 

 

Appendix Y.7. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 6) 
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Appendix Y.8. Baseline EKF average estimation error with 0.1 seconds lag in object bounding 

box (Scenario 7) 

 

Appendix Z.1. Baseline EKF average estimation error with different measurement update 

rate (Scenario 0) 
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Appendix Z.2. Baseline EKF average estimation error with different measurement update 

rate (Scenario 1) 

 

Appendix Z.3. Baseline EKF average estimation error with different measurement update 

rate (Scenario 2) 
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Appendix Z.4. Baseline EKF average estimation error with different measurement update 

rate (Scenario 3) 

 

Appendix Z.5. Baseline EKF average estimation error with different measurement update 

rate (Scenario 4) 
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Appendix Z.6. Baseline EKF average estimation error with different measurement update 

rate (Scenario 5) 

 

Appendix Z.7. Baseline EKF average estimation error with different measurement update 

rate (Scenario 6) 
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Appendix Z.8. Baseline EKF average estimation error with different measurement update 

rate (Scenario 7) 

 

 


