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Summary 

This PhD research addresses some of the impediments to calibration and uncertainty 

analysis of complex groundwater models, whose long runtimes and sometimes 

questionable numerical stability often renders those analyses intractable. Research 

documented herein explores the use of surrogate and proxy models in overcoming 

these impediments. More specifically this research focuses on the application of 

surrogate and/or proxy models conjunctively with an original complex model, in 

facilitating and expediting gradient-based calibration and uncertainty analysis. 

Gradient methods have the advantage over so-called global methods in that they are 

generally much faster and can readily be adapted to include formal mathematical 

regularisation which can accommodate large numbers of adjustable parameters. This 

supports calibration and uncertainty analysis for a broad range of physically-based, 

distributed models wherein complex environmental processes are simulated within 

heterogeneous media. Gradient methods are, however, highly dependent on the so-

called Jacobian matrix which is comprised of derivatives of all model generated 

equivalents to calibration dataset observations with respect to all adjustable 

parameters. These derivatives are usually calculated from model outputs using finite-

differencing methods. When parameters are many and model runtimes are long, 

population of the Jacobian matrix can be extremely computationally demanding. 

Also, the integrity of finite-difference derived derivatives can be severely degraded 

by numerical inconsistencies that often attend complex model outputs. Research 

documented herein demonstrates the novel use of a faster running and more 

numerically stable surrogate model for population of the Jacobian matrix that can 

overcome these difficulties, therefore promulgating calibration and uncertainty 

assessment of problematic complex models when it was otherwise not possible. 

This study exemplifies a number of differing simplification strategies that can be 

implemented in this novel approach including: (1) use of a single model based on a 

coarser grid; (2) use of multiple surrogate models based on parameter-specific grid 
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coarsening; (3) use of a model that employs an alternative simulation algorithm and; 

(4) use of a large suite of observation-specific analytical proxies. 

Results from these demonstrations give great cause for optimism that the surrogate- 

enabled gradient methods have a bright future in modern groundwater modelling. As 

models become more complex, and as decision makers and stakeholders increasingly 

demand that predictions of future environmental outcomes made by models are 

accompanied by estimates of the uncertainties associated with those predictions, the 

need for parameterisation complexity will grow. So too will be the requirement that 

calibration and uncertainty analysis be based on gradient methods. It is anticipated 

that in the next generation of modelling in support of the decision-making process, 

the role of surrogate and proxy models in that process will expand.  
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Chapter  1 

Introduction 

1.1  Overview 

The use of complex physically-based numerical models for the prediction of future 

system behaviour has become common place in recent years in both environmental 

and engineering contexts. Decisions of political, economic or environmental 

importance are often based on predictions made by such models and the integrity of 

these decisions is underpinned by the assumed accuracy of those model generated 

predictions. It is often the belief, that the calibration process is what endows a model 

with the ability to predict future system behaviour and that through inclusion of a 

high degree of detail (complexity) in a numerical model, that the assumed accuracy 

of a prediction will be enhanced. The inconvenient truth is that the most a calibrated, 

complex model can hope to achieve is: (1) the quantification of the model’s potential 

for predictive error; and (2) the reduction of that potential for predictive error to its 

theoretical minimum. It must therefore be a matter of moral and ethical diligence that 

the potential in a model for predictive “uncertainty” be assessed, duly accounted for 

and appropriately considered when decisions are to be based on these predictions. 

Perhaps the greatest impairment to the correct reporting of numerical model 

uncertainty, outside a lack of knowledge of the implementation of such analyses, is 

the large run times and sometimes questionable numerical stability of the “complex” 

models conceived from a desire to make better predictions. There is therefore an 

increasing need for methodologies that can promulgate conservative, while at the 

same time tractable, estimates of predictive uncertainty in circumstances where it 

may otherwise not be achievable due to excessive computational burdens and/or 

numerical model misbehaviour. This research attempts to address the impediments to 

calibration and predictive uncertainty assessment of problematic complex models, 

when such analyses are performed within gradient-based frameworks. 
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In groundwater or reservoir simulation models, complexity is accrued as a 

consequence of attempts to include in the model conceptual detail commensurate 

with expert knowledge of the system under investigation. It may arise as algorithmic 

complexity in attempting to compute solutions to more involved governing equations 

that better represent underlying physical processes. Complexity also arises from 

attempts to include in the model: detail pertaining to complex geological structures 

and their continuity (or lack thereof); knowledge of the degree and spatial extents of 

geological heterogeneity; knowledge of important water exchanges (which are often 

spatially and time variable) and; knowledge of spatially and time-varying stress 

factors. Numerical implementation and representation of these physical and 

geological processes then often requires fine scale spatial and temporal model 

discretisation, inevitably resulting in long model runtimes. When analysis such as 

calibration and predictive uncertainty assessment is to be performed, these processes 

require repeated model runs. The huge computational burdens that then ensue can be 

particularly onerous in the rigorous treatment of these analyses. 

In addition, models that have been constructed to include a large amount of 

complexity often display a propensity for numerical instability. These numerical 

instabilities may be an outcome of round-off errors that propagate from within the 

algorithm/s employed by the model. They may also arise from the non-linear nature 

of many physically-based distributed models. Normally, use of a particular numerical 

algorithm will demand that specific discretisation criteria are met to ensure numerical 

stability is achieved, however strict adherence to these criteria cannot always be 

attained or guaranteed in construction of a distributed physically-based model. 

Adherence to these criteria becomes particularly problematic when hydraulic 

properties assigned to the model (at least in some areas of the model domain) are 

allowed or required to display large variances in values assigned to adjacent grid 

cells or elements. While sophisticated solvers can employ devices such as adaptive 

time stepping that are able to mitigate the onset of numerical oscillations and 

facilitate solution convergence, criteria defining attainment of solution convergence 

is often a matter left to the discretion of the modeller. When solution convergence is 

not strictly achieved, numerical errors will attend model outputs. The deleterious 

effects of model numerical instability become particularly onerous when the model is 
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subjected to analysis schemes that require systematic (or random) adjustment of 

model parameters. In some cases, even where parameters are altered by only small 

increments from values employed in a previously stable model run, model solution 

convergence cannot be attained. In other cases, inconsistencies in model outputs can 

lead to unreliable model output to parameter relationships when these are estimated 

from pertinent model outcomes arising from incremental changes in model 

parameters. Both model run failure and unreliable model output to parameter 

relationships can be inimical to any calibration or uncertainty analysis scheme. 

The question of how much complexity should be included in construction of a 

groundwater model such that the model is able to fulfil the objectives of a particular 

modelling exercise is elegantly addressed by Doherty and Simmons (2013) who 

discuss optimal groundwater model design as it relates to the decision making 

process. In that text it is argued that optimality of model complexity should be 

measured on two metrics: (1) the necessity to include sufficient model 

parameterisation, process and structural detail to ensure that predictive uncertainty is 

not underestimated; and (2) that justification for increased model complexity is only 

forthcoming when rejection of the hypothesis that an undesirable outcome can occur, 

cannot be concluded through use of a simpler model. Unfortunately, the matter of 

optimal model simplification is rarely considered in development of many project 

terms of reference; rather a high degree of complexity is often a mandatory 

requirement. Nor is model simplification usually foremost in modellers’ minds when 

they embark on the process of assimilating into a model the many disparate datasets, 

expert conceptualisations and/or recommendations provided to them while also 

maintaining respect for key project deliverables required of them. There is therefore 

a tendency for modellers to over-extend from the outset in terms of the level of 

complexity that they build into models. It is only at the point where automated model 

calibration is attempted that the undesirable manifestations of model complexity as 

described above become fully apparent. 

Where a model cannot be calibrated its value as a prediction making tool cannot be 

supported, nor can the benefits of appropriate model calibration be realised. That is 

to say, the model’s ability to make predictions that have minimised potential for error 
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cannot be supported. At the same time the models ability to reduce a prediction’s 

uncertainty to its theoretical lower limit (determined by model to measurement misfit) 

may be foregone. When calibration of a model to an acceptable level of observation 

misfit is not possible because of long runtimes and/or numerical instability, then a 

rigorous analysis of predictive uncertainties will certainly be more challenging if not 

abandoned altogether. Subsequently, the use of the model to inform the decision 

making process will be severely compromised. 

 

1.2  Calibration and Uncertainty Analysis 

Model calibration is the process, normally undertaken prior to the model being used 

for predictive purposes, in which a unique parameter set is found that enables the 

model to adequately replicate historical measurements of system state to within 

limits defined by measurement noise. Calibration of physically-based distributed 

models such as those used to simulate sub-surface, hydraulic processes constitutes an 

inversion problem that is inherently ill-posed and therefore has a non-unique solution; 

this issue has been recognised as early as in the works of Carrera and Neuman 

(1986a, 1986b). Inverse problem theory and implementations are detailed 

comprehensively in the works of Oliver et al. (2008), Aster et al. (2012), Doherty 

(2015b) or any good textbook on the topic. Recent developments in the history 

matching process (model calibration) have been compiled by Oliver and Chen (2011) 

with specific areas including (1) parameterisation; (2) form of the objective function; 

(3) minimisation algorithms; and (4) uncertainty quantification, forming the focus of 

this work. Oliver and Chen (2011) also identify the application of the ensemble 

Kalman Filter (enKF) as a significant area of recent advancement. 

While the often stated reason for inclusion of a high degree of model complexity is to 

provide more accurate predictions on which important management decisions can be 

based, an accurate prediction is unfortunately something that a model cannot 

substantively claim. Moore and Doherty (2005, 2006) show that even if a model is 

free of defects and is perfectly calibrated, uncertainties associated with many 
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predictions of interest made by the model may still be accompanied by a high degree 

of error. This is primarily because while the calibration process may achieve 

reductions in uncertainties of those parameters to which model output counterparts to 

calibration data are sensitive, the calibration process may achieve nothing in 

reducing the uncertainty in parameters to which some important predictions may be 

sensitive. Those authors explain that parameter uncertainty, and therefore predictive 

uncertainty, is a consequence of the so-called calibration “null-space”. This 

calibration “null-space” is born of an information deficit in most calibration datasets. 

When predictions made by the model are sensitive to parameters and/or 

combinations of parameters that reside in the calibration “null-space”, the potential 

for predictive error may remain high. This is particularly likely in cases where the 

predictions required of the model differ in spatial and/or temporal proximity to the 

elements of the calibration dataset, and where measurements that comprise the 

calibration dataset are acquired under a stress regime that differs to that under which 

predictions are to be made. Unfortunately, this is precisely the backdrop under which 

many groundwater models are framed when they are used to support the decision 

making process. 

In spite of the fact that non-uniqueness prevails in most, if not all hydrological and 

hydrogeological settings, a unique solution is often still sought so that a model may 

be deployed to make prediction/s of interest. The unique set of model parameters 

thus found is then deemed to “calibrate” the model; hence model prediction accuracy 

is then implied. However, when viewed from the perspective of Bayesian inference, 

what is actually achievable through model calibration becomes more apparent. When 

viewed in this way, historical measurements of system state to which the model is to 

be matched are considered to contain a certain amount of error. This error is often 

treated as additive noise that accompanies the true value of the measurement. 

Historical measurements must then be characterised by a probability distribution. 

Model parameters are usually only known to within a range of values on the basis of 

expert knowledge; they too must also be characterised by probability distributions. 

Inversion is then considered a conditioning process in which the prior probability 

distribution of model parameters is constrained by the necessity for the model to 

replicate historical measurements to within an acceptable tolerance. This tolerance is 



 

6 

 

normally determined by the amount of noise in the latter, although model structural 

error will usually require that a tolerable level of misfit must be larger than that 

which could be achieved if measurement noise where the only contributor to this 

misfit. The outcome of this conditioning process is therefore another probability 

distribution. This process is described by Bayes equation which can be written in its 

simplest form as: 

 𝑃(𝒌|𝒉)  ∝ 𝑃(𝒉|𝒌)𝑃(𝒌) (1.1) 

where 𝒌 is a vector of model parameters; 𝒉 is the vector of historical measurements 

comprising the calibration dataset; 𝑃(𝒌) is the prior probability density function of 

parameters, this expressing expert knowledge as it relates to uncertain parameters; 

𝑃(𝒉|𝒌) is the likelihood function, this increasing with the reduced level of model to 

measurement misfit attained through the calibration process; and 𝑃(𝒌|𝒉)  is the 

posterior parameter probability density function and describes the uncertainty that 

remains in parameter values following conditioning. Bayes equation explicitly states 

that the result of this conditioning process is in fact an infinite number of different 

sets of parameters, all of which are able to adequately fit historical measurements to 

within the aforementioned tolerance. Model predictive uncertainty then exists as any 

one of these parameter sets when provided to the model will likely result in a 

different value for a particular prediction from that obtained from any other 

parameter set that is compatible with the posterior parameter distribution. 

The second term on the right hand side of Equation (1.1), express what is most 

attractive about a complex model. Namely, 𝑃(𝒌) represents its ability to incorporate 

all facets of expert knowledge. Aside from the ability to express what we do know 

about a particular study site, this term allows for expression of what is unknown or 

uncertain about these processes. Stochastic representation of these known and 

unknown components of system detail allows for their bearing on a particular 

prediction of interest to be explored and quantified. Expression of expert knowledge 

or lack thereof, through the vehicle of model parameterisation detail is thus a major 

contributor to model complexity. Detailed expression of the innate variability of 

geological structures and other relevant processes at a particular study site requires 
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that many model parameters be employed. Use of a high level of parameterisation 

detail (hence complexity) affords additional benefits when the conditioning of these 

parameters is undertaken so that the model is better able to reproduce historical 

measurements of system state including: 

1. It allows for more flexibility of response to information contained in the 

historical measurements that comprise the calibration dataset. In this way the 

modeller does not need to decide in advance whether a parameter/process is 

significant (hence inferable) or not. Meanwhile parameters are free to respond 

to information forthcoming from calibration data which allows for better 

assimilation of information contained within historical measurements of 

system state (Doherty, 2003); 

2. While some (often many) parameters may not be inferable on the basis of 

calibration data, they may have a significant bearing on the outcome of a 

prediction required of the model. Omission of these non-inferable parameters 

may result in artificial reduction in perceived uncertainties associated with 

model predictions if these predictions are in fact sensitive to the omitted 

parameters. This topic is addressed by Doherty and Welter (2010); 

3. Use of many parameters can reduce structural noise accompanying model 

outputs that are equivalents to historical measurements, thereby promulgating 

attainment of a better level of fit with historical measurements. When model 

structural error exists, its covariance is usually unknowable and this 

complicates definition and calculation of the likelihood function. 

Permissibility of parameter sets that are actually part of the posterior 

parameter distribution may then be compromised. Further discussions on the 

presence and repercussions of structural noise in the history matching process 

are provided in the works of Doherty and Welter (2010), Beven (2005) and 

Beven et al. (2008), to name a few; and  

4. Use of many parameters, avoids some parameters taking on “compensatory” 

roles as the conditioning process seeks to attain goodness of fit with historical 

measurements. These compensatory roles introduce bias to values assumed 
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by parameters which can in turn lead to biased predictions. This topic is 

discussed and examined at length by Doherty and Christensen (2011), White 

et al. (2014) and Watson et al. (2013).  

Theoretically, if rigorous sampling of the posterior parameter probability distribution, 

𝑃(𝒌|𝒉) of Equation (1.1), can be accomplished then the probability distribution of 

any model prediction can be evaluated using the relationships between these samples 

and associated predictions, embodied in the model. However, rigorous exploration of 

the posterior parameter probability distribution becomes problematic when the 

elements of the vector 𝒌 number in the hundreds or even thousands (as is often the 

case in complex models) and model runtimes are long. Bayesian methodologies such 

as Markov Chain Monte Carlo (MCMC), employed by Oliver et al. (1997), Keating 

et al. (2010) and Kennedy and O’Hagan (2001), that seek to generate samples 

directly from the posterior probability distribution, often become extremely difficult 

to implement under these circumstances. Hundreds of thousands of model runs may 

be required to adequately sample the posterior parameter probability distribution 

when parameter numbers exceed approximately 50 or so. Despite development of 

MCMC methodologies such as the Shuffled Complex Evolution Metropolis 

algorithm (SCEM-UA) proposed by Vrugt et al. (2003) and the Differential 

Evolution Adaptive Metropolis algorithm (DREAM) presented by Vrugt et al. (2008), 

that realise model run efficiencies through adaptation of the proposal distribution and 

include parallelisation of the process, these methods remain extremely 

computationally demanding in high parameter dimensionalities and where model 

runtimes are long. 

High parameter dimensionality is not as problematic for methods that seek a unique 

solution to the inverse problem of calibration. A unique solution to an ill-posed 

inversion problem can be guaranteed through use of regularisation. Formal 

mathematical regularisation strategies such as Singular Value Decomposition (SVD) 

and Tikhonov schemes (Tikhonov and Arsenin, 1977) can be used to achieve a 

solution to an ill-posed inverse problem that is unbiased and therefore has a 

minimum potential for error. Doherty (2015), Oliver et al. (2008) and Aster et al. 

(2012) provide details on the use of regularisation for solution of the inverse problem. 
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Use of as many parameters as is required to allow stochastic representation of prior 

knowledge, combined with a formal mathematical regularisation strategy appropriate 

for the problem at hand affords other benefits such as: 

1. The maximum assimilation of information contained within the calibration 

dataset; 

2. If properly formulated, ensure a minimum error variance status for both 

estimable parameters (or combinations) and inestimable parameters (or 

combinations); and 

3. Allow quantification of the role that the regularisation strategy plays in the 

constraining of some parameters but not others. This allows quantification of 

the potential for parameter and predictive error and hence parameter and 

predictive uncertainty. 

As has already been discussed, a single solution to the inverse problem will almost 

certainly be in error. However use of a regularisation strategy that is appropriate for 

the problem at hand can promulgate a solution that lies somewhere near the centre of 

the posterior parameter probability distribution. The estimated parameter set thus 

obtained will therefore be minimally biased or can be considered to have a minimum 

potential for parameter error. When the model is populated with this parameter set 

and run under predictive conditions, a prediction of minimised error potential can 

also then be expected. 

Although the value of parameter error can never be directly calculated (as this would 

require detailed knowledge of the “real” parameter set) the statistics of this potential 

for error can be calculated following attainment of a minimised error potential 

parameter set; the statistics of potential predictive error can then also be calculated. 

Tonkin et al., (2007) broadly categorise methods which seek to evaluate the potential 

for model predictive error into two groups (1) predictive uncertainty analysis and (2) 

predictive error variance analysis. The latter of these focuses on quantification of the 

range of possible values that a particular prediction can take under the constraints of 

calibration within a certain tolerance of model generated observation to measurement 
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misfit. Linear and non-linear methods based on variance propagation have been 

implemented by Vecchia and Cooley (1987), Christensen and Cooley (1999), Moore 

and Doherty (2005) and Tonkin et al. (2007) in groundwater problems.  The former 

of the two predictive error groupings is a more intrinsic concept that propagates the 

prior stochastic parameter definitions through a model to develop posterior parameter 

and prediction probability distributions. To achieve such analysis requires 

appropriate exploration of the parameter space and includes Bayesian, Markov-chain 

Monte Carlo techniques as already mentioned. It also includes calibration-

constrained Monte Carlo methods such as the efficient null-space Monte Carlo 

(NSMC) method described by Tonkin and Doherty (2009) and employed by 

Herckenrath et al., (2011). Keating et al., (2010) conducted a comparison between 

the NSMC method and the more Bayesian DREAM method and reported consistent 

and similar results for parameter estimation and uncertainty analysis, arising from 

both these methods; in spite of the inherent difficulties that accompanied each 

procedure in that example problem. Other methods that seek to derive prediction 

probability distributions from stochastic parameter definitions include generalized 

likelihood uncertainty analysis (Bevan and Binley, 1992), a non-Bayesian parameter 

field deformation technique described by Gomez-Hernandez et al. (2003), and 

ensemble Kalman Filtering methods such as used by Sarkov et al. (2012) and Chen 

and Oliver (2013). 

As is described by Tonkin et al. (2007), a linear approximation to the post-calibration 

covariance matrix of parameters can be calculated using a linearization of the model 

centred on a “calibrated” parameter set that is ideally of minimised error potential; 

further details and discussions on this topic can be found in Dausman et al. (2010) 

and Doherty (2015b). When combined with the calibrated parameter set, these 

statistics of potential parameter error may define an approximation to the posterior 

parameter distribution which through a process of sampling and evaluation can be 

used to empirically derive histograms of posterior parameter and prediction 

probabilities. This process, while not strictly Bayesian in nature can be an efficient 

and effective alternative to direct posterior parameter probability sampling. The 

approach to approximate definition of posterior parameter probabilities, just 

described, depends upon the presumption that calibrated parameters attain minimised 
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error status. Formal mathematical regularisation strategies, if used appropriately, can 

ensure that this optimal calibration status is achieved. 

Gradient methods provide a run efficient means for solution of the inverse problem. 

They are normally much faster at arriving at a unique solution to the inverse problem 

than other so-called “global” methods for estimation/optimisation such as particle 

swarm optimization (Kennedy and Mendes, 2002); shuffled complex evolution 

(Duan et al., 1992); genetic and evolutionary programming (Vrugt and Robinson, 

2007); and covariance matrix adaption algorithms (Hansen et al., 2003) among many 

others. While these global methods are robust is the face of particularly difficult 

estimation problems, their model run requirements increase rapidly with the number 

of parameters to be estimated. Gradient methods also afford other benefits including: 

1. They can readily be adapted to include mathematical regularisation devices 

such as Singular Value Decomposition (SVD) and Tikhonov schemes 

(Tikhonov and Arsenin, 1977), thus highly parameterised problems can be 

easily accommodated while also endowing the inversion problem with the 

other benefits forthcoming from formal mathematical regularisation strategies 

already mentioned; 

2. As a direct outcome of calibration other post-calibration statistics are readily 

calculable using a local linearization of the model about the calibrated 

parameter set such as: parameter identifiability (Doherty and Hunt, 2009); 

parameter and predictive uncertainty (Gallagher and Doherty, 2007a and 

2007b; James et al., 2009), and the worth of existing and yet-to-be acquired 

data in terms of its ability to reduce the uncertainties of parameters and 

predictions of interest (Dausman et al., 2010). 

For these reason the use of gradient based methods for numerical model calibration is 

gaining much traction within the groundwater, surface water and reservoir modelling 

fraternity. PEST (Doherty, 2015a) implements a version of gradient based estimation 

which is in essence a modified version of the Gauss-Marquardt approach to non-

linear parameter estimation. It also has functionality that allows inclusion of SVD 

and Tikhonov type regularisation strategies, or a combination of both.  The suite of 
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software provided with PEST also has functionality that allows for parameter and 

predictive uncertainty analysis to be performed. Additional functionality that allows 

for definition of so-called “super-parameters” to be used in both calibration and 

assessment of predictive uncertainty assessment, provides for increased efficiency 

gains; Tonkin et al., (2007) provide a more detailed discussion of this topic. 

While efficient, gradient methods are not without their own problems. Such methods 

rely on parameter sensitivities that collectively form the so-called Jacobian matrix. 

Calculation of these sensitivities is normally achieved via finite differencing methods 

in which the difference in the outcome of a particular model output is calculated 

from an incremental variation in a particular parameter. The difference in pertinent 

model outputs is then divided by the parameter increment and provides an 

approximation to the derivative of that model output with respect to the parameter 

thus varied. In the calibration context, the Jacobian matrix contains one such entry 

for each model output equivalent to an observation in the calibration dataset with 

respect to each adjustable parameter in the model. Population of the Jacobian matrix 

thus requires that the model be run at least once for every adjustable model 

parameter. That is if a two-point finite differencing stencil is used. Three point or 

five point (or more) stencils can be used to derive better approximations to these 

derivatives; when they are implemented model run requirements for population of 

the Jacobian matrix increases accordingly. Where model runtimes are long 

population of the Jacobian matrix can be extremely computationally expensive. The 

iterative process of non-linear parameter estimation requires that re-population of the 

Jacobian matrix be conducted several times throughout the estimation process. 

Additionally, where model outputs have a propensity for inconsistency born of 

model numerical problems, this can lead to the calculation of unreliable parameter 

sensitivities. Unreliability in the Jacobian matrix can lead to extremely slow 

inversion solution attainment or complete failure of the process to reduce model to 

measurement misfit. When numerical instability is pervasive enough, model run 

failures can occur and prevent Jacobian matrix population altogether. 

When population of a reliable Jacobian matrix becomes problematic for the reasons 

already mentioned, estimation of a parameter set that can claim to be close to the 
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mean of the posterior parameter distribution (hence approaching maximum 

likelihood status) may be severely impaired. Assessment of predictive uncertainty via 

a calibration-constrained Monte Carlo analysis that can efficiently explore post-

calibration parameter variability of both estimable and inestimable components of 

parameter space is thus also impaired, this later process potentially requiring re-

adjustment of many stochastic parameter sets to ensure calibration constraints are 

respected in approximation of posterior probabilities. 

In spite of the persuasive reasoning for inclusion of a high degree of model 

complexity, a complex model may sadly become its own worst enemy when it comes 

to calibration and the assessment of uncertainties associated with the predictions for 

which it was initially constructed. This is not to say that model complexity has no 

place in the decision making process. Indeed the ability of a model to encapsulate all 

relevant parameter and process detail of a system is of necessity, not because it is 

estimable on the basis of a noisy, sparse calibration dataset, but precisely because it 

is not estimable and thus lies within the calibration null-space. If a prediction of 

interest is dependent on system detail that resides in the calibration null-space, then 

the model can still be used to quantify the contribution of this in-estimable detail to 

predictive uncertainty and ensure that the latter is not underestimated. Hence, new 

methodologies which promulgate this end in the face of computational burdens and 

numerical misbehaviour of such models will play a significant role in making more 

informed decision which deliver better economic, social and environmental 

outcomes.   

 

1.3  Model simplification and Surrogate modelling 

To alleviate the problems of excessive computational burdens in analysis schemes 

involving complex models, recent research in the field of parameter estimation 

and/or uncertainty quantification, has been keenly interested in the use of faster 

running surrogate models. Razavi et al. (2012a) and more recently Asher et al. (2015) 

provide reviews on the use of surrogate models within the fields of hydrology and 
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hydrogeology. Of primary concern in the studies compiled by those authors is the 

need to derive a much faster running variant of the original complex model to which 

much of the forward model run requirements of the analyses can be assigned. The 

frameworks in which this strategy is implemented vary greatly, as do the types of 

surrogate models deployed. 

Razavi et al. (2012a) categorises types of surrogate models into 2 main groups.  

Firstly, there are the so called “response surface models” or “model emulators” 

which attempt to substitute the costly computational output landscape of the original 

model through some form of function approximation. They are thus data-driven 

versions of the original model and have been typically developed using functions 

such as polynomials as applied by Fen et al. (2009) for optimisation of soil vapor 

extraction design; radial basis functions used by Regis and Shoemaker (2004) in 

optimisation of a groundwater bioremediation problem; and Kriging was enlisted by 

Hemker et al. (2008) to expedite optimisation of well field design; Artificial Neural 

Networks are also sometimes used and fall under this category. Many other examples 

of the use of data-driven model emulators are provided by Razavi et al. (2012a) 

however recent and relevant applications of these techniques include Borgonovo et al. 

(2012) who employed model emulation to speed-up sensitivity analysis for 

predictions in a problem relating to subsurface migration of radionuclides, and Sun et 

al. (2012) who demonstrated a full emulation approach for calibration and 

uncertainty analysis of reaction rates of biodegradation of a trichloroethylene (TCE) 

chain reaction in a groundwater system. 

More recently, much more complicated versions of data-driven model emulators of 

simulator outputs have been developed, which employ generalised Polynomial Chaos 

expansion theory. Laloy et al. (2013) provides an example of this strategy within a 

highly parameterised groundwater flow model. In that study, Hermite polynomials 

are used as the orthogonal basis describing model output response with respect to 

continuous hydraulic conductivity fields; assumed Gaussian to allow association with 

the Hermite polynomials. Analysis efficiency and tractability was obtained through 

use of a parameterisation scheme based on Karhunen Loeve transformation of the 

prior cell-by-cell covariances; the assumption of multi-Gaussian prior distribution 
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allows for a predictable relationship between captured field variability and the 

number of eigenvectors thus retained. As a precursor to that paper, Marzouk and Xiu 

(2009) had introduced a stochastic collocation scheme based on generalised 

Polynomial Chaos theory as an efficient alternative to purely Bayesian inference. 

The second of the surrogate groupings adopted by Razavi et al. (2012a) is the 

“lower-fidelity” family of surrogates in which model simplifications are employed 

while attempting to preserve the physical processes encapsulated in the original 

model. Within this group model reductions usually take the form of a coarsened 

discretisation grid, parameter lumping or other simplifying assumptions applied to 

the various boundary conditions or the underlying physics. Examples include the 

works of Kennedy and O’Hagan (2000) who compare multiple levels of 

discretisation reductions within a Bayesian framework. Efendiev et al. (2005, 2009) 

and Mondal et al. (2010) employ lower-fidelity models in two-stage markov-chain 

Monte Carlo strategies applied to petroleum reservoir simulation. Sun et al. (2010) 

apply a two-stage multi-fidelity approach to optimisation of honeycomb designs in 

material sciences. They used the particle swarm optimisation method and combine 

response surface modelling techniques with error correction modelling of outputs 

from the lower-fidelity model. Forrester et al. (2007) utilise co-kriging regression to 

combine a few expensive “high-fidelity” model samples with many more 

computationally cheap “low-fidelity” model samplings, in optimisation of aircraft 

wing design.  They use high and low level codes conjunctively in this process and 

show that the larger search area made possible by the computationally inexpensive 

low level code provides for a much improved prediction of optimised parameters 

over the use of a single code. 

Asher et al. (2015) add a third category of surrogate models to those declared by 

Razavi et al. (2012), namely projection based surrogates. Surrogate modelling 

methodologies that find support in this category are those that project modelled 

governing equations onto a reduced model subspace defined by a limited number of 

eigenvectors. These eigenvectors are determined either from covariances that 

represent model parameter to model output relationships (generally obtained from a 

few “snap-shot” output values of the original model run with stochastic realisations 
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of model input parameters) or via solution of a generalised eigenvector problem that 

describes the original model. These specialised model reduction schemes include 

proper orthogonal decomposition (POD) used by authors such as Vermuelen (2005, 

2006), Saide et al. (2010) and have proven powerful means in achieving model 

simplification which maintains the process and structural detail that can be supported 

by prior knowledge and measurement data. Projection based surrogate models also 

include those that achieve reductions in the dimensionality of input parameter space 

through application of Kahunen Loeve transformation of prior parameter covariances. 

Construction of a surrogate model necessarily requires some form of original model 

simplification. Model simplifications have historically been employed routinely as a 

means of achieving a stable solution to the inverse problem as documented by 

Carrera and Neuman (1986a, 1986b) who view these simplifications as a form of 

regularisation. Sivakumar (2004, 2008) advocates the use of “dominant processes 

concept” (DPC) in simplification of hydrological models to avoid problems in over-

parameterised models. It has long been recognised though that models which employ 

parameterisation schemes that are too simple may prevent the flow of valuable 

information from the calibration dataset as well as induce biases in predictions made 

on the basis of these over-simplified parameter sets. These are the sentiments relayed 

by Doherty (2003) and supported by Hunt et al. (2007).  Recently, effects of model 

simplifications have been formally examined by Watson el al. (2012), Doherty and 

Welter (2010) and Doherty and Christensen (2011) who approach the topic from a 

sub-space point of view and treat simplification induced biases as separable error 

terms in the definition of the inverse problem. Those studies characterise 

simplification induced, model defects as the omission of parameters from the 

calibration process and hence their inclusion in both of the calibration solution and 

null-spaces. They also show that such parameter omissions can lead to estimable 

parameters taking on compensatory roles in order to “soak up” model to 

measurement misfit which can cause greater post-calibration predictive error than 

existed prior to calibration. 

Of particular interest to this research is the apparent change in the manner in which 

surrogate models are deployed within analysis schemes. Traditional surrogate model 
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deployment has been one where an abstraction of the original complex model is used 

as a replacement for the complex model during the computationally expensive 

analysis. Examples of this approach are Shultz et al. (2004, 2006) and Bliznyuk et al. 

(2007) who conducted Markov-Chain Monte Carlo based uncertainty analysis on 

environmental models where sampling of the posterior is performed entirely by the 

surrogate. Also in the environmental modelling context Borgonovo et al. (2012) 

performed sensitivity analysis in which it is the surrogate model that performs the 

many forward model runs required in determination of sensitivity metrics. 

Increasingly, surrogate model deployment is progressively moving towards a more 

collaborative interaction between the original complex model and a simplified 

version of it. Examples of this are found in the studies of Efendiev et al. (2005, 2006), 

Cui et al. (2011) and Mondal et al. (2010) who employ the so-called “two-stage” 

MCMC method whereby a simplified surrogate model is used as a pre-screening 

mechanism for proposal parameter sets. The goal of that strategy is to increase 

posterior parameter distribution acceptance rates (as evaluated by the original model) 

by eliminating highly unlikely parameter sets prior to evaluation using the expensive 

simulator. The evolution of such conjunctive model usage strategies appears to be in 

response to recognition of the fact that maintenance of both terms on the right hand 

side of Bayes equation (as expressed by Equation 1.1) is necessary for appropriate 

exploration of posterior parameter (and therefore prediction) uncertainty. This is 

something that a simplified model cannot support to the same extent as a complex 

model. 

It is important to point out that of all water related journal articles chosen for detailed 

consideration by both Razavi et al. (2012a) and Asher et al. (2015), not one is 

specifically focused on gradient-based methods for estimation and/or uncertainty 

analysis. The most relevant contribution to the use of surrogate models within 

gradient-based schemes is that of Doherty and Christensen (2011).  Their approach is 

somewhat similar to the traditional deployment of surrogate models in which a 

simple model counterpart to an original complex model is used to make predictions. 

They develop an “offline” error correction model from repeated calibrations of the 

simple model to complex model outputs so that corrections for simplification 

induced bias and an approximation of predictive uncertainty can be applied to 
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prediction made by the simple model. Although authors such as Vermeulen et al. 

(2005, 2006) and Saide et al. (2012) have demonstrated reduced models with 

Quadratic Programming (QP) techniques (which is in essence a specialised gradient 

method) for calibration of parsimonious synthetic groundwater models, those types 

of methods require reformulation of the original model’s set of governing equations 

to derive quasi-linearized systems of equations, this requiring extensive model re-

programming and is highly context specific. As is noted by Saide et al. (2012) QP 

methods become impractical or even infeasible in real-world modelling contexts 

without application of some form of model reduction technique. In addition, QP 

methods have questionable reliability in highly non-linear problems and are not 

readily adaptable to include mathematical regularisation. Thus they are rarely used, if 

ever, in complex real-world hydrogeological settings. 

To this author’s knowledge there is no other study outside of what has been 

published as an outcome of this research that examines the use of surrogate models 

within gradient-based analysis schemes that employ sophisticated regularisation 

techniques suitable for highly parameterised modelling problems. This research 

attempts to address this gap in the scientific literature at the same time as it attempts 

to address the difficulties encountered by model independent gradient-based 

estimation schemes when seeking calibration and/or predictive uncertainty 

quantification of problematic complex models. 

 

1.4  Research aims and contributions 

It is evident that the majority of the recent literature, relevant to surrogate modelling, 

highlights research and development of Bayesian based approaches to parameter 

inference and uncertainty quantification, particularly in highly parameterised context. 

This is likely due to the completeness in sampling the model parameter space of 

Bayesian workflows, and the amenable implementation (though non-trivial) of the 

surrogate model into these frameworks as a pre-screening mechanism of proposed 

models. In this way the simplification induced errors can be treated as additive to the 
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existing measurement and structural noise and are accounted for stochastically while 

not directly infringing on the integrity of the a posteriori probability distribution. To 

this author’s knowledge surrogate models have not yet been implemented in such an 

unobtrusive, intrinsic way within gradient based optimisation methodologies, due to 

the fundamental differences in the approaches and the absence of the necessary tools 

with which to implement it. Notwithstanding this, gradient based methods have much 

to gain from surrogate modelling techniques as they traditionally rely heavily on 

iterative processes. 

This research demonstrates that one way in which gradient based methods for 

calibration and predictive uncertainty assessments of complex models can benefit 

from a surrogate-enabled approach is through the assignment of the many runs 

required for population of the Jacobian matrix to a much faster running and more 

numerically “well-behaved”, simplified surrogate version of that complex model. As 

has already been mentioned, population of the Jacobian matrix can be extremely 

computationally expensive, especially when parameters are many and model 

runtimes are long. Model numerical misbehaviour can also inhibit population of the 

Jacobian and/or lead to the calculation of unreliable derivatives that degrade the 

progression of gradient methods. 

Introduction of a surrogate model in this way is unobtrusive to the estimation process. 

During calibration, although the surrogate model is used for the purposes of Jacobian 

matrix population, the original complex model is maintained for those runs required 

for testing of parameter improvements, albeit calculated on the basis of surrogate 

model parameter sensitivities. In this way the potential for surrogate induced bias to 

accompany estimated parameters is mitigated, as acceptance of an improved 

parameter set is assessed on the basis of complex model outcomes rather than the 

surrogate. With attainment of a calibrated parameter set that is without bias, 

assessments of parameter and predictive uncertainty can then be accomplished. This 

process also stands to benefit from the computational gains that the conjunctive 

surrogate/complex model approach offers, especially when a calibration-constrained 

Monte Carlo analysis is implemented for that purpose.  
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The objective of this research has been to explore the potential and demonstrate the 

veracity of this proposed conjunctive usage approach, in promulgating calibration 

and uncertainty analysis of complex models when those processes would otherwise 

be intractable because of large computational burdens and numerical misbehaviours. 

Such an approach has not previously been explored or implemented as the software 

needed for its implementation had not been developed prior to this research. PEST 

has now been equipped with the necessary modifications to facilitate such an 

approach. This “observation re-referencing” functionality readily integrates with the 

many other features that the PEST suite of software offers for efficient calibration, 

predictive error variance and predictive uncertainty analysis. 

The methodology developed herein further adds to the armoury that modellers have 

at their disposal when tasked with construction and deployment of large, complex 

and numerically problematic models of which there is an increasing appetite within 

the groundwater industry. 
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Chapter  2 

Efficient Calibration and Uncertainty 

Analysis Using a Complex Model 

Paired with a Surrogate Model   

This chapter presents work arising from this research that has been published in 

Ground Water journal (see Burrows and Doherty, 2014). The work presented here is 

in a form that is almost identical to that in which the published journal article appears. 

There may therefore be some repetition of material in early sub-sections of this 

chapter that was previously discussed in the introduction. However its inclusion in 

the present chapter assists in the overall flow of the chapter.  

2.1  Abstract 

The use of detailed groundwater models to simulate complex environmental 

processes can be hampered by (1) long runtimes and (2) a penchant for solution 

convergence problems. Collectively, these can undermine the ability of a modeller to 

reduce and quantify predictive uncertainty, and therefore limit the use of such 

detailed models in the decision-making context. We explain and demonstrate a novel 

approach to calibration and the exploration of posterior predictive uncertainty, of a 

complex model, that can overcome these problems in many modelling contexts. The 

methodology relies on conjunctive use of a simplified surrogate version of the 

complex model in combination with the complex model itself. The methodology 

employs gradient-based inversion techniques and is thus readily adapted for use in 

highly-parameterized contexts. In its most basic form, one or more surrogate models 

are used for calculation of the partial derivatives that collectively comprise the 

Jacobian matrix. Meanwhile, testing of parameter upgrades and the making of 

predictions is done by the original complex model. The methodology is demonstrated 
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using a density-dependent seawater intrusion model in which the model domain is 

characterized by a heterogeneous distribution of hydraulic conductivity. 

2.2  Introduction 

Complex models often employ many parameters. These may be required for 

characterization of the processes that the model simulates; they may also be used for 

representation of hydraulic property heterogeneity. Because parameter field details 

are generally not completely inferable through either calibration or direct 

measurement, inclusion of a high number of parameters in calibration-constrained 

predictive uncertainty analysis can avoid under-estimation of the uncertainty 

associated with predictions of management interest, particularly if these predictions 

are sensitive to parameterization detail. The use of many parameters also allows 

implementation of inversion methods and regularisation devices that maximize 

transfer of information from calibration datasets to the calibrated parameter field. 

Hence while predictions made by a calibrated model will almost certainly be 

accompanied by error, models calibrated using inversion methods that can 

accommodate many parameters have a reduced propensity for predictive bias, and 

can provide an appropriate platform for analysis of predictive uncertainty. See Moore 

and Doherty (2005), Doherty and Welter (2010), Hunt et al. (2007) and papers cited 

therein for a full discussion of these issues. Furthermore, as is explained in these 

works, the use of a large number of parameters allows for much finer scale model 

detail to be varied as the uncertainties associated with predictions of interest are 

investigated. In analysing predictive uncertainty, parameter combinations that are 

estimable on the basis of the calibration dataset are then varied over a reduced range 

of values, the limits of their post-calibration variability being set by the level of 

measurement noise associated with the calibration dataset on which basis they are 

estimated. Those that are inestimable (and thus comprise the calibration null space) 

remain variable over a range of values whose limits are set by expert knowledge as it 

is applied in the current geological context. 

As well as being characterized by large numbers of parameters, complex models are 

also often characterized by long run times and a propensity for solution convergence 
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difficulties. Both of these are often an outcome of the highly nonlinear nature of the 

environmental processes (such as groundwater/surface water interaction, unsaturated 

and multiphase flow, concentration and temperature-dependent density, etc.) that 

such detailed models attempt to simulate. Long model run times and convergence 

difficulties makes calibration of these models a difficult undertaking, at the same 

time as it renders calibration-constrained predictive uncertainty analysis almost 

impossible. 

Difficulties in working with complex models have spawned the development of 

uncertainty analysis methods that rely on conjunctive use of a complex model with a 

surrogate model that runs much faster than the complex model, and is much less 

prone to numerical problems than the original complex model. For example, authors 

such as Efendiev et al. (2005 and 2009), Cui et al. (2011) and Mondal et al. (2010) 

used Markov-chain Monte Carlo analysis to sample posterior parameter probability 

distributions, employing a simplified surrogate model as a screening mechanism for 

acceptance of proposal parameter sets prior to evaluation of complex model 

outcomes based on these sets. Use of a surrogate model in this way is shown to 

dramatically increase acceptance rates of proposal parameter sets thereby greatly 

reducing computational burdens. However while Markov chain Monte Carlo 

methods have the advantage of full compliance with Bayes equation, their use 

becomes problematical where parameter numbers are high, as exploration of 

posterior parameter and predictive uncertainties may require a prohibitively large 

number of model runs under these circumstances (see for example, Keating et al. 

2010). 

Gradient-based subspace methods provide an alternative means of exploring 

posterior parameter and predictive uncertainty through techniques such as the “null 

space Monte Carlo” (NSMC) methodology described by Tonkin and Doherty (2009) 

and implemented by Herckenrath et al. (2011) in the seawater intrusion modelling 

context. This methodology is available through the PEST suite (Doherty, 2015a). 

Gradient-based methods make use of sensitivities of model outputs with respect to 

model parameters, these being encapsulated in the so-called Jacobian matrix. 

Calculation of these sensitivities can be a computationally expensive process 
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particularly when the number of parameters to be estimated is large and where 

sensitivities are calculated through finite parameter differencing. What is of greater 

concern is that the numerical integrity of finite-difference sensitivities may be 

severely compromised where a model suffers from convergence difficulties. 

In this paper we describe a method that employs a simplified version of a complex 

model as a surrogate model for calculation of sensitivities within gradient-based 

calibration and uncertainty analysis frameworks. It is shown that considerable 

computational savings can be gained through use of this methodology in many 

modelling contexts when performing these types of analysis. The methodology is 

demonstrated using a model to which a large number of parameters is assigned to 

ensure adequate representation of hydraulic property heterogeneity. While use of a 

large number of parameters does not constitute an essential context for use of the 

methodology described herein, the highly parameterised nature of the example serves 

to highlight the advantages to be gained through use of a surrogate model in many 

contemporary groundwater modelling applications. At the same time it is hoped that 

this also serves to differentiate this methodology from other examples of conjunctive 

complex/surrogate model usage cited in the literature. To the authors’ knowledge, all 

previous demonstrations of complex/surrogate model usage employ parsimonious 

parameterization, and are implemented in conjunction with so-called “global 

methods” for parameter inference and enforcement of calibration constraints on 

parameter values during exploration of parameter and predictive uncertainty. See 

Razavi et al. (2012a) for a recent review of surrogate modelling in the water 

resources field. The present work is, to the authors’ knowledge, the first instance of 

joint complex/surrogate model usage in a gradient-based inversion/uncertainty 

analysis context. 

2.3  Concepts 

2.3.1  Uncertainty Analysis using Gradient Methods 

Where model predictions are sensitive to hydraulic property values that show a high 

degree of spatial variability, where direct field measurements of those properties are 

limited, and where historical measurements of system state are insufficient to allow 
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unique estimation of those properties, post-calibration predictive uncertainty can be 

large. See Moore and Doherty (2005 and 2006) for a discussion and examples. 

Bayesian analysis provides a conceptual basis for quantification of posterior 

parameter and predictive uncertainty subject to the constraints of prior knowledge of 

the model parameters (expressed through a prior parameter probability distribution) 

on the one hand, and historical measurements of system state (expressed through a 

likelihood function) on the other hand. In practice, direct implementation of Bayes 

equation in the groundwater modelling context is inhibited by the large number of 

parameters that are required to represent spatial parametric variability in complex 

geological environments, and also by the long run times that are often associated 

with groundwater models that are capable of expressing such parameter detail. 

As stated in Section 2.2, subspace methods such as NSMC can be used to achieve 

similar outcomes to a purely Bayesian analysis, but with greatly reduced 

computational burden. Through use of the NSMC methodology many random 

parameter sets can be efficiently generated, all of which are geologically reasonable, 

and all of which allow model outputs to satisfy calibration constraints. Use of this 

methodology requires that the model first be calibrated, and that the parameter field 

achieved through the inversion process incurs as little bias as possible through that 

process. Ideally, this can be achieved through use of Tikhonov regularisation 

expressing a “preferred parameter condition”, accompanied by a regularisation 

weighting strategy that induces a preferred correlation structure in heterogeneity. 

Alternatively (or as well) highly parameterized inversion can be implemented using 

truncated singular value decomposition in conjunction with Karhunen Loeve 

transformation of parameters based on this same spatial correlation structure. For 

further discussion on the use of these regularisation strategies see Tikhonov and 

Arsenin (1977), Moore and Doherty (2006) and Watson et al. (2013). Both of these 

regularization strategies are offered by the PEST suite; see Doherty (2015a) for 

details. 

The NSMC methodology generates a suite of stochastic parameter fields whose 

solution space projections (inferable components) are close in parameter space to the 

parameter field achieved through model calibration, but whose null space projections 
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(non-inferable components) are variable in accordance with a prior knowledge of 

system properties. Each such stochastic parameter field “almost” immediately 

achieves calibration conditions, this being an outcome of the proximity of their 

solution space projections to those of the calibrated model parameter set. However 

model non-linearities and a less than perfect delineation of the calibration solution 

and null spaces requires that a small adjustment of the solution space components, of 

each stochastic field, be undertaken to ensure that calibration constraints are 

honoured. Respect for these constraints lowers post-calibration parameter uncertainty 

and thus reduces the uncertainties of model predictions. 

Central to the operation of the NSMC methodology is the so-called Jacobian matrix. 

This is used for (1) implementation of the inversion exercise prior to undertaking 

NSMC analysis, (2) decomposition of parameter space into orthogonal solution space 

and null space components, and (3) adjustment of stochastic parameter fields 

generated through the NSMC process so that calibration constraints are better 

respected (i.e. a better fit is obtained between field measurements comprising the 

calibration dataset and pertinent model outputs). 

Sensitivities comprising the Jacobian matrix are normally calculated using a finite 

difference method in which each parameter in succession is varied incrementally 

from its current value and model outputs are calculated accordingly. Differences in 

model outputs divided by the parameter increments are then taken as approximations 

to corresponding derivatives. Hence at least two forward model runs are required for 

each adjustable parameter in computation of these finite-difference derivatives (a 

process that must be repeated many times under non-linear estimation conditions). 

Filling of the Jacobian matrix is normally by far the largest contributor to the 

numerical burden associated with gradient-based inversion and uncertainty analysis 

methodologies.  

2.3.2  Reducing Computational Burden through use of a 

Surrogate Model 

Though efficient, the NSMC process may also become computationally demanding 

where model run times are long and where parameters are many. As already stated, 
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most of the numerical burden associated with implementation of the NSMC 

methodology is incurred in calculation of the Jacobian matrix, a matrix that must be 

re-populated many times during calibration and subsequent approximation of the 

posterior parameter probability distribution. The computational burden of Jacobian 

matrix calculation can be greatly reduced by using a fast-running, surrogate model in 

place of the more complex original model for the many forward model runs required 

for the filling of this matrix. 

While a surrogate model can be used for filling of the Jacobian matrix, use of the 

original complex model is retained for those model runs that require the full process 

representation and numerical precision that the complex model is capable of 

providing. These model runs are those required for testing of parameter upgrades 

(during the original model calibration process, and then in adjustment of NSMC 

stochastic parameter sets to respect calibration constraints), and for computation of 

predictions based on the suite of NSMC-generated, calibration-constrained, random 

parameter sets. 

Use of a simplified surrogate model for calculation of derivatives can provide 

advantages other than speed of computation. As has already been mentioned, highly 

detailed, complex models tend to be more susceptible to solution convergence 

difficulties than their more simple counterparts and such difficulties may prevent or 

invalidate calculation of finite-difference derivatives. Use of a simplified model that 

does not have the same problematical numerical behaviour may thus enable 

calculation of derivatives where this would otherwise be impossible through use of 

the complex model alone. 

Conjunctive usage of a simplified surrogate model with a complex model has been 

implemented in the latest version of PEST; see the “observation re-referencing” 

functionality described by Doherty (2015a). While simple in concept, its algorithmic 

implementation is complex, particularly where more than one simple model can be 

used for derivatives calculation, and where simple and complex model runs can be 

undertaken in parallel. Both of these capabilities are provided through PEST. Further 

run management complexity follows from the fact that an additional simple model 

run must be undertaken prior to filling the Jacobian matrix so that reference values of 
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calibration-pertinent model outputs can be obtained prior to their use in finite-

difference derivatives computation. Where the same model is used for both 

sensitivity calculation and for testing of parameter upgrades, this “re-referencing 

model run” is not required, as model outputs calculated during previous parameter 

upgrade tests can provide these reference values. This additional model run becomes 

computationally insignificant when the surrogate model has a much faster runtime. 

Figure 2.1 presents a conceptual overview of PEST’s implementation of 

complex/surrogate model usage. As indicated in this figure, these capabilities are 

compatible with PEST’s “SVD-assist” functionality, in which so called “super 

parameters” comprised of parameter solution space projections can be directly 

estimated, this requiring the filling of a much smaller Jacobian matrix than that based 

on native model parameters; see Tonkin and Doherty (2005) for details. This 

functionality is integral to the numerical efficiency of the NSMC method. It can also 

be employed in a stand-alone calibration process, as is demonstrated in the example 

presented later in this paper. 

 

Figure 2.1: Conceptual overview of complex/surrogate model functionality 

implemented by PEST. 
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2.3.3  Considerations for Construction of a Surrogate Model 

Naturally, certain conditions must be met by a surrogate model if it is to be used in 

place of a complex model for computation of derivatives. First it is necessary that the 

simplifications which underpin construction of the surrogate model do not degrade 

the surrogate model’s performance to the point where its outputs are not reasonably 

consistent with those of the original complex model. Second, the surrogate model 

must be capable of computing equivalents to all pertinent outputs computed by the 

complex model (or at least those employed in the calibration process). Third, the 

parameters employed by the original and surrogate models must play similar roles. 

Provided these constraints are met there can be considerable latitude in design of a 

surrogate model. 

In practice, some differences in the dependence of model outputs on model 

parameters between a complex and surrogate model must be expected. After all, 

simplified surrogate model outputs cannot be expected to have the same quality as 

complex model outputs. However the deterioration of model output quality that 

accompanies use of a surrogate model may not necessarily degrade the quality of 

parameter sensitivities calculated by it. If simplification-induced model output error 

is reasonably consistent as a parameter is incrementally varied, that error will cancel 

as model outputs are differenced to calculate the parameter sensitivities. The success 

of the complex/surrogate methodology as demonstrated in the example presented 

later in this paper suggests that this may be the case, for that particular problem at 

least. 

Furthermore, when parameters play similar roles within the surrogate and complex 

models, then parameters (and parameter combinations) to which model outputs are 

relatively insensitive, will generally be consistent between model versions. Hence, 

even if surrogate model sensitivities are a somewhat compromised version of the 

sensitivities that would be calculated using a complex model, they may still have 

enough integrity to allow definition of calibration solution and null spaces. Their 

subsequent use in definition of so-called “super parameters” based on singular value 

decomposition of the sensitivity matrix, in an inversion process that is restricted to 

solution space parameter components only, will thus have integrity. 
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Strategies for construction of a surrogate model that can be used in place of a more 

complex model for derivatives calculation are manifold. For example the surrogate 

model may employ a less accurate but more computationally efficient algorithm for 

simulation of pertinent physical processes. Alternatively, faster run times may be 

achieved through increasing the length of simulation time steps and/or increasing the 

dimensions of model grid cells (as is done in the example presented below). Another 

alternative is to employ data-driven strategies such as those used to design 

metamodels or model emulators, whereby the complex model’s response landscape 

is approximated using analytical functions; see Razavi et al. (2012a, 2012b) for 

further details. 

Where the surrogate model remains a numerical simulator of underlying physical 

processes, strategies other than those mentioned above that may lead to faster run 

times, with some deterioration in numerical accuracy (but not enough deterioration to 

invalidate the calculation of finite-difference derivatives) may include (1) decoupling 

of fully coupled groundwater-surface water exchange, (2) calculation of approximate 

solute concentrations based on particle tracking, (3) assuming confined, rather than 

unconfined, conditions to avoid numerical problems associated with cell desaturation, 

and (4) use of a simplified “lumped parameter” recharge model in place of a more 

complex unsaturated zone simulator. 

Naturally, there can be no guarantee that any particular simplification strategy is 

universally applicable; whether any one of them “works” or not in any particular 

context must be established in that context. A condition on which success will 

depend however is that the surrogate model be free of any numerical problems or 

algorithmic artefacts that hamper the integrity of finite-difference derivatives 

calculations.  

The specifics of PEST’s implementation of the complex/surrogate model 

methodology are described in Doherty (2015a). Outwardly, PEST setup is little 

different from that which is required for standard model calibration. PEST requires 

that model input files and model output files have the same format for both the 

complex and surrogate models; hence the same template and instruction files can be 

used with both of these models. This may require that a model pre-processor be run 
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as part of the surrogate or complex model batch/script file to undertake appropriate 

data translation tasks. Where pilot points are employed as a parameterization device, 

and where model simplification involves grid coarsening, the batch or script files that 

encapsulate the complex and surrogate models will need to provide different pilot-

point-to-grid interpolators. 

PEST also requires that it be supplied with the commands to run the complex and 

surrogate models. As previously stated, PEST allows different surrogate models to be 

employed for calculation of sensitivities with respect to different parameters. Where 

this is the case, surrogate model execution commands must be linked to pertinent 

adjustable parameters in the PEST control file (via the DERCOM variable). 

 

2.4  Henry Problem Test Case 

2.4.1  The Complex Model 

We developed a highly parameterised, non-linear, synthetic model to test and 

demonstrate the use of a simplified surrogate model for calculation of derivatives 

during calibration, and in subsequent generation of calibration-constrained random 

parameter fields using the NSMC methodology. The test case presented herein is 

fashioned on the well-known Henry problem (Henry, 1964). The model seeks to 

predict the change in position of a seawater interface in a heterogeneous hydraulic 

conductivity field under altered flow conditions. Figure 2.2 shows a schematic of the 

test case. 
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Figure 2.2: Schematic of the synthetic test case. 

SEAWAT (Langevin et al., 2008) is used to simulate density-dependent flow and 

transport. Mechanical dispersion effects are neglected (dispersivities αL and αT are 

set to zero). Porosity is specified uniformly as 0.35 and a uniform diffusion 

coefficient of 0.1 m
2
/d is employed. The model domain is vertical and two-

dimensional. It is discretised into 100 layers and 600 columns resulting in 60,000 

cells with dimensions 2 cm x 2 cm and a nominal width of 100 cm. A constant 

inflow of freshwater from the western boundary is implemented through the use of 

injection wells to uniformly distribute a total inflow of 0.5 m
3
/d across this boundary. 

A coastal boundary is defined on the eastern side of the model domain using general 

head boundary cells with a reference hydraulic head of 0.0 m and a constant salinity 

of 35 kg/m
3
. Areal recharge and leakage is specified as zero. Advective transport is 

solved using the “time variation diminishing” (TVD) scheme. This model is referred 

to henceforth as the “fine model” or “complex model”. 

Two stress periods are simulated. Firstly, a steady-state period is employed to 

establish an initial system state; model calibration is undertaken under these 

conditions. Following this, a transient stress period of 1.5 days is introduced in which 

flow of freshwater into the western boundary ceases, this simulating a dramatic 

reduction in net inland recharge inducing westward movement of the seawater 

interface. The average runtime of this fine model is approximately 7.5 minutes for 

simulation of the steady state calibration period on an i7-720QM machine clocking at 

1.6 GHz. 
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As described below, the model domain is characterized by hydraulic property 

heterogeneity on a cell-by-cell scale. However for calibration purposes the 

heterogeneous hydraulic conductivity field is represented using 600 pilot points; a 

calibration-adjustable parameter is associated with each of these. Interpolation from 

pilot points to individual model cells employs simple kriging based on a log 

exponential variogram with range of 7.5 m horizontally and 3.75 m vertically, and a 

log-mean of 2.301 (200 m/d prior to log10 transformation); variance in the log 

domain is 0.5. Figure 2.3shows the distribution of pilot points throughout the model 

domain and also depicts the locations of observation sites used in the calibration 

process. 

 

Figure 2.3: Pilot points used for parameterization of the inversion process are shown 

as dots; observation sites are shown as open circles. 

Prior to deciding on a “reality” hydraulic conductivity field for use in the following 

analysis, the complex model was initially populated with 500 stochastic realisations 

of hydraulic conductivity generated using a sequential Gaussian simulation algorithm 

engine based on the SGSIM code supplied with the GSLIB geostatistical library 

(Deutsch and Journal, 1998). The variogram on which these fields are based is 

identical to that used for kriging from pilot points (see above). We chose as the 

“reality field” the hydraulic conductivity field that gives rise to the maximum change 

in position of the interface toe, defined by the 10% seawater concentration contour, 

when recharge at the western boundary is reduced to zero during the transient, 

prediction, stress period. The hydraulic conductivity field chosen as reality is shown 

in Figure 2.4. Choice of a parameter field which leads to a prediction that lies at one 

of the extremes of the prior predictive probability distribution assists in validation of 

the integrity of the NSMC uncertainty analysis process, as the reality outcome must 
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lie within the uncertainty limits calculated using the NSMC methodology. This thus 

presents a challenging test-case for the proposed conjunctive use methodology. 

 

Figure 2.4: Hydraulic conductivity field chosen as “reality”. The position of the 10% 

concentration isohaline at the end of the calibration period (stress period 1) is shown 

on the right. Its position at the end of the transient predictive period is shown on the 

left. 

Head measurements at the end of the steady state stress period were calculated at all 

observation sites depicted in Figure 2.3. These head measurements comprised part of 

the model calibration dataset. Meanwhile concentration measurements for use in the 

calibration dataset were calculated at the 15 observation points in the right half of the 

model domain. Random, Gaussian “measurement” noise with a standard deviation of 

0.3% of the total range of heads was added to all head observations; similarly 

randomised “concentration errors” with a standard deviation of 1% of “observed” 

concentration values were added to concentration observations comprising the 

calibration dataset. 

 

2.4.2  The Surrogate Model 

The surrogate model that was built to complement the complex model described in 

Section 2.4.1 has an identical domain, and identical boundary conditions, to that of 

the complex model, and is also 2D vertical. However it employs a much coarser 

numerical grid, this consisting of only 20 layers and 120 columns (2400 cells in all). 

To further increase execution speed, advective transport is calculated using the 

implicit finite difference (IFD) scheme in place of the computationally more 
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expensive TVD scheme employed by the complex model. The number and location 

of pilot points used by the surrogate model is, however, identical to that employed by 

the complex model; the two models thus employ identical parameterization schemes. 

To maintain water balance consistency between surrogate and complex models, 

freshwater inflow into each western boundary cell of the coarse-gridded surrogate 

model is calculated as the summation of inflows over the five complex model cells 

which each coarse cell replaces. Similarly, the conductance value employed by each 

coarsened model general head boundary cell at the eastern end of the model domain 

is five times that of each of the five fine scale general head boundary cells which it 

encapsulates. The average runtime of the surrogate model over the steady state 

calibration period is 10.2 seconds. This represents a factor of 44.5 increase in 

execution speed over that of the complex model. 

 

2.5  Calibration and Predictive Uncertainty Analysis 

2.5.1  Parameter Estimation 

As stated in Section 2.3.1 the starting point for implementing NSMC-based 

generation of calibration-constrained random parameter fields is a calibrated 

parameter field that is hopefully without bias. Predictions based on the calibrated 

parameter field are therefore presumably also lacking in bias. This reference 

parameter field is generally calculated through regularised inversion. In the present 

case, Tikhonov constraints were applied to the 600 pilot points estimated through the 

inversion process. Through this mechanism each pilot point was assigned a 

“preferred value” equal to the mean hydraulic conductivity value discussed above. 

This assignment takes place through the use of a set of prior information equations to 

which PEST-calculable weights can be applied. A covariance matrix based on the 

variogram that was used for generation of hydraulic property heterogeneity was 

inverted to form the weight matrix applied to these prior information equations. In 

accordance with its implementation of Tikhonov regularisation, PEST calculates an 

overall multiplication factor for this weight matrix, subject to the constraint that a 
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user-specified “target measurement objective function” be achieved. This target was 

calculated as the expected value of the objective function based on “measurement 

noise” accompanying the calibration dataset described above. See Doherty et al. 

(2010) and Doherty and Hunt (2010) for further discussions on the use of pilot points 

and regularised inversion in the groundwater modelling context. 

To increase calibration speed, PEST’s “SVD-assist” methodology as described by 

Tonkin and Doherty (2005) was employed to estimate “super parameters”. Hence 

calculation of a Jacobian matrix based on 600 pilot points was required only once. 

For all iterations of the inversion process only super parameters were varied, these 

being defined through singular value decomposition of the original Jacobian matrix 

as those combinations of parameters which are uniquely estimable on the basis of the 

calibration dataset. The use of a limited number of super parameters in place of 

actual parameters as a basis for model calibration means that filling of the Jacobian 

matrix during every iteration of the inversion process requires only as many runs as 

there are super parameters, instead of requiring as many model runs as there are 

actual model parameters. A total of 36 such super parameters were estimated; this 

number being equal to the number of observations in the calibration dataset. Both of 

the surrogate and fine models used the same parameters for derivatives calculation 

and testing of parameter improvement respectively. Meanwhile Tikhonov constraints 

on base parameters were maintained. Estimation of super parameters was 

implemented using truncated singular value decomposition in order to maintain 

unconditional numerical stability. 

Throughout the inversion process, the surrogate model was used for calculation of all 

derivatives. These included those required to fill the initial 600 pilot point Jacobian 

matrix on which basis super parameters were defined, as well as those undertaken for 

calculation of sensitivities of super parameters themselves as required for 

implementation of the super parameter estimation process. The fine model was run 

only to calculate the initial objective function, and to calculate objective function 

improvements based on improved (in the sense of providing a better fit between fine 

model outputs and the observation dataset) estimates of values for super parameters. 

Meanwhile the target measurement objective function sought through PEST’s 
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implementation of Tikhonov regularisation was applied to the objective function 

calculated on the basis of fine model outputs, this providing a guarantee that this 

target was actually achieved. 

The target measurement objective function was achieved after 17 iterations. Only 74 

runs of the fine model were required. At this stage the model was deemed to be 

calibrated. The calibrated hydraulic conductivity field is shown in Figure 2.5. Clearly, 

this field does not show the detail of the reality hydraulic conductivity field depicted 

in Figure 2.4. As Moore and Doherty (2006) explain, this is the “cost of uniqueness”, 

for a calibrated parameter field cannot claim to represent reality. However it can 

claim to represent the projection of the real hydraulic conductivity field onto a 

parameter subspace of relatively small dimensions, this subspace spanning only 

combinations of parameters that are inferable on the basis of the calibration dataset. 

The seawater interface position calculated using the calibrated hydraulic conductivity 

field is shown in Figure 2.5. The prediction made by the calibrated model is 

obviously in error. However, as explained by Moore and Doherty (2006), this does 

not invalidate the model nor the calibration process, but is simply an outcome of the 

necessarily low dimensionality of the parameter subspace in which the calibrated 

parameter field lies. The challenge of post-calibration uncertainty analysis is to 

define predictive uncertainty intervals which encompass this error. 

 

Figure 2.5: Calibrated hydraulic conductivity field arising from the conjunctive 

model calibration process (see Figure 2.4 for hydraulic conductivity scale). The 

calculated seawater interface positions at calibration time (right) and prediction time 

(left) arising from this field are shown as red lines. Also shown as purple lines are the 

interface positions calculated using the reality hydraulic conductivity field. 



 

38 

 

For validation and comparative purposes we repeated the calibration process using 

the fine model only. In this case, estimation of values for the 600 pilot point 

parameters required 13 iterations and a total of 8493 computationally expensive fine 

model runs. (The SVD-assist methodology was not employed.) The calibrated 

hydraulic conductivity field emerging from this exercise is shown in Figure 2.6. It is 

visually very similar to that presented in Figure 2.5 and achieves only a slightly 

better fit with the calibration dataset. An inspection of individual parameter values 

reveals that hydraulic conductivities assigned to pilot points through the two 

inversion exercises differ in some cases. However these differences are small 

compared with the prior geological variability of these parameters. (Differences are 

mostly less than 5% of prior parameter variability, with an occasional difference of 

up to 20% between individual estimated pilot point values). The use of a surrogate 

model for derivatives calculation may be responsible for some of these differences; 

conjunctive use of the SVD-assist inversion methodology may also be responsible 

for some of them. 

 

Figure 2.6: Hydraulic conductivity field achieved through calibration of the complex 

model without use of the simple model for derivatives calculation and without use of 

the SVD-assist methodology. 

A summary of comparative computational costs associated with the calibration of the 

complex model with and without the use of a simple model for derivatives 

calculation is provided in Table 2.1.  
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Table 2.1: Summary of model runs required for parameter estimation and 

uncertainty analysis using 600 adjustable parameters. 

Operation 
Complex 

model runs 
Simple model 

runs 

Parameter estimation - 
complex model only 

8493 0 

Parameter estimation - 
surrogate enabled with SVDA 

74 3084 

Parameter re-adjustment 
during NSMC analysis 

10 
(per field 
average) 

74 
(per field 
average) 

 

2.5.2  Null-Space Monte Carlo Analysis 

The purpose of the null space Monte Carlo (NSMC) methodology is to generate 

many different parameter fields, centred on the calibrated parameter field, that 

achieve a good fit with the calibration dataset, while encapsulating geologically 

realistic detail that is necessarily missing from the calibrated parameter field because 

it cannot be estimated uniquely on the basis of measurements comprising the 

calibration dataset. 

Doherty (2015b) and Tonkin and Doherty (2007) describe how NSMC-generated 

random parameter fields can include the same level of cell-by-cell variability as that 

which characterizes a “reality” hydraulic conductivity field (used by the fine model 

in the present instance), despite the fact that calibration constraints on these fields are 

actually enforced through adjustment of pilot point parameters. Briefly, random pilot 

point values are obtained through sampling of stochastic cell-by-cell parameter fields 

generated using the sequential Gaussian method described above. Sampling is done 

in such a way that kriging between the sampled pilot points gives rise to a cell-by-

cell parameter field that provides an optimal least squares fit to the detailed 

stochastic parameter field. The “difference field” that is obtained by subtracting one 

from the other is then “carried” by the pilot point field following replacement of its 

solution space component with that of the calibrated model during subsequent 

readjustment of pilot point parameter values to ensure a good fit between model 

outputs and the calibration dataset. 
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First we generated 400 stochastic hydraulic conductivity fields using the same 

approach as employed to generate the “reality” hydraulic conductivity field. By 

undertaking model runs based on a few of these fields it was verified that model-

calculated steady state heads and concentrations bear little resemblance to those 

comprising the calibration dataset selected as above. These fields do not therefore 

provide a good fit between model outputs and the calibration dataset. Next pilot point 

samples of these fields were taken in the manner described above, and subjected to 

null space projection and re-calibration. 

In implementing this procedure the surrogate model was used for sensitivity 

calculations, while the fine model was used only for computation of the objective 

function corresponding to improved parameter sets, with parameter improvements 

being calculated on the basis of surrogate model parameter sensitivities. Whenever 

the fine model was run for prediction purposes, the cell-by-cell difference field of 

hydraulic property heterogeneity was provided to the model as an addition to the 

cell-by-cell pilot point interpolated field. However whenever a surrogate model run 

was undertaken, the assignment of hydraulic conductivities to coarsened grid model 

cells was based purely on interpolation from pilot points with no added difference 

field. 

On average, the production of each new calibration-constrained hydraulic 

conductivity field in which hydraulic conductivity heterogeneity is represented on a 

cell-by-cell level required 10 fine model runs. Meanwhile sensitivities needed for: 

 solution and null space separation based on hydraulic conductivities 

achieved through the previous calibration process; and 

 improving model-to-measurement fit during successive random field 

adjustment processes (this done using “super parameters”); 

were all calculated using finite differences based on surrogate model runs. The 

efficiency of the NSMC parameter space exploration technique, combined with 

SVD-assist and conjunctive use of complex and surrogate models, is evidenced by 
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the small number of complex model runs required for construction of each stochastic 

field. 

The outcome of the entire NSMC analysis was 359 stochastic hydraulic conductivity 

fields all of which (1) are as detailed in their representation of spatial heterogeneity 

as the reality parameter field, (2) vary greatly between each other (and hence 

collectively are likely to represent a reasonably comprehensive sample of the 

posterior parameter distribution), and (3) fit the calibration dataset to a level that is 

commensurate with measurement noise. 

A sample of these stochastic fields is provided in Figure 2.7. Also depicted in this 

figure are corresponding seawater interface locations calculated by the fine model on 

the basis of these fields, together with predicted interface locations. Calibrated and 

predicted interface locations for all parameter fields are shown in Figure 2.8. Figure 

2.9 shows a histogram of the predicted position of the seawater interface, calculated 

on the basis of the calibration-constrained random fields forthcoming from the 

NSMC process. This histogram quantifies the uncertainty in the prediction of 

westward movement of the seawater interface arising from post-calibration 

uncertainties in model parameters. 

It is apparent from Figure 2.9 that “the right answer” is indeed covered by the 

empirical predictive probability distribution forthcoming from NSMC analysis. 
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Figure 2.7: Six randomly chosen stochastic hydraulic conductivity fields obtained 

through the NSMC process. Also shown are the steady state and predicted seawater 

interface positions calculated using each stochastic field (red lines), together with the 

interface positions calculated using the calibrated hydraulic conductivity field (black 

lines).  
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Figure 2.8: Seawater interfaces calculated using NSMC-derived hydraulic 

conductivity fields. Calibration-time interfaces are shown on the right while 

predicted interfaces are shown at left. Interface positions arising from the “reality” 

hydraulic conductivity field are shown in purple. 

 

 

Figure 2.9: Histogram of the predicted seawater interface movement arising from 

359 calibration-constrained, hydraulic conductivity fields. 

  



 

44 

 

2.6  Discussion 

The example presented in Sections 2.4 and 2.5 demonstrates how a considerable 

reduction in the computational burden of post-calibration uncertainty analysis can be 

achieved through strategic use of a surrogate model in combination with a more 

complex original model. In this example the high computational speed of the 

surrogate model in comparison to that of the original model is achieved through use 

of a coarsened grid, and through use of the implicit finite difference scheme in place 

of the TVD scheme for solution of advective transport. The cost of these 

simplifications is a less precise calculation of salt concentrations. However because 

the surrogate model is used for calculation of differences in outputs resulting from 

parameter perturbations, simplification induced output errors tend to cancel to some 

extent in the differencing process so that the finite differences retain enough of their 

integrity to underpin gradient-based parameter estimation and calibration-constrained 

uncertainty analysis. 

The example used in the present paper is “benign” in some respects. Use of a 

reasonably large molecular diffusion coefficient provides for a seawater interface 

which is relatively wide when compared with the distance between pilot point 

parameters. This maintains the sensitivity of individual pilot point parameters over a 

broader range of values than would be the case for a narrow interface. Model output 

nonlinearity with respect to parameter values is thus reduced. So too is degradation 

of quality of model outputs with use of a coarser grid. However if the saltwater 

interface were narrower, as would be the case with a low level of 

diffusion/dispersion, this problem could be overcome by formulating the objective 

function differently. For example it could be formulated in terms of differences 

between modelled and observed distances of the 10% isohaline contour from the 

eastern boundary of the model domain in different model layers. Alternatively a 

methodology similar to that proposed by Schwede and Cirpka (2009) could be 

implemented, whereby concentration observations are ascribed to an expanded area 

of the model domain, with the ascribed area decreasing as the inversion process 

progresses. 
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In the example presented above, model simplification is achieved in a relatively 

straightforward way, namely through grid coarsening. In many modelling contexts a 

similar simplification strategy can be readily pursued. In other modelling contexts 

other simplification strategies may need to be explored. Regardless of the 

simplification strategy selected for a particular modelling context, the work 

documented herein provides cause for optimism that there are many cases where use 

of one or more surrogate models for computation of parameter sensitivities may 

allow implementation of inversion and/or calibration-constrained uncertainty 

analysis where it would otherwise be numerically difficult, if not unachievable.  

It is not impossible that with a slightly defective sensitivity matrix populated by 

model runs based on a surrogate model, parameters that are estimated through the 

calibration process may incur some calibration-induced bias. The Section 2.7 that 

follows, explores this issue through examining the outcomes of calibration exercises 

conducted with surrogate models similar to that presented in the above example, but 

with progressively coarsened grids. Naturally, the modeller should be aware of this 

possibility and reject unreasonable parameter fields that may emerge from use of an 

over-simplified surrogate model. The extent and type of simplification which will 

give rise to such fields can only be determined on a case-by-case basis. On the other 

hand, where parameter fields that emerge from the use of a complex/surrogate model 

pair in the manner described herein are reasonable, and where use of a surrogate 

model enables implementation of a calibration process that would otherwise be 

impossible because of high run times and/or questionable numerical convergence of 

a complex model, a small degree of parameter bias incurred in this way may be a 

small price to pay. This will be especially the case if parameter error thus incurred is 

small in relation to overall post-calibration parameter uncertainty. The efficiency 

gains accrued through use of a surrogate model in the manner described herein make 

exploration of these uncertainties possible. 
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2.7  Short Analysis of the Impacts of Increasing 

Simplification on Paired Model Calibration 

The following work was submitted to Ground Water journal as supporting 

information to the published paper Burrows and Doherty (2014). It presents a brief 

analysis of the potential for parameter bias to be imparted upon estimated parameters 

due to the use of simplification degraded derivatives. It therefore provides useful 

insights into this phenomenon, hopefully thereby providing guidance to the modeller 

as to a suitable level of discretisation to use in construction of a surrogate model for 

the purpose of calculation of derivatives. 

2.7.1  Introduction 

The paper which this document supports describes how a simplified surrogate 

version of an original complex model can be used to efficiently calculate model 

output derivatives that underpin gradient-based parameter estimation and posterior 

predictive uncertainty analysis. An important issue that arises from such conjunctive 

use of a complex/surrogate model pair is this: 

“What level of surrogate model simplification can be tolerated before derivatives 

calculated by this surrogate model no longer retain sufficient integrity for their use 

in gradient-based complex model calibration, and in calibration-constrained 

uncertainty analysis of complex model predictions?” 

Two factors must be considered in assessing the outcomes of a calibration exercise. 

These are (a) the level of model-to-measurement fit attained through the calibration 

process, and (b) the extent to which estimated parameter values respect sensible 

ranges for these values as assessed by expert knowledge. Quantitative measures are 

available for making these assessments. An objective function based on weighted 

model-to-measurement residuals is often applied in the first case. Residuals may then 

be subjected to further statistical analysis for assessment of bias, temporal/spatial 

correlation, and other unwanted properties; see, for example, Draper and Smith 

(1998) for details. In everyday modelling practice, however, model-to-measurement 

misfit is often assessed visually, as the extent to which an objective function can be 
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reduced, and the extent to which residuals can be endowed with desired 

characteristics, is often limited by the inadequacies of even the most detailed 

numerical model as a simulator of complex environmental processes.  

Assessment of estimated parameter values can be even more complex. In the highly 

parameterized context, the integrity of estimated parameters cannot be assessed 

through direct comparison between estimated and true parameter values. As Moore 

and Doherty (2006) explain, the calibration process yields estimates of projections of 

real parameter values onto a subset of parameter space that is the orthogonal 

complement of the null space of the model operator. It follows that, even in the 

absence of measurement noise, the calibrated parameter field will not be “correct”; it 

can only provide a simplified representation of the true parameter field. Furthermore 

this representation is subject to error as an outcome of its estimation on the basis of a 

calibration dataset which is contaminated by measurement noise. Ideally, the 

calibration process should leave null-space-projected parameter values unchanged. 

Sadly, however, this cannot be guaranteed because of the simplified nature of even 

the most complex model. As Watson et al. (2013) point out, to the extent that null 

space parameter components are “entrained” through the model calibration process, 

parameter and predictive bias is introduced to the calibrated model through the 

calibration process. This bias is in addition to that introduced through the model 

construction process itself. As is done for model-to-measurement misfit, statistical 

measures can be employed to assess the integrity of an estimated parameter field. In 

practice, however, such quantitative analysis is difficult because (a) it is rarely 

possible to endow real-world parameters with a stochastic description from which an 

objective function and bias-related statistics can be calculated, and (b) as all models 

are simplified representations of reality a small degree of calibration-induced bias is 

inevitable; see White et al. (2014) for details. Hence the assessment of calibrated 

parameter field integrity is often made visually.  

In what follows, we present a brief analysis of the integrity of calibration outcomes, 

in terms of bias imparted on parameter values, when calibration is implemented 

using a simple model surrogate of a more complex model for the purpose of 

derivatives calculation. The results that follow extend the analysis presented in the 
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main body of the paper that comprises this chapter, wherein surrogate-enabled, 

highly parameterized inversion is employed in calibration of a two-dimensional sea 

water intrusion model. As the surrogate model used for derivatives calculation is 

progressively made more and more simple, we examine the level of fit attained 

through the calibration process, and the values estimated for parameters through that 

calibration process. 

2.7.2  Method 

In the analysis presented herein, the grid of the surrogate model is progressively 

coarsened.  Calibration outcomes are compared with those of a “baseline” calibration. 

The latter is achieved through calibration of the complex model without use of a 

simple model surrogate for derivatives calculation; that is, the complex model itself 

is used for derivatives calculation. In contrast to the surrogate models which use the 

implicit finite difference scheme to solve for solute transport, the complex model 

used for baseline calibration employs the computationally intensive TVD scheme, as 

does the “reality model” described in the paper which was used to generate the 

calibration dataset. Regularization is achieved through application of Tikhonov 

constraints to pilot point parameter values, subject to a parameter covariance matrix 

that reflects true spatial parameter variability. The PEST “SVD-Assist” scheme is not 

used. Hence, at a very high numerical cost, the baseline calibration process avoids 

model and parameter simplification as much as possible.  

Successive grid coarsening is achieved for each surrogate model by increasing the 

dimensions of model grid cells by factors of 10, 20 and 33.333. Calibration processes 

undertaken through use of these progressively more simplified models are named 

“scenario 2”, “scenario 3” and “scenario 4” herein.  Meanwhile “scenario 1” refers to 

the calibration example presented in the manuscript wherein the surrogate model grid 

is coarsened by a factor of 5 over that of the complex model. Simplification scenarios 

1 to 4 thus embody grids of 20 x 120, 10 x 60, 5 x 30 and 3 x 18 layers and columns 

respectively. These are to be compared with the 100 x 600 grid employed by the 

complex model. The resulting surrogate model grids, together with the distribution of 

pilot point parameters in relation to these grids, are depicted in Figure 2.10.  
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To facilitate reader analysis of calibration outcomes achieved through use of these 

progressively simplified surrogate models, the reality hydraulic conductivity field as 

described previously in this chapter is reproduced in Figure 2.11. 

 

 

Figure 2.10: A small section of the model domain depicting model grids employed 

by: (a) the complex model; (b) the surrogate model described in Section 2.4– 

scenario 1; (c) surrogate model scenario 2; (d) surrogate model scenario 3; and (e) 

surrogate model scenario 4. Pilot point parameter locations are shown as crosses. 

Observation locations are shown as full circles. 
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Figure 2.11: The reality hydraulic conductivity field; see the previous part of this 

chapter for full details. 

 

2.7.3  Results 

As is described earlier, the calibration process assigns values of log hydraulic 

conductivity to pilot points. In order to compare calibrated pilot point values with 

“real” pilot point values, the latter where calculated by sampling the reality log 

hydraulic conductivity field of Figure 2.11 at pilot point locations. Sampling was of 

the least squares type. That is, the values assigned to the set of 600 pilot points that 

are used to parameterize the “real” model are those that minimize the discrepancy 

between the field of Figure 2.11 and a parameter field interpolated from pilot points 

to the complex model grid using kriging based on the same variogram as that used to 

generate the reality parameter field in the first place. A least-squares objective 

function based on residuals between the real and interpolated field at every model 

cell was minimized in computing the “reality” pilot point parameter set. “Reality” 

pilot point values achieved through this process are shown in Figure 2.12 as a dashed 

line connecting the points. In this and other figures, the log of pilot point hydraulic 

conductivity is plotted against pilot point index. The latter is obtained by numbering 

pilot points sequentially; counting proceeds along each row, starting at the top, and 

then progressing downwards. 

Pilot point values calculated through baseline calibration are also shown in Figure 

2.12. As is expected, calibrated parameter values track reality parameter values in a 

subdued manner, albeit with some small errors arising from the presence of 

measurement noise in the calibration dataset. Both sets of parameters exhibit a 
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similar mean value of about 200 m/d, this being the mean value employed in 

stochastic generation of the original reality field. The hydraulic conductivity field 

arising from this baseline calibration is shown in Figure 2.13 in a spatial setting (this 

is a repeat of Figure 2.5), along with the calculated position of the saltwater interface 

arising from this field; the “real” interface position is also shown. Notwithstanding 

the sparse and noise-degraded observation dataset on which calibration is based, the 

calculated interface position is subjectively very good; at the same time the 

calibrated hydraulic conductivity field reflects the broad-scale characteristics of the 

reality field. 

 

Figure 2.12: Comparison of baseline estimated pilot-point parameters, with values 

sampled from the reality log hydraulic conductivity field. 

 

 

Figure 2.13: Kriging-interpolated log hydraulic conductivity field arising from 

baseline calibration. The seawater interface associated with this baseline estimated 

parameter field is shown as a black line, while the true position of the interface is 

depicted using a red line. 
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Outcomes of surrogate-enabled parameter estimation exercises are compared with 

baseline calibration outcomes in Figure 2.14 through to Figure 2.21. Calibration 

scenarios 1, 2 and 3 all achieve a high degree of fit between model outputs and 

calibration observations, as is illustrated by proximity of observed and “reality” sea 

water interface locations in these figures. However Figure 2.18 illustrates the onset 

of some spurious parameter values with surrogate model grid coarsening at scenario 

3. Visual inspection of the log hydraulic conductivity field (Figure 2.19) also 

suggests that the geological plausibility of this parameter field is questionable. 

Calibration scenario 4 fails to reduce model-to-measurement misfit to the same 

extent as the other calibration exercises, notwithstanding an improvement in misfit 

over that associated with the initial parameter field used in this exercise; the latter is 

comprised of uniform pre-calibration expected parameter values of 200 m/d. At the 

same time, it is apparent from Figure 2.20 and Figure 2.21 that parameter values 

achieved through the calibration process deviate erratically and erroneously from 

baseline calibration outcomes. 

 

 

Figure 2.14: Comparison of pilot point parameter values arising from surrogate-

enabled calibration scenario 1 with those obtained from the baseline calibration. 
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Figure 2.15: Kriging-interpolated hydraulic conductivity field arising from 

calibration scenario 1. The calculated position of the seawater interface using this 

estimated field is shown in purple while the interface position calculated using the 

baseline estimated field is shown in black. 

 

 

Figure 2.16: Comparison of pilot point parameter values arising from surrogate-

enabled calibration scenario 2 with those obtained from the baseline calibration. 
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Figure 2.17: Kriging-interpolated hydraulic conductivity field arising from 

calibration scenario 2. The calculated position of the seawater interface using this 

estimated field is shown in purple while the interface position calculated using the 

baseline estimated field is shown in black. 

 

Figure 2.18: Comparison of pilot point parameter values arising from surrogate-

enabled calibration scenario 3 with those obtained from the baseline calibration. 

 

Figure 2.19: Kriging-interpolated hydraulic conductivity field arising from 

calibration scenario 3. The calculated position of the seawater interface using this 

estimated field is shown in purple while the interface position calculated using the 

baseline estimated field is shown in black. 
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Figure 2.20: Comparison of pilot point parameter values arising from surrogate-

enabled calibration scenario 4 with those obtained from the baseline calibration. 

 

 

Figure 2.21: Kriging-interpolated hydraulic conductivity field arising from 

calibration scenario 4. The calculated position of the seawater interface using this 

estimated field is shown in purple while the interface position calculated using the 

baseline estimated field is shown in black. 

2.7.4  Conclusions 

This analysis demonstrates that, for the specific case presented as the example in this 

chapter, the proposed method of conjunctive complex/surrogate model usage is 

successful in achieving estimated parameter sets that are realistic and which allow 

the model to replicate historical system behaviour, when surrogate model grid 

coarsening is much greater than that used in the original example. However with 

greater model simplification, the propensity for the calibration process to estimate 

unrealistic parameter values increases. If surrogate model simplification proceeds too 
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far, then not only are unrealistic parameter values calculated; the level of model-to-

measurement fit achievable during calibration is also severely compromised. It is 

worthy of note, however, that for the present case at least, there is little need for 

simplification to proceed this far. The run times of the simplified models associated 

with scenarios 2 to 4 are only marginally smaller than that associated with scenario 1 

for which calibration outcomes are very good indeed. 

For the model which forms the basis of the present example, the onset of spurious 

parameter values coincides with a level of grid coarsening which is large enough to 

allow multiple pilot points to reside in single grid cells. At this point a second level 

of parameter non-uniqueness is superimposed on that which attends the highly 

parameterized inversion process itself. At the same time, model outputs employed in 

derivatives calculation are compromised by the simplicity of the model, this creating 

a form of “structural noise” that is superimposed on those outputs. Undocumented 

calibration runs undertaken by the author demonstrates that the level of parameter 

spuriousness that emerges from use of such a coarse surrogate model grid can be 

significantly reduced if the level of model-to-measurement fit sought through the 

Tikhonov-regularised inversion process is reduced to a level that is supposedly 

commensurate with that of simplicity-induced structural noise. However an analysis 

of trade-off between parameter and model-to-measurement fit integrity under these 

circumstances is beyond the scope of the present analysis. 

In summary, the analysis presented herein demonstrates that calculation of 

derivatives using a surrogate model with a coarser grid than that employed by the 

model that is actually used for simulation purposes does not compromise the 

integrity of the calibration process, provided the surrogate model grid is not “too 

coarse”. The metric for “too coarse” is problem-specific. However the present 

analysis suggests that it can readily be made coarse enough to promulgate significant 

run time gains, before being so coarse as to compromise the integrity of the 

calibration process. 
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Chapter  3 

Gradient-Based Model Calibration with 

Proxy-Model Assistance 

This chapter presents an extension of the surrogate-enabled calibration strategy 

which employs an analytical proxy model developed from output equivalents to 

elements of the calibration data set obtained from the original model when supplied 

with variations in input parameters. The surrogate model thus developed is therefore 

a data-driven proxy for the original model in terms of the calibration dataset. This is 

in contrast to the surrogate model simplification strategy used in Chapter 2 whereby 

grid coarsening is used to derive a faster running version of the original model. As is 

explained herein, this strategy has particular application when finite-difference 

derived parameter sensitivities calculated from outputs of the complex model are 

compromised by numerical inconsistencies that emanate from the model. This 

chapter is presented in almost identical form to that in which the work was published 

in Journal of Hydrology (see Burrows and Doherty, 2016). 

3.1  Abstract 

Use of a proxy model in gradient-based calibration and uncertainty analysis of a 

complex groundwater model with large run times and problematic numerical 

behaviour is described. The methodology is general, and can be used with models of 

all types. The proxy model is based on a series of analytical functions that link all 

model outputs used in the calibration process to all parameters requiring estimation. 

In enforcing history-matching constraints during the calibration and post-calibration 

uncertainty analysis processes, the proxy model is run for the purposes of populating 

the Jacobian matrix, while the original model is run when testing parameter upgrades; 

the latter process is readily parallelized. Use of a proxy model in this fashion 

dramatically reduces the computational burden of complex model calibration and 
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uncertainty analysis. At the same time, the effect of model numerical misbehaviour 

on calculation of local gradients is mitigated, this allowing access to the benefits of 

gradient-based analysis where lack of integrity in finite-difference derivatives 

calculation would otherwise have impeded such access. Construction of a proxy 

model, and its subsequent use in calibration of a complex model, and in analysing the 

uncertainties of predictions made by that model, is implemented in the PEST suite of 

software. 

 

3.2  Introduction 

Environmental models that simulate the details of complex physical and chemical 

processes over domains wherein the properties which govern those processes are 

spatially and temporally heterogeneous are often characterized by long runtimes and 

a propensity for problematic solver convergence. Furthermore, it is not uncommon 

for models of these types to exhibit good numerical behaviour when provided with 

one set of parameters, but suffer serious degradation of numerical performance when 

supplied with another set of parameters. Where this occurs, calibration and 

uncertainty analysis become very difficult undertakings. This can erode the use of 

such models in environmental decision-support. 

In the present chapter we focus on those aspects of a model’s performance which 

compromise the ability of a model-independent inversion package such as PEST 

(Doherty, 2015a) to calculate derivatives of model outputs with respect to the 

parameters which require adjustment during calibration, and calibration-constrained 

uncertainty analysis. In PEST, derivatives are calculated using a finite-difference 

methodology based on a two, three or five point stencil. Model outputs are computed 

based on values of a particular parameter which are varied incrementally in 

accordance with the selected stencil; differences in these outputs form the basis for 

approximation of local partial derivatives with respect to that parameter. These 

derivatives are housed in a so-called Jacobian matrix. The Jacobian matrix is then 

employed in calculation of an improved set of parameters. Jacobian matrix and 
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parameter upgrade calculations are undertaken repeatedly in an iterative process 

whose outcome is a set of parameter values that produce an acceptable level of fit 

between model outcomes and field observations of system state. Where a model is 

being calibrated, a set of parameters which constitute a minimum error variance 

solution to the inverse problem is sought through this process. Where calibration-

constrained uncertainty analysis is being undertaken, multiple sets of parameters are 

sought, all of which are considered to be reasonable expressions of system properties, 

and all of which fit field measurements to within limits that reflect the noise content 

of those measurements. 

A variety of numerical methods have been developed to expedite calibration and 

calibration-constrained uncertainty analysis. Many of these methods do not, in fact, 

require calculation of a Jacobian matrix. However, use of so-called “gradient 

methods” which do make use of partial derivatives of model outputs with respect to 

adjustable parameters to perform the above tasks accrues certain benefits. A major 

benefit that gradient methods have over other methods is their speed; see, for 

example Keating et al. (2010). Another benefit is that gradient-based inversion 

algorithms are easily extended to include mathematical regularisation schemes that 

readily accommodate parameter nonuniqueness (Aster et al., 2013; Menke, 1989). A 

further benefit is that, once a Jacobian matrix has been filled, it can be used in 

calculation of post-calibration statistics such as parameter identifiability (Doherty 

and Hunt, 2009), parameter and predictive uncertainty (Gallagher and Doherty, 

2007a and 2007b; James et al., 2009), and the worth of existing and yet-to-be 

acquired data in terms of its ability to reduce the uncertainties of parameter and 

predictions of interest (Dausman et al., 2010).  

Use of gradient methods is not without its problems, however. Their performance 

may be hampered where the relationship between model outputs and parameters is 

highly non-linear (Duan et al., 1992). Even worse, it may not be possible to use these 

methods at all where model performance is such that elements of the Jacobian matrix 

lose their integrity. Where these elements are calculated using finite parameter 

differences, loss of integrity can occur when incremental changes in model outputs 

employed in finite-difference derivatives calculation reflect more than simply 



 

60 

 

incremental changes in parameter values. This is not an uncommon situation, 

particularly where the complex nonlinear environmental processes simulated by a 

model challenges its solver. While strategies such as adaptive time stepping that alter 

the solution procedure when convergence becomes problematic, may mitigate these 

problems as far as the model is concerned, they may exacerbate them as far as 

calculation of finite-difference derivatives is concerned, for model outputs may then 

become somewhat dependent on solution path.  

Examples of modelling contexts in which calculation of finite-difference parameter 

derivatives may be compromised are not hard to find. The handling of “dry cells” in 

MODFLOW (Harbaugh et al., 2000) is a common example. Kavetski et al. (2006) 

discuss how algorithmic design of models that simulate surface water movement can 

lead to similar problems in these kinds of models. Other contexts in which model 

numerical behaviour can compromise finite-difference derived gradients include: 

 simulation of the effects of mining and tunnelling operations on 

groundwater systems; 

 interaction of ground and surface waters near streams and wetlands; 

 high temperature geothermal reservoir simulation where water phase is a 

discontinuous  function of temperature and pressure; and 

 chemical reactions in mobile contaminant plumes.  

In the difficult numerical circumstances that these modelling contexts present, so-

called “global methods” which do not rely on calculation of derivatives of model 

outputs with respect to adjustable parameters, provide an alternative option for 

software-controlled history-matching. Examples of non-gradient based calibration 

and calibration-constrained uncertainty analysis algorithms include (among many 

others) particle swarm optimization (Kennedy and Mendes, 2002), shuffled complex 

evolution (Duan et al., 1992), genetic and evolutionary programming (Vrugt and 

Robinson, 2007), and covariance matrix adaption algorithms (Hansen et al., 2003). 

All of these replace the need to calculate derivatives with respect to adjustable 

parameters with intelligent random sampling of parameter values. While delivering 
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robustness in the face of problematical numerical behaviour, the cost of this 

robustness is the requirement for a greater number of model runs than that required 

by gradient methods. This differential between model run requirements of the two 

different approaches tends to grow with the number of parameters that require 

estimation or adjustment. 

To ease the computational burden of applying global methods to the problems of 

model calibration and calibration-constrained uncertainty analysis, increasing use is 

being made of fast-running model surrogates. In recognition of the fact that the 

complex simulator is the most accurate replicator of reality available, in many 

applications the surrogate model does not completely replace the original simulator. 

Rather it is strategically substituted for the simulator on many occasions that a model 

run is required. The greater is the ratio of surrogate to simulator runs, the greater is 

the efficiency of the overall process. The surrogate may be a simulator that runs 

much faster than that which it replaces because of its simpler algorithmic design. 

One example is the SWI package for MODFLOW, (Bakker et al., 2013) which 

replaces mass conservative governing equations with equations based on continuity 

of flow, avoiding the need for fine-scale vertical discretisation. Another example is 

MODFLOW-USG, described by Panday et al. (2013), which is able to represent 

flow in grids with highly irregular spatial discretisation thereby reducing the number 

of simultaneous equations required in solution. More sophisticated model reduction 

strategies may be employed as are used by Efendiev et al. (2005, 2009) and Mondal 

et al. (2010) whereby a coarse-gridded simulator whose parameterization is based on 

single-phase upscaling procedures, surrogates for a fine scale, dual-phase reservoir 

model. 

Alternatively the surrogate may undertake data-driven reproduction of simulator 

outputs, or interpolate between samples of simulator outputs to non-sampled parts of 

parameter space using devices such as radial basis functions, kriging or artificial 

neural networks; see for example, Regis and Shoemaker (2004), Bliznyuk et al. 

(2007), and Alam et al. (2004) respectively. More recently, Laloy et al. (2013) and 

Elsheikh et al. (2014) deploy polynomial chaos expansion theory to develop 

interpolators of simulator outputs. Alternatively the statistical characteristics of 
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simulator outputs can be modelled using Gaussian process theory; see Johnson et al. 

(2011) and Conti et al. (2009) as examples. Data-driven surrogates such as these are 

commonly known as model emulators or proxy models. 

One analysis scheme that can benefit enormously from simulator run reductions 

through strategic use of surrogate models is Markov Chain Monte Carlo (MCMC). 

Various adaptations of the so-called “two-stage MCMC” approach have been 

documented (see Efendiev et al., 2005 and 2009; Mondal et al., 2010 and Cui et al., 

2011 for examples) that seek to reduce the need for expensive simulator runs in 

assessment of low-probability proposal parameter fields. In these example studies 

calibration and/or uncertainty assessment of complex reservoir simulators is 

undertaken wherein a surrogate model is used in “stage one” of the process as a pre-

screening mechanism. The goal is to increase the acceptance rate of proposed 

parameter fields in “stage two” where acceptance/rejection of the proposal is 

determined on the basis of the simulator. The studies just mentioned use surrogate 

models based on simplified algorithms, as has already been mentioned. The studies 

cited earlier in relation to polynomial chaos expansion theory (that is Laloy et al., 

2013 and Elsheikh et al., 2014), also deployed their model emulators within the two-

stage MCMC framework. Two-stage MCMC consistently demonstrates several fold 

savings in computational costs over full/direct MCMC, effected primarily through 

inexpensive pre-screening of proposals. 

Of course use of a surrogate model, either as a direct substitute or as a companion to 

a more accurate simulator, will undoubtedly incur some cost on the analysis 

undertaken. Put simply, a simplified model cannot be expected to replicate the same 

level of accuracy at all spatial and temporal locations of a modelled domain as can a 

simulator. It is readily acknowledged in the literature of two-stage MCMC cited 

above, that there exists potential for rejection of parameter proposals in the pre-

screening stage of the process when assessed by the surrogate, that would otherwise 

find support through the simulator. To accommodate surrogate model 

“malperformace” in two-stage MCMC, it is common to employ elevated 

measurement uncertainty when calculating proposal likelihood with the surrogate 

model. Unfortunately this effectively admits a larger number of low-probability 
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proposals to pass through the pre-screening step and erodes efficiency gains accrued 

through use of the surrogate. As will be explained further in the next section of this 

paper, where surrogate models are conjunctively used in gradient methods for 

approximation of derivatives degraded efficiency may also occur. However 

accommodation of surrogate model “malperformance” can largely be achieved 

through maintenance of the Marquardt parameter. The use of elevated measurement 

uncertainty as a means to accommodate so-called structural error is also a strategy 

that is routinely applied in gradient based uncertainty analyses. 

To the authors’ knowledge, the only documented gradient-based parameter 

adjustment process that does not completely replace the original simulator with a 

surrogate, is that of Burrows and Doherty (2014). These authors undertook 

calibration and calibration-constrained uncertainty analysis of a sea-water intrusion 

model. The former was implemented using Tikhonov regularisation while the latter 

was implemented using the null space Monte Carlo method (described by Tonkin et 

al., 2009) and supported by PEST. Jacobian matrix calculation was undertaken using 

the surrogate - a coarse-gridded version of the original model. The work undertaken 

by these authors suggests that, in some modelling contexts at least, although system 

states calculated by a simplified model may be approximate, incremental changes in 

these calculated states arising from incremental changes in parameter values, may 

have the integrity required to support calculation of derivatives of model outputs 

with respect to parameters in a highly parameterized inversion context. 

The present paper documents an extension of the work undertaken by these authors 

in which the issue of problematical model numerical behaviour is addressed. Where 

model outputs are contaminated by “numerical granularity” arising from factors such 

as those discussed above, use of gradient-based methods for calibration and 

uncertainty analysis becomes difficult or impossible. In such circumstances global 

methods may not present a viable alternative, particularly if model runtimes are high, 

unless strategic use is made of a surrogate model. The alternative presented here is 

that an emulator can be used in conjunction with the simulator within a gradient 

based approach. This is in contrast to the previous study undertaken by these authors, 

in which the surrogate is a coarser-gridded version of the same model. This approach 
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can be employed where outputs provided by a simplified version of the complex 

model lack sufficient integrity to be used in calculation of derivatives. Alternatively, 

the approach discussed herein can be used where a modeller has insufficient time to 

construct a simpler version of a complex model and test its integrity. As steps in the 

emulator construction and training process are automated (and supported by the 

PEST suite), complex model calibration and uncertainty analysis can therefore 

proceed with relatively little user-difficulty. A deficiency of the approach presented 

herein however, is that unlike the surrogate model strategy presented by Burrows and 

Doherty (2014), the number of parameters that can be adjusted is limited to a few 

tens, rather than hundreds or even thousands. This should not, however, be seen as a 

deficiency of the method, rather it is reflective of numerical and/or runtime 

difficulties associated with the complex model. 

In the approach documented herein a series of analytical proxy models, each of 

which emulates the relationship between one model output used in the history-

matching process and all parameters that are adjusted through that process, replace 

the simulator for the purpose of derivatives calculation. In the present study these 

proxies employ second order polynomials; however the methodology is general 

enough for these to be replaced by more complex analytical functions where 

appropriate. Meanwhile the original simulator is used for testing and adjusting 

parameter upgrades calculated using the proxy-derived Jacobian matrix, this ensuring 

the integrity of those upgrades. Proxy model training, through which the proxy 

model ensemble is taught to replicate the behaviour of the simulator, is implemented 

through an automated sequence of numerically cheap calibration processes 

undertaken prior to calibration of the simulator itself. The level of proxy-to-simulator 

fit achieved through the training process can be user-adjusted so that the proxy 

ensemble is able to replicate broad-scale simulator behaviour while ignoring local 

expressions of its numerical difficulties. Proxy-assisted parameter adjustment can 

therefore support calibration of a simulator that is beset with solver convergence 

problems. It can also support post-calibration Monte Carlo analysis in which many 

different parameter fields are generated, all of which reflect expert knowledge of 

parameter variability, and all of which respect calibration constraints. Furthermore, 

because the proxy ensemble replaces the simulator in calculation of the Jacobian 
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matrix, calibration and calibration-constrained uncertainty analysis become 

numerically inexpensive. 

As far as the authors are aware, the methodology presented herein is novel in a 

number of respects. Firstly, it illustrates use of a data-driven model emulator in a 

gradient-based parameter estimation framework. In so doing, it demonstrates how 

some of the benefits of gradient-based parameter adjustment can be realised in 

contexts where the simulator on its own cannot support the use of these methods. 

Secondly it employs not one, but a series of emulators, each emulator being specific 

to a model output for which there is a matching field measurement. Thirdly, as will 

be demonstrated by example, a form of proxy-assisted, Tikhonov-regularized 

inversion is employed to efficiently impose calibration constraints on samples of an 

approximation to the posterior parameter probability distribution, without 

compromising the coverage of posterior parameter space established by those 

samples. 

The remainder of this chapter is organised as follows. A short description of the 

Gauss-Marquardt-Levenberg method of parameter estimation is presented in Section 

3.3. Section 3.4 describes how a suite of analytical emulators can be trained to 

reproduce the broad-scale behaviour of a complex simulator in parameter space, and 

how these emulators can then be used to assist calibration of that simulator. The 

methodology is applied to calibration and Monte Carlo-based uncertainty analysis of 

a saltwater intrusion model in Section 3.5. The paper concludes with a short 

discussion in Section 3.6. 

 

3.3  Gauss-Marquardt-Levenberg method 

This section describes the role of the Jacobian matrix in gradient-based parameter 

estimation. It also explains how the Jacobian matrix, together with other readily-

available by-products of gradient-based parameter estimation, can illuminate 

parameter and predictive uncertainty. 
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The Gauss-Marquardt-Levenberg (GML) method is an efficient methodology for 

estimation of parameters of nonlinear models. Theory and application of this method 

are extensively covered in texts such as Bard (1974), Draper and Smith (1998), Aster 

et al. (2013) and Doherty (2015b). Briefly, a weighted least squares objective 

function is defined using an equation such as the following: 

 Φ = r
t
Qmr  . (3.1) 

In Equation (3.1), r is the vector of model-to-measurement residuals. Each element 

of this vector is the difference between a field observation and its model-generated 

counterpart. Qm is a weight matrix. In normal modelling practice this is a diagonal 

matrix with its elements proportional to the inverse of the variance of measurement 

noise associated with respective field observations. Such a choice can be shown to 

support parameter estimates which are of minimized error variance (Koch, 1999) (It 

should be pointed out, however, that in most real-world modelling circumstances 

model-to-measurement misfit is dominated by inadequacies of the model as a 

simulator of real-world behaviour, and not by measurement noise. In these 

circumstances, weighting schemes which afford estimated parameters some 

protection from the deleterious effects of so-called “structural noise” should be 

adopted. See Doherty and Welter 2010 and White et al. 2014 for details). 

Where an inverse problem is well-posed, estimates of parameters are obtained 

through minimization of the objective function defined in Equation (3.1). Where a 

model is nonlinear, this is an iterative procedure. During each iteration of the 

inversion process, the model is replaced by its linearized counterpart, this being the 

Jacobian matrix; this is denoted as J in equations to follow. Each column of the 

Jacobian matrix is comprised of the partial derivatives of all model outputs used in 

the calibration process with respect to one particular parameter. The matrix therefore 

possesses as many columns as there are adjustable parameters. During each iteration, 

improvements Δp to existing parameter values p are calculated using the formula: 

 Δp = (J
t
QmJ + λI)

-1
J

t
Qmr   . (3.2) 
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The variable λ appearing in Equation (3.2) is known as the “Marquardt lambda”. Its 

presence assists the inversion process in accommodating model nonlinearity. A large 

value for this variable accelerates convergence early in the inversion process. Ideally 

its value should fall as the minimum of the objective function is approached. 

Use of Equation (3.2) assumes that the matrix inverse cited in that equation actually 

exists. Where it does not exist, Equation (3.2) can be modified to support use of 

singular value decomposition in estimation of parameter projections onto the 

estimable subspace of parameter space; see Moore and Doherty (2005) for details. 

Alternatively, or as well, the calibration dataset can be supplemented with 

information, sourced from expert knowledge that pertains directly to the parameters 

requiring estimation. Formulation of such a Tikhonov regularisation scheme that 

references preferred values for all parameters, or preferred values for relationships 

between them, must be accompanied by a weighting scheme that suggests to the 

parameter estimation process the manner in which departures from these preferred 

parameter conditions should arise. Normally, a global weight multiplier is then 

applied to all such “regularisation observations”. The value of this multiplier is 

calculated by the inversion engine itself on an iteration-by-iteration basis such that an 

appropriate balance is maintained between the influence of field measurements and 

regularisation constraints on estimated parameter values. In PEST’s implementation 

of Tikhonov regularisation, the weight multiplier which it calculates is related to the 

Lagrange multiplier that arises in solution of a constrained minimization problem. 

This problem is formulated as minimization of the regularisation objective function 

subject to the constraint that the measurement objective function is allowed to fall no 

lower than a user-specified value. The regularisation objective function collects 

residuals which quantify departures of parameters from their preferred values or 

conditions; this is in contrast to the measurement objective function as defined in 

Equation (3.1). Use of appropriately-formulated Tikhonov regularisation guides an 

ill- or poorly-posed inverse problem to a unique solution that satisfies conditions of 

minimized parameter error variance (Tikhonov and Arsenin, 1977; De Groote-Hedlin 

and Constable, 1990).  
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Following solution of the nonlinear inverse problem, the Jacobian matrix used in 

attainment of that solution can be used to obtain a linear approximation to the 

posterior parameter covariance matrix, here denoted as C´(p). For a well-posed 

inverse problem that is solved using Equation (3.2) this is calculated as: 

 C'(p) = (J
t
QJ)

-1
  . (3.3) 

The weight matrix Q used in Equation (3.3) will normally be proportional to Qm 

used in Equations (3.1) and (3.2). That is: 

 Q = σ
 -2

Qm (3.4) 

where σ
2
, the proportionality constant, is often referred to as the “reference variance”. 

This can be calculated from model-to-measurement misfit attained through the 

inversion process as: 

 
mn 


 min2   (3.5) 

where Φmin is the minimized objective function, n is the number of observations 

comprising the calibration dataset and m is the number of parameters being estimated. 

Where an inverse problem is ill- or poorly-posed, Equation (3.3) cannot be used for 

calculation of the posterior covariance matrix because either the matrix inverse 

featured in that equation does not exist, or inversion of the J
t
QJ matrix leads to post-

calibration parameter uncertainties that exceed prior parameter uncertainties. In such 

cases, a linear approximation to the posterior parameter covariance matrix can be 

calculated as: 

 C'(p) = (J
t
QJ+ C

-1
(p))

-1
 (3.6) 

where C(p) is the covariance matrix of prior parameter uncertainty.  

Numerically, the most costly part of GML parameter estimation is calculation of the 

Jacobian matrix. This calculation must be repeated during each iteration of the GML 

process. As mentioned in the introduction to this chapter, the Jacobian matrix is 

usually filled by undertaking repeated model runs with the value of each parameter in 
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turn incremented and/or decremented. Differences in model outputs divided by 

differences in parameter values are then taken as approximations to partial 

derivatives. (Slightly more complex variants of this procedure can be employed 

where three or five point stencils are used for finite-difference derivatives 

calculation.) Finite-difference derivatives calculation thus requires that at least as 

many model runs be undertaken per iteration as there are parameters requiring 

estimation, with this number increasing where higher order stencils are employed. 

Once the Jacobian matrix has been filled, parameter upgrades are calculated using 

Equation (3.2). Normally parameter upgrades are calculated for a few values of the 

Marquardt lambda. The model is then run using each set of upgraded parameters in 

order to monitor their effectiveness in reducing the objective function. PEST uses a 

trial and error procedure for selection of values of the Marquardt lambda. During any 

iteration, this procedure commences with the optimal lambda value inherited from 

the previous iteration. Selection of different lambda values for use in Equation (3.2) 

results in calculation of parameter upgrade vectors which point in different directions 

in parameter space but which are all oriented down the objective function gradient. A 

benefit of the trial-and-error lambda testing procedure implemented by PEST is that 

it allows exploration of the possibility that some directions of the parameter upgrade 

vector are more productive than others in terms of their ability to promulgate a 

reduction in the objective function. This may arise as a natural consequence of the 

shape of the objective function surface in parameter space. It may also be a 

consequence of degraded integrity of parameter upgrade calculations arising from 

use of a corrupted Jacobian matrix, the latter being an outcome of model output 

numerical granularity. The testing of parameter upgrades calculated using multiple 

Marquardt lambda values can therefore endow the parameter estimation process with 

an ability to accommodate deficiencies in the Jacobian matrix calculation process.  

A benefit of the GML method is that both the filling of the Jacobian matrix and the 

testing of parameter upgrades are both easily parallelized as model runs required for 

both of these procedures are independent. 
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3.4  Model Emulation 

3.4.1  General 

In the model emulation strategy discussed in the present paper, the model emulator is 

used to calculate partial derivatives of model outputs with respect to adjustable 

parameters; hence the emulator is run instead of the real model when filling the 

Jacobian matrix. We refer to the emulator employed in this strategy as a “proxy 

model”, or simply “proxy”, rather than using a term such as “surrogate model” as the 

latter is a general term implying replacement of a (supposedly complex) simulator by 

a (supposedly simplified) counterpart. In contrast, the emulator described in the 

present study has no physical basis. It is comprised of appropriately parameterized 

analytical expressions that are trained to reproduce certain aspects of a simulator’s 

behaviour.  

Where a proxy model runs quickly, filling of the Jacobian matrix becomes almost 

instantaneous. This, of course, has the potential to reduce the numerical burden of 

GML-based parameter estimation enormously. However there are costs associated 

with this benefit. One cost is that derivatives calculated using a proxy are unlikely to 

have the same integrity as those calculated by running the simulator itself. A second 

cost is that the simulator must be run multiple times to train the proxy.  

In the modelling context which is the focus of the present paper, the first cost may 

not be a cost at all. As was discussed in Section 3.2, a motivation for development of 

the methodology described herein is the often-problematical numerical behaviour of 

complex simulators. It is the authors’ experience that corruption of finite-difference 

derivatives incurred by such misbehaviour can make GML-based parameter 

estimation impossible in some important management contexts. Furthermore, 

adoption of a GML strategy in which parameter upgrades calculated using a number 

of Marquardt lambda values are tested using the real simulator during each iteration 

of the inversion process, partly atones for inaccuracies in derivatives computation 

(whether these inaccuracies are incurred through use of the simulator or by use of a 

proxy model). 
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The second cost mentioned above, namely the simulator runs that must be expended 

in training the proxy, can indeed be non-trivial. As will be discussed below, this 

number can rise rapidly with the number of simulator parameters that require 

adjustment. However the authors’ experience to date, and the example below, 

suggest that the overall number of runs required for implementation of proxy-based 

parameter estimation, including those required for proxy training, is often not much 

greater than that which would have been required if a numerically well-behaved 

simulator was used directly in GML-based parameter estimation. Where the 

numerical behaviour of a simulator is such as to corrupt finite-differenced derivatives 

calculation to the point where GML simply fails, investment of simulator runs in 

training of a proxy can enable progression of a parameter estimation process that 

would otherwise be impossible. 

3.4.2  Formulation of an analytical proxy 

Let oj designate the j’th simulator output for which there is a corresponding 

measurement in the calibration dataset; the difference between this simulator-

generated number and the j’th measurement comprises the j’th residual of the r 

vector featured in Equation (3.1). Let pi designate the i’th parameter (optionally log-

transformed for enhancement of model linearity) adjusted through the history-

matching process. Suppose that there are m of these and that collectively they are 

denoted by the vector p. We assume that the relationships between an individual oj 

and the m elements pi of p can be approximately replicated over a significant 

subspace of parameter space by an analytical relationship of the following form: 

    pcp ,jjj Fo    (3.7) 

where cj is a vector of proxy model parameters chosen so that Fj emulates the 

behaviour of oj as well as possible over the range of likely values collectively taken 

by simulator parameters p. To avoid confusion with parameters employed by the 

simulator, the elements cij of cj are referred to as “factors” herein. As implied by the 

subscript j, they are specific to an individual simulator output j and to the 

corresponding analytical function Fj employed for emulation of that output.  
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For a user-specified Fj, values of cij must be estimated through calibration against 

values of oj computed by the simulator for many instances of its parameters p. (In a 

further effort to avoid confusion, the cij estimation process will be referred to herein 

as “training” of the proxy model pertaining to simulator output j.) Ideally, for a 

particular j, estimation of the cij should constitute a well-posed inverse problem. This 

requires an appropriate choice for Fj. It also requires that the number of instances of 

model parameters p for which values of all simulator outputs oj are computed exceed 

the number of elements cij of cj. The number of proxy models (i.e. the number of 

instances of Fj) is equal to the number of observations employed in calibration of the 

simulator. Therefore as many training exercises as there are proxy models (Fj) must 

be undertaken. 

Choice of an appropriate Fj is simulator-specific. Where different analytical proxies 

are employed for different oj, it is also simulator-output-specific. Selection of an 

appropriate Fj must take account of the following: 

 As stated above, for all likely values taken by simulator parameters p, 

values for oj calculated using Equation (3.7) should be similar to those 

calculated by the simulator; 

 The proxy model Fj should compute these values with minimal numerical 

burden; 

  pc ,jjF  should be differentiable with respect to the elements cij of cj, 

this allowing rapid estimation of cij through GML-based training of Fj; 

and 

  pc ,jjF  should be differentiable with respect to the elements pi of p, 

this allowing use of Fj in filling the Jacobian matrix used in estimation of 

parameters p used by the simulator. 

In the example presented in Section 3.5, Fj is a second order polynomial. Thus: 
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In other instances of proxy model usage undertaken by the authors that are not 

documented herein, additional complexity has been added to Fj through imposition 

of bounds on its values, either through use of max( ) and min( ) functions applied to 

Fj, or in a “softer” fashion through applying the tanh( ) function to numbers 

computed by Fj. Further enhancements to Equation (3.7), or completely different 

analytical functions, could be readily employed in different circumstances in order to 

promulgate better emulation of simulator behaviour by the analytical proxy.  

If Equation (3.8) is used as a basis for proxy design, it is easily shown that if p has m 

elements, then the number of elements nc which comprise cj is given by: 

 nc = (m+1)(m+2)/2 (3.9) 

Hence at least this many simulator runs must be undertaken to provide the instances 

of oj required for training of Fj; the most numerically efficient procedure for training 

of all Fj proxies would be accomplished using respective oj computed using a single 

set of simulator runs which employed nc instances of p. 

Appropriate sampling strategies through which values of p used in the proxy training 

process can be obtained are briefly discussed in Section 3.4.3. Let k designate the 

number of these samples, and let ps designate one such sample. Once these k samples 

have been taken, the simulator must be run k times to obtain k instances ojs of each oj. 

Training of all oj-specific proxy models can then be undertaken. Ideally this can be 

accomplished through GML-based estimation of proxy model factors cij through 

solution of j oj-specific inverse problems in which proxy model factors are adjusted 

to minimize the discrepancies between simulator and proxy outputs for all instances 

of ps. Even where the number of proxy models requiring training is large, GML-

based proxy model training is likely to be rapid if the proxies are capable of 

calculating derivatives of their outputs with respect to their factors; presumably 

analytical expressions for these derivatives are not difficult to derive because of the 

analytical nature of the proxies themselves. 
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It is not essential for proxy model outputs to faithfully replicate simulator outputs for 

all ps; in fact this is unlikely to occur where the Fj proxies embody simple analytical 

expressions such as Equation (3.8). Furthermore, the greater the redundancy in 

parameter sample sites (that is, the greater the amount by which k exceeds the 

number of proxy model factors requiring estimation nc), the less likely is a perfect 

match between simulator and proxy model outputs to be achieved for all parameter 

samples. This is not necessarily a bad thing; in fact it can be a desirable design 

specification for an analytical proxy model where simulator outputs are contaminated 

by numerical granularity induced by solver non-convergence or by some of the other 

simulator numerical difficulties discussed above. For this reason, proxy-to-simulator 

fit-limiting can comprise a design feature of the inversion process through which 

proxy model factors are estimated. In recognition of this proxy model training as 

undertaken by the PEST suite optionally employs Tikhonov regularisation. The 

inversion problem which is then repeatedly solved to estimate factors for all oj-

specific proxies is thereby formulated as a constrained minimization problem in 

which the absolute values of proxy factors cij are minimized subject to attainment of 

a pre-specified level of proxy-to-simulator fit. As a further option, PEST provides 

access to a global optimiser, (the CMAES method of Hansen et al., 2003) to use as a 

“primer” for GML-based factor estimation. This can expedite training of highly 

nonlinear proxy models, at a cost of proxy training speed. 

A disadvantage of the proxy model strategy discussed above is that it requires the 

training of hundreds, or perhaps thousands, of proxies in modelling contexts 

characterized by large calibration datasets. However this disadvantage is offset by 

the following features of this strategy: 

 GML-based training of a large number of proxies is relatively fast;  

 Possible inclusion of Tikhonov regularisation in the training process 

provides the modeller with a means of limiting proxy-to-simulator fit to 

the level of numerical noise associated with simulator outputs; and 

 Differentiability of Fj with respect to the elements of p allows gradient-

based methods such as the (Tikhonov regularisation enhanced) GML 
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methodology to be used in calibration, and/or in calibration-constrained 

uncertainty analysis, of complex simulators in contexts where these 

would otherwise be employed only with great difficulty. 

3.4.3  Sampling of Parameter Space 

The number k (with a lower limit of ns) of parameter samples ps used in proxy model 

training, and the values of these samples, can exert a strong influence on proxy 

model performance, and the success, or otherwise, of the simulator history-matching 

process which proxy model usage is designed to support. The PEST suite presently 

supports a number of sampling options, namely: (1) user-specified; (2) Sobol; (3) 

random uniform; (4) random normal and; (6) Latin hypercube.  

A number of matters must be considered when designing a sampling strategy. Ideally 

the number of sample points should be as small as possible (though always 

exceeding the ns lower limit number of proxy factors cij requiring estimation) in 

order to reduce simulator run requirements. However if simulator numerical 

behaviour is problematical, the number of parameter samples may need to be 

increased to accommodate the presence of “numerical noise” in the proxy training 

dataset, through enhanced model output redundancy. Parameter samples should 

provide good coverage of that part of parameter space in which parameters that are 

ultimately estimated through the simulator calibration process are thought to lie. 

Presumably initial parameter values employed in GML-based simulator calibration 

will reflect, at least to some extent, a modeller’s anticipation of what these calibrated 

values may be. However calibrated parameter values may nevertheless differ widely 

from initial parameter values; proxy model design, and the parameter sampling 

strategy which supports it, must accommodate this. 

Sample selection as a basis for emulator design, and in experimental design generally, 

has been discussed by many authors. See, for example, Eide et al. (1994), Alam et al. 

(2004), Razavi et al. (2012b) and references cited therein. So-called “space filling” 

strategies which attempt to maximize coverage of parameter space with a pre-

determined number of samples are often used to support proxy model design. These 

include Latin hypercube, as well as “symmetric Latin hypercube” sampling; see 
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discussions of these methods in Alam et al. (2004), Fen et al. (2009), Regis and 

Shoemaker (2004) and Mugunthan et al. (2009). An alternative to these is that 

provided by Sobol (1979); this method is designed to ensure maximum separation of 

a user-specified number of samples throughout a subspace of parameter space 

defined by lower and upper parameter bounds.  

Conceptually, there is no reason why parameter sampling should be a once-only 

operation. Indeed, as simulator runs are undertaken during early stages of proxy-

assisted simulator calibration, the parameters used in these runs (and the simulator 

outputs that correspond to them) can be added to the parameter sample set and then 

used for proxy factor refinement. Alternatively, or as well, a multi-stage parameter 

sampling strategy can be pursued. A space filling strategy can be adopted prior to 

commencement of the simulator calibration process. Because further sampling will 

follow, there may be no need for initial sampling to be too dense; hence simulator 

runs can be conserved. After a number of proxy-assisted GML iterations have been 

undertaken, an approximation to the posterior parameter covariance matrix can then 

be calculated using Equations (3.3) or (3.6). This can then form the basis for a 

second sampling stage comprised of random, sobol or Latin hypercube sampling to 

support proxy factor re-estimation or refinement; presumably samples thus obtained 

will span the space in which calibrated simulator parameter values are most likely to 

reside. Strategic, multi-stage sampling of this kind may reduce overall simulator run 

requirements because the targeted nature of sampling reduces the need for high 

sampling density. Though not documented herein, the authors have used such a 

multi-stage sampling strategy successfully in calibration of complex simulators. 

 

3.5  A Proxy-Assisted Example 

3.5.1  Problem Description 

Figure 3.1 depicts two confined aquifers separated by an aquitard. These comprise 

the domain of a 2-dimensional cross-sectional model that simulates saltwater 

intrusion into these units. The model domain is 12 m in length and 2 m in height, 
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these dimensions being similar to those employed in the example presented by 

Burrows and Doherty (2014) which, in turn, was based on those used by Henry 

(1964). The sea is on the right (i.e. the east) of the model domain, while freshwater 

flows into the model domain from the west. Of interest is the location of the 

“saltwater interface”; for present purposes this is defined as the location of the 10% 

saltwater isohaline. First, observations of the location of this interface under two 

different conditions (one steady state and one transient) are used to calibrate the 

model. Following calculation of the steady state interface position, freshwater inflow 

from the west is reduced so that the interface moves to the left; steady state 

observations of the interface position are then supplemented by observations of the 

interface location after 0.5 days of reduced western freshwater inflow to comprise the 

total calibration dataset. The model is then used to make a prediction, this being the 

location of the saltwater interface after a further 1.0 days of reduced western 

freshwater inflow. 

Proxy-assisted estimation of stratigraphic unit hydraulic conductivities and model-

wide dispersivities is now described. As a sequel to calibration, proxy-assisted 

calibration-constrained Monte Carlo analysis is undertaken in order to explore the 

uncertainty associated with the prediction of the future interface position. 

Density-dependent flow and transport is simulated using SEAWAT version 4 

(Langevin et al., 2008). The vertical cross-sectional model domain is endowed with 

600 cells in each of 100 layers, this resulting in a total of 60,000 cells. The time 

variation diminishing (TVD) scheme is employed in simulation of advective 

movement of saltwater. The time required for solution of the steady state position of 

the interface and movement of this interface over the first transient stress period (in 

which western freshwater inflow is reduced) is about 45 minutes on a i7 cpu PC 

clocking at 1.60 Ghz. This constitutes the simulator run time under calibration 

conditions.  

To represent the ocean, a SEAWAT “general head” boundary condition is ascribed to 

all cells comprising the eastern vertical boundary of the model domain. All cells 

comprising this boundary are ascribed a hydraulic head of 0.0 m and a salinity of 35 

kg/m
3
; both of these remain fixed during the simulation. Meanwhile, inflow of water 
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with a salt concentration of 0 kg/m
3
 into the west of the model domain is simulated 

using injection wells placed along this boundary. Inflow is vertically uniform; it 

totals 1.0 m
3
/d under steady state conditions and 0 m

3
/d thereafter. Flow across the 

top and bottom boundaries of the model domain is zero.  

Porosity is uniformly 0.35 while molecular diffusion is set to a uniform value of 0.01 

m
2
/d. Other hydraulic properties employed by the model are listed in the first column 

of Table 3.1. Horizontal and vertical hydraulic conductivites are layer-specific and 

layer-uniform; longitudinal dispersivity and the ratio of vertical to longitudinal 

dispersivity are uniform throughout the model domain. All parameters featured in 

Table 3.1 are subject to calibration adjustment; this totalling 8 parameters in all. 

 

 

Figure 3.1: The example problem. The two saltwater interface locations comprising 

the calibration dataset are shown in red (steady state) and blue (0.5 days after western 

freshwater inflow reduction). Interface positions shown in the figure were calculated 

using the “reality” parameter set listed in the second column of Table 3.1. 
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Table 3.1: Results of calibration exercises. 

Parameter 

identifier 

Parameter 

description 

Actual 

value 

Initial 

value 

  Estimated parameters 

  Baseline 
Proxy-

assisted 
Proxy CMAES_P 

kh1 
Horizontal K upper 

aquifer (m/d) 
499.4 600 

 

397.2 521.6 500.7 539.3 

kv1 
Vertical K upper 

aquifer (m/d) 
152.2 100 

 

97.2 90.8 80.7 125.9 

kh2 
Horizontal K 

aquitard (m/d) 
6.12 3 

 

0.6 3.08 5.92 1.99 

kv2 
Vertical K aquitard 

(m/d) 
0.76 0.2 

 

0.35 0.67 0.67 0.81 

kh3 
Horizontal K lower 

aquifer (m/d) 
241 300 

 

386 267.6 251.8 279.7 

kv3 
Vertical K lower 

aquifer (m/d) 
58.72 40 

 

45.9 55.27 84.08 28.17 

dspl 
Longitudinal 

dispersivity (m) 
0.0046 0.0055 

 

0.0056 0.0081 0.0047 0.0076 

tprv 
Transverse/Vertical 

Dispersivity (-) 
0.76 0.6   0.84 0.69 0.68 0.56 

Number of simulator runs 

  

567 126 120 872 

Final objective function 

 

73092 

 

5993 672 1610 670 

Parameter objective function 

(Equation (3.10)) 
      1.24 0.21 0.11 0.42 

 

The distance of the saltwater interface from the western boundary of the model 

domain in each of the 100 layers into which the model domain is discretised was 

calculated by the model (comprised of SEAWAT and appropriate post-processing 

software) using the parameters listed in the third column of Table 3.1. These 

parameter values comprise the “reality parameters” which the model calibration 

process seeks to estimate; they were chosen from a suite of random parameter 

realizations as those which lead to a prediction of the future interface position which 

departs significantly from the mean of these predictions. This was done to assist in 

assessing the integrity of the uncertainty analysis process discussed in Section 3.5.4. 

Random, normally distributed, “measurement noise” with a mean of zero and a 

standard deviation of 0.04 m was added to steady-state interface distances (from the 

western boundary) and those pertaining to 0.5 days of reduced western boundary 

inflow to form a 200-member measurement-noise-contaminated calibration dataset. 
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Note that in any model layer the location of the 10% (i.e. 3.5 kg/m
3
 salt 

concentration) isohaline is obtained through linear interpolation between cell centres 

for which calculated concentrations bracket this marker concentration. (Salt-water 

interface locations rather than concentrations constitute the calibration dataset in the 

present example because (a) they are easily “corrupted” with structural noise born of 

model imperfections – see below, (b) in many real-world modelling contexts the 

position of the saltwater interface forms the focus of modelling interest, and (c) 

especially where borehole data is supplemented with geophysical data, saltwater 

interface locations may be approximately known on a semi-regional scale.) 

As has already been discussed, a motivation for development of the proxy model 

strategy described in Section 3.4 is the accommodation of numerical 

“malperformance” of a complex simulator. “Malperfomance” was introduced to the 

simulator used in the present example through purposeful corruption of the linear 

interpolation process used to determine the location of the 10% isohaline. (It is 

important to note that this was not done in calculating those isohaline locations 

which comprise the calibration dataset. However it was implemented in all simulator 

runs used in proxy model training and in calibration and uncertainty analysis.) This 

corruption was introduced by interchanging distances from the interface to 

bracketing cell centres on either side of the interface. If, for example, concentrations 

at neighbouring cell centres are calculated to be 3.4 kg/m
3
 and 3.9 kg/m

3
, then the 

saltwater interface (i.e. the 3.5 kg/m
3
 isohaline) lies 20% of the way between the first 

and second cell centre. In introducing numerical corruption to model outputs, the 

interface was instead located at 80% of the distance between the first and second cell 

centres. Implementation of this strategy results in an effective sawtooth pattern of 

concentrations along any model layer, with a significant discontinuity at each cell 

centre. 

Figure 3.2 (red graph) shows a plot of interface location vs. the value of an adjustable 

parameter as calculated by the corrupted simulator, at the location of one particular 

observation. Parameter increments between symbols depicted in this graph are 

typical of those used in finite-difference derivatives calculation. Of particular note 

are the many instances of locally reversed gradient. In the authors’ experience plots 



 

81 

 

such as this are commonly encountered when attempting to discover the reasons for 

poor performance of GML-based parameter estimation of numerically problematical 

models. Also depicted in Figure 3.2 (green graph) are proxy-model-calculated values 

of the same observation. Though saltwater interface positions calculated by the proxy 

appear to depart to some extent from those expected of the non-corrupted simulator, 

they are nevertheless approximately correct (as are their derivatives with respect to 

the adjustable parameter which is featured in this figure); furthermore they are free of 

gradient reversals. (Note that the offset between simulator- and proxy-calculated 

interface locations that is evident in this figure is local; its value and sign are a 

function of the local value of the parameter represented in the figure, as well as those 

of other parameters whose values were held fixed while this parameter was varied.) 

 

Figure 3.2: Testing of derivatives. The red dots show the location of the interface in 

model layer 41 calculated by the corrupted simulator using different values of upper 

aquifer Kh while all other parameters are held at a constant value. The green triangles 

show interface positions calculated by the proxy model for the same parameter 

increments. 

Non-proxy-assisted calibration of the defective simulator was attempted using PEST. 

No regularisation was employed as estimation of the 8 parameters listed in Table 3.1 
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constitutes a well-posed inverse problem. Starting values for this (and all other 

calibration attempts described in the present section) are listed in the fourth column 

of Table 3.1; note that PEST was asked to estimate the logs of these parameters in 

implementing the parameter estimation process. With the diagonal elements of the 

Qm matrix of Equation (3.1) all set to 620 (this being the inverse of the variance of 

random measurement noise added to the synthetic calibration dataset) an objective 

function of 5993 was achieved. This is well above a value of 192 (calculated as n-m, 

where n is the number of observations and m is the number of adjustable parameters, 

as per Koch, 1999) that is anticipated on the basis of measurement noise alone. 

Furthermore, PEST’s behaviour in attempting this calibration exercise was unstable, 

with the objective function rising on some iterations and then recovering ground on 

later iterations only to rise again thereafter. The attempted calibration process 

required 567 runs of the complex model over a total of 26 iterations of the GML 

process. (Finite-difference derivatives were computed using a three-point stencil in 

order to mitigate the deleterious effects of model defects on these calculations. A 

total of 416 simulator runs were required for computation of derivatives and a total 

of 151 simulator runs were required for testing and refinement of parameter upgrades 

using different values of the Marquardt lambda.) 

PEST’s failure to lower the objective function to a value approaching its expected 

value should be seen in context. The objective function calculated using initial 

parameter values is 73092; PEST was able to reduce this substantially. Furthermore, 

the fit between the real saltwater interface position and that calculated by the model 

using PEST-estimated parameters isn’t too bad visually; see Figure 3.3. This PEST-

attempted calibration process is referred to as the “baseline” process in the discussion 

that follows. 
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Figure 3.3: Baseline calibration. Saltwater interface positions (red) calculated using 

“baseline” estimated parameters. Real saltwater interface positions are shown as 

black lines. Interface positions are shown for steady-state conditions and after 0.5 

days of reduced freshwater inflow. 

To assist in comparing the outcomes of this, and a number of other calibration 

exercises described in this section, an objective function Φp is defined to measure the 

integrity of estimated parameters: 

     
2

1

0loglog



m

i

iiep pp    . (3.10) 

In Equation (3.10) pie is the estimated value of parameter i and pi0 is its true value. As 

is apparent from Table 3.1, in the case of the “baseline” estimation process, while 

estimated values for some parameters are reasonably good, estimates for other 

parameters depart markedly from their true values. 

3.5.2  Proxy model construction  

For this example, a proxy model comprised of a second order polynomial (see 

Equation (3.8) was employed to emulate the relationship between each of the 200 

model outputs used in the history-matching process and the 8 parameters that were 

estimated through that process. While a more complex proxy may have sustained a 

superior fit between simulator and proxy model outputs over a broader range of 

parameter values, accommodation of simulator “malperformance” required that each 

proxy emulate the general nature of the relationship between model outputs and 
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parameters, while eschewing emulation of corrupted simulator output details. A 

second order polynomial sufficed for this purpose. 

The method of Sobol (1979) was used to generate 120 parameter samples over an 8-

dimensional log-transformed subspace of parameter space defined by the bounds 

listed in Table 3.2. (As mentioned in Section 3.4.3, the philosophy behind Sobol 

sampling is to maximize the distance in parameter space between samples of 

parameters taken between user-specified upper and lower bounds. Thus maximum 

coverage of bounded parameter space is gained with the fewest number of samples.) 

The simulator was then run using each of these samples in order to obtain simulator-

generated counterparts to observations comprising the calibration dataset. In theory 

45 simulator runs are required to build a second order polynomial proxy model (see 

Equation (3.9) for each calibration-pertinent output of an 8 parameter simulator. The 

decision to generate 120 samples was somewhat arbitrary; it rested on the notion that 

a greater number of samples may lead to more faithful reproduction of simulator 

behaviour by the proxy over a broader range of adjustable parameter space. 

Table 3.2: Specifications for Sobol sampling used for proxy training 

Parameter 

Identifier 

  Log10 transformed parameter values 

  
Actual 

value 
Initial value 

Sobol lower 

bound 

Sobol upper 

bound 

kh1 

 

2.70 2.78 2.30 3.18 

kv1 

 

2.18 2.00 1.70 2.30 

kh2 

 

0.79 0.48 -0.30 1.18 

kv2 

 

-0.12 -0.70 -1.30 0.00 

kh3 

 

2.38 2.48 2.00 2.70 

kv3 

 

1.77 1.60 1.00 2.00 

dspl 

 

-2.34 -2.26 -3.00 -2.00 

tprv   -0.12 -0.22 -1.00 0.00 
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It is worth noting that, apart from providing datasets for proxy model training, a suite 

of pre-calibration simulator runs can yield other useful information at the same time. 

For example they could form the basis for qualitative sensitivity analysis. 

Furthermore, the parameter sample responsible for the lowest objective function 

could be used as a starting point for ensuing proxy-assisted GML calibration; this 

was not done in the present case in order to facilitate comparison between the 

performances of proxy-assisted and non-proxy-assisted simulator calibration, both of 

which commenced from initial parameter values listed in Table 3.1. 

Following completion of the 120 simulator runs, proxy models specific to the 200 

observations comprising the calibration dataset were constructed. For a second order 

polynomial proxy model, the c0, ci and cik factors of Equation (3.9) require estimation. 

Estimation of all of these factors for proxy models associated with all observations 

comprising the calibration dataset was implemented in an automatic procedure that 

required less than 5 minutes to complete once the initial simulator runs had been 

carried out. 

Once trained, proxy model run times were trivially small. Less than a second was 

required to run all observation-specific proxies to calculate a suite of 200 

counterparts to measurements comprising the calibration dataset. Calculation of a 

Jacobian matrix based on a three point finite-difference stencil took less than four 

seconds. (This could be made even faster through use of analytical proxy derivatives; 

however to maintain flexibility in later enhancements to proxy model design, finite 

differences are presently employed by PEST for proxy-based derivatives calculation.) 

Use of the same stencil in conjunction with the simulator would have required 16 

simulator runs; these would have taken approximately 11.3 cpu hrs to complete on 

the same computer. Furthermore, as is apparent from Figure 3.2, the integrity of 

these derivatives would have been questionable. 

3.5.3  Proxy-assisted parameter estimation 

Proxy-model assisted calibration, undertaken in the manner described in Section 3.3, 

reduced the objective function from an initial value of 73092 to a minimized value of 

672 in 3 iterations. The inversion process required 6 simulator runs and 48 proxy 
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model runs. When simulator runs required for proxy model construction are taken 

into account, a total of 126 simulator runs were therefore required for calibration of 

the simulator; this value is recorded in Table 3.1. (As stated above, as few as 45 

simulator runs could potentially have been used in proxy model construction, so 

simulator run requirements for this particular calibration example may be over-

stated.)  

Though the objective function is above its expected value of 192, it is greatly 

reduced from its initial value, and considerably lower than that achieved through 

simulator-only estimation (as is represented by the baseline calibration attempt). 

Figure 3.4 demonstrates that the fit between the observed and calculated saltwater 

interface is visibly very good and much better than that achieved using the defective 

simulator alone. Table 3.1 indicates that estimated parameters are closer to their true 

values than when calibration was undertaken using the simulator alone. Note that 

some departure from true parameter values is always to be expected where parameter 

estimation is based on a noisy calibration dataset. Equations (3.3) and (3.6) show that 

estimated parameters inherit uncertainty from this noise. In the present example the 

“noise” associated with the calibration dataset is enhanced by “structural noise” 

associated with the defective simulator as is demonstrated in Figure 3.2. 

 

Figure 3.4: Proxy-assisted calibration. Saltwater interface positions (purple) are 

calculated using parameter values estimated through proxy-assisted calibration. Real 

saltwater interface positions are depicted as black lines. 
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Two more calibration exercises were undertaken. In the first of these exercises the 

proxy model was employed for both Jacobian matrix calculation and for testing 

parameter upgrades calculated using different values of the Marquardt lambda 

(which appears in Equation 3.2). Hence the simulator was not used at all in the 

parameter estimation process. As shown in Table 3.1, an objective function of 1610 

was achieved; while this is greater than that achieved through proxy-assisted 

calibration, the value for Φp (see Equation 3.10) attained through this calibration 

exercise indicates that parameter estimates are superior. Hence while intermittent use 

of the simulator in proxy-assisted calibration promulgated greater reduction of the 

objective function, for this particular example at least, structural noise associated 

with simulator outputs enhanced the potential for error in estimated parameters. 

Ideally, such model-generated error potential should be accommodated for in post-

calibration uncertainty analysis; this is done in Section 3.5.4. 

Finally, calibration was again undertaken using the simulator alone without 

assistance from the proxy model. However, this time parameters were estimated 

using the CMAES global optimization algorithm (Hansen et al., 2003). In that 

exercise 872 simulator runs were required to reduce the objective function to about 

the same value as that achieved through proxy-assisted GML parameter estimation. 

Table 3.1 demonstrates that estimated parameter values showed greater departures 

from their real values than those achieved through proxy-assisted GML calibration, 

despite attaining a similar level of model to measurement misfit as that attained using 

the proxy-assisted estimation process. Obviously, the computational burden was also 

very much higher than that of proxy-assisted GML calibration. 

3.5.4  Proxy-assisted uncertainty analysis 

A linear approximation to the posterior parameter covariance matrix can be obtained 

using Equation (3.6). Ideally, to minimize the error incurred through linear 

approximation, the Jacobian matrix featured in this equation should be computed 

using estimated, rather than prior, parameter values. In the present case this was done 

at minimal cost using the proxy model; and perhaps with improved integrity. The 

prior parameter covariance matrix C(p) appearing on the right side of Equation (3.6) 
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was assumed to be diagonal; prior parameter distributions were assumed to be 

independently log-normal. Prior standard deviations were obtained by dividing 

differences between log-transformed parameter upper and lower bounds (as 

presented in Table 3.2) by 4; these bounds are therefore assumed to define 95% 

parameter confidence intervals.  

As the model is nonlinear, the posterior parameter probability distribution is not 

multinormal. Because of this, and the approximations which are associated with use 

of Equation (3.6), samples drawn from a log-multinormal distribution employing the 

covariance matrix of Equation (3.6) and centred on calibration-estimated parameter 

values do not always lead to model-calculated objective functions that are low 

enough to be considered as respecting calibration constraints. Theoretically, 

objective function thresholds associated with various posterior parameter confidence 

intervals can be calculated using formulas such as those provided in Vecchia and 

Cooley (1987); naturally, these thresholds exceed the minimized objective function. 

Sampled parameter values must be such that the objective functions with which they 

are associated are below these thresholds if they are to be considered to respect 

calibration constraints at respective confidence levels. In the present instance 

however we adopt a more qualitative approach to selection of an objective function 

threshold. We define an objective function value of 1000 as being that above which a 

parameter set is deemed to fail to respect calibration constraints, and is therefore very 

unlikely to be the real parameter set. This subjective choice of objective function 

threshold is compatible with a visibly good fit between measured and modelled 

saltwater interfaces under calibration conditions. Meanwhile the subjective nature of 

this choice recognizes the contribution made to model-to-measurement misfit by 

model-generated structural noise whose covariance structure is unknown. 

The following procedure was adopted for calculation of a suite of parameter values 

that respect the above objective function constraint at the same time as they respect 

expert knowledge constraints. These values are therefore considered to be samples of 

an approximation to the posterior parameter distribution. As such, they can be 

collectively used to make predictions of future system behaviour in order to associate 

ranges of uncertainty with those predictions. 
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1. Generate a random parameter set centred on estimated parameter values 

(column 6 of Table 3.1) using the covariance matrix of Equation (3.6) 

and an assumption of posterior parameter multinormality. 

2. If the objective function associated with this parameter set sample is 

below the threshold specified above, accept that parameter set as a 

sample from the approximate posterior parameter probability distribution. 

3. If the objective function is above the threshold, use proxy-assisted GML 

parameter estimation to adjust parameter values in order to lower the 

objective function below the threshold. Include Tikhonov regularisation 

constraints in the parameter adjustment process, these being formulated 

in a way that minimizes parameter departure from their initial (random) 

values while meeting the objective function target.  

4. If, after three iterations of proxy-assisted inversion, the objective function 

has not been reduced to the specified threshold, discard the parameter set. 

Three hundred samples of the linear approximation to the posterior parameter 

distribution were generated; the above procedure was then applied to each of them. 

The same proxy model as that employed earlier for simulator calibration was used in 

post-calibration, proxy-assisted parameter adjustment. (In more difficult modelling 

contexts it may be advisable to re-train the proxy using parameter sets sampled from 

the linear posterior covariance matrix in order to enhance the ability of the proxy to 

emulate simulator response in that part of parameter space in which samples of the 

true posterior parameter distribution are likely to lie.) The outcome of this process 

was 266 parameter sets that respect calibration constraints on the one hand, and are 

compatible with prior knowledge of parameter values on the other hand. As such 

they can be considered to be samples of the posterior parameter probability 

distribution. These were obtained at an average cost of 1.92 simulator runs per 

sample. 

The use of Tikhonov constraints in random parameter sample re-adjustment is an 

important feature of the above process. Without these constraints it would be too 

easy for a low objective function to be achieved without maintaining respect for the 

random sample from which each parameter adjustment process was initiated. While 
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the density of parameter samples that are forthcoming from the above random 

parameter adjustment procedure cannot be construed as defining the “true” posterior 

parameter probability density function, in contrast to those forthcoming from a 

procedure such as Markov chain Monte Carlo (MCMC), maintenance of respect for 

initial random parameter values does afford some protection against failure to sample 

important parts of posterior parameter space. 

Disadvantages of the above procedure when compared to more exact methodologies 

such as MCMC must be seen in context. In particular: 

 The method described herein is very efficient when considered in terms 

of simulator run requirements;  

 Because model-to-measurement misfit is dominated by model structural 

noise of unknown (and probably unquantifiable) statistical properties, 

any method of post-calibration uncertainty analysis, whether or not it is 

MCMC-based, will be approximate; and 

 Without a considerable investment in simulator runs, this often requiring 

the use of multiple Markov chains, MCMC methods are not immune to 

failure in sampling important parts of a posterior parameter distribution 

(Gelman et al., 2013). 

An advantage of the method documented herein, particularly its use of Tikhonov 

constraints to promulgate maximum adherence to initial samples, is that it could be 

readily extended to complement sparser, and more efficient, sampling methods such 

as Latin Hypercube. This would be useful where simulator run times are so long as to 

present an impediment to even approximate definition of a posterior parameter 

probability density function. 

Parameter histograms resulting from the above analysis are depicted in Figure 3.5. 

The uncertainty associated with the prediction which is the subject of the present 

example (i.e. the location of the saltwater interface after 1.5 days of reduced 

freshwater inflow from the west of the model domain) can be assessed by employing 

the simulator to make that prediction using each of the 266 parameter sets obtained 
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as above. Predictive variability, together with the true prediction, are depicted in 

Figure 3.6. Importantly, in Figure 3.5 and Figure 3.6 true parameter values (in the 

former case), and the true value of the prediction (in the latter case) are encompassed 

by parameter and predictive samples respectively. 

 

Figure 3.5: Posterior parameter distributions. Parameter histograms forthcoming 

from proxy-assisted sampling of the approximate posterior parameter probability 

distribution. Prior parameter distributions are shown as a single continuous grey line 

in each figure. Parameter values estimated through proxy-assisted GML calibration 

are shown as green dash-dot lines while true parameter values are shown as red 

dashed lines. 
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Figure 3.6: Saltwater interface after 1.5 days of reduced freshwater inflow calculated 

by the simulator using 266 parameter sets obtained through proxy-assisted posterior 

sampling (black) together with the true interface position (green). Also shown are 

interface positions used for model calibration (red and yellow) together with model-

calculated interface positions (grey). 

 

3.6  Discussion 

A methodology has been presented for use of a proxy model in conjunction with a 

complex simulator to assist in calibration of the simulator, and to assist in imposition 

of calibration constraints on parameters employed by the simulator when analysing 

the posterior uncertainties of those parameters. The method complements a previous 

methodology presented by the authors (Burrows and Doherty, 2014) wherein a 

coarsely-gridded version of the simulator was used instead of a model proxy.  

In the present paper, the term “proxy” has been used to describe a series of non-

physically-based analytical functions that individually approximate the dependence 

of a single model output on parameters employed by a simulator. The model output 

that is thus emulated is matched to a measurement of system state that forms part of 

the simulator’s calibration dataset. A different proxy is built for each such model 

output. The suite of proxies are individually trained through calibration against 

realizations of the model output that they purport to emulate, in order to optimize 

their capacity to represent derivatives of model outputs with respect to adjustable 
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parameters over a usable region of parameter space. Collectively, the suite of proxies 

then replaces the simulator when calculating a Jacobian matrix in support of Gauss-

Marquardt-Levenberg (GML) parameter estimation. Meanwhile, the simulator is 

employed for the testing and refinement of parameter upgrades calculated using the 

proxy-derived Jacobian matrix. As implemented in PEST, the process of testing 

parameter upgrades can optionally be parallelized; this further adds to the efficiency 

of the overall proxy-assisted, simulator history-matching process.  

While an analytical proxy model is unlikely to calculate environmental system states 

with the same integrity as a complex numerical simulator, the example presented in 

this paper demonstrates that the derivatives of proxy model outputs with respect to 

model parameters (if the analytical proxy model is chosen appropriately) have 

enough integrity to fill a Jacobian matrix which can then be used as a basis for 

calculating improved parameter sets for use by the complex simulator. Errors 

incurred through strategic use of a proxy model in place of a simulator in the 

parameter estimation process are accommodated through conjunctive use of the 

simulator in that process. In particular the simulator is used to test parameter 

upgrades, and to enhance their refinement during that part of each GML iteration 

wherein different values of the Marquardt lambda are employed in conjunction with 

a proxy-calculated Jacobian to calculate parameter value improvements. The use of 

different Marquardt lambdas effectively rotates the direction in parameter space 

along which an improved set of parameters is sought, while maintaining a search 

direction which is down-gradient as far as the objective function is concerned. It is 

therefore possible (but by no means certain) that the practical exercise of probing 

directions in parameter space which are close to, but not the same as, those 

calculated as optimal on the basis of a proxy-filled Jacobian, will find fruitful 

directions of parameter improvement. 

Construction and use of proxy models in the manner described in this paper brings 

with it a number of benefits. Proxy-enabled GML-based parameter adjustment can 

readily accommodate numerical granularity that often accompanies quantities 

calculated by complex, physically-based simulators. Furthermore, it can take 

advantage of GML-supported schema such as singular value decomposition and 
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Tikhonov regularisation that can achieve solution to a non-unique inverse problem 

that is of minimum error variance. After a solution of the inverse problem has been 

found, the Jacobian matrix that is filled by the proxy model emulator can then be 

used to assess parameter uncertainty. If desired, a linear approximation to the 

posterior parameter probability distribution can then be sampled, and its samples 

rapidly adjusted to respect calibration constraints; samples of a nonlinear 

approximation to the posterior parameter probability distribution are thereby attained. 

Use of Tikhonov regularisation in the parameter adjustment process through which 

calibration constraints are enforced on random parameter samples can help to prevent 

gaps in the sampling of the approximate posterior probability distribution from 

arising in parts of posterior parameter space. At the same time it can support the use 

of efficient sampling strategies such as Latin Hypercube, despite the fact that the true 

posterior probability distribution may have no analytical characterization. 

In the example presented herein, use of a proxy model enabled calibration of a 

numerically troublesome model has been demonstrated. Calibration of this model 

would have been possible, but non-optimal, without use of the proxy. For this 

particular example, if the simulator was not, in fact, numerically troublesome, then it 

could have been calibrated without the help of a proxy model with a numerical 

burden that is commensurate with that required for training and use of the proxy. 

However the same cannot be said for post-calibration uncertainty analysis. Use of a 

proxy model allowed the calculation of many different samples of the posterior 

parameter distribution with minimal simulator run cost. Even if simulator outputs 

were numerically uncorrupted, the computation cost of obtaining these samples 

would have been considerably greater without the use of a proxy. 

As for any method that uses approximation to achieve computational feasibility, use 

of a proxy model in the manner described herein may incur some problems in some 

modelling contexts. It is not a foregone conclusion that outputs of any complex, 

physically-based model can indeed be emulated by an analytical function. While the 

analytical expressions presented in Equations (3.7) and (3.8) could be readily 

expanded to accommodate more complex simulator behaviour, parameterization of 

these expressions may become difficult if simulator outputs show complex 
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dependencies on the values of simulator parameters. Furthermore the more factors 

that a proxy model employs to enhance its ability to emulate complex simulator 

outputs, the greater will be the number of pre-calibration simulator runs that are 

required to train it, and the more likely it is that these factors will vary over 

parameter space. The latter difficulty can be accommodated to some extent by re-

training the proxy as the parameter estimation process progresses.  

Another problem with the methodology outlined herein is that the number of 

parameters that can be estimated through proxy-assisted calibration is limited. Hence 

highly parameterized inversion, where parameters may number in the hundreds, or 

even thousands, is not possible because an unworkably large number of proxy model 

factors would then be required to express the dependence of a single model output on 

a large number of simulator parameters. In many circumstances it may be possible to 

ameliorate this problem by identifying a handful of parameters to which any single 

model output may be sensitive using experimental design techniques; the outcomes 

of these same runs could then be used to train a proxy that expresses dependence 

only on thus-identified parameters. Alternatively, or as well, proxy models could be 

trained to emulate the dependency of model outputs on so-called “super parameters”, 

these being orthogonal combinations of parameters, calculated through singular 

value decomposition of a full–parameter Jacobian matrix, which collectively span the 

parameter calibration solution space; see Tonkin and Doherty (2005) for a more 

detailed discussion on the use of “super-parameters” in parameter estimation. 

However this requires that a full parameter Jacobian matrix be calculated using the 

original simulator, and that derivatives which populate that matrix have integrity. 

Filling of such a Jacobian matrix may not be possible. 

It should be borne in mind, however, that highly parameterized inversion becomes an 

extremely difficult undertaking whenever model run times are high and/or model 

numerical behaviour is questionable. So an inability to conduct highly parameterized 

inversion is not so much the fault of the proxy model methodology described herein, 

as it is of the simulator requiring calibration. 

Nevertheless, the rewards of high-dimensional model parameterization are 

considerable. As is explained by Doherty (2015b), an advantage of highly 
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parameterized inversion and highly parameterized, inversion-constrained uncertainty 

analysis, is that it can support exploration of the uncertainties of predictions that are 

sensitive to parameterization detail. This is important, not because parameterization 

detail is necessarily estimable on the basis of a limited calibration dataset, but 

precisely because it is not uniquely inestimable. It may be possible to aspire to these 

same goals in difficult modelling contexts where simulators are slow and numerically 

problematical by adopting a simple parameterization scheme for calibration, and then 

introducing parameterization complexity for post calibration uncertainty analysis. 

Thus, for example, a few large zones of assumed parameter constancy whose values 

are adjusted in a parameter-parsimonious calibration process can be supplemented 

with a denser parameterization scheme comprised of space-dependent multipliers of 

zonal values. Random realizations of these multiplier fields, when superimposed on 

zone-based parameterization, may de-calibrate a previously calibrated model. It may 

be possible to then re-calibrate the simulator by proxy-enabled adjustment of zonal 

parameters on which the more detailed parameterization scheme is superimposed. 

In summary, the methodology presented herein provides support for calibration, and 

calibration-constrained uncertainty analysis in modelling contexts in which these two 

tasks would otherwise be very difficult or even impossible. These contexts are 

characterized by long simulator run times and by problematical simulator numerical 

performance. The method has its shortcomings, and may fail in some situations. 

However, at a cost of a relatively small number of complex model simulations 

(whose outputs may then be used for other purposes such as sensitivity and pre-

calibration uncertainty analysis, and as part of a strategy to seek a lower objective 

function through implicit or explicit global optimization) the method is easily tested. 

At worst, it will take very few further simulator runs to demonstrate that the 

methodology described herein can achieve no further reduction of the objective 

function. At best, the methodology described herein will reduce the objective 

function substantially and provide useable linear and/or nonlinear estimates of 

parameter uncertainty. 
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Chapter  4 

Some Other Examples of Surrogate-

Assisted Calibration Using Readily 

Available Modelling Software 

The opportunity to adopt surrogate models for the purposes of populating an 

approximate Jacobian matrix exists in many everyday groundwater modelling 

contexts. In this chapter a few more examples are presented in which calibration of 

an original detailed model is successfully accomplished using surrogate models 

developed using differing simplification strategies. The concepts presented in this 

chapter may enlighten prospective practitioners or inspire further extension of these 

techniques.  

4.1  Using SWI as a surrogate for efficient calibration 

of a SEAWAT model 

The originality and significance of the example presented here is that it demonstrates 

the deployment of a surrogate model, derived from a simplified algorithm compared 

to the original and more physically based simulator, for the purpose of populating the 

Jacobian matrix during parameter estimation. This is in contrast to the 

implementation of the methodology described in Chapter 2 whereby the surrogate 

model constructed is the same model only with a coarsened grid. Furthermore, the 

modelling context in which this example is framed is representative of many 

seawater intrusion modelling scenarios that confront modelling practitioners where 

calibration and predictive uncertainty analysis is severely hampered by large 

computational burdens. 
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4.1.1  Introduction 

Seawater intrusion modelling often requires finely discretised model domains in both 

horizontal and vertical directions, as well as appropriately small temporal 

discretisation. Such fine scale discretisation is often necessitated by the numerical 

constraints of the code implemented for solution to the solute transport equation. For 

example, fine spatial discretisation may be required to reduce the ratio of the rate of 

advective solute transport to the rate of diffusive solute transport, to levels that 

promulgate model solution convergence and mitigate numerical dispersion and/or 

oscillatory effects (as indicated by the Peclet number). In addition, seawater intrusion 

modelling exercises that require detailed characterisation of the distribution of salt 

concentrations, and accurate representation of the effects of density contrasts on 

groundwater movement especially in the vicinity of the seawater-freshwater interface, 

may also demand model grids that are finely discretised vertically necessitating many 

model layers be employed. Fine scale discretisation may also be necessary to endow 

the model with the ability to express fine scale geological heterogeneity particularly 

in contexts where geological variability is known to be present and is considered 

likely to have a significant bearing on model predictive outcomes. In such cases 

localised (model cell scale) rates of dispersion, reactions and source/sink mixing 

relative to the scale of the grid cell, can have a significant influence on the maximum 

allowable transport time step that can be tolerated for a stable and accurate solution. 

As an outcome of these factors regional scale seawater intrusion models that employ 

parameterisation schemes that allow for expression of geological heterogeneity often 

have extremely long run times. Furthermore, model generated outputs of salinity 

corresponding to measurements taking in the field, may tend to be contaminated with 

numerical errors that can erode the integrity of model generated observation to model 

parameter relationships, when these are calculated from model generated outputs 

arising from incremental variations in model parameters. Both long model runtimes 

and unreliable observation to parameter relationships can make calibration of 

seawater intrusion models an extremely challenging task and may render that process 

and a rigorous assessment of prediction uncertainties intractable. 
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The coastal, geomorphological environments, in which seawater intrusion modelling 

exercises are often framed, inherently possess heterogeneities at various scales. 

These geological variations are also associated with variations in hydraulic properties 

of the porous medium. The effects of these heterogeneities are multifaceted and may 

particularly influence the size and shape of the so-called “mixing zone” of the 

freshwater-seawater interface as well as create preferential pathways for the transport 

of seawater born salts within the aquifer leading to freshwater-seawater interfaces 

that are of complex shape (see Werner et al., 2013, for further discussions on these 

topics). Where geological heterogeneities are known to exist, observations of salinity 

and hydraulic head will likely be influenced by their presence. A seawater intrusion 

model must then be provided with the means by which to represent these geological 

variations if it is to be able to adequately reproduce calibration observations. The use 

of many parameters in a model allows for expression of hydraulic property 

variability thereby allowing for the possibility of attaining a good fit with 

observations when the model is subjected to calibration while at the same time 

providing some protection against the deleterious effects of calibration induced 

parameter bias. As Doherty and Welter (2010) explain, the propensity for adjustable 

parameters to take on compensatory roles is increased when parameters are omitted 

from the model during calibration, as information contained within the calibration 

dataset may have “no place to go”. Instead those parameters that are included may be 

forced to take erroneous values in order to soak up some of the model to 

measurement misfit. If predictions required of the model are sensitive to those 

parameters, then bias in predictions will be the outcome. Perhaps more importantly 

though is that inclusion of many parameters allows for rigorous assessment of model 

potential predictive error that includes the effects of fine scale geological variability. 

Hence, the risk of underestimating the potential for predictive error is mitigated 

especially where model predictions are actually sensitive to this fine scale detail. 

Unfortunately, for reasons already highlighted above, highly parameterised 

calibration and rigorous uncertainty assessments of seawater intrusion models in 

heterogeneous environments is rarely performed. This has been noted by Werner et 

al. (2013) as one of the future challenges in management of coastal freshwater 

resources. One exception is Herckenrath et al. (2011), who in acknowledgement of 
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the absence of formal analyses of potential predictive errors in many seawater 

intrusion problems, adopted the efficient Null-Space Monte Carlo (NSMC) 

methodology described by Tonkin et al. (2009) and implemented in the PEST 

(Doherty, 2015a) suite of software, for predictive uncertainty analysis of a model 

fashioned on the Henry problem (Henry, 1964). The NSMC method offers a much 

more computationally tractable alternative to posterior parameter and predictive 

uncertainty assessments, particularly in highly parameterised modelling contexts, 

than other methods that attempt to sample directly from the posterior parameter 

distribution such as the Markov-Chain Monte Carlo method, employed by Mondal et 

al .(2010) and Cui et al. (2011) for example. 

While efficient, NSMC relies heavily on the so-called Jacobian matrix. This matrix 

contains the sensitivities of all observations to all adjustable parameters which are 

usually calculated through a finite-differencing process that requires at least one 

forward model run for each adjustable parameter in the inversion problem. When 

model runtimes are long and parameter numbers are large, population of the Jacobian 

matrix can become an extremely computationally intensive task. Throughout the 

NSMC process, re-population of the Jacobian matrix is required for: 

1. Calculation of parameter upgrades during each iteration of the non-linear 

parameter estimation process of model calibration. Ideally estimates of 

parameters obtained are without bias. This can be achieved through use 

of an appropriate regularisation strategy; 

2. Definition of inverse problem solution and null spaces on which basis 

stochastic parameter sets are generated. In delineating these orthogonal 

subspaces it is usual practice to use the Jacobian matrix calculated from 

estimated parameters; and 

3. Re-adjustment of stochastically generated and null-space projected 

parameter fields to ensure calibration conditions are respected. This re-

adjustment process involves minimal re-calibration of these parameter 

fields in which only estimable components of parameter sets are adjusted.  
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The computational burdens experienced in populating the Jacobian matrix many 

times can severely impede implementation of NSMC analysis of large-scale, highly 

parameterised seawater intrusion models. Methodologies that can reduce these 

computational burdens thus making its implementation more tractable, may promote 

a more ubiquitous reporting of predictive uncertainty in this field. 

Deployment of a grid-coarsened, surrogate version of a detailed SEAWAT model, 

for the purposes of Jacobian matrix population during calibration and predictive 

uncertainty analysis of the latter model has been demonstrated in Chapter 3 of this 

text to dramatically reduce these computational costs while not undermining the 

integrity of the NSMC analyses. The strategy of simple grid-coarsening for 

simplification, while relatively straightforward, may not always be appropriate. For 

example, where irregularly spaced pilot point parameters, with variable spatial 

densities, are used to parameterise differing lithological units, it may be difficult to 

find a coarser model grid that achieves significant improvements in numerical speed 

while avoiding inappropriate aggregation of two or more pilot point parameters into 

a single grid cell. It is demonstrated in Section 2.7 that this type of parameter 

lumping in the surrogate model can lead to the assignment of spurious values to 

estimated parameters of the original model.  

An alternative strategy for construction of a fast running, surrogate, variable-density 

flow simulator is to use the Seawater Intrusion package (SWI) for MODFLOW. SWI 

was developed as a computationally efficient alternative to the runtime expensive 

simulators of flow and solute transport such as SEAWAT (Langevin et al., 2008) and 

SUTRA (Voss and Provost, 2002). However as a consequence of the assumptions 

made in its design SWI has inadequacies that limit its use to regional scale 

simulation of these processes. Also the outputs forthcoming from the SWI simulation 

are very different from those that are available from the use of other variable-density 

simulators.  When more detailed, accurate simulation of the position of the seawater 

interface or the evolution of the mixing zone is required, simulation packages such as 

those just mentioned must be used in preference to SWI.  Notwithstanding its 

limitations, SWI’s capability for variable density flow simulation, combined with its 

numerical speed, make it a prime candidate for deployment as a surrogate in the 



 

102 

 

conjunctive surrogate/complex calibration methodology. Furthermore, as SWI is a 

MODFLOW specific package, it can be readily implemented from the Groundwater 

Flow Process input files used by an existing SEAWAT model. The example that 

follows explores these concepts along with the practicalities of the implementation of 

this strategy. 

4.1.2  A Brief Description of the SWI package  

The Seawater Intrusion package (SWI) for MODFLOW was developed for 

computationally efficient simulation of regional scale seawater intrusion problems. 

Documentation of the latest version of the SWI package (SWI2) can be found in 

Bakker et al. (2013). The governing equations developed for SWI are used to 

represent vertically integrated variable-density groundwater flow in the MODFLOW 

program. In development of these equations, four approximations are made. These 

are: 

1. The Dupuit approximation is adopted which implies that resistance to 

flow in the vertical direction within a single aquifer is neglegible (ie. 

groundwater flow vectors are in the horizontal directions of the model 

domain only); 

2. The mass balance equation is replaced by a volume balance equation in 

computation of the flow field, and density effects are taken into account 

only through Darcy’s law;  

3. Dispersion and diffusion effects are not taken into account; and 

4. Density inversions (whereby more dense water overlays less dense water) 

are not allowed within the same aquifer unit. 

Instead of calculating cell-scale, solute concentration distributions throughout the 

model domain during solution to the variable-density flow problem, as is done in 

other software packages such as SEAWAT and SUTRA, the SWI package calculates 

the elevations of the top surface of discrete zones of differing fluid density. These 

discrete zones of different fluid densities are pre-defined by the user. A schematic of 
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this scheme is shown in Figure 4.1. With vertical density discretisation achieved in 

this way and with adoption of the Dupuit approximation, SWI calculates the 

vertically integrated, horizontal, specific discharge vector below each of the density 

surfaces, at each horizontal location of the model domain. The vertically integrated 

specific discharge vector below each surface is expressed in terms of freshwater 

equivalent head at the top of the surface (calculated internally on the basis of 

freshwater head at the top of the aquifer corrected for overlying densities zones 

above the surface) and the transmissivity of the aquifer below the same surface. 

Continuity of total flow in the aquifer may then be written in terms of head at the top 

of the aquifer while continuity of flow below each zone surface can be written in 

terms of the elevations of that surface and the surfaces below. Top of aquifer 

freshwater head and the elevations of the individual density zone surfaces are the 

dependant variables at any simulation time-step and therefore constitute the outputs 

of the SWI package. For presentation of these equations and a more detailed 

description of their derivation the reader is referred to Bakker et al. (2013). 

 

Figure 4.1: Illustration of the vertical density discretisation scheme used by the SWI 

package for MODFLOW. Blue lines designate the interfaces between zones of 

differing fluid density. The spatially defined elevations of these surfaces are known 

as Zetas (ζ). 

This approach to the description of variable-density flow allows SWI to simulate the 

vertical density distribution of the aquifer without the need for many layers. In fact, 
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an aquifer is modelled by a single layer. Hence, the number of model grid-cells that 

comprise the SWI model and therefore the number of simultaneous equations 

requiring solution at each time-step, is vastly reduced compared to that which would 

be required by the approach taken in SEAWAT for example. Runtimes for the 

simulation of seawater intrusion problems are therefore drastically decreased by 

comparison. Furthermore, the SWI approach avoids the need to solve the advection-

dispersion equation that proves so problematic to other simulators of variable-density 

flow. Hence solution of the variable-density flow problem in contexts where 

hydraulic properties variability is large, is far less computationally expensive and 

relatively free of numerical difficulties.  

The assumptions used in development of SWI are only approximately correct for 

most coastal areas in which seawater intrusion happens. Therefore its recommended 

use is for regional scale seawater intrusion assessments. Where topological relief is 

large, where diffusive processes are not dominated by advection, and where 

lithological sequences vary in thickness and spatial extents within a single aquifer, 

the accuracy of SWI may be severely challenged. However, even in such challenging 

situations, SWI may still be able to calculate observation to parameter relationships 

that maintain integrity, in spite of its inadequacies as a simulator of more complex 

processes. A demonstration example follows in which SWI is used for the purpose of 

calculating observation to parameter sensitivities for population of the Jacobian 

matrix during calibration of a more physically based seawater intrusion model based 

on SEAWAT. As is demonstrated in this example, highly parameterised inversion of 

the original and more accurate SEAWAT model can be successfully achieved in this 

way but with much less computational cost than would be incurred if the SEAWAT 

model was used alone. 

 

4.1.3  Example problem description 

A synthetic test case was developed in which seawater intrusion into a heterogeneous 

aquifer is simulated. Figure 4.2 illustrates the example problem schematically in a 

plan view. The scenario assumed here is one in which we wish to calibrate a complex 
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flow and transport simulator to observations of the position of the seawater interface 

taken from a few observation wells. The purpose for calibration is so that the model 

may then be used as a predictor of the change in position of the interface under 

altered stress scenarios. As can be seen from Figure 4.2, fresh groundwater flows 

into the model domain from the western boundary and discharges to the sea on the 

eastern side. Lateral flow across the northern and southern boundaries is neglected, 

as are water exchanges through the top and bottom boundaries. Confined aquifer 

conditions are assumed. As a result of the complex interaction of advective-

dispersive processes combined with aquifer heterogeneity, the freshwater-seawater 

interface that exists is of complex shape, and is best simulated using a distributed, 

physically based numerical model.   

 

Figure 4.2: PLAN view schematic of the example problem used to demonstrate SWI 

assisted calibration of a SEAWAT model. The red line notionally indicates the 

position of the TOE of the freshwater-seawater interface. The interface is therefore 

inclined outwards from the page and towards the right while originating from the red 

line.  

4.1.3.1  The complex model 

SEAWAT is employed to simulate the variable density flow regime and calculate the 

position of the freshwater-seawater interface. For practical purposes, the freshwater-

seawater interface is defined by the 10% seawater isohaline. The synthetic model 
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domain has dimensions 12m x 2m in the horizontal direction and has a constant 

thickness of 2m. The domain is discretised into 120 columns x 20 rows horizontally 

and 20 layers are used to partition the aquifer in the vertical direction so that the 

distribution of salinity can be modelled. Therefore there are 48,000 cells in the model 

each with dimensions 0.1m x 0.1m x 0.1m. Advection is simulated using the 

computationally costly time variation diminishing (TVD) scheme to provide the 

model with some protection against numerical dispersion and oscillatory effects. 

Moderate, dispersive mixing effects are introduced through specification of a 

molecular diffusion coefficient of 0.02 m
2
/day. Longitudinal and transverse 

dispersivities (α
L
 and α

T
 respectively) are set to zero. Porosity is uniformly set to 

0.35 in all layers. Freshwater inflow at the western boundary is simulated using 

injection wells with a uniformly distributed injection rate in each model cell that 

comprises this boundary (ie. 400 wells each injecting 0.005 m
3
/day totalling 2 

m
3
/day inflow). The ocean boundary is simulated using general head boundary cells 

with reference head of 0.0 m and constant salinity of 35 kg/m
3
. For the remainder of 

this example this model will also be referred to as the “complex” model. Solution of 

the variable-density flow problem under steady-state flow conditions requires on 

average 8 minutes model runtime when populated with pilot point parameter values 

that reflect moderate hydraulic conductivity variability. This runtime significantly 

increases however with increases in hydraulic conductivity property variability. 

Initially, a few random realisations of hydraulic conductivity fields were generated 

and provided to the SEAWAT model for evaluation. These hydraulic conductivity 

fields were generated using a sequential Gaussian simulation algorithm engine based 

on the SGSIM code supplied with the GSLIB geostatistical library (Deutsch and 

Journel, 1998). In generation of these hydraulic conductivity fields a log exponential 

variogram with variance of 0.5 (in the log10 domain) was used. The range of the 

variogram is 2.5 m in the longitudinal direction and 1.25 m in the transverse 

direction. The mean value of log transformed hydraulic conductivity values in these 

fields is 2.301 m/day (200 m/day prior to log10 transformation). In each initial model 

evaluation, one of the stochastic hydraulic conductivity fields was provided for all of 

the 20 model layers. Hence, aquifer heterogeneity prevails in the horizontal 

directions of the model domain, while within any vertical column of the domain the 
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aquifer is assumed homogeneous. Following initial evaluations of these hydraulic 

conductivity fields, one was chosen to be the “reality” hydraulic conductivity field. It 

was chosen because it results in a complex inclination and shape of the freshwater-

seawater interface, thus providing a challenge for the calibration exercise. The field 

chosen as the “reality” field is shown in Figure 4.3. 

 

 

Figure 4.3: Hydraulic conductivity field chosen as the “reality” distribution. This 

field is used to populate properties for all 20 layers of the “complex” SEAWAT 

model (ie. aquifer is homogeneous vertically). Also shown is the position of the 

“reality” freshwater-seawater interface (indicated by the red elevation contours) 

calculated from SEAWAT concentration outputs. These contours indicate the 

calculated elevation at which the 10% seawater salinity is intercepted. Noting that the 

elevation of the model bottom is -2.0m the interface can be seen to rise outward from 

the page. 

Also shown in Figure 4.3 is the position of the freshwater-seawater interface arising 

from the SEAWAT model when populated with the “reality” conductivity field and 

run in steady state mode. The lines that indicate the position of the seawater interface 

are elevation contours of the 10% seawater concentration delimiter that defines the 

interface. The elevation of the bottom of the model is set constant at -2.0 m. 

Therefore in Figure 4.3 the interface rises out of the page and is inclined towards the 

right hand side of the page where groundwater discharges from the system (recall 

that the coastal boundary is specified with a reference head of 0.0m). Representation 
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of the seawater interface in this fashion not only allows for a 2D visual depiction of 

the 3D surface but also provides a necessary conversion to SEAWAT concentration 

outputs for comparison with SWI output results. As is explained in Section 4.1.2 one 

of the fundamental differences between SEAWAT and SWI is the manner in which 

the fluid density distribution is expressed. In SEAWAT it is expressed in terms of 

cell-scale salinities whereas in SWI it is expressed in terms of surface elevations of 

predefined discrete density zones. Conversion of one to the other is necessary so that 

the outputs of both models can be compared to the quantities that are contained in the 

calibration dataset. 

Conversion of SEAWAT calculated concentration outputs to contoured elevations 

was achieved with the aid of a post-processing software that searches progressively 

downward through the model layers, in each vertical model column, for a specified 

concentration value (the 10% seawater concentration in this case). When the 

specified concentration is found to lie between vertically adjacent cells, the elevation 

of the specified concentration is calculated by linear interpolation between the 

elevations of the cell midpoints, weighted by the difference between cell centre 

concentration and the specified search concentration. In this way a two dimensional 

array is computed whereby the value of each element is the calculated elevation of 

the specified concentration value. This can then be used within a contouring software 

package for presentation or to provide model generated observation equivalents to 

field measurements. This post-processor is executed as part of the complex 

(SEAWAT) model run. 

Using the outputs generated by the SEAWAT model, run in steady-state flow mode 

and populated with the “reality” hydraulic conductivity field, synthetic observations 

were obtained from hypothetical observation wells. The observation wells are 

assumed to fully penetrate the aquifer and be slotted/perforated along the entire 

length of the casing below the aquifer saturation elevation. These types of well 

constructions are commonly employed in seawater intrusion monitoring programs. If 

water in the observation well is relatively stagnant, then the distribution of salinity in 

such a well will be the same as that which surrounds the well. Therefore acquisition 

of a salinity profile log from such a well of this type is representative of the local 
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salinity profile of the aquifer. Also measurements of groundwater head taken from 

such a well construction, coincides with the water table elevation. The location of 

these hypothetical wells are shown in Figure 4.4. It is assumed that observations of 

head are obtained from all 21 wells shown in Figure 4.4 and that salinity profiles are 

acquired from the 15 wells in the eastern half of the domain. From the profiles of 

salinity, a good measurement of the elevation of the 10% seawater delineator can be 

made. In terms of the SEAWAT model outputs, these observations are approximately 

equivalent to freshwater head in the top layer of the model and the elevation of the 

freshwater-seawater interface obtained from post-processing of concentration outputs. 

Random normally distributed error was added to these synthetically acquired 

observations and simulates the potential for error associated with acquiring these 

measurements. In the case of head measurements, error is characterised by a mean of 

zero and standard deviation of 0.5% of the total range of head measurements. For 

freshwater-seawater interface elevation measurements, errors with a mean of zero 

and standard deviation of 0.01 m were added. These 36 noise-degraded, synthetic 

measurements comprise the calibration dataset for this example. 

For calibration purposes aquifer heterogeneity is characterised by 600 pilot point 

parameters. The locations of pilot points used for parameterisation of the model are 

also indicated in Figure 4.4. Each pilot point parameter is adjustable in the 

calibration exercise. Kriging is used to interpolate pilot point parameter values to the 

model grid cells. In doing so a variogram identical to that used in generation of initial 

hydraulic conductivity and “reality” fields is used. 

 

 

Figure 4.4: Location of observations and pilot points used in the SWI-assisted 

calibration example problem. 
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4.1.3.2  The surrogate SWI model 

A simplified version of the model described above was constructed using the SWI 

package for MODFLOW. This model is used as a faster running surrogate for 

calculation of parameter sensitivities during calibration of the complex model. 

Construction of the surrogate model requires minimal effort as existing files required 

for operation of the Groundwater Flow Process of SEAWAT may simply be recycled 

when the SWI package is implemented. Therefore, horizontal spatial discretisation of 

this simplified model is identical to the complex model; however in the vertical 

direction the original 20 layers are amalgamated into one single layer. More precisely, 

the surrogate model has 20 rows, 120 columns and 1 layer (2400 model cells). A 

simple illustration of the intrinsic differences between the complex model and the 

simplified surrogate is provided in Figure 4.5. This model also shares the same pilot 

point parameters as those defined for the complex model with interpolation of 

hydraulic conductivity pilot point parameter values to the model grid performed with 

kriging using the identical variogram as described for the complex model in the 

preceding section. 

 

 

Figure 4.5: An illustration of the intrinsic differences between the complex 

SEAWAT model and the surrogate MODFLOW-SWI model. 
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The “stratified” density option for defining the vertical density distribution was 

selected, with 2 surfaces defining 3 constant density zones of 1000, 1002.5 and 1025 

kg/m
3
 in each zone; zone 1 representing freshwater, zone 2 representative of the 

density corresponding to our definition of the seawater interface and zone 3 

representing pure seawater. Initial zone surface positions were arbitrarily defined at a 

position in close proximity to the seawater boundary such that the inclination of these 

surfaces spanned a few model cells. Tip and Toe tracking parameters were specified 

in accordance with recommendations in the SWI manual and the dimension of the 

problem. A constant number of transport time steps was specified, the number of 

which being heuristically determined from a few runs of SWI with uniformly 

distributed hydraulic conductivity values equal to the mean value of the hydraulic 

conductivity fields initially trialled in the complex model (ie. 200 m/d prior to log 

transformation). It was found that 300 transport time steps was required to ensure 

solution convergence for steady state simulation, starting from the initial surface 

positions. This number of transport time steps would have been considerably less had 

more representative initial surface positions been defined, thus making the simple 

model run much faster. This SWI based simplification of the computationally costly 

SEAWAT model takes on average 12 seconds to run on the same PC. This represents 

a 30 times speedup compared with the complex model. This speedup in runtime is a 

direct result of the reduced number of model grid-cells along with the simplified 

algorithm used by SWI in solution of the variable-density flow problem. 

As can be seen from Figure 4.6 when populated with the “reality” field the SWI-

based surrogate model produces a comparable result to the SEAWAT model 

however as a result of the assumptions which underpin it’s development some 

considerable differences in the shape of the freshwater-seawater interface are 

obvious. Differences are particularly pronounced in the southern part of the interface 

toe, in proximity of a region where hydraulic conductivity values are relatively low. 

These differences may be a result of a simplified density distribution used by the 

SWI model which is manifest as a few discrete zones of different density. They may 

also be a result of SWI’s neglect of diffusion combined with localised vertical 

components of flow which lead to a flushing of seawater from the aquifer. 

Regardless of the nature and cause of these differences, deficiencies in the SWI 
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model’s ability to replicate the more physically based simulator are to be expected. 

What is important though is that the SWI-based surrogate model demonstrates 

comparatively good performance and with much reduced computational time.  

 

Figure 4.6: Comparison of seawater interface elevation contours arising from 

SEAWAT model (black lines) and from the SWI version (green lines), when 

populated with the “reality” hydraulic conductivity field which is shown in blue 

gradation. 

However the inability of the SWI model to exactly replicate outputs of the SEAWAT 

model does not necessarily preclude its use as a proxy in calculation of derivatives 

for use in calibration of the latter. When derivatives are approximated using finite-

differencing methods, the differences in model generated equivalents to calibration 

data are taken and divided by the increment of the parameter varied. Hence model 

structural error as shown in Figure 4.6 tends to cancel out in these calculations. The 

surrogate model may then at least be capable of calculation of a Jacobian matrix that 

supports calibration of the original complex model but with much reduced 

computational costs. This is now tested. 

 

4.1.4  SWI assisted calibration of the SEAWAT model 

Since many parameters have been employed for characterisation of aquifer 

heterogeneity (recall that 600 pilot point parameters are used for this purpose) and 

observations of system state are sparse (36 in total) while also contaminated with 

noise (as is inevitable in practice), calibration of the complex model constitutes an 
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ill-posed inverse problem. In spite of this, a unique solution can still be found 

through inclusion of regularisation in the calibration process. With use of a 

mathematical regularisation strategy that is appropriate for the problem, a unique 

solution can be found that will be without bias. Subsequent predictions made by the 

model when populated with this parameter field will also be without bias but may be 

considerably in error nonetheless. As a result of data scarcity, the estimated 

parameter field will necessarily lack detail. However, it can be used as a good centre-

point for quantification of the model’s potential for predictive error whereby 

calibration-constrained Monte Carlo analysis is employed as a computationally 

feasible proxy for posterior parameter and predictive uncertainty quantification. See 

Doherty (2015b) for discussions of these topics.  

In the example presented herein calibration of the SEAWAT model is accomplished 

using the surrogate-assisted methodology described in Section 2.3.2 and now 

implemented in the PEST suite of software. As is the process in this surrogate-

assisted methodology, the SWI-based surrogate model is run on those occasions 

when finite-difference approximations to derivatives are required, for population of 

the Jacobian matrix. At each iteration of the non-linear parameter estimation process, 

a parameter upgrade vector was calculated on the basis of the Jacobian matrix 

calculated by the surrogate model. A few such parameter upgrade vectors are 

calculated each time by adjustment of the Marquardt parameter which features in the 

GML method. In this way, the possibility that different directions in parameter space 

are better than others at that part of the estimation process is explored. This also 

atones to some extent for the fact that derivatives calculated by the surrogate model 

may lack integrity. When these parameter upgrades are tested for possible 

improvement to the objective function, the complex SEAWAT model is run, thereby 

maintaining the integrity of calibration dataset to model output equivalent residuals. 

In undertaking calibration, Tikhonov constraints were applied to the 600 adjustable 

pilot point parameters whereby each pilot point is assigned a “preferred value” equal 

to 200 m/day, which is the mean of the “reality” hydraulic conductivity field; these 

also constitute initial values assigned to pilot point parameters. These “preferred 

value” observations were included in the inversion problem as a set of prior 



 

114 

 

information equations. Deviations in estimated parameters from these “preferred 

values” were weighted in accordance with innate hydraulic conductivity field 

variability described by the variogram used to generate the “reality” field. The 

squares of these weighted parameter deviations were collected in a so-called 

“regularisation objective function” whose task it is for PEST to minimise while at the 

same time ensuring that calibration observations to model generated equivalents 

misfit does not exceed a specified value. This value is known as the “target 

measurement objective function” and is normally set slightly higher than that which 

would be anticipated with regard to measurement noise. This value is often difficult 

to define as in most practical applications as so-called “structural noise” normally 

dominates model to measurement misfit; the magnitude and covariance of structural 

noise unknowable. In this example however, structural noise is negligible and so a 

value for the “target measurement objective function” was set at 40 which is 

approximately 10% higher than the expected value of 36 (the number of observations) 

assuming that measurement noise is normally distributed and that the weights applied 

to residuals are equal to the inverse of the standard deviation of this noise (noise 

introduced to the calibration dataset was described in Section 4.1.3.1). 

Calibration of the SEAWAT model using the surrogate-assisted methodology in 

which SWI was used for derivatives calculations achieved a minimised measurement 

objective function of 311 in 17 iterations, requiring 55 computationally costly 

SEAWAT model runs and 15,670 much faster SWI runs. Following the initial 5 

iterations in which model to measurement misfit rapidly reduced to a value an order 

of magnitude lower than the initial value calculated using initial parameter values, 

the estimation process proceeded much slower with model to measurement misfit 

rising in some iterations before falling again in other iterations. This indicates that 

derivatives being calculated by the surrogate model may have reduced integrity and 

that parameter upgrades calculated on their basis also lack integrity. In spite of this, 

the surrogate-assisted methodology was still able to reduce model to measurement 

misfit by another order of magnitude. However total runtime efficiencies were 

somewhat degraded by the necessity to perform several more iterations than would 

be expected if derivatives were of better quality. 
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The surrogate-assisted, calibrated hydraulic conductivity field is shown in Figure 4.7. 

As is to be expected, this field lacks the parameterisation detail of the reality field 

shown in Figure 4.6, however this is the cost of seeking a unique solution to an ill-

posed inverse problem where data is limited and contaminated by noise (see Moore 

and Doherty, 2005). This hydraulic conductivity field does however represent the 

minimum divergence from prior mean parameter values, that is required to attain a 

good fit between elements of the calibration dataset and model generated equivalents. 

The broad scale parameterisation features that this field possesses are consistent with 

the broad scale features of the “reality” field depicted in Figure 4.6. Model generated 

freshwater-seawater interface elevation contours arising from the calibrated field are 

also compared with “reality” elevation contours in Figure 4.7. The match is 

subjectively quite good in spite of a slightly higher than anticipated measurement 

objective function.  

 

 

Figure 4.7: Calibrated hydraulic conductivity field arising from the “surrogate-

assisted” calibration process (see Figure 4.6 for graduation scale). SEAWAT 

calculated freshwater-seawater interface elevation contours resulting from this 

calibrated field are shown as pink lines. Interface elevations from the “reality” case 

are shown as black lines. 

For comparative purposes, a calibration exercise was conducted in which only the 

complex model was used. In that process, which is designated the “baseline” 

calibration, the complex model was used for both the runs required for Jacobian 

matrix population and for the testing of parameter upgrades during each iteration. 

That process achieved calibration in only 5 iterations but required a total of 3029 
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computationally costly complex model runs that results in an overall calibration time 

that is almost 7 times longer than that achieved with the surrogate-assisted approach. 

A summary of the calibration attempts model run requirements is presented in Table 

4.1. The calibrated hydraulic conductivity field arising from this “baseline” 

calibration process is shown in Figure 4.8. It can be seen through comparison with 

Figure 4.7 that these calibrated hydraulic conductivity fields are not identical 

however they are both very similar and are reasonable expressions of the broad scale 

parameterisation features of the “reality” field. Also, comparatively the seawater 

interface elevation contours arising from both calibration attempts differ only slightly 

and visually depict a similar level of fit to contours of “reality” seawater interface 

position.  

 

 

Figure 4.8: Calibrated hydraulic conductivity field arising from the “baseline” 

calibration process (see Figure 4.6 for graduation scale). SEAWAT calculated 

seawater interface elevation contours resulting from this field are shown as orange 

lines. Seawater interface elevations from the reality case are shown as black lines. 

Importantly, both of the above calibration attempts result in estimated parameter 

fields that deviate from a prior expected condition by the minimum amount that is 

required to attain a good fit with calibration observations; this is demonstrated 

further in Figure 4.9. In this illustration, estimated pilot point parameter values are 

plotted in a similar fashion to that used in Section 2.7 to compare estimated 

parameters. Pilot point parameters are plotted sequentially from left to right and row 

by row beginning at the top (with reference to Figure 4.4). A sample of the reality 

parameter field was taken in which pilot point parameter values are calculated such 
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that the square of the differences between pilot point interpolated cell values and the 

reality field cell values is minimised. These parameter values represent the maximum 

amount of parameter detail that could be inferred if all parameters were uniquely 

estimable and the vastly expanded calibration dataset that would be required was 

without noise. Of course, in this example all parameters are not uniquely estimable 

and errors do attend the limited calibration dataset. Figure 4.9 shows that as expected, 

parameters values arising from the “baseline” calibration depict a smoothed 

representation of the “reality” sample with some small differences visible due to 

parameter estimation using a limited, noise degraded calibration dataset. Parameter 

values arising from the SWI-assisted calibration process are also shown in Figure 4.9 

and clearly closely match “baseline” values. This demonstrates that the SWI-assisted 

calibration process has attained a similarly un-biased estimation of parameters as 

when only the complex model is employed, but with nearly an order of magnitude 

reduction in computational cost. 

 

Figure 4.9: Comparison of pilot point parameter values estimated from the SWI-

assisted and Baseline calibration attempts. Pilot point parameters are numbered 

sequentially from left to right, continuing for each row of parameters. 

 



 

118 

 

Table 4.1: Summary model run requirements for example SWI-based surrogate-

assisted calibration problem. 

Calibration 

process 

Initial 

measuremen

t objective 

function 

Final 

measurement 

objective 

function 

Iterations 

required 

Complex 

model 

runs 

Surrogate 

model 

runs 

Equivalent 

total 

runtime on 

single 

processor 

(hours) 

Calibration 

Speed-up 

(factor) 

Baseline 

(SEAWAT 

only) 

30155 44 5 3029 - 403.9 - 

Surrogate-

assisted 
30155 311 17 55 15670 59.6 6.8 

 

A third calibration attempt was performed wherein only the surrogate SWI model 

was used within the inversion process. The outcome of this calibration attempt is 

shown in Figure 4.10. This calibration attempt was unable to reduce model to 

measurement misfit to near the same level as the previous two calibration exercises. 

Visually the differences in the position of the freshwater-seawater interface estimated 

using only the SWI model compared to the “reality” position are much more obvious. 

What is of greater concern is that the calibrated hydraulic conductivity field achieved 

displays inconsistencies when compared to the “reality” hydraulic conductivity field. 

Notwithstanding its smoothed appearance which is an unavoidable consequence of 

the inversion process, bias in some estimated parameter values is becoming evident. 

This bias is a consequence of some parameters taking on compensatory roles in an 

attempt to atone for deficiencies in the simplified algorithm employed by the 

surrogate model. In the present case these deficiencies largely arise from SWI’s 

neglect of diffusion/dispersive effects and the assumptions of horizontal flow which 

are used in its development. Parameter compensations are more obvious when 

compared with the “baseline” calibration values. In Figure 4.11 it can be seen that 

some estimable parameters are tending towards values that exceed pre-calibration 

variability.  
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Figure 4.10: Calibrated hydraulic conductivity field arising from calibration using 

only the MODFLOW-SWI model (see Figure 4.6 for graduation scale). SWI 

calculated seawater interface elevation contours resulting from this field are shown 

as green lines. Seawater interface elevations from the reality case are shown as black 

lines. 

 

 

Figure 4.11: Comparison of pilot point parameter values estimated using the SWI 

model alone and Baseline calibration attempts. Pilot point parameters are arranged as 

they are in Figure 4.9. 

The effects of these parameter biases become more profound when the parameter 

field estimated using the SWI model alone is provided to the original complex model. 

This outcome is shown in Figure 4.12 in which it can be seen that the ability of the 

complex model to reproduce the “reality” interface position is severely impaired. 

Consequently the complex model’s ability to make predictions that are without bias 
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is also impaired. Furthermore use of this hydraulic conductivity field as the centre 

piece about which stochastic fields are generated for assessment of parameter and 

predictive uncertainty may compromise that analysis. 

 

 

Figure 4.12: SEAWAT (complex) model generated freshwater-seawater interface 

(red contour lines) arising from the hydraulic conductivity field estimated using SWI 

model only. The “reality” interface position is shown as black contours.  

 

4.1.5 Discussion 

The example just described shows an original and unique application of the SWI 

package for MODFLOW. It is demonstrated that when used as a faster running 

surrogate model in calculation of finite-difference approximated derivatives that the 

Jacobian matrix populated using this surrogate model retains sufficient integrity to 

enable calibration of a more physically detailed, distributed parameter simulator. 

Almost an order of magnitude reduction in total computational costs during 

calibration are realised through application of this method. In this example 

SEAWAT was used as the accurate simulator in a seawater intrusion problem that 

requires accuracy in representation of the seawater interface. However the concepts 

presented here are just as applicable to other contexts in which sophisticated 

simulation software are employed to replicate physical process detail, that use many 

parameters in distribution of physical properties and requires matching of model 

outputs with experimentally acquired observations. 
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Although not conducted in this experiment, similar reductions in computational costs 

are to be expected when calibration-constrained Monte Carlo analysis is performed 

for quantification of predictive uncertainty using stochastic fields that are based on 

the calibrated field. NSMC can be used for this purpose. 

It is readily acknowledged that the synthetic example presented here is relatively 

simple in its design when compared to more real-world applications of seawater 

intrusion modelling. In particular, the example problem assumes vertical 

homogeneity of the aquifer in spite of the presence of heterogeneity in the horizontal 

direction. The main reason for this is that in calculation of specific discharge vectors 

below the surfaces of zones defining the density distribution, SWI uses vertically 

integrated transmissivity calculated from the hydraulic conductivity value assigned to 

a particular cell and the elevation of the pertinent surface. The elevations of all 

surfaces are then simultaneously calculated using this in-variable hydraulic 

conductivity value. While it would be not too difficult to calculate a vertically 

averaged hydraulic conductivity from a SEAWAT model that uses many layers to 

represent vertical heterogeneity prior to supplying this to the SWI model, this 

involves a form of parameter lumping in which the relative contributions of each 

relevant parameter and hence the relative sensitivities of those parameters becomes 

blurred. As is demonstrated in Section 2.7, this situation can lead to the estimation of 

spurious parameter values. Perhaps a better approach would be to enlist the multiple 

aquifer capabilities of SWI to calculate sensitivities of adjustable parameters based 

on their vertical disposition within the aquifer. This would avoid parameter 

aggregations but likely introduce other nuances of a practical nature. In any case, in 

this original demonstration example, vertical homogeneity was assumed to avoid 

these complications.  
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4.2  Using MODFLOW-USG as a Surrogate for 

Efficient Calibration of a Finely Discretised 

MF2K model 

This section introduces the prospect of using an unstructured grid coarsening strategy 

as a means of constructing a much faster running surrogate model for use in 

calculation of derivatives during the process of model calibration and calibration-

constrained Monte Carlo analysis. The strategy used here relies on localised grid 

refinement, while the grid is quite coarse elsewhere. A surrogate model constructed 

in this way concedes numerical inadequacies over large portions of its domain, 

however within the region of grid refinement it performs quite well. The integrity of 

derivatives calculated by this surrogate model may only be reliable for observation-

parameter pairs that are within the extent of grid refinement. Therefore a series of 

surrogate models must be used, each of which is refined in different regions of the 

model domain, each of which is very fast running, and collectively they are able to 

populate a Jacobian matrix that can support calibration of the original model. In this 

way dramatic reductions in the computational costs associated with the processes of 

highly parameterised inversion and calibration-constrained uncertainty analysis can 

be realised. 

 

4.2.1  Introduction 

In Chapter 2 a much faster running, simplified version of an existing complex model 

was constructed so that it could be used as a surrogate to the original model during 

the many model runs required for finite-difference calculations of derivatives during 

the inversion process. In that example, the surrogate model was fashioned from the 

original model by using a simple, uniform grid coarsening strategy that led to a 

reduced number of model grid cells resulting in reduced surrogate model runtimes. 

Surrogate model runtime savings were greatly enhanced by choice of a much faster 

solution scheme for the solute transport part of the problem, than the computationally 

costly solution scheme used by the original simulator. In large, regional scale 
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groundwater modelling problems that involve solution of flow only such a solution 

scheme substitution may not be a possible. Hence significant runtime savings may 

only be attainable through gross grid coarsening. It was also shown in Section 2.7 

that when the surrogate-assisted inversion approach is adopted and where the 

surrogate model uses an overly coarsened grid, the modeller risks incurring bias in 

estimated parameters while also needing to accept an increased level of model to 

measurement misfit from the calibration exercise. An alternative grid coarsening 

strategy for construction of a surrogate model is now presented that offers some 

protection from the effects of overly coarse grid structures while still providing for a 

much faster running surrogate model that is capable of calculating finite-difference 

derivatives with the same integrity as those that would be calculated by the original 

model itself. Highly parameterised inversion and calibration-constrained uncertainty 

analysis may then proceed with greatly improved computational efficiency. 

In 2013, the US Geological Survey released the initial version of MODFLOW-USG 

(Panday et al., 2013); since then it has become popular amongst groundwater 

modelling practitioners. The “USG” suffix stands for UnStructured Grid. This 

version of MODFLOW supports a wide variety of structured and unstructured grid 

types that can be used to better represent the shape of features in the model domain 

and/or focus resolution around these features, or other areas of interest. It is based on 

an underlying control volume finite difference (CVFD) formulation for groundwater 

flow in which a model grid cell can be connected to an arbitrary number of adjacent 

cells. This allows for localised grid refinement and/or grid coarsening to be used in 

various parts of the model domain without necessarily extending these grid 

refinements to the model boundary as is required in standard MODFLOW. As a 

result groundwater flow models can be constructed with MODFLOW-USG that have 

greatly reduced numbers of grid cells and subsequently greatly reduced model 

runtimes compared to the standard version, while maintaining respect for resolution 

in those areas of the study site where it is most warranted. 

In deciding to use an unstructured grid with variable coarsening, the modeller 

chooses to provide the model with maximum numerical accuracy and 

parameterisation detail in some areas while accepting reduced numerical accuracy 
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and loss of parameterisation detail in other areas. When a model is developed for 

decision making purposes in which numerical accuracy and variability of distributed 

hydraulic properties must be maximised over the entire extent of the model, this can 

only be supported by use of fine-scale discretisation throughout. 

The unstructured grid capabilities of MODFLOW-USG may also be exploited to 

construct a series of much faster running versions of the original model, that are 

uniquely refined in small areas of the study site and very coarse elsewhere. Together, 

the refined areas of these models collectively span the original model’s grid extent 

with at least nearly the same resolution. Individually these models are able to closely 

reproduce original model outputs in those smaller areas of the model domain where 

they are refined, while for the much larger proportion of the domain their outputs 

will likely be degraded by comparison. Theoretically, these models may then 

individually be used to calculate reliable derivatives for observation-parameter pairs 

that lie within their respective refinement areas. Derivatives of observation-

parameter pairs that transgress refinement areas are expected to have reduced 

integrity. However this may be of little consequence to the inversion process. It is 

generally the case in a physical-based, distributed model that model generated 

observations in close proximity to a particular parameter will be more sensitive to 

variations in that parameter than they will be to parameters that are much farther 

away. When regularisation is used to obtain a unique solution to an ill-posed inverse 

problem, insensitive observation-parameter combinations are supressed or omitted 

from calculation of parameter improvements. The population of a Jacobian matrix 

that retains enough integrity to support highly parameterised calibration of the 

original model may then be achieved but at far less computational cost. 

A synthetic example calibration problem follows in which an original 

implementation of this strategy is demonstrated. 

4.2.2  Example problem description 

The context in which this hypothetical, synthetic example problem is framed is a 

geological setting wherein two separate aquifers are being used for the production of 

fresh groundwater. Notionally the model has been developed to assess the potential 
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ramifications of increasing production rates in some of these production bores, either 

in terms of reductions in groundwater discharges to the natural environment or in 

terms of interferences with other production wells. Innate variability of distributed 

hydraulic properties within the aquifers is likely to play a key role in these outcomes. 

In order for the model to be used as a predictor of future outcomes, it must first be 

calibrated. With attainment of calibrated hydraulic property fields that are without 

bias (this being promulgated through the use of mathematical regularisation) these 

fields can then be used as a good starting point for quantification of uncertainties 

associated with predictions made by the model. However, because of the use of a 

large number of parameters employed to characterise geological heterogeneity and 

long model runtimes that often accompany transient, multi-layered, regional scale 

models of this type, calibration becomes a computationally demanding task. So does 

calibration-constrained Monte Carlo analysis. The computational burden of these 

processes can be greatly reduced by using several variably discretised surrogate 

models for calculation of the derivatives which comprise the Jacobian matrix on 

which those processes depend. 

A schematic conceptualisation of the synthetic modelling problem is shown in Figure 

4.13. An unconfined alluvial aquifer forms the top of the model domain. This is 

underlain by a second alluvial aquifer that has similar hydraulic properties to the top 

aquifer. As is the case with many alluvial deposits, heterogeneities are known to exist 

throughout the domain and significantly affect production rates from bores. The two 

aquifers are separated by a thin, relatively impermeable layer of clay that acts as a 

semi-confining layer. This semi-confining layer has been explicitly represented in the 

model as its hydraulic properties are known to also vary considerably over its spatial 

extent so that water exchanges between the aquifers occurs in some areas but not 

others. The areas where hydraulic connections between the two aquifers is present, is 

not well known. 

Hydraulic head measurements are assumed available from a number of observation 

bores located in the domain. At each observation bore site there are in fact two bores, 

one completed in each of the two aquifers. The locations of these observation bore 

pairs are shown in Figure 4.14. From these measurements of hydraulic head it has 
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been assessed that groundwater flows into the model domain from the southern 

boundary and flows out of the domain at the northern boundary. There are 5 

production bores in use; these are also shown in Figure 4.14. These are assumed to 

fully penetrate the aquifer in which they are completed. The bores labelled P1, P2 

and P5 are completed in the upper aquifer while bores P3 and P4 are completed in 

the lower aquifer. A river traverses the middle of the model domain and is deeply 

incised into the upper aquifer providing for groundwater-surface water exchanges 

along its length. It also controls hydraulic heads within that aquifer. 

 

Figure 4.13: Schematic conceptualisation of the synthetic problem used in 

demonstration of MODFLOW-USG based surrogate-assisted calibration. 

4.2.2.1  The complex model 

For the purposes of this example, a finely discretised model was constructed in 

accordance with the above conceptualisation using MODFLOW-2000. This model is 

referred to henceforth as the “complex model”. The model domain is square 

horizontally with dimensions of 2 km x 2 km discretised into 400 rows with 400 

columns. Therefore grid cells have dimensions 5 m x 5 m horizontally. The model 

has three layers, one for each of the two aquifers and the semi-confining unit which 

separates them. Hence the model domain consists of 480,000 grid cells. The 

thickness of both aquifers is set uniformly as 20 m while the semi-confining unit is 5 

m thick uniformly. Groundwater inflow at the southern boundary is uniformly 
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distributed in both aquifers (there is no inflow to the semi-confining unit) and is 

simulated using wells injecting at a rate of 15 m
3
/d each. There is one such injecting 

well in each model grid cell along this boundary, in each aquifer layer only. Hence 

there are 800 injecting wells providing total inflow of 12 ML/d to the model domain. 

The northern boundary of the model domain is defined by constant head cells set to 8 

m groundwater head in all three layers. Areal recharge rates are uniformly distributed 

and constant providing for the addition of 2.4 kL/d to the system via free-drainage. 

The river is simulated using the MODFLOW River package with the river stage 

elevation along its length set constant at 10 m below the model surface. It is assumed 

that the river is deeply incised into the upper aquifer so that the elevation of its bed is 

1 m above the bottom of the aquifer. A constant river bed conductance of 2.5 m
2
/d is 

specified along its length. 

 



 

128 

 

 

Figure 4.14: Locations of pilot point parameters, observation bores and production 

bores used in the USG-based surrogate-assisted calibration example. The location of 

the river is indicated by the green line. 

Spatially distributed hydraulic conductivity within each model layer is parameterised 

using pilot point parameters. Values assigned to these parameters are interpolated to 

model grid cells using kriging; it employs a variogram that expresses geological 

variability to the extent that it can be ascertained from prior knowledge of the system. 

In this synthetic test-case, the variogram used for kriging-based interpolation is the 

same as that used in generation of the hydraulic conductivity fields that will be used 

as the “reality” case; this is described shortly. The horizontal locations of these pilot 

point parameters are shown in Figure 4.14. In each of the three model layers pilot 

points with the same horizontal coordinates have been placed. There are 100 such 

pilot point parameters in each model layer; hence there are 300 parameters in total 

that characterise distributed hydraulic conductivity. All these parameters are 

adjustable during the course of calibration. 
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Initially, a few random realisations of hydraulic conductivity fields were generated 

and provided to the complex model for evaluation. These hydraulic conductivity 

fields were generated using a sequential Gaussian simulation algorithm engine based 

on the SGSIM code supplied with the GSLIB geostatistical library (Deutsch and 

Journel, 1998). In generation of these hydraulic conductivity fields a log exponential 

variogram with variance of 0.25 (in the log10 domain) was used. The range of the 

variogram is 700 m. The fields are isotropic. The mean value of log transformed 

hydraulic conductivity values in these fields is 1.3 (20 m/day prior to log10 

transformation). Three of these stochastically generated fields were chosen at random 

to separately populate the three model layers of the complex model and form a 

scenario that becomes the “reality” case. In the case of the aquifer layers these fields 

are applied to the model grid cells without modification. However when applied to 

the semi-confining layer the random field selected was divided by a factor of 100 to 

obtain hydraulic conductivity values that are commensurate with the reduced 

conductivity characteristics that this layer is intended to represent. The hydraulic 

conductivity fields selected as the “reality” fields are shown in Figure 4.15. 

In the hypothetical scenario adopted for the purposes of this calibration example, it is 

assumed that demand for water from the production bores can vary from one 12 

month cycle to the next and that a complete set of groundwater head measurements 

from observation bores is available at the end of each 12 month seasonal cycle over a 

three year period. In the first year of this period, all production bores operated 

continuously at an extraction rate of 500 m
3
/d. In the subsequent two years of this 

three year period water demand is higher and the extraction rate is doubled in two of 

the better producing bores; namely production bores P3 and P4 which produce from 

the lower aquifer. Hence, simulation of groundwater flow at the study site which 

spans the timeframe of available observations consists of two stress periods. The first 

stress period is simulated as steady state while the second two year stress period in 

which production was increased is simulated as a transient stress period with 

constant time-stepping intervals equal to one month. A calibration dataset was 

constructed from model outputs that are equivalent to observation bore 

measurements, when the model was populated with the “reality” hydraulic 

conductivity fields described above. Contours of groundwater head arising from this 
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“reality” simulation at the end of the calibration period are also shown in Figure 4.15. 

Normally distributed noise with mean value zero and standard deviation equal to 1% 

of the range of head observation values was added to model generated observation 

equivalents. These noise degraded head observations comprise the calibration dataset 

for this exercise. As described above there are 150 observations in total. 

Average runtime for the complex model over the time period described and which 

encompasses the calibration dataset, is 2.4 minutes. While this is not considerable in 

everyday terms it is not uncommon for regional scale groundwater models with 

many more layers which simulates time-periods of many tens of years, to have 

runtimes that are in the order of several hours.  
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Figure 4.15: Randomly chosen hydraulic conductivity fields used to populate the 

“reality” model for the MODFLOW-USG-based surrogate-assisted calibration 

example. Note that the values shown here for layer 2 are divided by 100 when 

supplied to the model while the other layers are supplied without modification. 

Contours of hydraulic head arising from these reality fields, at the end of the 

calibration period, are also shown (blue lines). 
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4.2.2.2  The MODFLOW-USG surrogate models 

Four MODFLOW-USG surrogate models were developed. These models use an 

unstructured grid configuration that is based on quadtree refinement. Each of these 

models has grid refinements that are focused on a separate quadrant of the original 

square model domain. In practice, regional groundwater model domains do not have 

square geometries. Hence partitioning of regions of focused refinement will be 

specific to each case and could for example be based on clusters of observation 

locations. All the surrogate models developed here share the same pilot point 

parameters that are used by the fine-scale model. These values are interpolated to the 

model grids using kriging with the same variogram used by the original model. Of 

course, different grid structures require differing cell-by-cell factors by which 

interpolation is undertaken. Calculation of these factors for the unstructured 

surrogate models grids and interpolation of parameter values is performed using the 

PLPROC parameter list processor (Doherty, 2012). These surrogate models are each 

capable of generating output equivalents to all members of the calibration dataset. 

They also reproduce components of water budget that are very similar to the original 

model. 

The grid generation program GRIDGEN (Lien et al., 2014) was utilised to perform 

the quadtree refinement of the original model grid domain. GRIDGEN begins by 

reading a three-dimensional base grid, which can have variable row and column 

widths and spatially variable cell top and bottom elevations. From this base grid, 

GRIDGEN continuously divides into four any cell that intersects user-provided 

refinement features (points, lines, and polygons) until a desired level of refinement is 

reached. In the example that forms the basis of this section, an initial base grid with 

200 m cell row widths and 200 m column widths was employed. This is the grid 

dimension that prevails in the absence of the necessity to sub-divide grid cells due to 

intersections with defined features. This base grid dimension was chosen as it is the 

largest cell size that can be used without aggregating pilot point parameters into a 

single grid cell. GRIDGEN was instructed to perform quadtree refinements down to 

a level of 4 where feature intersections are present, this resulting in a minimum 

horizontal grid cell dimension of 12.5 m x 12.5 m. Note that this minimum cell 
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dimension is still 2.5 times larger (in width terms) than the original fine-scale grid 

cell dimensions. Refinements were performed within the quadrant to which the 

surrogate model pertains and around the river feature. In performing the quadtree 

refinements smoothing in both the horizontal and vertical directions was enforced, to 

ensured that no two adjacent cells differ by more than 1 level of refinement. An 

example of the refinement undertaken for the four quadtree grids in this process is 

shown in Figure 4.16. 

 

Figure 4.16: Unstructured grid generated for one of the MODFLOW-USG surrogate 

models. This quadtree structure and associated grid connection details were 

generated using GRIDGEN. Pilot point parameter locations (black crosses), 

observation bores (blue-filled circles), production bores (red crosses) and the river 

(green line) are also indicated.  

In Figure 4.17 the vertical grid coarsening of these unstructured grids is illustrated. It 

is clear that the total number of grid cells in each of the surrogate models has been 

vastly reduced. Total grid cell numbers of the four coarsened grids range between 

20,781 and 21,288 in comparison to the 480,000 grid cells that comprise the fine-
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scale, detailed model. GRIDGEN was also used to rapidly generate grid connectivity 

and cell information required for construction of the MODFLOW-USG input files. 

Some modifications to boundary cells of the surrogate models are required to ensure 

that modelled flow processes are consistent with the original model. For example, 

values assigned to injection wells used to simulate groundwater inflow to the model 

domain were modified so that original injection rates are multiplied by the number of 

original model grid cells that each new cell replaces along this boundary. The other 

significant modification that was applied to boundary cells was in defining river cell 

conductance values. This was a little less straight forward than was expected because 

of the geometry of the river and the inexactness of the overlay between the original 

fine-scale mesh and the quadtree refined meshes. However an appropriate value for 

surrogate model river conductance was found in a heuristic fashion by matching 

volumetric water budgets compared to the original model when homogeneous 

hydraulic conductivity values were used to populate the model. These settings ensure 

that each of the surrogate models is able to accurately reproduce original model 

outputs quite well, at least in their refined quadrant areas. 

On average, these surrogate models take approximately 2 seconds to execute a 

simulation time that spans the calibration period of the original model, which 

represents a speedup of 72 times. Hence where population of a Jacobian matrix is 

performed using a two-point stencil for finite-difference approximation of derivatives, 

the original model requires approximately 12 hours computation time on a single 

processor, whereas population using the four surrogate models requires only 10 

minutes to achieved the same task. 
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Figure 4.17: 3D images of the four unstructured grids constructed as surrogate 

models for use in the MODFLOW-USG-based surrogate-assisted calibration exercise. 

These images also demonstrate the vertical grid coarsening undertaken. 

4.2.3  MODFLOW-USG assisted calibration 

Surrogate-assisted calibration of the original fine-scale, detailed model is now 

described. In undertaking this calibration attempt, the four surrogate models 

developed with quadtree refinement are used selectively for population of the 

Jacobian matrix, during the iterative process of GML estimation. This is in contrast 

to all other examples presented in this document where only a single surrogate model 

was used for this purpose. Finite-difference approximations of derivatives are 

calculated using a 3 point stencil. Hopefully, this choice facilitates approximation of 

derivatives with greater integrity than would be obtained from use of the more simple 

forward-differencing method. In this process each surrogate model is initially run 

once with the current best estimate of parameters to obtain reference values for 

observations calculated by each surrogate model. Following this, each parameter is 

individually increased and then decreased by a pre-defined increment to obtain two 

further values of each model generated observation equivalent. To each set of three 
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values of a model generated observation equivalent, a parabola is then fit and the 

derivative of the observation with respect to the incrementally varied parameter is 

calculated from that parabola at the current best parameter value. Normally, such a 

method for derivatives approximations requires at least twice as many model runs 

than the more simple forward-differencing method. However this potential for 

increased computational cost is more than offset by the vastly reduced runtimes of 

the surrogate models. 

Selection of one of the four surrogate models for finite-difference approximation of 

derivatives is done on the basis of the spatial location of each individual pilot point 

parameter. That is, when a particular pilot point parameter lies within the extent of a 

particular quadrant upon which quadtree refinement of MODFLOW-USG-based 

surrogate models have each been focused, then that surrogate model is used for the 

referencing model run, as well as for the two further runs with parameter increments. 

Of course, derivatives of all calibration observations with respect to that varied 

parameter are calculated by that surrogate model. Hopefully, those observations that 

are close to the varied parameter and therefore likely to be sensitive to that parameter 

will lie in the refined area of the surrogate model. Hence their derivatives will 

maintain integrity. For those parameters that are further away from the parameter and 

therefore in the less accurate part of the surrogate model domain, sensitivities will be 

much less; less model accuracy is therefore required. 

As there are many more parameters than calibration observations in the inversion 

problem, regularisation is needed to obtain a unique solution to the inverse problem. 

With appropriate use of mathematical regularisation a unique solution can be found 

that is without bias. Predictions made by the model using these estimated parameter 

values will then also be lacking bias. In this calibration exercise, regularisation is 

implemented through assignment of Tikhonov constraints to each of the 300 pilot 

point parameters estimated through the process. These are introduced to the inversion 

problem as a set of prior information equations that assign a “preferred” value to 

each parameter. This preferred value (which is also the initial value for pilot point 

parameters) was set to the mean of the hydraulic conductivity fields generated to 

form the “reality” case; that is 50 m/d prior to log transformation. A covariance 
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matrix that describes prior parameter variability was constructed from the variogram 

used in generation of the “reality” fields. This matrix was inverted to obtain weights 

by which deviations of parameters from these “preferred” values are multiplied. In 

PEST’s implementation of Tikhonov regularisation, an overall multiplication factor 

for this weight matrix is calculated, subject to the constraint that a user-specified 

“target measurement objective function” be achieved. This target was set to 150 (the 

number of observations) which is the expected value of the measurement objective 

function based on “measurement noise” accompanying the calibration dataset. 

Throughout the inversion process the four surrogate models were used for all runs 

required for derivatives calculations. Meanwhile the original detailed model was 

used for calculation of the initial objective function and for testing of a few 

parameter upgrades, this being based on the premise that it is able to produce a better 

fit between original model outputs and calibration observations. The target 

measurement objective function was achieved in 11 iterations requiring only 36 

detailed model runs while a further 6687 runs necessary for derivatives calculations 

was performed by the very fast running MODFLOW-USG surrogate models. Model 

run requirements for this calibration are summarised in Table 4.2. The estimated 

hydraulic conductivity fields arising from this calibration attempt are shown in 

Figure 4.18 together with head contours that result at the end of the calibration period. 

As is expected, these fields are a smoothed representation of the “reality” fields 

however this is the cost of seeking a unique solution to an ill-posed inverse problem. 

Hydraulic head contours arising from these fields also match quite well those arising 

from the reality case in spite of a limited calibration dataset that is also contaminated 

with noise. 
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Figure 4.18: Calibrated hydraulic conductivity fields arising from MODFLOW-

USG-based surrogate assisted calibration process. Heads contours resulting from 

these fields are shown as blue lines overlain by the “reality” head contours (dashed 

lines). 

For comparison, a second calibration attempt was performed in which only the 

original detailed model was employed. That is, the original model was run for all 

model runs required for calculation of derivatives as well as those required for 

parameter upgrade testing. This calibration process denoted the “baseline” 

calibration process henceforth, required 9 iterations and 5461 computationally costly 
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original model runs to achieve the target measurement objective function. A 

summary of these model run requirements is also provided in Table 4.2 in which it 

can be seen that the total computational cost of using the original model alone for 

this process is approximately 42 times greater than that experienced using the 

surrogate models for derivatives calculations. The hydraulic conductivity fields 

arising from this “baseline” calibration attempt are shown in Figure 4.19. As can be 

seen they are very similar to those arising from calibration using the MODFLOW-

USG-based surrogate-assisted methodology. 

While these fields lack the parameterisation detail of the reality case, they deviate 

from preferred mean values only by as much as is necessary to obtain a good fit with 

the calibration dataset. As such they are without bias and may then be used as the 

centre piece for generation of many stochastic fields that also calibrate the model but 

express innate parameter variability. Parameter and therefore predictive uncertainty 

can therefore be explored, but with much less computational effort than would be 

required if only the original model was used for this purpose. 

Table 4.2: Summary model run requirements for example MODFLOW-USG-based 

surrogate-assisted calibration problem. 

Calibration 

process 

Initial 

measurement 

objective 

function 

Optimised 

measurement 

objective 

function 

No. 

iterations 

Detailed 

model 

runs 

Surrogate 

model runs 

Total 

Equivalent 

runtime 

(CPU hours) 

Overall 

Speedup 

(factor) 

Baseline  564,592 150 9 5461 NA 218.44 - 

MODFLOW

-USG-based 

Surrogate 
assisted 

564,592 151 11 36 6687 5.16 42.3 
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Figure 4.19: Calibrated hydraulic conductivity fields arising from “baseline” 

calibration process in the MODFLOW-USG surrogate-assisted calibration example 

problem. 
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Chapter  5 

Conclusions 

5.1  General 

This thesis has explored the use of proxy and surrogate models in calibration and 

uncertainty analysis of complex models of subsurface flow. The author considers the 

work to be novel in the following respects: 

• It is the first time that a proxy model has been used in a context wherein 

parameter adjustment is effected using gradient methods; 

• The number of parameters that can be adjusted using surrogate-enabled 

calibration and uncertainty analysis is far greater than has been 

documented in any pertinent literature to date; 

• The analytical proxy development strategies documented herein which 

involve the rapid creation of what is effectively a different proxy model 

for every model output used in the calibration process has not been 

documented elsewhere; 

• The development of multiple surrogate models based on different grid 

refinement strategies has not been documented elsewhere; 

• Nor has the use of a proxy spatial model based on a different 

conceptualization of three-dimensional, density dependent flow that that 

employed by the original model. 

The advantages of using a surrogate model in the gradient concept have been 

extensively documented herein. They include the following: 

• Gradient methods support the use of many more parameters than can be 

employed by so-called global methods. This supports calibration and 
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uncertainty analysis for a broad range of spatial models wherein complex 

environmental processes are simulated within heterogeneous media; 

• Calculation of a Jacobian matrix (at the heart of gradient methods) allows 

for the use of linear methods for approximate analysis of parameter and 

predictive uncertainty and for calculation of data worth; and 

• It also supports the use of methodologies such as Null Space Monte 

Carlo which provide the only viable option for exploration of parameter 

and predictive uncertainty where the dominant contributions to these 

uncertainties emerge from information deficits within the calibration 

dataset expressed through the null space. 

As models become more complex, and as decision-makers and stakeholders demand 

that predictions of future environmental behaviour made by models are accompanied 

by estimates of the uncertainties associated with those predictions, the need for 

parameterization complexity to match simulation complexity will grow. So too, 

inexorably, will be the requirement that inversion and uncertainty analysis be based 

on gradient methods. Paradoxically, the rise in simulation and parameterization 

complexity will almost certainly be accompanied by longer model run times and by 

numerical instability in model solvers as they attempt to solve highly nonlinear 

equations pertaining to highly nonlinear systems. As the impasse between the 

requirements of decision-makers and the capabilities of numerical tools that can 

serve the decision-making process grows, it is anticipated that the role of surrogate 

and proxy models will expand. In fact, it is suggested that not only will their role 

expand, but that their use will be essential to the next generation of modelling that 

supports the decision-making process. 

The work that is documented in this thesis suggests that there is every reason for 

optimism that the use of proxy and surrogate models can indeed support the next 

generation of decision-support simulation. It also indicates however, that the 

development of a suitable surrogate or proxy model will required careful 

consideration on each occasion of its deployment. In short, the development of 

context-specific surrogate and proxy modelling strategies, though essential, is likely 
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to be as much an art as a science. Conceptually, the use of such strategies will be 

essential to meeting future modelling needs. Practically, much experience needs to be 

gained, and the results of that experience documented. 

The work documented herein has demonstrated that development and deployment of 

proxy models must accommodate at least the following considerations: 

• A surrogate model must be capable of emulating the response of a real 

model over the range of parameters that represents possible system 

properties;  

• Ideally, it should be comparatively easy to build; and 

• It should run quickly and provide numerical stability. 

The first point is particularly important. By definition, a proxy model will not have 

the ability to replicate the performance of a much more complex model. Hence 

derivatives that are calculated using the proxy model for the filling of the Jacobian 

matrix will be somewhat in error. So too, then, will be parameter upgrades calculated 

using that Jacobian. To some extent, these errors can be accommodated through use 

of the complex model for testing and selection of upgraded parameters. However the 

present study shows that there is a limit to the extent to which this will be possible. It 

also shows that, the better is the fit sought between model outputs and field 

measurements during the calibration process, the greater is the extent to which 

parameters will adopt surrogate roles to compensate for imperfect surrogate/proxy 

model behaviour in the calibration process. It follows, that the use of proxy models 

must be accompanied by reduced expectations of the level of fit sought through the 

history matching process. Uncertainties in estimated parameters will therefore be 

higher than they may otherwise be if a complex model were used for all components 

of the inversion process. Fortunately, however, through use of surrogate/proxy 

models, parameter and predictive uncertainty can be quantified but at far reduced 

computational cost. Though uncertainty may be inflated to some degree through the 

use of these history-matching-enablers, this is a far better alternative to not being 

able to quantify uncertainty at all. Furthermore, with the cost of their use taken into 
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account as part of the uncertainty assessment process, the likelihood of committing a 

type II statistical error (whereby unwanted events are mistakenly assigned a low 

probability) is mitigated.  

So while the use of surrogate/proxy models comes at a cost, this cost is generally 

quantifiable as software which depends on their use quantifies model parameter and 

predictive uncertainty. At the same time, it is anticipated that in complex 

environmental systems that are often the focus of modelling attention, the “man-

made” (and quantifiable) uncertainties induced by use of surrogate/proxy models will 

be considerably less than those arising from system complexities and information 

deficits in calibration datasets. For the latter to be quantified, representation of 

system complexity in a calibration-constrained setting is essential. The present study 

shows that this can be achieved with surrogate/proxy models in a numerical context 

based on gradient methods which is readily capable of assimilating such complexity. 

5.2  The Future 

As stated, the present study documents the first application of proxy models in the 

gradient context. It suggests that the future of surrogate/proxy-enabled history-

matching and calibration-constrained uncertainty analysis is bright. However it is 

only the first such study and more studies are needed. As well as providing cause for 

optimism that surrogate enablement in the gradient context is not only possible but 

essential, the present study can suggest topics that deserve the attention of future 

research. A few of these are now briefly mentioned. 

5.2.1  Inversion Methodologies 

In common with surrogate/proxy strategies employed in conjunction with global 

methods, the strategy outlined herein deploys both a complex model and its 

surrogate/proxy in a single inversion algorithm. As has been discussed, the simplified 

model is used for filling the Jacobian while the complex model is used for testing 

upgrades. In the present context parameter upgrades are calculated using different 

values of the Marquardt lambda. 
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Modern computing takes place in highly parallelized contexts - often on a computing 

cloud such as Amazon of Azure. This provides the opportunity to upgrade 

parameters in many ways with little cost in wall-time required for testing those 

upgrades, all based on the same Jacobian matrix. For example, many (and not just a 

few) values of the Marquardt lambda can be used for calculation of parameter 

upgrades. Alternatively, or as well, gradient-enhanced global methodologies could be 

developed for use in calculating parameter upgrades. In this way it may be possible 

to harness the strengths of both of these approaches in a way that makes maximum 

use of the approximate Jacobian matrix that surrogate/proxy models can provide. 

5.2.2  Surrogate and Proxy Models 

The present study has exemplified the use of a number of different simplified models 

that are used in place of the more complex model in calculation of derivatives. These 

cover a broad spectrum of strategies, these being: 

 Use of a single model based on a coarser grid; 

 Use of multiple models based on parameter-specific coarser grids; 

 Use of a model which employs an alternative simulation algorithm; and 

 Use of a large suite of observation-specific analytical proxies. 

Many more options are possible. All will have their strengths and weaknesses. It is 

possible that in many real-world modelling contexts that more than one 

surrogate/proxy will be required, with different proxies used for different 

parameter/observation combinations. Before the modelling community is ready to 

adopt surrogate/proxy modelling as a standard weapon in their inversion and 

uncertainty analysis arsenal, much work is needed in developing and testing the use 

of different surrogate/proxy models for different modelling occasions. Where proxy, 

rather than surrogate, models are employed, work must be devoted to extending the 

present functionality of PEST to allow rapid calibration of such proxy models 

through adjustment of proxy model factors so that quantities calculated by these 
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simple analytical equations match pertinent complex model outputs, even in highly 

nonlinear modelling contexts. 

5.2.3  Second Stage Parameterization 

As was discussed in Chapter 3 of this thesis, while the use of a suite of polynomial 

proxy models can overcome problems associated with numerical granularity of 

complex model outputs, the methodology can only support estimation of a relatively 

small number of parameters (when compared to the hundreds or thousands that can 

be accommodated with gradient methods in general). It was suggested in that chapter 

that this problem can be overcome by using a limited number of parameters in the 

calibration stage, and then introducing a much greater number of “secondary” 

parameters in the post-calibration uncertainty analysis stage. It was suggested that 

these can “ride on the back” of the broad-scale parameterization supported by proxy 

model adjustment; the latter can then be adjusted to maintain calibration constraints 

following generation of random realisations of the former. 

The above strategy relies on the fact that proxy-adjustable parameters span the 

solution space of the inverse problem. At the same time, it relies on the fact that the 

secondary set of parameters spans the null space. Ideally, these two spaces are 

orthogonal. This suggests that it may be possible to design a secondary 

parameterisation set for use in parameter and predictive uncertainty analysis by using 

the outcomes of the primary parameter set adjustment process, and accompanying 

post-calibration covariance matrix. Construction of the secondary parameter set 

would be such as to maintain orthogonality to the primary set, while respecting the 

nature of geological variability that is likely to arise in a given simulation setting.  

5.2.4  Objective Function Definition 

Studies such as that undertaken by White et al. (2014) demonstrate the importance of 

careful formulation of an objective function for minimization during the history 

matching process. These authors demonstrate that direct matching of measurements 

with corresponding model outputs can, in many modelling circumstances, expose the 

history matching process to the deleterious effects of structural noise. This, in turn, 

can introduce bias to certain parameters, and to predictions which depend on them. 
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They go on to show that the situation can often be rectified by first processing 

observations in certain ways (e.g. through spatial, temporal, layer-differencing) and 

then matching these to corresponding model-generated quantities. Appropriate 

processing strategies can “orthogonalize out” the components of structural noise that 

would otherwise damage the inversion process. 

As has been discussed above, the use of surrogate and proxy models is seen as 

essential to the next generation of decision-support modelling. However as has also 

been discussed above, this can introduce its own type of structural noise. However 

the work of White et al. (2014) suggest that it may not be too difficult to formulate 

objective functions which provide some degree of immunity from the types of 

structural noise incurred through surrogate/proxy model usage. An obvious strategy 

in the salt water intrusion modelling context is the use of seawater wedge lateral 

locations rather than concentrations in measurement wells; the latter are highly 

nonlinear and particularly prone to model error whereas the former are much less so. 

In addition to this, the locations of salt water interfaces are often of more direct 

relevance to the decision-making process than concentrations in wells.  

In other calibration contexts, similar strategies should be sought. At the same time, 

some guidance must be sought as to appropriate levels of fit to achieve between 

processed measurements and similarly processed model outcomes as the two are 

matched through the parameter estimation process. 
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5.3  Final Remarks 

It is hoped that the present study is the first of many. Complex simulation is here to 

stay. However the use of complex models in the decision making process is often 

compromised through their inability to deliver the only things that they can promise. 

These do not include predictive certainty; in contrast they include an ability to 

quantify lack of predictive certainty after assimilation of as much information as 

possible emerging from expert knowledge and the historical behaviour of an 

environmental system. Rectification of this situation will require strategic use not 

just of complex models, but of appropriately-designed complementary simplified 

models in conjunction with inversion software whose capabilities are expanded to 

embrace the use of both of these. It is hoped that the present study contributes to this 

pursuit. 
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