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SUMMARY 
Inadequate sleep is highly prevalent in the population and leads to an increased risk 
of a broad range of adverse health impacts. These include traffic and other accidents, 
mental health problems including depression, psychiatric disorders and suicidal 
tendencies and cardio-metabolic diseases such as diabetes, hypertension, heart dis-
ease and stroke. Assessments of sleep fragmentation and sleep quality are important 
to evaluate and mitigate risks associated with poor sleep. However, sleep fragmenta-
tion has traditionally been defined according to conventional sleep scoring in 30-sec 
epochs and obvious electroencephalographic (EEG) changes associated with arousals 
and awakenings, rather than more systematic and potentially more sensitive physio-
logically guided measurements derived from modern signal processing methods. Cur-
rent markers of sleep fragmentation repeatedly fail to predict important clinical out-
comes, such as sleepiness or cardiovascular events. Therefore, the aim of the work 
presented in this thesis was to develop new markers of sleep fragmentation based on 
key features of EEG changes during sleep. These biomarkers were subsequently 
tested for clinical utility in several population groups relevant to sleep fragmentation, 
including a sample of individuals exposed to experimental environmental noise ma-
nipulations and several large population samples including participants with sleep 
disorders. 
Phasic sleep fragmentation due to experimental environmental noise was quantified 
using K-complexes, a subtle EEG marker of sensory processing during sleep. K-
complexes were automatically detected and scored using a deep learning algorithm 
that was developed as part of this thesis. The effect of different types of environmen-
tal noise (traffic noise and wind farm noise) on sleep fragmentation was assessed in 
a pilot-study of 21 individuals exposed to a range of noises at different sound pressure 
levels throughout sleep. K-complexes were a more sensitive sensory disturbance 
marker of noise exposure during sleep than traditional metrics, such as arousals and 
awakenings. Statistically significant K-complex responses were observed at sound 
pressure levels as low as 33 dBA (75% more likely than control) and K-complex 
response probability further increased with sound pressure level. In contrast, arousals 
and awakenings were only detectable with noise exposures above 39 dBA. Overall, 
K-complexes were two times more likely to occur in response to noise than EEG 
arousals or awakenings, clearly indicating their superior sensitivity to noise exposure 
compared to traditional arousal scoring. 
In a separate study and analysis, deep sleep fragmentation was assessed using a 
technique conceived during this thesis work, which combines power spectral analysis 
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of the delta-frequency band (0.5 Hz to 4.5 Hz) with a measure of signal complexity 
via spectral entropy. The association between deep sleep fragmentation assessed with 
this new entropy metric and all-cause mortality was studied in the Sleep Heart 
Health Study (SHHS), a large US-based cohort (N = 5804). Delta sleep fragmenta-
tion was associated with a ~30% increased risk of all-cause mortality compared to 
no sleep fragmentation. This association was similar to a reduction in total sleep 
time from 6.5h to 4.25h. Conventional measures of sleep quality, including wake after 
sleep onset and arousal index were not predictive of all-cause mortality.  
Hyperarousal – a pathophysiological trait sometimes observed in patients with in-
somnia, was quantified using the odds ratio product (ORP), a novel marker of sleep 
alertness. Association between the ORP during wake (hypothesised to reflect hyper-
arousal) and sleepiness/poor sleep quality was assessed in two large cohort studies 
(HypnoLaus N = 2162; MAILES N = 754). Hyperarousal was associated with around 
a 30% increased risk of self-reported poor sleep quality (Pittsburgh Sleep Quality 
Index score >5) in both HypnoLaus (28%) and MAILES (36%), but an approxi-
mately 20% decrease in excessive daytime sleepiness (Epworth sleepiness scale score 
>10) in the combined dataset. In contrast, no associations were detected using any 
traditional polysomnography markers. 
The additive effect of multiple sleep disorders (co-occurrence of insomnia and ob-
structive sleep apnoea (COMISA)) on all-cause mortality and sleep fragmentation 
was studied in the SHHS cohort (N = 5804). COMISA was associated with greater 
sleep fragmentation and COMISA patients were at higher risk of all-cause mortality 
(30%) and cardiovascular events (30%). Insomnia-alone and obstructive sleep apnoea 
(OSA)-alone were not associated with all-cause mortality risk or cardiovascular event 
risk. 
The work presented in this thesis suggests that metrics designed to encapsulate core 
physiological and pathophysiological processes of sleep, sleep fragmentation and sleep 
disorders provide more informative markers that may be important predictors of 
adverse health outcomes. Specifically, disrupted deep sleep and an increased state of 
hyperarousal were two pathways identified as potentially contributing to all-cause 
mortality, sleepiness and poor sleep quality. K-complexes were also established to be 
a more sensitive marker of sensory processing during sleep to environmental noise 
disturbances than conventional metrics. Together, these findings make an important 
contribution to understanding the impact of sleep fragmentation on health and pro-
vide multiple EEG biomarkers with major potential to substantially improve clinical 
sleep medicine.  
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CHAPTER 1 Bastien Lechat 

1 

CHAPTER 1. LITERATURE REVIEW 

The negative consequences of severe sleep restriction are well known. Ulti-
mately, continuous sleep restriction in rats causes weight loss, skin and gastro-

intestinal lesions, sepsis and ultimately death after 2-3 weeks (Rechtschaffen et 
al., 2002) strongly suggesting that sleep is essential for good health. In humans, 
a lack of sleep has been associated with cardio-metabolic diseases such as dia-
betes and cardiovascular disease (Gottlieb et al., 2006, Patel et al., 2009). Sleep 
restriction is also associated with neuro-cognitive impairment, sleepiness and 
vigilance deficits that likely contribute to an increased risk of motor-vehicle 
accidents (Lyznicki et al., 1998, Belenky et al., 2003). Sleep deprivation is 
associated with social withdrawal, psychiatric disorders and an increase in su-
icide ideation (Bernert et al., 2015, Ben Simon and Walker, 2018, Freeman et 
al., 2020). Given the importance of sleep for good health, tools to assess sleep 
fragmentation and sleep quality are an important step towards improvement 
of sleep medicine.  
Poor sleep due to sleep disorders, sleep restriction and/or poor sleep hygiene 
is a growing public health concern. Sleep disorders are diagnosed using gold-
standard polysomnography methods to assess sleep which requires electroen-
cephalography (EEG), electrooculography (EOG) and electromyography 
(EMG) to classify wake, non-REM and rapid-eye-movement (REM) sleep 
against international manual sleep scoring criteria (Berry et al., 2012). Despite 
exponential advances in modern computing, sleep medicine remains based on 
manual scoring methods originating from the 1960s, when chart recorders ne-
cessitated manual sleep study scoring literally page-by-30-sec-page 
(Rechtschaffen and Kales, 1968). Computerised systems have replaced paper-
based sleep recording, but sleep scoring methods remain largely manual and 
unchanged and thus labour intensive (30-90 min per study). Manual scoring is 
therefore costly and captures only gross visually discernible EEG features with 
much poorer time and frequency resolution than is available within sleep re-
cordings. Manual scoring also shows considerable intra- and inter-scorer varia-
bility.  
The potential for big data, automated methods and artificial intelligence to 
improve sleep medicine practices is thus well accepted (Redline et al., 2013, 
Goldstein et al., 2020) and several promising new sleep metrics have recently 
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been advanced (Younes, 2017, Stephansen et al., 2018). However, these remain 
early-stage advances with limited evidence to support their utility. The first 
part of this review therefore describes normal sleep structure and conventional 
measures of sleep fragmentation (and their limitations). The effect of sleep 
disorders and external factors on sleep structure is also described. The second 
part of this review is focused on novel ways of measuring sleep quality and 
fragmentation. At the end of this chapter, the aims and outline of this thesis 
are presented. 

1.1 Sleep architecture 

 Normal sleep structure 

 EEG activity during sleep 

Sleep is characterised according to classic methods first described in detail in 
1968 (Rechtschaffen and Kales, 1968). This method recognises that behav-
ioural responsiveness changes occur simultaneously with characteristic changes 
in EEG features and classifies sleep and wake into 5 stages based on 30 sec 
EEG epochs. In the wake stage, brain electrical activity is characterized by 
low amplitude (10 to 30 µV) and relatively fast and mixed (16 to 25 Hz) 
frequencies. During quiet relaxed wake, particularly with eyes closed, EEG 
frequencies begin to reduce and often show strong 10 Hz (alpha waves) activity. 
The transition from the wake state to stage 1 sleep is characterized by a further 
decrease in frequency to theta waves (3 - 7 Hz). Classically, sleep was then 
divided into 4 stages of non-REM sleep and rapid eye-movement (REM) sleep. 
However, more recent American Academy of Sleep Medicine classification 
methods classify 3 stages of non-REM (N1-N3) by combining classic stage 3 
and 4 into N3 (Iber et al., 2007). The main features of this classification schema 
are shown in Figure 1-1: 

• N1 typically occupies around 5% of total normal sleep and is a light tran-
sitional stage of sleep, during which the sleeper is easily awoken and may 
still respond to verbal cues. 

• The N2 stage usually comprises around 50% of total normal sleep, and 
shows characteristic brief bursts of EEG activity including sleep spindles 
(0.5 to 1.5 sec bursts of 8 to 12 Hz activity) and KCs (large amplitude - 
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75 µV - positive wave immediately followed by a negative wave, lasting at 
least 0.5 sec and at a frequency between <1 Hz). 

• N3 or slow wave sleep occupies around 20 to 25% of total normal sleep and 
consists of large amplitude waves at low frequency thought to reflect syn-
chronous low-level activity of large populations of neurons and to be a key 
marker of sleep homeostatic mechanisms. The sleeper is most difficult to 
awaken from N3, so N3 is often referred to as deep sleep (Bersagliere and 
Achermann, 2010). 

• REM occupies around 15 to 20% of total normal sleep, and displays wake-
like EEG activity, but profoundly reduced muscle activity and characteris-
tic rapid eye movements (Iber et al., 2007) associated with dream activity. 

Sleep is typically composed of multiple cycles lasting between 40 to 90 min 
and repeating 4 to 6 times over a full night of sleep, as shown in Figure 1-1. 
Multiple short-time scale features can be observed within the typical sleep 
stages. For example, Figure 1-1 shows an example of a manually scored wake 
stage which contains both fast/low voltage EEG, indicative of higher alertness 
(von Stein and Sarnthein, 2000, Kaminski et al., 2012), and alpha waves, in-
dicative of drowsiness/cortical inhibition (Snyder and Foxe, 2010). Similar find-
ings can be observed for the other sleep stages. Manual scoring of sleep in 30-
sec epochs therefore ignores potentially informative short-time scale EEG fea-
tures. 
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Figure 1-1: EEG activity during sleep. 

 Slow wave sleep 

Slow wave sleep in humans is defined by the presence of high voltage (> 75 
µV) synchronized EEG waveforms. The EEG power within the 0.5 to 4.5 Hz 
frequency range is typically referred to as slow wave activity and encompasses 
delta oscillations (1 to 4.5 Hz) and slow oscillations (< 1 Hz). Slow wave ac-
tivity is typically highest during the first 1-2 sleep cycles and subsequently 
decreases with the time spent asleep (Figure 1-2). Slow waves seem to be 
mainly produced locally, meaning that some brain regions can be active in 
producing slow waves while others brain regions are silent and/or are produc-
ing oscillations at different frequencies (Massimini et al., 2004, Nir et al., 2011). 
Slow waves are produced more and more locally towards the end of sleep peri-
ods, and potentially explain the lower amplitude of slow wave activity (Nir et 
al., 2011) towards the end of the night. The decrease in amplitude might also 
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be partly explained by circadian phase (Lazar et al., 2015) or decreased sleep 
pressure and cortical synaptic strength across the night (Esser et al., 2007, 
Riedner et al., 2007) 
 

Figure 1-2: Slow wave activity across the night. 

Slow oscillations occur when cortical neurons become bistable and undergo a 
slow oscillation (<1 Hz) in membrane potential (Steriade et al., 1993, Steriade 
et al., 2001). This consists of a depolarized-up state, when neurons show sus-
tained firing, and a hyperpolarized down state, characterized by neuronal si-
lence, which corresponds to the negative downstroke of EEG slow waves. Slow 
wave sleep is a good candidate as a physiological marker of sleep homeostasis 
as it is considered to be a key component of synaptic homeostasis. According 
to this theory, wakefulness related high levels of neuronal activity potentiate 
the strength of synaptic connections in the cortex for which slow wave activity 
during sleep plays a key role in synaptic downscaling (i.e. restore synapses to 
their baseline strength) needed to re-optimise and re-organise finite synaptic 
resources underpinning normal brain function and memory and learning (de 
Vivo et al., 2019); see Tononi and Cirelli (2006) and Tononi and Cirelli (2014) 
for a in depth review of this hypothesis. The alternating and dissipating pat-
tern of slow wave activity prior to progressively lengthening periods of REM 
over the course of the night suggests that both slow wave activity and REM 
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sleep play key roles in synaptic re-organisation during sleep, and that slow 
wave activity may be a fundamental pre-requisite for the overall process. 
The evidence linking impaired slow wave sleep and slow wave activity with 
adverse health outcomes is overwhelming. Slow oscillations have been hypoth-
esized to be involved in memory consolidation during sleep (Stickgold, 2005, 
Marshall et al., 2006, Rasch et al., 2007, Maingret et al., 2016) and subse-
quently, reduced delta power across the night may be associated with cognitive 
impairment (Taillard et al., 2019). Some evidence supports that slow wave 
sleep is also involved in systemic metabolic regulation and tissue growth and 
repair. Indeed, supressed slow wave sleep may adversely affect glucose homeo-
stasis (Tasali et al., 2008) and has been implicated to be involved in the devel-
opment of Alzheimer’s disease (Ju et al., 2017). Finally, slow wave sleep activ-
ity has been coupled to cerebrospinal fluid flow, which is associated with clear-
ance of metabolic waste products from the brain (Ju et al., 2017, Fultz et al., 
2019). Both experimental and epidemiological studies suggest that slow wave 
sleep might also be involved in cardiovascular system regulation (Javaheri and 
Redline, 2012, Silvani and Dampney, 2013, Brindle et al., 2018, Javaheri et al., 
2018). Multiple associations between slow wave sleep and a wide range of car-
dio-metabolic outcomes support the concept that slow wave sleep disruption 
may contribute to adverse health outcomes. Despite the overwhelming evidence 
regarding slow wave sleep and good health and its use in sleep research/clinics, 
slow wave sleep is not used as a criterion of sleep disorder severity according 
to the international classification of sleep disorders (AASM, 2014, Leger et al., 
2018).  

 K-complexes 

KCs, as shown in Figure 1-3, are bi- or tri- phasic events with components 
generally accepted as N350, N550 and P900 (where the N and P represent 
negative and positive peaks, respectively, and the numerical value represents 
the approximate timing of the peak relative to stimulus onset in ms). KCs are 
most easily distinguishable and a characteristic feature in N2 sleep but can 
also occur in other NREM stages of sleep, as a spontaneously occurring event 
or as an evoked response to a sensory stimulus (Bastien and Campbell, 1992, 
Bastien and Campbell, 1994). The first studies of evoked KCs showed that 
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they could be elicited by all types of sensory stimuli but occur more frequently 
to auditory stimulation (Colrain, 2005).  

Figure 1-3: A bi-phasic (N550/P900) K-complex. 

The physiological significance of KCs has been the subject of a significant de-
bate (Halász, 2005) in which there are 2 main hypotheses. The first hypothesis 
is that KCs initiate activation of higher cortical centres in the brain (cortical 
arousal) and augment cardio-respiratory activity. The relationship between 
KCs and activation of the autonomic nervous system (increase in heart rate 
and in blood pressure) are well known (Church et al., 1978), and therefore 
some studies consider KCs as a form of arousal (Monstad and Guilleminault, 
1999). The second hypothesis is that KCs and slow waves are similar phenom-
ena related to sleep homeostasis for which KCs may help to preserve sleep in 
response to potentially sleep-disruptive external stimuli. This was first hypoth-
esized by Amzica and Steriade (2002) following the observation that KCs and 
slow wave oscillations share the same neuronal sources and fluctuations of 
membrane potentials (Amzica and Steriade, 1997b, Cash et al., 2009). The 
likelihood of evoking KCs in response to an acoustic stimulus ranges from 10 
to 90% (Bastien and Campbell, 1992, Bastien and Campbell, 1994, Colrain et 
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al., 1999, Forget et al., 2011). Thus, KCs are clearly a potentially useful marker 
of noise-induced sensory disturbances during sleep.  
While KCs are usually studied in N2 sleep, they are also present in N3 and 
follow a similar morphological pattern as in N2 (Mak-McCully et al., 2015). 
Slow waves are formed by a succession of up– and down– states (Steriade et 
al., 1993) reflecting synchronous firing of cortical neurons and periods of neu-
ronal silence, respectively. Furthermore, KCs can be seen as an up–state–de-
prived slow oscillation but with the same down–state component (Cash et al., 
2009), which makes them difficult to differentiate from EEG slow waves in N3. 
A significant reason for the slow progression in research surrounding KCs is 
the current reliance on manual scoring, which is time-consuming given that 
the KC occurrence rate is around 1 to 2 per minute (Colrain, 2005). Therefore, 
large-scale studies of KCs are currently impractical and automated methods 
are needed to upscale research on KCs.  

 Conventional definition of sleep quality/fragmentation 

Sleep quality and fragmentation are loosely defined terms (Krystal and 
Edinger, 2008), usually encompassing a broad range of subjective measure-
ments, such as the Pittsburgh sleep quality index (PSQI) (Buysse et al., 1989) 
and/or sleep diaries, and objective measures of sleep, using gold-standard pol-
ysomnography. Among these objective indices are measures such as sleep onset 
latency, total sleep time, wake time after sleep onset, sleep efficiency, and the 
number of awakenings or arousals (> 3 sec of fast, wake-like EEG during sleep). 
Thus in 2017, the National Sleep Foundation formed a committee, including 
multiple stakeholders and experts, to define sleep quality (Ohayon et al., 2017). 
The committee recommended sleep onset latency, number of awakenings with 
duration greater than 5 minutes, wake after sleep onset and sleep efficiency as 
appropriate measures of sleep quality. More fine-grained metrics of sleep struc-
ture, such as slow wave power, were not considered by the committee due to 
their “limited insight into home setting of the general population” (Ohayon et 
al., 2017). However, these currently recommended measures  are not predictive 
of important clinical outcomes, such as all-cause mortality (Punjabi et al., 
2009, Kendzerska et al., 2014a) or sleepiness (Rosenthal and Dolan, 2008, Ad-
ams et al., 2016). This suggests that while these measurements might have 
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clinical utility, biomarkers which better define sleep quality are needed for bet-
ter prediction of important clinical outcomes relevant to sleep (Redline et al., 
2013).  

 Sleep fragmentation and sleep disorders 

The international classification of sleep disorders consists of seven major cate-
gories of sleep disorders as follows: insomnia, sleep-related breathing (OSA, 
central sleep apnoea, hypoventilation), central disorders of hypersomnolence 
(such as narcolepsy), circadian rhythm sleep-wake disorders (such as non-24-h 
sleep-wake rhythm disorder), sleep-related movement disorders (such as rest-
less legs syndrome), parasomnias and other sleep disorders (AASM, 2014). This 
thesis focuses on the development and clinical testing of biomarkers that may 
help to quantify sleep disturbance and better inform pathophysiological mech-
anisms of insomnia and OSA. Given that the prevalence and consequences of 
these disorders have already been studied in large cohort studies, such as the 
sleep heart health study (Quan et al., 1997), comparisons between novel met-
rics and traditional markers of sleep quality are very useful for exploring the 
potential utility of novel markers of sleep disruption (see section 1.1.1d). 

 Obstructive sleep apnoea (OSA) 

OSA is the most common pathological respiratory disorder in sleep. It is esti-
mated that 936 million (95% CI 903–970) and 425 million (399–450) adults 
aged 30–69 years globally have mild to severe and moderate to severe OSA, 
respectively (Benjafield et al., 2019). Socio-economic consequences of this are 
high. The cost of undiagnosed OSA in the US in 2015 totalled nearly $150 
billions for reasons such as absenteeism and loss of productivity ($87 billions), 
but also increased risk of cardio-metabolic a psychiatric conditions ($30 bil-
lions) and motor accidents ($26 billions) (Watson, 2016).  
The upper airway frequently collapses in patients with sleep apnoea either 
partly or completely to cause hypopneas (a significant reduction in ventilation) 
and apnoea (complete cessation of ventilation), respectively. OSA diagnosis 
and severity are assessed based on the total number of apnoea and hypopnoea 
events per hour of sleep, called the apnoea hypopnoea index (AHI). The AHI 
definition and particularly hypopnea scoring criteria have undergone multiple 
changes in 1999, 2007, 2012, with little regard for impacts of scoring rule 
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changes on clinical diagnostic cut-offs. This has led to remarkably large differ-
ences in estimates of prevalence and consequences of OSA in the general pop-
ulation. For example, in the HypnoLaus cohort, the prevalence of OSA using 
the originally recommended AHI cut-off > 5 according to the 2007 and 2012 
criteria was 35.5% and 60.8%, respectively (Hirotsu et al., 2019). More prob-
lematic is that there was a two-fold increase in the threshold associated with 
cardio-metabolic conditions for the 2007 compared to the 2012 definition. 
Severe OSA has been associated with a higher likelihood of developing cancer 
(Marshall et al., 2014), cardiovascular disease (Redline et al., 2010, Kendzerska 
et al., 2020) increased motor vehicle accidents (Teran-Santos et al., 1999), de-
creased cognitive function (Redline et al., 1997, Beebe and Gozal, 2002), re-
duced quality of life (Appleton et al., 2015), increased depression (Lang et al., 
2017a) and ultimately all-cause mortality (Punjabi et al., 2009, Kendzerska et 
al., 2014a). Associations between adverse health outcomes and OSA have been 
generally based on variables related to disturbed ventilation and hypoxia, such 
as (from the most common to the least common) AHI, oxygen desaturation 
index, and the percentage of sleep time spent with arterial oxygen saturation 
less than 90%. Furthermore, sleep fragmentation, usually quantified using the 
arousal index, has largely been discounted as a potential pathophysiological 
pathway contributing to adverse health outcomes, since several studies have 
consistently shown no association between arousal index and adverse outcomes 
(Shahar et al., 2001, Punjabi et al., 2009, Kendzerska et al., 2014a). However, 
AHI is typically dominated by hypopnoea events for which most scoring crite-
ria require both a period of reduced ventilation and an oxygen desaturation or 
an arousal (or both). Thus, AHI is a composite outcome for which the potential 
contribution of arousal to adverse outcomes remains unclear. More problematic 
is that reducing the impact of hypoxia using continuous positive airway pres-
sure to reduce AHI in patients with pre-existing cardiovascular disease had no 
effect on the incidence of secondary cardiovascular events (McEvoy et al., 
2016). The absence of association between adverse health outcomes and sleep 
fragmentation in these earlier studies could well be confounded through the 
use of the arousal index as a marker of sleep fragmentation rather than a true 
absence of an association. Indeed, recent studies have shown associations be-
tween other components of sleep, such as reduced slow wave (Javaheri et al., 
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2018) and REM sleep (Leary et al., 2020), and hypertension and all-cause 
mortality, respectively. 

 Insomnia 

Insomnia symptoms include difficulties initiating sleep, maintaining sleep or 
waking too early and difficulties returning to sleep (Kupfer and Reynolds, 1997, 
Morin and Benca, 2012), from which chronic insomnia is typically defined on 
the basis of sleep onset latency > 30 minutes and/or wake after sleep onset > 
30 minutes at least three times a week for the past 3 months. A more con-
servative definition of insomnia includes daytime impairment, such as fatigue 
or feeling unrested. Depending on the definition, insomnia symptoms and/or 
disorder impact between ~6 to 40% of the general population (Ohayon and 
Reynolds, 2009, Sweetman et al., 2019, Zhang et al., 2019b). The prevalence 
of insomnia is also higher in populations reporting other sleep disorders (Morin 
and Benca, 2012), especially OSA (Sweetman et al., 2019). 
The most common accepted questionnaire to diagnose insomnia is the insom-
nia severity index (Morin et al., 2011). Risk factors for insomnia include low 
socio-economics status, physical pain, anxiety and stress, shift-work, depres-
sion and psychiatric disorders (LeBlanc et al., 2009, Morin and Benca, 2012), 
although a bi-directional relationship might exist between some of the psychi-
atric disorders and insomnia or poor sleep (Wulff et al., 2010, Freeman et al., 
2020).  
Definitive mechanisms underpinning insomnia have not yet been identified. 
However, hyperarousal is a popular common pathophysiological trait observed 
in patients with insomnia (Bonnet and Arand, 2010, Riemann et al., 2010). 
The concept of hyperarousal is characterised by 24-h increased cognitive/emo-
tional (e.g. ruminations about sleep, anxiety, catastrophizing) (Bonnet and 
Arand, 1997, Harvey, 2002, Bonnet and Arand, 2010), and physiological 
arousal with increased autonomic and central nervous system activity 
(Nofzinger et al., 2004, Li et al., 2015). Evidence of increased autonomic acti-
vation in patients with insomnia are based on observations of a higher heart 
rate in patients with insomnia (Stepanski et al., 1994, Bonnet and Arand, 
1998) and/or higher levels of cortisol compared to controls without insomnia 
(Rodenbeck et al., 2002). Absolute power in some EEG frequencies (beta and 
gamma), likely reflecting higher cognitive processing activity, have also been 
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shown to be increased in participants with insomnia (Freedman, 1986, Perlis 
et al., 2001, Hogan et al., 2020) in support of the hyperarousal hypothesis. 
However, these studies were relatively small in sample size (N ~ 50) and were 
generally designed to compare insomnia versus control participants. Thus, ev-
idence of physiological arousal in the general population presenting “insomnia-
like” symptoms remains unclear and requires more detailed investigation. 

 Co-morbid insomnia and OSA 

Insomnia disorder is more common in patients diagnosed with OSA compared 
to the general population, with a prevalence rate estimated between 30 and 
70% (Sweetman et al., 2017a). Similarly, a recent meta-analysis review esti-
mated that 38% of OSA patients meet diagnostic criterial for insomnia (Zhang 
et al., 2019b). Given the high prevalence of both insomnia and OSA in popu-
lations presenting with either primary complaint, Sweetman et al. (2017a), 
(2017b) suggest that bi-directional relationships may exist between insomnia 
and OSA, and subsequently coined the term co-morbid insomnia and OSA 
(COMISA) to describe their overlap. Potential bi-directional relationships have 
been further reinforced by a recent randomised controlled trial which showed 
that treating insomnia using cognitive behavioural therapy for insomnia 
(CBTi) produced a small but significant reduction  in OSA severity in 
COMISA patients (Sweetman et al., 2020). 
COMISA patients are at greater risk of adverse health outcomes, such as de-
pression, anxiety and quality of life compared to patients with either insomnia 
or OSA alone (Lang et al., 2017b, Tasbakan et al., 2018). However, increased 
cardiovascular/all-cause mortality risk for patients with co-morbid insomnia 
and OSA compared to any disorder alone has yet to be studied in any detail. 

 Phasic sleep fragmentation and environmental fac-
tors 

 Environmental noise as a public health concern 

A report from the World Health Organization (2011) estimated an annual loss 
of at least one million healthy life years due to annoyance and sleep disturbance 
caused by environmental noise in western Europe. Children chronically ex-
posed to traffic noise show poorer reading ability, memory and performance 
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than children who are not exposed to noise at school (Hygge et al., 2002, 
Lercher et al., 2003). Adults exposed to night-time wind turbine noise are 14% 
and 17% more likely to seek sleep medication and antidepressants, respectively 
(Poulsen et al., 2019). Long term effects of chronic noise exposure may also 
include cardiovascular disease, myocardial infarction or stroke (Babisch, 2011, 
Basner et al., 2014) and/or chronic disorders such as increased risk of hyper-
tension, diabetes, ischemic heart diseases and atherosclerosis (Babisch, 2011, 
Basner et al., 2014, Munzel et al., 2018, Zare Sakhvidi et al., 2018).  
Since similar health effects are associated with insufficient or disturbed sleep, 
sleep disturbance has been hypothesised to be an underlying mechanism ex-
plaining the adverse health effects of noise exposure (Basner et al., 2014, Bas-
ner and McGuire, 2018). This hypothesis is supported by survey data reporting 
that in an adult population, self-reported shortened sleep duration is associ-
ated with nocturnal traffic noise (Evandt et al., 2017). 
Evidence of environmental noise-induced sleep disruption is generally based on 
transportation noise (such as road, rail and aircraft traffic noise). Wind farm 
noise (WFN) is an atypical environmental noise as it is dominated by low 
frequencies that propagate long distances and through buildings more readily 
than higher frequency noise, and is often amplitude modulated (Nguyen et al., 
2019) and thus potentially more annoying and disruptive compared to more 
common environmental noise sources (Schaffer et al., 2016). Wind farm noise 
is also at its highest sound pressure level (SPL) during night-time hours 
(Hansen et al., 2019, Nguyen et al., 2019) when other background-noise is 
usually lowest. Thus, WFN might be particularly problematic for sleep and 
fundamentally different to transportation noise which is generally lower during 
the night. 
Very few studies have investigated the impact of WFN on sleep (Jalali et al., 
2016, Michaud et al., 2016, Smith et al., 2020). Two of these studies did not 
find any significant effect of noise on sleep. One was a study of pre- and post-
WFN operation sleep disturbances in the field, and while no significant sub-
jective or objective sleep impacts were found between pre- and post-WFN op-
eration, the small sample size of three participants and the short analysis pe-
riod of two days limits the generalisability of the study findings (Jalali et al., 
2016). The two other studies were large epidemiological studies that relied 
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solely on noise prediction models for noise quantification, and actigraphy based 
signal for estimation of sleep disturbances (Michaud et al., 2016, Michaud et 
al., 2021). No significant associations between WFN average SPL and sleep 
disruption were observed (Michaud et al., 2016, Michaud et al., 2021). Varia-
bility of WFN SPL across the night was significantly associated with an in-
creased rate of awakenings (and movement time). While significant, the effect 
size was relatively small and equivalent to only a 1-min increase of wake time 
overnight for a 5dBA increase in SPL variability. However, noise modelling was 
done based on ISO 9613-2, which may underestimate true SPL for WFN (Keith 
et al., 2018). Furthermore, actigraphy cannot adequately measure sleep param-
eters that may be predictive of noise-induced sleep disturbances (such as arous-
als). 
Only one research group has investigated the effects of WFN on sleep in a 
laboratory setting using polysomnography(Ageborg Morsing et al., 2018, 
Smith et al., 2020). The first study was a pilot study with 6 participants and 
suggested that WFN could potentially increase the number of awakenings and 
decrease the duration of N2/N3 sleep (Ageborg Morsing et al., 2018). These 
findings were partially reproduced in a later from the same group study sug-
gested that WFN  delayed REM sleep, reduced REM sleep duration and dis-
rupted sleep quality over the course of the night (Smith et al., 2020). The 
occurrence of noise-induced phasic events (such as arousals and awakenings) 
was not significantly worse during WFN exposure. Therefore, there is a clear 
need for studies more specifically designed to investigate potential dose-re-
sponse relationships between wind farm noise exposure and markers of sleep 
disturbance (Micic et al., 2018). 

 Noise-induced sleep disturbance 

Deriving exposure-response curves between sleep disturbance and SPL is of 
major importance for informing public policy decision making (Basner and 
McGuire, 2018). Several studies have derived noise exposure responses curves 
for various types of traffic noise compared to awakenings, arousals and brief 
autonomic arousal events derived from cardiovascular response markers 
(Jakovljevic et al., 2006, Basner et al., 2008, Griefahn et al., 2008). Dose-
response relationships between awakening rates and daytime function are also 
relatively well established, and show that an increase in evoked awakenings 
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results in impaired cognitive function, mood, and alertness, even if the total 
sleep time remains unchanged compared to a no-noise control night (Bonnet, 
1985, Bonnet, 1987, Martin et al., 1997). 
Exposure-response functions between environmental noise and sleep disturb-
ance usually show low levels of noise-related sleep disturbance. For example, 
between 5 to 10% of noise occurrences between 33 dBA and 43 dBA were found 
to evoke awakenings and arousals (Elmenhorst et al., 2012, Basner and 
McGuire, 2018). While these findings suggest that responses at lower noise 
levels may be subtle, relationships between markers of sleep disruption and 
next-day impacts remain largely unknown. Experimental data showing that 
overnight noise exposure without any apparent changes in sleep time, arousals 
or awakenings causes next day sleepiness and mood impairment supports that 
even subtle noise-related sleep disruption is sufficient to cause negative impacts 
(Martin et al., 1997). Sub-cortical autonomic responses including heart-rate 
acceleration (Martin et al., 1997) and peripheral vasoconstriction (Catcheside 
et al., 2002) are observed with noises that do not necessarily elicit cortical 
arousals or awakenings and are generally associated with KC co-occurrence (de 
Zambotti et al., 2016). Thus, the investigation of dose-response relationships 
between more sensitive markers of sleep disturbance and environmental noise 
(SPL and types) is an important next step towards understanding the potential 
long-term effects of chronic noise exposure during sleep.  

1.2 Emerging biomarkers in sleep research 

 Limitations of human scoring 

Sleep is traditionally scored based on 30-sec epochs. For example, N3 sleep is 
characterized by at least 20% of the epoch containing more than 75 µV ampli-
tude delta activity. In its current form, this scoring does not differentiate be-
tween ‘20% delta activity N3 epochs’ and ‘100% delta activity N3 epochs’ and 
therefore substantial changes in delta activity could be masked by current 30-
second epoch scoring. More generally, the coarse time-scale of 30-second epochs 
and practical constraints of manual scoring are very poorly suited to the sys-
tematic study of shorter time scale micro EEG events such as arousals, KCs 
and sleep spindles.  
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Manual scoring also has large intra- and inter-scorer variability, which remains 
significantly problematic in sleep medicine despite AASM scoring criteria up-
dates attempting to reduce scoring variability. Magalang et al. (2013) studied 
the inter-scorer agreement in sleep stage classification between 9 scorers from 
international sleep centres. Wake, N3 and REM stages showed relatively good 
agreement with kappa statistics (mean ± SD) of 0.78 ± 0.01, 0.67 ± 0.02 and 
0.78 ± 0.01 respectively. However, N1 (0.31 ± 0.01) and N2 (0.60 ± 0.01) 
showed lower agreement. Furthermore, the mean intra-class correlation 
coefficient of the arousal index was relatively low (0.68) with high within-scorer 
variance (± 0.15). Other studies report similar findings (Danker-hopfe et al., 
2009, Rosenberg and Van Hout, 2013). 
High inter- and intra-scorer variability inevitably leads to approximation in 
markers of sleep disorders, such as AHI measures and OSA diagnosis (Thomas 
et al., 2020). In this regard, the use of automated methods, instead of manual 
scoring, has been recognized as an important step needed towards improvement 
of sleep medicine (Redline et al., 2013, Younes, 2017). 

 Deep learning and automated sleep scoring 

Deep learning has gained widespread interest in the last decade and has been 
shown to perform well in computer vision, natural language processing and 
medical applications (Hinton, 2018). Sleep medicine has also been influenced 
by the rise of deep learning, and there are now several deep learning approaches 
to sleep stage classification that can achieve human-level performance (Tsinalis 
et al., 2016, Supratak et al., 2017, Chambon et al., 2018, Phan et al., 2019). 
The inputs to those networks are usually raw EEG data, sometimes with EMG 
or EOG data. These methods are based on convolutional neural networks 
(CNN). In addition, recurrent neural networks (RNN) based on long short-
term memory (LSTM) layers are sometimes used and this algorithm can be 
trained to learn sleep stage transitions.  
The results obtained by these algorithms are similar to inter-scorer agreement 
(around 80% for all sleep stages, except N1) obtained with human scoring 
(Rosenberg and Van Hout, 2013, Ruehland et al., 2015) and interestingly both 
human-algorithm and human-human agreement remains low for sleep N1 
(around 50%). All authors discussed potential improvements of their algorithm 
using training data scored by multiple scorers. While this might be a good 
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solution to improve algorithm performance against human scoring, these algo-
rithms remain constrained by traditional 30-second epoch scoring against ar-
bitrary EEG classifications founded on traditional sleep pattern recognition 
from the 1960’s. As explained in section 1.1.1a, this approach continues to 
ignore most of the finer-grained quantifiable features within the EEG  highly 
likely to be more strongly predictive of clinical outcomes than largely arbitrary 
rule-based coarser time-scale metrics. 
There have been several attempts to automate the scoring of more subtle EEG 
elements using deep learning, such as the identification of KCs/spindles 
(Chambon et al., 2019) and/or the cyclic alternating pattern (Hartmann and 
Baumert, 2019). Deep learning has also been applied to other polysomnogra-
phy signals, such as for the identification of apnoeic events (see Mostafa et al. 
(2019) for a review). However, the use of deep learning for scoring fine-grained 
elements in sleep is only emerging and there remains considerable room for 
improvement in both accuracy and interpretability of the algorithms. Most of 
the algorithms described above use threshold function to binarize outcomes (0 
or 1) and therefore do not quantify uncertainty. Uncertainty quantification is 
a way of assessing the reliability of automated decisions (Begoli et al., 2019) 
by giving a “confidence score”. For example, uncertainty quantification was 
used to identify “difficult cases” in an algorithm detecting diabetic retinopathy 
(Leibig et al., 2017), thus helping to avoid misdiagnosis by referring more 
equivocal cases to medical experts for further assessment. 

 Sleep microstructure biomarkers 

 K-complexes 

Most studies of KCs have been focused towards establishing exposure-response 
curves between KC occurrence and stimuli characteristics, such as SPL for 
acoustic stimuli (see Colrain (2005) for a review). In the context of noise, the 
likelihood of evoking a KC ranges from 10% (Forget et al., 2011) to 80-90% 
(Bastien and Campbell, 1992, Colrain et al., 1999, Nicholas et al., 2006, Colrain 
et al., 2010). Multiple demographic, behavioural and clinical factors can affect 
the rate of evoked KCs such as age (Colrain et al., 2010) sleep pressure 
(Nicholas et al., 2002), alcoholism (Colrain et al., 2009), neuropathology 
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(Crowley et al., 2005) and OSA (Afifi et al., 2003, Nguyen et al., 2016). How-
ever, most auditory evoked KC studies used pure tones at high SPL (~80dBA) 
to maximize KC occurrence, which are not representative of real-world envi-
ronmental noise. 
Previous research has mainly focused on KC occurrence in response to artifi-
cially synthesised, high-level tones. However, there is a lack of research on KC 
occurrence in response to more realistic environmental noise exposure levels. 
It is therefore unknown whether there is a threshold below which KCs are no 
longer elicited and whether the noise type has an influence over KC occurrence. 
Furthermore, it is unknown whether KC response characteristics remain fixed 
or whether they change depending on noise exposure conditions.  

 Slow oscillations 

Characteristic features of EEG slow oscillations have been mainly studied us-
ing power spectrum analysis, which will be discussed in section 1.2.4. However, 
a few studies have focused on specific time-based aspects of slow waves. For 
example, the slope of half slow-waves (Bersagliere and Achermann, 2010) (.i.e. 
the slope between the up-state and the down-state) has been shown to be 
sensitive to sleep restriction, suggesting that sleep need or “pressure” to sleep 
has an effect on the shape of slow oscillations. Furthermore, the proximity of 
other EEG oscillations (such as spindles) to slow oscillations has been a major 
area of research interest to study the effect of sleep on memory consolidation. 
These studies suggest that the proximity, and the phase of coupling between 
slow oscillations and spindles is involved in memory formation (Hahn et al., 
2020) and consolidation (Helfrich et al., 2019, Muehlroth et al., 2019). 
However, these metrics do not take into account the particular distribution of 
slow wave oscillations across the night (see section 1.1.1b) and they consider 
slow oscillations at the beginning and end of the night as the same “entity”. 
Assuming that the distribution of slow oscillations likely reflects multiple phys-
iological processes, then a marker encapsulating the more complex dynamics 
of slow wave distribution across sleep could provide a particularly useful phys-
iological marker of sleep quality with significant practical and clinical value. 
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 Cyclic alternating pattern (CAP) 

The cyclic alternating pattern is an additional sleep scoring system beyond 
traditional AASM sleep scoring which aims to quantify sleep NREM disconti-
nuity by characterizing phases of activation (A phases) and periods of inactiv-
ity (B phases) (Terzano et al., 2001). Subgroups of A phases (1 to 3) represent 
different degrees of cortical activation, with A1 phases mainly composed of 
slow oscillation activity, and A3 phases containing more high-frequency EEG, 
supposedly representing a higher degree of cortical activation (Parrino et al., 
2012). Automatic methods of CAP scoring have been proposed (Hartmann and 
Baumert, 2019) and have been applied to study and define NREM instability 
in large population-based studies (Hartmann et al., 2020b, Hartmann et al., 
2020a). However, cyclic alternating pattern scoring has its own issues with 
inter-scorer agreement with a Cohen’s kappa coefficient of around 0.6 (Ferri et 
al., 2005). Furthermore, as this technique groups micro-elements together 
(Parrino et al., 2012), cyclic alternating pattern scoring ignores potentially 
useful information of single events, for example, KCs or spindles alone. 

 Power spectral analysis of EEG signals 

Power spectral analysis has been applied to categorize physiological hyper-
arousal in people suffering from insomnia through identification of higher ab-
solute power in the beta frequency band (Krystal et al., 2002). People suffering 
from insomnia may experience smaller amounts of slow wave activity (meas-
ured by the absolute power of delta activity) (Cervena et al., 2004, Krystal 
and Edinger, 2010). However, a recent meta-analysis suggests that only relative 
delta activity (defined as absolute delta power divided by absolute power from 
0.5 Hz to 35 Hz) is associated with insomnia (Zhao et al., 2021). 
Power spectral analysis has also been used to assess EEG power pre- to post- 
treatment of insomnia using CBTi. Collectively, these results suggest that cog-
nitive behavioural therapy for insomnia may increase the amount of absolute 
power in the delta band (Cervena et al., 2004) during NREM, but also increase 
the amount of delta in the first NREM cycle (Krystal and Edinger, 2010).  
Krystal and Edinger (2010) also studied metrics such as slow wave power only 
in the first sleep cycle, and the decrease of slow wave power across sleep cycles. 
These metrics have been used to study the effect of an early evening nap on 
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sleep EEG power (Werth et al., 1996) in one of the earliest clinical studies on 
the topic. The same methodology was recently used by the same research group 
to show a slower decrease of EEG delta power in individuals with insomnia 
versus controls (Lunsford-Avery et al., 2021).  
Similar techniques have also been applied to OSA, where the mean absolute 
power of a given frequency band (delta, alpha, theta, sigma, beta), usually 
averaged over NREM and REM sleep, was shown to be predictive of disease 
severity (Appleton et al., 2019). The same methodology has also been used to 
predict daytime impact of OSA, such as excessive daytime sleepiness and cog-
nitive functioning (see (D'Rozario et al., 2017a) for a review). 
However, there are several important limitations with spectral power analyses 
employed in previous studies. Firstly, spectral analysis is typically only applied 
following traditional sleep stage scoring and therefore importantly governs 
which sleep epochs are analysed. As discussed in section 1.2.1, this inevitably 
introduces problems with inter-scorer agreement which have the potential to 
mask more subtle EEG changes than can be detected through manual meth-
ods. Averaging over traditionally scored sleep stages (30-sec) is convenient and 
likely helps to reduce effects of manual scoring, but remains highly likely to 
mask more subtle sleep and environmental noise dependent changes over both 
short (<30 sec) and longer-time scales (minutes or hours). Clearly EEG spec-
tral features can and do change both within and between sleep stages, so av-
eraging across NREM and/or REM remains inherently problematic for detect-
ing more subtle changes in the EEG than is possible with conventional manual 
scoring. Finally, power spectral density analysis has generally been applied to 
relatively small datasets, and more epidemiological studies (such as the one 
performed by Djonlagic et al. (2021)) accounting for confounders, are needed 
to systematically evaluate the potential clinical utility of power spectral anal-
ysis in sleep medicine. 

 Time-frequency analysis of EEG signals 

Sleep EEG is naturally suited for frequency and time-frequency analysis, since 
different stages or micro-elements (such as spindles, KCs, slow waves) have 
specific frequencies (Steriade, 2006, Scammell et al., 2017). Power spectral 
analysis of EEG may thus offer a more sensitive and objective marker for iden-
tifying patient phenotypes in different sleep disorders than current manual 
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methods. Prerau et al. (2017) revisited an older method, called multi-taper 
analysis (Park et al., 1987, Babadi and Brown, 2014), to systematically quan-
tify EEG spectral power across the full range of EEG frequencies with much 
better resolution than manual scoring. This approach is similar to traditional 
fast Fourier transformation based methods (D'Rozario et al., 2017b) but has 
superior noise reduction and feature extraction capabilities. This is an im-
portant consideration for clinical EEG acquisition where signal quality is 
highly variable. Figure 1-4 shows an example of multi-taper analysis where a 
transition from slow wave sleep (1) to N2 sleep (3) with an arousal in the 
middle (2) is observed. Slow wave sleep is characterised by high absolute power 
at frequencies less than 4 Hz and very little power at high frequencies, thus 
making the identification of high frequency (8-16 Hz) arousals straightforward. 
The transition from arousal to N2 sleep is also very specific, with a reduction 
in high frequency power, a sparse low frequency burst (likely reflecting KCs), 
sometimes followed by a burst of energy around 12 to 16 Hz, likely representing 
spindles.  

Figure 1-4: Spectrogram of sleep EEG signals using multi-taper based method. 

Multi-taper-based methods have not yet been used as a means to quantify 
sleep processes in a clinical population such as OSA, insomnia or COMISA. 
Therefore, although likely, it is currently unknown if markers based on multi-
taper analysis could have clinical utility.  

 The odds ratio product (ORP) 

The odds ratio product (ORP) is a novel EEG-derived metric that provides a 
continuous index of sleep depth and alertness (Younes et al., 2015, Younes, 
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2017). ORP is calculated in 3-sec non-overlapping segments, and is based on 
the absolute power, calculated using the fast Fourier transform, of 4 frequency 
bands: 0.33 - 2.33 Hz (slow delta), 2.67 - 6.33 Hz (range 2, includes theta and 
fast delta), 7.0 - 14.0 Hz (alpha/sigma) and 14.0 - 35.0 Hz (beta). The power 
in each of the four frequency ranges is calculated and assigned a rank (0–9) 
depending on pre-selected cut-off values, which were determined based on 58 
polysomnography studies included in the original ORP study (Younes et al., 
2015). These ranks are then used to determine the probability of being awake 
in each 3-second segment. This probability, which ranges from 0 to 100%, is 
then divided by 40 resulting in an ORP ranging from 0 to 2.5, where 0 indicates 
very deep sleep and 2.5 is widely awake. ORP values correlate well with the 
visual appearance of EEG across the night, as shown in Figure 1-5. There is 
an excellent correlation (r2 = 0.98) between average ORP in 30-sec epochs and 
the arousability index (defined as sum of subsequent arousals and awakenings 
* 100 / total number of epochs) of the following epochs, suggesting that ORP 
might be a reliable marker of arousability (Younes et al., 2015, Younes et al., 
2020). 
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Figure 1-5: The odd ratio product, a marker of sleep depth and alertness. 

ORP derived metrics may be useful for a wide range of clinical applications. 
For example, abnormally low ORP values during the wake period have been 
observed in mechanically ventilated patients (Dres et al., 2019). These partic-
ipants with an abnormally low wake ORP were more likely to fail at a sponta-
neous breathing test, which tests a patient’s capacity to breath without the 
need of a ventilator. Together these findings suggest that ORP may be useful 
for guiding decisions around ventilator weaning. High post-arousal ORP values 
have also been associated with lower sleep continuity in patients with sleep 
disordered breathing suggesting that the ORP may be a non-invasive marker 
of respiratory-related arousal threshold, which otherwise requires more invasive 
measurement to determine (Younes and Hanly, 2016). Other potential clinical 
applications of ORP-derived metrics include the diagnosis of sleep disorders 
(Younes and Giannouli, 2020). A higher mean ORP may also be a useful 
marker of decreased sleep depth/quality following environmental noises (Smith 
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et al., 2019). While promising, the performance of ORP-based metrics for pre-
dicting adverse health outcomes requires more studies, including cross-sec-
tional and longitudinal epidemiological studies with large sample sizes neces-
sary to account for potential confounders, and ultimately randomised con-
trolled treatment trials to more definitively demonstrate clinical utility. 

 Measuring signal complexity via entropy 

Surface EEG signals reflect the sum of electrical potentials radiating from neu-
ronal and non-neuronal sources with different electrical potentials, action po-
tential firing rates and distances from the recording electrodes. EEG is highly 
nonlinear and traditional signal processing techniques, such as EEG spectral-
band power analysis, is likely to miss some potentially informative underlying 
signal features (Bradley and Kantz, 2015). Nonlinear time-series analysis 
(Bradley and Kantz, 2015, Zou et al., 2019) is a set of tools very commonly 
used in fields such as weather prediction (Goswami et al., 2018), cardiology 
(Kumar et al., 2017), finance (Zhou et al., 2013) and epilepsy detection 
(Kannathal et al., 2005). Multiple entropies have been used to quantify the 
degree of signal complexity. For example, decreased EEG complexity was meas-
ured in patients with Alzheimer’s disease (Abasolo et al., 2006). In sleep re-
search, entropy has been generally used as a feature to classify sleep stages 
(Ma et al., 2018). Two studies have used entropies, calculated over different 
sleep stages, as a potential biomarker of Parkinson’s disease (Chung et al., 
2013) and neurodevelopment in newborns (Zhang et al., 2009). However, these 
studies were limited by relatively small sample sizes and entropy-based metrics 
have not been examined as potential markers of sleep disorder consequences to 
date. Given promising results to date with these techniques, nonlinear time 
series analysis of sleep signals clearly warrants further research.  

 Signal coupling, network physiology and machine 
learning-based approaches 

While sleep quality metrics are not the specific focus of this thesis, and a 
detailed review is available elsewhere (Mendonca et al., 2019, Lim et al., 2020), 
a few particularly influential metrics warrant mention.  
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 Signal coupling and network physiology 
Several research groups have investigated the coupling between multiple phys-
iological signals, such as heart rate in combination with respiratory signals 
(named cardio-pulmonary coupling) (Thomas et al., 2005, Bartsch et al., 2012, 
Penzel et al., 2016, Thomas et al., 2018). Coupling-based analyses have also 
been applied between sleep EEG and heart rate (Brandenberger et al., 2001) 
to facilitate the study of interactions between the central and autonomic nerv-
ous system activity. The theoretical concept of coupling-functions between dif-
ferent physiological systems has been recently generalised under the framework 
of network physiology, which aims to study relationships between different 
types of signals (Bashan et al., 2012, Ivanov et al., 2016).  

 Machine-learning based approaches 
Machine-learning has been used to automatically detect sleep disorders such 
as narcolepsy (Stephansen et al., 2018), and sleep apnoea subtypes (Mazzotti 
et al., 2019). These techniques can derive and explore a large number of fea-
tures from polysomnography signals and use machine-learning to infer sleep 
disorders (Stephansen et al., 2018). Classification accuracy of these methods 
partly depends on the features used and their quality and the nature of the 
outcomes against which their performance is optimised and assessed. Given 
the data and feature rich nature of sleep EEG there is potential high value in 
applying machine-learning methods to explore and define more data-driven 
physiological based biomarkers of sleep than is possible through traditional 
manual sleep scoring methods. However, while machine learning methods are 
promising, more work is needed to assess where modern machine learning 
methods have advantages over traditional approaches (Christodoulou et al., 
2019). 
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1.3 Summary  
Sleep is vital for good cardio-metabolic and mental health. The practice of 
sleep medicine remains heavily dependent on techniques established in the six-
ties based on manual scoring. Given poor intra- and inter-scorer agreement of 
manual scoring of EEG events during sleep, it is quite likely that associations 
between sleep quality and adverse health outcomes may be systemically un-
derestimated.  
While there are multiple plausible biological mechanisms linking slow wave 
sleep and good health, such as synaptic homeostasis and glymphatic system 
removal of wake-accumulated metabolites, there has been very little epidemi-
ological research studying the impact of fragmented slow wave sleep on health. 
Quantifying the impact of fragmented slow wave sleep, using a combination of 
power spectral analysis and measures of signal complexity, is likely to provide 
informative markers of poor sleep. 
Previous evidence supports that KCs are a sensitive marker of sensory pro-
cessing during sleep. However, systematic manual scoring of KCs is impractical 
so little is known regarding their potential utility to assess sleep disturbance 
to low level environmental noise. Given community complaints regarding envi-
ronmental noise, as well as the potential impact of environmental noise on 
sleep, testing for associations between KCs and environmental noise is clearly 
an important step towards understanding potential noise-related sleep disturb-
ance effects.  
Insomnia patients sometimes exhibit a pathophysiological trait called hyper-
arousal, which is conceptualised as a chronic state of increased cognitive and 
physiological arousal. Previous studies suggest that greater power in high fre-
quency EEG during sleep is associated with heightened physiological arousal. 
However, the available evidence is limited and based on a small number of 
participants. The ORP is likely to be a good marker of hyper-arousal, given 
that it is a marker of sleep alertness, but independent validation of the ORP 
as a potentially useful clinical measure has not been done to date. 
Finally, emerging research suggests increased morbidity in patients with co-
morbid insomnia and OSA compared to insomnia and OSA alone, but this 
hypothesis remains to be more rigorously tested using large datasets.  
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1.4 Aims 

The central aims of this thesis were as follows: 

1. To determine the exposure-response curve of KC occurrence for 
environmental noise. 
An automated KC algorithm was developed and validated and then used 
to determine the probability of evoked KC occurrence in response to traffic 
noise and wind farm noise in carefully controlled laboratory experiments. 
Evoked KC probability was compared to traditional sleep disruption mark-
ers of arousals and awakenings. This work tested the hypothesis that KCs 
are a more sensitive marker of sensory processing of environmental noise 
during sleep than traditional markers of arousal from sleep. 

2. To design novel sleep quality markers predictive of all-cause mor-
tality. 
A marker of slow wave sleep overnight structure was developed through the 
lens of delta (0.5 to 4.5 Hz) activity patterns overnight, calculated using a 
Fourier-based method and spectral entropy. The association between this 
marker of sleep quality and all-cause mortality was then determined in a 
US-based large cohort study and subsequently compared to traditional 
markers of objective sleep quality. This work tested the hypothesis that the 
shape of the distribution of delta activity overnight is a stronger predictor 
of all-cause mortality than current traditional sleep markers. 

3. To establish the association between sleepiness, poor sleep quality 
and novel EEG-markers of sleep alertness/depth. 
The association between high alertness during wake periods, as measured 
with the ORP, and sleepiness/poor sleep quality were determined and cross-
validated in two independent large study cohorts. This work tested the hy-
pothesis that ORP-based metrics predict self-reported daytime sleepiness and 
poor sleep quality better than traditional objective sleep markers.  
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4. To determine whether people with co-occurring sleep disorders 
are at greater risk of morbidity and mortality compare to single 
disorder. 
The consequences of co-occurring sleep apnoea and insomnia on all-cause 
mortality risk and cardiovascular event risk were examined and compared 
to either disorder alone. This work tested the hypothesis that patients with 
co-occurring disorders are at greater risk of morbidity and mortality than 
patients with either disorder alone. 

1.5 Thesis outline 

To address the aims outlined above, the thesis is structured as follows: 
Chapter 1 describes the current literature on the assessment, impact, and 
physiology of sleep fragmentation and the motivation and aims of this thesis. 
Chapter 2 details the development of a KC detection algorithm using deep 
learning and probabilistic classification. The algorithm was validated using a 
dataset with manually defined KCs. 
Chapter 3 examines the impact of environmental noise on sleep. Specifically, 
noise exposure dose-response curves were constructed to compare the occur-
rence of KCs, arousals, and awakenings between different types of environmen-
tal noise at realistic night-time sound pressure levels. 
Chapter 4 outlines a novel quantitative way of measuring sleep quality using 
delta power, calculated using a Fourier-based method and spectral entropy. 
This new biomarker was then used to test for associations between sleep qual-
ity and all-cause mortality in a large cohort study. 
Chapter 5 examines the association between sleepiness, poor sleep quality 
and sleep alertness/depth in two large cohorts using the odds ratio product, 
which is a novel EEG-marker of sleep alertness/depth. 
Chapter 6 describes the co-occurrence of insomnia and obstructive sleep ap-
noea (OSA) in a large cohort study, and its association with sleep fragmenta-
tion and all-cause mortality. 
Chapter 7 discusses the contribution of this thesis to the sleep research field, 
highlighting the strengths and limitations of this work, as well as possible fu-
ture research directions. 
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CHAPTER 2. BEYOND K-COMPLEX 
BINARY SCORING DURING SLEEP: 
PROBABILISTIC CLASSIFICATION 

USING DEEP LEARNING 
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Summary 
Background: K-complexes are a recognized EEG marker of sensory-processing 
and a defining feature of stage 2 sleep. K-complex frequency and morphology 
may also be reflective of sleep quality, aging and a range of sleep and sensory 
processing deficits. However, manual scoring of K-complexes is impractical, 
time-consuming and thus costly and currently not well-standardized. Although 
automated K-complex detection methods have been developed, performance 
and uptake remain limited.  
Methods: The proposed algorithm is based on a deep neural network and 
Gaussian process, which gives the input waveform a probability of being a K-
complex ranging from 0 to 100%. The algorithm was trained on half a million 
synthetic K-complexes derived from manually scored sleep stage 2 K-complexes 
from the Montreal archive of sleep study containing 19 healthy young partici-
pants. Algorithm performance was subsequently assessed on 700 independent 
recordings from the Cleveland Family Study using sleep stage 2 and 3 data. 
Results: The developed algorithm showed an F1 score (a measure of binary 
classification accuracy) of 0.78 and thus outperforms currently available K-
complex scoring algorithms with F1 = 0.2–0.6. The probabilistic approach also 
captured expected variability in KC shape and amplitude within individuals 
and across age groups.  
Conclusions: An automated probabilistic KC classification is well suited and 
effective for systematic KC detection for a more in-depth exploration of poten-
tial relationships between KCs during sleep and clinical outcomes such as 
health impacts and daytime symptomatology.  
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2.1 Introduction 

KCs (see section 1.1.1c) are conventionally scored manually based on rather 
vague and non-specific scoring guidelines defining a KC as a “well-delineated 
negative sharp wave, of at least 0.5 sec length, that stands out of the EEG 
background, usually followed by a positive phase” (Iber et al., 2007). Similar 
to other manually scored EEG features, this leads to a relatively low inter-
rater agreement of around 60–70% (Devuyst et al., 2010). However, more sys-
tematic and reliable KC scoring could potentially be clinically useful given that 
multiple clinical conditions such as OSA (Nguyen et al., 2016, Parekh et al., 
2019), insomnia (Forget et al., 2011), Alzheimer’s disease (De Gennaro et al., 
2017) and restless leg syndrome during sleep (Montplaisir et al., 1996) impact 
on KC occurrence and characteristics. Consequently, KCs could potentially be 
a clinically useful biomarker of sleep problems and daytime excessive sleepi-
ness. However, previous studies have been limited by a small sample size given 
that large-scale scoring of KCs is time consuming and hence costly due to KC’s 
high occurrence rate. 
Some KC detection algorithms are based on quantifying human–defined fea-
tures such as peak-to-peak amplitude, latency and duration of KCs in the time 
domain (Bankman et al., 1992, Devuyst et al., 2010, Erdamar et al., 2012), 
while others are based on EEG power in the frequency domain within the 0–4 
Hz frequency band (Richard and Lengelle, 1998, Parekh et al., 2015).These 
algorithms have a clean-cut binary accept/reject output based on arbitrarily 
pre-defined threshold values in both the time and frequency domains. However, 
defining clean-cut threshold values is challenging due to waveform variability 
and noise present in EEG recordings, which has a marked effect on threshold 
values and corresponding algorithm performance. Furthermore, KC morphol-
ogy differs greatly between individuals according to age (Crowley et al., 2002), 
genetics (Gorgoni et al., 2019) and sleep stage (Amzica and Steriade, 1997b, 
Massimini et al., 2004), compounding the difficulty for selecting optimal 
threshold values for clinically diverse populations. 
More recently, a deep learning inspired algorithm was developed for scoring 
KCs based on the sleep stage 2 EEG time series with a scorer–algorithm agree-
ment of 60% (Chambon et al., 2019). However, the algorithm is based exclu-
sively on the open–source Montreal archive of sleep study (MASS) database 
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containing scored KCs from 19 young participants (O'Reilly et al., 2014). KCs 
were scored by a single scorer, potentially limiting generalizability. Probabilis-
tic scoring, through Bayesian statistics (Leibig et al., 2017), can quantify un-
certainties related to the training data selection and labelling accuracy (Begoli 
et al., 2019). These issues are particularly pressing in sleep research, where 
databases are usually small (O'Reilly et al., 2014) and inter-scorer agreement 
is low (Devuyst et al., 2010). Thus, uncertainty-informed decisions are more 
appropriate than “clean-cut” decisions and are likely to improve diagnostic 
performance. Only a few studies have attempted to manually score KCs in 
sleep stage 3 and consequently very little attention has been given to auto-
mated KC detection in that stage (Devuyst et al., 2010, Chambon et al., 2019). 
Despite the absence of manually annotated KCs in stage 3 sleep, automated 
scoring in that stage is warranted. 
The main aim of this Chapter was to develop and validate a well-performing 
detection algorithm based on probabilistic classification better suited to more 
widespread uptake and use in sleep research and medicine than current ap-
proaches. The output of this approach comprises information on the overall 
quality of an EEG recording as well as KC morphology differences within and 
between individuals. The decision-processes underpinning the algorithm were 
also examined by comparing original and manually modified input effects on 
the output probability of the algorithm. 

2.2 Methodology 

 Recordings 

The algorithm was developed on an open access database MASS with 19 sleep 
polysomnography recordings from healthy individuals (8 males and 11 females) 
within an age range 18–33 and mean (± SEM) age of 23.6 ± 3.7 years (O'Reilly 
et al., 2014). Data were recorded using a Grass Model 12 system with 19 EEG 
channels (C3, C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, T6, 
Fp1, Fp2, Fpz) referenced to linked-ear electrodes (M1 and M2). The EEG 
time series were filtered with high– and low–pass first order filters with cut–
offs of 0.30 Hz and 100 Hz, respectively. Sleep stages were scored by a single 
scorer according to Rechtschaffen and Kales sleep scoring rules (Kales and 
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Rechtschaffen, 1968). KCs were scored on the C3 channel using the American 
Academy of Sleep Medicine (AASM) manual (Iber et al., 2007). 
Further assessment was performed by applying the algorithm to the Cleveland 
Family Study (CFS) dataset (Redline et al., 1999) from the National Sleep 
Research Resources (Dean et al., 2016) which contains 735 PSG recordings 
(406 males and 329 females), from participants aged between 6 and 88 years 
old. Only polysomnography recordings with at least 75% of artefact-free EEG, 
as recorded by the human-expert scorer, were included in this analysis. Only 
the C3 channel referenced to linked-ear electrodes (M1 and M2) was kept for 
analysis, as the algorithm was developed on C3. Any PSG recordings with a 
fallen C3 or reference EEG lead were excluded. Raw EEG data were recorded 
at a 256 Hz and 128 Hz for MASS and CFS dataset, respectively. Furthermore, 
MASS data were resampled offline at a sampling frequency of 128 Hz. 

 Algorithm workflow 

The algorithm was designed to detect KCs during stage 2 sleep on a C3 channel 
using 3 steps involving data pre-processing, balancing and classification using 
deep learning (Figure 2-1). 
The first pre-processing of EEG segments step, selects peaks greater than 𝛼𝛼 = 
15 𝜇𝜇V as potential KCs and other peaks as non-KCs (nKCs) (Figure 2-1A). A 
data segment of 𝑑𝑑 = 3 seconds is retained before and after each selected peak. 
The parameters 𝛼𝛼 and 𝑑𝑑 are arbitrarily defined and deliberately well below the 
KC features criteria of peak-to-peak amplitude ≥75 𝜇𝜇V (Bastien and Campbell, 
1992) and 0.5 second duration (Iber et al., 2007). An amount, 𝑁𝑁, of 2 ∗ 𝑑𝑑 long 
KCs and nKCs samples is then decomposed using the discrete wavelet trans-
form (DWT) with a symlet 3 wavelet (Mallat, 1989). Wavelet decomposition 
returns 128 coefficients 𝑐𝑐 for a DL network input and they represent energy 
within the 0-1, 1-2, 2-4, 4-8 and 8-16 Hz bands. 
The second step balances KCs and nKCs wavelet coefficients due to highly 
imbalanced EEG recordings with many fewer KCs than non–KC waveforms 
given that ∼95% of EEG data is KC free (Figure 2-1B). The MASS dataset, 
for example, was found to contain 160,000 nKCs and 7,535 KCs. DL requires 
large and balanced datasets for training (Goodfellow et al., 2016) and hence 
KCs were synthesized instead of randomly selecting equal sized KC and nKC 
dataset, which would be small due to the small number of KCs (Roy et al., 
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2019). Balancing is achieved either through creation of new KCs by adding 
Gaussian noise (μ=0 and σ=0.4) to existing KCs (Wang et al., 2014) or as 
follows (Zhang et al., 2018): 
 𝐾𝐾𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐾𝐾𝐶𝐶1 ∗ 𝜙𝜙 + 𝐾𝐾𝐶𝐶2 ∗ (1 − 𝜙𝜙) Eq 3.1 

where the coefficient 𝜙𝜙 is drawn from a beta distribution (Johnson et al., 1995) 
(𝛼𝛼 = 20 and 𝛽𝛽 = 1, with 𝛼𝛼 and 𝛽𝛽 parameters controlling the shape of the 
distribution, analogous to mean and SD descriptions of the shape of a normal 
distribution), and 𝐾𝐾𝐶𝐶1 and 𝐾𝐾𝐶𝐶2 are randomly selected existing KCs. The bal-
anced dataset was used only during the training phase containing approxi-
mately 500,000 KCs and 500,000 nKCs. 
The last step operates the classification of EEG segments as KC or nKC using 
deep kernel learning (DKL) (Wilson et al., 2015, Wilson et al., 2016) which is 
a combination of deep neural network (DNN) and Gaussian processes 
(Rasmussen, 2006). The DNN consists of 5 layers with a max-norm constraint, 
including fully–connected linear layers followed by batch normalization (Ioffe 
and Szegedy, 2015), rectified linear unit (Nair and Hinton, 2010) and drop out 
layer (Srivastava et al., 2014). The number of units per layer is 1000-1000-500-
256- 𝑏𝑏, where 𝑏𝑏 is manually adjusted. A Gaussian process is fit on each dimen-
sion of 𝑏𝑏 with a radial basis function (RBF) kernel. Because of the non-Gauss-
ian likelihood, Gaussian process training was approximated using stochastic 
variational inference (SVI) (Wilson et al., 2016). SVI is an approximation that 
leverages inducing point methods (Snelson and Ghahramani, 2006) via per-
forming training on an 𝑀𝑀 = 1000 data sub-set. The model was optimised using 
stochastic gradient descent (SGD) with Nesterov momentum. 
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Figure 2-1: K-complex detection algorithm workflow. A) The pre-processing 
step using a discrete wavelet transform B) dataset balancing and C) classifi-
cation using deep learning and Gaussian processes. Reproduced by permission 
of Oxford University Press https://doi.org/10.1093/sleep/zsaa077. 

The algorithm was developed in Python, using MNE-python (Gramfort et al., 
2013) for EEG processing, PyWavelets (Lee et al., 2019) for the DWT, and 
Pytorch (Paszke et al., 2019) and GPytorch (Gardner et al., 2019) for the 
classification model. The algorithm is available under a common license rule 
at https://github.com/Adelaide-Institute-for-Sleep-Health/K-complex_algo-
rithm. 

 Hyper-parameter tuning and training 

Hyper parameters in deep learning are parameters that cannot be learned from 
the data, and therefore require tuning. A five–split cross validation (Kohavi, 
1995)  was used to adjust the following hyper-parameters: learning rate, 𝑏𝑏, 
drop–out rate and momentum. The splits were organized with 10, 5 and 4 

https://doi.org/10.1093/sleep/zsaa077
https://github.com/Adelaide-Institute-for-Sleep-Health/K-complex_algorithm
https://github.com/Adelaide-Institute-for-Sleep-Health/K-complex_algorithm
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participants for training, validation and testing respectively. The most efficient 
combination was determined by the best average performance metrics on the 
validation set, and this combination was then tested using the testing set. 
The most important hyper-parameters, presented in Table 2-1, were tuned 
using grid-search on all 144 possible combinations of hyper-parameters. DKL 
is computationally expensive to train and therefore only a subset of hyper–
parameters and their values can be systematically tuned while the remaining 
parameters are adjusted manually. The best performance was achieved with a 
learning rate of 0.1, 𝑏𝑏 = 16, a drop out rate of 0.7 and a momentum of 0.95. 

Table 2-1: The most important hyper-parameters of the algorithm and their 
selected range for fine-tuning using cross-validation. 

Hyper-parameter Learning rate 𝑏𝑏1 Drop-out rate Momentum 

Value [0.5,0.1,0.05,0.01] [32,16,8,4] [0.5,0.7,0.9] [0.9,0.95,0.99] 

1Bottleneck size of the neural network (input of the Gaussian process) 

 Model evaluation 

Models were evaluated using the true positive rate (TPR), = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 , the pos-

itive predictive value (PPV), 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 , and the F1 score calculated as 

follows: 

 𝐹𝐹1 = 2
𝑇𝑇𝑃𝑃𝑇𝑇 × 𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑃𝑃𝑇𝑇 + 𝑃𝑃𝑃𝑃𝑃𝑃

 Eq 3.2 

where 𝑇𝑇𝑃𝑃 is the number of positively scored (human) and detected (algorithm) 
KCs, 𝐹𝐹𝑁𝑁 is the number of positively scored but negatively predicted KCs and 
𝐹𝐹𝑃𝑃 is the number of negatively scored but positively predicted KCs. The F1 
score ranges between 0 and 1 where the higher the score, the better the algo-
rithm performance. In practical terms, the F1 score is the harmonic mean 
between the PPV and the TPR.  

 Further evaluation of the algorithm 

The size of KCs varies with age, reaching its maximum in adolescence and then 
steadily decaying with age (Crowley et al., 2002, Crowley et al., 2004). The 
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difference in median scored probability of KCs as a function of age using the 
CFS dataset (N = 599) was therefore studied, expecting that older individuals 
would show a smaller median KC probability and smaller KC peak-to-peak 
amplitude (Crowley et al., 2002). 
As an indication of algorithm robustness to artefacts, KCs were automatically 
scored in all sleep stages in the CFS dataset, and mean KCs densities were 
compared across sleep stages. Assuming that KCs are not present in sleep stage 
1 or REM sleep, a mean KCs density near 0 is expected for these sleep stages.  
To differentiate slow waves from KCs, an up–state and down–state (N550) 
ratio was computed on all scored KCs during sleep stage 2 and 3. Assuming 
that down–states and up–states have the same amplitude (Mak-McCully et 
al., 2015), the ratio between up– and down– states for slow waves is expected 
to be around 100%, while the ratio for KCs is expected to be smaller. The 
ratio between the N550 component and the up-state peak which was defined 
as the maxima between 350 and 800 ms before the N550 component (Mak-
McCully et al., 2015) was therefore calculated. 
To further validate the algorithm performance in slow wave sleep, 500 KCs 
and 500 non-KCs, as scored by the algorithm, were randomly selected from 
slow wave sleep periods of participants in the CFS dataset and manually re-
viewed. Five researchers, experienced with sleep scoring, from the Adelaide 
Institute for Sleep Health participated in the review process and were prompt 
to classify a waveform as either being a KC, as defined by the AASM manual, 
or a random EEG segment. Scorers were blinded to the algorithm output. 
Inter-scorer agreement and algorithm/scorer agreement were calculated using 
the F1 score. Scoring “consensus” was defined as KCs scored by at least three 
scorers out of 5. 

2.3 Results 

 Overall performance 

The proposed algorithm with F1 = 0.78 outperforms published algorithms 

(Lajnef et al., 2015, Chambon et al., 2019) by a substantial margin (Table 2-2), 
where an EEG segment was classified as a KC with a probability ≥ 50%. 
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Table 2-2: Mean and standard deviation of the performance metric of the new 
algorithm (testing set, N = 4) compared with existing algorithm. 

Algorithm F1 ± F1 TPR ± TPR PPV ± PPV 

Chambon et al. (2019) 0.60 𝑛𝑛.𝑎𝑎. 0.58 𝑛𝑛.𝑎𝑎. 0.64 𝒏𝒏.𝒂𝒂 

Lajnef et al. (2015) 0.2 𝑛𝑛.𝑎𝑎. 0.19 𝑛𝑛.𝑎𝑎. 0.21 𝒏𝒏.𝒂𝒂 

New 0.78 0.03 0.86 0.02 0.72 0.06 

n.a indicates not available. F1, F1-score; TPR, true positive rate; PPV, positive predictive value. 

The probability cut-off threshold can be increased in order to increase speci-
ficity (i.e. the PPV) and the resulting algorithm performance is shown in Table 
2-3. With an increasing probability threshold, the PPV also increases, while 
the TPR decreases and the F1-score remains constant. Choosing a threshold 
is therefore a matter of how specific the algorithm needs to be with respect to 
the scorer, which does not necessarily improve the algorithm overall perfor-
mance. 

Table 2-3: Mean and standard deviation of the performance metric (testing 
set, N=4), as a function of several probability threshold cut-offs. 

Probability threshold F1 ± F1 TPR ± TPR PPV ± PPV 

50 0.78 0.03 0.86 0.03 0.72 0.06 

60 0.78 0.02 0.83 0.04 0.74 0.06 

70 0.78 0.02 0.80 0.05 0.77 0.05 

80 0.78 0.02 0.75 0.05 0.80 0.04 

F1, F1-score; TPR, true positive rate; PPV, positive predictive value. 

 Probabilistic assessment 

The interpretation of algorithm output is intuitive due to the probabilistic 
approach as shown in Figure 2-2. In this figure, KCs are ordered in increasing 
scored probability from top to bottom where the red color represents a positive 
voltage peak around 80 𝜇𝜇V (P900) and the blue color indicates a negative 
voltage peak (N550) around -80 𝜇𝜇V. The time values on the 𝑥𝑥-axis are aligned 
(𝑡𝑡 = 0 s) with the N550 peak. The KC scoring probability is clearly related to 
the magnitudes of the characteristic N550 and P900 peaks (Figure 2-2A and 
C). This means that smaller KCs, or KCs in the presence of significant noise, 
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will be scored with a lower probability than larger and well-defined KCs (Fig-
ure 2-2C).  

Figure 2-2: An example of varying K-complex probabilities of one participant 
from the MASS dataset during stage 2 sleep. A) KC probability map where 
each line represents a KC ordered from highest to lowest probability (bottom 
to top). B) Grand averaged KC. C) Typical low and high probability KC 
waveform. Reproduced by permission of Oxford University Press 
https://doi.org/10.1093/sleep/zsaa077. 

 Input perturbation 

Deep neural networks are generally difficult to interpret. However, by manually 
modifying the input of the algorithm, it is possible to gain insights into the 
decision-making processes, as shown in Table 2-4. Table 2-4 shows differences 
in automatic scoring performance between the full model (with all DWT coef-
ficients) and altered models with certain DWT coefficients removed. As an 
example, if coefficients between 2 and 4 Hz are removed, the F1-score drops 
from 0.82 to 0.56, which shows that this DWT frequency band is important in 
the algorithm decision making process. Furthermore, the mean probability of 

https://doi.org/10.1093/sleep/zsaa077


2.3 Bastien Lechat 

40 

scored KCs overnight drops by 48%, signifying the low algorithm confidence 
on scored KCs, resulting in 640 fewer KCs scored compared to the full model. 
The absence of individual DWT frequency band coefficients from the DNN 
input can have a marked effect on overall algorithm performance. With respect 
to the baseline F1 score obtained with all frequency bands present, the 1 to 8 
Hz frequency bands are the most important for KC scoring since their absence 
drastically worsens the algorithm performance. The slow oscillations captured 
by the 0 to 1 Hz frequency band only slightly change the classification perfor-
mance while the 8 to 16 Hz frequency band contains information useful for KC 
rejection since 160 more KCs were falsely identified when that frequency band 
was removed from the input into DNN compared to the full model. 

Table 2-4: DNN input frequency bands perturbation effect on algorithm per-
formance. 

 Frequency bands 

Alteration None 0–1 Hz 1–2 Hz 2–4 Hz 4–8 Hz 8–16 Hz 

F1 0.82 0.81 0.69 0.56 0.77 0.79 

Mean probability 
difference1 

0 0% -21% -48% -9% +3% 

± KCs2 0 +7 -184 -640 -141 +160 
1A negative difference indicates that the algorithm is less confident if the given frequency band is 
removed. 2Quantifies how many more/less k-complexes are scored if a given frequency band is 
removed. 

 KC probability and age 
The algorithm appears to be robust to noise, with only a few KCs detected in 
REM sleep and stage 1 sleep; Median (IQR); 0.19 (0.08, 0.35) and 0.17 (0.08, 
0.31) KC/min, respectively. For comparison, slow wave sleep and sleep stage 2 
showed KC frequencies of 3.9 (2.6, 5.4) and 1.0 (0.7, 1.5) KC/min, which is in 
line with previously reported KC frequency of occurrence (Halasz et al., 2014). 
Changes in KC size and probability with age derived from application of the 
algorithm to the CFS data set is shown in Figure 2-3. The population aged 
between 18 and 33 years showed a median probability (Figure 2-3A) of 92.5% 
which then drops at a rate of (Mean (95% CI)); 1.2 (0.99, 1.35)% per 10 years 
(linear regression controlled for sex and BMI, p<0.001) along with an expected 
reduction in KC peak-to-peak amplitude with age (Figure 2-3B). Indeed, in a 
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linear regression model controlled for sex and BMI, the peak-to-peak ampli-
tude of the averaged KC overnight dropped by (Mean (95% CI)) 8.5 (7.6, 9.5) 
μV per 10 years. Therefore, it is likely that the observed reduction in median 
probability in older individuals is due to changes in the KC shape, since the 
algorithm was trained on young and healthy individuals. The difference be-
tween the median probabilities could thus be interpreted as a measure of prob-
ability uncertainty between algorithm development and algorithm application.  
Although the algorithm was developed on a population between 18 and 33 
years old, good classification performance, with an expected reduction in KC 
size and probability, appears to be retained even in older population datasets, 
likely attributable to a combination of algorithm design and a large and diverse 
training dataset. 

Figure 2-3: (A) Variation in automatically scored K-complex median probabil-
ity across age on the CFS dataset. (B) Variation of the peak-to-peak ampli-
tude of the grand average KC, per participant, across age on the CFS dataset. 
Reproduced by permission of Oxford University Press 
https://doi.org/10.1093/sleep/zsaa077. 

https://doi.org/10.1093/sleep/zsaa077
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 KC scoring in sleep stage 3 

The scoring of KCs in sleep stage 3 was remarkably good (Figure 2-4) as indi-
cated by the absence of a large positive up–state peak before the N550 peaks, 
which increases the confidence that the scored waveforms are true KCs and 
not delta waves.  

Figure 2-4: Comparison of automatically scored K-complexes in sleep stage 2 
and 3 with a KC map (top), where each line represents a KC, and the grand 
average KC and its standard deviation (bottom). Reproduced by permission of 
Oxford University Press https://doi.org/10.1093/sleep/zsaa077. 

The ratio was calculated for all KCs within one participant and then averaged 
per sleep stage. Figure 2-5 also shows that the mean ratios from sleep stage 3 
(mean ± SD; 49 ± 10%) and sleep stage 2 (32 ± 9%) are similar and well 
below 100%, as expected for a slow wave ratio, supporting that the majority 
of scored waveforms are likely to be KCs. 
Using an arbitrary limit of 80% as an indication of a slow wave, 10 ± 7% of 
KCs from sleep stage 2 and 20 ± 8.5% of KCs from sleep stage 3 were rejected 
as they were more likely to be a slow wave. Although the algorithm was devel-
oped exclusively on N2 sleep data, it also seems to perform remarkably well 
on sleep stage 3 data, where scoring of KCs is inherently more difficult in the 

https://doi.org/10.1093/sleep/zsaa077
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presence of strong slow wave oscillations with similar amplitude and frequency 
characteristics. 

Figure 2-5: Distribution of the up-state/N550 ratio in sleep stage 2 and 3 
from the CFS datasets. Vertical lines represent the mean. Reproduced by per-
mission of Oxford University Press https://doi.org/10.1093/sleep/zsaa077. 

Manual review of KCs and random segments confirmed good scoring of the 
algorithm in slow wave sleep with an F1-score between the algorithm and the 
scoring consensus of 0.52. When comparing individual scores with the algo-
rithm, agreement was similar (mean F1-score ± SD; 0.51 ± 0.13). The rela-
tively low F1-score is not surprising since inter-scorer agreement was similar 
(0.50 ± 0.10). Of note, the inter-scorer agreement found in sleep stage 3 is 
similar to previously published inter-scorer agreements for sleep stage 2 
(Devuyst et al., 2010). Pairwise F1-scores between scorers is shown in Table 
2-5, demonstrating highly variable inter-scorer agreement with the lowest and 
highest pairwise F1-score ranging from 0.33 and 0.70 respectively. A total of 
719 waveforms out of 1000 were scored as a KC by at least one of the five 
scorers. From these KCs, only 44%, 20% and 6% were scored by at least 3, 4 
and 5 scorers, respectively. The probability of scored KCs increased along with 

https://doi.org/10.1093/sleep/zsaa077
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inter-scorer agreement (mean, (95% CI)); 80 (77, 83) % for KCs scored by one 
scorer versus 88 (84, 93) % and 90 (86-95)% for 2 and 5 scorers, respectively. 

Table 2-5: Pairwise F1-score of manual scoring (500 K-complexes and 500 
non-K-complexes) in slow wave sleep. 

                 Scorers 
  
  
  
  

Sc
or

er
s 

 

 A B C D E 

E 0.54 0.48 0.36 0.50 1 

D 0.48 0.33 0.53 1 

 
C 0.58 0.70 1 

 B 0.49 1 
 

A 1  

 Clinical relevance and further work 

Figure 2-6 shows the overnight variation in KC density, calculated over a 5-
minute period for 4 participants from the CFS dataset. This shows a young 
and healthy individual (curve one), with a high amplitude overnight KC den-
sity function that consistently follows traditionally scored sleep cycles, sup-
porting that KCs occur more frequently and then dissipate over time with each 
subsequent sleep cycle. As a group, all participants in the CFS dataset show a 
substantial (Mean (95%CI)) 42.5 (38.6, 46.4) % decrease (1 sample t-test 
p<0.001, N=585) in KC density from the first to the second half of the night. 
Curve 2 in Figure 2-6, representing a 48-year-old adult with no recorded car-
diovascular disease, hypertension, medication use, a normal BMI and no ex-
cessive alcohol intake, shows a similar pattern but lower amplitude. In the 
group data, the mean KC density overnight, as shown by a linear regression 
model controlled for sex and BMI, showed a decrease of 0.32 KC/min (0.32 
(0.28, 0.37); p <0.001; N=583) for each 10-year increase in age. 
Curve 3 and 4 in Figure 2-6 are examples of participants with sleep apnea and 
alcoholism, respectively, showing reduced KC density. Indeed, in the group 
data, a linear regression model controlling for age, sex and BMI showed that 
alcoholism was associated with 0.42 (0.13, 0.78) KC/min decrease (p = 0.006, 
N=583). Furthermore, a decrease of 0.16 (0.02, 0.32) KC/min was associated 
(p = 0.02, N=152) with an increase of 10 in AHI, in a linear regression model 
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controlled for age, sex, and BMI. However, this association needs to be inter-
preted carefully since the AHI was only available for 25% of the dataset. Col-
lectively, these data support the potential value of KC density as a marker of 
normal versus abnormal sleep health after adjustment for clear age effects. 
This marker could be substantially more informative than traditional measures 
of sleep.  

Figure 2-6: Variation in K-complex density overnight for 4 individuals from 
the CFS dataset, with their respective hypnograms. Reproduced by permission 
of Oxford University Press https://doi.org/10.1093/sleep/zsaa077. 

2.4 Discussion 

This Chapter presents a validated and high-performing KC detection algo-
rithm based on probabilistic classification methods. The automatic probabilis-
tic scoring is well suited for KCs with variable amplitudes and waveform fea-
tures, between and within individuals. The developed algorithm shows major 
promise as an effective tool for exploring relationships between KCs and clini-
cal outcomes. 

https://doi.org/10.1093/sleep/zsaa077
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Varying KC probabilities within participants is in accordance with fMRI and 
intracellular-EEG findings (Amzica and Steriade, 1997a, Jahnke et al., 2012), 
which attribute the origin of the KC to different parts of the cortex. The KC 
seems to be strongest in the pre-frontal cortex (Colrain, 2005) and relatively 
weaker in posterior and lateral scalp regions. The proposed algorithm could 
test this hypothesis by comparing scored probabilities across channels, in which 
case a decrease in probabilities from the frontal to the parietal site (for exam-
ple, C3/C4), would be expected. On the other hand, Mak-McCully et al. (2014) 
(2015) showed that evoked and spontaneous KCs can be quasi-synchronous 
over much of the cortical surface in humans. Therefore, more uniformly dis-
tributed probabilities across channels might also be anticipated. Of note, since 
KCs can occur locally (Mak-McCully et al., 2014), and since the Montreal 
archive of sleep study only provides KC scoring on the C3 channel, meaningful 
comparisons of the algorithm scoring to other channels such as C4, F4 are 
problematic. Future studies with both manual and automated KC scoring of 
multiple channels, ideally combined with high-density EEG recordings to bet-
ter define KC source localization and relationships with manual scoring are 
required. 
While the KCs detected in sleep stage 3 had a slightly higher up-state/N550 
ratio, this remained significantly lower than 100%. The difference in ratio be-
tween sleep stage 2 and 3 remains unclear, but it could be due to earlier KCs 
components, such as P200 or P400 (Colrain, 2005), which could be stronger in 
sleep stage 3 than in sleep stage 2. Mak-McCully et al. (2014) reported a higher 
KC occurrence rate in sleep stage 3 than in sleep stage 2 and Crowley et al. 
(2002) showed that KCs are smaller in elderly people, consistent with the find-
ings in this Chapter. Hence, since the CFS dataset is imbalanced towards older 
people, and assuming that the EEG noise is similar across age, the higher up-
state/N550 ratio might be due to a lower signal-to-noise ratio in sleep stage 3 
in elderly people. Nonetheless, the algorithm still appears to perform well in 
sleep stage 3 and is therefore likely to be a practical and convenient tool for 
automated exploration of large clinical trials datasets for answering applied 
and fundamental research questions. 
Furthermore, the reported inter-scorer F1-score of 0.50 in sleep stage 3 is in-
line with previously reported inter-scorer agreement of around 50% (Bremer 
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et al., 1970, Devuyst et al., 2010). The averaged F1-score between the algo-
rithm and individual scoring was of 0.51, which is in line with inter-scorer 
agreement. Application to larger datasets, with KCs scored by multiple scorers, 
would likely be useful to better tune the algorithm to greater variability in KC 
shape and to reduce the impact of inter-scorer disagreement on algorithm per-
formance beyond the current algorithm systematically exposed to data from 
only 19 healthy individuals. Nevertheless, probabilistic scoring was able to 
quantify both uncertainties, with a lower probability attributed to noisier KCs, 
and a higher probability to well-defined KCs and KCs where scorers agree on 
scoring. 
Conclusion 
This Chapter presents a high-performing and publicly available KC detection 
algorithm based on DNN and Gaussian processes. The main strengths of this 
approach include a probabilistic output and reliable automated KC detection 
essential to support systematic large-scale analysis not possible with tradi-
tional manual human scoring. The algorithm outperforms state-of-art algo-
rithms previously reported in the literature. The probabilistic approach also 
helps to investigate the overall quality of an EEG recording, and to examine 
and deal with underlying EEG differences in sample populations; key features 
likely to be necessary for large scale systematic studies of KCs and their rela-
tionships with clinical outcomes. Finally, algorithm performance in sleep stage 
3, was consistent with previously published findings supporting that KCs are 
also present and detectable in sleep stage 3 with appropriate methods. 
While the Cleveland Family study contained some participants with sleep ap-
nea, further work remains required to systematically test algorithm findings in 
clinical datasets. Alcoholism, neurological disorders and/or restless leg syn-
drome are known to be associated with differences in shape and density of 
KCs, and hence clearly warrant further investigation. 
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CHAPTER 3. K-COMPLEXES ARE A 
SENSITIVE MARKER OF NOISE–RE-
LATED SENSORY PROCESSING DUR-

ING SLEEP 
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Summary 
Study Objectives: The primary aim of this Chapter was to examine dose-re-
sponse relationships between sound pressure levels and K-complex occurrence 
probability for wind farm and road traffic noise. A secondary aim was to com-
pare K-complex dose-responses to manually scored EEG arousals and awaken-
ings.  
Methods: Twenty-five participants underwent polysomnography recordings and 
noise exposure during sleep in a laboratory. Wind farm and road traffic noise 
recordings of 20-sec duration were played in random order at 6 SPLs between 
33 - 48 dBA during established N2 or deeper sleep. Noise periods were sepa-
rated with periods of 23 dBA background noise. K-complexes were scored using 
a validated algorithm. K-complex occurrence probability was compared be-
tween noise types controlling for noise SPL, subjective noise sensitivity and 
measured hearing acuity.  
Results: Noise-induced K-complexes were observed in N2 sleep at SPLs as low 
as 33 dBA (Odds ratio, 33 dBA vs 23 dBA, mean (95% confidence interval); 
1.75 (1.16, 2.66)) and increased with SPL.  EEG arousals and awakenings were 
only associated with noise above 39 dBA in N2 sleep. K-complexes were 2 
times more likely to occur in response to noise than EEG arousals or awaken-
ings. Subjective noise sensitivity and hearing acuity were associated with K-
complex occurrence, but not arousal or awakening. Noise type did not detect-
ably influence K-complexes, EEG arousals or awakening responses.  
Conclusion: These findings support that K-complexes are a sensitive marker 
of sensory processing of environmental noise during sleep and that increased 
hearing acuity and decreased self-reported noise sensitivity increase K-complex 
probability. 
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3.1 Introduction 

A report from the World Health Organization (2011) estimated that at least 
one million healthy life years are lost every year due to environmental noise in 
western Europe alone, with annoyance and sleep disturbance the main contrib-
uting factors. Sleep disturbance, including increased rates of awakenings due 
to transportation noise is well established (see Basner and McGuire (2018) for 
a comprehensive review). However, evidence surrounding sleep disturbance 
from others noise types, such as wind farm noise, are only emerging and war-
rants further studies. 
The primary markers of sleep disturbance from environmental noise (see sec-
tion 1.1.3b for more details) are micro-arousals and awakenings (Basner et al., 
2008, Elmenhorst et al., 2012, Jalali et al., 2016, Smith et al., 2016, Basner 
and McGuire, 2018, Rudzik et al., 2018, Smith et al., 2020). These studies 
suggest that environmental noises of higher SPLs are more likely to elicit awak-
enings and micro-arousals, above certain SPL thresholds (which may be be-
tween 33 and 38 dBA) (Basner and McGuire, 2018). However, more subtle 
changes, such as sub-cortical autonomic responses including heart-rate accel-
eration (Griefahn et al., 2008), peripheral vasoconstriction (Catcheside et al., 
2002) and KCs (Colrain, 2005) are observed with noises that do not necessarily 
elicit cortical arousals or awakenings.  
McGuire et al. (2016) found that a large portion of variance, between 40 - 60%, 
in noise-induced sleep disturbance measured using traditional markers of 
arousals and awakenings, is due to inter-individual differences other than age 
and sex, suggestive of physiological differences in auditory processing in par-
ticipants without clinically relevant hearing loss. Hearing acuity appears likely 
to explain some of this variance (Lee et al., 2018), but other factors also appear 
likely to contribute. For example, high noise sensitivity, a psychological trait 
contributing to increased noise reactivity, has been associated with a lower 
EEG amplitude of noise-event related potential components (Kliuchko et al., 
2016), suggesting an association between auditory processing and noise sensi-
tivity. However, evidence to support an influence of noise sensitivity on physi-
ological responses during sleep are currently restricted to macro-structural 
sleep parameters such as the probability of evoking an awakening (Marks et 
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al., 2008), sleep onset latency, wake after sleep onset, or total sleep time (Marks 
and Griefahn, 2007). 
In the context of noise, the likelihood of evoking a KC ranges from 10% (Forget 
et al., 2011) to 80-90% (Bastien and Campbell, 1992, Colrain et al., 1999, 
Nicholas et al., 2006, Colrain et al., 2010). Multiple demographic, behavioural 
and clinical factors can affect the rate of evoked KC production, such as age 
(Colrain et al., 2010), sleep pressure (Nicholas et al., 2002), alcoholism (Colrain 
et al., 2009), neuropathology (Crowley et al., 2005) and OSA (Afifi et al., 2003, 
Nguyen et al., 2016). Furthermore, the likelihood of evoking a KC is also de-
pendent on stimulus characteristics, such as SPL or noise type (Bastien and 
Campbell, 1992, Colrain et al., 1999, Forget et al., 2011). However, most au-
ditory evoked KC studies have used relatively high SPL and short duration 
simple stimuli (usually pure tones) to maximize KC occurrence (Colrain, 2005); 
which are not representative of real-world environmental noise.  
Thus, the primary aim of this pilot study, designed to help inform a larger 
trial, was to investigate potential “dose” or exposure-level response relation-
ships between different types of environmental noises including road traffic and 
wind farm noise at different SPLs, and traditional (arousals, awakenings) as 
well as more subtle (KC) markers of noise-related sensory disturbance during 
sleep. A secondary aim was to investigate the potential influence of hearing 
acuity and subjective noise sensitivity on exposure-response relationships. 

3.2 Methods 

 Participants 

Twenty-five healthy individuals (11 males, mean ± SD 26.5 ± 16.4 years; 14 
females, 24.1 ± 9 years) were recruited for an overnight polysomnography 
study. Hearing acuity was assessed by a qualified audiologist and consisted of 
clinical history, hearing threshold measurement between 125 and 8000 Hz, ear 
tympanometry, otoscopy and acoustic reflex assessments. Mean hearing thresh-
old across 125 to 8000 Hz was calculated for each participant, and participants 
were categorized into high and low hearing acuity groups based on the hearing 
thresholds group median of 3.9 dB in hearing level (dB HL). Self-reported noise 
sensitivity was obtained via the 21-question Weinstein noise-sensitivity scale 
(WNSS) (Weinstein, 1978), which ranges from 0 (noise insensitive) to 105. 
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Participants were categorized as noise-sensitive if their WNSS score exceeded 
54, the mean value reported by Weinstein (Weinstein, 1978). Participants pro-
vided informed consent and were reimbursed for their time. The study was 
approved by the Flinders University Social and Behavioral Research Commit-
tee. 
Participants were recruited using recruitment posters posted on websites, pub-
lic notice boards, and word of mouth. Participants who met the eligibility 
described below were enrolled by study personnel. Study inclusion required 
participants to have a BMI < 30 kg.m-2, to be non-smokers, free from health 
problems that may affect sleep and to report healthy sleep, defined as a score 
< 6 on the PSQI and an average of >85% sleep efficiency based on self-reported 
wake versus sleep opportunity time. Participant with insomnia or excessive 
daytime sleepiness were excluded, assessed using the insomnia severity index 
(excluding insomnia severity index > 8) and the Epworth sleepiness scale (ex-
cluding ESS > 10), respectively. Finally, self-reported onset and offset seep 
times were required to be within 2 hours of each other on weekday vs weekend 
nights.  

 Experimental procedure 

Participants were exposed to block-randomized 20-sec environmental noise and 
background noise (control) samples, with an inter-stimulus interval of 20-sec. 
Noise samples were continued throughout periods of consolidated N2 or deeper 
sleep, except in the event of awakening (EEG arousals ≥15-sec), in which case 
the noise battery was paused at the end of any currently playing stimulus, and 
only recommenced after N2 sleep was re-established. Noise samples were played 
at 6 different SPLs ranging from 33 to 48 dBA in 3 dBA increments. Controls 
consisted of quiet background noise at 23 dBA (Figure 3-1). Noise stimuli 
included two road traffic noise samples recorded near (< 100 m) and away (> 
700 m) from a busy road, and three types of WFN. Two WFN samples, com-
monly referred to as ‘swish’ and ‘thumping’, included amplitude modulation, 
a periodic variation in noise amplitude due to blade rotation. These noise sam-
ples were measured at short- (≈ 700 m) and long-range (≈ 3 km) from a wind 
farm, respectively. For comparison, the third WFN sample was a modified 
long-range wind farm noise with amplitude modulation removed via filtering 
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(sixth degree notch filter centered at 46 Hz). Environmental noise was repro-
duced using RME Babyface Pro sound card, LabGruppen C 10:4X amplifier 
and a Krix Pheonix V2.1 loudspeaker. The loudspeaker was placed next to 
participants’ bed, approximately 2 meters away (Figure 3-1). Equivalent SPL 
in dBA were measured over a 20-sec period at the participants’ head location. 

 

Figure 3-1: A, experimental protocol showing an example of block-randomised 
noise stimuli. B, noise characteristics and measurement locations. Reproduced 
by permission of Oxford University Press 
https://doi.org/10.1093/sleep/zsab065 

 Sleep recordings 

Participants undertook full polysomnography including EEG using the 10-20 
placement system (EEG; F3, F4, C3, C4, Cz, O1 and O2 referenced to M1 or 
M2), left and right EOG, chin EMG, limb movements, ECG and finger pulse 

https://doi.org/10.1093/sleep/zsab065
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oximetry measurements. Electrodes were fitted and refitted to achieve imped-
ances <5 kΩ where possible, although 2 participants showed 6 and 9 kΩ (group 
mean ± SD; 3 ± 2 kΩ). Signals were amplified and recorded using Grael 4K 
Polysomnography (Compumedics Ltd.) at a 512 Hz sampling frequency using 
Profusion 4 EEG acquisition software.  

 EEG processing and K-complex scoring 

Sleep stages, awakenings and arousals were scored by a single scorer, blinded 
to noise conditions, according to American Academy of Sleep Medicine manual 
sleep scoring guidelines (Iber et al., 2007). An arousal or awakening was con-
sidered to have been evoked by a noise if it occurred anywhere during the noise 
presentation (i.e., 20-sec window from noise onset). Arousals and awakenings 
were grouped as a single event given that their incidence was low (Table A2). 
Only noise events presented during N2 and N3 sleep were analyzed since KCs 
are not generally considered to occur in REM sleep (Colrain, 2005). 
The EEG time series were down-sampled to 128 Hz, for faster processing, and 
filtered with high– and low–pass first order filters with cut–offs of 0.30 Hz and 
35 Hz, respectively. For the KC analysis only the C3 signal referenced to M2 
was used. For automated detection of KCs, an algorithm based on DWT, DNN 
and Gaussian probabilistic classification approach was used with an established 
sensitivity of 0.86, a precision of 0.72; and a global F1-score of 0.78 (Lechat et 
al., 2020), following training on C3 electrode data from the MASS (O'Reilly 
et al., 2014). This algorithm scores a waveform with a probability of being a 
KC ranging from 50% to 100% where larger amplitude and more well-defined 
KCs are attributed higher probability. A KC was considered to be evoked by 
a noise if it occurred within 2 seconds of noise onset and had an algorithm 
scored probability of being a KC (hereafter referred to as “scoring threshold”) 
greater than 50%. A 2 second window was chosen based on the expected short 
latency from stimulus onset (Crowley et al., 2004, Colrain, 2005, Willoughby 
et al., 2020), and to reduce spontaneous KC detection over the remainder of 
the stimulus exposure. The probability of occurrence of a KC to each noise 
(type and SPL) was defined based on the proportion of noise presentations 
that evoked a KC. 
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 Statistical analysis 

Descriptive statistics included Fisher’s exact test for categorical variables and 
analysis of variance for continuous variables. The association between KC 
probability of occurrence and SPL was examined using mixed effects logistic 
regression with participant number as a random effect, each with a separate 
intercept (Model 1). Noise type effects on KC response probability were tested 
based on the interaction between noise type and SPLs (Model 2). Three other 
models with interactions were constructed to examine possible modulation of 
KC responses to noise SPL by hearing acuity (Model 3), noise sensitivity 
(Model 4), or both (Model 5). Results were also compared against more tradi-
tional methods, by repeating analyses with evoked arousal and awakening as 
dependent factors in similar models. Results are reported as odds ratios (ORs) 
with their respective 95% confidence intervals (CI). Summary graphs for each 
model are presented with marginal probabilities and ORs. 
Statistical analysis was performed using the computing environment R (R Core 
Team, 2019) with lme4 (Bates et al., 2015) open source package for logistic 
analysis. 

 Sensitivity analysis 

A sensitivity analysis was performed to further examine findings. The scoring 
threshold of KCs was elevated from 50% (main analysis) to 95% (in 10% in-
crements up to 90%). By augmenting the scoring threshold, the scoring be-
comes more “conservative” as shown previously (Lechat et al., 2020). The as-
sociation between KC probability of occurrence and SPL (Model 1) was then 
re-examined for these more conservative scorings. Significant interactions 
found in the main analysis were further examined by increasing the KC scoring 
threshold from 50% to 75%. 

3.3 Results 
 Participant characteristics 

The analysis included 21 participants (Table 3-1) following exclusion of two 
participants due to technical polysomnography failure (due to timing system 
failure the onset of noises played could not be determined accurately) and a 
further two whose age was more than double the group mean (given that age 



3.3 Bastien Lechat 

56 

has a strong effect on the frequency and the shape of the KC, (Crowley et al., 
2002, Crowley et al., 2004) likely to confound).  
Eight participants were categorized as noise-sensitive, but there were no sig-
nificant differences in hearing acuity or hearing acuity categories between the 
noise sensitive and non-sensitive groups. The number of presented noise stimuli 
was also not different between noise sensitivity groups. The mean number of 
noise presentations was around 27 and 21 samples per SPL in N2 and N3 sleep, 
respectively (Table A1). Between 1 to 5% of all noise presentations evoked an 
EEG arousal (EEG changes > 3-sec and < 15-sec) and only 1 to 4% of all 
noise presentations evoked an awakening (EEG changes ≥ 15-sec, Table A2). 
Given low frequency of occurrence, particularly for awakenings, EEG arousals 
and awakenings were only considered together in subsequent analyses. 
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Table 3-1: Participant characteristics stratified by noise sensitivity group. 
Data are presented in n (%) for categorical variables, median [IQR] for non-
normally distributed variables and mean (SD) for normally distributed con-
tinuous variables. 

*Calculated using mean hearing threshold between 125 and 8000 Hz 

 K-complexes in N2 sleep 

In Model 1, and regardless of noise type, KCs were more likely to occur with 
increasing SPLs (overall effect, 𝜒𝜒2 = 96.8, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 < 0.001, Figure 3-2). 
Even at 33 dBA, 10 dBA higher than the background noise, the probability of 
KC occurrence to noise presentation was 1.75 times greater (Figure 3-2B) than 
the background noise, increasing to 4.6 times greater at 48 dBA, although the 
absolute probability of occurrence remained low. The interaction between noise 
type and SPL (Model 2) was not significant (𝜒𝜒2 = 24.7, 𝑑𝑑𝑑𝑑 = 20, 𝑝𝑝 = 0.21). 

 All 
Noise  

non-sensitive 
Noise sensitive p-value 

n 21 13 8  

Age  
 

22.00  
[21.00, 22.00] 

22.00  
[22.00, 23.00] 

20.50  
[19.00, 22.00] 

0.011 

sex: male (%) 12 (57.1) 8 (61.5) 4 (50.0) 0.673 

Noise sensitivity  
50.00 

 [44.00, 59.00] 
44.00  

[36.00, 50.00] 
59.50  

[59.00, 67.00] 
<0.001 

Hearing acuity in dB 
HL*  

3.90  
[2.00, 6.80] 

4.09  
[3.40, 9.09] 

3.45 
 [1.98, 4.93] 

0.404 

Total sleep time, in 
hours  

7.57  
[7.00, 7.78] 

7.57  
[7.09, 7.78] 

7.58  
[6.94, 7.84] 

0.942 

REM, in % 
18 

[15, 20] 
19  

[15, 22] 
16  

[13, 18] 
0.128 

N1, in % 
7  

[5, 8] 
6  

[5, 8] 
8  

[6, 9] 
0.051 

N2, in % 43 (6) 42 (7) 45 (4) 0.328 

N3, in % 
22  

[18, 26] 
20  

[18, 24] 
25  

[20, 26] 
0.515 

Wake, in % 
7  

[7, 11] 
7  

[7, 12] 
7  

[7, 8] 
0.885 

Arousal index 
events/hours 

4.82 (2.08) 4.90 (2.11) 4.69 (2.18) 0.836 
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However, these results should be interpreted cautiously given the mean number 
of noise presentations stratified by noise SPLs and types, was only around 6. 

Figure 3-2: Association between noise SPL and K-complex response in N2 
sleep. A, probability of occurrence of a K-complex at a given noise level. B, 
odds ratio (95% CI) of evoking a K-complex at a given SPL compared to 
background noise. Reproduced by permission of Oxford University Press 
https://doi.org/10.1093/sleep/zsab065 

The overall interaction effect between hearing acuity group and SPL was sig-
nificant (𝜒𝜒2 = 13.2, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.04, Figure 3-3A), where KC response oc-
currence was significantly greater than background noise only at SPLs ≥ 42 
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dBA for the low hearing acuity group (Figure 3-3B), but at all SPLs in the 
high hearing acuity group (Figure 3-3C).  

Figure 3-3: Association between noise SPL and the K-complex response in N2 
sleep for participants with hearing thresholds ≤ 3.9 dB HL (red) or > 3.9 dB 
HL (blue). A, probability of occurrence of a K-complex at a given noise level. 
B and C, odds ratio (95% CI) of evoking a K-complex at a given SPL com-
pared to background noise. Reproduced by permission of Oxford University 
Press https://doi.org/10.1093/sleep/zsab065 

The odds of a KC response to noise stimuli was dependent on noise sensitivity 
(Model 4, 𝜒𝜒2 = 15.7, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.01) and was lower for noise sensitive 
compared to low noise sensitivity participants (Figure 3-4A). Noise sensitive 
participants only showed KC responses above background noise levels for noise 
SPLs ≥ 39 dBA (except for 42 dBA) whereas non-noise sensitive participants 
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showed significantly elevated odds of KCs at all SPLs above background noise 
(Figure 3-4C).  

Figure 3-4: Association between noise SPL and the K-complex response in N2 
sleep for participant with a Weinstein noise sensitivity score ≤ 54 (red) or > 
54 (blue). A, probability of occurrence of a K-complex at a given noise level. 
B and C, odds ratio (95% CI) of evoking a K-complex at a given SPL com-
pared to background noise. Reproduced by permission of Oxford University 
Press https://doi.org/10.1093/sleep/zsab065 

Interactions between noise SPL and noise sensitivity or hearing acuity re-
mained significant in Model 5, while the interaction between noise sensitivity 
and hearing acuity was not significant ( 𝜒𝜒2 = 3.40, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.75). Thus, 
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the effect of noise sensitivity and hearing acuity on the dose-response relation-
ship between KC occurrence and noise SPL remained similar in Model 5 (Fig-
ure A1) compare to model 3 and 4 shown in Figure 3-3 and Figure 3-4, respec-
tively.  
The estimated association between noise SPL and KC responses remained sim-
ilar in sensitivity analysis. An increased scoring threshold resulted in fewer 
scored KCs across all SPLs, and thus the marginal probability of evoked KCs 
for each SPL decreased. However, the increase in marginal probability com-
pared to background noise remained significant for all levels at all thresholds 
(except 33 and 36 dBA at 90 and 95%), as shown in Table A3. Therefore, the 
effect of noise SPL on the KC responses is very consistent across different KC 
scoring thresholds. An additional advantage of automatic scoring at different 
scoring thresholds is that KC classification uncertainty can be estimated. For 
example, pooled estimates across all scoring thresholds >50% indicate a 19.5 
± 2.8% probability of an evoked KC at 48 dBA. Finally, interactions between 
noise SPL and hearing acuity (𝜒𝜒2 = 12.5, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.05), and noise sensi-
tivity (𝜒𝜒2 = 14.3, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.03), remained largely similar in sensitivity 
analyses. 

 K-complexes in N3 sleep 

In comparison to N2 sleep, higher SPLs were needed to elicit a KC in N3 sleep 
(Figure A2). Overall probabilities for noise-evoked KCs remained similar to N2 
sleep, but the probability of spontaneous non-evoked KCs occurring during 
background noise was around 22% in N3 versus around 6.6% in N2 sleep. Thus, 
the resulting ORs are generally smaller and only KC responses to noise stimuli 
with SPLs ≥ 39 dBA were significantly higher than KC responses during back-
ground noise (apart from 42 dBA, Figure A2). The interaction between noise 
SPLs and hearing acuity was not significant in N3 sleep (overall effect, 𝜒𝜒2 = 
2.01, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.91). 
In N3 sleep the effect of noise SPL on the KC-response was different between 
noise sensitivity groups (𝜒𝜒2 = 15.3, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.02), where noise-evoked KC 
responses were only apparent in the non-noise sensitive group and were not 
significantly different from background noise at any SPL in the noise sensitive 
group (Figure A3). Similar to findings with N2 sleep, sensitivity analysis re-
vealed that different scoring thresholds had little impact on the dose-response 
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relationship between KC probability of occurrence and noise SPL (Table A3). 
Furthermore, the interactions between noise sensitivity and SPL also remained 
significant in sensitivity analysis (𝜒𝜒2 = 13.08, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 < 0.041). 

 Arousals 

The effect of SPL on arousal and awakening occurrence was significant (𝜒𝜒2 = 
27.32, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 < 0.001), but with a smaller effect size compared to the KC 
occurrence (Figure 3-5A). Furthermore, the effect was significant only for noise 
played at an SPL ≥ 39 dBA (Figure 3-5B). Noise-sensitivity (𝜒𝜒2 = 3.33, 𝑑𝑑𝑑𝑑 = 
6, 𝑝𝑝 = 0.76) and hearing acuity (𝜒𝜒2 = 2.35, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.88) do not effect 
arousal/awakening responses to noise, although these results need to be inter-
preted with caution given that only 114 noises (3.3% of all noise presentations) 
evoked an arousal or awakening. In N3 sleep, there was no effect of SPL on 
arousal/awakening (𝜒𝜒2 = 3.89, 𝑑𝑑𝑑𝑑 = 6, 𝑝𝑝 = 0.69). 

Figure 3-5: Association between noise SPL and arousal/awakening response 
in N2 sleep. A, probability of occurrence of an arousal/awakening at a given 
noise level. B, odds ratio (95% CI) of evoking an arousal/awakening at a 
given SPL compared to background noise. Reproduced by permission of Oxford 
University Press https://doi.org/10.1093/sleep/zsab065 

Co-occurrence of KCs and arousals was low. A total of 21% (N = 24) evoked 
arousals in N2 sleep were preceded by a KC (between the noise onset and 
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within 10 seconds before the arousal) and only 0.7% of all noise presentations 
that evoked a KC were followed by an arousal. At 23 dBA (control) and 48 
dBA (loudest noise) only one (out of 692, 0.1%) and 7 noises (out of 597, 1.2%) 
evoked a KC followed by an arousal, respectively.  

3.4 Discussion 

This Chapter shows that KCs are a substantially more sensitive marker of 
sensory processing to environmental noise during sleep compared to more tra-
ditional EEG arousal and awakening responses. Two factors likely to explain 
some of the inter-individual differences to noise-evoked EEG responses during 
sleep were identified, including hearing acuity and noise sensitivity. Partici-
pants with low hearing acuity needed higher SPL noise to elicit KCs and KCs 
were more likely to be elicited in non-noise sensitive compared to noise-sensi-
tive participants. KCs and arousals or awakenings rarely co-occurred, perhaps 
more suggestive of largely independent responses to noise rather than a hier-
archy of responses, and the concept that KCs may help to suppress arousals 
and preserve sleep in response to repetitive acoustic stimuli during sleep. 
KCs, especially the N550 component, and slow waves share common neuronal 
sources. Slow waves are formed by a succession of up– and down– states re-
flecting synchronous firing of cortical neurons and periods of neuronal silence, 
respectively (Amzica and Steriade, 1997b, Amzica and Steriade, 1997a, Cash 
et al., 2009, Nir et al., 2011). Within the synaptic homeostasis hypothesis 
(Tononi and Cirelli, 2006, Tononi and Cirelli, 2014), the central role for slow 
wave sleep is to downscale synaptic strength to optimize daytime functioning 
and capacity for new learning without excessive synaptic potentiation. Since 
KCs reflect an up–state–deprived slow oscillation (Cash et al., 2009), and thus 
neuronal silence, they have been hypothesized to be a marker of a gating mech-
anism to incoming stimuli that may help to preserve sleep homeostasis (Halasz 
et al., 2014, Halasz, 2016). With that in mind, the relative absence of noise-
evoked KCs in the noise-sensitive group could potentially indicate a greater 
propensity to disturbed sleep, or alternatively a higher stimulus threshold re-
quired to elicit KCs. Given no evidence to support increased arousals in the 
noise-sensitive group a higher stimulus threshold appears more likely. 
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Since sub-cortical processing of auditory stimuli continues during sleep 
(Bastuji et al., 2002, Campbell and Colrain, 2002), KCs could reflect a mech-
anism to help counterbalance incoming noise to suppress thalamo-cortical sen-
sory transmission. Noise sensitive participants, who may be more reactive to 
noise, could produce fewer KCs in response to noise leading to reduced sup-
pression of sensory input (Tononi and Cirelli, 2006). Although speculative, this 
could theoretically delay the onset to slow wave sleep after a noise event since 
the brain would tend to be in a chronically more “activated” state. 
The dose-response relationships observed between arousal rates and SPLs are 
largely in accordance with previously reported rates of awakenings/shifts to 
wake or N1 sleep (Basner et al., 2008, Elmenhorst et al., 2012, Basner and 
McGuire, 2018), which range from 5 to 10% for noise-events at SPLs from 40 
dBA to 50 dBA, respectively. Furthermore, the evoked KC probability of 
around 25% for noise played at 48 dBA in this Chapter is similar to KC elici-
tation rates of between 25% and 55% reported by Franzen et al. (2012) in one 
of the most relevant KC studies to have also used relatively long and complex 
sounds rather than pure tones. The relatively lower probability in this Chapter 
appears likely to reflect a lower SPL since SPL has a strong effect on evoked 
KC rates (Colrain, 2005). 
Several limitations in this Chapter warrant consideration. Firstly, the low num-
ber of repetitions per noise type and SPL does not allow for a meaningful 
analysis of the effect of different acoustic characteristics on the KC or arousal 
and awakening responses. Secondly, although studying young and healthy in-
dividuals has several advantages, such as reducing the risk of confounding 
through co-morbidities or age effects on sleep EEG, this limits generalisability 
to the broader population. Thirdly, the participants were mainly non-noise-
sensitive and/or mildly noise sensitive, thus the effect of high noise sensitivity 
on noise-related sleep disturbance requires further research in a larger study. 
Finally, although the algorithm showed good agreement with consensus manual 
scoring irrespective of sleep stages (Lechat et al., 2020), lower inter-scorer 
agreement in N3 sleep (around 50%) introduces more uncertainty regarding 
findings in N3 sleep. 
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Conclusion 
Given growing concerns regarding potential adverse health effects of environ-
mental noise on sleep (World Health Organization, 2011, Basner and McGuire, 
2018), understanding mechanisms underpinning noise-induced sleep disturb-
ance is important for guiding decisions around public policy and noise guide-
lines for noise exposure levels during sleep. KCs are clearly a sensitive marker 
of sensory processing of environmental noise exposure during sleep. Possible 
long-term effects on sleep and daytime functioning related to the absence ver-
sus presence of KCs is uncertain and clearly warrants further research. Re-
markably strong interactions between subjective noise-sensitivity and KC-re-
sponse rates, with an almost two-fold reduction in KC-response occurrence in 
noise-sensitive participants, and with no corresponding changes in arousal 
rates, supports the value of KC-responses as an objective marker of sleep-
effects from environmental noise. Future studies are clearly warranted to fur-
ther examine relationships between KC occurrence rates during sleep and sub-
jective outcomes, including different phenotypic responses to environmental 
noise exposure during sleep. 
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CHAPTER 4. A NOVEL EEG DERIVED 
MEASURE OF DISRUPTED DELTA 
WAVE ACTIVITY DURING SLEEP 
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Summary 
Study Objectives: Conventional markers of sleep disturbance, based on manual 
electroencephalography scoring, may not adequately capture important fea-
tures of more fundamental electroencephalography-related sleep disturbance. 
This Chapter aimed to determine if more comprehensive power-spectral 
measures of delta wave activity during sleep are stronger independent predic-
tors of mortality than conventional sleep quality and disturbance metrics.  
Methods: Power spectral analysis of the delta frequency band and spectral 
entropy-based markers to quantify disruption of electroencephalography delta 
power were performed to examine potential associations with mortality risk in 
the Sleep Heart Health Cohort (N = 5804). Adjusted Cox proportional hazard 
models were used to determine the association between delta wave activity 
disruption at baseline and all-cause mortality over an ~11y follow-up period.  
Results: Disrupted delta electroencephalography power during sleep was asso-
ciated with a 32% increased risk of all-cause mortality compared with no frag-
mentation (hazard ratios 1.32 [95% confidence interval 1.14, 1.50], after ad-
justing for total sleep time and other clinical and life-style related covariates 
including sleep apnoea. The association was of similar magnitude to a reduc-
tion in total sleep time from 6.5h to 4.25h. Conventional measures of sleep 
quality, including wake after sleep onset and arousal index were not predictive 
of all-cause mortality. 
Conclusion: Delta wave activity disruption during sleep is strongly associated 
with all-cause mortality risk, independent of traditional potential confounders. 
Future investigation into the potential role of delta sleep disruption on other 
specific adverse health consequences such as cardiometabolic, mental health 
and safety outcomes has considerable potential to provide unique neurophysi-
ological insight.   
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4.1 Introduction 
OSA is a common sleep-breathing disorder estimated to affect 936 million 
adults worldwide (Benjafield et al., 2019). OSA has been associated with an 
increased risk of hypertension (Grote et al., 2000, Lavie et al., 2000, Nieto et 
al., 2000), cardiovascular disease (CVD) (Shahar et al., 2001) and all-cause 
mortality (Young et al., 2008, Punjabi et al., 2009, Kendzerska et al., 2014a). 
In the Sleep Heart Health Study (SHHS) (Quan et al., 1997) Punjabi et al. 
(2009), showed that clinical categories of the AHI were a significant independ-
ent predictor of all-cause mortality but that a marker of sleep fragmentation, 
the arousal index was not. Similarly, Shahar et al. (2001) using the same da-
taset found no association between the arousal index and increased risk of 
adverse cardiovascular events. Thus, potential underlying mechanisms for a 
higher risk of mortality/cardiovascular events from sleep-breathing disorders 
might be due to adverse respiratory disturbance effects on the cardiovascular 
system, blood pressure and/or hypoxemia, rather than sleep disruption per se 
(Shahar et al., 2001, Punjabi et al., 2009). However, in (Kendzerska et al., 
2014a), the total number of awakenings overnight and the total number of 
periodic leg movements were associated with all-cause mortality; suggesting 
that sleep fragmentation may be related to adverse health outcomes. The lack 
of association between clinical outcomes and sleep fragmentation metrics in 
the other cohorts could also reflect the arbitrary nature of manual EEG scoring 
rules, developed around practical constraints of traditional paper-based record-
ings. Conventional sleep staging, respiratory events and particularly arousal 
scoring also show poor inter- and intra-scorer reliability (Ruehland et al., 2011, 
Ruehland et al., 2015) which may further confound potential associations with 
adverse outcomes.  
Prerau et al. (2017) emphasized that conventional sleep scoring is purely time-
based while some EEG dynamics are only visible through time-frequency anal-
ysis. These authors showed how multi-taper spectral analysis could help to 
quantify EEG dynamics at different timescales, from micro-events to full night 
EEG recordings. Power spectral analysis of sleep EEG signals is a potentially 
useful marker of overall sleep quality particularly in sleep disorders, such as 
OSA (D'Rozario et al., 2017a, Appleton et al., 2019) or insomnia (Krystal et 
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al., 2002). However, mortality risk associations with spectral analysis derived 
metrics have not been extensively studied to date.  
Delta wave activity is one of the most fundamental EEG features of sleep and 
indicates strongly synchronous neuronal “down states” of relative neuronal in-
activity and “up states” as activity resumes (Nir et al., 2011). Delta wave 
activity is a key feature of deep sleep (Nir et al., 2011), and cyclically dissipates 
over the course of normal sleep. In addition, delta activity progressively in-
creases over the course of extended wake, with strong temporal alignment and 
marked decrements in performance during wake suggestive of localized sleep 
(Vyazovskiy et al., 2011). Thus, overnight power spectral analysis of delta wave 
activity could provide useful markers of sleep quality and sleep disturbance. 
Measurements of entropy characterize the level of order in a complex signal 
and are used widely in EEG signal processing (Abasolo et al., 2006). Given the 
ubiquity of sleep and its importance for normal brain function and health, it 
was hypothesized that spectral entropy of delta activity would provide a useful 
marker of sleep quality predictive of health outcomes. Accordingly, this Chap-
ter aimed to investigate if a comprehensive entropy-based measure of sleep 
delta wave activity fragmentation is a stronger predictor of mortality than 
conventional polysomnography derived sleep metrics (e.g. wake after sleep on-
set, total sleep time, arousal index etc.) in a large population cohort, inde-
pendent of sleep-apnea and other traditional clinical and life-style related co-
variates.  

4.2 Methods 

 Study design and participants 

The SHHS was a cohort study of cardiovascular and cerebrovascular conse-
quences of sleep-disordered breathing. The study design and methodology are 
described elsewhere (Redline et al., 1998). Full unattended overnight sleep 
studies (Compumedics P Series System; Abbotsford, Victoria, Australia) from 
a total of 6,204 participants were pooled from different population-based stud-
ies, from which 5,804 are available through an open access dataset from the 
National Sleep Research Resource (Dean et al., 2016). A second PSG recording 
was obtained from a subset (N = 3,295) of the participants between January 
2001 and June 2003, from which 2,647 are available through the National Sleep 
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Research Resource. Data from both studies will be used in this Chapter. For 
both visits, C3–A2 and C4–A1 EEG channels, EOG, a single ECG, chin EMG, 
nasal thermocouple, oxygen saturation and thoracic/abdominal signals were 
recorded. 
Sleep and EEG arousals were scored according to standard criteria at the time 
(Kales and Rechtschaffen, 1968, Guilleminault et al., 1992). Apneas were 
scored as a ≥ 75% reduction in the breathing amplitude lasting at least 10 sec 
as recorded via the thermocouple signal. Hypopneas were identified if the 
breathing amplitude of thermocouple or thoracic/abdominal band signals de-
creased by ≥ 30% for at least 10 sec. The AHI was defined as the number of 
apneas and hypopneas, associated with ≥ 4% reduction in oxygen saturation 
per hour of sleep, using an AHI cut-off <5 vs ≥5 events/hr to define normal vs 
OSA respectively (Redline et al., 1998). 

 EEG power spectral analysis 

The multi-taper technique (Prerau et al., 2017) was used which minimizes the 
uncertainty in the spectral estimate across frequencies by multiplying the orig-
inal signal with multiple orthogonal windows called tapers. This approach re-
duces windowing artifacts compared to traditional quantitative EEG. Tech-
nical details regarding multi-taper method can be found in Prerau et al. (2017). 
The absolute power was calculated for each 5-second window in delta, theta, 
alpha, sigma and beta frequency bands (0.5 - 4.5, 4.5 - 8, 8 - 12, 12 - 15, and 
15 - 32 Hz, respectively). The EEG power spectral analysis was primarily per-
formed on the C3 channel with a signal quality score, recorded by the human-
expert scorer, of ≥3 indicating that at least 50% of the EEG signals were 
artefact-free. The C4 channel was used in sensitivity analysis.  
The variation of absolute power in the delta frequency band was captured in 
a density function. The average power of wake and sleep stage 1 (but not 
REM) was set to zero, since slow wave activity predominantly occurs in sleep 
stage 2 and 3 and to help reduce movement artefacts in wake and light transi-
tional sleep. A weighted moving average Gaussian window (120 points, stand-
ard deviation = 10) was applied to a density function to reduce stochastic 
noise. The shape of the final delta wave density function was quantified using 
spectral entropy, an information measure that determines the degree of uni-
formity of the distribution (Inouye et al., 1991). The spectral entropy was 
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computed by calculating the Shannon entropy of the power spectrum (calcu-
lated using fast Fourier transform) of the delta wave density function. More 
details on the power spectral analysis and the calculation of the entropy can 
be found in APPENDIX B. 
Entropy-based measures of the density function are shown in Figure 4-1, in-
cluding examples of normal sleep (mid-tertile of the entropy distribution func-
tion), and abnormal sleep (upper and lower tertiles), along with fragmented 
sleep due to rapid fluctuations in the delta band and prolonged awakening. A 
low spectral entropy could arise from a lack of the normal cyclical distribution 
of delta wave activity during the night (e.g. only one full sleep cycle followed 
by relatively stable N1/N2 or REM), or through very little slow wave sleep 
across the whole night. A high spectral entropy could arise from highly frag-
mented sleep (e.g. rapid and recurrent shifts from deep sleep to wake/N1) with 
frequent awakenings or arousals during the night. The spectral entropy there-
fore encapsulates sleep fragmentation both with a higher spectral entropy, for 
higher frequency fluctuations in delta power, and a lower spectral entropy for 
short or absent fluctuations. 
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Figure 4-1: Three examples of overnight variations in delta power activity, 
with their respective hypnograms. 

 Sleep parameters 

The association between mortality-risk and sleep was assessed using traditional 
polysomnography measures of sleep quality including wake after sleep onset, 
total sleep time, arousal index, percent of time spent in NREM and REM sleep 
stages. More specific quantitative EEG measures were also assessed including 
spectral entropy of the delta density function and overnight (NREM sleep 
stage) mean of delta, theta, alpha, sigma and beta frequency bands. 

 Potential confounders 

Questionnaires were used to determine baseline and follow-up characteristics 
including socio-demographics (age, sex and educational status), behavioral fac-
tors (alcohol intake, smoking status, physical activity) and participants’ BMI. 
Medical history (hypertension; CVD; diabetes and general health perception) 
was determined during a baseline examination no more than five years before 
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the first polysomnography study. Physical activity and general health percep-
tion were assessed using the SF36 questionnaire. CVD cases included physician 
reported angina, heart attack, heart failure, stroke, or if the participant ever 
underwent coronary bypass surgery, coronary angioplasty or any other heart 
surgery. AHI and the percentage of sleep time spent with oxygen saturation < 
90% were used to control for sleep-related breathing disorders (Kendzerska et 
al., 2014a). 

 Outcome assessment 

Death from any cause, up until 2011, was identified in another study (Punjabi 
et al., 2009) using follow-up interviews, written annual questionnaires, tele-
phone contact with study participants or next-of-kin, surveillance of local hos-
pital records and community obituaries and linkage with the Social Security 
Administration Death Master File. For this analysis, all-cause mortality was 
used as the primary outcome.  

 Statistical analysis 

Chi-square tests (categorical variables) and analysis of variances (continuous 
variables) were used to investigate potential differences in baseline character-
istics between included and excluded participants. Kaplan-Meier survival esti-
mates and log-rank tests were used for visual interpretation of the associations 
between spectral entropy (divided into tertiles) and mortality risk. 
Hazard ratios (HRs) and 95% confidence interval (CIs) were determined using 
Cox-regression models to assess the association between sleep parameters and 
all-cause mortality. Arbitrary cut-offs for continuous variables were omitted in 
favor of restricted cubic spline transformations better suited to non-linearity. 
Thus, HRs for continuous variables were used to compare the 5th and 95th 
percentiles to that of the 50th percentile by using the 50th percentile as the 
reference. Proportional hazard assumptions for each variable were tested using 
Schoenfeld residuals (Schoenfeld, 1982). 
Multivariate imputation by chained equations (Azur et al., 2011, Buuren and 
Groothuis-Oudshoorn, 2011) was used to generate five complete datasets to 
account for missing variables, with a predictive mean-matching imputation 
model used for continuous variables, logistic regression for binary variables and 
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polytomous logistic regression for categorical variables. Coefficients and stand-
ard errors of the 5 complete datasets were pooled using Rubin’s rules (Rubin, 
1987). Findings are reported for pooled HRs and CIs. Confounders were iden-
tified based on previous literature (Punjabi et al., 2009, Kendzerska et al., 
2014a, Melaku et al., 2019) and included in all models. Total sleep time and 
the percentage of time spent in REM sleep were included as confounding fac-
tors, since an index of sleep quality was hypothesized to have additive infor-
mation.  
The association between sleep disruption, as defined with the spectral entropy 
of the delta density function, and all-cause mortality risk (primary outcome) 
was assessed in (Model 1). Seven additional models (secondary outcomes) were 
separately constructed using the arousal index (Model 2), wake after sleep 
onset (Model 3), and mean delta, theta, alpha, sigma and beta frequency bands 
in NREM (Model 4, 5, 6, 7 and 8) to compare the new metric with more 
conventional sleep and quantitative EEG analysis methods. Interactions be-
tween predictor variables and age, BMI, sex, AHI, percent of time with oxygen 
saturation less than 90%, total sleep time and time spent in REM sleep were 
also examined. When a significant interaction between sleep fragmentation and 
a continuous variable was observed, the continuous variable was transformed 
into quartiles for easier interpretation. Sex stratified and age stratified (>70 
and <70 years old) models were also investigated, as reported previously 
(Punjabi et al., 2009). Predictive performance of the model was assessed using 
the Harell C-index and Somers’ D indices (Newson, 2010) corrected for opti-
mism using bootstrapping. The models were compared to a model containing 
only the confounder variables using a likelihood ratio test. 

 Sensitivity analysis 

In addition to the main analyses, four sensitivity analyses were performed to 
further test and validate the findings. First, participants with CVD at baseline 
(Sensitivity analysis 1; S1) were excluded. Second, participants who died in 
the first three years were removed (S2), to account for unidentified acute ter-
minal illnesses that might have disrupted sleep (e.g. cancer). Third, the EEG 
quality was elevated to at least 75% of artefact-free EEG signals (S3). Finally 
(S4), the analysis was on C4 EEG channel, to help test if the shape of the 
delta-density function on C3 and C4 were similar. 
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4.3 Results 

 Baseline characteristics 

The analysis cohort included 5096 participants (88.0% of the recruited partic-
ipants), from which 2470 (48.4%) participants took part in the follow-up visit. 
Six hundred and eighty (11.7%) and 177 (6.7%) participants did not meet the 
EEG quality criteria in the first and second polysomnography visit, respec-
tively. An additional 28 (0.4%) participants had missing data on the primary 
outcome variable. Compared to included participants, those excluded had a 
higher AHI and percent of total sleep time spent with oxygen saturation less 
than 90% (Table 4-1). Included participants also showed a lower proportion of 
CVD and hypertension. Alcohol consumption (N=407, 7.9%), the SF36 (gen-
eral health: N=441, 8.7%; physical activity: N=428, 8.4%) and educational 
status (N=470, 9.2%) were the top 3 missing variables. 
There were a total of 69,943 person-years with a mean follow-up of 10.9 years 
included in the analysis. 1,124 participants died during the follow-up period 
(men: 601, women: 523). The crude mortality rate for all participants was 16.1 
(95% CI: 15.1,17.1) per 1000 person-years. 
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Table 4-1: Baseline characteristics of study participants. 
  Included Excluded p-value 

 N 5096 690  

Demographics    

Age, y  63 (11) 64 (11) 0.001 

Sex Female 2686 (52.7%) 338 (49.7%) 0.152 

Years spent in education    

 < 10 years 383 (8.2%) 50 (7.9%) 0.95 

 11 - 15 2419 (51.7%) 321 (51.0%)  

 16 - 20 1677 (35.9%) 233 (37.0%)  

 > 20 197 (4.2%) 26 (4.1%)  

Behavioral factors    

Alcohol consumption*, drinks/day 0 [0, 3] 0 [0, 3] 0.42 

Smoking Status     

 Never 2413 (47.7%) 281 (47.7%) 0.03 

 Former 2178 (43.0%) 309 (45.8%)  

 Current 470 (9.3%) 84 (12.5%)  

Physical Activity  3.13 (1.41) 2.89 (1.55) <0.001 

General health  2.92 (0.76) 2.85 (0.78) 0.03 

Anthropometric    

BMI, kg/m²  28.1 (5.0) 28.7 (5.7) 0.004 

Medical history    

Hypertension Yes 2147 (42.1%) 319 (46.9%) 0.02 

CVD Yes 856 (16.8%) 141 (20.7%) 0.02 

Diabetes Yes 347 (7.1%) 58 (9.1%) 0.09 

PSG variables    

AHI  9.9 (12.8) 12.4 (18.4) <0.001 

% TST SpO2 < 90% 3.2 (9.5) 5.6 (15.0) <0.001 

Time Asleep, h  6.04 (1.04) 5.66 (1.21) <0.001 

Time N1, %  5.4 (3.9) 6.2 (4.5) <0.001 

Time N2, %  56.2 (11.5) 59.8 (12.9) <0.001 

Time N3, %  18.5 (11.8) 15.2 (11.8) <0.001 

Time REM, %  19.9 (6.1) 18.8 (7.3) <0.001 

Arousal Index, /h  19.4 (13.6) 19.1 (10.3) 0.59 
Data are reported in Mean (SD) for continuous variables and n (%) for categorical variables. 
BMI, body mass index; CVD, cardiovascular disease; AHI, Apnea hypo-apnea index. 
* data reported as median [IQR] 
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 Sleep disruption and all-cause mortality 

Kaplan-Meier survival curves (Figure B1) showed a lower survival probability 
for participants within the lowest and highest tertile of spectral entropy (com-
pared to the middle tertile). In the multivariate Cox-regression models, a low 
spectral entropy remained associated with an increase in mortality risk (Figure 
4-2). The magnitude of this effect was similar to a 2.25h reduction (6.5h to 
4.25h) in total sleep time. 

Figure 4-2: Summary hazard ratio for the associations between sleep-related 
variables (spectral entropy, total sleep time, and percentage of total sleep time 
spent in REM sleep) and mortality-risk. Hazard ratios (95% confidence inter-
val) compare the 50th to 5th and 95th percentiles of the population. 

The interaction between total sleep time and spectral entropy was also signif-
icant (𝜒𝜒2=13.0, p <0.001). Low spectral entropy was associated with increased 
mortality risk for those sleeping more than 5.5h (Figure 4-3) while a higher 
spectral entropy was associated with increased mortality risk in those sleeping 
less than 5.5h. However, the interaction effect was not significant when a more 
conservative EEG quality cut-off was used (sensitivity analysis 3). The model 
was well validated (all-optimism < 2%) and well specified (C-index = 0.80, D 
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= 0.59). The estimated association between spectral entropy and all-cause 
mortality remained consistent in sensitivity analyses (Table B1). 

Figure 4-3: Association between spectral entropy and all-cause mortality risk 
for quartile-based (with interaction term) subgroup analysis of total sleep time 
models. 

Sex-stratified and age-stratified associations between low spectral entropy (5th 
vs. 50th percentiles) and all-cause mortality risk are shown in Figure 4-4 and 
Table B2. The association was similar although slightly stronger (p=0.02) for 
females (HR, 1.40; 95% CI, 1.17,1.70) than males (HR, 1.24; 95% CI, 1.00,1.53) 
especially for individuals aged less than 70 years old (Table B2). There were 
no significant associations between high spectral entropy and all-cause mortal-
ity.  
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Figure 4-4: Association between spectral entropy and all-cause mortality risk 
for sex-stratified models. Dashed lines and shaded area represent 95% confi-
dence intervals for male (blue) and female (red), respectively. Hazard ratios 
(95% confidence interval) compare the 50th to 5th and 95th percentiles of the 
population. 

The fit for the model without the spectral entropy was significantly worse as 
shown by a likelihood ratio test (Table 4-2) indicating that sleep disruption, 
defined through the shape of the delta power density function overnight, in-
creased the model fit. Wake after sleep onset, arousal index and the mean 
power of delta, theta, alpha, sigma and beta frequency bands were not associ-
ated with an increase or decrease in mortality-risk (Figure B4 and Table B3). 
Furthermore, the predictive model fit with traditional (Table 4-2) metrics was 
significantly worse than a model with spectral entropy, as shown with a lower 
C- and D-index and a higher Akaike information criterion. 
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Table 4-2: Likelihood ratio test comparing the predictive performance of the 
fully adjusted models with spectral entropy and different markers of sleep 
quality. A lower Akaike information criterion (AIC) and a higher C- and D- 
index indicates better model fit. The likelihood ratio test tests if the difference 
in model fit is significant. 

  
AIC C-index D-index 

Likelihood ratio test 
 Model 𝜒𝜒2 p-value 

 Core* + spectral entropy# 17269.3 0.798 0.597 N/A N/A 

vs Core 17273.9 0.797 0.594 22.8 0.006 

vs Core + wake after sleep onset 17272.6 0.797 0.595 19.5 0.01 

vs Core + arousal index 17274.4 0.797 0.594 21.4 0.006 

*Core is a model containing age, sex, % of total sleep time with less than 90% of oxygen saturation, 
apnoea-hypopnoea index, Diabetes, SF36 raw physical score, SF36 general health score, % of time spent 
in REM, total sleep time, alcohol intake, educational status, smoking status, hypertension, cardiovascular 
disease. 
#Both interaction terms (spectral entropy x TST and spectral entropy x % of total sleep time with less 
than 90% of oxygen) were present in the model. 

 Sleep disruption and sleep breathing disorder 

AHI was not associated with mortality-risk (Figure B2) and there was no in-
teraction between spectral entropy and AHI (𝜒𝜒2=1.9, p=0.16). However,  the 
percentage of total sleep time with oxygen saturation less than 90% was asso-
ciated with an increase in mortality-risk (Figure B2, 18.2% vs. 0.2 %; 1.24 
[1.13, 1.36]). In addition to the total sleep time-spectral entropy interaction 
previously described, the interaction between spectral entropy and the percent 
of time spent with oxygen saturation less than 90% was also significant 
(𝜒𝜒2=12.80, p=0.0017). The interaction effect (using quartile of % of sleep time 
spent with oxygen saturation less than 90%) is shown in Figure B3. The inter-
action remained significant in all sensitivity analyses. In the highest quartile 
of percentage of sleep time spent with oxygen saturation less than 90%, the 
association was weaker than in the lowest quartiles. 
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4.4 Discussion 
This Chapter used a large open-access study cohort to examine the association 
between sleep disruption and all-cause mortality, using both traditional objec-
tive sleep quality assessments and more advanced EEG power-spectrum and 
entropy-based markers of sleep disturbance. The results suggest that delta 
wave fluctuations were predictive of all-cause mortality independently of other 
relevant clinical covariates. In contrast, more conventional sleep metrics, such 
as wake after sleep onset, arousal index and average power across EEG fre-
quency bands were poorly predictive of mortality risk. 
These findings provide support that power-spectral analysis of EEG-frequency 
bands contains more sensitive and useful information than current manually 
derived measures of sleep. Changes in mean EEG power have previously been 
associated with increased severity of OSA (Appleton et al., 2019) and insomnia 
(Krystal et al., 2002). However, in this Chapter, the mean power in any given 
frequency band in REM/NREM was not predictive of all-cause mortality. This 
supports a higher value for metrics designed to encapsulate core features of 
sleep homeostatic processes, particularly in the low frequency band power dis-
tribution across the night. Fluctuations in absolute band power of other fre-
quencies (e.g. alpha, sigma, theta and beta) were beyond the scope of this 
Chapter and remain to be studied in further studies. An immediate challenge 
is that representing such complex interactions between time and EEG delta 
frequency distribution overnight with a single number results in substantial 
information loss that may undermine relationships between sleep quality and 
relevant clinical and health outcomes. While in this Chapter fluctuations in 
delta-power overnight provided a robust metric more predictive of all-cause 
mortality than mean overnight delta power and other covariates, this clearly 
does not rule out that any number of alternative metrics may be potentially 
more informative.  
Slow wave activity during NREM sleep is thought to reflect synchronous low-
level activity of large neuronal populations and to be a fundamental marker of 
sleep homeostasis and stability (Nir et al., 2011). While previous research has 
primarily focused on the role of slow oscillations in memory consolidation 
(Stickgold, 2005, Marshall et al., 2006, Rasch et al., 2007, Maingret et al., 
2016). some evidence supports that slow wave sleep is also involved in systemic 
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metabolic regulation and tissue growth and repair. For example, the suppres-
sion of slow wave sleep has been associated with decreased insulin levels, sug-
gesting a potential role of slow wave sleep in modulating glucose regulation 
(Tasali et al., 2008). Reduced slow wave sleep has also been associated with an 
increase in the protein 𝛽𝛽-amyloid, a potential factor in the development of 
Alzheimer’s disease (Ju et al., 2017). Furthermore, growing evidence suggests 
that slow waves are involved in cardiovascular regulation (Javaheri and Red-
line, 2012, Silvani and Dampney, 2013). Brindle et al. (2018) showed that the 
quantity of slow wave sleep may moderate the effect of cardiovascular reactivity 
on carotid intima-media thickness, a sub-clinical marker of cardiovascular dis-
ease. Slow wave sleep duration is also associated with new cases of hyperten-
sion (Javaheri et al., 2018). Multiple associations between slow wave sleep and 
a wide range of cardio-metabolic outcomes support the concept that delta wave 
disruption may contribute to increased mortality risk. The lack of association 
between high spectral entropy and all-cause mortality is consistent with studies 
showing no association with the arousal index . High spectral entropy was also 
associated with the arousal index and wake after sleep onset in this study. It 
is possible that with sufficient slow wave activity (no low entropy) and time 
spent in NREM and REM sleep that recurrent arousals/awakening (high en-
tropy) are not necessarily associated with all-cause mortality. 
Methodological considerations 
Several limitations of the current study warrant consideration. Firstly, the 
SHHS began almost 25 years ago, and it is likely that factors not captured 
within the available data and those that change over time also contribute to 
all-cause mortality. For example, socio-economic factors appear to be stronger 
predictors of all-cause mortality than behavioural characteristics, metabolic 
and chronic conditions, medication and health service utilization (Melaku et 
al., 2019). Socio-economic factors were not captured in the current analyses. 
Thus, reproduction of findings in other cohorts, better adjusting for these fac-
tors is clearly warranted. Secondly, the SHHS participants were pooled from 
existing trials examining the effect of sleep-disordered breathing on cardiovas-
cular complications. Thus, participation and survival biases might contribute 
to these findings. Furthermore, although a recent meta-analysis found no con-
sistent evidence to increased mortality risk with insomnia (Lovato and Lack, 
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2019), insomnia could potentially also play an important role in helping to 
explain mortality effects, through sleep and delta wave disruption effects or 
more extended overnight periods of wake. Replication in unselected popula-
tions without sleep disorders (and/or with insomnia) would help to clarify the 
role of sleep disruption in all-cause mortality. Thirdly, the metric is a single 
marker of slow wave sleep disruption and refinements using different criteria 
and cut-offs may increase predictive utility, particularly where replication in 
large independent samples is clearly required. Furthermore, although con-
founders were chosen based on recent published analysis (Punjabi et al., 2009, 
Kendzerska et al., 2014a, Melaku et al., 2019), as in any cross-sectional study 
the possibility of uncontrolled confounders inevitably remains. Finally, these 
results rely on a single night of home-based polysomnography, where first night 
effects and night-to-night variability may influence the distribution of delta 
wave sleep across the night. These effects remain to be studied but appear 
unlikely to explain associations with all-cause mortality.  
The reported association between all-cause mortality and AHI differs from the 
initial report from the SHHS (Punjabi et al., 2009), most likely reflecting mul-
tiple methodological differences. Firstly, this Chapter contained 1000 fewer 
participants than the initial report, since 637 participants were not available 
through National Sleep Research Resources, and some participants were ex-
cluded due to poor EEG quality not compatible with power-spectral analysis. 
Secondly, models contained both percentage of sleep time spent with oxygen 
saturation less than 90% and AHI, similar to a more recent study (Kendzerska 
et al., 2014a). However, results are in accordance with a more recent prospec-
tive study of 10,000 participants (Kendzerska et al., 2014a) where the percent-
age of sleep time spent with oxygen saturation less than 90%, but not AHI, 
was associated with an increased mortality risk. Similar to other recent find-
ings, an association between all-cause mortality and multiple sleep symptoms, 
such as percentage of time spent in REM (Zhang et al., 2019a, Leary et al., 
2020) and total sleep time (Kendzerska et al., 2014a); or as defined by Mazzotti 
et al. (2019), the disturbed sleep group (although the outcome was cardiovas-
cular event incidence instead of mortality) was also found.  
Conclusion 
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This Chapter supports the concept that sleep disruption contributes to mor-
tality and other adverse health outcomes through multiple pathways. These 
may include reduced REM sleep, sleep disruption, cardiovascular system stress 
through exaggerated intra-thoracic pressure swings, increased sympathetic 
nervous system activity, episodic hypoxia and sleep disruption impacts on day-
time functioning, accident risks and health. Finally, upon further validation of 
this metric, and ideally in combination with other informative metrics, these 
new tools could be implemented within standard clinical sleep medicine soft-
ware tools to quantify sleep disruption, underlying pathophysiological mecha-
nisms and clinical outcome risks to better inform targeted treatment and man-
agement decisions for sleep problems.  
Open source software 
The code developed for the presented analysis is written in Python 3 (Python 
Software Foundation, https://www.python.org/). This code will be available 
under a common license rule at https://github.com/Adelaide-Institute-for-
Sleep-Health/ upon publication of this Chapter; and also include some other 
analysis published recently (Lechat et al., 2020, Scott et al., 2020). To facilitate 
uptake a user-interface (see Figure B5) was developed using Qt for python and 
Plotly (Plotly Technologies Inc., 2015) for interactive visualization.  
  

https://www.python.org/
https://github.com/Adelaide-Institute-for-Sleep-Health/
https://github.com/Adelaide-Institute-for-Sleep-Health/
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Summary 
Study Objectives: To determine if a novel EEG-derived continuous index of 
sleep depth/alertness, the odds ratio product (ORP), predicts self-reported 
daytime sleepiness and poor sleep quality compared to traditional polysomnog-
raphy metrics in two large population-based cohorts. 
Methods: ORP, generated using continuous three second intervals of EEG, 
ranges from 0 (very deep sleep) to 2.5 (fully alert). ORPwake, reported to be 
high in hyperarousal states, and the difference between ORPwake and ORPNREM 
(ΔORP) were measured in the HypnoLaus cohort (N = 2162: 1106 females, 
1056 males). ORPwake was also quantified in the MAILES cohort (N = 754 
males) as a validation dataset. Logistic regression, controlled for age, body 
mass index, sex, total sleep time, apnoea/hypopnea index and depression was 
used to examine associations between ORPwake, ΔORP and traditional poly-
somnography measures with excessive sleepiness (ESS > 10) and poor sleep 
quality (PSQI > 5) and insomnia sleep symptoms.  
Results: Hyperarousal (high ORPwake) was associated with a ~30% increase in 
poor sleep quality in both HypnoLaus (odds ratio, OR, and 95% CI) 1.28 (1.08, 
1.51) and MAILES 1.36 (1.11, 1.68). High ORPwake was also associated with a 
~20% decrease in excessive daytime sleepiness in the combined dataset OR 
0.81 (0.69, 0.95). High ΔORP was associated with a decrease in perceived poor 
sleep quality and excessive daytime sleepiness in HypnoLaus. No associations 
were detected using traditional polysomnography markers of sleep quality.  
Conclusions: ORP, a novel EEG-derived metric, predicts perceived sleepiness 
and poor sleep quality whereas traditional polysomnographic metrics do not. 
ORP may also provide unique insight into physiological hyperarousal and the 
propensity for insomnia.  
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5.1 Introduction 
Excessive daytime sleepiness and poor sleep quality are key markers of sleep 
difficulties (Balkin et al., 2008) and sleep disorders (Zeman et al., 2004, Slater 
and Steier, 2012, Sforza et al., 2015). Poor sleep and sleepiness are bidirection-
ally associated with multiple adverse health outcomes including depression, 
obesity, anxiety and increased risk of psychiatric conditions and motor vehicle 
accidents (Johns, 1993, Johns, 1994, Lyznicki et al., 1998, Backhaus et al., 
2002, Grandner et al., 2006, Elwood et al., 2011, Tsapanou et al., 2015). 
While alternate measures have been proposed (Adams et al., 2016), perceived 
sleep quality and sleepiness are commonly measured using the Pittsburgh sleep 
quality index (Buysse et al., 1989) and the Epworth sleepiness scale (Johns, 
1991), respectively. PSQI and ESS provide complementary information about 
healthy and restorative sleep and daytime consequences (Buysse et al., 2008). 
However, relationships between subjective sleep quality and/or sleepiness and 
objectives markers of sleep quality derived from traditional gold-standard pol-
ysomnography are weak and inconsistent (Buysse et al., 2008, Sforza et al., 
2015, Adams et al., 2016).  
Poor association between clinical outcomes and polysomnography measures of 
sleep time and fragmentation may reflect the rather arbitrary and subjective 
nature of electroencephalography (EEG)-based sleep scoring rules. Traditional 
polysomnography metrics, which have relatively poor inter- and intra-scorer 
reliability (Ruehland et al., 2011, Ruehland et al., 2015), were developed 
around practical constraints of paper-based recordings, rather than underlying 
pathophysiological processes more likely to be related to clinical outcomes. 
More recently, the odds ratio product (ORP), a novel EEG-derived metric, has 
been developed to provide a continuous index of sleep depth and alertness 
(Younes et al., 2015, Younes, 2017). Following sleep deprivation and sleep re-
striction, the ORP decreases (deeper sleep). ORP increases (indicating a more 
alert state) as spontaneous breathing periods resume in patients in the inten-
sive care unit (Dres et al., 2019). Given inconsistent findings between tradi-
tional objective sleep measures and subjective sleep quality, this Chapter aimed 
to determine if ORP-based metrics predict self-reported daytime sleepiness and 
poor sleep quality.  
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5.2 Methods 

 Study design 

Perceived sleep quality, sleepiness and polysomnography data were acquired 
from two community-based cohort studies, the HypnoLaus cohort (2162 par-
ticipants) and the MAILES cohort (754 participants) (Grant et al., 2014, Hein-
zer et al., 2015). Signal processing and statistical modelling used the Hyp-
noLaus cohort as a development sample and the MAILES cohort as a valida-
tion sample. Further analyses were conducted using both datasets combined.  

 Cohort overview 

Cohort data collection included multiple clinical assessments and a home-based 
polysomnography (level 2) between 2009 and 2012 for HypnoLaus and 2002 
and 2011 for MAILES. Home-based polysomnography was conducted with 
multiple EEG leads (C3, C4, F3, F4, O1, O2 referenced to M1/2) in the Hyp-
noLaus cohort (Titanium, Embla Flaga, Reykjavik, Iceland) and with a single 
EEG lead (F3-M2) in the MAILES cohort (Embletta X100, Embla Systems, 
Thornton, CO, USA). Data from both cohorts included electrooculogram 
(EOG), chin electromyography (EMG), nasal pressure, thoracic and abdominal 
effort bands, oximetry and body position signals. Manual scoring of sleep stage 
and apnoeic events were performed using the 2007 American Academy of Sleep 
Medicine alternative criteria (Iber et al., 2007) in both cohorts. A more de-
tailed overview of the cohort protocols is described in their respective main 
papers (Grant et al., 2014, Heinzer et al., 2015). All data were collected as part 
of research protocols that were approved by the local institutional human re-
search ethics committees of the coordinating institutions. Informed written 
consent was obtained from each individual prior to participation.  

 EEG processing 

ORP values were generated in non-overlapping three second epochs according 
to previously published methodology (Younes et al., 2015). Fast Fourier trans-
form was performed in each epoch and the total power in four frequency ranges 
was calculated: 0.33-2.33 Hz (slow delta), 2.67-6.33 Hz (range 2, includes theta 
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and fast delta), 7.0-14.0 Hz (alpha/sigma) and 14.0-35.0 Hz (beta). The prob-
ability of being awake in each three second epoch based on these absolute 
power metrics was then derived using a look-up table as described previously 
(Younes et al., 2015). This probability was then divided by 40 to give an ORP 
value ranging from 0 (deep sleep) to 2.5 (fully awake/alert). ORP values cor-
relate well with the visual appearance of the EEG across the night  and there 
is an excellent correlation between average ORP in 30 seconds epochs and the 
probability of an arousal or an awakening occurring in the next 30 seconds 
epoch (Younes et al., 2015, Younes, 2017, Younes et al., 2020). ORP values from 
C3 and C4 were averaged in the HypnoLaus study, while ORP in the only 
available electrode (F3) is reported for the MAILES participants. EEG fre-
quency changes are large and vary across the cortex during sleep. Noise reduc-
tion strategies applied averaging of C3 and C4 in the HypnoLaus cohort but 
were not possible or comparable in the MAILES cohort. Accordingly, ORP 
analysis was limited to wakefulness only in the MAILES validation cohort. 

 Questionnaires 

Anthropometric information, PSQI, ESS, and medication use were recorded at 
the time of the polysomnography study in both HypnoLaus and MAILES. The 
Centre for Epidemiologic Studies Depression Scale (Lewinsohn et al., 1997) 
(CES-D) was used to assess depression symptoms in HypnoLaus also at the 
time of the polysomnography study. Beck’s depression inventory (Lasa et al., 
2000) scale and CES-D were used in MAILES and this information was col-
lected between one and three years before the overnight sleep study. For the 
purpose of the current study (and for uniformity across cohorts), depression 
was defined as the use of any anti-depressant medication and/or a depression 
score above the recommended clinical cut-offs for each questionnaire.  

 Sleep parameters 

Associations between sleepiness and objective sleep quality were assessed using 
traditional polysomnography metrics of sleep quality (wake after sleep onset, 
total sleep time, apnoea-hypopneas index, arousal index, sleep efficiency and 
sleep onset latency) as well as ORP based metrics: the mean overnight ORPwake, 
hypothesized to reflect sleep propensity during wake epochs and reported to 
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be high in hyperarousal states (Younes and Giannouli, 2020), and the differ-
ence between ORPwake and ORPNREM (∆ORP).  Low ∆ORP reflects a combina-
tion of low ORPwake (high sleep propensity during wake epochs) along with 
high ORPNREM (light sleep). This combination typically occurs in the presence 
of sleep disrupting influences that interfere with progression to deep sleep.  

 Study outcome 

The primary aims of this Chapter were to investigate potential relationships 
between traditional and novel polysomnography markers and perceived exces-
sive daytime sleepiness/poor sleep quality as defined by an ESS > 10 and a 
PSQI > 5, respectively. These cut-offs were selected as they are the most com-
monly used definitions in clinical settings (Buysse et al., 1989, Johns, 1991, 
Johns, 1992, Johns, 1994, Backhaus et al., 2002). Furthermore, when an asso-
ciation was detected between poor sleep quality and a polysomnographic pre-
dictor, potential relationships between the polysomnographic predictor and 
each component of the PSQI sub-scale were investigated. Each PSQI compo-
nent consists of a score ranging from 0 to 4 and encompasses multiple key 
aspects of a healthy sleep including a) sleep medication intake, b) subjective 
sleep quality and c) daytime dysfunction. 
Finally, potential associations between ORPwake and difficulty in initiating and 
maintaining sleep (DIMS) symptoms, generally found in people with insomnia 
were investigated. DIMS was defined as a sleep onset latency > 30 minutes 
three times a week or more (PSQI question 5a) and/or “wake up in the middle 
of the night or early mornings” at least 3 times a week. 

 Statistical analyses 

The Chi-square test for categorical variables and Kruskal-Wallis test for con-
tinuous variables were used to identify potential differences in baseline charac-
teristics between the HypnoLaus and MAILES cohort.  
Logistic regression was used to investigate associations between the ORPwake, 
∆ORP and traditional polysomnography measures (wake after sleep onset, 
arousal index and sleep onset latency) with sleepiness and poor sleep quality. 
For each polysomnography predictor, five models were constructed: 1) an un-
adjusted model, 2) a model adjusted for age and sex, 3) and 4) were addition-
ally adjusted for BMI, and total sleep time and AHI, respectively and 5) a 



CHAPTER 5 Bastien Lechat 

91 

model that included adjustment for all these covariates as well as depression. 
Multiple imputation using additive regression, bootstrapping, and predictive 
mean matching was used to generate 20 complete datasets to account for miss-
ing variables. Coefficients and standard errors of the 20 complete datasets were 
pooled using Rubin’s rules (Rubin, 1987). Arbitrary cut-offs for poly-
somnographic variables were omitted and non-linear associations were tested 
using restricted cubic spline transformations. Thus, the results are expressed 
as odds ratio (ORs) and 95% confidence intervals (CIs) comparing the 75th 
against the 25th percentiles of the population.  
In addition to the main analyses, two sensitivity analyses to further validate 
the findings were conducted. In the first sensitivity analysis, participants who 
reported using benzodiazepine were removed, while in the second analysis par-
ticipants with less than 30 minutes of wakefulness data during the overnight 
sleep study were removed. 

5.3 Results 

 Baseline characteristics 

Participants from the HypnoLaus and MAILES cohorts had similar BMI, ESS, 
PSQI and age range, although the median age was 3 years less in HypnoLaus 
(Table 5-1). Participants in the MAILES cohort had worse objective sleep 
quality, as reflected by lower total sleep time, longer sleep onset latency and 
greater wake after sleep onset (Table 5-1). The proportion of participants di-
agnosed with depression was higher in HypnoLaus. A total of 685 (37%) and 
339 (46%) participants reported poor sleep quality and 261 (13.2%) and 88 
(11.8%) participants reported excessive daytime sleepiness in HypnoLaus and 
MAILES, respectively. Participants in MAILES had a higher proportion of 
sleep disturbances in the 3rd, 4th and 5th components of the PSQI questionnaire 
compared to HypnoLaus (Table 5-1). However, participants in MAILES re-
ported lower proportions of sleep medication use (PSQI component 6). Data 
from a total of 192 (8.9%) and 93 (12.3%) participants were rejected for ORP 
analysis because of poor EEG quality in HypnoLaus and MAILES, respec-
tively.  
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Table 5-1: Baseline participant characteristics in HypnoLaus and MAILES. 
Continuous variables are summarized as median [IQR] and categorical varia-
ble as n (%). 

 All HypnoLaus MAILES p-values 

Demographics     
n 2916 2162 754  

Age (years) 58 [50, 69] 57 [49, 68] 60 [52, 69] < 0.001 

Sex: Male (%) 1810 (62.1) 1056 (48.8) 754 (100.0) < 0.001 

BMI (kg/m2) 26 [24, 29] 26 [23, 29] 28 [26, 31] < 0.001 

Depression: Yes (%) 347 (13.2) 284 (14.8) 63 (8.8) < 0.001 

Anti-depressant use: Yes 
(%) 

167 (5.8) 129 (6.1) 38 (5.0) 0.322 

PSQI 5 [3, 7] 4 [3, 7] 5 [3, 8] < 0.001 

ESS 6 [3, 8] 6 [3, 9] 5 [3, 8] 0.068 

PSG parameters     
Total sleep time (min) 396 [352, 438] 404 [357, 446] 377 [339, 413] < 0.001 

AHI (#events/h sleep) 6 [2, 14] 4 [1, 11] 10 [6, 20] < 0.001 

Sleep efficiency (%) 86 [77, 91] 88 [79, 92] 80 [73, 87] < 0.001 

Wake after sleep onset 
(min) 

62 [37, 104] 58 [34, 99] 71 [47, 114] < 0.001 

Sleep onset latency (min) 12 [5, 22] 11 [5, 21] 14 [7, 24] < 0.001 

Arousal index (# events/h 
sleep) 

18 [13, 25] 19 [14, 26] 17 [13, 22] < 0.001 

ORPwake 2.08 [1.93, 2.19] 2.05 [1.90, 2.17] 2.14 [2.04, 2.24] < 0.001 

ΔORP N/A 1.03 [0.5, 1.19] N/A N/A 

PSQI sub-components     
Sleep quality: >= 2 * 519 (18.5) 387 (18.8) 132 (17.6) 0.488 

Sleep latency: > 30min 594 (21.6) 420 (31.1) 174 (23.2) 0.23 

Sleep duration: < 6hours 309 (10.6) 193 (8.9) 116 (15.4) < 0.001 

Sleep efficiency: < 75 % 485 (17.3) 316 (15.4) 169 (22.4) < 0.001 

Sleep disturbances: >= 2 * 822 (30.5) 463 (23.7) 359 (48.6) < 0.001 

Medication: > 1/week 353 (12.7) 298 (14.7) 55 (7.3) < 0.001 

Daytime Dysfunction: >= 
2 * 

374 (13.6) 284 (14.1) 90 (12.0) 0.163 

* these PSQI components consisted of a scale that ranged from 0 to 4. 
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 Predictors of daytime sleepiness and perceived poor 
sleep quality 

Unadjusted models suggest an association between ORPwake, ΔORP, wake after 
sleep onset (WASO), sleep efficiency and sleep onset latency with excessive 
daytime sleepiness and/or poor sleep quality in both HypnoLaus and MAILES 
cohorts (Table 5-2). Associations between polysomnography predictors and 
perceived sleepiness and poor sleep quality were in the opposite direction. For 
example, higher sleep efficiency was associated with a 10% decrease in the odds 
of having perceived poor sleep quality but a ~30% increase of having excessive 
daytime sleepiness. Positive associations between perceived sleepiness and poor 
sleep quality were detected for ΔORP in the HypnoLaus cohort. Furthermore, 
ORPwake was associated with both perceived sleepiness and poor sleep quality 
in HypnoLaus and MAILES, although the association was inconsistent across 
outcomes. Specifically, a high ORPwake was associated with perceived poor sleep 
quality and a decrease in the odds of excessive daytime sleepiness. 

Table 5-2: Unadjusted univariate logistic regression association (OR, Mean 
(95% CI)) between excessive daytime sleepiness, poor sleep quality and poly-
somnography predictors. 

 
Epworth sleepiness scale 

(ESS) > 10 
 

Pittsburgh sleep quality index 
(PSQI) > 5 

 HypnoLaus MAILES  HypnoLaus MAILES 

Wake after sleep 
onset 

0.73 
(0.61, 0.88) 

0.95 
(0.71, 1.28) 

 
1.12 

(1.01, 1.25) 
1.43 

(1.17, 1.75) 

Total sleep time 
0.94 

(0.80, 1.10) 
1.28 

(0.96, 1.73) 
 

1.02 
(0.91, 1.14) 

0.96 
(0.80, 1.16) 

Sleep onset la-
tency 

0.81 
(0.71, 0.94) 

0.97 
(0.78, 1.19) 

 
1.11 

(1.04, 1.19) 
1.34 

(1.16, 1.56) 

Sleep efficiency 
1.32 

(1.11, 1.59) 
1.15 

(0.84, 1.58) 
 

0.90 
(0.80, 1.00) 

0.65 
(0.52, 0.80) 

Arousal index 
0.96 

(0.83, 1.12) 
0.99 

(0.76, 1.29) 
 

1.00 
(0.90, 1.11) 

1.14 
(0.96, 1.36) 

Apnoea/hypop-
noea index 

0.98 
(0.88, 1.09) 

0.99 
(0.78, 1.26) 

 
1.00 

(0.92, 1.07) 
1.07 

(0.92, 1.25) 

ORP wake 
0.78 

(0.66, 0.93) 
0.74 

(0.57, 0.97) 
 

1.38 
(1.20, 1.59) 

1.39 
(1.14, 1.69) 

ΔORP 
0.80 

(0.66, 0.95) 
na  

0.90 
(0.79, 1.03) 

na 
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In the fully adjusted models, a higher ORPwake was consistently associated with 
poor perceived sleep quality in both HypnoLaus and MAILES (Table 5-3), 
that is, the probability of having perceived poor sleep quality increased with 
the ORPwake score (Figure 5-1). In contrast, a higher ORPwake was also consist-
ently associated with a decrease in the odds of being excessively sleepy in 
MAILES and in the combined dataset (Table 5-3). 

Figure 5-1: Marginal probability of reporting poor sleep quality as a function 
of ORPwake in (A) HypnoLaus and (B) MAILES. 

Estimated associations between ORPwake and excessive daytime sleepiness/per-
ceived poor sleep quality were similar in the pooled versus separate cohort 
datasets, usually with a narrower confidence interval in the pooled dataset 
(Table 5-3). There was considerable consistency in observed associations (ex-
cessive daytime sleepiness and poor sleep quality) across model 1 to 5 in both 
cohorts, although the confidence intervals were larger in the latter adjusted 
models. Furthermore, none of the traditional polysomnography predictors were 
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consistently associated with perceived poor sleep quality or excessive daytime 
sleepiness in the fully adjusted models (Table 5-4). 

Table 5-3: Adjusted associations* (OR, Mean (95% CI)) between subjective 
measures of sleepiness and poor sleep quality excessive daytime sleepiness 
with ORPwake. 

 
Epworth sleepiness scale 

 (ESS) > 10 
 

Pittsburgh sleep quality  
index (PSQI) > 5 

 HypnoLaus MAILES Combined  HypnoLaus MAILES Combined 

Model 1 
0.78 

(0.66 – 0.93) 
0.74 

(0.57 – 0.97) 
0.77 

(0.66 – 0.89) 
 

1.38 
(1.20 – 1.59) 

1.39 
(1.14 – 1.69) 

1.44 
(1.28 – 1.61) 

Model 2 
0.91 

(0.76 – 1.09) 
0.75 

(0.57 – 0.98) 
0.84 

(0.72 – 0.98) 
 

1.32 
(1.13 – 1.53) 

1.39 
(1.15 – 1.70) 

1.43 
(1.28 – 1.60) 

Model 3 
0.92 

(0.77 – 1.10) 
0.74 

(0.56 – 0.97) 
0.84 

(0.72 – 0.98) 
 

1.34 
(1.15 – 1.56) 

1.37 
(1.12 - 1.67) 

1.45 
(1.29 – 1.62) 

Model 4 
0.88 

(0.73 – 1.07) 
0.75 

(0.57 – 0.99) 
0.83 

(0.71 – 0.97) 
 

1.36 
(1.16 – 1.60) 

1.39 
(1.14 – 1.70) 

1.48 
(1.31 – 1.66) 

Model 5 
0.85 

(0.70 – 1.04) 
0.72 

(0.54 – 0.96) 
0.81 

(0.69 – 0.95) 
 

1.28 
(1.08 – 1.51) 

1.36 
(1.11 – 1.68) 

1.42 
(1.26 – 1.62) 

Model 1: Unadjusted; Model 2: Model 1, age and sex; Model 3: Model 2 and BMI; Model 4: Model 3 and total sleep time, 
apnoea-hypopneas index; Model 5: Model 4 and depression.  
*Odds ratio (ORs) and 95% CIs compare the 75th against the 25th percentiles of the population. 
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Table 5-4: Multivariable adjusted* association between conventional poly-
somnography markers of sleep quality and excessive daytime sleepiness/per-
ceived poor sleep quality. 

 
Epworth sleepiness scale  

(ESS) > 10 
 

Pittsburgh sleep quality  
index (PSQI) > 5 

 HypnoLaus MAILES Combined  HypnoLaus MAILES Combined 

Wake after sleep 
onset 

0.86 
(0.71, 1.04) 

1.07 
(0.75, 1.51) 

0.91 
(0.76, 1.08) 

 
1.12 

(0.97, 1.29) 
1.60 

(1.26, 2.03) 
1.20 

(1.07, 1.35) 

Total sleep time 
0.88 

(0.74, 1.04) 
1.21 

(0.90, 1.63) 
0.96 

(0.83, 1.11) 
 

0.93 
(0.82, 1.06) 

0.92 
(0.76, 1.12) 

0.93 
(0.83, 1.03) 

Apnoea-hypopnea 
index 

1.04 
(0.92, 1.18) 

0.96 
(0.75, 1.24) 

1.03 
(0.92, 1.16) 

 
0.99 

(0.91, 1.09) 
1.11 

(0.94, 1.31) 
1.04 

(0.95, 1.13) 

Arousal index 
1.06 

(0.88, 1.29) 
1.05 

(0.75, 1.48) 
1.07 

(0.91, 1.25) 
 

1.05 
(0.91, 1.22) 

1.12 
(0.89, 1.41) 

0.94 
(0.84, 1.05) 

Sleep efficiency 
1.19 

(0.97, 1.47) 
0.98 

(0.64, 1.48) 
1.16 

(0.95, 1.43) 
 

0.87 
(0.74, 1.02) 

0.49 
(0.37, 0.66) 

na1 

Sleep onset latency 
0.80 

(0.69, 0.98) 
0.98 

(0.79, 1.23) 
0.83 

(0.73, 0.93) 
 

1.02 
(0.95,1.10) 

1.35 
(1.15, 1.57) 

na1 

* Odds ratio (ORs) and 95% CIs compare the 75th against the 25th percentiles of the population. Models are adjusted for 
age, BMI, sex, total sleep time, apnoea-hypopnea index and depression. 
1 Data cannot be accurately summarised with one odds ratio (95% CI) due to a significant interaction between polysomnog-
raphy predictors and cohort centre. 

A greater ΔORP was associated with decreased odds of excessive daytime 
sleepiness in models 1-4 in the HypnoLaus cohort (Table 5-5). However, while 
the point estimate was of similar magnitude, the association was not significant 
when additionally controlled for depression. A greater ΔORP was also associ-
ated with improved perceived sleep quality in some but not all of the models 
(Table 5-5). 
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Table 5-5: Adjusted association (OR, Mean (95% CI)) of excessive daytime 
sleepiness and poor sleep quality with ΔORP for the HypnoLaus cohort. 

 
Epworth sleepiness scale 

(ESS) > 10 
Pittsburgh sleep quality index 

(PSQI) > 5 

Model 1 0.80 (0.66 – 0.95) 0.91 (0.80 – 1.04) 

Model 2 0.81 (0.67 – 0.97) 0.86 (0.76 – 0.99) 

Model 3 0.82 (0.68 – 0.99) 0.88 (0.76 – 1.00) 

Model 4 0.80 (0.66 – 0.97) 0.85 (0.74 – 0.99) 

Model 5 0.82 (0.68 – 1.00) 0.93 (0.80 – 1.08) 
Model 1: Unadjusted; Model 2: Model 1, age and sex; Model 3: Model 2 and BMI; Model 4: Model 
3 and total sleep time, apnoea-hypopneas index; Model 5: Model 4 and depression. 

In the fully adjusted models, males were less likely to report poor sleep quality 
(Hypnolaus, ORs 95% CI, 0.57 (0.46, 0.71)) and depression was a predictor of 
poor sleep quality (Hypnolaus, 4.10 (3.22, 5.24), MAILES 2.32 (1.43, 3.77)) 
and sleepiness (HypnoLaus, 1.60 (1.17, 2.19), MAILES 2.25 (1.25, 4.04)). 
There were no significant interactions between polysomnography predictors 
and AHI, sex, age and depression.  Sensitivity analysis did not change any of 
the main findings. 

 PSQI sub-components, insomnia symptoms and hy-
per-arousal 

A higher ORPwake was associated with a 70% increase in consumption of sleep-
ing medications (Table 5-6) in HypnoLaus but not in MAILES, where there 
was a smaller proportion of medication users (7.5%, N=55) versus HypnoLaus 
(Table 5-1). Higher ORPwake was also associated with a 24% and 26% odds of 
reporting high levels of sleep disturbances in HypnoLaus and MAILES respec-
tively. Finally, associations between ORPwake and almost all PSQI sub-compo-
nents were observed in HypnoLaus and the combined dataset (Table 5-6). Con-
versely, this was not the case for any of the traditional polysomnography met-
rics. 
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Table 5-6: Adjusted association (OR, Mean (95% CI)) between PSQI sub-
components, insomnia symptoms and ORPwake in HypnoLaus, MAILES and 
pooled dataset. 

  HypnoLaus MAILES Combined 

PSQI Sleep quality 
1.16 

(0.97 – 1.38) 
1.19 

(0.90 – 1.57) 
1.21 

(1.04 – 1.41) 

 Sleep latency 
1.23 

(1.04 – 1.45) 
1.24 

(0.97 – 1.58) 
1.29 

(1.12 – 1.48) 

 Sleep duration 
1.26 

(0.99 – 1.61) 
1.03 

(0.78 – 1.35) 
1.26 

(1.05 – 1.53) 

 Habitual sleep efficiency 
1.13 

(0.93 – 1.36) 
1.23 

(0.96 – 1.58) 
1.25 

(1.07 – 1.47) 

 Sleep disturbances 
1.24 

(1.05 – 1.45) 
1.26 

(1.03 – 1.54) 
1.47 

(1.29 – 1.67) 

 Sleep medications 
1.70 

(1.37 – 2.12) 
1.31 

(0.87 – 1.96) 
1.60 

(1.31 – 1.94) 

 Daytime dysfunction 
0.77 

(0.67 – 0.98) 
1.08 

(0.78 – 1.48) 
0.87 

(0.74 – 1.03) 
Insomnia 
symptoms 

SOL > 30 minutes 3/ times 
a week 

1.56 
(1.23 – 1.98) 

0.92 
(0.70 – 1.22) 

1.39 
(1.15 – 1.68) 

 
Frequent awakening/early 
awakening 3 times/week 

1.13 
(0.97 – 1.32) 

1.08 
(0.89 – 1.33) 

1.25 
(1.11 – 1.41) 

 
Difficulty initiating and 

maintaining sleep* 
1.20 

(1.04 – 1.38) 
1.08 

(0.88 – 1.32) 
1.28 

(1.14, 1.42) 
*defined as sleep onset latency (SOL) > 30 minutes 3/ times a week OR Frequent awakening/early awakening 3 
times/week. 
 

In the HypnoLaus cohort, a greater ΔORP was associated with a 17 % reduc-
tion in odds of reporting high levels of sleep disturbances and a 31% reduction 
in odds of taking sleep medications more than once a week. ORPwake was also 
significantly positively associated (28% increase) with difficulties initiating and 
maintaining sleep in the combined dataset and in HypnoLaus (20% increase); 
as well as some of the individual symptoms (Table 5-6).  

5.4 Discussion 
This Chapter supports that alertness during wakefulness periods during an 
overnight in-home sleep study, measured using the mean ORP, provides a 
marker of excessive daytime sleepiness, perceived poor sleep quality and diffi-
culties initiating and maintaining sleep, while traditional polysomnography 
markers of sleep quality are not. 
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Predictors of daytime sleepiness and perceived poor sleep quality 
Multiple cross-sectional and longitudinal studies have used various traditional 
polysomnography markers to investigate their potential predictive capacity for 
sleepiness and sleep quality (Buysse et al., 2008, Adams et al., 2016, Berger et 
al., 2020). Unfortunately, predictive performance from these traditional metrics 
has been inconsistent and poor (Buysse et al., 2008, Adams et al., 2016, Berger 
et al., 2020). Recent studies incorporating more detailed analyses of specific 
EEG signal components compared to traditional polysomnography have 
yielded more promising findings. For example, features of KCs are associated 
with mild cognitive impairment (Liu et al., 2020) and lapses in alertness as 
measured by the psychomotor vigilance task (Parekh et al., 2019). Similar 
findings have been reported with sleep spindles (Chatburn et al., 2013) and 
slow wave sleep (Torsvall and Akerstedt, 1988). These findings, combined with 
the current study results, support that more detailed polysomnography mark-
ers are superior predictors of sleepiness and poor sleep quality than traditional 
polysomnography markers. Indeed, novel EEG derived metrics such ORP have 
been used to quantify post-arousal sleep dynamics in patients with OSA 
(Younes and Hanly, 2016), excessive overnight wake time (Younes and Gian-
nouli, 2020), and other important physiological metrics such as blood pressure 
(Kim et al., 2020). Thus, there is considerable scope to use more advanced 
signal processing techniques to identify novel clinically important predictors of 
disease consequences such as sleepiness which traditional metrics consistently 
fail to predict. 
A potential novel marker of hyperarousal and insomnia 
The current findings indicate that a high ORPwake may be a novel biomarker 
of physiological hyperarousal. The theoretical concept of hyperarousal has 
gained wide-spread attention as a potential mechanism to explain, at least in 
part, the pathophysiology of insomnia. Hyperarousal is characterised by 24-h 
increased cognitive/emotional (e.g. ruminations about sleep, anxiety) (Harvey, 
2002, Bonnet and Arand, 2010) and physiological arousal (e.g. heart rate, basal 
metabolic rate, core body temperature) (Bonnet and Arand, 1997, Nofzinger 
et al., 2004, Bonnet and Arand, 2010). In addition, beta EEG activity is in-
creased during NREM and/or REM in people with insomnia (Freedman, 1986, 
Lecci et al., 2020). Recent evidence from the HypnoLaus dataset also suggests 
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that people with higher frequency EEG activation during sleep tend to under-
estimate their total sleep time (Lecci et al., 2020). Thus, an association be-
tween high ORP, a marker of alertness/sleep depth, and insomnia symptoms 
is in accordance with these previous findings. However, consistent with an ear-
lier preliminary report (Freedman, 1986), the results also suggest that physio-
logical hyper-arousal is measurable using EEG collected during wakefulness 
periods that occur throughout sleep. Previous investigation of spectral compo-
nents of the EEG has only been derived in a small (~50 participants) dataset 
of people with insomnia rather than two much larger and independent popu-
lation cohorts. Thus, this Chapter strongly supports the value of a high OR-
Pwake as a novel biomarker of physiological hyperarousal.  
Importantly, the ESS assesses propensity of dozing off/falling asleep rather 
than feeling tired or fatigued  and hasn’t been associated with insomnia symp-
toms in previous report on MAILES (Adams et al., 2016). Thus, it is perhaps 
not surprising that a high ORPwake, marker of hyperarousal state, is associated 
with insomnia symptoms while a low ORPwake, which measures the ability of 
dozing off while awake, is associated with excessive daytime sleepiness.  
Methodological considerations 
While the current study findings are novel and robust given consistent findings 
and cross validation in two large independent community samples, several lim-
itations warrant consideration. Firstly, the MAILES dataset only included 
men. Thus, although no significant interactions with sex in the HypnoLaus 
cohort was found, the findings in women from HypnoLaus require further in-
dependent validation. Secondly, only F3 EEG was available from the home 
polysomnography in the MAILES cohort. Thus, it was not possible to reliably 
estimate sleep ORP, which requires cross-validation of two EEG sites. Thus, 
while the difference between NREM ORP and wake ORP and its prediction 
utility for identifying sleepiness in the HypnoLaus cohort is promising, this 
marker also needs independent validation in another cohort. Furthermore, 
while depression was used as a confounder in this analysis, antidepressant med-
ications themselves could also directly or indirectly impact sleep quality and 
sleepiness. Future work beyond the scope of this thesis is clearly warranted to 
further examine potential interactive effects between sleep quality, sleepiness, 
depression, and medication.  
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Finally, the Epworth sleepiness scale may not be a reliable marker of daytime 
sleepiness (Chervin et al., 1997, Kendzerska et al., 2014b, Adams et al., 2016), 
and therefore potential association between ORPwake, traditional marker of 
sleep quality and daytime sleepiness remained to be further studied using al-
ternative assessment of daytime impairment. 
Conclusion 
The odds ratio product, a novel EEG-derived metric, predicts important out-
comes of perceived sleepiness and poor sleep quality. No associations were ob-
served using traditional polysomnographic metrics. These key findings are con-
sistent across two large community cohorts even after adjustment of key po-
tential confounders. In addition, the odds ratio product may provide unique 
neurophysiological insight into physiological hyperarousal and the propensity 
for insomnia. 
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CHAPTER 6. CO-MORBID INSOMNIA 
AND OBSTRUCTIVE SLEEP APNOEA 
IS ASSOCIATED WITH ALL-CAUSE 
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Summary: 
Study Objectives: Increased mortality and cardiovascular disease risks have 
been examined in people with insomnia and OSA separately. However, insom-
nia and OSA commonly co-occur and no studies have investigated the effect 
of COMISA on mortality and cardiovascular event risks. Thus, the aim of this 
Chapter was to assess the potential association between COMISA and all-
cause mortality and cardiovascular event risks. 
Methods: Insomnia was defined as difficulty falling asleep, maintaining sleep, 
and/or early morning awakenings from sleep at least 5 times a month and 
daytime impairment. OSA was defined as an AHI ≥15 events/h sleep. COMISA 
was defined if both conditions were present. Multivariable adjusted Cox pro-
portional hazard models were used to determine the association between 
COMISA and all-cause mortality (n = 1210) and cardiovascular events (N = 
1243) over 15 years of follow-up in the Sleep Heart Health Study (n = 5803). 
Results: 5236 participants were included in the analysis. 2504 (47.8%) did not 
have insomnia/OSA, 374 (7.1%) had insomnia-alone, 2027 (38.7%) had OSA-
alone, and 331 (6.3%) had COMISA. Compared to participants with no in-
somnia/OSA, COMISA was associated with a 32% (HR, 95% CI; 1.32 (1.06, 
1.64)) and 38% (1.38 (1.11, 1.71)) increased risk of mortality and cardiovascu-
lar events, respectively. Insomnia-alone and OSA-alone were not associated 
with all-cause mortality risk or cardiovascular event risk. 
Conclusions: COMISA is associated with increased risk of all-cause mortality 
and cardiovascular events. These results highlight the need to develop effective 
treatment approaches for COMISA. 
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6.1 Introduction 
Insomnia and OSA are the two most common sleep disorders, each occurring 
in approximately 10 to 30% of the general population (Ohayon, 2009, Peppard 
et al., 2013, Heinzer et al., 2015). Insomnia is characterized by frequent diffi-
culties initiating and/or maintaining sleep, and daytime impairments such as 
reduced energy, concentration difficulties, and feeling unrested. OSA is char-
acterized by frequent brief narrowing and closure of the upper airway during 
sleep, resulting in transient reductions in oxygenation, cortical arousals, blood 
pressure surges and daytime sleepiness and fatigue (Chervin, 2000). Both in-
somnia and OSA alone contribute to increased risk of future psychiatric and 
medical conditions, reduced productivity and quality of life, and high 
healthcare utilization (Peppard et al., 2006, Baglioni et al., 2011, Natsky A., 
2020). 
Insomnia and OSA often co-occur within the same patient (Sweetman et al., 
2017b, Sweetman et al., 2019, Zhang et al., 2019b). COMISA is associated 
with greater impairment of sleep (Bianchi et al., 2013) and daytime functioning 
(Krakow et al., 2001), and reduced productivity and quality of life 
(Bjornsdottir et al., 2012, Lang et al., 2017b), compared to individuals with 
either insomnia-alone or OSA-alone (Sivertsen et al., 2013, Anttalainen et al., 
2019, Sweetman et al., 2019). Individuals with COMISA may also be at in-
creased risk of CVD, compared to people with either disorder alone (Vozoris, 
2012, Gupta and Knapp, 2014, Cho et al., 2018). Previous research has exam-
ined associations between both insomnia and mortality (Kripke, 2002, Bertisch 
et al., 2018, Lovato and Lack, 2019), and OSA and mortality (Marshall et al., 
2014). However, no general population study has investigated potential asso-
ciations between COMISA and mortality or cardiovascular event risks.  
The SHHS (Quan et al., 1997) is a US-based population cohort study and has 
considerably advanced knowledge on the potential adverse health outcomes of 
OSA (Nieto et al., 2000, Shahar et al., 2001). In general, the SHHS has found 
that OSA may be associated with increased prevalence and incidence of CVD, 
and all-cause mortality (Shahar et al., 2001, Punjabi et al., 2009, Gottlieb et 
al., 2010, Redline et al., 2010). Among SHHS participants with OSA (AHI ≥ 
15 events/h sleep), those with elevated daytime sleepiness were at increased 
risk of all-cause mortality and cardiovascular disease (Mazzotti et al., 2019). 
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Similarly, these data have shown that insomnia with objective short sleep du-
ration is associated with increased risk of CVD but not all-cause mortality 
(Bertisch et al., 2018).  
Although COMISA is a common and debilitating condition that is associated 
with greater morbidity compared to either insomnia-alone or OSA-alone, no 
general population study has investigated the association of COMISA with all-
cause mortality or cardiovascular event risks. The aim of this Chapter was 
therefore to investigate associations between COMISA and all-cause mortality 
and cardiovascular event risk in a population-based cohort. 

6.2 Methods 

 Study design and participants 

The study design and methodology of the SHHS has been reported previously 
(Redline et al., 1998) and Chapter 4. Full overnight sleep studies from 6,441 
participants were pooled from different population-based studies, of which 
5,804 are available through an open access dataset from the National Sleep 
Research Resource (Dean et al., 2016).  
Participants undertook home-based ambulatory polysomnography recordings 
in 1995- 1998 (Compumedics P Series System; Abbotsford, Victoria, Aus-
tralia). Polysomnography included two electroencephalograms (EEG) (C4-M1, 
C3-M2), chin EMG, left and right EOG, ECG, nasal cannula, oro-nasal ther-
mistor, two respiratory band signals (abdominal and thoracic), and finger 
pulse-oximetry. Sleep and EEG arousals were scored according to the standard 
criteria at the time (Kales and Rechtschaffen, 1968). Apnoea were scored as a 
≥ 75% reduction in breathing amplitude lasting at least 10 sec as recorded via 
the thermocouple signal. Hypopnoeas were identified if the breathing ampli-
tude of the thermocouple or thoracic/abdominal band signals decreased by ≥ 
30% for at least 10 sec in association with ≥ 3% reduction in oxygen saturation 
or an arousal (Redline et al., 1998). The AHI was defined as the total number 
of apneas and hypopneas per hour of sleep. 

 Insomnia, OSA and COMISA 

At the time of the polysomnography study, participants completed question-
naires assessing sleep habits and quality of life. Insomnia was defined according 
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to the presence of self-reported nocturnal sleep difficulties (difficulties falling 
asleep, waking up in the middle of the night and having difficulty returning to 
sleep, and/or waking up too early and being unable to resume sleep, at least 
5 times per month) and daytime impairments including having little to no 
energy in the past 4 weeks; feeling unrested at least 5 times a month or feeling 
tired most/all of the time. This definition is similar to the one employed in the 
American National Health and Nutrition Examination Survey (Hayley et al., 
2015).  Initially insomnia was defined according to a frequency of at least 15 
times per month. However, this definition resulted in a small number of par-
ticipants in the COMISA group. As this could reduce power to identify a be-
tween-group difference in mortality-risk in fully adjusted models, we defined 
insomnia according to a frequency of at least 5 times per month in the primary 
analysis, and at least 15 times per month in sensitivity analyses 
An AHI of ≥15 events/h sleep was used to define OSA. COMISA was defined 
if both conditions were present. Participants who did not meet criteria for 
either insomnia or OSA were categorized with no insomnia/OSA (reference 
group).  
For the all-cause mortality analysis (primary outcome), the potential associa-
tion between symptomatic OSA, defined as OSA with excessive daytime sleep-
iness (Epworth sleepiness score > 10) was investigated in supplementary anal-
ysis. Furthermore, given the previously published association between hypox-
emia and all-cause mortality (Kendzerska et al., 2014a), a supplementary anal-
ysis was undertaken to assess potential additive risk of insomnia to hypoxemia 
(assessed using the % of time spent with less than 90% of oxygen saturation 
and all-cause mortality). EEG processing 
A secondary aim of this Chapter was to investigate sleep fragmentation in 
COMISA. As such, the EEG processing (spectral entropy and mean NREM 
absolute powers) was identical to the one developed in Chapter 4. KCs densi-
ties (in N2 sleep and N3 sleep) were also calculated using the algorithm de-
scribed in Chapter 2. Similarly to Chapter 4, participants with less than 50% 
of artefact free EEG were removed from this analysis. 

 Potential confounders 

Questionnaires determined baseline characteristics including demographics 
(age, sex, race, educational and marital status), behavioural factors (smoking 
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status) and body mass index (BMI; kg/m2). Medical history (hypertension; 
CVD; chronic obstructive pulmonary disease (COPD); diabetes and medica-
tion intake) was determined during an examination no more than five years 
before the baseline polysomnography study. Medication intake included ben-
zodiazepines, tricyclic anti-depressants and any sleep medication intake more 
than 5 times a month. Pre-existing CVD cases were determined according to 
data provided by the parent study cohorts or by self-report at enrolment on 
the basis of physician reported angina, heart attack, heart failure, stroke, or if 
the participant ever underwent coronary bypass surgery and/or coronary an-
gioplasty.  

 Outcome assessment 

Death from any cause, up until 2011, was identified in a prior study (Punjabi 
et al., 2009) using follow-up interviews, written annual questionnaires, tele-
phone contact with study participants or next-of-kin, surveillance of local hos-
pital records and community obituaries and linkage with the Social Security 
Administration Death Master File. For this analysis, all-cause mortality was 
used as the primary outcome.  
Cardiovascular events were determined by the parent study cohorts according 
to specific protocols described previously (Gottlieb et al., 2010); and included 
nonfatal and fatal events. Cardiovascular events occurring before and following 
baseline were investigated, and included myocardial infarction, myocardial in-
farction procedure, stroke, angina, coronary heart disease death, congestive 
heart failure, coronary artery bypass surgery and coronary angioplasty. If mul-
tiple cardiovascular events were observed, the closest event following the poly-
somnography study was retained, and others were disregarded.  

 Statistical analysis 

Confounders and the statistical analyses closely followed previous SHHS re-
ports (Punjabi et al., 2009, Bertisch et al., 2018). Distributions of covariates 
were summarized by sleep disorder group. Kaplan-Meier survival estimates and 
log-rank tests were used for visual interpretation of the crude probability of 
mortality over time. Hazard ratios (HRs) and 95% confidence intervals (CIs) 
were determined using Cox-regression models to compare risks in sleep disorder 
groups (insomnia-alone vs. OSA-alone vs. COMISA) and all-cause mortality 
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(primary outcome) and cardiovascular events (secondary outcome) relative to 
the reference group (no insomnia/OSA). Proportional hazard assumptions for 
each variable were tested using Schoenfeld residuals. A similar set of confound-
ers were constructed across four models for all-cause mortality (primary out-
come) and cardiovascular events (secondary outcome). The first models were 
unadjusted. The second models were adjusted for demographics and anthro-
pometrics (age, BMI, race, sex), behavioral (smoking status) and polysomnog-
raphy-measured total sleep time. The third models were additionally adjusted 
for pre-existing cardio-metabolic conditions, including diabetes, CVD, hyper-
tension, lipid lowering medications and COPD. Finally, the last models were 
additionally adjusted for use of benzodiazepines, tricyclic anti-depressants and 
a binary variable constructed representing participants taking sleep medication 
more than 5 times a month. Differences between sleep disorder groups in all-
cause mortality and cardiovascular event risks were studied using post-hoc 
comparison. 
Two A-priori interactions between sleep disorder groups with sex and total 
sleep time were tested in both outcomes given previous evidence that preva-
lence of OSA may be under-estimated among women, and that total sleep time 
may modulate cardiovascular risk in participants with insomnia (Bertisch et 
al., 2018, Won et al., 2020). For both outcomes, sex-stratified and sex-by-age 
stratified models were also constructed (shown in APPENDIX C).  
Associations between sleep disorder group and specific cardiovascular events 
(coronary heart disease, heart failure and stroke) were studied in a sub-analysis 
(APPENDIX C). Coronary heart disease was defined as any myocardial in-
farction, myocardial infarction procedure, coronary heart disease death, coro-
nary artery bypass surgery and/or coronary angioplasty. Given lower numbers 
of specific cardiovascular events, only two models were constructed for this 
analysis. The first model was unadjusted, and the second model was adjusted 
for age, sex, BMI, race, smoking status, baseline CVD, hypertension and dia-
betes. Sex-stratified models were also constructed to further investigate poten-
tial sex-specific associations with specific cardiovascular events. 
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 Sensitivity analyses 

Four sensitivity analyses were conducted. First, for the all-cause mortality 
analysis, participants who died within the first two years were excluded. Sec-
ond, for the cardiovascular event analysis, participants with baseline CVD were 
removed to more specifically examine incident cardiovascular events without 
potential confounding from prior CVD. Additionally, for both outcomes, the 
frequency of insomnia symptoms was increased from at least 5 nights per 
month to at least 15 nights per month. Third, although socioeconomic factors 
have been shown to influence insomnia and increase mortality and CVD-risk 
(Melaku et al., 2019), these were not included in primary analyses due to a 
large amount of missing data. Therefore, the final sensitivity analysis further 
adjusted for marital status and years of education.  

6.3 Results 

 Baseline characteristics 

The analysis sample included 5236 participants (90.2% of 5804) after exclusion 
of 114 (1.9%), 452 (7.8%) and 2 (< 0.1%) participants due to missing infor-
mation on nocturnal insomnia symptoms, daytime symptoms, and all-cause 
mortality, respectively. A complete case dataset (with no missing variables for 
the fully adjusted model) had 4815 participants (92.0 % of the analysis sam-
ple), with baseline cardiovascular disease (N = 202, 3.9%) and diabetes (N = 
238, 4.5%) accounting for most missing data. For the cardiovascular event 
analysis, the sample consisted of 4575 participants, since a further 661 (12.6%) 
participants were excluded due to missing cardiovascular event data (Gottlieb 
et al., 2010). Baseline characteristics of the analysis sample are reported in 
Table 6-1. 14% of all participants with OSA had co-occurring insomnia, and 
46.9% of all participants with insomnia had OSA. 
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Table 6-1: Participant baseline characteristics. 
 Overall Reference Insomnia OSA COMISA 

N (%) 5236 (100) 2504 (47.8) 374 (7.1) 2027 (38.7) 331 (6.3) 

Demographics      

Age, years 63 (11) 61 (11) 61 (12) 66 (11) 65 (11) 

BMI, kg/m² 28 (5) 27 (4) 28 (6) 29 (5) 30 (6) 

sex: female 2747 (52.5%) 1581 (63.1%) 293 (78.3%) 727 (35.9%) 146 (44.1%) 

Race      

White 4418 (84.4%) 2079 (83.0%) 307 (82.1%) 1759 (86.8%) 273 (82.5%) 

Black 463 (8.8%) 238 (9.5%) 28 (7.5%) 159 (7.8%) 38 (11.5%) 

Other 355 (6.8%) 187 (7.5%) 39 (10.4%) 109 (5.4%) 20 (6.0%) 

Smoking status (%)      

Never 2471 (47.3%) 1235 (49.5%) 183 (49.1%) 895 (44.3%) 158 (48.2%) 

Current 497 (9.5%) 275 (11.0%) 55 (14.7%) 137 (6.8%) 30 (9.1%) 

Former 2251 (43.1%) 986 (39.5%) 135 (36.2%) 990 (49.0%) 140 (42.7%) 

Cardio-metabolic conditions     

Hypertension 2263 (43.2%) 901 (36.0%) 178 (47.6%) 978 (48.2%) 206 (62.2%) 

Diabetes 374 (7.5%) 124 (5.2%) 27 (7.8%) 184 (9.4%) 39 (12.3%) 

Baseline CVD 855 (16.3%) 313 (12.5%) 58 (15.5%) 390 (19.2%) 94 (28.4%) 

Lipid lowering mediation 634 (12.1%) 262 (10.5%) 45 (12.1%) 274 (13.6%) 53 (16.1%) 

COPD 59 (1.1%) 27 (1.1%) 9 (2.4%) 16 (0.8%) 7 (2.1%) 

Medication intake      

Sleeping pills > 5 times a month 410 (7.8%) 168 (6.7%) 94 (25.2%) 91 (4.5%) 57 (17.3%) 

Benzodiazepines 285 (5.5%) 127 (5.1%) 68 (18.2%) 59 (2.9%) 31 (9.4%) 

Tricyclic anti-depressants (%) 145 (2.8%) 69 (2.8%) 26 (7.0%) 35 (1.7%) 15 (4.6%) 

Sleep related covariates      

AHI, events/hours 14.8 (15.6) 5.1 (3.4) 5.4 (3.6) 26.3 (16.4) 28.2 (17.7) 

TST90 3.5 (10.3) 1.3 (6.3) 1.6 (7.5) 6.0 (12.9) 7.6 (14.2) 

Total sleep time, min 360 (65) 361 (61) 360 (74) 351 (65) 343 (66) 

Wake after sleep onset, min 62 (44) 54 (39) 59 (44) 69 (46) 79 (53) 

Sleep efficiency, % 83 (11) 84 (9) 83 (11) 81 (11) 78 (12) 

Sleep onset latency, min 14 (20) 14 (20) 16 (22) 14 (20) 16 (23) 

Arousal index, events/hours 19 (11) 15 (7) 15 (7) 24 (12) 25 (13) 

Outcomes      

Cardiovascular events* 1243 (23%) 475 (19%) 68 (18%) 591 (29%) 109 (33%) 

Death  1210 (23%) 486 (19%) 78 (21%) 542 (27%) 104 (31%) 
Data are reported as mean (SD) if continuous and n (%) if categorical 
AHI = apnoea/hypopnea index/hr, BMI = body mass index, COMISA = co-morbid insomnia and sleep 
apnoea, CVD = Cardiovascular disease, OSA = obstructive sleep apnoea, TST90 = percent of total sleep 
time spent with less than 90% of oxygen saturation, COPD = chronic obstructive pulmonary disease * 
Composite cardiovascular endpoint in a community sample with and without prevalent cardiovascular 
disease 
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 COMISA and sleep fragmentation a 

A further 622 participants were removed due to inadequate EEG quality 
needed for this analysis. Sleep fragmentation as a result of insomnia alone, 
OSA alone and COMISA compared to the control group was studied using 
linear regression controlled for age, BMI and sex. These results are presented 
in Table 6-2 and showed that COMISA participants tended to have more frag-
mented sleep than insomnia alone or OSA alone participants. Specifically, 
COMISA participants showed higher wake after sleep onset, lower total sleep 
time and higher spectral entropy (Table 6-2). All sleep disorders were also with 
lower KC density in N3 sleep. 

  

 
a Section 6.3.2 was not included in the manuscript under review. 
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Table 6-2: Mean (95% CI) of sleep quality metrics in sleep disorder group. 
The values represent the difference between the populations without insomnia 
and without OSA. 

 Sleep disorder  p-values 

 Insomnia OSA COMISA  
COMISA vs 
OSA 

COMISA vs 
insomnia 

Wake after sleep 
onset, min 

7.1 * 
(2.5, 11.7) 

8.0 
(5.3, 10.7) 

19.5 
(14.6, 24.4) 

 < 0.001 <0.001 

Total sleep time, 
min 

-12.4 
(-19.3, -5.6) 

-7.9 
(-11.9, -3.9) 

-17.9 
(-25.2, -10.5) 

 0.007 0.122 

Sleep latency 
, min 

2.8 
(-0.4, 5.9) 

1.1 
(-0.7, 2.9) 

3.9 
(0.1, 4.9) 

 0.094 0.603 

Arousal Index, 
event/hours 

0.5 
(-0.6, 1.5) 

8.5 
(7.9, 9.2) 

9.0 
(7.8,10.1) 

 0.074 <0.001 

NREM delta a, 
µv2/Hz 

-0.02 
(-0.08,0.04) 

-0.04 
(-0.07, -0.01) 

-0.02 
(-0.08,0.03) 

 0.713 0.692 

NREM theta a, 
µv2/Hz 

0.05 
(0.0, 0.11) 

-0.04 
(-0.07, -0.01) 

-0.001 
(-0.07, 0.05) 

 0.873 0.643 

NREM alpha a, 
µv2/Hz 

0.08 
(0.02, 0.14) 

-0.03 
(-0.06, -0.01) 

-0.001 
(-0.07, 0.06) 

 0.877 0.722 

NREM sigma a, 
µv2/Hz 

0.05 
(-0.02, 0.11) 

0.02 
(0.0, 0.07) 

-0.03 
(-0.08, 0.04) 

 0.130 0.146 

NREM beta a, 
µv2/Hz 

0.03 
(-0.03, 0.09) 

0.10 
(0.07, 0.14) 

0.07 
(0.00, 0.14) 

 0.286 0.347 

Spectral entropy 
0.01 

(-0.04, 0.06) 
0.04 

(0.01, 0.07) 
0.1 

(0.04, 0.16) 
 0.023 0.006 

KC density in 
N2, events/min 

-0.05 
(-0.13,0.02) 

0.01 
(-0.03, 0.05) 

0.03 
(-0.5, 0.11) 

 0.562 0.097 

KC density in 
N3, events/min 

-0.24 
(-0.41, -0.08) 

-0.12 
(-0.21, -0.02) 

-0.19 
(-0.37, -0.02) 

 0.195 0.825 

a Values were log-transformed 

 All-cause mortality 

The median (IQR) follow-up period for all-cause mortality was 11.8 (10.4, 15.9) 
years, over which there was a total 1210 deaths (21.1% of the analysis sample). 
The crude mortality rates were 17.3, 19.3, 24.9 and 30.4 events per 1000 per-
son-years for the reference, insomnia-alone, OSA-alone and COMISA groups, 
respectively. Kaplan-Meier curves are shown in Figure 6-1A and suggest that 
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participants with COMISA had a lower survival probability than those with 
insomnia-alone (p = 0.001) and OSA-alone (p = 0.047) alone. 

Figure 6-1: Unadjusted Kaplan-Meier’s curve across sleep disorder categories 
for (A) All-cause mortality and (B) cardiovascular disease incidence. For 
both outcomes, log-rank test p-values<0.001. OSA = Obstructive sleep ap-
noea; COMISA = co-morbid insomnia and sleep apnoea. 

COMISA was associated with an 80% increase in all-cause mortality risk in 
the unadjusted model, which was higher than either OSA-alone (46% increase) 
or insomnia-alone (12% increase; Table 6-3). After adjusting for all pre-speci-
fied covariates (Table 6-3), COMISA was associated with an increase in all-
cause mortality compared to the reference group, and OSA-alone group (p = 
0.014), but not the insomnia-alone group (p = 0.50). In the fully adjusted 
model, the interaction of sleep disorder category and sex on mortality ap-
proached significance (p = 0.051), while the interaction of sleep disorder cate-
gory and total sleep time was not significant (p = 0.57). Sex-stratified and age-
stratified models are reported in the Supplement (Table C1 and Table C2). 
The association of COMISA and mortality was strongest in older males (> 70 
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years). Excessive daytime sleepiness was present in 25.9% of participant with 
OSA-alone. However, symptomatic OSA was not associated with all-cause 
mortality (HR, 95%CI; 1.02 (0.83, 1.26)). Association between tertiles of % of 
time spent with less than 90% of oxygen saturation and insomnia with all-
cause mortality is shown in Figure C1. A moderate to severe degree of hypox-
emia (second and third tertiles) was associated with all-cause mortality when 
insomnia symptoms were also present. However, moderate hypoxemia alone 
was not associated with all-cause mortality 

Table 6-3: Adjusted associations between sleep disorder groups and all-cause 
mortality. 

 N 
N 

event 
Insomnia OSA COMISA 

Model 1 5236 1210 1.12 (0.88, 1.43) 1.46 (1.29, 1.65) 1.80 (1.46, 2.22) 

Model 2 5189 1198 1.28 (1.00, 1.62) 1.01 (0.89, 1.15) 1.37 (1.10, 1.70) 

Model 3 4822 1152 1.20 (0.94, 1.54) 1.00 (0.88, 1.14) 1.32 (1.06, 1.64) 

Model 4 4815 1150 1.19 (0.92, 1.53) 1.01 (0.88, 1.15) 1.32 (1.06, 1.64) 

Quoted values are Hazard ratio (and 95% CI) against the reference group. OSA = Obstructive sleep 
apnoea; COMISA = co-morbid insomnia and sleep apnoea. 
Model 1: Unadjusted ; Model 2: Age, BMI, sex, race, smoking status, total sleep time; Model 3: Model 
2 AND obstructive pulmonary disease, cardiovascular disease, hypertension, diabetes, and lipid medica-
tion intake; Model 4: Model 3 AND benzodiazepines and tricyclic anti-depressants and sleep medication 
intake more than 5 times a month. 

The association between COMISA and all-cause mortality did not change after 
excluding 96 (1.8% of sample) participants who died within the first two years 
of follow-up (Table C3). As expected, increasing the insomnia symptom thresh-
old from at least 5 times a month to at least 15 times a month, substantially 
decreased the prevalence of both insomnia-alone (3.2%) and COMISA (2.6%). 
However, according to this definition, participants with COMISA had a 49% 
(HR, 95% CI; 1.49 (1.08, 2.07)) increase in all-cause mortality in the fully 
adjusted model (Table C4). Further adjustment for marital status and educa-
tional status did not change the association between COMISA and all-cause 
mortality (N = 4466, N event = 1126; 1.29 (1.03, 1.61)). 
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 Cardiovascular disease 

The median (IQR) follow-up period for detecting incident cardiovascular 
events was 11.4 (7.6, 12.7) years. Of the 4575 participants in the sample, 1243 
unique events were recorded during follow-up. The unadjusted cardiovascular 
event incidence rate was 17.6, 17.3, 29.0 and 38.2 events per 1000 person-years 
for the reference, insomnia-alone, OSA-alone and COMISA groups, respec-
tively. CVD-free probability for unadjusted Kaplan-Meier curves are shown in 
Figure 6-1. In the fully adjusted model, participants with COMISA had a 34% 
increase in cardiovascular event risk compared to those with no insomnia/OSA, 
but no difference in compared to those with insomnia-alone (p = 0.37) or OSA-
alone (p = 0.14) (Table 6-4). Compared to the reference group, neither insom-
nia-alone, nor OSA-alone were associated with higher risk of cardiovascular 
event incidence in the fully adjusted model. The interactions between sleep 
disorder category and both sex (𝑝𝑝 = 0.53), and total sleep time (𝑝𝑝 = 0.64) 
were not significant in the fully adjusted model. Results of stratified models 
between sleep disorder group, age, and sex with cardiovascular events are re-
ported in Table C5 and Table C6. Similar to the mortality analysis, the strong-
est association of COMISA and cardiovascular event risk was observed among 
older males (> 70 years). Associations between specific cardiovascular event 
types, sleep disorder group and sex are reported in Table C7. 

Table 6-4: Adjusted associations between sleep disorder group and cardiovas-
cular event. 

 N N event Insomnia OSA COMISA 

Model 1 4575 1243 0.98 (0.77, 1.27) 1.62 (1.44, 1.83) 2.12 (1.72, 2.61) 

Model 2 4547 1239 1.06 (0.82, 1.37) 1.09 (0.96, 1.24) 1.48 (1.20, 1.83) 

Model 3 4421 1216 1.00 (0.77, 1.30) 1.09 (0.96, 1.24) 1.38 (1.11, 1.70) 

Model 4 4415 1213 0.99 (0.76, 1.29) 1.09 (0.96, 1.24) 1.38 (1.11, 1.71) 
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Quoted values are Hazards ratio (and 95% CI) against the reference group. OSA = Obstructive sleep 
apnoea; COMISA = co-morbid insomnia and sleep apnoea. 
Model 1: Unadjusted; Model 2: Age, BMI, sex, race, smoking status, total sleep time; Model 3: Model 2 
AND obstructive pulmonary disease, cardiovascular disease (list all), hypertension, diabetes, and lipid 
medication intake; Model 4: Model 3 AND benzodiazepines and tricyclic anti-depressants and sleep 
medication intake more than 5 times a months. 

 
Of the 4575 participants included in the cardiovascular event analysis, 792 
(17.3%) had prevalent cardiovascular disease at baseline. When these partici-
pants were removed, the number of incident cardiovascular events dropped 
from 1243 to 794. Subsequently, the association between COMISA and incident 
cardiovascular events remained significant (and of similar magnitude to the 
analysis retaining these participants) in Model 1 and 2, but not in Model 3 
and 4 (Table C8). When the frequency of insomnia symptoms was increased 
to at least 15 times per month (Table C9), the association between COMISA 
and cardiovascular events remained significant, except for the fully adjusted 
model (HR, 95% CI 1.35 (0.97, 1.87)). Further adjustment for marital status 
and educational status did not change the association between COMISA and 
cardiovascular events (N = 4066, N event = 1174; 1.33 (1.07, 1.66)). 

6.4 Discussion 
The main findings of this Chapter are that co-morbid insomnia and sleep apnea 
(COMISA) may be associated with increased risk of sleep fragmentation, all-
cause mortality, and cardiovascular events, compared to individuals without 
insomnia or OSA. Furthermore, no associations with all-cause mortality or 
cardiovascular events were observed for participants who had either OSA-alone 
or insomnia-alone.  
Results are consistent with previous research demonstrating that COMISA is 
associated with worse physical and mental health compared to either insomnia, 
or OSA-alone (Bianchi et al., 2013, Lang et al., 2017b, Sweetman et al., 2019). 
This is the first study to demonstrate that COMISA is also associated with 
increased risk of all-cause mortality, compared to patients with no insom-
nia/OSA. The high prevalence, morbidity, and mortality risk associated with 
COMISA highlight the importance of developing more effective treatment ap-
proaches (Sweetman et al., 2017b, Sweetman et al., 2019, Zhang et al., 2019b).  
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Although no previous study has investigated the association of COMISA with 
all-cause mortality, reports from the Sleep Heart Health Study and other co-
hort studies have shown decreased quality of life (Baldwin et al., 2001), and 
increased cardiovascular event/all-cause mortality risk in specific sub-groups 
of people with insomnia or OSA (Gottlieb et al., 2010, Bertisch et al., 2018, 
Mazzotti et al., 2019). The findings are also consistent with previous SHHS 
reports investigating specific OSA sub-groups. For example, Butler reported 
increased all-cause mortality in participants with short-duration apnea events, 
which may be a marker of the low respiratory arousal threshold phenotype 
(Butler et al., 2019). Indeed, the ‘low arousal threshold’ OSA phenotype may 
share several common characteristics with the “hyper-arousal” model of 
chronic insomnia which postulates that insomnia is maintained by increased 
physiological and psychological arousal during the day/night (Bonnet and Ar-
and, 2010). This could be consistent with our results suggesting that patients 
with COMISA have higher spectral entropy than controls. Furthermore, 
COMISA patients had fewer K-complexes and higher mean absolute beta-
power during NREM sleep than controls. The potential additive effect of dis-
rupted sleep to mortality risk in COMISA patient remains unclear, especially 
given that low (but not high) spectral entropy was associated with all-cause 
mortality in Chapter 4. Future research should investigate the potential con-
tribution of a low arousal threshold, sleep disruption and “hyper-arousal–like” 
EEG on all-cause mortality risk in patients with COMISA. 
The associations between all-cause mortality and cardiovascular event risk and 
COMISA highlight the need for further research to investigate the mechanisms 
underpinning this relationship. It is possible that the association of COMISA 
with mortality and cardiovascular event risk may result from the high preva-
lence of additional medical/psychiatric co-morbidities and increased morbidity 
in participants with COMISA (Yang et al., 2011, Bjornsdottir et al., 2012, 
Lang et al., 2017b), more complex interactions between the psychological and 
physiological mechanisms and manifestations of each disorder that may exac-
erbate the other and trigger worse physical and mental health, or other condi-
tions/prodromal symptoms which were not identified or controlled within the 
available data. Given previous associations between all-cause mortality with 
both insomnia-alone, or OSA-alone (Punjabi et al., 2009, Vgontzas et al., 2010, 
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Kendzerska et al., 2014a), the most parsimonious explanation may be an ad-
ditive effect of insomnia and OSA on all-cause mortality risk among partici-
pants with COMISA.  
Although people with COMISA experience more substantial impairment to 
sleep, including reduced objective sleep duration (Bianchi et al., 2013), com-
pared to those with either insomnia- or OSA-alone (Sweetman et al., 2017b), 
COMISA was associated with all-cause mortality and cardiovascular event risk 
independently of total sleep time. The interaction of total sleep time and sleep-
disorder group on mortality was also investigated but no significant moderation 
effect was observed. However, previous studies investigating the association of 
insomnia with short sleep duration and mortality have reported mixed results 
(Bertisch et al., 2018, Lovato and Lack, 2019). Sleepiness associated with OSA 
could also influence and potentially extend sleep time to somewhat mask short 
sleep duration effects of insomnia in some participants. This potential con-
founding effect of COMISA may partly explain the increased risk of all-cause 
mortality and cardiovascular event incidence independently of total sleep time.  
The clinical presentation, manifestations and pathophysiology of OSA and re-
sponse to treatment differs in women compared to men (Won et al., 2020). 
Earlier SHHS reports suggest that men with OSA are at higher risk of all-
cause mortality (i,e, younger men) (Punjabi et al., 2009), incident coronary 
heart disease, heart failure (Gottlieb et al., 2010) and stroke (Redline et al., 
2010). Similarly, in this Chapter, little evidence of increased all-cause mortality 
and cardiovascular event risk in women was observed. Consequently, when a 
fixed AHI threshold is used to define OSA, women with “OSA” are more likely 
to be undiagnosed, untreated, and experience treatment failure (Gagnadoux et 
al., 2016, Appleton et al., 2018). Thus, the lack of association could reflect 
under-diagnosis and/or misdiagnosis of OSA in women. 
Patients with COMISA likely require tailored treatment approaches 
(Sweetman et al., 2017a, Sweetman et al., 2019). For example, patients with 
OSA and co-morbid insomnia have lower acceptance and poorer compliance 
with continuous positive airway pressure, compared to patients with OSA-
alone (Sweetman et al., 2017b). Recent randomized controlled trials suggest 
that cognitive behavioral therapy for insomnia before commencing continuous 
positive airway pressure may increase adherence (Sweetman et al., 2019). 
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Given that no improvements in secondary cardiovascular event risks were ob-
served following continuous positive airway pressure therapy for participants 
with OSA in randomized controlled trial data (McEvoy et al., 2016, Peker et 
al., 2016, Sánchez-de-la-Torre et al., 2020), a more specific investigation of the 
effects of combined therapy on markers of cardiovascular disease severity and 
risks may be warranted among OSA patients with co-occurring insomnia who 
may be at increased risk of cardiovascular events and mortality. 
Several limitations of the current study warrant consideration. Firstly, alt-
hough both nocturnal and daytime insomnia symptoms were used to classify 
insomnia, as recommended in diagnostic criteria, it was not possible to identify 
patients with ‘chronic insomnia’ persisting for ≥3 months. Furthermore, the 
frequency of insomnia symptoms used in this study (> 5/month) is lower than 
diagnostic criteria (> 3/week). However, given sensitivity analyses supported 
robust associations in the smaller group of patients with more frequent insom-
nia complaints it is possible that the association between COMISA and mor-
tality may be even stronger if insomnia were defined according to chronic noc-
turnal and daytime symptoms. Secondly, socio-economic factors appear to be 
very strong predictors of all-cause mortality (Melaku et al., 2019), sleepiness 
(Adams et al., 2016), and insomnia (Talala et al., 2012). However, these co-
variates were either not available and/or not reliably collected. Thus, these 
results warrant confirmation in other cohorts, and ideally in RCTs, with more 
comprehensive socio-economic data, and with more clearly defined insomnia 
symptom chronicity. Finally, although diagnosed mental health condition data 
were not available, mental health symptoms was controlled for using anti-de-
pressant medication use which will underestimate the burden of mental health 
conditions and residual confounding may be present. Future research should 
examine the association of COMISA and mortality, controlling for treated and 
untreated mental health symptoms and doctor-diagnosed mental health con-
ditions. 
Conclusion 
In summary, this Chapter found that participants with co-morbid insomnia 
and sleep apnea may have decreased longevity and increased cardiovascular 
event risks compared to participants with no insomnia or OSA. It remains to 
be determined if these associations are causal and treatment with CBTi, 
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CPAP, or combination treatment can effectively decrease mortality and/or car-
diovascular event risks in individuals with COMISA.  



CHAPTER 7 Bastien Lechat 

121 

CHAPTER 7. CONCLUSION 

This thesis described the development of automated methods and biomarkers 
of sleep fragmentation. These biomarkers were subsequently tested for clinical 
utility in several population groups relevant to sleep fragmentation, including 
a sample of individuals exposed to environmental noise and a large population 
sample including participants with sleep disorders. The work presented in this 
thesis suggests that EEG-based biomarkers designed to encapsulate core phys-
iological and pathophysiological processes of sleep and sleep disorders are more 
informative than traditional manually scored sleep metrics and are likely to be 
more important and informative predictors of adverse health outcomes. 

7.1 Summary of findings 
A sophisticated KC detection algorithm was developed in this thesis and its 
performance was shown to be superior to existing algorithms (Chapter 2). 
While the higher F1-score (0.78 vs 0.6 in the literature) is high, the main 
strength and advantage of this new algorithm over previous approaches resides 
in the probabilistic scoring. The algorithm gives a probabilistic score to each 
KC, with a high probability indicative of larger and well-defined KCs. To the 
best of the author’s knowledge, this is the first attempt to design an algorithm 
with intuitive probabilistic outcome scoring of KCs. Using this algorithm, dose-
response relationships between environmental noise sound pressure level (and 
type) and KC response was investigated in Chapter 3. These results suggested 
that KCs occurred at sound pressure levels well below (as low as 33 dBA) the 
threshold needed to elicit arousals and awakenings. For the same sound pres-
sure level, a noise stimulus was also twice as likely to evoke a KC, further 
suggesting that KCs are a more sensitive marker of sensory processing during 
sleep. Remarkably strong interactions between subjective noise-sensitivity and 
KC-response rates were also observed, with an almost two-fold reduction in 
KC-response occurrence in self-reported noise-sensitive participants. However, 
there were no corresponding changes in arousal rates. These findings support 
an important role of KCs in noise-sensory processing during sleep and the value 
of KC-responses as an objective marker of environmental noise effects on sleep. 



7.1 Bastien Lechat 

122 

Further work, substantially facilitated through the KC development and test-
ing work presented in this thesis, is clearly needed to better understand the 
impact of more frequent KCs with noise exposure during sleep. 
A novel marker of sleep quality/fragmentation based on the distribution of 
slow wave activity across the night was found to be predictive of all-cause 
mortality in the Sleep Heart Health Study data set (Chapter 4). Slow wave 
activity was quantified using a multi-taper based fast Fourier transform with 
signal to noise ratio advantages over conventional quantitative EEG methods. 
Quantifying the complexity of delta activity across the night using spectral 
entropy is particularly novel and sensible given that multiple biological pro-
cesses are likely to be dependent on (such as the glymphatic system) and in-
volved in the regulation of slow oscillations during sleep. Using this metric, it 
was found that delta wave fragmentation during sleep is associated with a 30% 
increase in all-cause mortality independent of OSA, total sleep time and tra-
ditional potential confounders. Although it is not possible to infer causal rela-
tionships from longitudinal associations alone, the finding of significant asso-
ciations between EEG slow wave activity and mortality, in combination with 
biological plausibility of clearly important functions of slow wave activity dur-
ing sleep, support the higher value of slow wave activity based metrics com-
pared to traditional sleep metrics alone. These findings are also important in 
the context of respiratory sleep disorders such as OSA given that most treat-
ments for OSA have focused on reducing the apnoea-hypopnea index and hy-
poxia with little regard for treatment effects on sleep quality per se. This sug-
gests that metrics designed to more rigorously encapsulate underlying sleep 
physiology provide more robust estimators of sleep quality that are more 
strongly associated with adverse health outcomes compared to traditional 
methods. 
Poor sleep quality and excessive daytime sleepiness were found to be associated 
with the odds ratio product, a novel EEG marker thought to reflect hyper-
arousal. While hyperarousal has been theorized to be a common physiological 
and psychological trait in participants with insomnia, most of the previously 
available evidence was derived from a small population study. Chapter 5 of 
this thesis showed that some parts of the population exhibit hyperarousal-like 
EEG with higher frequencies during the wake period, as measured with the 
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odds ratio product. High wake ORP was in turn significantly associated with 
a 30% likelihood of reporting poor sleep quality and a 20% decrease in exces-
sive daytime sleepiness (consistent with an hyper-aroused state). Importantly, 
sleepiness was assessed as the propensity of dozing off/falling asleep (using the 
ESS) rather than feeling tired or fatigued. Previous reports suggest that in-
somnia symptoms are not associated with dozing off/falling asleep and are 
more strongly associated with feelings of daytime fatigue (Adams et al., 2016). 
Thus, it is perhaps not surprising that a high ORP during the wake period, 
indicative of a hyper-aroused state, was associated with insomnia symptoms. 
On the other hand, a low ORPwake, which signifies the propensity to dose off 
while awake, was associated with excessive daytime sleepiness. Associations 
between specific PSQI measures of sleep quality and ORP-based metrics fur-
ther suggest that these objective measures can successfully capture important 
information relevant to subjective sleep impairment. Conversely, traditional 
polysomnography markers of sleep quality were not predictive of excessive day-
time sleepiness or poor sleep quality. This, together with findings from previous 
Chapters clearly suggests that more detailed analyses of specific EEG signal 
components compared to traditional polysomnography yields more clinically 
useful findings. 
Co-morbid insomnia and OSA is a debilitating condition, and the work in 
Chapter 6 showed for the first time that patients with co-morbid insomnia and 
OSA are at higher risk of all-cause mortality, cardiovascular events and sleep 
fragmentation than patients with one of these disorders alone. These effects 
were more evident in men than in women. However, a traditional fixed AHI 
threshold to define OSA regardless of sex ignores known sex-dependent differ-
ences in OSA prevalence, risk factors and symptomatology. Thus, women may 
exhibit health impacts at a lower AHI compared to men, leading to under-
diagnosis and/or misdiagnosis of OSA in women. Differential cut-offs and 
symptom impacts may well help to explain the lack of association in women. 
Further studies, incorporating more systematic approaches to test for sex-de-
pendent and quite likely age-dependent differences in sleep problems and im-
pacts, are clearly needed to better understand and define effectively treatable 
sleep disorders that negatively impact the community. The high prevalence, 
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morbidity, and mortality risk associated with COMISA highlight the im-
portance of developing more effective diagnostic and treatment approaches for 
which better tailored and more sex-specific approaches remain needed. 

7.2 Clinical and research implications 

The algorithm and biomarkers developed in Chapter 2 and Chapter 4 have 
promising clinical utility. These metrics showed significant positive associations 
in the investigation of both the consequences of sleep fragmentation in the 
general population and the impact of environmental noise on sleep. Upon fur-
ther validation of these metrics, ideally in combination with other potentially 
informative metrics, these new tools could be implemented within standard 
clinical sleep medicine software tools to quantify sleep disruption. Application 
of more sensitive and physiologically informative metrics compared to tradi-
tional methods are likely to help advance the understanding of underlying 
pathophysiological mechanisms and clinical outcome risks, and to better in-
form targeted treatment and management decisions for sleep problems. An 
interactive user-interface was also developed during this thesis (see section B.5 
Open source software), to facilitate the independent use and validation of these 
new biomarkers by the wider sleep research community. 
Another central finding of this thesis likely to influence future research is that 
the pattern of EEG slow wave distribution across the night follows a distinctive 
pattern of cyclical reduction across the night. This specific pattern is likely to 
be influenced by multiple biological processes, such as sleep pressure and cir-
cadian rhythms (Lazar et al., 2015). Thus, it is not surprising that deviance 
from this specific pattern is associated with clinical conditions (as shown with 
KCs in Chapter 2) or adverse health outcomes like all-cause mortality, as 
shown in Chapter 4. Previous research on other specific EEG-derived markers 
of sleep, such as quantitative EEG analysis or ORPs, has predominantly fo-
cused on averaged quantities, such as delta power, across sleep episodes and 
sleep stages with little regard for the more dynamic and cyclical nature of 
sleep. However, given the findings of relationships between spectral entropy of 
delta wave activity overnight and mortality, time-dependant markers appear 
likely to usefully complement these and potentially other sleep measurements. 
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The results in this thesis demonstrating added risk of adverse health outcomes 
in participants with multiple sleep disorders are clearly of clinical interest. 
Given that no improvements in secondary cardiovascular event risk have been 
demonstrated following CPAP therapy in patients with OSA in randomized 
controlled trials (McEvoy et al., 2016, Peker et al., 2016, Labarca et al., 2020, 
Sánchez-de-la-Torre et al., 2020), a more specific investigation of the effects of 
combined therapy (CBTi + CPAP) on markers of cardiovascular disease se-
verity and risks may be warranted among OSA patients with co-occurring in-
somnia. Furthermore, given strong evidence to support poorer outcomes in 
patients with COMISA, patients undergoing clinical diagnosis for either in-
somnia or OSA alone should be considered for screening for COMISA.  
Finally, findings regarding KCs and environmental noise are valuable towards 
advancing the understanding of environmental noise impacts on sleep, and for 
potential future evidence-based improvement of environmental noise measure-
ments, regulations and management. Exposure-response curves are already 
used to inform political decision making designed to help mitigate the effects 
of environmental noise on sleep (Basner and McGuire, 2018). Given that meas-
urable changes in KC response probabilities to noise occur a SPLs lower than 
for arousals and awakenings, potentially important noise effects on sleep could 
occur at lower SPLs than previously assumed in the design of current noise 
guidelines. Clearly further work is needed to better understand environmental 
noise impacts on sleep, daytime functioning and longer-term health. 

7.3 Limitations  

There are inevitably some limitations of this thesis work that warrant consid-
eration and future work. The K-complex algorithm developed during this thesis 
was based on a small sample of 19 participants, with K-complexes scored by 
only one scorer, and on only one EEG channel. Therefore, while the impact of 
a small training dataset on algorithm performance was mitigated using uncer-
tainty quantification, there would likely be value in training a similar algorithm 
using a larger dataset scored by multiple scorers and a consensus scoring ap-
proach. Furthermore, given evidence to support that K-complexes can be lo-
calised events within the brain (Mak-McCully et al., 2015), with somewhat 
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different morphology depending on recording site, further validation using scor-
ing from different EEG locations would likely be useful.  
The calculation of “complexity” of the delta wave activity overnight was only 
studied using spectral entropy. Spectral entropy was chosen based on previous 
literature suggesting potential clinical utility, but also because it does not re-
quire extraneous parameters to be calculated and optimized. However, there 
are multiple measures of complexity such as entropies, fractals or network anal-
ysis amongst several other potential approaches (Bradley and Kantz, 2015, 
Zou et al., 2019). Therefore, it is possible that one or more of these techniques 
may be better suited to explain and quantify delta-wave fluctuation overnight 
than the spectral entropy. Nonetheless, while the clinical utility of the delta-
wave fluctuations marker was demonstrated using all-cause mortality, there 
remains a need to test associations between this and other potential markers 
and mortality, along with other adverse clinical outcomes, such as sleepiness 
and other health outcome risks. 
The Sleep Heart Health study was used to study the association between the 
new entropy-based marker of sleep disruption with all-cause mortality. The 
same dataset was used to study the association between COMISA and all-
cause mortality. Use of the SHHS dataset is clearly advantageous to compare 
with other research since this dataset has been used extensively across a range 
of previous studies. Furthermore, the SHHS is the only study available to date 
with multiple hard clinical outcomes, such as all-cause mortality and CV 
events. However, the results derived in this thesis based on the SHHS dataset 
remain to be validated in other cohorts with more diverse sleep disorders and 
clinical symptoms. 
This thesis focused on KCs and more generalised slow oscillations during sleep 
and ignored higher frequency patterns such as sleep spindles and theta waves. 
Spindles, as well as slow oscillations-spindle coupling, have recently been shown 
to be sensitive markers of cognitive performance in a large population-based 
study (Djonlagic et al., 2021). Therefore, in addition to the K-complex and 
delta-wave based biomarkers developed in this thesis, the additive contribution 
of spindle-derived metrics warrants further study. Another limitation of this 
work is the focus on specific frequency components of the EEG. Scale-free 
component of neural activity (sometimes called “background brain activity” or 
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“1/f” activity) is a further key component of brain activity and has been re-
cently hypothesized to be a biomarker of arousal level in human sleep (Lendner 
et al., 2020). In the same study, 1/f activity was higher during REM sleep 
episodes, further suggestive that important neuronal homeostatic and most 
likely synaptic reorganisation activity takes place during REM sleep. The find-
ings in Chapter 4 that time spent in REM sleep was also a predictor of all-
cause mortality, independent of known covariates further supports this con-
cept. Therefore, further targeted metrics designed to capture key physiological 
features of both NREM and REM sleep, such as eye movements, theta waves, 
atonia and “background brain activity”, clearly remain warranted to more 
comprehensively test for relationships between other markers of sleep homeo-
stasis and clinical outcomes. 
The impact of environmental noises on the KC response was only studied in a 
young and healthy population, which is not representative of the broader pop-
ulation habitually exposed to wind farm noise or traffic noise (Pedersen and 
Waye, 2004, Pedersen and Persson Waye, 2007). As these data were measured 
as part of a pilot study, the sample size was also relatively small. The effect of 
different noise types, ideally with a greater number of noise repetitions during 
the night would also be helpful to elucidate the potential contribution of fre-
quency-specific components of noise in K-complex responses. The long- and 
short-term health consequences, and the potential impact on next day sleepi-
ness of the absence vs presence of KCs were also not investigated and would 
benefit from further work. 
Most of the data underpinning this thesis work was derived from single night 
home-based polysomnography studies, where first night effects and night-to-
night variability are likely to influence study results. Given the increased car-
diovascular risk for people with high irregularity in total sleep time (more than 
2 hours difference across 7 days) (Huang et al., 2020); the night-to-night vari-
ability of the developed metrics, and their consequences, also remain to be 
studied. However, more affordable and portable monitoring sleep systems 
would be needed for such studies, which are prohibitively difficult and expen-
sive with conventional technology.  
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7.4 Future work recommendations  

Based on the work performed in this thesis, there are several recommendations 
for further research. The distribution of EEG events, such as slow waves, spin-
dles, and KCs across the night should be studied more thoroughly. Given initial 
results, these micro-EEG elements appear to be distributed according to phys-
iological processes likely to be at least partly related to mechanisms underpin-
ning sleep homeostasis needed for good mental and physical functioning and 
health. Given the literature on coupling between different physiological signals 
(see section 1.2.8a), similar techniques, such as network physiology methods 
(Ivanov et al., 2016), could likely be usefully modified and applied to EEG and 
other physiological signals to further explore their distributions and relation-
ships with outcomes relevant to mental and physical performance and health. 
This approach appears highly likely to reveal further important relationships 
between novel markers of sleep quality and health not currently detected using 
conventional sleep metrics. Novel approaches clearly require appropriate clini-
cal validation and demonstration of clinical utility, but nevertheless, improved 
diagnostic and treatment advances would be expected to follow.  
The effect of treatments, such as CBTi or CPAP for OSA, on novel EEG 
biomarkers should also be studied. Such studies would help to definitively es-
tablish causal relationships between markers of sleep disturbance and health 
impacts and help to reveal markers that are treatment responsive versus non-
modifiable traits or irreversible signs of damage. Ultimately, sleep fragmenta-
tion, at least partly arising from the use of treatments such as CPAP, also 
warrants study with these techniques, particularly given that CPAP is inher-
ently somewhat uncomfortable and restrictive and generates some noise. Given 
the higher all-cause mortality and cardiovascular event risk for people with 
multiple sleep disorder co-occurrence, more research is clearly needed to un-
derstand the potential of treatment combinations to improve sleep and reduce 
adverse health outcome risks. 
Lastly, further research is needed to find appropriate methods for combining 
biomarkers. Sleep disorder pathogenesis is clearly complex and multi-faceted, 
and sleep fragmentation is only one of several aspects occurring in a range of 
sleep disorders. Different metrics are likely needed to capture different aspects 



CHAPTER 7 Bastien Lechat 

129 

of sleep homeostasis and sleep physiological processes. A combination of mul-
tiple biomarkers is likely to support effective differential diagnosis, identifica-
tion of specific underlying causal mechanisms, and to provide optimal guidance 
towards the most effective and cost-effective treatment approaches. Linear 
models used in sleep research epidemiology cannot adequately account for 
high-level interactions, which clearly restricts the number of possible inputs. 
Thus, machine learning-based methods are likely to be much better suited for 
such a task (Obermeyer and Emanuel, 2016). Ultimately, current methods for 
the diagnosis and management of sleep disorders typically involve long waiting 
times associated with limited access to sleep specialist resources, and lengthy 
diagnostic and trial and error treatment approaches, often with sub-optimal 
outcomes. Thus, substantial future advances in understanding the role of sleep 
in human health, and for sleep disorder diagnosis and management, are likely 
possible through further application of EEG and other signal processing meth-
ods for quantifying sleep quality in more depth than is currently possible 
through manual sleep scoring methods. 
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APPENDIX A 

Supplementary material: K-complexes are a sensitive marker of 
noise–related sensory processing during sleep: A pilot study 

Table A1: Mean and SD of the number of noise instances played, stratified by 
sleep stages and sound pressure levels, for noise sensitive and non-sensitive 
participants. 

 
  

 All Non-sensitive Sensitive p-value 

N 21 13 8  

Sleep stage 2     

23 dBA 30.48 (12.59) 29.77 (13.55) 31.62 (11.64) 0.752 

33 dBA 26.38 (10.70) 25.23 (11.47) 28.25 (9.77) 0.544 

36 dBA 28.05 (11.48) 26.85 (12.66) 30.00 (9.74) 0.555 

39 dBA 26.38 (10.38) 25.31 (11.01) 28.12 (9.70) 0.559 

42 dBA 26.95 (10.92) 25.38 (12.16) 29.50 (8.68) 0.416 

45 dBA 27.29 (10.36) 26.15 (11.76) 29.12 (7.95) 0.537 

48 dBA 26.52 (10.39) 25.46 (11.57) 28.25 (8.56) 0.564 

Sleep stage 3     

23 dBA 24.86 (7.56) 23.77 (8.19) 26.62 (6.55) 0.415 

33 dBA 20.62 (5.31) 19.77 (5.82) 22.00 (4.34) 0.363 

36 dBA 19.14 (7.14) 18.85 (8.15) 19.62 (5.58) 0.815 

39 dBA 21.33 (6.22) 20.46 (7.29) 22.75 (3.99) 0.427 

42 dBA 20.43 (6.04) 20.00 (6.84) 21.12 (4.79) 0.689 

45 dBA 20.76 (5.14) 20.77 (5.10) 20.75 (5.55) 0.994 

48 dBA 20.62 (5.57) 20.54 (6.08) 20.75 (5.04) 0.935 
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Table A2: Mean and SD of the percentage of noise instances that evoked a K-
complex, an arousal or an awakening in sleep stage 2. 

 
  

 All Noise non-sensitive Noise sensitive p-value 

N 21 13 8  

KC, %     

23 dBA 7 (7) 8 (9) 5 (5) 0.344 

33 dBA 9 (9) 10 (9) 6 (8) 0.253 

36 dBA 12 (12) 13 (14) 9 (7) 0.383 

39 dBA 15 (11) 14 (10) 17 (13) 0.571 

42 dBA 17 (11) 20 (9) 11 (13) 0.055 

45 dBA 20 (13) 22 (11) 17 (16) 0.388 

48 dBA 22 (17) 28 (18) 14 (11) 0.06 

Arousals, %     

23 dBA 1 (2) 1 (1) 1 (3) 0.673 

33 dBA 1 (2) 1 (2) 1 (2) 0.8 

36 dBA 1 (2) 1 (2) 1 (2) 0.502 

39 dBA 2 (3) 2 (3) 3 (3) 0.687 

42 dBA 3 (4) 3 (5) 3 (3) 0.782 

45 dBA 3 (3) 4 (4) 2 (3) 0.109 

48 dBA 5 (6) 5 (5) 5 (8) 0.905 

Awakenings, %     

23 dBA 1 (3) 2 (3) 0 (1) 0.354 

33 dBA 1 (2) 2 (3) 0 (1) 0.157 

36 dBA 1 (2) 1 (2) 0 (0) 0.105 

39 dBA 2 (3) 2 (2) 2 (4) 0.79 

42 dBA 4 (5) 4 (7) 3 (3) 0.762 

45 dBA 2 (3) 2 (3) 2 (3) 0.886 

48 dBA 3 (4) 4 (5) 3 (3) 0.439 
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Table A3: Marginal probability of evoked K-complexes for different sound 
pressure levels and scoring thresholds (50, 60, 70, 80, 90, 95%) for automated 
K-complex detection. 

 Sound pressure level, dBA 

 23 33 36 39 42 45 48 

N2 sleep        

50 
6  

(4, 9) 
10 

(7, 14) # 
12 

(9, 17) # 

14 
(10, 19) # 

18 
(13, 24) # 

21 
(15, 27) # 

23 
(17, 30) # 

60 
5  

(4, 8) 

9 
(6, 14) # 

11 
(8, 16) # 

13 
(9, 18) # 

16 
(12, 22) # 

20 
(15, 26) # 

22 
(16, 29) # 

70 
5  

(3, 7) 

9  
(6, 13) # 

10 
(7, 17) # 

12 
(8, 17) # 

15 
(11, 21) # 

19 
(14, 26) # 

21 
(15, 28) # 

80 
4  

(3, 7) 
8 

(5, 12) * 

9 
(6, 13) # 

12 
(8, 16) # 

14 
(10, 20) # 

17 
(13, 24) # 

19 
(14, 26) # 

90 
4  

(2, 6) 
6  

(4, 9) 

7 
(4, 10) # 

10 
(7, 14) # 

12 
(8, 17) # 

15 
(11, 21) # 

17 
(12, 23) # 

95 
3  

(2, 5) 
5  

(3, 7) 
5 

(3, 9) 

9 
(6, 13) # 

10 
(7, 15) # 

14 
(9, 20) # 

15 
(10, 21) # 

N3 sleep        

50 
22  

(18, 27) 
21  

(17, 26) 
25 

(20, 31) 
27 

(23, 33) 
22 

(18, 27) 
29 

(24, 35) 
32 

(27, 38) 

60 
19  

(16, 24) 
19 

(15, 23) 
23 

(18, 28) 
26 

(21, 32) * 
20 

(16, 26) 
27 

(22, 33) # 

29 
(24, 35) # 

70 
18  

(14, 22) 
18 

(14, 22) 
21 

(16, 26) 
24 

(19, 29) * 
18 

(14, 23) 
26 

(21, 31) # 
28 

(23, 34) # 

80 
17  

(13, 21) 
16 

(13, 21) 
18 

(14, 24) 
21 

(16, 26) 
17 

(13, 22) 
23 

(19, 29) # 

26 
(21, 31) # 

90 
13  

(10, 18) 
14 

(10, 18) 
14 

(10, 19) 
19 

(15, 24) * 
16 

(12, 21) 
21 

(16, 27) # 

21 
(17, 27) # 

95 
11  

(8, 15) 
11 

(8, 15) 
13 

(9, 17) 
17 

(13, 22) 
14 

(10, 18) 
20 

(16, 26) # 

20 
(16, 26) # 

* p < 0.05; # p<0.01; 23 dBA (no noise control) is the comparator for p-values calculation 
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Figure A1: Marginal probability of the association between the KC-response in 
N2 sleep and SPL with high and low hearing acuity and noise sensitivity. 
Participants with hearing thresholds ≤ 3.9 dB HL and a Weinstein noise sen-
sitivity score < 54 were considered to have high hearing acuity and to be non-
noise-sensitive, respectively. 

  



 Bastien Lechat 

152 

 

Figure A2: Association between noise SPL and the K-complex response in N3 
sleep. A) Probability of occurrence of a K-complex at a given noise level. B) 
Odds ratio (95% CI) of evoking a K-complex at a given SPL compared to 
background noise. 
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Figure A3: Association between noise SPL and the K-complex response in N 
3 sleep for noise non-sensitive (orange) and sensitive (purple) group. A) 
Probability of occurrence of a K-complex at a given noise level. B), C) Odds 
ratio (95% CI) of evoking a K-complex at a given SPL compared to back-
ground noise. 
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APPENDIX B 

Supplementary material: A novel EEG derived measure of fragmen-
tation of delta wave activity during sleep predicts all-cause mortality 

B.1 Methodology 
EEG power spectral analysis 
The multi-taper technique (Prerau et al., 2017) was used, which minimizes the 
uncertainty in the spectral estimate across frequencies by multiplying the orig-
inal signal with multiple orthogonal windows called tapers. This approach re-
duces windowing artifacts compared to traditional quantitative EEG. The 
EEG power spectral analysis was primarily performed on the C3 channel with 
a signal quality score, recorded by the human-expert scorer, of ≥3 indicating 
that at least 50% of the EEG signals were artefact-free. The C4 channel was 
used in sensitivity analysis. EEG data were re-sampled to 128 Hz, and band-
pass filtered between 0.3 and 35 Hz. Processed raw data were segmented into 
five sec non-overlapping segments on which the multi-taper power spectral 
analysis was performed with a 1 Hz resolution using four tapers, the results 
from which were then ensemble averaged. Technical details regarding the multi-
taper method can be found in Prerau et al. (2017). The absolute power was 
calculated for each 5-second window in delta, theta, alpha, sigma and beta 
frequency bands (0.5 - 4.5, 4.5 - 8, 8 - 12, 12 - 15, and 15 - 32 Hz, respectively).  
Spectral entropy 
The variation of absolute power in the delta frequency band was captured 
using a density function. The average power of wake and sleep stage 1 (but 
not REM) was set to zero, since slow wave activity predominantly occurs in 
sleep stage 2 and 3 and to help reduce movement artefacts in wake and light 
transitional sleep. A weighted moving average Gaussian window (120 points, 
standard deviation = 10) was applied to a density function to reduce stochastic 
noise. The shape of the final delta wave density function was quantified using 
spectral entropy, an information measure that determines the degree of uni-
formity of the distribution (Inouye et al., 1991). The spectral entropy was 
calculated as the Shannon entropy (using Eq B1) 
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𝑃𝑃𝑃𝑃𝑃𝑃 = −� 𝑝𝑝𝑓𝑓 ln𝑝𝑝𝑓𝑓

𝑓𝑓𝑠𝑠/2

𝑓𝑓=0

 
Eq. B1 

Where PSE represents the power spectral entropy, and 𝑝𝑝𝑓𝑓 the probability den-
sity function of the power spectral density 𝑃𝑃(𝑑𝑑). 
 𝑝𝑝𝑓𝑓 =

𝑃𝑃(𝑑𝑑)
∑ 𝑃𝑃(𝑑𝑑)𝑓𝑓

 Eq. B2 

 𝑃𝑃(𝑑𝑑) =
1
𝑁𝑁

|𝑋𝑋(𝑑𝑑)|2 Eq. B3 

Where 𝑋𝑋(𝑑𝑑) is the Fourier transform of the delta wave density function. The 
implementation of the spectral entropy in this thesis was based on the one 
available in the package “mne-features” and “Entropy”. The implementation is 
also available on Github (see Open source software section). 

B.2 Sleep fragmentation and all-cause mortality 
Kaplan-Meier survival curves (Figure B1) show a lower survival probability for 
participants within the lowest and highest tertile of spectral entropy (compared 
to the middle tertile). 
 

https://github.com/mne-tools/mne-features
https://github.com/raphaelvallat/entropy


 Bastien Lechat 

156 

Figure B1: Kaplan-Meier survival curves for tertiles of the spectral entropy. 

Four sensitivity analysis were conducted. First, participants with CVD at base-
line (Sensitivity analysis 1; S1) were excluded. Second, participants who died 
in the first three years were removed (S2). Third, the EEG quality was elevated 
to at least 75% of artefact-free EEG signals (S3). Finally (S4), the analysis 
was repeated on C4 EEG channel, to help test if the shape of the delta-density 
function on C3 and C4 were similar. Hazard ratio and 95%CI of the associa-
tions between fragmented delta wave activity and all-cause mortality are shown 
in Table B1. 
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Table B1: Summary statistics of model 1 (spectral entropy) sensitivity analy-
sis. 

  S1 S2 S3 S4 

N  4912 4255 3519 5245 

No  965 750 804 1155 

HR (95% CI) 5 vs 50th 
1.28 

(1.09, 1.49) 
1.33 

(1.12, 1.59) 
1.28 

(1.06, 1.54) 
1.31 

(1.15, 1.49) 

 95 vs 50th 
1.02 

(0.88, 1.17) 
1.01 

(0.88, 1.17) 
1.10 

(0.94, 1.29) 
1.03 

(0.91, 1.17) 

D-index  0.58 0.56 0.59 0.60 

C-index  0.79 0.78 0.80 0.80 

LR test 𝜒𝜒2 9.31 9.35 8.05 15.7 

 p-values 0.025 0.025 0.045 0.001 

N, population number; No, number of outcomes; LR, likelihood-ratio 
S1, removing participants with < 3 years follow up 
S2, removing participants with CVD at baseline 
S3, participants with at least ≥ 75% of artefact-free EEG 
S4, full model with spectral entropy calculated on C4 

 
Stratified analyses 
Hazard ratios for sex-stratified and age-stratified associations between low 
spectral entropy (5th vs 50th percentiles) and all-cause mortality risk are sum-
marized in Table B2. The interaction term between age (continuous) and spec-
tral entropy was not significant (p-value = 0.36), whereas the interaction term 
between sex and spectral entropy was significant (p-value = 0.02). 

Table B2: Association between spectral entropy and all-cause mortality risk 
(5th vs 50th) for sex- and age-stratified models. 

  Age 

  < 70 y > 70 y All 

Se
x 

Male 
0.78 

(0.46, 1.28) 
1.50 

(1.15, 1.95) 
1.24 

(1.00, 1.53) 

Female 
1.91 

(1.10, 3.31) 
1.27 

(1.03, 1.58) 
1.41 

(1.17, 1.70) 

All 
1.23 

(0.91, 1.67) 
1.34 

(1.14, 1.58) 
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B.3 Sleep fragmentation and sleep disordered 
breathing 
AHI was not associated with mortality-risk (Figure B2) and there was no in-
teraction between spectral entropy and AHI (χ2 = 1.9, p = 0.16). However, 
the percentage of total sleep time with oxygen saturation less than 90% was 
associated with an increase in mortality-risk (18.2% vs 0.2 %; 1.24 (1.13, 1.36)) 

Figure B2: Association between (A) AHI and (B) percent of total sleep time 
with oxygen saturation less than 90% of oxygen saturation and all-cause mor-
tality risk. 

Stratified analyses and interactions 
The interaction effect (using quartile of % of sleep time spent with oxygen 
saturation less than 90%) is shown in Figure B3. 
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Figure B3: Association between spectral entropy and all-cause mortality risk 
for quartile-based (with interaction term) subgroup analysis of percent of total 
sleep time spent with oxygen saturation less than 90% models.  

B.4 Traditional polysomnography markers of 
sleep quality and all-cause mortality 
Non-linear associations were tested but none were found for any for traditional 
polysomnography markers of sleep quality, wake after sleep onset and arousal 
index. The association between arousal index (75th percentile against 25th per-
centile, HR, 95% CI, 1.04 (0.98, 1.10), p-value = 0.23) and wake after sleep 
onset (1.04 (1.00, 1.09), p-value = 0.07) with all-cause mortality were not sig-
nificant (Figure B4). 
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Figure B4: Association between the arousal index and wake after sleep onset 
and all-cause mortality.  

Quantitative EEG and all-cause mortality 
The association between the absolute power of each bands and all-cause mor-
tality is shown in Table B3 and compares the 75th percentile of the population 
to the 25th using the hazard ratio and 95% confidence interval. 

Table B3: Association between mean absolute power of typical frequency bands 
in NREM sleep and all-cause mortality risk (75th vs 25th). 

Band power HR, 95% CI 
Delta 1.00 (0.94, 1.06) 

Theta 1.00 (0.95, 1.02) 

Alpha 0.96 (0.90, 1.02) 

Sigma 1.00 (0.99, 1.01) 

Beta 1.00 (0.99, 1.01) 

B.5 Open source software 
The code used in this thesis has been made freely available under a common 
license rule at https://github.com/Adelaide-Institute-for-Sleep-Health/ upon 
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publication of Chapter 4. Figure B5 is an overview of the user interface/dash-
board developed to facilitate uptake of the tools by sleep practitioners. 

Figure B5: Software layout. Top, summary metrics of a given dataset, includ-
ing total sleep time (TST), total recording time (TRT), sleep efficiency and 
information’s about missing files. Bottom, analysis summary quantitative 
EEG is described in chapter 4. 
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APPENDIX C 

Supplementary material: Co-morbid insomnia and obstructive sleep 
apnea is associated with all-cause mortality. 

C.1 All-cause mortality 
Sex-stratified models (Table C1) showed significantly higher risk of all-cause 
mortality among males in co-morbid insomnia and sleep apnoea (COMISA) 
(1.57 (1.14, 2.16)) and insomnia-alone participants (1.76 (1.12, 2.78)) com-
pared to the reference group. This effect was strongest in males aged over 70 
years (Table C2). However, limited statistical power associated with the low 
number of events in the younger age category (N = 219) may limit interpreta-
tion of these comparisons. No significant associations of sleep disorder category 
and mortality were found in women after adjustment of all covariates (Table 
C1), irrespective of age category (Table C2). These exploratory analyses should 
be interpreted with caution, due to the reduction in sample size and statistical 
power to detect significant associations. 
For Table D1 to D6, the quoted values are Hazards ratio (and 95% CI) against 
the reference group (no insomnia/OSA). Model 1 is unadjusted. Model 2 is 
adjusted for demographics and anthropometrics (age, BMI, race, sex), behav-
ioural (smoking status) and polysomnography-measured total sleep time. 
Model 3 is additionally adjusted for pre-existing cardio-metabolic conditions, 
including diabetes, CVD, hypertension, lipid lowering medications and COPD. 
Finally, Model 4 is additionally adjusted for use of benzodiazepines, tricyclic 
anti-depressants and a binary variable constructed representing participants 
taking sleep medication more than 5 times a month. 
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Figure C1: Association between tertiles (T1, T2 and T3) of % of time spent 
with less than 90% of oxygen saturation (TST90) and insomnia (Ins) with 
all-cause mortality. 
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Table C1: Adjusted associations between sleep disorder group and all-cause 
mortality stratified by sex. 

 N N event Insomnia OSA COMISA 

Men      

Model 1 2435 589 1.45 (0.92, 2.28) 1.36 (1.13, 1.63) 1.58 (1.16, 2.15) 

Model 2 2412 584 1.66 (1.05, 2.61) 1.12 (0.93, 1.35) 1.53 (1.12, 2.10) 

Model 3 2210 558 1.76 (1.12, 2.78) 1.13 (0.93, 1.37) 1.57 (1.14, 2.16) 

Model 4 2207 557 1.76 (1.12, 2.78) 1.13 (0.93, 1.37) 1.57 (1.14, 2.16) 

Women      

Model 1 2705 525 1.00 (0.74, 1.37) 1.47 (1.22, 1.79) 1.81 (1.30, 2.52) 

Model 2 2681 518 1.07 (0.79, 1.46) 0.91 (0.75, 1.11) 1.15 (0.82, 1.61) 

Model 3 2517 499 0.94 (0.68, 1.30) 0.89 (0.73, 1.09) 1.03 (0.73, 1.44) 

Model 4 2513 498 0.91 (0.66, 1.28) 0.90 (0.74, 1.11) 1.02 (0.72, 1.44) 

 

Table C2: Fully adjusted associations between sleep disorder group and all-
cause mortality stratified by sex and age. 

  N N event Insomnia OSA COMISA 

Men      

 < 70 yo 1565 219 1.19 (0.51, 2.80) 1.13 (0.84, 1.54) 1.45 (0.90, 2.33) 

 > 70 yo 643 339 2.15 (1.23, 3.72) 1.17 (0.91, 1.51) 1.58 (1.01, 2.49) 

Women      

 < 70 yo 1694 137 0.71 (0.38, 1.31) 0.91 (0.60, 1.38) 0.98 (0.57, 2.05) 

 > 70 yo 822 361 1.02 (0.69, 1.52) 0.90 (0.72, 1.15) 1.08 (0.73, 1.61) 
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Table C3: Adjusted associations between sleep disorder group and all-cause 
mortality, excluding participants that died within the first two years (N = 
96).  

 N N event Insomnia OSA COMISA 

Model 1 5140 1114 1.07 (0.84, 1.39) 1.47 (1.29, 1.66) 1.73 (1.38, 2.17) 

Model 2 5093 1102 1.24 (0.96, 1.60) 1.02 (0.89, 1.17) 1.34 (1.06, 1.68) 

Model 3 4727 1057 1.16 (0.89, 1.51) 1.02 (0.89, 1.17) 1.29 (1.02, 1.63) 

Model 4 4720 1055 1.14 (0.87, 1.50) 1.02 (0.89, 1.17) 1.29 (1.02, 1.63) 

 

Table C4: Adjusted associations between sleep disorder group and all-cause 
mortality. Insomnia was defined as difficulties initiating and maintaining 
sleep at least 15 times a month and symptoms of daytime impairment. 

 N N event Insomnia OSA COMISA 

Model 1 5236 1210 1.06 (0.74, 1.50) 1.47 (1.31, 1.65) 1.77 (1.29, 2.42) 

Model 2 5189 1198 1.20 (0.84, 1.71) 1.01 (0.90, 1.14) 1.51 (1.10, 2.07) 

Model 3 4822 1152 1.07 (0.73, 1.55) 1.00 (0.88, 1.14) 1.51 (1.10, 2.09) 

Model 4 4815 1150 1.05 (0.72, 1.52) 1.01 (0.89, 1.14) 1.49 (1.08, 2.07) 

 

C.2 Cardiovascular disease 
Sex-stratified associations of sleep disorder category and cardiovascular events 
are displayed in Table C5. The strongest association of COMISA and cardio-
vascular events occurred in older men (>70 years old; Table C6). Furthermore, 
older men (> 70 years old) with OSA-alone showed a 36% increase in cardio-
vascular event risk versus older men with no insomnia or OSA (reference) (1.36 
(1.05, 1.77)). Conversely, no significant associations were found in women with 
insomnia-alone, OSA-alone or COMISA once adjusted for all pre-specified co-
variates, irrespective of age category. 
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Table C5: Adjusted associations between sleep disorder group and cardiovas-
cular disease stratified by sex.  

 N N event Insomnia OSA COMISA 

Men      

Model 1 2123 702 1.28 (0.82, 2.00) 1.41 (1.20, 1.67) 1.70 (1.28, 2.26) 

Model 2 2111 700 1.24 (0.79, 1.94) 1.17 (0.99, 1.39) 1.48 (1.11, 1.98) 

Model 3 2051 687 1.25 (0.79, 1.96) 1.17 (0.99, 1.40) 1.31 (0.98, 1.77) 

Model 4 2049 685 1.22 (0.77, 1.86) 1.17 (0.99, 1.39) 1.29 (0.96, 1.73) 

Women      

Model 1 2452 541 0.99 (0.72, 1.35) 1.54 (1.28, 1.86) 2.40 (1.76, 3.26) 

Model 2 2436 539 0.98 (0.72, 1.34) 0.98 (0.81, 1.19) 1.46 (1.07, 2.00) 

Model 3 2367 528 0.86 (0.62, 1.18) 0.96 (0.79, 1.18) 1.24 (0.90, 1.71) 

Model 4 2366 527 0.84 (0.61, 1.18) 0.97 (0.80, 1.19) 1.26 (0.91, 1.73) 

 

Table C6: Fully adjusted associations between sleep disorder group and cardi-
ovascular event stratified by sex and age. 

  N N event Insomnia OSA COMISA 

Men      

 < 70 yo 1328 313 0.98 (0.48, 2.02) 1.05 (0.82, 1.36) 1.14 (0.75, 1.72) 

 > 70 yo 643 346 1.69 (0.91, 3.10) 1.36 (1.05, 1.77) 1.60 (1.02, 2.51) 

Women      

 <70 yo 1539 162 0.79 (0.45, 1.40) 1.12 (0.77, 1.63) 1.32 (0.67, 2.6) 

 > 70 yo 824 365 0.95 (0.63, 1.43) 0.95 (0.75, 1.20) 1.33 (0.92, 1.94) 
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C.3 Associations between sleep disorder group 
and cardiovascular event subtypes 
Associations between cardiovascular event subtypes and sleep disorders suggest 
that COMISA and OSA-alone are associated with each cardiovascular event 
subtypes in the unadjusted models (CHD, heart failure and stroke; Table C7). 
In the fully adjusted models, COMISA was associated with a 30% increase in 
likelihood of heart failure compared to the reference group (HR 95% CI, 1.30 
(0.96, 1.77)) and OSA-alone was associated with a 22% (1.22 (1.04,1.43)) in-
crease in CHD events compared to the reference group.  



 Bastien Lechat 

168 

Table C7: Associations between sleep disorder group and cardiovascular event 
subtypes. 

 N N events Insomnia OSA COMISA 

Stroke      

 All Model 1 4575 271 1.10 (0.67, 1.90) 1.5 (1.15, 1.90) 1.9 (1.23, 3.0) 

  Model 2 4434 266 1.00 (0.60, 1.70) 1.11 (0.85, 1.5) 1.28 (0.81, 2.0) 

 Men Model 1 2123 114 1.26 (0.38, 4.11) 1.76 (1.15, 2.70) 1.73 (0.82, 3.15) 

  Model 2 2056 111 1.13 (0.34, 3.74) 1.35 (0.87, 2.10) 1.29 (0.60, 2.77) 

 Women Model 1 2452 157 1.02 (0.58, 1.81) 1.48 (1.04, 2.10) 2.37 (1.34, 4.18) 

  Model 2 2378 155 0.97 (0.54, 1.72) 0.93 (0.65, 1.34) 1.18 (0.66, 2.13) 

Coronary heart disease      

 All Model 1 4575 765 0.91 (0.65, 1.27) 1.63 (1.40, 1.90) 1.84 (1.40, 2.42) 

  Model 2 4434 751 0.85 (0.61, 1.19) 1.22 (1.04, 1.43) 1.23 (0.93, 1.63) 

 Men Model 1 2123 501 1.23 (0.72, 2.09) 1.38 (1.13, 1.67) 1.63 (1.16, 2.28) 

  Model 2 2056 493 1.17 (0.69, 2.00) 1.15 (0.94, 1.41) 1.27 (0.90, 1.80) 

 Women Model 1 2452 264 0.95 (0.62, 1.46) 1.26 (0.96, 1.66) 1.60 (0.98, 2.58) 

  Model 2 2378 258 0.85 (0.55, 1.33) 0.79 (0.59, 1.06) 0.86 (0.53, 1.39) 

Heart failure      

 All Model 1 4575 568 1.32 (0.94, 1.87) 1.71 (1.42, 2.05) 2.35 (1.74, 3.17) 

  Model 2 4434 561 1.09 (0.77, 1.55) 1.08 (0.89, 1.30) 1.30 (0.96, 1.77) 

 Men Model 1 2123 302 1.39 (0.70, 2.77) 1.60 (1.23, 2.07) 1.91 (1.24, 2.93) 

  Model 2 2056 299 1.22 (0.61, 2.44) 1.09 (0.83, 1.42) 1.24 (0.80, 1.92) 

 Women Model 1 2452 266 1.37 (0.91, 2.06) 1.64 (1.25, 2.15) 2.77 (1.82, 4.2) 

  Model 2 2378 262 1.13 (0.74, 1.72) 0.92 (0.69, 1.22) 1.24 (0.81, 1.90) 

Model 1: Unadjusted; Model 2: age, BMI, race, smoking status, cardiovascular disease (list all), hyper-
tension, diabetes. COMISA = co-morbid insomnia and sleep apnoea, OSA = obstructive sleep apnoea. 
Quoted values are Hazards ratio (and 95% CI) against the reference group (no insomnia/OSA). COMISA 
= co-morbid insomnia and sleep apnoea, OSA = obstructive sleep apnoea. 

 
For Table C8 to C9, the confounders are the same as the one enumerated for 
Table C1 to C6. 
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Table C8: Sensitivity analysis on the adjusted associations between sleep dis-
order group and incident cardiovascular events. Participants with baseline 
cardiovascular disease (N = 792) were removed from this analysis. 

 N N event Insomnia OSA COMISA 

Model 1 3769 794 1.10 (0.82, 1.48) 1.46 (1.26, 1.70) 1.93 (1.46, 2.6) 

Model 2 3747 792 1.28 (0.96, 1.73) 0.99 (0.85, 1.16) 1.34 (1.01, 1.78) 

Model 3 3638 775 1.19 (0.88, 1.61) 0.97 (0.83, 1.14) 1.24 (0.93, 1.64) 

Model 4 3634 774 1.17 (0.86, 1.61) 0.97 (0.83, 1.15) 1.25 (0.94, 1.67) 

 
 
Table C9: Sensitivity analysis on the adjusted associations between sleep dis-
order group and incident cardiovascular events. Insomnia was defined as dif-
ficulty in initiating and maintaining sleep at least 15 times a month and 
symptoms of daytime impairment. 

 N N event Insomnia OSA COMISA 

Model 1 4575 1243 1.09 (0.77, 1.55) 1.68 (1.50, 1.89) 1.96 (1.43, 2.70) 

Model 2 4547 1239 1.13 (0.80, 1.60) 1.13 (1.00, 1.27) 1.41 (1.02, 1.94) 

Model 3 4421 1216 1.03 (0.75, 1.48) 1.11 (0.98, 1.26) 1.36 (0.99, 1.88) 

Model 4 4415 1213 1.01 (0.70, 1.45) 1.12 (0.99, 1.27) 1.35 (0.97, 1.87) 
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