

Vision-Based Real-Time

Velocity Estimation

By

Gayeon Lee

Thesis

Submitted to Flinders University

for the degree of Bachelor of Engineering (Robotics)(Honours) / Master of

Engineering (Electronics)

Bachelor of Engineering (Robotics)(Honours) / Master

of Engineering (Electronics)

College of Science and Engineering

<30/10/2023>

i

TABLE OF CONTENTS

ABSTRACT ... III

DECLARATION ... IV

ACKNOWLEDGEMENTS.. V

LIST OF FIGURES .. VI

1. INTRODUCTION .. 1

1.1. Background ... 1

1.2. Project Motivation ... 2

1.3. Project Outline ... 3

1.3.1. Terms and Clarification .. 3

1.3.2. Aim ... 3

1.3.4. Scope and Objectives .. 4

1.3.5. Assumptions ... 4

2. LITERATURE REVIEW.. 5

2.1. Camera Types and Models .. 5

2.2. State Estimation Filters ... 8

2.3. Velocity Measurement .. 10

2.4. Summary ... 12

3. METHODOLOGY... 13

3.1. Equipment and Settings ... 14

3.1.1. Hardware... 14

3.2.2. Software .. 14

3.2. System Development Procedure ... 15

3.2.1. Geolocation Model Description .. 15

3.2.3. Sample Dataset Extraction .. 18

3.2.4. Framework Implementation.. 19

3.2.5. Model Design and Implementation to Estimation Filters ... 20

3.3. Dataset Extraction ... 28

4. RESULTS AND DISCUSSION .. 31

4.1. No MAV state noise .. 33

4.1.1. Results .. 33

4.1.2. Discussion ... 33

4.2. With MAV state noise ... 36

4.2.1. Results .. 36

4.2.2. Discussion ... 36

4.3. With lag in object bounding box measurement ... 38

4.3.1. Results .. 38

ii

4.3.2. Discussion ... 38

4.4. Decrease in update rate.. 38

4.4.1. Results .. 38

4.4.2. Discussion ... 39

4.5. Additional Analysis Plan ... 39

CONCLUSIONS .. 40

FUTURE WORK ... 40

REFERENCES ... 41

APPENDICES .. 47

iii

ABSTRACT

For autonomous system, it is often useful to know the position and velocity of nearby objects for

tasks such as obstacle avoidance or object tracking. The hidden states of an object, such as velocity,

can be estimated by knowing the mathematical model that describes the relationship between the

measurable state and the hidden state. Hence, both position and velocity of the object can be found

by object position measurement. For autonomous Micro-Aeria-Vehicle (MAV), various research

investigated in using camera for real-time object state estimation as it is a low-cost and low-

complexity alternative of ranging sensors. However, little literature is available when the scope is

narrowed down to a moving object and moving MAV, despite the position of ground object can be

obtained with the camera on MAV. This project aims to develop real-time object velocity

estimation system, only using strapdown camera for the exteroceptive sensor, to be integrated onto

a MAV (or other aerial system). The project assumes the object is a ground vehicle, on a flat surface

with known altitude, moving at a constant acceleration. The system must be robust to measurement

noise for practical application and must be applicable for object at a long-range (i.e. 100 m+). The

ground vehicle (for the object) and MAV was simulated at maximum of 30 and 50 m/s of speed.

Considering the reviewed literatures, this project initially proposed to use the pin-hole camera

model, with Extended Kalman Filter (EKF) as a baseline, and to fuse with optical flow model for

inertial state-estimation by Unscented Kalman Filter (UKF). The baseline EKF was developed and

tested on a sample dataset, then in depth analysis of EKF was done to assess its suitability for

velocity estimation using a strapdown monocular camera. The dataset for system analysis was

extracted which consisted of scenarios with stationary vehicle, vehicle in linear and angular motion

in a combination of different MAV motion. The baseline system was able to achieve all project aim

in the tested scenarios except achieving robust performance under measurement noise; it was found

the system has significantly high sensitivity to noise in MAV orientation. It was assumed that the

system sensitivity is caused from the measurement model. The rotation matrices, that contains

MAV orientation and camera parameters, in the measurement model is highly non-linear. EKF uses

linear approximation of model which is not as effective to highly non-linear model where UKF

performs better in such cases. As the future work, including system application to UKF, a list of

tasks was identified to improve the system and further analyse the system performance.

iv

DECLARATION

I certify that this thesis:

1. does not incorporate without acknowledgment any material previously submitted for a

degree or diploma in any university

2. and the research within will not be submitted for any other future degree or diploma without

the permission of Flinders University; and

3. to the best of my knowledge and belief, does not contain any material previously published

or written by another person except where due reference is made in the text.

Signature of student...............Gayeon Lee..................

Print name of student.............Gayeon Lee..................

Date.........30/10/2023...................

I certify that I have read this thesis. In my opinion it is/is not (please circle) fully adequate, in scope

and in quality, as a thesis for the degree of Bachelor of Engineering (Robotics)(Honours) / Master

of Engineering (Electronic). Furthermore, I confirm that I have provided feedback on this thesis and

the student has implemented it minimally/partially/fully (please circle).

Signature of Principal Supervisor..

Print name of Principal Supervisor..

Date..

v

ACKNOWLEDGEMENTS

I acknowledge that this project was conducted under a large support from multiple supervisors. I

would like to thank my supervisor Professor Karl Sammut for providing huge support and resources

during the project especially regarding the university management and assessment related agendas.

I also would like to thank supervisor Dr Jia Kok for constantly providing project resources and

technical assistance/guidance throughout the project. I thank supervisor Dr Bradley Fraser for

providing support to meet the project agendas and timeline along with necessary management and

arrangement for the project and related assessment. Last but not least, I would like to thank Dr

Anna Dostovalova for allowing me to share her office space and providing opportunity to attend the

workshop that covered the contents related to the project.

Besides the supervisors, I would like to thank Dr Yiding Hu for sharing his knowledge on the

Bayesian filters, its application, and the modelling process. Furthermore, I would also like to thank

Dr Jijoong Kim who provided related resources and implementation examples which also supported

me in understanding the concepts and its implementation. The project was improved significantly

from the information and materials provided through these supports.

vi

LIST OF FIGURES

Figure 1: Example model for binocular camera projection geometry (Ma, et al., 2019) 5

Figure 2: Object (left) distorted in image (right) by translational motion due to rolling shutter effect

(Kim, et al., 2020) .. 6

Figure 3. Pinhole camera projection model (Beard & McLain, 2012) .. 7

Figure 4. Clear (left) and blurred (right) object image due to object motion (Lin, 2005) 10

Figure 5. Visualisation of optical flow between current and previous image frame (He, et al., 2017)

 .. 10

Figure 6. Diagram representation of the speculation on optical flow estimation 12

Figure 7. Baseline System Diagram ... 13

Figure 8. Proposed System Diagram.. 13

Figure 9. MAV and Vehicle Position for Geolocation Model Test ... 17

Figure 10. Image taken from Airsim camera with manually identified object bounding box 18

Figure 11. Flow Diagram for Sample Dataset Extraction .. 19

Figure 12. Flow Diagram for Sample Dataset Processing ... 20

Figure 13. Result from Sample Dataset ... 24

Figure 14. True (red) and measured (green) object bounding box centre with vehicle facing North

(bottom-to-the-top)... 24

Figure 15. Estimated position after MAV state correction (from Ardupilot to Airsim) 26

Figure 16. Effect of MAV State Error to the Expected Image Coordinate of Point P 27

Figure 17. Trajectory Plot of MAV (black) and Vehicle (blue) in Scenario 0 to 7 28

Figure 18. Flow Diagram for Dataset Extraction ... 30

Figure 19. Baseline EKF velocity estimation error under no MAV state noise 33

Figure 20. Sample Camera Image from Scenario 0 ... 34

Figure 21. Deformation of Grid Projection in Camera Image (Gunawan, et al., 2019) 35

Figure 22. Position Error with Correct Measurement .. 35

Figure 23. Resultant Position Error from MAV Position vs Orientation Noise 37

Figure 24. Distribution estimation by linear approximation (left) vs unscented transform (right)

(Kim & Ristic, 2023) ... 37

1

1. INTRODUCTION

1.1. Background

Autonomous systems often need a sensor to detect distance to any nearby objects or obstacles. The

information is used for tasks such as obstacle avoidance, state estimation, etc (Siegwart, et al.,

2011). The state estimation can be done for the estimation of inertial state of the autonomous

system (Grau & Pansiot, 2012; He, et al., 2017) or the state of a nearby object (Strydom, et al., 2015)

with appropriate measurement and system model. For object state estimation, the global position of

the object can be derived from the range measurement using appropriate model (Strydom, et al.,

2015). Furthermore, the velocity of an object can be also estimated from the position estimate;

although, it cannot be taken from a single instance as it must be estimated from the position changes

over a certain time due to the concept of velocity.

A good object velocity estimation using a monocular camera and on-board INS can often be

estimated by differentiating target position. The object position estimation on an autonomous

system is often derived from two types of measurements which are the states of the autonomous

system (i.e. position and attitude) and the range/bearing measurement to the object. The range and

bearing measurement can be taken from either using a ranging sensors such as LiDAR (Javanmardi,

et al., 2019; Kubelka, et al., 2015) or a camera with aid of computer vision under a list of

assumptions (Pagello, et al., 2004; Gunawan, et al., 2019). A camera is often integrated onto an

autonomous system due to the advantage that the visual field contains more information than a

range and bearing to the object, including object type, pose or the scene context (Szeliski, 2011).

However, it may require a significant processing time for real-time application depending on the

algorithm. In contrast, ranging sensor often provides more accurate measurement at a faster update

rate where the quality may still vary by the cost. It is advantageous for an autonomous system to

obtain any measurements at a fast update rate to react to the nearby objects in real-time; a ranging

sensor may be more appropriate for such applications, although, it is often costly compared to a

camera where the cost increases with the sensor quality.

2

1.2. Project Motivation

Multiple research projects have successfully investigated using camera to perform real-time state

estimation on an autonomous platform (Gunawan, et al., 2019; Pan, et al., 2023). Among the goals

of research are to achieve such capability at a lower cost and to reduce system complexity by

involving no ranging sensor; the camera also can be used for other capabilities concurrently. When

the context is limited to a camera attached on a Miniature Aerial Vehicle (MAV) platform, the

current research mainly focuses on the inertial state estimation rather than an object state

estimation.

It is usually in context of a limited camera and object motion when the context is narrowed down to

the object state estimation. These research with the limit in motion, such as a stationary camera and

ground vehicle moving at a known linear path, investigates problems specifically for traffic control

(Gunawan, et al., 2019; Ning, et al., 2022). Some deploy a mathematical model of the camera

projection to convert a certain image coordinate to the global coordinate system using the MAV

states to measure the global coordinate of a ground object (Barber, et al., 2006; Beard & McLain,

2012; Cai, et al., 2022). Furthermore, any states that are not directly measurable, such as velocity of

an object, can be estimated by developing a mathematical state model and filtering the measurement

according to the model (Rigatos, 2010; Ullah, et al., 2020; Wang, et al., 2015). Despite the points,

literatures on object velocity estimation with less limitation is not readily available.

The currently available methodologies are capable to perform real-time velocity estimation of a

ground object from camera on a MAV, with fewer assumptions and limitations on camera and

object motion. This further allows for a decrease in cost and system complexity to build a MAV (or

capability extension for existing MAV with camera with no ranging sensors) for the real-time object

velocity estimation and availability for further capability extension through development of

computer vision algorithms.

3

1.3. Project Outline

1.3.1. Terms and Clarification

This report uses the term ‘object’ and ‘vehicle’ interchangeably due to the project using a ground

vehicle to simulate a moving object. The term ‘filter’ and ‘system’ was also used interchangeably.

The model that converts image coordinates to world coordinates is referred to as Geolocation Model

or Position Measurement Model. Any ranging sensors mentioned in this report indicates those

ranging sensors used or required to take ranging measurement to the object. Note that an MAV may

still be integrated with a ranging sensor dedicated for altitude or other inertial state measurement.

1.3.2. Aim

This project aims to develop an object velocity estimation system applicable to a MAV camera to

detect a single ground object. The system must be able to estimate the object velocity under the

following conditions:

 Real-time detection

 Noises in all measurements

 Non-stationary MAV and object

 No prior knowledge of the object trajectory

 No limitation from the distance to the object

The conditions are set to ensure the system to be available for wider range of application and not

limited to specific scenarios. The system will be capable to be paired to any object detection system,

if the required input is provided, although, the performance of the estimation may be affected by the

performance of the object detection. The real-time capability enables the MAV to perform other

tasks concurrently, for example, it may use the object velocity information to improve the object

tracking performance.

The project aim was set in anticipation to achieve:

 a reduction in development cost and system complexity of a MAV by eliminating the need

to integrate a ranging sensor dedicated to the estimation task;

 a capability extension to existing MAVs with integrated camera without a ranging sensor.

4

1.3.4. Scope and Objectives

This project was planned to progress through below objectives to achieve the project aim:

1. Develop the real-time object velocity estimation system in a simulated environment.

2. Investigate the estimation performance under different types of MAV and vehicle motion.

3. Assess whether the system is applicable at a long-range (operatable at 100 m or a longer

distance) and in real-time (100 Hz or higher update rate).

4. (Extended Scope) Test the system on a MAV hardware.

This project focuses on the development of a methodology to process the object bounding box for

object velocity estimation. The project scope does not include the development and performance

analysis of the object detection system.

1.3.5. Assumptions

This project was conducted based on a list of assumptions as follows:

 Flat-surface assumption

o It was assumed that the problem would become extremely challenging to simulate an

object in a map with dynamic altitude. To simplify the problem, for the project to be

feasible within the given time limit, it was assumed that the ground vehicle placed in

an environment with constant altitude.

o This project represents coordinates in North-East-Down convention.

 MAV

o The simulated MAV was assumed to move at maximum of 50 m/s (180 km/h)

o Any inertial state of the MAV was assumed to be accessible for the estimation.

Those states include global position, attitude or other MAV states that is required for

the estimation.

 Camera

o This project assumes that the camera is strapdown to a MAV and the relative

position and attitude of the camera to the MAV is kept constant throughout the

estimation (i.e. no gimbal involved).

o The camera parameters are also known prior to the estimation.

 Object

o The simulated object is a ground vehicle which is assumed to move at a constant

linear or angular acceleration.

o The vehicle is assumed to move at a maximum 30 m/s (108 km/h) of speed. This is

to ensure the system to be functional for measuring an object moving at a high speed.

5

2. LITERATURE REVIEW

This section reviews the works relevant to the project to achieve the project aim based on the scope

and assumptions. The papers were selected with consideration that the system must be applicable

for real-time, long-range and sensors with noise in addition to satisfying the project assumptions.

Initially, a several camera types and its models were investigated to identify the suitable

methodology to visually measure the object position, which is to be differentiated into velocity

information. To achieve a system robust to measurement noise, examples of state estimation filters

and their general performance were reviewed to be applied for the most appropriate camera model

identified from the review of camera types and models. Lastly, other applicable methodologies were

investigated to extract the object velocity measurement to be fused with the differentiated position

estimate to seek possible improvement in the velocity estimation.

2.1. Camera Types and Models

Focusing on object position measurement using camera vision, there are various approaches

available where the available options differ by the camera types due to the different projection

properties (Guo & Li, 2022; Kim, et al., 2020; Trigkakis, et al., 2020). The different types of

camera vision are reviewed in this section to determine the type of vision that would be the most

efficient to achieve the project aim.

A binocular camera is one of the visual sensors frequently used for visual-ranging tasks on

autonomous systems (Lee & Yoon, 2018; McGuire, et al., 2017; Strydom, et al., 2015). The

distance to an object from the camera is measured by the difference in object position on the two

imaging planes with a known baseline (i.e. the distance between the parallel perspectives) and

camera parameters, using trigonometry, similar to the model shown in Figure 1 (Krotkov, et al.,

1990; Ma, et al., 2019; McGuire, et al., 2017).

Figure removed due to copyright restriction

Figure 1: Example model for binocular camera projection geometry (Ma, et al., 2019)

This method is applicable in real-time under the camera and object motion; however, it is not often

applied for a range beyond 10 m maximum (Lee & Yoon, 2018) (McGuire, et al., 2017) (Strydom,

et al., 2015). This is due to the feasible range being proportional to the baseline which causes the

measurement to be noisy at a long-range (Strydom, et al., 2015) or requiring the baseline distance to

6

be increased which causes the sensor to grow to the size infeasible for a small vehicle (e.g. MAV).

Thus, it is expected that this methodology would not be applicable for long ranges. Also binocular

cameras are often more costly than monocular cameras in both processing time and cost (Engel, et

al., 2014; Trigkakis, et al., 2020), although, the processing time can be varied depending on the

approach.

Figure removed due to copyright restriction

Figure 2: Object (left) distorted in image (right) by translational motion due to rolling shutter

effect (Kim, et al., 2020)

A monocular camera with a rolling shutter returns an image distorted by the rolling shutter (RS)

effect as shown in Figure 2. In Chun, et al. (2008), Fan, et al. (2021), Lao, et al. (2018), Wu, et al

(2021), researchers attempted to remove the unwanted distortion to ease image processing tasks

(e.g. object detection). It was shown that the image distortion can be corrected and can be utilised to

extract information such as the depth map (Fan, et al., 2021), the inertial motion of the camera

(Grau & Pansiot, 2012) and the motion (e.g. position, velocity, etc) of the object (Ait-Aider, et al.,

2006; Kim, et al., 2020). It is assumed that the restored image would still consist of distortion on an

object moving at a fast speed across the imaging plane, although, in the project context, a ground

vehicle seen from a MAV at a maximum of 300 m distance brings a concern that it would not

always move considerably fast in the image to cause the distortion. Furthermore, the literature

mostly focuses on extracting depth maps on stationary objects/backgrounds or stationary cameras

that seem to require a significant knowledge to understand and utilise the RS effect. It was assumed

that the given project time would be insufficient to investigate the RS effect in the appropriate detail

to achieve extracting velocity information from the project scenario where both camera and the

object move at varying speeds.

A global shutter on a monocular camera provides detailed visual information with minimal

distortion in the image compared to the RS cameras as all part of images are taken at a single

instance; note that different types of distortion (e.g. motion blur, camera lens distortion) may still

exist (Fan, et al., 2021). This property ensures that the image of an object is taken at a constant

time-interval regardless of the object position in the image. The time-interval can slightly vary in

RS camera images due to the rolling-shutter effect. The global shutter camera provides more simple

7

solution than RS camera in estimating object velocity from the differentiated object position. This is

because the accuracy in estimated velocity is sensitive to the time measurements.

Figure removed due to copyright restriction

Figure 3. Pinhole camera projection model (Beard & McLain, 2012)

The pinhole camera model, as shown in Figure 3, is one of a camera model that is often used to

extract the object position relative to the camera under certain assumptions (Fan, et al., 2021; Grau

& Pansiot, 2012; Kim, et al., 2020). Those assumptions include that the object is on a flat surface

with the camera parameters known prior to the estimation and the MAV position and attitude to be

accessible for the time that each image was taken (Barber, et al., 2006; Cai, et al., 2022; Pan, et al.,

2023; Trigkakis, et al., 2020). Note that all the listed assumptions do align with the project

assumption. The advantage of using the monocular global shutter camera by the pinhole camera

model is that the maximum measurable range is not dependent on the sensor size as opposed to the

binocular camera (from the baseline distance requirement). Thus, the maximum measurable range is

dependent on the detection range of the object detector/classifier, which is often much longer than

the maximum measurable range of stereo cameras (Strydom, et al., 2015).

Based on the camera model review, it was expected that using the monocular global shutter camera

would be best suited for the project out of all camera types, that meets the requirement, within the

given project duration.

8

2.2. State Estimation Filters

It is essential to have a system robust to noise. Any noise in the measurement, regardless of the

system model, can easily cause errors in the estimation. These must be filtered. The performance of

the filter and whether it is applicable for the system, varies by the system model. For this project

four types of filters were reviewed: Kalman Filter (KF) (Kalman, 1960), Extended Kalman Filter

(EKF) (McGee, et al., 1962), Unscented Kalman Filter (UKF) (Julier & Uhlmann, 2004) and

Particle Filter (PF) (Del-Moral, 1996), with consideration that the system uses the pinhole camera

model for position measurement, as identified in Section 2.1.

KF and its variants (Julier & Uhlmann, 2004; Kalman, 1960; McGee, et al., 1962) are one of the

most frequently used state filters for those estimation problems that uses a mathematical model of

the state and the measurement, with assumption that the noise in both state and measurement is

Gaussian. KF improves the estimation by interchanging between state prediction and update phase.

It is a filter that can efficiently reduce noises in the linear system with the predict-update concept

which has a low calculation cost (Kim, 2023). However, KF is not often used for autonomous

systems since most of them are nonlinear, and KF cannot be applied to nonlinear system, unless it

can be linearised (Maley, 2015; Sun, et al., 2015; Zhang, et al., 2005; Zhang, et al., 2010). The

pinhole camera model is linear, although, converting the relative position to a global position

involves multiple rotation matrices which is a nonlinear process. To overcome this issue, a number

of variations of KF was developed to apply the same concept to the nonlinear system (Julier &

Uhlmann, 2004; McGee, et al., 1962).

Extended Kalman Filter (EKF) is one of the KF variants developed for a nonlinear system. It

linearise the system using the Jacobian matrix of the system state transition and measurement model

to update the covariance matrices (McGee, et al., 1962). EKF is one of the filters that has been

dominantly used over multiple decades for autonomous systems due to its low-cost and high-

efficiency performance to the nonlinear system regardless of the system platform (McElhoe, 1966;

Suddath, et al., 1967; Wu & Karkoub, 2019). However, EKF is often not suitable for highly non-

linear systems due to the possibility of divergence in the estimation due to the linear approximation

of highly nonlinear systems (Garcia, et al., 2019; Julier & Uhlmann, 2004; Maley, 2015). EKF also

uses an assumption that the system noise is Gaussian (McGee, et al., 1962) which may not be

appropriate to filter the noise from a visual measurement (Benini, et al., 2012), although there are a

few successful cases of using EKF on visual estimation (Jeon, et al., 2022; Wu & Karkoub, 2019).

Thus, EKF may show the best for the project as the proposed system uses visual measurements (i.e.

object detection and optical flow estimate) as the prime source for the object velocity estimation

with highly non-linear system model (i.e. rotation matrices).

9

Unscented Kalman Filter (UKF) is another KF variant for nonlinear system. It uses unscented

transformation (UT) to estimate the probability distribution of noise in individual state vectors

(Julier & Uhlmann, 2004). The filter does not approximate the system but rather estimates the state

distribution by mapping sigma points throughout the state spaces which preserves the nonlinear

properties of the system. This supports the filter to achieve a better performance compared to EKF

for highly nonlinear system (Fang & Huang, 2013; Garcia, et al., 2019). Despite the Gaussian noise

assumption, the filter also successfully filtered visual measurements in some research (Cha & J. G.

Chen, 2016; Sun, et al., 2015; Zhang, et al., 2005). Furthermore, the performance can almost be

similar to EKF with higher processing cost in some cases, although, the UKF tends to converge

much faster than EKF (Garcia, et al., 2019). Considering the points, it is expected that the UKF

would perform better for the project than EKF for the appropriate system approximation and to

achieve a fast recovery of the error from the processing delay.

Particle Filter (PF) is a measurement filter that can estimate the noise distribution of a nonlinear

system without being limited by the gaussian model by plotting sampled estimation from the

estimated probability (Del-Moral, 1996). The performance is proportional by the amount of

sampling done for the estimation which can often achieve high accuracy on any nonlinear system as

it does not take any assumption on the system or the noise unlike EKF (system approximation) and

UKF (Gaussian assumption) (Del-Moral, 1996); however, due to the computational cost from the

sampling approach, it is often not best suitable for real-time applications and still needs solution for

processing optimisation which is a continuing issue of PF despite the advances in current

technology (Moreno, et al., 2009; Saha, et al., 2010; Wahrudin, et al., 2019; Zhang, et al., 2010).

Thus, it is assumed that PF is not suitable to satisfy the project aim in having a fast estimation

system for real-time application.

Overall, the literature suggests that UKF would be the most suitable state filter for the project as KF

and PF are expected not to be able to satisfy one or more of the project requirements (i.e., nonlinear

system model for KF and real-time capability for PF) where EKF is still applicable to the project

but expected to perform less effectively compared to UKF. Nevertheless, this project aims to

investigate the performance of the system model under both EKF and UKF where the model is to be

applied to EKF, prior to UKF, as a baseline.

10

2.3. Velocity Measurement

The filter performance depends on whether what system model it is applied to and what

measurements are available, where the performance often improves with having more measurement

available than less (Del-Moral, 1996; Julier & Uhlmann, 2004; Kalman, 1960; McGee, et al., 1962).

The existing methodology to achieve the object velocity estimation has been identified in previous

sections, and additional reviews were done to identify other methodologies to extract the object

velocity information from the visual field to be fused with the differentiated position in anticipation

to achieve a better system performance.

The methodology to estimate the object velocity from image sequence is actively being investigated

with various approaches, including extracting the velocity information from the motion blur (Lin,

2005; Lin & Li, 2004; Mohammadi, et al., 2010) or the flow in visual field, which is also referred as

optical flow (Ashraf, et al., 2018; He, et al., 2017; Ho, et al., 2017).

Figure removed due to copyright restriction

Figure 4. Clear (left) and blurred (right) object image due to object motion (Lin, 2005)

The motion blur in the image, as shown in Figure 4 for example, is a capture of a visual motion that

appeared during the short exposure time of the camera shutter (Mohammadi, et al., 2010). It is often

an undesired distortion for tasks such as object detection, although, it can be processed into a

velocity information of an object by measuring the magnitude and direction of the blur (Lin, 2005;

Lin & Li, 2004; Mohammadi, et al., 2010). However, all reviewed works assume the camera to be

stationary and no literature was founded on its application for moving cameras. The additional blur

component from the camera motion causes difficulty in decoupling the blur caused by two different

motions (i.e. camera motion and object motion). It may be possible to use this methodology, with

detailed investigation to decouple the blur effect from camera/object motion, although, it is

expected to be difficult to develop such system within the due time with the limited literature

available.

Figure removed due to copyright restriction

Figure 5. Visualisation of optical flow between current and previous image frame (He, et al.,

2017)

11

Optical flow is the flow in the visual field that can be measured from consecutive images (Szeliski,

2011). The optical flow in the image stream, when the camera is facing the ground, can be used to

derive the inertial velocity of the camera (e.g. MAV) as it is a measure of movement in the image

due to the camera motion (Ashraf, et al., 2018; He, et al., 2017; Ho, et al., 2017). This alternatively

means that relative velocity of the ground can be found with respect to the camera and ultimately, it

is possible in some cases that the same methodology can be applied to measure the relative velocity

of the object to the camera with measuring the flow on the object imagery. He, et al (2017) has

developed and tested such algorithm to estimate the velocity of the moving vehicle with moving

camera, as shown in Figure 5, which performed well for relative speed of up to 70 m/s; although,

the test was conducted under a simulated environment only with maximum 5% noise in the optical

flow measurement with no noise added to the camera state which does not guarantee the same

performance for the identical scenario with real-world results (He, et al., 2017).

The optical flow is calculated based on the assumption that the intensity I of the point at world

coordinate x is constant over the time which is represented by the optical flow equation as shown by

Eq. (1) (Beauchemin & Barron, 1995):

𝑰(𝒙, 𝒕) ≈ 𝑰(𝒙 + 𝜹𝒙, 𝒕 + 𝜹𝒕) (1)

Eq. (1) is under-constrained which requires additional constraint and there are approaches that apply

different constrains to solve the problem. For example, the classical methods (e.g. template

matching, Lukas-Kanade) constrains Eq. (1) assuming that the brightness pattern of an object is

constant and rich in texture or the flow between consecutive images is appropriately small for

Taylor Series approximation (Lucas & Kanade, 1981; Szeliski, 2011). Both of these constraints may

not be applicable to the project as the object (i.e. ground vehicle) in the image is expected to often

move significantly due to the motion, and the brightness of a world point in the image can often be

easily affected by the camera movement and other noise (Szeliski, 2011).

It is speculated that the model/equation for the estimation of inertial velocity of a camera (Andersh,

et al., 2015; Zhong & Chirarattananon, 2020) would still be applicable for the object velocity

estimation, if the flow is measured from a stationary camera. Another speculation is that, using the

object position estimate on the previous xt-1 and current time xt, the two world coordinates can be

converted into image coordinates of the same image using the pinhole camera model and the

difference between the two image coordinates may be possible to be represented as the estimated

optical flow 𝛿𝐼 as shown in Figure 6.

12

Figure 6. Diagram representation of the speculation on optical flow estimation

To speculate, the velocity estimate from the method (Figure 6) and differentiated position could be

the same measurement that goes through two different models. This may result in better, similar, or

even worse performance in comparison to using only the position differentiation. The two model

can be complementary to one another, for example, one model can be sensitive to a variable while

the other is not. Unless the two models are complementary as such, it is expected the system

performance would significantly decrease due to the position error with its effect amplified through

the two model. Despite the uncertainty, it was planned to review the mentioned optical-flow

methodology once the baseline EKF (i.e., EKF with differentiated object position) is developed.

Note that this method may be disregarded when any flaw in the above methodology is found in the

further review.

2.4. Summary

In summary, it was found from the literature that there is range limitation to the position estimation

using binocular camera, whereas using the RS camera would be difficult to achieve within the given

project time. Thus, the pinhole camera model was selected to be used to derive the object position

measurement that can be differentiated for the object velocity estimation. Multiple state estimation

filters were reviewed for the resultant system to be robust to the noises. EKF and UKF were

selected for the implementation due to being applicable for nonlinear system and applicable for

real-time. The model is to be applied to EKF prior to UKF as a baseline to be compared with the

proposed system. Further review and research are to be done on taking velocity measurement by

optical flow once the baseline system (EKF with differentiated object position) has been

implemented.

13

3. METHODOLOGY

Based on the discussion on the project methodology (i.e. Section 2), the baseline and proposed

system were planned to be designed as shown in Figure 7 and Figure 8 respectively. This section

describes the development process of the baseline system. Note that it was not possible to develop

the proposed system (Figure 8) within the given project time. This will be included in the future

work.

Figure 7. Baseline System Diagram

Figure 8. Proposed System Diagram

14

3.1. Equipment and Settings

3.1.1. Hardware

All the software and scripts were used in a remote desktop with the following specifications:

 OS – Ubuntu 20.04.6 LTS

 Processor – Intel Xeon (R) Platinum 8362 CPU @ 2.80GHz x 16

 RAM – 64 GiB

 GPU – 8GB slice of V100s

This hardware was capable to run the required software and scripts, although, there was a frequent

latency and crashes while running a software for dataset extraction as the imaging tasks were highly

demanding in graphics and processing in a certain environment.

3.2.2. Software

The software used for the project are listed below with a description of the purpose:

 Python (v3.8.10)

o All scripts used and developed for this project is written in python programming

language.

o Refer Appendix A for list of packages and the versions used for this project.

 Airsim (v1.8.1 - Linux)

o This software was used to generate imagery of the simulated environment where the

environment settings for each development process are described in Section 3.3 and

3.4.

o This software was used by downloading the binaries with no other installation

process involved.

o Refer Appendix A for list of python packages and the versions used for this

software.

 Ardupilot Simulation-in-the-Loop (SITL)

o This software was used to simulate flight dynamics of the MAV to generate a sample

dataset to test the system model. More detail is to be discussed in Section 3.3.

o The software was pulled from git with last update on 6th September 2023.

o ArduPlane (v.4.5.0-dev) was used for the dynamics of simulated vehicle.

o Refer Appendix A for list of python packages and the versions used for this

software.

15

3.2. System Development Procedure

Refer Appendix B for the project Gantt chart to see the project timeline.

3.2.1. Geolocation Model Description

The project was commenced with implementation of the model that converts image coordinate to

world coordinates, referred as Geolocation Model. This project used the geolocation model that

Beard, et al (2012) describes in Section 13.3. The model is described as follows.

Based on the Pinhole Camera Model (Figure 3), let the unit vector, in any frame of reference, that

represents the direction from camera to the object be denoted as �̌� that is consisted of horizontal (x),

vertical (y) and depth (z) component where 𝓵 is the same directional vector with magnitude 𝕃 with

the relationship as shown in Eq. (2).

�̌� ≜ (

�̌�𝒙

�̌�𝒚

�̌�𝒛

) ≜
𝓵

𝕃
 (2)

Based on Eq. (2), the described unit vector in camera frame �̌�𝒄 then can be represented as Eq. (3)

where 𝜖𝑥 and 𝜖𝑦is the horizontal and vertical displacement of the image coordinate from the image

centre coordinate and 𝑓 is the focal length of the camera. The displacement of the object image

coordinate from the image centre can be found by subtracting the object bounding box centre to the

image centre; the focal length 𝑓 is a constant parameter of a camera which can be found by Eq. (4)

with field-of-view 𝑣 and image width (in pixel) 𝑀.

ℓ�̌� =
ℓ𝑐

|ℓ𝑐|
=

1

√𝜖𝑥
2+𝜖𝑦

2+𝑓2
(

𝜖𝑥

𝜖𝑦

𝑓
) (3)

𝑓 =
𝑀

2tan(
𝑣

2
)
 (4)

The unit vector in Eq. (3) needs to be converted from camera frame to vehicle frame to obtain the

inertial coordinate of the object where such conversion can be done by multiplying rotation matrix

to the coordinate as shown in Eq. (5). Note that a rotation matrix R for conversion from A frame to

B frame is represented as 𝑅𝐴
𝐵 and the orientation of the vehicle frame is equivalent to inertial frame

with its origin at the vehicle position.

ℓ�̌� = 𝑅𝑐
𝑣ℓ�̌� (5)

16

The generic property of a rotation matrix is that if there is a rotation matrix to convert C to B and B

to A, the conversion from C to A is also possible as shown in Eq. (6). In addition, the inverse of a

rotation matrix is the rotation matrix for conversion in inverse direction as shown by Eq. (7).

𝑅𝐶
𝐴 = 𝑅𝐵

𝐴𝑅𝐶
𝐵 (6)

𝑅𝐴
𝐵 = (𝑅𝐵

𝐴)−1 (7)

The rotation matrices to convert body to vehicle, gimbal to body and camera to gimbal frame are

shown in Eq. (8), (9) and (10) respectively where 𝜙, 𝜃 and 𝜓 is the roll, pitch and yaw of the MAV

body and 𝛼𝑒𝑙 /𝛼𝑎𝑧 is the elevation and azimuth angle of the gimbal, which is equivalent to the

elevation and azimuth of the strapdown camera to MAV; meaning that those matrices can be

simplified into a single equation to represent the equation to convert a vector in camera frame to

inertial frame as Eq. (11). Note that the cosine and sine notation was shorted to c and s respectively

for Eq. (8). Refer Beard, et al (2012) for detailed derivation of the rotation matrices.

𝑅𝑣
𝑏(𝜙, 𝜃, 𝜓) = (

𝑐𝜃𝑐𝜓 𝑐𝜙𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑐𝜃

𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

) (8)

𝑅𝑏
𝑔
(𝛼𝑒𝑙, 𝛼𝑎𝑧) = (

cos(𝛼𝑒𝑙) cos(𝛼𝑎𝑧) cos(𝛼𝑒𝑙) sin(𝛼𝑎𝑧) − sin(𝛼𝑒𝑙)

− sin(𝛼𝑎𝑧) cos(𝛼𝑎𝑧) 0

sin(𝛼𝑒𝑙) cos(𝛼𝑎𝑧) sin(𝛼𝑒𝑙) sin(𝛼𝑎𝑧) cos(𝛼𝑒𝑙)

) (9)

𝑅𝑔
𝑐 = (

0 1 0
0 0 1
1 0 0

) (10)

ℓ�̌� = 𝑅𝑐
𝑣ℓ�̌� = 𝑅𝑏

𝑣𝑅𝑔
𝑏𝑅𝑐

𝑔
ℓ�̌�=(𝑅𝑣

𝑏)−1(𝑅𝑏
𝑔
)−1(𝑅𝑔

𝑐)−1ℓ�̌� (11)

Using the unit vector of relative position of object from MAV, the object position Pobj, in inertial

frame, can be found by scaling the vector by appropriate length 𝕃 and offsetting the unit vector by

the MAV inertial position PMAV as shown in Eq. (12).

𝑃𝑜𝑏𝑗
𝑖 =𝑃𝑀𝐴𝑉

𝑖 + 𝕃(𝑅𝑐
𝑣ℓ�̌�) (12)

The length 𝕃 can be calculated with the assumption that the vehicle is always at an altitude of 0 m

(i.e. flat-surface) as it allows the relative position of the object in z axis is the inverse of the MAV

altitude. Letting ki to be the z axis component of a vector, Eq. (13) shows that 𝕃 is the ratio of the

MAV altitude to the z axis component of the relative position unit vector.

17

𝕃 =
−(𝒌𝑖∙𝑃𝑀𝐴𝑉

𝑖)

𝒌𝑖∙𝑅𝑐
𝑣ℓ�̌� (13)

Finally, combining Eq. (11), (12) and (13), the object position can be found using the centre of the

object bounding box, camera parameters and MAV states by Eq. (14).

𝑃𝑜𝑏𝑗
𝑖 =𝑃𝑀𝐴𝑉

𝑖 +
−(𝒌

𝑖
∙𝑃𝑀𝐴𝑉

𝑖)

𝒌
𝑖
∙𝑅𝑐

𝑣ℓ�̌�
(𝑅𝑐

𝑣ℓ�̌�) (14)

Overall, Eq. (14) is the geolocation model used in this project to calculate the raw position

measurement and for the state estimation filter as the measurement model.

3.2.2. Geolocation Model Implementation

Once the model (i.e. Eq. (14)) was implemented to a script, to verify the implementation, a sample

dataset was obtained from a single instance. The dataset was obtained from Airsim in AirsimNH

environment, which has multiple ground vehicles, with simulated MAV that can be either

controlled manually by keyboard or by the script. Four states were obtained from the simulation

which are ground truth object position, MAV position, MAV orientation and object bounding box

in the image taken at the corresponding MAV states. Note that the camera parameters were

accessible and adjustable by Airsim commands. For true object position, the position of the world

objects spawned in the environment was not accessible, thus, the MAV was manually controlled to

be directly above a vehicle and the North and East coordinate of the MAV was recorded assuming it

for the true object position with 0 m for the altitude. The MAV was then commanded in a script to

move to a point near the same object, as shown in Figure 9, and an image request was sent to airsim

while recording the current MAV state. The image, as in Figure 10, was saved and the bounding

box of the object was found by manually adding rectangular shape to the image using OpenCV. All

the recorded values were saved into a JSON file.

Figure 9. MAV and Vehicle Position for Geolocation Model Test

18

Figure 10. Image taken from Airsim camera with manually identified object bounding box

The calculated object positions from the obtained variables were printed on the terminal to check

whether they match with the ground truth object position, noting the calculated position may

slightly vary from the ground truth. The model script was modified until the calculated position

matched with the ground truth position. The main code to bind the recorded data is shown in

Appendix C, the model script is shown in Appendix D and the script with the Airsim commands are

shown in Appendix E. Note that they are the latest versions of the script (as the original script used

during the development could not be recovered) and may perform differently with the followed

description.

3.2.3. Sample Dataset Extraction

To test the model on a moving MAV, a list of scripts was provided to obtain a sample dataset. The

scripts use Ardupilot to simulate the MAV flight dynamics to command and obtain simulated MAV

states which is used to set the camera state in Airsim to obtain the image at the MAV states (with

azimuth and elevation offset to represent strapdown camera). The image is then used to track the

object bounding box in the image where the object bounding box must be initially selected by

manually clicking the bounding box that contains the object where the bounding box is returned

from blob detection filtered by colour threshold. The script uses the object bounding box to identify

the object position, using Eq. (14), and commands the MAV to approach the object position

estimated by the given states without any filtering which goes back to the commanding phase and

loops throughout the simulation. Figure 11 shows the connection of the software to the script and

the flow of the process with the list of variables extracted from the script to the dataset file.

19

Figure 11. Flow Diagram for Sample Dataset Extraction

3.2.4. Framework Implementation

Initially, the dataset at single instance was stored in separate files (which were combined into one

for convenience in the later part of the development). To be able to read multiple datafiles, multiple

Python scripts were created with different purpose which were connected as shown in Figure 12.

The code corresponding to the Dataset Reader, Data Processor and Filter Script Selector are shown

in Appendix F, Appendix G and Appendix H respectively, where the class definition used for the

scripts are shown in Appendix I and ‘EKF script’ was interchangeable between different model

scripts if correct variables were provided from the Filter Script Selector. Note that the MAV state

was later extracted from the visual environment (Airsim) due to an issue mentioned in Section

3.2.5.

20

Figure 12. Flow Diagram for Sample Dataset Processing

3.2.5. Model Design and Implementation to Estimation Filters

The concept of KF and EKF was revisited prior to design the mathematical model for the estimation

filter. KF is a filter that provides predicted state mean 𝑥 and the covariance P based on Bayes rule

with gaussian distribution (Kalman, 1960). One of the properties of gaussian properties is that,

suppose a gaussian distribution is linearly transformed as shown in Eq. (15), the distribution of

linearly transformed variables then becomes Eq. (16) (Kim & Ristic, 2023).

𝒙~𝓝(�̅�, 𝑷𝒙) → 𝒚 = 𝑨𝒙 + 𝒃 (15)

�̅� = 𝑨�̅� + 𝒃,𝑷𝒚 = 𝑨𝑷𝒙𝑨
𝑻 (16)

KF has predict equation for state and covariance as shown in Eq. (17) and (18) respectively with

update equation Eq. (19) and (20); �̂� is the estimated state, 𝑭 is the state transition matrix, 𝑷 is the

state covariance, 𝑸 is the state transition noise, 𝒛 is the measurement, H is the measurement model,

K is the Kalman gain that is calculated as shown in Eq. (21) and S is referred as ‘innovation term’

calculated as Eq. (22) where R is the measurement noise (Kim & Ristic, 2023). The subscript k

indicates the variables at current timestamp and k+1 is for the next timestamp.

21

�̂�𝒌+𝟏|𝒌 = 𝑭𝒌�̂�𝒌|𝒌 (17)

𝑷𝒌+𝟏|𝒌 = 𝑭𝒌𝑷𝒌|𝒌𝑭𝒌
𝑻 + 𝑸𝒌 (18)

𝒙𝒌+𝟏|𝒌+𝟏 = �̂�𝒌+𝟏|𝒌 + 𝑲𝒌+𝟏(𝒛𝒌+𝟏 − 𝑯𝒌+𝟏�̂�𝒌+𝟏|𝒌) (19)

𝑷𝒌+𝟏|𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌 − 𝑲𝒌+𝟏𝑺𝒌+𝟏𝑲𝒌+𝟏
𝑻 (20)

𝑲𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 𝑺𝒌+𝟏

−𝟏 (21)

𝑺𝒌+𝟏 = 𝑯𝒌+𝟏𝑷𝒌+𝟏|𝒌𝑯𝒌+𝟏
𝑻 + 𝑹𝒌+𝟏 (22)

Comparing the KF equations and the linear transformation, it can be found that KF filter uses the

linear transformation of gaussian distribution to predict and update the state and covariance, thus,

KF is only applicable to a system with linear state transition model and linear measurement model.

EKF enables KF to be applicable to a nonlinear system by using Jacobian matrices of the state and

measurement model only where the model is required to be in matrix form (i.e. calculating Kalman

gain and covariance). With notation for Jacobian matrix for state and measurement model as shown

in Eq. (23) and (24) where 𝒇 and h is the nonlinear state and measurement model, the EKF predict

equations for state and covariance are shown in Eq. (25) and (26), and the update equations are as

shown in Eq. (27) and (28) respectively, note that it uses the same calculation for Kalman gain K

and innovation term S.

𝑭𝒌 = [𝛁𝒙𝒌
𝒇𝑻(𝒙𝒌)]

𝑻
 (23)

𝑯𝒌 = [𝛁𝒙𝒌
𝒉𝑻(𝒙𝒌)]

𝑻 (24)

�̂�𝒌+𝟏|𝒌 = 𝒇(�̂�𝒌|𝒌) (25)

𝑷𝒌+𝟏|𝒌 = 𝑭𝒌𝑷𝒌|𝒌𝑭𝒌
𝑻 + 𝑸𝒌 (26)

𝒙𝒌+𝟏|𝒌+𝟏 = �̂�𝒌+𝟏|𝒌 + 𝑲𝒌+𝟏[𝒛𝒌+𝟏 − 𝒉(�̂�𝒌+𝟏|𝒌)] (27)

𝑷𝒌+𝟏|𝒌+𝟏 = 𝑷𝒌+𝟏|𝒌 − 𝑲𝒌+𝟏𝑺𝒌+𝟏𝑲𝒌+𝟏
𝑻 (28)

The Jacobian matrices can be mathematically calculated, although, it is often calculated numerically

in practice for those system with complex system equations (Beard & McLain, 2012). Due to the

difficulties in mathematically calculating the Jacobian matrix of the measurement model, Eq. (14),

this project decided to use the numerical approach. The code implementation of the numerical

approach for Jacobian calculation is shown in Appendix J.

22

With the understanding of these concepts, it was commenced to develop the system model. Several

different models were tested with the dataset obtained from Section 3.2.3. First, the model from

Chapter 13.3 of Beard, et al (2012) was referred which assumes that the object is stationary;

although this project aims to have a moving vehicle, this was referred initially to gradually proceed

to the larger scope and the sampled dataset also uses stationary vehicle. The model described in

Chapter 13.4 of Beard, et al (2012) was also attempted to be implemented, although, it was

unsuccessful, and the trend of filtered state estimation did not match with the unfiltered state

estimation.

Multiple different combination of state and measurement models were tested where a few important

decisions were made from the results. One of the decisions is to extend the object state variable

from 2D vector with North and East coordinate to NED coordinate. This was to check if the flat-

surface assumption is applied correctly to the model where it was expected that the Down

coordinate must be zero at all times. This decision was made when testing the model with state and

measurement as shown in Eq. (29) and (30) respectively which was a modified model from Beard,

et al (2012) where state vector of the model contains the inertial position (NE) of the object

�̂�𝒐𝒃𝒋
𝒊 and the distance to the object from the MAV 𝕃̂ as shown in Eq. (29). When the model was

implemented with the line-of-sight measurement �̌� as Eq. (30), obtained from the image coordinate

by Eq. (3), it is found that the estimation diverges rapidly when without having the distance 𝕃̂ in

the state vector as the line-of-sight vector does not provide any information of the depth component

(i.e. distance to the object) of the image. This was noticed when the object position was extended

from 2D to 3D coordinate, the Down coordinate was not fixed to 0 but rather increased from 0 to a

large number (e.g. 10000 m).

�̂� = {�̂�𝒐𝒃𝒋(𝟐×𝟏)
𝒊 , 𝕃̂}

𝑻
 (29)

z = {�̌�(𝟑𝒙𝟏)}
𝑻
 (30)

Throughout the development, multiple combinations of variables were put to the state vector as a

test. The object states were extended to velocity and acceleration based on Eq. (31) and (32) where

p, v, a is the position, velocity and acceleration with NED components respectively and T is the

sampling time interval. MAV position and orientation were also put to the state vector in

anticipation to help in reducing measurement prediction error; the state vector of the tested model

with combination of MAV and object states are shown in Eq. (33) where 𝚯 indicates the orientation

in roll, pitch and yaw.

23

pt+1 =
𝟏

𝟐
at𝑻

𝟐 + vt𝑻 + pt (31)

vt+1 = at𝑻 + vt (32)

𝒙 = {�̂�𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , �̂�𝑴𝑨𝑽(𝟑×𝟏)

𝒊 , �̂�𝒐𝒃𝒋(𝟑×𝟏)
𝒊 , �̂�𝒐𝒃𝒋(𝟑×𝟏)

𝒊 , �̂�𝒐𝒃𝒋(𝟑×𝟏)
𝒊 }

𝑻
 (33)

The model was also tested with putting the relative states of object to the MAV which was inspired

by Maley (2015) and Nielson, et al (2017) as shown in Eq. (34) where the states with arrow

(e.g.�⃗⃗� ̂𝑶𝑩𝑱
𝒊) are the relative state of object to the MAV.

�̂� = {�⃗⃗� ̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , �⃗⃗� ̂𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , �⃗⃗� ̂𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
 (34)

Despite the attempts on implementing different models, none of the attempts were successful. After

those attempts, it was advised that it would be the best to keep the state vector only to be filled with

the object states. The state vector was kept as shown in Eq. (35) with nearly constant acceleration

model. The state transition matrix and noise model for the nearly constant acceleration model in 1-

dimension (i.e. Eq. (36)) are shown in Eq. (37) and (38) respectively where the same model was

applied to North and East component of the object states with all Down components set to 0. dt is

the sampling time interval between t and t+1 and q is the noise in object acceleration (DSTL, 2021).

The derivation of Qt is shown in Appendix K.

�̂� = {�̂�𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , �̂�𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , �̂�𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
 (35)

�̂� = {�̂�𝒊, �̂�𝒊, 𝒂𝒊}𝑻 (36)

𝑭𝒕 = [
𝟏 𝒅𝒕

𝒅𝒕𝟐

𝟐

𝟎 𝟏 𝒅𝒕
𝟎 𝟎 𝟏

] (37)

𝑸𝒕 =

[

𝒅𝒕𝟓

𝟐𝟎

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟑

𝒅𝒕𝟐

𝟐

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟐

𝟐
𝒅𝒕]

 ∙ 𝒒𝟐 (38)

The measurement vector used for the project is shown in Eq. (39) with measurement model as in

Eq. (14). The measurement noise matrix R is a diagonal matrix with the diagonals filled with the

covariance of respective measurement (δ2).

24

z = {𝜖(2𝑥1), �̂�𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , �̂�𝑴𝑨𝑽(𝟑×𝟏)

𝒊 }
𝑻
 (39)

The described model was implemented (code shown in Appendix L) and tested on the sample

dataset which returned result as shown in Figure 13. Note that the result also shows the filtered

result from KF; the KF implementation code (same state model, object position in NED for the

measurement) was received as an example to refer while developing the state and measurement

model for EKF, in addition, note that Figure 13 is missing the title for the horizontal axis which

indicates time in seconds.

Figure 13. Result from Sample Dataset

Despite the effort in testing multiple different models, the filter was not able to give the expected

accuracy. However, it was noted that the unfiltered state was having a strong noise and jumps

between the measurement despite that the sampled dataset is not expected to have such a large noise;

furthermore, the estimated North position of the object seemed biased to a larger value. It was

initially assumed that it was from the object bounding box centre being not centred on the object

(Figure 14), although, it was noticed that the bias should be present in East coordinate and be

smaller than the actual bias. When the sampled dataset was revisited, multiple critical issues were

found which caused the filtered state to be inaccurate.

Figure 14. True (red) and measured (green) object bounding box centre with vehicle facing

North (bottom-to-the-top)

25

Issue 1. MAV Orientation Assignment

The orientation of the MAV was stored as a list with three items: roll, pitch and yaw. It was initially

assumed that those orientation values were stored as sequence of [roll, pitch, yaw], although, due to

the Airsim convention of storing orientation, the values were stored as [pitch, roll, yaw]. This was

noted during the implementation of geolocation model (Section 3.2.2), however, this was

completely disregarded during the implementation of filter model which caused a significant delay

(i.e. 3 weeks) in the project progress. The effort, during those delays, was focused on re-designing

the filter model as described previously as the result from unfiltered position was more accurate

than the filtered position. This was due to the geolocation model used to display unfiltered position

measurement was using correct values for roll, pitch and yaw which was not the case for the

measurement model of the filter. Once the correct roll, pitch and yaw value was used for the filter

model, the estimation in East position have improved, although, the unexpected jumps in the

unfiltered measurement still existed (Appendix N).

Issue 2. Timestamp Measurement

Another issue with the sampled dataset was that the timestamp was recorded incorrectly. The

timestamp was originally extracted from the PC clock time, although, it was later found that the

simulation time (of Ardupilot) must have been used instead of the PC clock as the flight dynamic of

the MAV was slowed down by 0.2 of speed by the provided script. The timestamp was corrected to

be extracted from the simulation which reduced the jumping effect, although the effect still exsisted

(Appendix O).

Issue 3. Airsim State Lag

The MAV command script (of Figure 11) commands the Airsim camera to be placed at the MAV

position received from Ardupilot where the camera orientation is calculated to be at a certain

elevation and azimuth to the MAV orientation. The last issue found from the dataset is that, when

the Airsim receives the camera pose command, there is a delay in Airsim to update the camera

orientation. This caused the estimation to diverge during the delay, as the measured MAV

orientation (from Ardupilot) does not match with the actual MAV orientation when the image was

taken (Airsim camera orientation update). The mismatch in the measurement could be treated as the

measurement noise, although, the noise is not gaussian but is rather at a stair-like trend (Appendix

M). Thus, the Airsim camera orientation was directly accessed, and the elevation and azimuth angle

were removed to obtain the MAV orientation. The estimation result after the correction is shown in

Figure 15. The unfiltered position estimate only contains noise within expectation with a little bias (

<±1 m) due to the bias in object bounding box centre.

26

Figure 15. Estimated position after MAV state correction (from Ardupilot to Airsim)

Once the dataset issues were resolved, the filter parameters were adjusted accordingly. The filter

initially assumes that the object is stationary (i.e. zero velocity and zero acceleration) at the initial

position measurement, as Eq. (40), with initial covariance as shown in Eq. (41) where

𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱 is the maximum object position error, 𝒗𝒎𝒂𝒙𝑶𝑩𝑱
 is maximum object velocity and

𝒂𝒎𝒂𝒙𝑶𝑩𝑱
 is maximum object acceleration. The covariance should be the square of standard

deviation (σ) where it was assumed that σ would be roughly similar to the third of the maximum

values as, in general, approximately 99.7% of samples fall within 3σ range (i.e. ≈ maximum

deviation) of gaussian distribution. The maximum object velocity is set to 30 m/s, given by the

project assumption, and the maximum position error was set to 10 m for both North and East

component where the maximum values for Down components were set to 0 to indicate the filter that

the object is not going to be taking any motion in Down component. The maximum object

acceleration is temporarily set to 1.5 G and it is to be adjusted when the dataset with moving object

is obtained; similarly, the object acceleration noise q (of Eq. (38)) was temporarily set to 1 ms-2.

 𝒙�̂� = {𝒑�̂�𝑶𝑩𝑱(𝟑×𝟏)
, 𝟎(𝟑×𝟏), 𝟎(𝟑×𝟏)}

𝑻

 (40)

𝑷�̂� = 𝒅𝒊𝒂𝒈 {(𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱/𝟑)𝟐
(𝟑×𝟏)

, (𝒗𝒎𝒂𝒙𝑶𝑩𝑱
/𝟑)𝟐

(𝟑×𝟏)
, (𝒂𝒎𝒂𝒙𝑶𝑩𝑱

/𝟑)𝟐

(𝟑×𝟏)
} (41)

The measurement noise matrix R was set as shown in Eq. (42) where 𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 is the maximum

error of object bounding box centre (image coordinate), 𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
 is for the MAV position

error and 𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
 is for the MAV orientation error at maximum. When the filter was tested

with different combinations of measurement noise parameters, it was noticed that there was

minimal impact to the filter behaviour when the MAV state noise was adjusted, and the behaviour is

27

only affected by changes in the image coordinate noise (Appendix P). It was assumed that, due to

the MAV states being independent to the object states, the effect of the MAV state noise is

considered irrelevant to the object state estimation, especially with the Jacobian matrix of the

measurement model with respect to the object state (i.e.
𝝏𝒉

𝝏𝒙
); if so, with the noisy MAV state, the

expected image coordinate of a known coordinate P by the filter, would differ with the true image

coordinate of point P as shown in Figure 16. This would cause error in the position estimate even

with image coordinate measurement with a good accuracy. To compensate such error, it was noted

to adjust 𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 parameter according to the MAV state error.

𝑹 = 𝒅𝒊𝒂𝒈 {(𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓/𝟑)𝟐
(𝟐×𝟏)

, (𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
/𝟑)𝟐

(𝟑×𝟏)
, (𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

/𝟑)𝟐

(𝟑×𝟏)
} (42)

Figure 16. Effect of MAV State Error to the Expected Image Coordinate of Point P

The filter parameter was adjusted to expect gaussian noise in measurement with maximum of 2 m

and 0.2c (~ 10o) of error in all dimensions of MAV position and orientation respectively. There is no

noise in the MAV states of the dataset, although, the noises were to be added as a in the later part of

the project to test the final estimation system. The centre of the object bounding box were measured

with the error of maximum of 32 pixel (calculated by the measured coordinate subtracted by the

expected coordinate) without added noise to the MAV states. The noise parameter for the image

coordinate were decided to be set as 64 pixels (i.e. safety factor of 2) to take account of the noise in

the image coordinate measurement and the noise in the MAV state.

Note that the proposed method for the optical flow measurement, flow estimation from current

versus previous position in image, may not be accurate due to the effect shown in Figure 16.

Different method to measure optical flow must be investigated where it must be light in

computation and involves little image processing, if possible, to prevent a significant decrease in the

system update rate.

28

3.3. Dataset Extraction

Once all the dataset issue were resolved, there were little project time remaining to achieve the

further milestones (i.e. model application to UKF, further literature review on optical flow) as a

significant time were spent on the re-modelling (before recognising the dataset issue). It was

decided for the remaining milestones to be put to the future work. The project moved directly to

extracting dataset for the result analysis. The project aimed to extract the dataset from 8 scenarios

(Figure 17). Scenario 0 and 1 has a stationary vehicle with MAV taking linear/circular motion

respectively, Scenario 2, 3 and 4 has the vehicle in linear motion with MAV moving parallel in the

same (2) and opposite (3) directions, and perpendicular (4) to the vehicle, and Scenario 5, 6 and 7

has vehicle circling around with MAV approaching vehicle with linear motion (5) and circling

directly above the vehicle in the same (6) and opposite (7) direction.

Figure 17. Trajectory Plot of MAV (black) and Vehicle (blue) in Scenario 0 to 7

29

It is preferrable to keep Ardupilot to simulate MAV dynamics for the 8 scenarios, although, due to

time limitation, the dynamics simulator was decoupled and the Airsim camera was directly moved

by calculating MAV trajectory, as described in each scenario, with added elevation and azimuth

angle to the desired MAV orientation. No roll or pitch were added to the MAV orientation for the

scenario with linear MAV trajectories (i.e. all scenario except 1, 6 and 7). Note that those scenarios

with circling MAV may not be appropriate to be tested in practice with strapdown camera at a

certain elevation and azimuth to the MAV as the ground vehicle would not appear in the image with

a certain range of angle (as a MAV must tilt to take circular trajecotry); those scenarios are purely

for testing purpose in simulation. All scenarios were simulated with the same camera parameters

with 1224 x 1024 image size and 45.4 degrees of field-of-view. The azimuth angle to the MAV was

kept 0o, although, the elevation angle of -25o was used for the scenarios with linear MAV trajectory

and -850 was used for those scenarios with the circular MAV trajectory; the vehicle was not able to

be spotted in the image without the change in elevation.

With the decoupled Ardupilot, a different method must be used to obtain the timestamp. Airsim

does not provide any simulation time, although it has a function to run the simulation only for a

certain amount of time; using this function, the dataset was extracted at 0.1 seconds of interval (i.e.

10 Hz). In addition, it was noted that the OpenCV tracker failed to track a moving vehicle due to the

high noise in the image background when the vehicle was simulated in AirsimNH environment;

when the same script was used with Blocks environment of Airsim, the tracker was able to track the

vehicle. For this reason, the dataset from the 8 scenarios was extracted from Blocks environment.

Refer Appendix Q for example images from AirsimNH and Blocks environment.

30

Figure 18. Flow Diagram for Dataset Extraction

The MAV Command script of Figure 11 were modified to extract dataset as shown in Figure 18

where 8 different scripts were created to simulate each scenario. The script was run for 100 times to

extract 100 datasets for each scenario. It was noted that the memory space taken by Airsim

increased significantly and eventually crashed after running 3-4 runs by resetting the camera and

vehicle pose, which did not occur when Airsim was restarted every run. A shell script was created

to automatically open Airsim, run the camera command script to extract single dataset, and close

Airsim for 100 times (Appendix R).

The simulated vehicle in Airsim is possible to take up to 20 ms-2 of acceleration during the circular

motion. The maximum acceleration for initial state covariance was updated to 20 ms-2 and the

acceleration noise (q of Eq. (38)) was updated to 0.2 ms-2 for slow filter convergence. Note that the

state noise parameter can be increased to achieve a faster convergence. The 800 datasets were

processed through the filter.

31

 4. RESULTS AND DISCUSSION

The result from the final system is shown in this section. Note that all the plots from unfiltered

estimation are included in appendices. The trajectory plot of each scenario is shown in Figure 17

Refer Appendix S for the sample images from those scenarios.

The final system is the baseline EKF with the state vector and the measurement vector as shown in

Eq. (43) and (44) respectively, where the state transition model and measurement model equation

are shown in Eq. (45) and (46). The initial filter state and covariance are shown in Eq. (47) and

(48). The state and measurement noise matrix are constant as shown in Eq. (49) and (50)

respectively.

�̂� = {�̂�𝑶𝑩𝑱(𝟑×𝟏)
𝒊 , �̂�𝑶𝑩𝑱(𝟑×𝟏)

𝒊 , �̂�𝑶𝑩𝑱(𝟑×𝟏)
𝒊 }

𝑻
 (43)

z = {𝜖(2𝑥1), �̂�𝑴𝑨𝑽(𝟑×𝟏)
𝒊 , �̂�𝑴𝑨𝑽(𝟑×𝟏)

𝒊 }
𝑻
 (44)

𝑷𝒐𝒃𝒋
𝒊 =𝑷𝑴𝑨𝑽

𝒊 +
−(𝒌

𝒊
∙𝑷𝑴𝑨𝑽

𝒊)

𝒌
𝒊
∙𝑹𝒄

𝒗𝓵�̌�
(𝑹𝒄

𝒗𝓵�̌�) (45)

pt+1 =
𝟏

𝟐
at𝑻

𝟐 + vt𝑻 + pt (46)

𝒙�̂� = {𝒑�̂�𝑶𝑩𝑱(𝟑×𝟏)
, 𝟎(𝟑×𝟏), 𝟎(𝟑×𝟏)}

𝑻

 (47)

𝑷�̂� = 𝒅𝒊𝒂𝒈 {(
𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
, (

𝒗𝒎𝒂𝒙𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
, (

𝒂𝒎𝒂𝒙𝑶𝑩𝑱

𝟑
)
𝟐

(𝟑×𝟏)
},

𝒑𝐦𝐚𝐱𝒆𝒓𝒓𝒐𝒓 𝑶𝑩𝑱 = 𝟏𝟎𝒎, 𝒗𝒎𝒂𝒙𝑶𝑩𝑱
= 𝟑𝟎𝒎𝒔−𝟏, 𝒂𝒎𝒂𝒙𝑶𝑩𝑱

= 𝟐𝟎𝒎𝒔−𝟐 (48)

𝑸𝒕 =

[

𝒅𝒕𝟓

𝟐𝟎

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟒

𝟖

𝒅𝒕𝟑

𝟑

𝒅𝒕𝟐

𝟐

𝒅𝒕𝟑

𝟔

𝒅𝒕𝟐

𝟐
𝒅𝒕]

 ∙ 𝒒𝟐, 𝒒 = 𝟎. 𝟐, 𝒅𝒕 = 𝟎. 𝟏 (49)

𝑹 = 𝒅𝒊𝒂𝒈 {(𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓/𝟑)𝟐
(𝟐×𝟏)

, (𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
/𝟑)𝟐

(𝟑×𝟏)
, (𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

/𝟑)𝟐

(𝟑×𝟏)
},

𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓 = 𝟔𝟒𝒑𝒙, 𝒑𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽
= 𝟐𝒎, 𝚯𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓𝑴𝑨𝑽

= 𝟎. 𝟐𝒄 (50)

32

It was found that the dataset from 800 runs (100 runs each for 8 scenarios) contains 51189 timesteps

of data which was processed by the system in 93.73 seconds including opening and closing the

iterated log files. This gives an average of 546 Hz for the update rate purely from the system filter

which suggests that the system is applicable for real-time application. Note that the current system

does not involve any image processing and the filter update rate may significantly decrease when

images are read/written during the process. Note that the measurement update rate for all the dataset

is 10 Hz unless stated.

The entire dataset was taken with the MAV on altitude of 100 m or higher, with vehicle at 0 m

altitude, to test the estimation on the object at a range further than 100 m. This is to examine

whether the system is applicable at a long distance.

The dataset was obtained with no noise in MAV and camera states; the only noise in the dataset is

in the object bounding box centre where additional noise can be added as desired before feeding the

dataset into the filter. The exact distribution of the object bounding box noise could not be obtained,

although, it was noted that the noise presented at most 10 m of error in calculating the vehicle

position (Refer Appendix T). Furthermore, the noise distribution in the object bounding box is not

gaussian and the average of the unfiltered position error is biased to non-zero value where the effect

is less presented in the velocity and acceleration estimation (Appendix T). The focus of the analysis

will be on the accuracy in object velocity estimation.

Note that the time duration varies by the scenario due the object escaping the camera field-of-view

at different timing. For error plots (e.g. Figure 19), ‘true’ plots were inserted to visualise the zero-

error line.

33

4.1. No MAV state noise

4.1.1. Results

Refer Appendix T and Appendix U for the state estimate plot of the entire dataset by system with no

filter and with the baseline EKF respectively. Appendix V shows the average error from the

baseline EKF in all scenarios using two different maximum object bounding box error

𝝐𝒎𝒂𝒙_𝒆𝒓𝒓𝒐𝒓parameter and Appendix W shows the result from the filter with low and high q (i.e. 0.2

and 1000) values.

Figure 19. Baseline EKF velocity estimation error under no MAV state noise

4.1.2. Discussion

Despite having no measurement directly available for the object velocity and acceleration, the

system was able to filter the noises in the velocity and acceleration estimate from differentiated

position. It was assumed that the position error bias presents less effect to the velocity estimation as

long as the object bounding box centre is at a constant offset from the vehicle because the velocity

and acceleration information only depends on the change in the object position.

The system was able to estimate within 1 m/s of velocity estimation error for scenarios with

stationary vehicle which was significantly less error than those from the other scenarios (Figure 19).

This is assumed that it is because that the initial assumption in the object motion is that the object

will be stationary. The filter does not receive a measurement on the object velocity and acceleration

and requires multiple measurements to converge the estimation close to the ground truth. The

convergence of those state would be much faster with initial estimate close to the ground truth.

34

The error in the East position estimate is much less than the North position for Scenario 0. A wider

field-of view (FOV) is available in the East direction than the North direction, as shown in Figure

20, where the East direction is left to right and the North direction is bottom to top direction. In

addition, the space covered by a single pixel in the image differs by the angle of camera view and

the pixel location. Figure 21 shows that a ground represented by the grid on the left is transformed

similar to the grid on the right with the given camera configuration which is a similar configuration

used for the dataset; the grid with the area closer to the camera is projected larger than the area

further from the camera where the effect is larger in the longitudinal direction. This indicates that,

when an error in the object bounding box centre occurs equally in horizontal and vertical direction

of image, the resulting position error in longitudinal direction could be larger than the error in

lateral direction. It was assumed that the filter produced less error in East direction (lateral direction

in image) in Scenario 0 and 4 by this reason. Furthermore, it was also noted that the geolocation

model with pinhole camera is sensitive to the height of the measurement plane in general due to the

homogenous coordinates (Mundy & Zisserman, 1992). Figure 22 shows the position error from the

height difference in the geolocation model with flat-surface assumption and the actual height of the

measurement plane for the project (i.e. visual object centre). The position error caused by the effect

varies by the line-of-sight angle which is possible to add noise in the velocity and acceleration

estimate. In some cases, it is crucial to provide a predicted object height information to the

algorithm to remove such error (Cai, et al., 2022). Thus, it is recommended to provide the object

height to the system, if known, for a better result.

Figure 20. Sample Camera Image from Scenario 0

35

 Figure removed due to copyright restriction

Figure 21. Deformation of Grid Projection in Camera Image (Gunawan, et al., 2019)

Figure 22. Position Error with Correct Measurement

For the scenarios with vehicle in linear motion, the vehicle was simulated in 30 m/s of speed (i.e.

assumed maximum speed) in West to East direction. The velocity estimation successfully

converged after minimum of 30 to maximum of 60 measurement updates (i.e. 3 and 6 seconds), as

shown in Figure 19. The fastest convergence on East velocity estimate was achieved in Scenario 4,

MAV trajectory perpendicular to the vehicle, and the slowest convergence with Scenario 2, MAV

following the vehicle. The system is intendedly set with low q for strong filtering, although, note

that a faster convergence can be achieved by increasing q. Appendix W shows that the filter

converges with 15 measurements by increasing q to 1000. The expectation was that the system

would converge better in Scenario 2 than in Scenario 3 (MAV moving parallel in opposite

direction) as it observes the vehicle for longer duration. It also could use the information that the

vehicle is moving at a similar speed and direction to MAV. However, it was noticed that the vehicle

was simulated at a higher speed in Scenario 4 compared to Scenario 2 and 3. Due to the low

flexibility in vehicle control in Airsim, the vehicle was simulated in different speeds. The

convergence is expected to be similar for vehicle in the same speed in all scenarios. For velocity

estimation in North component, the estimate temporarily diverges in the early few measurements in

Scenario 4 where the velocity converged immediately to near 0 for Scenario 2 and 3. This was

assumed that it is because the North axis was the longitudinal direction to the camera in Scenario 4

unlike Scenario 2 and 3 (i.e. sensitivity in longitudinal position measurement). In general, the

system was able to converge to near 0 error for all scenarios with vehicle in linear motion (Figure

19).

Scenarios with vehicle in circular motion returned the most unexpected result from the system; the

estimation error does not converge and oscillates (Appendix U) where the unfiltered state is at

36

better accuracy (Appendix T). The oscillation is expected to be due to filter lag as the true North

and East component of vehicle acceleration also oscillates. This was assumed that the state model

used for the system only considers the translational acceleration and does not consider any angular

acceleration. The dataset also contains a little noise. Although, note that the state model was able to

estimate the state of manoeuvring object with giving higher state noise q (Appendix W). Thus, with

the current system, it is suggested to increase the q values of EKF when the system is used for

object with angular or rapidly changing acceleration. In addition, it was decided to modify and test

the state transition model to represent the velocity and acceleration by magnitude and direction with

respect to the vehicle heading. This is to remove the oscillating error in scenarios 5, 6 and 7 for the

system to have a better performance on a similar scenario.

The system was also tested with the noise parameter of maximum object bounding box changed

from 64 to 32 px (for measurement noise as in Eq. (50)) as there is yet no noise in MAV states to

see if the filter lag in Scenario 2, 3 and 4 can be decreased (Appendix V). The system performed

similar to how it performed with the initial parameters, although, the East velocity and acceleration

converged faster with the changed parameter as it provides less filtering with lower noise

parameters and causes less filter lag.

4.2. With MAV state noise

4.2.1. Results

Refer Appendix X for the average comparison plots of all scenarios. Note that ‘No Noise’ indicates

there is no noise added to the MAV states (position and orientation), although, the dataset still has

noise in the object bounding box.

For summary of the result, the estimation in all object states were significantly affected by noise in

MAV orientation whereas much less effect is applied to the estimation with the noise in MAV

position.

4.2.2. Discussion

The estimation error increased with noise added to both MAV position and orientation, as per

Eq. (50), where the estimation error significantly increased with the orientation noise compared to

the position noise. This is because that the geolocation with the pin-hole camera model is highly

sensitive to the MAV orientation noise, especially at a further distance to the object, due to the line-

of-sight error as shown in Figure 22 (Barber, et al., 2006). In addition, the current system does not

account the MAV state noise significantly as they are independent from the object states and the

only measurement dependent on the object states is the object bounding box, although, the true

37

object bounding box may not return true object position due to noisy MAV states (Figure 16). This

also indicates the optical flow estimate by method, as shown in Figure 6, would not be valid with

noisy MAV orientation as it is highly likely that the expected previous object position in the image

would be incorrect. It was also expected that the approach would significantly decrease the filter

update rate, without using the optical flow estimation method, due to requiring image processing. It

was decided to reserve the optical flow approach as it is expected the approach would provide

minimal benefit to the current system with adding a list of limitations.

Figure 23. Resultant Position Error from MAV Position vs Orientation Noise

Lastly, it is also possible that the linear approximation of EKF is inappropriate for the given

measurement model. Kim and Ristic (2023) showed that the distribution estimate of polar-to-

Cartesian coordinates by linear approximation and unscented transformation. These are the methods

used in EKF and UKF respectively for estimation of gaussian distribution through non-linear

transform. Despite the polar-to-Cartesian transform involving less trigonometry terms compared to

the system measurement model for the project, the distribution estimate from linear approximation

is far less accurate than the estimate from unscented transform (Figure 24). Thus, as proposed, it is

suggested to implement the same model to UKF for the future work to confirm whether the system

performance can be improved.

Figure removed due to copyright restriction

Figure 24. Distribution estimation by linear approximation (left) vs unscented transform

(right) (Kim & Ristic, 2023)

38

4.3. With lag in object bounding box measurement

4.3.1. Results

Refer Appendix Y for the average comparison plots of all scenarios. The result plots shows that the

system performance significantly decreased in Scenario 3, 4 and 5 followed by Scenario 0, 2, 6 and

7 and almost no impact is given to Scenario 1 with the 0.1 seconds of lag in the object bounding

box. The system showed a similar performance with and without the lag in the object bounding box

for scenario 1. A large lag was applied to the data to clearly view its impact to the estimation

performance of the system, although, note that the sensor lag in practice can be much less than 0.1

seconds.

4.3.2. Discussion

The main difference between Scenario 1 and the other scenarios is that the centre of the object

bounding box does not differ significantly over the time in Scenario 1 as much as in other scenarios

(Appendix S). The object bounding box measurement varies less when there is less change in the

line-of-sight to the object from the camera, meaning line-of-sight rate close to 0. This reason

explains the reason that the system performance is worst in Scenario 3 (i.e. MAV approaching in

linear motion to the vehicle in linear motion from the opposite side) which is the scenario with the

most rapidly changing line-of-sight. It was assumed that the lag in the other measurement would

provide similar impact. The system is expected to be affected in scenarios with variation in line-of-

sight for MAV orientation lag, similar to the object bounding box lag. It is expected the scenarios

with variation in relative position of MAV to the object will affect the system with MAV position

lag; the effect is expected to be larger at the scenarios with rapid change in MAV altitude. It is used

for calculating the range to the object and the system is sensitive any noise in the line-of-sight and

the range measurement.

4.4. Decrease in update rate

4.4.1. Results

Refer Appendix Z for the average comparison plots of all scenarios. In general, the estimation from

2 Hz measurement was lagging, at maximum of 0.5 seconds compared to the estimation made by 10

Hz measurement in all scenarios. In addition, due to the lag in the estimation, the system required a

slightly longer time to converge for system with 2 Hz of measurement update rate compared to 10

Hz of measurement update rate.

39

4.4.2. Discussion

The system required a longer time to converge due to the lag in the estimation, although, it also

means that the system was able to converge with less measurement steps. This was assumed that it

is due to the system model to estimate the velocity and acceleration, which related to the rate of

change in position and depends on the time scale. Furthermore, the impact of decrease in update

rate is not as significant compared to the impact of the measurement lag. This was assumed that,

because the velocity and acceleration measurement is sensitive to the time, the measurement lag

causes error in estimation due to the inconsistency in time of the measurements where the decrease

in update rate, although it provides less information, it returns the measurement with little error in

time. The low update rate would not cause a significant error as it is expected the estimation would

still converge, as opposed to the error caused by the measurement lag.

4.5. Additional Analysis Plan

The following list shows the variables that were planned to be measured for further analysis of the

system performance as a stress test. However, it was not able to be achieved within the project time

and are included for future work.

 Maximum q of the Q matrix with fixed R without estimation divergence

 Maximum prediction-step to update-step ratio without estimation divergence

 Maximum no. of timesteps with no measurement (i.e. object out of camera field-of-view)

without estimation divergence

In addition, it was noticed that EKF may unexpectedly diverge when the P matrix becomes

asymmetric which can occur due to the numeric error. Although, the Joseph formular can prevent

the asymmetry in covariance matrix (Bucy & Joseph, 2005). Despite having no divergence

observed from the dataset from the analysis yet, the Joseph formular is to be reviewed and applied

to the current system to examine the effect, to ensure the system stability in practical applications.

40

CONCLUSIONS

In summary, the baseline EKF system was able to estimate the object velocity with little noise in the

object bounding box when the object at more than 100 m range. The system was able to filter the

object position information to velocity and acceleration estimates with approximately 546 Hz of

filter update rate. Note that the system behaviour differs depending on different filter parameters

(i.e. Q and R matrices); a fine-tuning of the parameters is required for the system to perform at

optimal condition for each application. The system was able to converge to a 0 m/s of velocity error

with no noise in MAV states in all tested scenarios where the speed of convergence varies by the Q

matrix. It is recommended to provide the object height to the system for better accuracy if known.

The system is found to be sensitive to the line-of-sight and range error from the camera to the object

due to the measurement model. Thus, the system performance significantly reduces with noise in

MAV orientation followed by the MAV position which does not satisfy the project aim to have a

system robust to measurement noises. It was assumed that UKF may perform better under such

condition as EKF may have deformed the non-linear measurement model significantly due to the

linearisation. The limitation of the current system is that it is only applicable to an object on flat

surface with known altitude, known camera parameters where there is no noise or lag in MAV

orientation. The system also cannot handle a significant lag in the object bounding box. The noise

and lag in the MAV position measurement can be tolerated, although it still lowers the system

performance. There is a delay in estimation with a decrease in the measurement update rate which is

expected to be tolerable by adjusting Q matrices. From the observations, it is concluded that the

system satisfies all project aims, except to be robust under measurement noise. The system is

recommended to be improved as described in the following section.

FUTURE WORK

Assuming the continuation of the project, the current model is to be modified to have a velocity and

acceleration represented with respect to the vehicle heading. The modified system is to be

implemented to UKF and tested with a new dataset with the camera script coupled with the MAV

dynamics simulator for more realistic movement of strapdown camera on MAV. The application of

the Joseph form is to be investigated if it is later decided to use EKF instead of UKF once the result

is obtained. The same analysis, as done in this report, is to be done with the modified system. The

system is also to be tested to find the maximum q value for Q matrix, maximum prediction-step to

update-step rate and maximum timesteps with no observation before the estimation diverges. Lastly,

the system is to be tested on a drone hardware to be observed on a practical basis.

41

REFERENCES

Ait-Aider, O., Andreff, N., Lavest, J. M. & Martinet, P., 2006. Simultaneous Object Pose and

Velocity Computation Using a Single View from a Rolling Shutter Camera. European Conference

on Computer Vision, Volume 3952, pp. 56-68.

Andersh, J., Cherian, A., Metter, B. & Papanikolopoulos, N., 2015. A vision based ensemble

approach to velocity estimation for miniature rotorcraft. Autonomous Robots, Volume 123-138, p.

39.

Ashraf, S. et al., 2018. A low-cost solution for unmanned aerial vehicle navigation in a global

positioning system-denied environment. International Journal of Distributed Sensor Networks,

14(6), pp. 1-17.

Barber, D. B., Redding, J., McLain, T. & Beard, R., 2006. Vision-based Target Geo-location using

a Fixed-wing Miniature Air Vehicle. Journal of Intelligent & Robotic Systems, 47(4), pp. 361-382.

Beard, R. W. & McLain, T. W., 2012. Small Unmanned Aircraft: Theory and Practice. Princeton,

Princeton University Press.

Beauchemin, S. & Barron, J., 1995. The computation of optical flow. ACM Computing Surveys,

27(3), pp. 433-466.

Benini, A., Mancini, A. & Longhi, S., 2012. An IMU/UWB/Vision-based Extended Kalman Filter

for Mini-UAV Localization in Indoor Environment using 802.15.4a Wireless Sensor Network.

Journal of Intelligent & Robotic Systems, 70(1-4).

Bucy, R. S. & Joseph, P. D., 2005. Filtering for Stochastic Processing with Applications to

Guidance. 2nd ed. s.l.:AMS Chelsea Publishing.

Cai, Y. et al., 2022. Review of Target Geo-Location Algorithms for Aerial Remote Sensing

Cameras without Control Points. Applied Sciences, 12(24).

Cha, Y.-J. & J. G. Chen, O. B., 2016. Output-only computer vision based damage detection using

phase-based optical flow and unscented Kalman filters. Engineering Structures, Volume 132, pp.

300-313.

42

Chun, J.-B., Jung, H. & Kyung, C.-M., 2008. Suppressing rolling-shutter distortion of CMOS image

sensors by motion vector detection. IEEE Transactions on Consumer Electronics, 54(4), pp. 1479-

1487.

Del-Moral, P., 1996. Nonlinear Filtering: Interacting Particle Solution. Markov Processes and

Related Fields, 2(4), pp. 555-580.

DSTL, S., 2021. Transition Models - Stone Soup 1.1 documentation. [Online]

Available at:

https://stonesoup.readthedocs.io/en/v1.1/stonesoup.models.transition.html#stonesoup.models.transit

ion.linear.ConstantAcceleration

[Accessed 18 October 2023].

Engel, J., Sturm, J. & Cremers, D., 2014. Scale-aware navigation of a low-cost quadcopter with a

monocular camera. Robotics and Autonomous Systems, 62(11), pp. 1646-1656.

Fan, B., Wang, K., Dai, Y. & He, M., 2021. RS-DPSNet: Deep Plan Sweek Network for Rolling

Shutter Stereo Images. IEEE Signal Processing Letters, Volume 28, pp. 1550-1554.

Fang, Q. & Huang, S. X., 2013. UKF for Integrated Vision and Inertial Sensors Based on Three-

View Geometry. IEEE Sensors Journal, 13(7).

Fu, Q., Quan, Q. & Cai, K.-Y., 2017. Robust Pose Estimation for Multirotor UAVs Using Off-

Board Monocular Vision. IEEE Transactions on Industrial Electronics, 64(10), pp. 7942-9851.

Garcia, R. V., Pardal, P. C. P. M., Kuga, H. K. & Zanardi, M. C., 2019. Nonlinar filtering for

sequential spacecraft attitude estimation with real data: Cubature Kalman Filter, Unscented Kalman

Filter and Extended Kalman Filter. Advances in Space Research, 63(2), pp. 1038-1050.

Grau, O. & Pansiot, J., 2012. Motion and velocity estimation of rolling shutter cameras.

Proceedings of the 9th European Conference on Visual Media Production, pp. 94-98.

Gunawan, A. S. A., Tanjung, D. A. & Gunawan, F. E., 2019. Detection of Vehicle Position and

Speed using Camera Calibration and Image Projection Methods. 4th International Conference on

Computer Science and Computational Inteliigence, Volume 157, pp. 255-265.

Guo, H. & Li, Z., 2022. Object Detection and Ranging System Based on Binocular VIsion. s.l., IOP

Publishing Ltd.

43

He, H., Li, Y. & Tan, J., 2017. Relative motion estimation using visual-inertial optical flow.

Autonomous Robots, 42(3), pp. 615-629.

Ho, H. W., de-Croon, G. C. & Chu, Q., 2017. Distance and velocity estimation using optical flow

from a monocular camera. International Journal of Micro Air Vehicles, 9(3), pp. 198-209.

Javanmardi, E., Gu, Y., Javanmardi, M. & Kamijo, S., 2019. Autonomous vehicle self-localization

based on abstract map and multi-channel LiDAR in urban area. IATSS Research, 43(1), pp. 1-13.

Jeon, H., Min, J., Bang, H. & Youn, W., 2022. Quaternion-Based Iterative Extended Kalman Filter

for Sensor Fusion of Vision Sensor and IMU in 6-DOF Displacement Monitoring. IEEE Sensors

Journal, 22(23).

Julier, S. J. & Uhlmann, J. K., 2004. Unscented filtering and nonlinear estimation. Proceedings of

the IEEE, 92(3), pp. 401-422.

Kalman, R. E., 1960. A New Approach to Linear Filtering and Prediction Problems. Journal of

Basic Engineering, Volume 82, pp. 35-45.

Kim, D. Y. & Ristic, B., 2023. Introduction to Tracking & Sensor Fusion. Adelaide: IEEE AESS

Short Course.

Kim, N. et al., 2020. Object distance estimation using a single image taken from a moving rolling

shutter camera. Sensors, 20(14).

Kim, Y. V., 2023. Kalman Filter: Engineering Applications. London, UK, IntechOpen.

Krotkov, E., Henriksen, K. & Kories, R., 1990. Stereo ranging with verging cameras. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(12), pp. 1200-1205.

Kubelka, V. et al., 2015. Robust Data Fusion of Multimodal Sensory Information for Mobile

Robots. Journal of Field Robotics, 32(4), pp. 447-473.

Lao, Y., Ait-Aider, O. & Araujo, H., 2018. Robustified Structure from Motion with rolling-shutter

camera using straightness constraint. Pattern Recognition Letters, Volume 111, pp. 1-8.

Lee, J.-K. & Yoon, K.-J., 2018. Temporally Consistent Road Surface Profile Estimation Using

Stereo Vision. IEEE Transactions on Intelligent Transportation Systems, 19(5), pp. 1618-1628.

44

Lin, H.-Y., 2005. Vehicle speed detection and identification from a single motion blurred image.

Seventh IEEE Workshops on Applications of Computer Vision, Volume 1, pp. 461-467.

Lin, H.-Y. & Li, K.-J., 2004. Motion blur removal and its application to vehicle speed detection.

International Conference on Image Processing, Volume 5, pp. 3407-3410.

Liu, L., Xi, Z. & Sun, Q., 2019. Multi-vision tracking and collaobration based on spatial particle.

Journal of Visual Communication and Image Representation, Volume 59, pp. 316-326.

Lucas & Kanade, 1981. An Iterative Image Registration Technique with an Application to Stereo

Vision. Proceedings of Imaging Understanding Workshop, pp. 121-130.

Maley, J. M., 2015. Line of Sight Rate Estimation for Guided Projectiles with Strapdown Seekers.

Kissimmee, Florida, AIAA Guidance, Navigation, and Control Conference.

Ma, W., Li, W. & Cao, P., 2019. Ranging Method of Binocular Stereo Vision Based on Random

Ferns and NCC Template Matching. IOP Conference Series: Earth and Environmental Science,

252(2).

McElhoe, B. A., 1966. An assessment of the navigation and course corrections for a manned flyby

of mars or venus. IEEE Transactions on Aerospace and Electronics Systems, AES-2(4), pp. 613-

623.

McGee, L. A., Schmidt, S. F. & Smith, G. L., 1962. APPLICATION OF STATISTICAL FILTER

THEORY TO THE OPTIMAL ESTIMATION OF POSITION AND VELOCITY ON BOARD A

CIRCUMLUNAR VEHICLE, Washington: NASA.

McGuire, K. et al., 2017. Efficient Optical Flow and Stereo Vision for Velocity Estimation and

Obstacle Avoidance on an Autonomus Pocket Drone. IEEE Robotics and Automation Letters, 2(2),

pp. 1070-1076.

Mohammadi, J., Akbari, R. & Ba-haghighat, M. K., 2010. Vehicle speed estimation based on the

image motion blur using RADON transform. 2nd International Conference on Signal Processing

Systems, Volume 1, pp. 243-247.

Moreno, F. A., Blanco, J. L. & Gonzalez, J., 2009. Stereo vision specific models for particle filter-

based SLAM. Robotics and Autonomous Systems, 57(9), pp. 955-970.

Mundy, J. L. & Zisserman, A., 1992. Geometric Invariance in Computer Vision. London: The MIT

Press.

45

Nielsen, J. & Beard, R., 2017. Relative target estimation using a cascade of extended Kalman

filters. BYU Scholars Archive.

Ning, M., Calderara, S. & Cucchiara, R., 2022. SeeFar: Vehicle Speed Estimation and Flow

Analysis from a Moving UAV. Image Analysis and Processing, Volume 13233, pp. 278-289.

Pagello, E. et al., 2004. Overview of RoboCub 2003 Competition and Conferences. In: D. Polani, B.

Browning, A. Bonarini & K. Yoshida, eds. RoboCup 2003: Robot Soccer World Cup VII. Berlin

Heidelberg: Springer-Verlag, pp. 1-14.

Pan, T. et al., 2023. Monocular-Vision-Based Moving Target Geolocation Using Unmanned Aerial

Vehicle. Drones, 7(2).

Rigatos, G. G., 2010. Extended Kalman and Particle Filtering for sensor fusion in motion control of

mobile robots. Mathematics and Computers in Simulation, Volume 81, pp. 590-607.

Saha, S., Bambha, N. K. & Bhattacharyya, S. S., 2010. Design and implementation of embedded

computer vision systems based on particle filters. Computer Vision and Image Understanding,

113(11), pp. 1203-1214.

Siegwart, R., Nourbakhsh, I. R. & Scaramuzza, D., 2011. Introduction to Autonomous Mobile

Robots. 2nd ed. Cambridge: MIT Press.

Strydom, R., Thurrowgood, S., Denuelle, A. & Srinivasan, M. V., 2015. UAV Guidance: A Stereo-

Based Technique for Interception of Stationary of Moving Targets. Conference Towards

Autonomous Robotics Systems, Volume 9287, pp. 258-269.

Suddath, J. H., Kidd-III, R. H. & Reinhold, A. G., 1967. A LINEARIZED ERROR ANALYSIS OF

ONBOARD PRIMARY NAVIGATION SYSTEMS FOR THE APOLLO LUNAR MODULE,

Washington D. C.: National Aeronautics and Space Administration.

Sun, T. et al., 2015. Line-of-Sight Rate Estimation Based on UKF for Strapdown Seeker.

Mathematical Problems in Engineering, Volume 2015.

Szeliski, R., 2011. Recognition. In: D. Gries & F. B. Schneider, eds. Computer Vision Algorithms

and Applications. London: Springer, pp. 575-630.

Trigkakis, D., Petrakis, G., Tripolitsiotis, A. & Partsinevelos, P., 2020. Automated Geolocation in

Urban Environments Using a Simple Camera-Equipped Unmanned Aerial Vehicle: A Rapid

Mapping Surveying Alternative?. International Journal of Geo-Information, 9(7).

46

Ullah, I. et al., 2020. A Localization Based on Unscented Kalman Filter and Particle Filter

Localization Algorithms. IEEE Access, Volume 8, pp. 2233-2246.

Wahrudin, A., Widyotriatmo, A. & Joelianto, E., 2019. Design of Localization System Based on

Particel Filter Algorithm for Mobile Soccer Robot Using Encoders Compass, and Omnidirectional

Vision Sensor. Internetworking Indonesia Journal, 11(2), pp. 57-64.

Wang, W., Ma, H., Wang, Y. & Fu, M., 2015. Performance analysis based on least squares and

extended Kalman filter for localization of static target in wireless sensor networks. Ad Hoc

Networks, 25(Part A), pp. 1-15.

Wu, H.-M. & Karkoub, M., 2019. Hierarchical inversion-based output tracking control for uncertain

autonomous underwater vehicles using extended Kalman filter. Asian Journal of Control, 23(1), pp.

228-240.

Wu, H., Xiao, L. & Wei, Z., 2021. Simultaneous Video Stabilization and Rolling Shutter Removal.

IEEE Transactions on Image Processing, Volume 30, pp. 4637-4652.

Zanetti, R. & DeMars, K. J., 2013. Joseph Formulation of Unscented and Quadrature Filters with

Application to Consider States. Journal of Guidance, Control, and Dynamics, 36(6).

Zhang, G. J., Zhang, Y., Yao, Y. & Ma, K. M., 2005. LINE OF SIGHT RATE ESTIMATION OF

STRAPDOWN IMAGING GUIDANCE SYSTEM BASED ON UNSCENTED KALMAN

FILTER. Proceedings of the Fourth international Conference on Machine Learning and

Cybernetics, Volume 3, pp. 1574-1578.

Zhang, Y. C., Li, J. J. & Li, H. Y., 2010. Line of Sight Rate Estimation of Strapdown Imaging

Seeker Based on Particle Filter. 3rd International Symposium on Systems and Control in

Aeronautics and Astronautics, pp. 191-195.

Zhong, S. & Chirarattananon, P., 2020. Direct Visual-Inertial Ego-Motion Estimation via Iterated

Extended Kalman Filter. IEEE Robotics and Automation Letters, Volume 5, pp. 1476-1483.

47

APPENDICES

Appendix A. Python Package Information

Name Version Related Software

airsim 1.8.1 Airsim

dronekit 2.9.2

Ardupilot SITL MAVproxy 1.8.67

pymavlink 2.4.40

opencv-python 4.8.0.74 OpenCV

json 2.0.9

-

math N/A

matplotlib 3.7.2

numpy 1.21.0

scipy 1.3.3

sys N/A

time N/A

N/A – Package version not available

Appendix B. Project Gantt Chart

48

Appendix C. Main Code for Geolocation Model Implementation

1 # Example Script for obtaining MAV camera image with position, orientation, timestamp
2 import airsim
3 import os
4 import cv2 as cv
5 import numpy as np
6 import math
7 import time
8 import json
9
10 # To separate between airsim tools and algorithm-relevant logics
11 from AirsimHandler import AirsimHandler
12 from Camera import Camera
13
14 def initialise(sim):
15 # Set sim camera parameters
16 name = "MAV" # as per airsim settings.json
17 elevation, azimuth = -np.pi/2, 0 # facing downwards
18 relative_orientation = airsim.to_quaternion(elevation, azimuth, 0)
19 distortion_params = {"K1": 0.0, "K2": 0.0, "K3": 0.0, "P1": 0.0, "P2": 0.0} # no distortion
20 sim.initialiseCamera(name, relative_orientation, distortion_params)
21
22 # Initialise algorithm's camera parameters
23 mav_cam = Camera(sim.field_of_view, sim.image_center, elevation, azimuth)
24 return mav_cam
25
26 if __name__ == '__main__':
27 # Takeoff and get to initial position, wait to stabilise
28 sim = AirsimHandler()
29 sim.client.moveToPositionAsync(55, 0, -30, 5).join() # call join() to wait for task to complete
30 time.sleep(3)
31
32 # Initialise camera parameters and create mav camera
33 mav_cam = initialise(sim)
34
35 # Update camera
36 sim.updateCameraPoseWithMAV()
37 mav_cam.update_states(sim.image, sim.MAV_position, sim.MAV_orientation, sim.timestamp)
38
39 # Object Coordinate Ground truth (replace with detector here)
40 object_image_coordinate = [140,89]
41 object_world_coordinate = [51,3,0]
42 im = cv.circle(mav_cam.image, np.array(mav_cam.params.image_center, dtype=np.int32), 2, (0,255,0), 2)
43 mav_cam.image = cv.circle(im, object_image_coordinate, 2, (0,0,255), 2)
44
45 # Perform Geolocation
46 inertial = mav_cam.geolocation(object_image_coordinate, inertial=True)
47
48 print("Calculated Relative: {}".format(inertial-mav_cam.MAV.position))
49 print("Actual relative: {}".format(object_world_coordinate-mav_cam.MAV.position))
50
51 # Save sample image and corresponding states
52 cv.imwrite(r'.\drone_image.png', mav_cam.image

49

Appendix D.1. Camera Script for Geolocation Model Implementation (1)

1 import numpy as np
2 import cv2
3 from scipy.spatial.transform import Rotation
4 from numpy import cos, sin
5
6
7
8 """
9
10 Parameter Classes
11
12 """
13 class CameraParameters:
14 def __init__(self, field_of_view, image_center):
15 # fov: float
16 # image_center: 1D int vector [height/2, width/2]
17 self.image_center = image_center
18 self.focal_length = 2*(self.image_center[1]) / (2*np.tan(np.deg2rad(field_of_view)/2))
19
20 class MAV_states:
21 def __init__(self):
22 self.position = []
23 self.orientation = []
24 self.velocity = []
25 self.prev_position = []
26 self.prev_orientation = []
27
28 def update_states(self, position, orientation, velocity):
29 """
30 position: 1D float vector [N,E,D]
31 orientation: 1D float vector in quaternion[q1, q2, q3, q4]
32 """
33 # Save current states to previous states
34 self.prev_position = self.position
35 self.prev_orientation = self.orientation
36
37 # Update current states
38 self.position = position
39 self.orientation = orientation
40
41
42 class Object_states:
43 def __init__(self):
44 self.position = []
45 self.velocity = 0
46 self.prev_position = []
47 self.prev_velocity = 0
48
49 def update_states(self):
50 self.prev_position = self.position
51 self.prev_velocity = self.velocity
52
53 class GeolocationCoefficients:
54 def __init__(self, elevation, azimuth):
55 # elevation, azimuth - floats in radian
56 self.gimbal_to_camera = np.array([[0,1,0],[0,0,1],[1,0,0]])

50

Appendix D.2. Camera Script for Geolocation Model Implementation (2)

57 self.body_to_gimbal = self.btg_matrix(elevation, azimuth)
58 self.rotation_matrix = []
59
60 def btg_matrix(self, el, az):
61 # el, az - floats in radian
62 r1 = [cos(el)*cos(az), cos(el)*sin(az), -sin(el)]
63 r2 = [-sin(az), cos(az), 0]
64 r3 = [sin(el)*cos(az), sin(el)*sin(az), cos(el)]
65 return np.array([r1,r2,r3])
66
67 def update_rotation_matrix(self, vehicle_orientation):
68 # vehicle_orientation - 1D float vector in pitch roll yaw (radian)
69
70 phi = vehicle_orientation[1] # roll
71 theta = vehicle_orientation[0] # pitch
72 psi = vehicle_orientation[2] # yaw
73
74 vehicle_to_body = np.array([
75 [cos(theta)*cos(psi) , cos(theta)*sin(psi) , -sin(theta)],
76 [sin(theta)*sin(phi)*cos(psi) - cos(phi)*sin(psi) ,
sin(theta)*sin(phi)*sin(psi) + cos(phi)*cos(psi) , cos(theta)*sin(phi)],
77 [cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi) ,
sin(theta)*cos(phi)*sin(psi) - sin(phi)*cos(psi) , cos(theta)*cos(phi)]
78])
79
80 rotation = np.matmul(self.gimbal_to_camera, np.matmul(self.body_to_gimbal,vehicle_to_body))
81 self.rotation_matrix = np.linalg.inv(rotation)
82
83 """
84
85 Camera Class
86
87 """
88 class Camera:
89 def __init__(self, field_of_view, image_center, elevation, azimuth):
90 """
91 field_of_view, elevation, azimut: float
92 image_center: 1D int vector [height/2, width/2]
93 """
94
95 # Create state variables
96 self.image = []
97 self.prev_timestamp = 0
98 self.timestamp = 0
99 self.MAV = MAV_states()
100 self.obj = Object_states()
101 # Setup Parameters
102 self.params = CameraParameters(field_of_view, image_center)
103 self.geo_coeffs = GeolocationCoefficients(elevation, azimuth)
104
105
106 def update_states(self, image, MAV_position, MAV_orientation, MAV_velocity, timestamp):
107 """
108 image: 2D array 3 channel BGR
109 MAV_position: 1D float vector [N,E,D]
110 MAV_orientation: 1D float vector [pitch, roll, yaw]

51

Appendix D.3. Camera Script for Geolocation Model Implementation (3)

111 MAV_velocity: 1D float vector [VN, VE, VD]
112 timestamp: float
113 """
114 self.prev_timestamp = self.timestamp
115 self.MAV.prev_position = self.MAV.position
116 self.MAV.prev_orientation = self.MAV.orientation
117
118 self.image = image
119 self.timestamp = timestamp
120 self.obj.update_states()
121 self.MAV.update_states(MAV_position, MAV_orientation, MAV_velocity)
122 self.geo_coeffs.update_rotation_matrix(MAV_orientation)
123
124 def geolocation(self, obj_x, obj_y):
125 """
126 image_center: 1D vector [py, px]
127 """
128 # Calculate distance from center
129 px = -(obj_x - self.params.image_center[1]) # Image x axis inverted
130 py = obj_y - self.params.image_center[0]
131 image_coordinate = [px,py,self.params.focal_length] # Homogenous coordinate
132
133 # Calculate LOS vector (order corresponds to NED)
134 LOS_vector = image_coordinate/np.linalg.norm(image_coordinate)
135 LOS_vector = np.reshape(LOS_vector, (3,1))
136
137 # Range from Flat Earth Model
138 coefficients = np.matmul(self.geo_coeffs.rotation_matrix,LOS_vector)
139 altitude = np.abs(self.MAV.position[2])
140 distance = altitude / coefficients[2]
141
142 relative_vector = np.reshape(distance*coefficients, (1,3))
143 self.obj.position = self.MAV.position + relative_vector
144

52

Appendix E. Airsim Handler Script for Geolocation Model Implementation

1 import numpy as np
2 import airsim
3 import time
4
5 class AirsimHandler:
6 def __init__(self):
7 # connect to the AirSim simulator
8 client = airsim.MultirotorClient()
9 client.confirmConnection()
10 client.enableApiControl(True)
11 client.armDisarm(True)
12 client.takeoffAsync().join()
13 time.sleep(1)
14
15 self.client = client
16
17 def initialiseCamera(self, camera_name, relative_orientation, distortion_parameters, ext=True):
18 """
19 camera_name: string, as per simulation setting
20 relative_orientation: airsim Quaternionr class (refer airsim/types.py)
21 distortion_parameters: dictionary in form of {"K1": 0.0, "K2": 0.0, "K3": 0.0, "P1": 0.0, "P2": 0.0}
22 ext: boolean
23 """
24
25 self.name = camera_name
26 self.relative_orientation = relative_orientation
27 self.external = ext
28
29 self.client.simSetDistortionParams(self.name, distortion_parameters, external=self.external)
30 self.field_of_view = self.client.simGetCameraInfo(self.name, external=self.external).fov
31 self.image_requester = [airsim.ImageRequest(self.name, airsim.ImageType.Scene, False, False)]
32
33 response = self.client.simGetImages(self.image_requester, external=self.external)[0]
34 self.image_center = np.array([response.width/2, response.height/2])
35
36 self.image = []
37 self.position = []
38 self.orientation = []
39 self.timestamp = []
40
41 def updateCameraPoseWithMAV(self):
42 # get current MAV position and move camera over
43 MAV_states = self.client.getMultirotorState().kinematics_estimated
44 position = MAV_states.position
45 orientation = MAV_states.orientation + self.relative_orientation
46
47 cam_pose = airsim.Pose(position, orientation)
48 self.client.simSetCameraPose(self.name, cam_pose, external=self.external)
49
50 # get image at the current position
51 response = self.client.simGetImages(self.image_requester, external=self.external)[0]
52 image_1d = np.fromstring(response.image_data_uint8, dtype=np.uint8)
53 self.image = image_1d.reshape(response.height, response.width, 3)
54
55 # update stored image and MAV states
56 self.MAV_position = MAV_states.position.to_numpy_array()
57 self.MAV_orientation = MAV_states.orientation.to_numpy_array()
58 self.timestamp = response.time_stamp

53

Appendix F. Code for Dataset Reader during System Development

1 import json
2 import cv2
3 import numpy as np
4 from numpy import deg2rad as rad
5
6 """
7 Note every angle information is stored in radians
8 """
9
10 class Params:
11 def __init__(self, param):
12 self.target_pos = param["target_pos"]
13 self.fov = param["fov"]
14 center = param["image_center"]
15 self.image_center = [center[0], center[1]]
16 self.elevation = rad(param["elevation"])
17 self.azimuth = rad(param["azimuth"])
18
19 class DataEntry:
20 def __init__(self):
21 self.image = []
22 self.states = None
23
24 class DatasetReader:
25 def __init__(self):
26 # Read dataset
27 with open("./dataset/data_parameters.json") as json_file:
28 self.parameters = Params(json.load(json_file))
29 with open("./dataset/dataset.json") as json_file:
30 dataset = json.load(json_file)
31 self.initialise_dataset(dataset)
32 self.current_number = -1
33 self.update()
34
35 def initialise_dataset(self, dataset):
36 o = rad(np.array(dataset["MAV_ori"])) # deg to radian
37 p,r,y = o[:,0], o[:,1], o[:,2] # pry to rpy
38 dataset["MAV_ori"] = np.array([r,p,y]).T.tolist()
39 dataset["Time"] = np.asarray(dataset["Time"])/1000 # ms to s
40 self.dataset = dataset
41
42 def reset(self):
43 # Read first dataset
44 self.current_number = -1
45 self.update()
46
47 def update(self):
48 self.current_number+=1
49 self.image = cv2.imread(r'./dataset/data_{}.png'.format(self.current_number))
50 self.timestamp = self.dataset["Time"][self.current_number]
51 self.obj_bbox = self.dataset["OBJ_bbox"][self.current_number]
52 self.cmd = self.dataset["Command"][self.current_number]
53 self.pos = self.dataset["MAV_pos"][self.current_number]
54 self.ori = self.dataset["MAV_ori"][self.current_number]
55 self.vel = self.dataset["MAV_vel"][self.current_number]
56 self.pqr = [0,0,0]
57 self.uvwdot = [0,0,0]
58 # self.uvwdot = self.dataset["MAV_trans_acc"][self.current_number]
59
60 def states(self):
61 return self.image, self.cmd, self.pos, self.ori, self.vel, self.pqr, self.uvwdot, self.timestamp, self.obj_bbox

54

Appendix G.1. Code for Data Processor during System Development (1)

1 import json
2 import cv2
3 import numpy as np
4 from numpy import sin, cos
5 import matplotlib.pyplot as plt
6 import time
7 import sys
8
9 from tools.DatasetReader import DatasetReader
10 from tools.LPF import ImageCoordinate_LPF, Gyro_LPF
11 from StateEstimator import StateEstimator
12
13 def bbox_center(bbox):
14 # [down,right,h,w]
15 right, down, w, h = bbox
16 center = [int(down+0.5*h), int(right+0.5*w)]
17 return center
18
19 def visualise(image, center, data, coordinate=None, current_number=None):
20 cx,cy = data
21 cx, cy = int(cx), int(cy)
22 image_obj = cv2.circle(image, (cx+center[1], cy+center[0]), 2, (0, 255, 0), 2)
23 image_obj = cv2.circle(image_obj, (center[1], center[0]), 1, (0, 0, 255), 1)
24
25 # Visualise estimated obj position
26 if type(coordinate) != type(None):
27 ex, ey = coordinate
28 fy = center[1] + int(ex) # Horizontal right
29 fx = center[0] + int(ey) # Vertical down
30 image_obj = cv2.circle(image_obj, (fy, fx), 5, (0, 0, 255), 2)
31
32 # Display image unless current_number is parsed
33 if type(current_number) == type(None):
34 cv2.imshow("Image", image_obj)
35 cv2.waitKey(0)
36 else:
37 # Save images
38 if current_number < 10:
39 cv2.imwrite("./video_and_images/frames/data_00{}.png".format(current_number), image_obj)
40 elif current_number < 100:
41 cv2.imwrite("./video_and_images/frames/data_0{}.png".format(current_number), image_obj)
42 else:
43 cv2.imwrite("./video_and_images/frames/data_{}.png".format(current_number), image_obj)
44
45
46 if __name__ == '__main__':
47 # Note that all image coordinates are indexed as [y, x]
48 reader = DatasetReader()
49 t_pos = reader.parameters.target_pos
50 fov = reader.parameters.fov/2
51 center = reader.parameters.image_center
52 el = reader.parameters.elevation
53 az = reader.parameters.azimuth
54

55

Appendix G.1. Code for Data Processor during System Development (1)

55 last_data_no = 200
56 initial_time = reader.timestamp
57 time_log = []
58 obj_PN_log = []
59 obj_PE_log = []
60 obj_PD_log = []
61
62 obj_VN_log = []
63 obj_VE_log = []
64 obj_VD_log = []
65
66 obj_AN_log = []
67 obj_AE_log = []
68 obj_AD_log = []
69 cov_log = []
70 use_ground_truth = False
71 show_sigma = False
72 # Uncomment one of the below three
73
74 # No filter
75 filter = None
76
77 # Initial object state covariance
78 max_position_error = 10 # m
79 max_velocity = 20 # m/s
80 max_acceleration = 1.5*9.81 # m/s^2 (around 1.5 G)
81 initial_covariance = np.array([max_position_error/2, max_velocity/2, max_acceleration/2]) ** 2
82 motion_noise = 1 ** 2 # near constant acceleration noise (m/s)
83
84 # # KF
85 filter = 0
86 measurement_noise = (max_position_error/2)**2 # pos
87
88 # # EKF
89 filter = 1
90 max_px_error = 64 # px
91 max_uav_pos_error = 5 # m
92 max_uav_att_error = 0.1 # radian
93 measurement_noise = np.array([max_px_error/2, max_uav_pos_error/2, max_uav_att_error/2])**2 # pxpy,
position, orientation
94
95 # Initialise State Estimator
96 estimator = None
97 if filter != None:
98 estimator = StateEstimator(fov, center, el, az, initial_covariance=initial_covariance, otion_noise=motion_noise,
measurement_noise=measurement_noise, filter=filter)
99 else:
100 estimator = StateEstimator(fov, center, el, az, filter=filter)
101
102
103 # # Initialise LPF
104 enable_Image_LPF = False
105 LPF = None
106 if enable_Image_LPF == True:
107 LPF = ImageCoordinate_LPF()
108
109

56

Appendix G.1. Code for Data Processor during System Development (1)

110 # Set to 0 if filtering effect is not needed
111 GLPF = Gyro_LPF(time_constant=0)
112 # GLPF = Gyro_LPF(time_constant=15)
113
114
115 init_t = time.time()
116 while True:
117 print("Processing Dataset {}/{}".format(reader.current_number, last_data_no))
118
119 # Get the dataset, update estimatorera states and calculate center of the bounding box
120 image, cmd, pos, ori, vel, pqr, acc, timestamp, obj_bbox = reader.states()
121
122 # if reader.current_number != 0:
123 # GLPF.filter(estimator.timestamp - estimator.prev_timestamp, pqr)
124 # pqr = GLPF.filtered
125
126 estimator.update_states(image, cmd, pos, ori, vel, pqr, acc, timestamp)
127 coordinate = bbox_center(obj_bbox)
128
129 # Obtain filtered value of x,y image coordinate
130 if enable_Image_LPF == True:
131 LPF.filter_coordinate(timestamp - estimator.prev_timestamp, coordinate)
132 filtered = np.array(LPF.filtered, dtype=int)
133
134 # Override x,y with filtered values if LPF is enabled
135 if enable_Image_LPF == True:
136 coordinate = filtered
137
138 # Calculate the State Estimates from Image Coordinate
139 ex = (coordinate[1] - center[1]) # Horizontal left
140 ey = (coordinate[0] - center[0]) # Vertical down
141
142 if use_ground_truth == True:
143 relative_position = np.array([51.7,3.1,0]) - pos
144 unit_LOS_vector = relative_position / np.linalg.norm(relative_position)
145 unit_cam_vector = np.matmul(estimator.rot_matrices.calculate_rotation_matrix(ori,c2i=False),
unit_LOS_vector)
146 tx,ty,_ = (estimator.params.focal_length / unit_cam_vector[2]) * unit_cam_vector
147 tx = int(tx)
148 ty = int(ty)
149 ex, ey = tx, ty
150 # ex = int(np.random.normal(tx, 15))
151 # ey = int(np.random.normal(ty, 15))
152
153
154 estimator.state_estimation(ex,ey)
155 # Print and log the state estimation
156 time_log.append(round(reader.timestamp - initial_time,1))
157 obj_PN_log.append(estimator.OBJ.position[0])
158 obj_PE_log.append(estimator.OBJ.position[1])
159 obj_PD_log.append(estimator.OBJ.position[2])
160 obj_VN_log.append(estimator.OBJ.velocity[0])
161 obj_VE_log.append(estimator.OBJ.velocity[1])
162 obj_VD_log.append(estimator.OBJ.velocity[2])
163 obj_AN_log.append(estimator.OBJ.acceleration[0])

57

Appendix G.1. Code for Data Processor during System Development (1)

164 obj_AE_log.append(estimator.OBJ.acceleration[1])
165 obj_AD_log.append(estimator.OBJ.acceleration[2])
166 if type(filter) != type(None):
167 cov_log.append(list(estimator.state_filter.P))
168
169
170 """
171 Visualise
172 """
173 if reader.current_number > 1 and filter != None and filter > 0:
174 coord = estimator.state_filter.estimated_pxpy
175 visualise(image, center, [ex,ey], coordinate=coord)
176 ## Uncomment this and comment above to save video
177 # visualise(image, center, [ex,ey], coordinate=coord, current_number=reader.current_number)
178 else:
179 visualise(image, center, [ex, ey], coordinate=None)
180 # visualise(image, center, [ex, ey], coordinate=[tx,ty], current_number=reader.current_number)
181
182
183 # End the program if all data has been processed
184 if reader.current_number >= last_data_no:
185 break
186
187 # Load dataset of the next time frame
188 reader.update()
189 print("Process took {} seconds for {} dataset - average {} Hz processing rate". format(round(time.time()-
init_t,2), last_data_no, round(1/((time.time()-init_t) / last_data_no),2)))
190
191 # Output Logs
192 title_string = ''
193 if filter == None:
194 title_string = 'NoFilter'
195 elif filter == 0:
196 title_string = 'KF'
197 elif filter == 1:
198 title_string = 'EKF'
199
200
201 # Log covariance if filter
202 log=[]
203 if filter == None:
204 log = {"t": time_log, "PN": obj_PN_log, "PE": obj_PE_log, "PD": obj_PD_log,
"VN": obj_VN_log, "VE": obj_VE_log,
205 "VD": obj_VD_log, "AN": obj_AN_log, "AE": obj_AE_log, "AD": obj_AD_log}
206 else:
207 c_log = np.array(cov_log)
208 PNcov = list(c_log[:,0,0])
209 PEcov = list(c_log[:,1,1])
210 VNcov = list(c_log[:,3,3])
211 VEcov = list(c_log[:,4,4])
212 ANcov = list(c_log[:,6,6])
213 AEcov = list(c_log[:,7,7])
214 log = {"t": time_log, "PN": obj_PN_log, "PE": obj_PE_log, "PD": obj_PD_log, "VN": obj_VN_log, "VE":
obj_VE_log,

58

Appendix G.1. Code for Data Processor during System Development (1)

215 "VD": obj_VD_log, "AN": obj_AN_log, "AE": obj_AE_log, "AD": obj_AD_log, "PNcov":PNcov, "PEcov":PEcov,
"VNcov":VNcov, "VEcov":VEcov, "ANcov":ANcov, "AEcov":AEcov}
216 with open("./output/{}_Result.json".format(title_string), "w") as json_file:
217 json.dump(log, json_file)
218
219
220
221 # Plot results
222 fig, ax = plt.subplots(3, 3)
223
224 # Plot true states
225 true_PN = np.full((len(time_log),), 51.7)
226 true_PE = np.full((len(time_log),), 3.1)
227 true_PD = np.full((len(time_log),), 0)
228 true_V = np.full((len(time_log),), 0)
229 true_A = np.full((len(time_log),), 0)
230
231 ax[0, 0].plot(time_log, true_PN, label='True')
232 ax[1, 0].plot(time_log, true_PE, label='True')
233 ax[2, 0].plot(time_log, true_PD, label='True')
234 ax[0, 1].plot(time_log, true_V, label='True')
235 ax[1, 1].plot(time_log, true_V, label='True')
236 ax[2, 1].plot(time_log, true_V, label='True')
237 ax[0, 2].plot(time_log, true_A, label='True')
238 ax[1, 2].plot(time_log, true_A, label='True')
239 ax[2, 2].plot(time_log, true_A, label='True')
240
241 # Plot resulting estimated states
242 ax[0, 0].plot(time_log, obj_PN_log, label='Estimated')
243 ax[1, 0].plot(time_log, obj_PE_log, label='Estimated')
244 ax[2, 0].plot(time_log, obj_PD_log, label='Estimated')
245 ax[0, 1].plot(time_log, obj_VN_log, label='Estimated')
246 ax[1, 1].plot(time_log, obj_VE_log, label='Estimated')
247 ax[2, 1].plot(time_log, obj_VD_log, label='Estimated')
248 ax[0, 2].plot(time_log, obj_AN_log, label='Estimated')
249 ax[1, 2].plot(time_log, obj_AE_log, label='Estimated')
250 ax[2, 2].plot(time_log, obj_AD_log, label='Estimated')
251
252
253 # Plot uncertainty region
254 if type(filter) != type(None) and show_sigma == True:
255 # Plot resulting estimated states
256 c_log = 3*(np.array(cov_log)[:,0,0]**0.5)
257 ax[0, 0].fill_between(time_log, obj_PN_log-c_log, c_log+obj_PN_log, alpha=0.2, label='3σ')
258 c_log = 3*(np.array(cov_log)[:,1,1]**0.5)
259 ax[1, 0].fill_between(time_log, obj_PE_log-c_log, c_log+obj_PE_log, alpha=0.2, label='3σ')
260 c_log = 3*(np.array(cov_log)[:,3,3]**0.5)
261 ax[0, 1].fill_between(time_log, obj_VN_log-c_log, c_log+obj_VN_log, alpha=0.2, label='3σ')
262 c_log = 3*(np.array(cov_log)[:,4,4]**0.5)
263 ax[1, 1].fill_between(time_log, obj_VE_log-c_log, c_log+obj_VE_log, alpha=0.2, label='3σ')
264 c_log = 3*(np.array(cov_log)[:,6,6]**0.5)
265 ax[0, 2].fill_between(time_log, obj_AN_log-c_log, c_log+obj_AN_log, alpha=0.2, label='3σ')
266 c_log = 3*(np.array(cov_log)[:,7,7]**0.5)
267 ax[1, 2].fill_between(time_log, obj_AE_log-c_log, c_log+obj_AE_log, alpha=0.2, label='3σ')
268
269

59

Appendix G.1. Code for Data Processor during System Development (1)

270 # Limit axis range
271 # ax[0,0].set_ylim(45, 57)
272 # ax[1,0].set_ylim(-20, 5)
273 # ax[2, 0].set_ylim(-1, 1)
274 # ax[0,1].set_ylim(-25, 35)
275 # ax[1,1].set_ylim(-10, 25)
276 # ax[2, 1].set_ylim(-1, 1)
277 # ax[0,2].set_ylim(-20, 20)
278 # ax[1,2].set_ylim(-10, 15)
279 # ax[2, 2].set_ylim(-1, 1)
280
281 # Legend
282 ax[0, 0].legend(loc=1, fontsize=8)
283 ax[0, 1].legend(loc=1, fontsize=8)
284 ax[0, 2].legend(loc=1, fontsize=8)
285 ax[1, 0].legend(loc=1, fontsize=8)
286 ax[1, 1].legend(loc=1, fontsize=8)
287 ax[1, 2].legend(loc=1, fontsize=8)
288 ax[2, 0].legend(loc=1, fontsize=8)
289 ax[2, 1].legend(loc=1, fontsize=8)
290 ax[2, 2].legend(loc=1, fontsize=8)
291
292 # Label Titles
293 fig.suptitle('Estimated vs True Object States with {}'.format(title_string))
294
295 # Label NED
296 plt.setp(ax[0, 0], title='Position (m)', ylabel='North')
297 plt.setp(ax[1, 0], ylabel='East')
298 plt.setp(ax[2, 0], ylabel='Down')
299 plt.setp(ax[0, 1], title='Velocity (m/s)')
300 plt.setp(ax[0, 2], title='Acceleration (m/s^2)')
301
302 # Show plot
303 plt.tight_layout(rect=[0, 0.03, 1, 0.95])
304 plt.show()
305
306

60

Appendix H.1. Code for Filter Script Selector during System Development (1)

1 import numpy as np
2 from numpy import sin, cos
3 import time
4 from tools.StateWrapper import CameraParameters, MAV_states, Object_states, RotationMatrices
5
6 from models.EKF import ObjectState_EKF as EKF
7 from models.KF import ObjectState_KF as KF
8
9 class StateEstimator:
10 def __init__(self, field_of_view, image_center, elevation, azimuth, initial_covariance=None,
motion_noise=None, measurement_noise=None, filter=None):
11 """
12 field_of_view, elevation, azimut: float
13 image_center: 1D int vector [height/2, width/2]
14 """
15
16 # Create state variables
17 self.image = []
18 self.prev_timestamp = 0
19 self.timestamp = 0
20 self.MAV = MAV_states()
21 self.OBJ = Object_states()
22 # Setup Parameters
23 self.params = CameraParameters(field_of_view, image_center)
24 self.rot_matrices = RotationMatrices(elevation, azimuth)
25 self.filter = filter
26 if self.filter != None:
27 # Filter == 0 for KF, 1 for EKF
28 if self.filter == 0:
29 self.state_filter = KF(initial_covariance=initial_covariance, motion_noise=motion_noise,
measurement_noise=measurement_noise)
30 elif self.filter == 1:
31 self.state_filter = EKF(self.params.focal_length, self.rot_matrices, initial_covariance=initial_covariance,
motion_noise=motion_noise, measurement_noise=measurement_noise)
32
33 def update_states(self, image, MAV_command, MAV_position, MAV_orientation, MAV_velocity, MAV_pqr,
MAV_acc, timestamp):
34 """
35 image: 2D array 3 channel BGR
36 MAV_position: 1D float vector [N,E,D]
37 MAV_orientation: 1D float vector [pitch, roll, yaw]
38 MAV_velocity: 1D float vector [VN, VE, VD]
39 MAV_pqr: 1D float vector [p, q, r] (gyro reading)
40 timestamp: float
41 """
42 self.prev_timestamp = self.timestamp
43 self.MAV.prev_position = self.MAV.position
44 self.MAV.prev_orientation = self.MAV.orientation
45
46 self.image = image
47 self.timestamp = timestamp
48 self.OBJ.update_states()
49 self.MAV.update_states(MAV_command, MAV_position, MAV_orientation, MAV_velocity, MAV_pqr,
MAV_acc)
50

61

Appendix H.2. Code for Filter Script Selector during System Development (2)

51 def image_to_relative(self, image_coordinate):
52 # Calculate LOS vector (order corresponds to NED)
53 LOS_vector = (np.array(image_coordinate) / np.linalg.norm(image_coordinate)).T
54
55 # Range from Flat Earth Model
56 rotation_matrix = self.rot_matrices.calculate_rotation_matrix(self.MAV.orientation, c2i=True)
57 coefficients = np.matmul(rotation_matrix, LOS_vector)
58 altitude = np.abs(self.MAV.position[2])
59 scale = altitude / coefficients[2]
60 relative_vector = np.reshape(scale * coefficients, (1, 3))[0]
61 return relative_vector
62
63 def state_estimation(self, ex, ey):
64 """
65 ex, ey: center to right, center to down
66 image_center: 1D vector [px, py], although OpenCV inverts axis (i.e. will be [py, px] for OpenCV)
67 """
68
69 image_coordinate = [ex,ey,self.params.focal_length]
70 relative_position = self.image_to_relative(image_coordinate)
71 object_position = (relative_position + self.MAV.position)
72 Tp = self.timestamp - self.prev_timestamp
73
74 # Filter object_position with KF (0) or EKF Relative Model (1) EKF Decoupled Model (2)
75 if type(self.filter) != type(None):
76 # Filter position with KF
77 if self.state_filter.initialised == False:
78 # If performed geolocation for first time
79 initial_Tp_estimate = 0.1
80 initial_position_estimate_offset = [0, 0, 0]
81 initial_velocity_estimate = [0, 0, 0]
82 initial_acceleration_estimate = [0, 0, 0]
83 self.state_filter.initial_state((object_position+initial_position_estimate_offset), initial_velocity_estimate,
initial_acceleration_estimate)
84 self.state_filter.predict(initial_Tp_estimate)
85 else:
86 self.state_filter.predict(Tp)
87 if self.filter == 0:
88 self.state_filter.update(object_position)
89 else:
90 self.state_filter.update(image_coordinate, self.MAV, Tp)
91 object_position = self.state_filter.estimated_object_position()
92 self.OBJ.position = object_position
93
94
95 """
96 Velocity Estimation
97 """
98 if self.filter == None:
99 position_change = np.array(self.OBJ.position) - np.array(self.OBJ.prev_position)
100 time_change = self.timestamp - self.prev_timestamp
101 estimated_velocity = (position_change / time_change)
102 self.OBJ.velocity = estimated_velocity
103 else:
104 if self.state_filter.initialised == True:
105 self.OBJ.velocity = self.state_filter.estimated_object_velocity()

62

Appendix H.3. Code for Filter Script Selector during System Development (3)

Appendix I.1. Code for Class Definitions during System Development (1)

1 import numpy as np
2 from numpy import cos, sin
3
4
5 class CameraParameters:
6 def __init__(self, field_of_view, image_center):
7 # fov: float
8 # image_center: 1D int vector [height/2, width/2]
9 self.image_center = image_center
10 self.focal_length = int((2*self.image_center[1]) / (2*np.tan(np.deg2rad(field_of_view)/2)))
11
12
13 class MAV_states:
14 def __init__(self):
15 self.position = [0,0,0]
16 self.orientation = [0,0,0]
17 self.prev_position = [0,0,0]
18 self.prev_orientation = [0,0,0]
19
20 # Required
21 self.pqr = [0,0,0] # Angular Velocity in Body frame
22 # self.uvw = [0,0,0] # Translational Velocity in Body frame
23 self.uvw_dot = [0,0,0] # Translational Acceleration in Body frame
24
25
26 def update_states(self, command, position, orientation, velocity, pqr, acc):
27 """
28 position: 1D float vector [N,E,D]
29 orientation: 1D float vector in quaternion[q1, q2, q3, q4]
30 """
31 # Save current states to previous states
32 self.prev_position = self.position
33 self.prev_orientation = self.orientation
34
35 # Update current states
36 self.command = command
37 self.position = position

106
107
108 """
109 Acceleration Estimation
110 """
111 if self.filter == None:
112 velocity_change = np.array(self.OBJ.velocity) -
np.array(self.OBJ.prev_velocity)
113 time_change = self.timestamp - self.prev_timestamp
114 estimated_acceleration = (velocity_change / time_change)
115 self.OBJ.acceleration = estimated_acceleration
116 else:
117 if self.state_filter.initialised == True:
118 self.OBJ.acceleration = self.state_filter.estimated_object_acceleration

63

Appendix I.2. Code for Class Definitions during System Development (2)

38 self.orientation = orientation
39 self.velocity = velocity
40 self.pqr = pqr
41 self.uvw_dot = acc
42
43
44 class Object_states:
45 def __init__(self):
46 self.iteration = 0
47 self.position = [0,0,0]
48 self.prev_position = [0,0,0]
49 self.velocity = [0,0,0]
50 self.prev_velocity = [0,0,0]
51 self.acceleration = None
52
53
54 def update_states(self, Tp=0.1, position=[0,0,0]):
55 self.prev_position = self.position
56 self.prev_velocity = self.velocity
57 self.position = position
58
59 if self.iteration != 0:
60 self.velocity = ((np.array(self.position) - np.array(self.prev_position))/Tp)
61 if self.iteration == 3:
62 self.acceleration = ((self.velocity-self.prev_velocity)/Tp)
63 else:
64 self.iteration+=1
65
66
67 class Relative_states:
68 def __init__(self):
69 self.iteration = 0
70 self.position = None
71 self.prev_position = None
72 self.velocity = None
73 self.prev_velocity = None
74 self.acceleration = None
75
76
77 def update_states(self, Tp, position, MAV_down_vel):
78 self.prev_position = self.position
79 self.prev_velocity = self.velocity
80 self.position = position
81
82 if self.iteration != 0:
83 self.velocity = ((self.position - self.prev_position)/Tp)
84 self.velocity[2] = -MAV_down_vel
85 if self.iteration == 3:
86 self.acceleration = ((self.velocity-self.prev_velocity)/Tp)
87 else:
88 self.iteration+=1
89
90
91 class RotationMatrices:
92 def __init__(self, elevation, azimuth):
93 # elevation, azimuth - floats in radian

64

Appendix I.3. Code for Class Definitions during System Development (3)

94 self.gimbal_to_camera = np.array([[0,1,0],[0,0,1],[1,0,0]])
95 self.body_to_gimbal = self.btg_matrix(elevation, azimuth)
96 self.camera_orientation = [elevation, azimuth]
97 self.rotation_matrix = []
98
99 def btg_matrix(self, el,az):
100 # el, az - floats in radian
101 r1 = [cos(el)*cos(az), cos(el)*sin(az), -sin(el)]
102 r2 = [-sin(az), cos(az), 0]
103 r3 = [sin(el)*cos(az), sin(el)*sin(az), cos(el)]
104 return np.array([r1,r2,r3])
105
106 def calculate_rotation_matrix(self, vehicle_orientation, c2i=True):
107 # vehicle_orientation - 1D float vector in theta phi psi (radian)
108
109 phi = vehicle_orientation[0] # phi
110 theta = vehicle_orientation[1] # theta
111 psi = vehicle_orientation[2] # psi
112
113 vehicle_to_body = np.array([
114 [cos(theta)*cos(psi) , cos(theta)*sin(psi) , -sin(theta)],
115 [sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi) ,
sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi) , cos(theta)*sin(phi)],
116 [cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi) ,
sin(theta)*cos(phi)*sin(psi) - sin(phi)*cos(psi) , cos(theta)*cos(phi)]
117])
118
119 # if c2i == True:
120 # # Camera to Inertial
121 # return np.matmul(np.linalg.inv(vehicle_to_body),
np.linalg.inv(self.gimbal_to_camera))
122 # else:
123 # # Inertial to Camera
124 # return np.matmul(self.gimbal_to_camera,vehicle_to_body)
125
126 if c2i == True:
127 # Camera to Inertial
128 return np.matmul(np.linalg.inv(vehicle_to_body),
np.matmul(np.linalg.inv(self.body_to_gimbal),
np.linalg.inv(self.gimbal_to_camera)))
129 else:
130 # Inertial to Camera
131 return np.matmul(self.gimbal_to_camera,np.matmul(self.body_to_gimbal,
vehicle_to_body))

1 def jacobian(self, model, x):
2 f = model(x) # f returns predicted rate in change of states
3 m = f.shape[1]
4 n = x.shape[1]
5
6 eps = 0.01 # deviation
7 J = np.zeros((m,n))
8 for i in range(0,n):
9 x_eps = np.copy(x)
10 x_eps[0][i]+=eps
11 f_eps = model(x_eps)
12 df = (f_eps - f) / eps
13 J[:,i] = df[0,:]
14
15 return J

65

Appendix J. Numerical Calculation of Jacobian Matrix

Appendix K. Derivation of Motion Noise Matrix Qt

Constant Acceleration with Noise q

Acceleration Noise in Velocity

Acceleration Noise in Position

𝑎 = 𝑎𝑐𝑚𝑑 + 𝑞

𝑣𝑡 = (𝑎𝑐𝑚𝑑 + 𝑞)𝑑𝑡 + 𝑣𝑡−1

𝑝𝑡 =
1

2
(𝑎𝑐𝑚𝑑 + 𝑞)𝑑𝑡2 + 𝑣𝑡𝑑𝑡 + 𝑝𝑡−1

𝜎𝑝 =
1

2
𝑑𝑡2 ∙ 𝑞, 𝜎𝑣 = 𝑑𝑡 ∙ 𝑞, 𝜎𝑎 = 1 ∙ 𝑞

𝑄 = ∫[

𝜎𝑝
2 𝜎𝑝𝜎𝑣 𝜎𝑝𝜎𝑎

𝜎𝑣𝜎𝑝 𝜎𝑣
2 𝜎𝑣𝜎𝑎

𝜎𝑎𝜎𝑝 𝜎𝑎𝜎𝑣 𝜎𝑎
2

] 𝑑𝑡

=∫

[

𝑑𝑡

4

4

𝑑𝑡
3

2

𝑑𝑡
2

2

𝑑𝑡
3

2
𝑑𝑡

2
𝑑𝑡

𝑑𝑡
2

2
𝑑𝑡 1]

∙ 𝑞2𝑑𝑡

=

[

𝑑𝑡5

20

𝑑𝑡4

8

𝑑𝑡3

6

𝑑𝑡4

8

𝑑𝑡3

3

𝑑𝑡2

2

𝑑𝑡3

6

𝑑𝑡2

2
𝑑𝑡]

∙ 𝑞2

1 def jacobian(self, model, x):
2 f = model(x) # f returns predicted rate in change of states
3 m = f.shape[1]
4 n = x.shape[1]
5
6 eps = 0.01 # deviation
7 J = np.zeros((m,n))
8 for i in range(0,n):
9 x_eps = np.copy(x)
10 x_eps[0][i]+=eps
11 f_eps = model(x_eps)
12 df = (f_eps - f) / eps
13 J[:,i] = df[0,:]
14
15 return J

66

Appendix L.1. EKF Implementation Code (1)

1 import numpy as np
2 from numpy import tan
3 from numpy import cos
4 from numpy import sin
5
6 class ObjectState_EKF:
7 def __init__(self, f, rotation_matrices, initial_covariance=[5, 5, 5], motion_noise = 2,
measurement_noise=[1,1,0.1,10]):
8 self.initialised = False
9 self.rot_mat = rotation_matrices # For measurement prediction (body to camera frame)
10 self.focal_length = f
11
12 # Object Initial State Covariance (mav_ori,mav_pos, pos, vel, acc)
13 obj_pos_cov, obj_vel_cov, obj_acc_cov = initial_covariance
14 self.P = np.diag([obj_pos_cov, obj_pos_cov, 0, obj_vel_cov, obj_vel_cov, 0, obj_acc_cov, obj_acc_cov, 0])
15
16 self.q = motion_noise
17
18 # Object Image Pixel Noise (No noise on focal length)
19 pxpy_noise, pos_noise, ori_noise = measurement_noise
20 self.R =
np.diag([pxpy_noise,pxpy_noise,pos_noise,pos_noise,pos_noise,ori_noise,ori_noise, ori_noise])
21
22 def initial_state(self, OBJ_pos, OBJ_vel, OBJ_acc):
23 N,E,D = OBJ_pos
24 VN,VE,VD = OBJ_vel
25 AN,AE,AD = OBJ_acc
26 self.last_position = OBJ_pos
27 self.x_hat = np.array([[N,E,D,VN,VE,VD,AN,AE,AD]])
28 self.initialised = True
29
30 """
31 MAV State Conversion Equations
32 """

67

Appendix L.2. EKF Implementation Code (2)

33 def angular_rotation_matrix(self, phi, theta):
34 # Body to Inertial
35 return np.array([[1, sin(phi) * tan(theta), cos(phi) * tan(theta)],
36 [0, cos(phi), -sin(phi)],
37 [0, sin(phi) / cos(theta), cos(phi) / cos(theta)]])
38
39 def translational_rotation_matrix(self, phi, theta, psi):
40 # Body to Inertial
41 return np.array([[cos(theta) * cos(psi), sin(theta) * sin(phi) * cos(psi) - cos(phi) * sin(psi), cos(phi) * sin(theta) *
cos(psi) + sin(phi) * sin(psi)],
42 [cos(theta) * sin(psi), sin(theta) * sin(phi) * sin(psi) + cos(phi) * cos(psi), sin(theta) * cos(phi) * sin(psi) -
sin(phi) * cos(psi)],
43 [-sin(theta), cos(theta) * sin(phi), cos(theta) * cos(phi)]])
44
45 def Q(self, Tp):
46 Q = np.array([[(1/20)*Tp**5, 0,0, (1/8)*Tp**4, 0,0, (1/6)*Tp**3, 0,0],
47 [0, (1/20)*Tp**5, 0,0, (1/8)*Tp**4, 0,0, (1/6)*Tp**3, 0],
48 [0, 0, 0, 0, 0, 0, 0, 0, 0],
49 [(1/8)*Tp**4, 0,0, (1/3)*Tp**3, 0,0, (1/2)*Tp**2, 0,0],
50 [0, (1/8)*Tp**4, 0,0, (1/3)*Tp**3, 0,0, (1/2)*Tp**2, 0],
51 [0, 0, 0, 0, 0, 0, 0, 0, 0],
52 [(1/6)*Tp**3, 0,0, (1/2)*Tp**2, 0,0, Tp, 0,0],
53 [0, (1/6)*Tp**3, 0,0, (1/2)*Tp**2, 0,0, Tp, 0],
54 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
55 Q = self.q * Q
56 return Q
57
58 def f_obj(self, Tp):
59 f_obj = np.array([[1, 0, 0, Tp, 0, 0, 0.5*(Tp**2), 0, 0],
60 [0, 1, 0, 0, Tp, 0, 0, 0.5*(Tp**2), 0],
61 [0, 0, 0, 0, 0, 0, 0, 0, 0],
62 [0, 0, 0, 1, 0, 0, Tp, 0, 0],
63 [0, 0, 0, 0, 1, 0, 0, Tp, 0],
64 [0, 0, 0, 0, 0, 0, 0, 0, 0],
65 [0, 0, 0, 0, 0, 0, 1, 0, 0],
66 [0, 0, 0, 0, 0, 0, 0, 1, 0],
67 [0, 0, 0, 0, 0, 0, 0, 0, 0]])
68 return f_obj
69 def state_prediction(self, x_hat):
70 # OBJ States Prediction
71 state_trainsition_matrix = self.f_obj(self.Tp)
72 state = np.matmul(state_trainsition_matrix, x_hat.T).T
73 return state
74
75 def predict(self, Tp):
76 self.Tp = Tp
77 self.x_hat = self.state_prediction(self.x_hat)
78 F = self.f_obj(Tp)
79 self.P = np.matmul(np.matmul(F,self.P),F.T) + self.Q(Tp)
80
81 def measurement_covariance(self,z):
82 relative_position = self.x_hat[0][:3] - z[0,2:5]
83 unit_LOS_vector = relative_position/np.linalg.norm(relative_position)
84
85 inertial_to_camera_matrix = self.rot_mat.calculate_rotation_matrix(z[0,5:8], c2i=False)
86 unit_cam_vector = np.matmul(inertial_to_camera_matrix, unit_LOS_vector)

68

Appendix L.3. EKF Implementation Code (3)

87 px, py, f = (self.focal_length/unit_cam_vector[2]) * unit_cam_vector
88
89 n,e,d = z[0,2:5]
90 phi, theta, psi = z[0,5:8]
91 predicted_measurement = np.array([[px,py,n,e,d,phi,theta,psi]])
92 return predicted_measurement
93
94 def calculate_covariance_matrix(self, z):
95 cov_matrix = self.jacobian(self.measurement_covariance, z)
96 cov_matrix[0,0], cov_matrix[1,1] = 1, 1
97 return cov_matrix
98
99 def measurement_model(self,x_hat):
100 # phi,theta, _ = self.MAV.prev_orientation
101 # phi, theta, psi = self.MAV.prev_orientation +
np.matmul(self.angular_rotation_matrix(phi,theta),np.array(self.MAV.pqr)) *
self.Tp
102 # n,e,d = self.MAV.prev_position + np.array(self.MAV.velocity)*self.Tp
103
104 n,e,d = self.MAV.position
105 phi,theta,psi = self.MAV.orientation
106 N,E,D = self.x_hat[0][3:6]
107 relative_position = x_hat[0][:3] - [n,e,d]
108 unit_LOS_vector = relative_position/np.linalg.norm(relative_position)
109
110 inertial_to_camera_matrix =
self.rot_mat.calculate_rotation_matrix(self.MAV.orientation, c2i=False)
111 unit_cam_vector = np.matmul(inertial_to_camera_matrix, unit_LOS_vector)
112 px, py, f = (self.focal_length/unit_cam_vector[2]) * unit_cam_vector
113
114 predicted_measurement = np.array([[px,py,n,e,d,phi,theta,psi]])
115 return predicted_measurement
116
117 def update(self, image_coordinate, MAV, Tp):
118 self.Tp = Tp
119 self.MAV = MAV
120 n,e,d = MAV.position
121 r,p,y = MAV.orientation
122 px, py, _ = image_coordinate
123
124 actual_measurement = np.array([[px,py,n,e,d,r,p,y]])
125
126 C = self.jacobian(self.measurement_model, self.x_hat)
127 cov = self.calculate_covariance_matrix(actual_measurement)
128 noise_cov = np.matmul(np.matmul(cov, self.R), cov.T)
129 term = noise_cov + np.matmul(np.matmul(C, self.P), C.T)
130
131 inverse_term = np.linalg.inv(term)
132 self.kalman_gain = np.matmul(np.matmul(self.P, C.T),inverse_term)
133 self.P = np.matmul((np.eye(9)-np.matmul(self.kalman_gain,C)), self.P)
134
135
136 predicted_measurement = self.measurement_model(self.x_hat)
137 prediction_error = (actual_measurement - predicted_measurement).T
138 prev_pos = self.x_hat[0][:3]
139 self.x_hat = self.x_hat + np.matmul(self.kalman_gain, prediction_error).T

69

Appendix L.4. EKF Implementation Code (4)

140 self.last_px = px,py
141 position_error = self.x_hat[0][:3] - prev_pos
142 # print("Prediction Error in position: {}".format(position_error))
143 # print("Prediction Error in pxpy: {}".format(prediction_error[:2].T))
144
145 self.estimated_pxpy = self.measurement_model(self.x_hat)[0][:2]
146
147 def estimated_object_position(self):
148 estimated_obj_position = self.x_hat[0][:3]
149 return estimated_obj_position
150
151 def estimated_object_velocity(self):
152 estimated_obj_velocity = self.x_hat[0][3:6]
153 return estimated_obj_velocity
154
155 def estimated_object_acceleration(self):
156 estimated_obj_acceleration = self.x_hat[0][6:9]
157 return estimated_obj_acceleration
158
159
160 def jacobian(self, model, x):
161 f = model(x) # f returns predicted rate in change of states
162 m = f.shape[1]
163 n = x.shape[1]
164
165 eps = 0.01 # deviation
166 J = np.zeros((m,n))
167 for i in range(0,n):
168 x_eps = np.copy(x)
169 x_eps[0][i]+=eps
170 f_eps = model(x_eps)
171 df = (f_eps - f) / eps
172 J[:,i] = df[0,:]
173
174 return J

70

Appendix M. MAV position, orientation, angular velocity and translational acceleration

obtained from Airsim (top) and Ardupilot (bottom)

Data Number

V
a
lu

e

71

Appendix N. Result from Sample Dataset after orientation correction

Appendix O. Result from Sample Dataset after timestamp correction

72

Appendix P. Results from different MAV state (top) and image coordinate (bottom) noise

parameters

Appendix Q. Image from AirsimNH (left) and Blocks (right) Environment

73

Appendix R. Shell script for automated 100 Airsim simulation

Appendix S.1. Sample Images from Dataset (Scenario 0)

1 for i in {0..99}
2 do
3 echo Run $i
4 gnome-terminal -e 'sh -c ~/Airsim/Blocks/LinuxNoEditor/Blocks/Binaries/Linux/Blocks
-windowed'
5 sleep 10
6 python ~/Desktop/SRCE/dataset_generator/DATASET_circle_circle.py $i &
7 pid=$!
8 wait $pid
9 kill $(pidof Blocks)
10 done
11
12

74

Appendix S.2. Sample Images from Dataset (Scenario 1)

Appendix S.3. Sample Images from Dataset (Scenario 2)

75

Appendix S.4. Sample Images from Dataset (Scenario 3)

Appendix S.5. Sample Images from Dataset (Scenario 4)

76

Appendix S.6. Sample Images from Dataset (Scenario 5)

Appendix S.7. Sample Images from Dataset (Scenario 6)

77

Appendix S.8. Sample Images from Dataset (Scenario 7)

Appendix T.1. Unfiltered State Estimate Plots (Scenario 0)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

78

Appendix T.2. Unfiltered State Estimate Plots (Scenario 1)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix T.3. Unfiltered State Estimate Plots (Scenario 2)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

79

Appendix T.4. Unfiltered State Estimate Plots (Scenario 3)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix T.5. Unfiltered State Estimate Plots (Scenario 4)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

80

Appendix T.6. Unfiltered State Estimate Plots (Scenario 5)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix T.7. Unfiltered State Estimate Plots (Scenario 6)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

81

Appendix T.8. Unfiltered State Estimate Plots (Scenario 7)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix U.1. Baseline EKF State Estimate Plots (Scenario 0)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

82

Appendix U.2. Baseline EKF State Estimate Plots (Scenario 1)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix U.3. Baseline EKF State Estimate Plots (Scenario 2)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

83

Appendix U.4. Baseline EKF State Estimate Plots (Scenario 3)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix U.5. Baseline EKF State Estimate Plots (Scenario 4)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

84

Appendix U.6. Baseline EKF State Estimate Plots (Scenario 5)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix U.7. Baseline EKF State Estimate Plots (Scenario 6)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

85

Appendix U.8. Baseline EKF State Estimate Plots (Scenario 7)

*Note that plot title was incorrectly labelled with the scenario number 1 larger than the actual

scenario

Appendix V.1. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 0)

86

Appendix V.2. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 1)

Appendix V.3. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 2)

87

Appendix V.4. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 3)

Appendix V.5. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 4)

88

Appendix V.6. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 5)

Appendix V.7. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 6)

89

Appendix V.8. Baseline EKF State Estimation Average Error with different pixel noise

parameter (Scenario 7)

Appendix W.1. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 0)

90

Appendix W.2. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 1)

Appendix W.3. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 2)

91

Appendix W.4. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 3)

Appendix W.5. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 4)

92

Appendix W.6. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 5)

Appendix W.7. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 6)

93

Appendix W.8. Baseline EKF State Estimation Average Error with different acceleration

noise q (Scenario 7)

Appendix X.1. Baseline EKF average estimation error with MAV state noise (Scenario 0)

94

Appendix X.2. Baseline EKF average estimation error with MAV state noise (Scenario 1)

Appendix X.3. Baseline EKF average estimation error with MAV state noise (Scenario 2)

95

Appendix X.4. Baseline EKF average estimation error with MAV state noise (Scenario 3)

Appendix X.5. Baseline EKF average estimation error with MAV state noise (Scenario 4)

96

Appendix X.6. Baseline EKF average estimation error with MAV state noise (Scenario 5)

Appendix X.7. Baseline EKF average estimation error with MAV state noise (Scenario 6)

97

Appendix X.8. Baseline EKF average estimation error with MAV state noise (Scenario 7)

Appendix Y.1. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 0)

98

Appendix Y.2. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 1)

Appendix Y.3. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 2)

99

Appendix Y.4. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 3)

Appendix Y.5. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 4)

100

Appendix Y.6. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 5)

Appendix Y.7. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 6)

101

Appendix Y.8. Baseline EKF average estimation error with 0.1 seconds lag in object bounding

box (Scenario 7)

Appendix Z.1. Baseline EKF average estimation error with different measurement update

rate (Scenario 0)

102

Appendix Z.2. Baseline EKF average estimation error with different measurement update

rate (Scenario 1)

Appendix Z.3. Baseline EKF average estimation error with different measurement update

rate (Scenario 2)

103

Appendix Z.4. Baseline EKF average estimation error with different measurement update

rate (Scenario 3)

Appendix Z.5. Baseline EKF average estimation error with different measurement update

rate (Scenario 4)

104

Appendix Z.6. Baseline EKF average estimation error with different measurement update

rate (Scenario 5)

Appendix Z.7. Baseline EKF average estimation error with different measurement update

rate (Scenario 6)

105

Appendix Z.8. Baseline EKF average estimation error with different measurement update

rate (Scenario 7)

