The Synthesis and Characterisation of Polyhedral Oligomeric Silsesquioxane Bound Chromophores

David J. Clarke (MSc.) (BSc.Hons)

Thesis submitted to the Faculty of Science and Engineering of Flinders University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY in CHEMISTRY

> Prof Janis Matisons Prof George Simon

September 2008 Adelaide, South Australia

The Synthesis and Characterisation of Optically Active Polyhedral Oligomeric Silsesquioxanes

David J. Clarke (MSc.) (BSc.Hons)

ABSTRACT

This research involved the synthesis and characterisation of a range of optically active polyhedral oligomeric silsesquioxane (POSS) compounds.

POSS precursor compounds containing functional groups required for subsequent attachment of the desired functional groups have been synthesised. Examples of such precursor compounds include mono-functionalised POSS compounds with periphery aldehyde, azide, amino and pyridyl functional groups.

A variety of POSS compounds, functionalised with a range of optical functionalities, including optical limiters such as fulleropyrrolidine and iminofullerene, and dyes and pigments, including naphthalene, biphenyl, perylene, pyrene and porphyrin have been synthesised.

The reaction of mono-functionalised POSS aldehydes with fullerene (C_{60}) in the presence of N-methylglycine yielded the desired POSS fulleropyrrolidines, whilst reaction of mono-functionalised POSS azide with C_{60} yielded POSS iminofullerenes. All POSS fullerene compounds were characterised by power limiting measurements, exhibiting comparable power limiting to that of parent C_{60} .

The microwave condensation of mono-amino POSS with a range of mono- and bisanhydrides yielded the POSS imide compounds, which were characterised by UV-Vis and fluorescence spectrophotometry. The perylene POSS imide derivative was further characterised by single crystal x-ray crystallography. The naphtha and biphenyl POSS imides exhibited extremely weak fluorescence, whilst the perylene POSS imide displayed particularly strong fluorescence, with a quantum yield approaching unity.

The incorporation of a pyridyl group on the periphery of a mono-functionalised POSS cage allowed for the synthesis of the first porphyrin functionalised POSS compound. Mono-porphyrin POSS exhibited comparable absorption properties to other pyridyl ligated ruthenium porphyrins.

Mono-functionalised pyrene POSS compounds were prepared through the reaction of 1-pyrene acid chloride with mono(3-aminopropyl)POSS. This synthetic pathway offered a convenient route to mono-functionalised pyrene POSS, in preference to the multi-substitution associated with Heck coupling. Mono-pyrene POSS was determined to be strongly fluorescent, exhibiting a high quantum yield of fluorescence.

ACKNOWLEDGEMENTS

I would like to thank my supervisors Prof. Janis Matisons and Assoc. Prof. George Simon for the opportunity to undertake this project and their support and assistance. Additionally, I would like to express gratitude to Dr Mark Fisher for his support in the latter stages of the project and the opportunity to work on the biodiesel program, which taught me about chemistry in the real world. I must also thank Dr Stephen Clarke for always making me focus the final hurdle and providing part or my scholarship towards the latter stages the project.

Thanks to Dr Marek Samoc and Dr Anna Samoc at ANU for their help in obtaining the power limiting data and also to Dr Brian Skelton for the x-ray crystallography measurement.

I would also like to thank all the past and present members of the Nanomaterials group at Flinders University. Special thanks must go to Simon Mathew for all his help, ideas and encouragement over my time at Flinders, and for proving that the best ideas are often borne at the pub over a drink. I would also like to say cheers to Rachel Pillar for her help in editing parts of this thesis; it was much appreciated, even if she is a physical chemist.

To my family and Fee, it's been a rough time these past few years but you guys helped me through it, without your love and support there is no way I could have finished this thesis.

Finally, I'd like to dedicate this thesis in part to my late brother in law, Darren. Thanks for the memories mate, I wish you were here to see me finally finish this; it's been a constant source of amusement between us over the years and life isn't the same without you. 'I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text'

.....

(D. J. CLARKE)

TABLE OF CONTENTS

LIST OF F	IGURES	<i>x</i>
LIST OF T	ABLES	xı
LIST OF A	BBREVIATIONS	xv
1 INTRO	DUCTION	Î
1.1 0	utline & Aims	
1.2 S	ilsesquioxanes	
121	Synthesis of POSS Compounds	••••••••
1211	Synthesis of Costa Schulds Sundaria Synthesis of Octahydridosilses autoxane	•••••
1.2.1.2	Synthesis of Octakis(hydridodimethylsiloxy)octasilsesquioxane	
1.2.1.3	Tetrabutylammonoium Fluoride Catalysed Synthesis of POSS	
1.2.1.4	Synthesis of Incompletely Condensed Silsesquioxanes	1
1.3 F	unctionalisation of POSS	1
1.3.1	Hydrosilylation	14
1.3.2	Functionalisation of POSS by Hydrosilylation	1
1.4 F	unctionalisation of POSS by Other Reactions	
1.4.1	Monosubstituted POSS Derivatives	2
1.4.1.1	Method 1	2
1.4.1.2	P Method 2	2
1.4.1.3	Method 3	2
1.4.2	Subsequent Reactions of the R' Group	2
1.4.3	Reaction of the Trisilanol with Mono-Or Dihalide Organosilanes	2
1.4.4	Metal Silsesquioxanes	2
1.4.5	Octa-substituted POSS Derivatives	2
1.5 P	OSS Polymers	
1.6 S	ummary	
1.7 R	eferences	
2 POSS I	BOUND FULLERENES	
2.1 0	utline	4
$\frac{2.1}{2.7}$ F	ullerenes	Δ´
2.2 F	unctionalisation of C_{α}	.ד. رار
2.3 F	Addition of Diazomethane and Allay! Azides to C	-
2.3.1	Addition of Diazonie inale and Alkyl Azides to C_{60}	4. ⁄1
2.3.2	Addition of Stabilised α -Halomatonate Anions to C_{60}	
2.3.3	Cycloaddition of Azometrine Yildes to C_{60}	
2.4 0	ptical Limiting	
2.5 F	ulleropyrrolidines	
2.6 S	ynthesis	
2.7 S	ynthetic Pathway 1	
2.8 C	haracterisation	6
2.9 R	esults & Discussion	6
2.9.1	¹ H NMR	6
2.9.1.1	Mono-vinyl POSS	6
2.9.1.2	2 [2-(4-dimethylsilyl)phenyl]-1,3-dioxolane	6
2.9.1.3	Mono-dioxolane POSS	6
2.9.1.4	Mono-aldehyde POSS	6
2.9.1.5	5 POSS Fulleropyrrolidines	6
2.9.2	¹⁰ C NMR	6
2.9.2.1	Mono-vinyl POSS	6
2.9.2.2	2 [2-(4-dimethylsilyl)phenyl]-1,3-dioxalane	6
2.9.2.3	Mono aldehyde POSS	6! در
2.9.2.4		0

	2.9.	2.5 POSS Fulleropyrrolidines	. 71
	2.9.3	²⁹ Si NMR	.72
	2.9.4	High Resolution ESI Mass Spectrometry	.73
	2.9.5	Elemental Analysis of POSS Fulleropyrrolidines	.74
	2.9.6	Optical Properties of POSS Fulleropyrrolidines	.74
	2.9.	6.1 UV-Vis Spectra of POSS Fulleropyrrolidines	. 74
	2.9.	 Steady State Spectrofluorometric Emission Studies of POSS Fulleropyrrolidines. Bower limiting of POSS Fulleropyrrolidines 	כו. דד
	2.9.	Synthetic Dathway 2	. / / 70
	2.10	Desults & Discussion	80 80
	2.11		00 00
	2.11.1	¹ H NMP	.80 .80
	2.11.2	2 1 Mono-benzyl Chloride POSS	.80 80
	2.11	1.2.2 Mono-aldehyde POSS	. 82
	2.11	.2.3 POSS Fulleropyrrolidines	. 84
	2.11.3	³ ¹³ C NMR	.85
	2.11	.3.1 Mono-benzyl Chloride POSS	. 85
	2.11	.3.2 Mono-aldehyde POSS	. 85
	2.11	1.3.3 POSS Fulleropyrrolidines	. 87
	2.11.4	²⁷ Si NMR	.88
	2.11.5	High Resolution ESI Mass Spectrometry	.89
	2.11.6	5 Elemental Analysis of POSS Fulleropyrrolidines	.74
	2.11.7	Optical Properties of POSS Fulleropyrrolidines	.90
	2.11	1.7.1 UV-Vis Spectra of POSS Fulleropyrrolidines	. 90
	2.11	5.7.2 Steady State Spectrofluorometric Emission Studies of POSS Fulleropyrtolian	es . 01
	2.11	7.3 Power Limiting of POSS Fulleropyrrolidines	92
	2.12	Iminofullerenes	94
	2.13	Results & Discussion	95
	2 13 1	FTIR	95
	2.13.2	¹ H NMR	95
	2.13	3.2.1 Mono-benzyl Chloride POSS	.96
	2.13	3.2.2 Mono-azide POSS	.96
	2.13	B.2.3 POSS Iminofullerene	. 96
	2.13.3	¹³ C NMR	.98
	2.13	3.3.1 Mono-benzyl Chloride POSS	. 98
	2.13	3.3.2 Mono-azide POSS	.99
	2.13	3.3.5 POSS Iminofulierenes	. 99 1 0 1
	2.13.4	51 NMR	
	2.15.3	Elemental Analysis of DOCS Interests	
	2.13.0	0 Elemental Analysis of POSS Immolulelene	102
	2.13.7	UV Vis Spectrum of POSS Iminofullerene	102
	2.13	3.7.1 Steady State Spectrofluorometric Emission Studies of POSS Iminofullerene	102
	2.13	8.7.3 Power Limiting of POSS Iminofullerene	104
	2.14	Conclusions and Future Work1	05
	2.15	References1	07
3	POSS	S IMIDES	11
Ũ	3.1	Outline	11
	3.2	Pervlenes 1	11
	321	Pervlenes Incorporated into Sol-gel Matrices	112
	322	Other Anhydrides	114
	3.3	POSS Imides	15
	3.4	Synthesis 1	17
	~• T		
	3.5	Characterisation 1	18

3.6	Results & Discussion	118
3.6.1	FTIR	
3.6.2	¹ H NMR	
3.6	2.1 Mono-(3-aminopropyl) POSS	
3.6	2.2 Mono-phthalic POSS Imide	
3.6	.2.3 Bis-phthalic POSS Imide	122
3.6	.2.4 Octa-(3-chloroammoniumpropyl)POSS	123
3.6	.2.5 Octa-phthalic POSS Imide	123
3.6	.2.6 Mono-naphthalic POSS Imide	124
3.6	.2.7 Bis-naphthalic POSS Imide	125
3.6	.2.8 Biphenyl POSS Imide	126
3.6	2.9 Perylene POSS Imide	127
3.6.3	¹³ C NMR	128
3.6	.3.1 Mono-(3-aminopropyl)POSS	128
3.6	.3.2 Mono-phthalic POSS Imide	128
3.6	.3.3 Bis-phthalic POSS Imide	
3.6	.3.4 Octa-(3-chloroammoniumpropyl) POSS	
3.6	.3.5 Octa-phthalic POSS Imide	
3.6	.3.6 Mono-naphthalic POSS Imide	
3.6	3.7 Bis-naphthalic POSS Imide	
3.6	3.8 Biphenyl POSS Imide	
3.6	3.9 Perylene POSS Imide	
3.6.4	²³ Si NMR	134
3.6.5	High Resolution ESI Mass Spectrometry	135
3.6.6	Elemental Analysis of POSS Imides	135
3.6.7	UV-Vis Spectra of POSS Imides	136
3.6	.7.1 UV-Vis Spectra of Phthalic POSS Imides	136
3.6	.7.2 UV-Vis Spectrum of Mono-naphthalic POSS Imide	137
3.6	.7.3 UV-Vis Spectrum of Bis-naphthalic POSS Imide	
3.6	.7.4 UV-Vis Spectrum of Biphenyl POSS Imide	
3.6	.7.5 UV-Vis Spectrum of Perylene POSS Imide	
3.6.8	Steady State Spectrofluorometric Emission Studies of POSS Imides	145
3.6	.8.1 Emission Spectrum of Mono-naphtha POSS Imide	145
3.6	.8.2 Emission Spectrum of Bis-naphtha POSS Imide	146
3.6	.8.3 Emission Spectrum of Biphenyl POSS Imide	147
3.6	.8.4 Emission Spectrum of Perylene POSS Imide	
3.6.9	Single Crystal X-ray Structure of Perylene POSS Imide	149
3.7	Conclusions and Future Work	159
3.8	References:	161
4 POS	S BOUND PORPHYRIN	165
41	Outline	165
т.1 4 Э	Downhowing	165
4.2	Porpnyrins	105
4.3	POSS Ligands	168
4.4	Synthesis	
4.5	Characterisation	172
4.6	Results & Discussion	
461	FTIR	172
462	¹ H NMR	172
4.6	2.1 (3-aminopropyl)POSS	172
4.6	2.2 Mono-nhenyl POSS	174
4.6	2.3 Isonicotinic Acid Chloride	
4.6	2.4 Mono-pyridyl POSS	
4.6	2.5 Mono-porphyrin POSS	
463	¹³ C NMR	
4 6	3.1 (3-aminopropyl)POSS	
4.6	3.2 Mono-phenyl POSS	
4.6	.3.3 Isonicotinic acid chloride	

	4.6.3	.4 Mono-pyridyl POSS	180
	4.6.3	.5 Mono-porphyrin POSS	181
	4.6.4	²⁹ Si NMR	182
	4.6.5	High Resolution ESI Mass Spectrometry	183
	4.6.6	Elemental Analysis of Mono-porphyrin POSS and Precursor Compounds.	183
	4.6.7	Optical Properties of Mono-porphyrin POSS	184
	4.6.7	.1 UV-Vis Spectrum of Mono-porphyrin POSS	184
	4.7	Conclusions and Future Work	. 185
	4.8	References:	. 187
5	POSS	BOUND PYRENE	. 189
	5.1	Outline	. 189
	5.2	Pyrene	. 189
	5.3	Silsesquioxane Bound Pyrene	. 189
	5.4	Characterisation	. 191
	5.4.1	FTIR	191
	5.4.2	¹ H NMR	191
	5.4.2	.1 (3-aminopropyl)POSS	191
	5.4.2	.2 1-Pyrene Acid Chloride	191
	5.4.2	¹³ C NIMP	193
	5.4.5	UNMK	1041
	5.4.3	2 1-Pyrene Acid Chloride	194 196
	5.4.3	3 Mono-pyrene POSS	196
	5.4.4	²⁹ Si NMR.	197
	5.4.5	High Resolution ESI Mass Spectrometry	198
	5.4.6	Elemental Analysis of Mono-pyrene POSS	198
	5.4.7	Optical Properties of Mono-pyrene POSS	198
	5.4.7	.1 UV-Vis Spectrum of Mono-pyrene POSS	198
	5.4.7	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS	199
	5.4.7 5.5	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201
	5.4.3 5.5 5.6	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References:	199 . . 201 . . 202
6	5.4.2 5.5 5.6 EXPI	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References:	199 . . 201 202 203
6	5.4.2 5.5 5.6 <i>EXPI</i> 6.1	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 <i>203</i> 203
6	5.4.2 5.5 5.6 <i>EXPI</i> 6.1 6.1.1	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203
6	5.4.3 5.5 5.6 EXPL 6.1 6.1.1 6.1.2	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References: <i>CRIMENTAL</i> Instrumentation Nuclear Magnetic Resonance (NMR) Spectroscopy Fourier Transform Infra-Red (FTIR) Spectroscopy	199 201 202 203 203 203
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3	 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References:	199 201 202 203 203 203 203 203
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4	 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References:	199 201 202 203 203 203 203 203 203
6	5.4.1 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 (1.6)	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204
6	5.4.3 5.5 5.6 EXPL 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 (1.7)	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204 204 204
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204 204 204 204
6	5.4.2 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204 204 204 204 204 204 204
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 203 203 203 203 203 204 204 204 204 204 204 205 205
6	5.4.3 5.5 5.6 EXPL 6.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 203 204 204 204 204 204 204 205 205
6	5.4.1 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3 1	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204 204 204 204 204 205 205 205
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 203 203 203 203 203 203 204 204 204 204 204 205 205 206 206
6	5.4.3 5.5 5.6 EXPL 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 203 203 203 203 203 203 203 204 204 204 204 204 205 205 206 206 212 216
6	5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4	.2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 203 204 204 204 204 204 205 205 206 206 212 216 2.18
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 203 203 203 203 203 203 204 204 204 204 204 205 205 206 206 212 216 218 218 225
6	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 203 203 203 203 203 204 204 204 204 204 205 205 205 205 206 212 216 218 225 228
6	5.4.3 5.5 5.6 EXPL 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References: References: References: Instrumentation Nuclear Magnetic Resonance (NMR) Spectroscopy Fourier Transform Infra-Red (FTIR) Spectroscopy. Mass Spectrometry. Elemental Analysis UV-Vis Spectrophotmetry Fluorescence Spectrophotmetry Fluorescence Spectrophotmetry. Power Limiting Single Crystal X-ray Crystallography. Chemicals Chemicals Synthesis POSS Fulleropyrrolidines: Synthetic Pathway 1 POSS Fulleropyrrolidines: Synthetic Pathway 2 POSS Iminofullerenes POSS Iminofullerenes POSS Porphyrin POSS Pyrene References:	199 201 202 203 203 203 203 203 203 204 204 204 204 205 205 205 206 212 216 218 225 228 228 231
6 7	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 CON	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work References: References: RIMENTAL Instrumentation Nuclear Magnetic Resonance (NMR) Spectroscopy Fourier Transform Infra-Red (FTIR) Spectroscopy Mass Spectrometry Elemental Analysis UV-Vis Spectrophotmetry Fluorescence Spectrophotmetry Fluorescence Spectrophotmetry Power Limiting Single Crystal X-ray Crystallography Chemicals Synthesis POSS Fulleropyrrolidines: Synthetic Pathway 1 POSS Fulleropyrrolidines: Synthetic Pathway 2 POSS Iminofullerenes POSS Iminofullerenes POSS Porphyrin POSS Pyrene References: CLUSIONS & FUTURE WORK	199 201 202 203 203 203 203 203 204 204 204 204 204 204 205 205 206 206 212 218 225 228 228 232
6 7	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 CON 7.1	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 204 204 204 204 204 204 205 205 205 206 212 218 218 228 228 228 232 232 232
6 7	5.4.3 5.5 5.6 EXPI 6.1 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 6.1.9 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 CON 7.1 7.1 1	2 Steady State Spectrofluorometric Emission Studies of Mono-pyrene POSS Conclusions and Future Work	199 201 202 203 203 203 203 203 203 204 204 204 204 204 205 205 205 206 212 218 218 225 228 231 232 232 232

7.1.2	Future Work	
7.2	POSS Imides	
7.2.1	Conclusions	
7.2.2	Future Work	
7.3	POSS Porphyrin	
7.3.1	Conclusions	
7.3.2	Future Work	
7.4	POSS Pyrene	
7.4.1	Conclusions	
7.4.2	Future Work	

LIST OF FIGURES

Figure 1.1. Random, ladder, partial and cage conformations of silsesquioxanes	3
Figure 1.2. M, D, T, and Q type silicone units	4
Figure 1.3. Synthesis of POSS through Hydrolytic Condensation	5
Figure 1.4. Proposed mechanism of POSS synthesis	5
Figure 1.5. Synthesis of T ₈ ^H	8
Figure 1.6. Synthesis of $Q_8 M_8^{H}$	9
Figure 1.7. ORTEP representation of tetrabutylammonium octaphenyl	10
Figure 1.8. Examples of incompletely condensed POSS cages	11
Figure 1.9. Hydrolysis of acetonitrile	12
Figure 1.10. Silsesquioxane isomers formed in the hydrolytic condensation of CySiCl ₃ i	n
acetonitrile	13
Figure 1.11. Acid-mediated cleavage and rearrangement of Cy ₆ Si ₆ O ₉	13
Figure 1.12. Synthesis of incompletely condensed POSS through base-mediated cleavag	ge of
fully condensed T ₆ cage	14
Figure 1.13. Two possible isomers formed from the hydrosilvlation reaction	15
Figure 1.14. Chalk-Harrod mechanism	
Figure 1 15 Original hydrosilylation mechanism proposed by Lewis	16
Figure 1.16 Improved hydrosilylation reaction mechanism proposed by Lewis	17
Figure 1 17 Hydrosilylation of alkenes onto T ^H	17 19
Figure 1.18 Hydrosilylation of vinvlferrocene onto $\Omega_{\circ}M_{\circ}^{H}$	20
Figure 1 19 Synthesis of mono-functionalised POSS derivatives (Method 1)	21
Figure 1.20 Synthesis of mono-functionalised POSS derivatives (Method 2)	21
Figure 1.21. Synthesis of mono-functionalised POSS derivatives (Method 2)	22
Figure 1.22. Synthesis of mono-octene POSS	22
Figure 1.22. Synthesis of mono-oligo(ethylene oxide) hydridosilsesquioyane	2 <i>5</i> 74
Figure 1.25. Symmetry of motor ongoverny letter on deep dy investigation (A(d) = 2)	25
Figure 1.74. Corner capping of incompletely condensed susesalitoxane (Method 3)	
Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3)	23 ate-
Figure 1.24. Corner capping of incompletely condensed sussequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa	ate-
Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate	ate- 26
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane 	ate- 26
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives 	ate- 26 27
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane 	ate- 26 27 27
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitronhenyl)POSS 	ate- 26 27 27 27
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 27 28 29 29
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.28. Synthesis of octa(nitrophenyl)POSS Figure 1.30. Synthesis of octa(aminophenyl)POSS and subsequent Suzuki coupling	ate- 26 27 27 28 29 29 29
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 27 28 29 29 29 30
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.28. Synthesis of octa(nitrophenyl)POSS	23 ate- 26 27 27 28 29 29 30 31
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS Figure 1.30. Synthesis of octa(aminophenyl)POSS and subsequent Suzuki coupling Figure 1.32. Radical bromination of octa(vinyl)POSS Figure 1.33. Methoxycarbonylation of octa(vinyl)POSS 	ate- 26 27 27 28 29 29 30 31 31
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS Figure 1.30. Synthesis of octa(aminophenyl)POSS and subsequent Suzuki coupling Figure 1.31. Bromination of octa(phenyl)POSS	ate- 26 27 27 28 29 30 31 31 31
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 28 29 29 30 31 31 31 32
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate	ate- 26 27 27 28 29 30 31 31 31 31 32 32
 Figure 1.24. Corner capping of incompletely condensed sussequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 28 29 30 31 31 31 32 32 32
 Figure 1.24. Corner capping of incompletely condensed silsesquioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 28 29 30 31 31 31 32 32 33 33
 Figure 1.24. Corner capping of incompletely condensed silsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanos co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.28. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 28 29 30 31 31 31 31 32 32 33 33 34
 Figure 1.24. Corner capping of incompletely condensed sussequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanos co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS	ate- 26 27 27 28 29 29 30 31 31 31 31 32 32 33 33 34 35
 Figure 1.24. Corner capping of incompletely condensed sussequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives	ate- 26 27 28 29 30 31 31 31 32 33 33 34 35
 Figure 1.24. Corner capping of incompletely condensed sitesequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives	ate- 26 27 28 27 28 29 30 31 31 31 31 32 33 33 34 35
 Figure 1.24. Corner capping of incompletely condensed sitesequioxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanoa co-3-hydroxyalkenoate	ate- 26 27 27 28 29 30 31 31 31 31 32 33 33 34 35 35
 Figure 1.24. Corner capping of incompletely condensed sitsesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanor co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS. Figure 1.27. Synthesis of multi-substituted incompletely condensed silsesquioxane derivatives. Figure 1.28. Synthesis of disubstituted incompletely condensed silsesquioxane Figure 1.29. Synthesis of octa(nitrophenyl)POSS Figure 1.30. Synthesis of octa(aminophenyl)POSS and subsequent Suzuki coupling Figure 1.31. Bromination of octa(phenyl)POSS and subsequent Suzuki coupling Figure 1.32. Radical bromination of octa(vinyl)POSS Figure 1.33. Methoxycarbonylation of octa(vinyl)POSS Figure 1.34. UV addition of phosphanes to octa(vinyl)POSS Figure 1.35. Diels Alder polymerisation of dodeca(cyclopentadienyl)POSS Figure 1.37. Radical addition of thiols to octa(vinyl)POSS Figure 1.38. Heck coupling of bromoaromatics with octa(vinyl)POSS Figure 1.39. Arylation and dichlorocarbene addition to octa(vinyl)POSS	ate- 26 27 27 28 29 30 31 31 31 31 32 32 33 33 34 35 35 44
 Figure 1.24. Corner capping of incompletely condensed sussequitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanor co-3-hydroxyalkenoate Figure 1.26. Mono-functionalised incompletely condensed POSS Figure 1.27. Synthesis of multi-substituted incompletely condensed silesequioxane derivatives	ate- 26 27 27 28 29 29 30 31 31 31 31 32 32 33 33 34 35 44 45 46
 Figure 1.24. Corner capping of incompletely condensed sitisesquitoxane (Method 3) Figure 1.25. Free radical addition of 3-mercaptopropyl POSS to poly [3-hydroxyalkanor co-3-hydroxyalkenoate	ate- 26 27 28 29 29 30 31 31 31 32 33 33 34 35 35 44 45 46 46

Figure 2.6. Addition of α -halomalonate to C ₆₀	48
Figure 2.7. Addition of azomethine ylides to C ₆₀	49
Figure 2.8. Five-level reverse saturable absorption mechanism	51
Figure 2.9. Modified reverse saturable absorption mechanism	52
Figure 2.10. Synthesis of 3-(cyclopentadienyl)alkyltriethoxysilane fullerene ¹	54
Figure 2.11. Synthesis of N-[3-(triethoxysilyl)propyl]-2-carbonethoxy fulleropyrrolidine.	55
Figure 2.12. Synthesis of trimethoxysilyl undecyl fulleropyrrolidine	55
Figure 2.13. Synthesis of N-(triethoxysilyl)propyl functionalised fulleropyrrolidine	56
Figure 2.14. Synthesis of N-triethoxysilyl functionlised fulleropyrrolidine	57
Figure 2.15. Synthesis of silica grafted methanofullerene	58
Figure 2.16. Numbering scheme of pyrrolidines	59
Figure 2.17. Synthesis of mono-vinyl POSS (2.1, 2.2)	60
Figure 2.18. Synthesis of [2-(4-dimethylsilyl)phenyl]-1.3-dioxalane (2.3)	62
Figure 2.19. Synthesis of mono-dioxalane POSS (2.4)	63
Figure 2 20 Synthesis of mono-aldehyde POSS (2 5 2 6)	64
Figure 2.21. Synthesis of POSS-fulleropytrolidines (2.7, 2.8)	
Figure 2.22 Pyrrolidine resonances in the ¹ H NMR spectrum of POSS fulleropyrrolidine	
2.7 in CDCl ₂	66
Figure 2.23 Resonance structures of silvl-substituted benzaldehyde	70
Figure 2.24 ¹³ C NMR spectrum of POSS fulleronytrolidine 2.7 in CDCl ₂	71
Figure 2.25 ²⁹ Si NMR spectrum of POSS fulleropyrrolidine 2.7 in CDCl ₂	73
Figure 2.26 LIV-Vis spectra of POSS fulleronyrrolidines 2.7 and 2.8 in toluene	75
Figure 2.27 Eluorescence and phosphorescence of fullerenes	75
Figure 2.28 Eluorescence spectra of POSS fulleronyrrolidines 2.7 and 2.8 in toluene	
$(\lambda = 335 \text{ nm})$	76
$(\lambda_{exc} = 5.55 \text{ mm})$ Figure 2.29 Power limiting plot for C_{exc}	70
Figure 2.30 Power limiting plot for POSS fulleronyrroliding 2.7	70
Figure 2.31 Power limiting plot for POSS fulleronyrroldine 2.8	70
Figure 2.32 Synthesis of mono-henzyl chloride POSS (2.9, 2.10)	ر ہے۔ 80
Figure 2.32. Synthesis of mono aldebude POSS (2.11, 2.12)	00
Figure 2.33. Synthesis of mono-aldehyde POSS (2.11, 2.12)	02 83
Figure 2.35. Supplies of DOSS full group trolidings (2.12, 2.14)	05 QA
Figure 2.36. ¹³ C NMP of POSS fulleronyrroliding 2.12 in CDCl	+0 99
Figure 2.30. C NMR of POSS fulleropyrolidine 2.13 in CDCl ₃	00 09
Figure 2.37. SI NMR of FOSS fulleropyfoldine 2.12 in CDC13	07
Figure 2.58. UV-VIS absorption spectra of POSS funeropyfionalities 2.15 and 2.14 in total	01
Figure 2.20 Emission spectra of BOSS fuller on urrelidings 2.12 and 2.14 in taluana	91 02
Figure 2.39. Emission spectra of POSS fulleropyrionalities 2.15 and 2.14 in toruche	92
Figure 2.40. Power limiting plot of POSS fulleropyrrolidine 2.13	93
Figure 2.41. Power miniming plot of POSS fulleropyffondine 2.14	93
Figure 2.42. Synthesis of herature POSS azides	94
Figure 2.43. Synthesis of POSS azide (2.16).	95
Figure 2.44. Synthesis of POSS iminotulierene (2.16)	9/
Figure 2.45. H NMR of POSS iminorulierene 2.16 in $CDCl_3$	98
Figure 2.46. ³⁵ C NMR of POSS iminotulierene 2.16 in $CDCl_3$	100
Figure 2.47. Open [5,6] and closed [6,6] iminofullerenes	100
Figure 2.48. ² Si NMR of POSS iminofullerene 2.16 in CDCl ₃	101
Figure 2.49. UV-Vis spectra of POSS iminofullerene 2.16 in toluene	103
Figure 2.50. Fluorescence spectrum of POSS iminofullerene 2.16 in toluene	104
Figure 2.51. Power limiting plot of POSS iminofullerene 2.18	105
Figure 3.1. Benzene, naphthalene, biphenyl and perylene functional groups	111
Figure 3.2. Ethoxysilane substituted perylene derivatives	112
Figure 3.3. Structure of Perylene Orange	113
Figure 3.4. Synthesis of bis-(propyltriethoxysilyl)perylene diimide	113
Figure 3.5. Self-assembly of bis(propyltriethoxysilyl)perylene diimide	114
Figure 3.6. Synthesis of bis(propyltriethoxysilyl)phthalic diimide	114

Figure 3.7. Synthesis of mono(3-aminopropyl)POSS	115
Figure 3.8. Synthesis of octa(chloroammoniumpropyl)POSS	115
Figure 3.9. Synthesis of octa(propylsuccinimide) POSS	116
Figure 3.10. Synthesis of mono-phthalic POSS imide (3.2)	120
Figure 3.11. Structure of N-[3-(isobutylPOSS)propyl]bis(benzyloxybenzamide)	121
Figure 3.12. ¹ H NMR of mono-phthalic POSS imide 3.2 in CDCl ₃	122
Figure 3.13. Synthesis of bis-phthalic POSS imide (3.3)	123
Figure 3.14. Synthesis of octa-phthalic POSS imide (3.5)	124
Figure 3.15. Synthesis of mono-naphthalic POSS imide (3.6)	125
Figure 3.16. Synthesis of bis-naphthalic POSS imide (3.7).	126
Figure 3.17. Synthesis of biphenyl POSS bis-imide (3.8)	127
Figure 3.18. Synthesis of POSS perylene bis-imide (3.9)	128
Figure 3.19. ¹³ C NMR of mono-phthalic POSS imide 3.2 in CDCl ₃	130
Figure 3.20. Succinimide, maleimide and phthalic imide functional groups	132
Figure 3.21. ²⁹ Si NMR of mono-phthalic POSS imide 3.2 in CDCl ₃	135
Figure 3.22. UV-Vis spectra of phthalic POSS imides 3.2, 3.3 and 3.5 in toluene	137
Figure 3.23, UV-Vis spectrum of mono-naphtha POSS imide 3.6 in toluene	
Figure 3 24 Literature examples of mono-naptha imides	138
Figure 3.25. Naphthalic imide used for absorption calculations.	
Figure 3 26 UV-Vis spectrum of bis-naphtha POSS imide 3 7 in toluene	139
Figure 3.27 Bis-nanhtha diimide examples	139
Figure 3.28 Literature examples of his-nanhtha imides	140
Figure 3.29 UV-Vis spectrum of higheryl POSS imide 3.8 in toluene	141
Figure 3.30 Literature highenvl his-imides	142
Figure 3.31 LIV-Vis spectrum of pervlene POSS imide 3.9 in toluene	142
Figure 3.32 HOMO (ton) and LUMO (bottom) of pervlene historides	143
Figure 3.33 Emission spectrum of mono-nanhtha POSS imide 3.6 in toluene	145
Figure 3.34 Examples of mono-naphtha imides	146
Figure 3.35 Emission spectrum of his-nanhtha POSS imide 3.7 in toluene	147
Figure 3.36 Emission spectrum of binhenvl POSS inide 3.8 in toluene	1/18
Figure 3.37 Emission spectrum of pervlene POSS inide 3.9 in toluene	148
Figure 3.38 Single crystal x-ray structure of pervlene POSS inide 3.9	151
Figure 3.30 Unit cell diagram of nervlene POSS imide 3.0	152
Figure 3.40 Numbering scheme used for pervlene POSS inide 3.9	152
Figure 3.41 Empirical variation of perviene absorption maximum	157
Figure 3.42. Transverse and longitudinal displacements of pervlenes	158
Figure 3.42. Overlay of pervience regions	150
Figure 4.1. The unsubstituted norphyrin macrocycle	150
Figure 4.2. Synthesis of TDD	105
Figure 4.2. Syllinesis of TTT	100
Figure 4.4. Synthesis of ruthenium functionalised DOSS	160
Figure 4.4. Synthesis of numerican functionalised POSS	160
Figure 4.6. Synthesis of path terpuridul functionalised POSS	160
Figure 4.0. Synthesis of DOCS based rythenium metalledendrimera	170
Figure 4.7. Synthesis of POSS based futhemum metanodendrimers	1/0 171
Figure 4.8. Synthesis of eate (nhanyl amide) DOSS	1/1
Figure 4.9. Synthesis of octa-(phenyl annue) POSS	174
Figure 4.10. Synthesis of mono-prienty POSS annue (4.1)	175
Figure 4.11. Subucture of IN-[5-(ISOURGIPOSS)propy1]DIS(DenzyIOXyDenzamide)	1/3 175
Figure 4.12. Synthesis of isonicounic acid chioride (4.2)	5/ 1 ۲۳۲
Figure 4.15. Synthesis of mono normhyrin DOSS (4.3)	1/0 177
Figure 4.14. Synthesis of mono-porphyrin POSS (4.5)	1//
rigure 4.15. INOn-equivalence in isobulyi resonances in H INMK spectrum of mono-	170
poipiny fin POSS 4.4 in CDCl ₃	1/8
Figure 4.15. Non-equivalence in isobutyl resonances in "U NMK spectrum of mono-	101
рогрпугіп РОЗЗ 4.4 іп СОСІз	181

Figure 4.16. Aromatic region in ¹³ C NMR spectrum of mono-porphyrin POSS 4.4 in C	DCl ₃
	182
Figure 4.17. ²⁹ Si NMR of mono-porphyrin POSS (4.4)	183
Figure 4.18. UV-Vis spectrum of POSS porphyrin 4.4 in dichloromethane	184
Figure 5.1. Synthesis of octa-pyrene substituted POSS	190
Figure 5.2. Synthesis of pyrene acid chloride (5.1)	193
Figure 5.3. Synthesis of mono-pyrene POSS (5.2)	193
Figure 5.4. ¹ H NMR of mono-pyrene POSS 5.2 (pictured) in CDCl ₃	194
Figure 5.5. ¹³ C NMR of mono-pyrene POSS 5.2 (pictured) in CDCl ₃	197
Figure 5.6. ²⁹ Si NMR of mono-pyrene POSS 5.2 in (pictured) CDCl ₃	197
Figure 5.7. UV-VIS spectrum of mono-pyrene POSS (5.2) and pyrene in toluene	199
Figure 5.8. Emission spectrum of mono-pyrene POSS 5.2 in toluene ($\lambda_{exc} = 365$ nm)	200
Figure 5.9. Oligo-ether functionalised pyrene	200
Figure 6.1. Structure of 4-Bromophenyldioxalane	206
Figure 6.2. Structure of 2-(4-(Dimethylsilyl)phenyl)-1,3-dioxalane (2.3)	207
Figure 6.3. Structure of mono-vinyl POSS (2.1, 2.2)	208
Figure 6.4. Structure of mono-dioxalane POSS (2.4)	209
Figure 6.5. Structure of mono-aldehyde POSS (2.5, 2.6)	210
Figure 6.6. Structure of POSS fulleropyrrolidines (2.7, 2.8)	211
Figure 6.7. Structure of mono-benzyl chloride POSS (2.9, 2.10)	213
Figure 6.8. Structure of mono-aldehyde POSS (2.11, 2.12)	214
Figure 6.9. Structure of POSS Fulleropyrrolidines (2.13, 2.14)	216
Figure 6.10. Structure of mono-benzyl azide POSS (2.17)	217
Figure 6.11. Structure of POSS iminofullerene (2.16)	218
Figure 6.12. Structure of (3-aminopropyl)POSS (3.1)	219
Figure 6.13. Structure of octa(3-chloroammoniumpropyl)POSS (3.4)	219
Figure 6.14. Structure of mono-phthalic POSS imide (3.2)	220
Figure 6.15. Structure of bis-phthalic POSS imide (3.3)	221
Figure 6.16. Structure of octa-phthalic POSS imide (3.5)	222
Figure 6.17. Structure of mono-naphthalic-POSS imide (3.6)	223
Figure 6.18. Structure of bis-naphthalic-POSS imide (3.7)	223
Figure 6.19. Structure of biphenyl POSS imide (3.8)	224
Figure 6.20. Structure of perylene POSS imide (3.9)	225
Figure 6.21. Structure of mono-phenyl POSS (4.1)	226
Figure 6.22. Structure of isonicotinic acid chloride (4.2)	226
Figure 6.23. Structure of mono-pyridyl POSS (4.3)	227
Figure 6.24. Structure of mono-porphyrin POSS (4.4)	228
Figure 6.25. Structure of pyrene acid chloride	229
Figure 6.26. Structure of mono-pyrene POSS (5.2)	230

LIST OF TABLES

Table 1.1. Yields of T ₈ silsesquioxane cages obtained from the corresponding trilkoxysila	ne
with tetrabutylammonium fluoride	9
Table 2.1. ¹ H NMR resonances of POSS fulleropyrrolidines and precursor compunds	
(synthetic pathway 1)	61
Table 2.2. ¹³ C NMR resonances of POSS fulleropyrrolidines and precursor compounds	
(synthetic pathway 1)	68
Table 2.3. ²⁹ Si NMR of POSS fulleropyrrolidines and precursor compounds	72
Table 2.4. High resolution ESI mass spectrometry results of POSS fulleropyrrolidines and	1
precursor compounds	73
Table 2.5. Elemental analysis of POSS fulleropyrrolidines	74
Table 2.6. ¹ H NMR of POSS fulleropyrrolidines and precursor compounds (synthetic	
pathway 2)	81
Table 2.7. ¹³ C NMR of POSS fulleropyrrolidines and precursor compounds (synthetic	
pathway 2)	86
Table 2.8. ²⁹ Si NMR of POSS fulleropyrrolidines and precursor compounds	89
Table 2.9. High resolution ESI mass spectrometry results of POSS fulleropyrrolidines and	ł
precursors (synthetic pathway 2)	90
Table 2.10. Elemental analysis of POSS fulleropyrrolidines	90
Table 2.11. ¹ H NMR of POSS iminofullerenes and precursor compounds	95
Table 2.12. ¹³ C NMR of POSS iminofullerenes and precursor compounds	99
Table 2.13. ²⁹ Si NMR of POSS iminofullerenes and precursor compounds	101
Table 2.14. ESI mass spectrometry of POSS iminofullerenes and precursor compounds	102
Table 3.1. FTIR of POSS Imides	118
Table 3.2. ¹ H NMR of POSS imides	119
Table 3.3. ¹³ C NMR of POSS imides	129
Table 3.4. ²⁹ Si NMR of POSS imides	134
Table 3.5. ESI mass spectroscopy of POSS imides	135
Table 3.6. Elemental analysis of POSS imides	136
Table 3.7. UV-Vis data of bis-naphthalic imides	140
Table 3.8. UV-Vis data of various N-substituted perylenes in CHCl ₃	144
Table 3.9. Fluorescence data of various N-substituted perylenes in chloroform	149
Table 3.10. X-ray parameters	150
Table 3.11. Bond distances of POSS perylene and literature perylene bis-imides	153
Table 3.12. Bond Angles of bis(POSS)perylenediimide	154
Table 3.13. Bond distances and angles of POSS crystal structures	155
Table 4.1. ¹ H NMR of POSS porphyrin and precursor compounds	173
Table 4.2. ¹³ C NMR of POSS porphyrin and precursor compounds	179
Table 4.3. ²⁹ Si NMR of POSS porphyrin and precursor compounds	182
Table 4.4. ESI mass spectrometry of POSS porphyrin and precursor compounds	183
Table 4.5. Elemental analysis POSS porphyrin and precursor compounds	183
Table 5.1. ¹ H NMR of mono-pyrene POSS (5.2) and precursor compounds	192
Table 5.2. ¹³ C NMR of mono-pyrene POSS (5.2) and precursor compounds	195
-	

ABBREVIATIONS AND PARAMETER DEFINITIONS

3	(epsilon) molar extinction coefficient
λ	(lambda) wavelength
Á	Angstrom
δ	(delta) chemical shift in ppm
ppm	parts per million
^x J _{A-B}	coupling constant between nuclei A and B over x bonds in Hz
FTIR	Fourier Transform InfraRed
NMR	Nuclear Magnetic Resonance
UV-VIS	Ultraviolet visible
HOMO	Highest Occupied Molecular Orbital
LUMO	Lowest Unoccupied Molecular Orbital
Ph	Phenyl
Су	Cyclohexyl
Ср	Cyclopentyl
λ_{max}	wavelength of maximum absorption
λ_{exc}	wavelength of excitation
$\Phi_{ m F}$	quantum yield
κ	dielectric constant
M_n	mean molecular weight
0	ortho
т	meta
р	para
VS	very strong
S	strong
m	medium
W	weak