Defining the role of p75 neurotrophin receptor (p75^{NTR}) in the development of Alzheimer's disease

A THESIS SUBMITTED IN TOTAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY

Khalil Saadipour

PhD candidate in Molecular Neuroscience MSc of Human Physiology BSc of Medical Science

Centre for Neuroscience, Department of Human Physiology, School of Medicine, Flinders University, Adelaide, South Australia

October 2014

TABLE OF CONTENTS

Table	of contents	ii
List of	f figures	iv
List of	f tables	vii
Thesis	summary	viii
Declar	ration	Xi
Ackno	owledgements	XII
Awar	ations and seminars arising from this thesis	XIV
Awaro	15 wiations	••••••••••••••••••••••••••••••••••••••
Chant	er 1: Introduction	1
1.1	Alzheimer's disease (AD)	2
1.2	Amyloid precursor protein (APP) and its processing and function in AD.	3
1.3	A β and its function in the brain	9
1.4	The role of ApoE on A β aggregation and clearance in AD	13
1.5	The role of protein phosphorylation in AD	14
1.	.5.1 The role of APP phosphorylation in AD	14
1.	.5.2 Hyper-phosphorylation of Tau in AD	15
1.6	Neurotrophins (NTs) and their functions in AD	16
1.	p_{75}^{1111} and its biological function	22
1.	$\frac{1}{2} = \frac{1}{2} \sum_{n=1}^{2} \frac{1}{n} \sum_{n=1$	26
1.	$6.4 ext{ p75}^{NTR}$ and neuronal dealn	20
1.	6.5 The association of $p75^{NTR}$ with Tau phosphorylation and cognitive	
di di	isorders in AD	29
1	6.6 The cooperation between $p75^{NTR}$ and other receptors	30
1.7	Sortilin and its association with APP processing in AD	
1.8	Hypothesis and aim	36
Chapt	er 2: A complex p75 ^{NTR} /APP/Aβ interaction mediates a feed-forward	loop
_	promoting APP processing and Amyloid beta generation in	_
	Alzheimer's disease	38
2.1	Abstract	39
2.2	Introduction	41
2.3	Materials and methods	43
2.4	Discussion	04
2.3 Chant	Discussion	
Chapt	neurodegenerative signals in the brain	106
3.1	Abstract	107
3.2	Introduction	
3.3	Materials and methods	113
3.4	Results	117
3.5	Discussion	147
Chapt	er 4: Effects of p75ECD-Fc on behavioural deficits and neuropatholog	зy
	features in Alzheimer's disease mouse models	153
4.1	Abstract	154
4.2	Introduction	156
4.3	Iviaterials and methods	158

4.4	Results	
4.5	Discussion	
Chapt	ter 5: Amyloid beta ₁₋₄₂ (A β_{42}) up-regulates the expression of Sortili	n via
-	the p75 ^{NTR} /RhoA signalling pathway	194
5.1	Abstract	195
5.2	Introduction	196
5.3	Materials and methods	198
5.4	Results	
5.5	Discussion	
Chapter 6: General discussion		
6.1	Summary	
6.2	Future directions	
Refer	ences	

LIST OF FIGURES

Figure 1-1: The enzymatic processing pathways of amyloid precursor protein (APP) in neurons
Figure 1-2: The structure of $A\beta_{42}$ monomer in AD (Rauk 2008)10
Figure 1-3: Mechanisms of $A\beta$ homeostasis in the brain
Figure 1-4: The binding of neurotrophin receptors with their ligands
Figure 1-5: The signalling pathways activated by neurotrophins21
Figure 1-6: The structure of p75 ^{NTR}
Figure 1-7: The interaction of p75 ^{NTR} with other receptors
Figure 1-8: The structure of Vps10p family members including Sortilin, SorLA, SorCS-1, -2, and -3
Figure 2-1: Presenting pET-28a vector, p75ECD-Fc and Fc recombinant proteins48
Figure 2-2: Western blot presenting the oligomer form of $A\beta_{42}$
Figure 2-3: The meninges removal from neonatal mouse brain provides a high purity of mouse cortical neurons in culture
Figure 2-4: The diagram presenting FRET acceptor photo-bleaching signals from the APP/p75 ^{NTR} interaction
Figure 2-5: The co-localization ratio between p75 ^{NTR} and APP in mouse cortical neurons and HEK-293T cells
Figure 2-6: $p75^{NTR}$ interacts with APP and A β_{42} enhances the $p75^{NTR}$ /APP interaction in a dose dependent and time course manner
Figure 2-7: Overexpression of p75 ^{NTR} mediates amyloidogenic processing of APP in CHO ^{APP695} cells
Figure 2-8: $A\beta_{42}$ increased APP processing in AD/p75 ^{+/+} , but not in AD/p75 ^{-/-} mouse cortical neurons through upregulation of APP and BACE1 expression
Figure 2-9: A β_{25-35} stimulates BACE1 expression in p75 ^{+/+} , but not in p75 ^{-/-} mouse cortical neurons
Figure 2-10: Effects of p75ECD-Fc recombinant protein on $A\beta_{42}$ -induced BACE1 upregulation in mouse cortical neurons
Figure 2-11: Effect of p75 ^{NTR} on APP distribution in subcellular compartments83
Figure 2-12: $A\beta_{42}$ induces APP and BACE1 internalization in p75 ^{+/+} , but not in p75 ^{-/-} mouse cortical neurons

Figure 2-13: $A\beta_{42}$ did not regulate p75 ^{NTR} internalization in mouse cortical neurons
Figure 2-14: $A\beta_{42}$ and proNGF enhanced APP/BACE1 interaction
Figure 2-15: $A\beta_{42}$ induces APP-Thr668 phosphorylation in AD/p75 ^{+/+} , but not in AD/p75 ^{-/-} mouse cortical neurons
Figure 2-16: A β_{42} increased Tau phosphorylation in AD/p75 ^{+/+} , but not in AD/p75 ^{-/-} mouse cortical neurons
Figure 2-17: Graphical summary presenting how p75 ^{NTR} contributes to APP processing in AD pathogenesis
Figure 3-1: BACE1 co-localized and interacted with p75 ^{NTR} in mouse cortical neurons and HEK-293T cells, respectively
Figure 3-2: BACE1 interacts with p75ECD, but not p75ICD120
Figure 3-3: $A\beta_{42}$ enhanced BACE1/p75 ^{NTR} co-localization in mouse cortical neurons 122
Figure 3-4: $A\beta_{42}$ and proNGF, but not NGF, increases the BACE1/p75 ^{NTR} interaction
Figure 3-5: BACE1 processes p75 ^{NTR} and generates p75ECD in mouse brain128
Figure 3-6. Effects of over expression BACE1 on endogenous p75 ^{NTR} processing in CHO ^{APP695} cell line
Figure 3-7: BACE1 mediates p75 ^{NTR} processing in HEK-293T cells136
Figure 3-8: p75ECD is decreased in culture medium of HEK-293T cells co- transfected with BACE1/p75 ^{NTR} vs Empty vector/p75 ^{NTR} 138
Figure 3-9: Effects of p75ECD-Fc on Aβ-induced neurite outgrowth impairment in mouse cortical neurons
Figure 3-10: Effects of p75ECD-Fc on proNGF-induced neurite outgrowth impairment in mouse cortical neurons
Figure 3-11: Effects of p75ECD-Fc on proBDNF-induced neurite outgrowth impairment in mouse cortical neurons
Figure 4-1: Presenting the Morris Water Maze apparatus160
Figure 4-2: Effects of p75ECD-Fc on learning and memory functions in APPswe/PS1dE9 (AD) mouse
Figure 4-3: Effects of p75ECD-Fc on learning and memory function in PR5 mouse
Figure 4-4: p75ECD-Fc inhibited BACE1 expression in AD mouse brain

Figure 4-5: p75ECD-Fc decreased Aβ plaques size and depossiton in APPswe/PS1dE9 (AD) mice brain
Figure 4-6: Effects of p75ECD-Fc on astrogliosis in AD mouse brain178
Figure 4-7: Effects of p75ECD-Fc on the levels of synaptic proteins in AD mouse brain
Figure 4-8: p75ECD-Fc reduced BACE1 expression in PR5 mouse brain181
Figure 4-9: p75ECD-Fc inhibited the phosphorylation of Tau at Ser202 and Thr205 in PR5 mouse brain
Figure 4-10: Effects of p75ECD-Fc on the levels of ChAT protein in PR5 mouse brain
Figure 4-11: Effects of p75ECD-Fc on VAMP2 and SNAP-25 levels in PR5 mouse brain
Figure 4-12: Graphical summary presenting the effects of p75ECD-Fc recombinant protein on deposition of $A\beta$ in the brain
Figure 5-1: Sortilin protein expression is increased in brains from human AD patients and APPswe/PS1dE9 (AD) transgenic mice
Figure 5-2: Sortilin protein and mRNA expression in SH-SY5Y cell line207
Figure 5-3: Dose-response of $A\beta_{42}$ on Sortilin protein and mRNA expression by Western blot and quantitative RT-PCR
Figure 5-4: Effect of optimized standard $1\mu M A\beta_{42}$ over a 24h time-course on protein and mRNA expression of Sortilin in SH-SY5Y by Western blot and quantitative RT-PCR respectively
Figure 5-5: A β_{42} functions through the p75 ^{NTR} receptor in SH-SY5Y cells215
Figure 5-6: Involvement of RhoA signalling pathway in Sortilin expression by SH-SY5Y cell line assessed by Western blot
Figure 5-7: Potential involvement of the JNK pathway in the expression of Sortilin by $A\beta_{42}$ in SH-SY5Y cell line
Figure 5-8: Graphical summary for the mechanism of Aβ-induced Sortilin upregulation in neurons
Figure 6-1: Graphical summary presenting a complex p75 ^{NTR} /BACE1/APP interaction in neuron
Figure 6-2: Graphical summary presenting dual roles of p75 ^{NTR} in the development of AD

LIST OF TABLES

Table 2-1: PCR primer pair sequences used for AD Tg and p75KO mice genotyping in this study
Table 2-2: PCR primer pair sequences used for human p75ECD-Fc and Fc cloning 46
Table 4-1: PCR primer pair sequences used for PR5 mice genotyping in this study
Table 5-1: Real-time PCR primer pair sequences used in this study

THESIS SUMMARY

The dysregulation of neurotrophins and their receptors plays a crucial role in the pathological process of sporadic Alzheimer's disease (AD). Here, we investigated the potential functions of $p75^{NTR}$ in the development of AD. We have found that $p75^{NTR}$ interacts with APP and A β , as a $p75^{NTR}$ ligand, promotes the interaction. To address the significance of this $p75^{NTR}/APP$ interaction in AD, we discovered that $p75^{NTR}$ transfection increased amyloidogenic processing of APP in CHO^{APP695}. A β enhances APP amyloidogenic processing in mouse cortical neurons of AD/p75^{+/+}, but not in AD/p75^{-/-} neurons via upregulation of APP and BACE1 expression. A β_{42} increases the internalization of APP and the internalization of BACE1 through $p75^{NTR}$. In addition, A β and proNGF increased the APP/BACE1 interaction. The A $\beta_{42}/p75^{NTR}$ association regulates the phosphorylation of APP-Thr668 and phosphorylation of Tau in mouse cortical neurons.

It was shown that Sortilin interacts with BACE1, mediates retrograde trafficking of BACE1 and promotes A β generation. We have elucidated that BACE1, the ratelimiting enzyme processing APP, interacts with p75^{NTR}, as a co-receptor for Sortilin, and regulates its proteolytic processing. Our results present that BACE1 interacts with p75ECD. A β and proNGF significantly enhanced the BACE1/p75^{NTR} interaction. The ratio of p75ECD/p75FL in BACE^{+/+} mouse brain was significantly higher than in BACE^{-/-} mouse brain. p75ECD is increased in cell lysates, but reduced in culture medium, of HEK-293T cells co-transfected with BACE1/p75^{NTR} plasmids. To address the physiological function of p75ECD in AD, we found that p75ECD significantly rescued A β and proNTs-induced impairment of neurite outgrowth in cortical neurons. The neurotrophin receptor $p75^{NTR}$ mediates both neurotrophic and neurodegenerative signals and its ectodomain shedding from the cell surface are physiologically regulated. We have conducted an *in vivo* study to investigate the effects of p75ECD-Fc recombinant protein on cognitive function and neuropathology features of AD in an AD mouse model. Our data showed that i.p delivery of p75ECD-Fc was not effective on cognitive function in APPswe/PS1DE9 (AD) mouse. p75ECD-Fc improved the process of learning, but not memory impairment in tau pathology-related tyrosine phosphorylation (PR5) mouse model. p75ECD-Fc significantly decreased the size and number of A β plaques in AD mouse brain through inhibition of BACE1 expression. p75ECD-Fc significantly reduced GFAP levels in AD mouse. Moreover, p75ECD-Fc was not effective in restoring the level of synaptic proteins, including the vesicle-associated membrane protein (VAMP2) and synaptosomal-associated protein 25 (SNAP-25) in AD mouse brain. p75ECD-Fc did not change ChAT levels, but it significantly reduced Tau phosphorylation and inhibited BACE1 expression in PR5 mouse brain.

We further investigated the expression and regulation of Sortilin, as a $p75^{NTR}$ coreceptor, in AD. Our data showed that Sortilin expression is significantly increased in human AD brains and in brains of 6-month old APPswe/PS1dE9 transgenic mice in comparison with relevant control groups. A β_{42} enhanced the protein and mRNA expression level of Sortilin in SH-SY5Y cells. In addition, proBDNF also significantly increased the mRNA and protein expression of Sortilin. We found the inhibition of $p75^{NTR}$ and ROCK, but not JNK, suppressed constitutive and A β_{42} induced expression of Sortilin.

Taken together, the full length of $p75^{NTR}$ mediates APP processing and contributes to AD pathogenesis via A β -induced upregulation of BACE1, APP and Sortilin, whereas

the p75ECD fragment is a novel neurotrophic molecule and protects the brain from toxicity induced by A β and proNTs.

DECLARATION

'I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the test.'

Khalil Suadipour

ACKNOWLEDGEMENTS

First I would like to thank my supervisors, Prof. Xin-Fu Zhou and Assoc Prof. Damien J. Keating who have given me the opportunity to undertake this PhD project. Thanks for the helpful guidance, constructive scientific discussions and setting challenging goals. Moreover, thanks to Prof. Simon Brookes, the Head of the Department of Human Physiology at Flinders University, for his kind support and encouragement.

I would like to give great thanks to my lovely friend and lab mate, Dr. Yoon Lim, for his advice and support in my experiments. Furthermore, I want to give special thanks to our lab manager, Ms. Jenny Zhong, for her great support and assistance to me during my PhD. Thanks to my all lovely lab mates at University of South Australia for their attention to me. Thanks to Dr. Steven Liu for spending time on writing the animal ethics application for this project.

Huge thanks to Prof. Yan-Jiang Wang for his advice and providing reagents for my study. In addition, I am truly thankful to Prof. Moses V. Chao, Prof. Dennis J. Selkoe, Prof. Robert J. Vassar, Prof. Louis F. Reichardt, Prof. Christian Haass, Prof. Nigel Hooper, Prof. Patrick Kellera, Prof. Andrew Hill, Prof. Richard Lewis, Prof. Toshihide Yamashita, Assoc Prof. Elizabeth Coulson, Assoc Prof. John Oliver, Dr. Christoph Kaether, Dr Wei-Ping Gai, and Dr. Benjamin Roberts for providing antibodies, DNA constructs, cell lines and other reagents for my experiments.

Great thanks to Dr Sarah Nicolson for revising the thesis.

I am extremely grateful to Flinders University for providing my EIPRS scholarship and other financial support during my PhD journey. In addition I would like to thank the University of South Australia for providing the research facilities for my study.

Last but not least; I would like to special thank my wife, Mona, for standing beside me throughout my PhD. She has been my inspiration and motivation for continuing to improve my knowledge. Her support and encouragement was in the end what made this dissertation possible. In addition, I would like to thank my parents and my brothers and sisters for their constant support. Thanks for believing in me, supporting my choices and giving me the strength to always move forward.

At the end, I proudly dedicate my thesis to my lovely family, neuroscientists and all patients who are suffering from Alzheimer's disease.

Khalil Guadipour

PUBLICATIONS AND SEMINARS ARISING FROM THIS THESIS

Publications:

- Wang YJ, Zeng F, Saadipour K, Lu JJ, Zhou XF. p75^{NTR}- A molecule with multiple functions in amyloid-beta metabolism and neurotoxicity (2014); <u>J.</u> <u>Neurotoxicity Research</u> (*Handbook*).
- Saadipour K, Yang M, Lim Y, Georgiou K, Sun Y, Keating DJ, Liu J, Wang YR, Gai WP, Zhong JH, Wang YJ, Zhou XF. Amyloid beta 1-42 (Aβ42) upregulates the expression of Sortilin via the p75^{NTR}/RhoA signalling pathway (2013); <u>J. Neurochemistry</u> 127(2):152-62. doi: 10.1111/jnc.12383. *This article is Highlighted in an editorial piece: doi: 10.1111/jnc.12389. Epub 2013 Aug 28.*
- Yang M, Virassamy B, Lekha Vijayaraj S, Lim Y, Saadipour K, Wang YJ, Han YC, Zhong JH, Carlos R. Morales CR, Zhou XF. The Intracellular Domain of Sortilin Interacts with Amyloid Precursor Protein and Regulates Its Lysosomal and Lipid Raft Trafficking (2013); PLoS One 8(5): e63049. doi: 10.1371/journal.pone.0063049.
- Yao X[¥], Jia S[¥], Saadipour K[¥], Wang S, Zeng F, Wang Q, Wang Y. Zhong J, Zhou H, Zhou XF and Wang YJ. p75^{NTR} ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer's disease (<u>Under review</u>). ¥ First equal co-authors
- 5. **Saadipour K**, Lim Y, Zhou XF. A simplified method for the brain meninges removal of neonatal mouse for cortical neuron culture (<u>Under review</u>).
- 6. **Saadipour K**, Lim Y, Keating DJ, Liu J, Wang YR, Zhong JH, Wang YJ, Zhou XF. A complex of $p75^{NTR}/APP/A\beta$ interaction mediates a positive-forward loop promoting APP processing and A β generation in Alzheimer's disease (<u>Manuscript</u>).

- Saadipour K, Lim Y, Keating DJ, Zhong JH, Wang YJ, Zhou XF. BACE1 regulates the proteolytic processing of p75^{NTR} and mitigates neurodegenerative signals in the brain (<u>Manuscript</u>).
- 8. **Saadipour K**, Lim Y, Keating DJ, Zhong JH, Wang YJ, Zhou XF. Effects of extracellular domain of p75^{NTR} (p75ECD-Fc) on behavioural deficits and neuropathology features in Alzheimer's disease mouse models (<u>Manuscript</u>).

Conference abstracts:

- Khalil Saadipour, Yoon Lim, Jia Liu, Damien J. Keating, YeRan Wang, Jinhua Zhong, Yan-Jiang Wang and Xin-Fu Zhou. Aβ induces BACE1 upregulation and enhances APP processing through cross-talk with p75^{NTR}. Alzheimer's association International Conference (AAIC), 12th-17th of July 2014, Copenhagen, Denmark. <u>Poster presentation.</u>
- Khalil Saadipour, Yoon Lim, Jia Liu, YeRan Wang, Damien J. Keating, Yan-Jiang Wang and Xin-Fu Zhou. BACE1 regulates the proteolytic processing of p75^{NTR} via interacting with its extracellular domain. Australasian Neuroscience Society 34th Annual Meeting, Jan 2014, Adelaide, Australia. <u>Oral presentation</u>.
- Khalil Saadipour, Miao Yang, Kristen Georgiou, Yoon Lim, Shen Liu, Ying Sun, Wei-Ping Gai, Damien Keating and Xin-Fu Zhou. Amyloid beta₁₋₄₂ upregulates expression of Sortilin mRNA and protein in SH-SY5Y human neuroblastoma cells. Australian Neuroscience Society 33rd Annual Meeting, Feb 2013, Melbourne, Australia. <u>Poster presentation.</u>
- 4. Khalil Saadipour, Miao Yang, Yoon Lim, Kevin Smith, Shen Liu, Ying Sun, Yan-Jiang Wang and Xin-Fu Zhou. Amyloid beta mediates APP processing through p75^{NTR} in Alzheimer's disease. Australian Society for Medical Research (ASMR), 6th June 2012, Adelaide, Australia. <u>Poster</u> <u>presentation.</u>

AWARDS

- Endeavour International Postgraduate Research Scholarship (EIPRS) for PhD study in Neuroscience by Flinders University, 2010.
- Best student publication award (AU\$250) for "Amyloid beta₁₋₄₂ (Aβ₄₂) upregulates the expression of Sortilin via the p75^{NTR}/RhoA signalling pathway. J Neurochemistry 2013" article by Australian Society for Biochemistry and Molecular Biology (ASBMB), 2013.
- International conference travel grant (AU\$2000) by Flinders University, 2014.

ABBREVIATIONS

AA	Amino acid
Αβ	Amyloid beta/ Beta amyloid
AD	Alzheimer's disease
ADAM	A disintegrin and metalloproteinase
AICD	APP intracellular domain
ANOVA	Analysis of variance
AP	Anteroposterior (axis)
APLP	Amyloid precursor-like protein
АроЕ	Apolipoprotein E
APP	Amyloid precursor protein
BACE1	Beta-site amyloid precursor protein cleaving enzyme 1
BBB	Blood-brain barrier
BCA	Bicinchoninic acid (kit)
BDNF	Brain-derived neurotrophic factor
BF	Basal forebrain
BFCN	Basal forebrain cholinergic neurons
bp	base pairs
BSA	Bovine serum albumin
cAMP	Cyclic adenosine monophosphate
cdk5	Cyclin-dependent protein kinase 5
CFP	Cyan fluorescent protein
CGNs	Sensory and cerebellar granule neurons
ChAT	Choline acetyltransferase
CHO ^{APP695}	Chinese hamster ovary cells expressing APP695 protein
CNS	Central nervous system

CO2	Carbon dioxide
Co-IP	Co-immunoprecipitation
CREB	cAMP responsive element binding (signalling)
CSF	Cerebrospinal fluid
CTF	C-terminal fragment
Cy3	Cyanine-3 fluorescence dye
DAB	3,3'-Diaminobenzidine
DAPI	4' 6-Diamidino-2-phenylindole
DMEM	Dulbecco's Modified Eagle's Medium
DNA	Deoxyribonucleic acid
DNaseI	Deoxyribonuclease I
DRG	Dorsal root ganglion
DS	Down syndrome
DV	Dorsoventral (axis)
Dyrk1A	Dual specificity tyrosine-phosphorylation-regulated kinase 1A
ECD	Extracellular domain
EDTA	Ethylene diamine tetraacetic acid
EEA1	Early endosome antigen 1
EGF	Epidermal growth factor
EGTA	Ethylene glycol tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
ER	Endoplasmic reticulum
ERK	Extracellular signal-regulated kinase
FAD	Familial Alzheimer's disease
FBS	Fetal bovine serum
Fc	related to IgG "Fc" chain
FRET	Förster resonance energy transfer

FRET AB	FRET Acceptor bleaching
Gab1	GRB2-associated-binding protein 1
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GFAP	Glial fibrillary acidic protein
GFP	Green fluorescent protein
GM130	cis-Golgi matrix protein
GO	Glucose oxidase
GRP78	Glucose-regulated protein
GSK-3β	Glycogen synthase kinase 3ß
GTP	Guanosine triphosphate
HA-tag	Hemagglutinin-tag
HAB	Head activator binding protein
НЕК-293Т	Human embryonic kidney-293T cells
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HFIP	1,1,1,3,3,3-hexafluoro-2-propanol
HRP	Horseradish peroxidase
ICD	Intracellular domain
ICC	Immunocytochemistry
IGF-1R	Insulin-like growth factor 1 receptor
IHC	Immunohistochemistry
IPTG	Isopropyl β -D-1-thiogalactopyranoside
IS	Interstitial (fluid/space)
JNK	c-Jun N-terminal kinases
kb	kilobase
kDa	kilodalton
KPI	Kunitz protease inhibitor
LAMP1	Lysosomal-associated membrane protein 1

LM	Lateromedial
LRP	Lipoprotein receptor-related protein
LTD	Long-term depression
LTP	Long term potentiation
MAG	Myelin-associated glycoprotein
МАРК	Mitogen-activated protein kinase
MAP-2	Microtubule-associated protein-2 (antibody)
MAPs	Microtubule-associated proteins
MARK	Microtubule-affinity-regulating kinase
MBGIs	Myelin-based growth inhibitors
mRNA	Messenger RNA
MTT	Methyl Thiazoly Blue Tetrazolium Bromide (assay)
MW	Molecular weight
MWM	Morris water maze
Ν	Normal
NaCl	Sodium chloride
NADPH	Nicotinamide adenine dinucleotide phosphate
NBM	Nucleus Basalis of Meynert
NC	Negative control
NEB	New England Biolabs
NEP	Neprilysin
NFTs	Neurofibrillary tangles
NF-ĸB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NGF	Nerve growth factor
NgR	Nogo receptor
NT-3	Neurotrophin-3
NT-4	Neurotrophin-4

NTs	Neurotrophins
OB	Olfactory bulb
OD	Optical density
OmGP	Oligodendrocyte myelin glycoprotein
OS	Oxidative stress
p3	Peptide 3
p53	Tumour protein p53
p75ECD- Fc	Extracellular domain of p75 ^{NTR}
p75KO	p75knockout or p75 ^{-/-} (mouse)
p75 ^{NTR}	p75 neurotrophin receptor
p75WT	p75wild type or p75 ^{+/+} or 129sv (mouse)
PBS	Phosphate-buffered saline
PBS-CM	Phosphate-buffered saline with calcium chloride and magnesium chloride
PBST	Phosphate-buffered saline with Tween-20
РС	Positive control
PC12 cells	Rat adrenal pheochromocytoma cells
PCR	Polymerase chain reaction
PDL	Poly-D-Lysine
PF (4%)	Paraformaldehyde solution
PHFs	Paired helical filaments
РІЗК	Phosphoinositide 3-kinase
РКА	Protein kinase A
РКС	Protein kinase C
ΡLC-γ1	Phospholipase C-y1
PMSF	Phenyl methane sulfonyl fluoride
PNS	Peripheral nervous system

PR5	Tau pathology-related tyrosine phosphorylation (mouse)
proBDNF	Precursor form of brain-derived neurotrophic factor
proNGF	Precursor form of Nerve Growth Factor
proNTs	Precursor form of neurotrophins
PS1 or 2	Presenilin-1 or 2 (enzyme)
RAGE	Receptor for advanced glycation end products
RhoA	Ras homolog gene family, member A
RIPA	Radioimmunoprecipitation assay (buffer)
ROCK	Rho-associated protein kinase
ROI	Region of interests
RPM	Revolutions per minute
RT-PCR	Real-time quantitative PCR
SAPK1b	Stress activated protein kinase 1b
sAPPα	non-Amyloidogenic soluble form of APP
sAPPβ	Amyloidogenic soluble form of APP
Scr.	Scramble
SDS- PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SEM	Standard error of mean
SNAP-25	Synaptosomal-associated protein 25
SORCS	Sortilin-related Vps10p domain containing receptor 1
SorLA	Sorting protein-related receptor with A-type repeats
SPSS	Statistical Package for the Social Sciences
SVZ	Sub-ventricular zone
TACE	Tumour necrosis factor-alpha converting enzyme
TBS	Tris-Buffered Saline
TBST	Tris-Buffered Saline with Tween 20

2x Tg	Double transgenic (mouse)
TGN	Trans-Golgi network
Tm	Melting temperature
TMD	Transmembrane domain
TNF-alpha	Tumour necrosis factor-alpha
Trk	Tyrosine protein kinase/ Tropomyosin-related kinase (receptor)
V	Voltage
VAMP2	Vesicle-associated membrane protein 2
Vps10p	Vacuolar protein sorting 10 protein
VS	versus
WT	Wild type
YFP	Yellow fluorescent protein