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Summary 

Groundwater is a resource of increasing importance throughout the world, especially 

in arid and semi-arid regions. Prudent groundwater management is paramount for the 

sustainability of groundwater systems, both in terms of water quantity and quality. 

Reliable estimates of groundwater recharge are often a pre-requisite for such 

purposes, as well as for most groundwater studies. However, groundwater recharge is 

commonly poorly understood and recharge estimates are usually highly uncertain 

due to its complicated nature and the lack of data. Distributed groundwater recharge 

(simply termed ‘recharge’ in what follows) is the vertical downward movement of 

water through the unsaturated zone, reaching the water table, and going into storage. 

Recharge can occur through focused and/or diffuse mechanisms. In any assessment 

of recharge, these mechanisms and other important factors are described by a 

conceptual model, which serves as the starting point of any recharge characterisation, 

and is necessary for appropriate selection of recharge estimation methods. Despite 

the significance of a sound conceptual model of recharge processes, it is often 

untested in recharge evaluations. 

This study explores the recharge processes within the coastal, semi-arid Uley South 

Basin (USB), Eyre Peninsula, South Australia, and attempts to quantify the spatial 

and temporal variability in recharge fluxes to the system. This aquifer presents 

significant management challenges, because it supplies around 70% of the Eyre 

Peninsula’s water demand, and yet there have been historical declines in 

groundwater levels approaching mean sea level in places. At the time of this study, 

USB was managed entirely based on recharge estimates, and reliable recharge 

estimates remain central to the sustainable allocation of pumping from the basin. A 

predictive tool capable of simulating recharge across the basin is required, partly for 

direct management applications, but also to underpin proposed groundwater models 

of USB. 

The carbonate terrain of USB forms a recharge environment that is especially 

challenging to characterise, and previous studies that have attempted to quantify 

USB recharge produced a wide range of basin- and time-averaged estimates (i.e. 40 
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to 200 mm/year). There is a need to seek plausible explanations for the lack of 

agreement across these studies, particularly because management requires a narrow 

range of uncertainty in USB recharge. Consequently, the focus of this study is to 

develop an improved characterisation of USB recharge, and to critically examine 

field-based and modelling approaches as they apply to the USB conditions. Although 

the investigation focuses on particular site conditions through a case study, they 

intend to address general research questions of relevance to many aquifers around the 

world. That is, guidance is offered on the development of conceptual models, and for 

critically combining field-based and modelling approaches of recharge estimation, 

especially for real-world case studies where available data are somewhat limited. 

This study’s first objective was to develop a conceptual understanding of the 

recharge mechanisms in USB using mainly existing field data. This allowed for an 

assessment of traditional field-based recharge estimation techniques, the groundwater 

chloride mass balance (CMB) and water-table fluctuation (WTF) approaches. These 

were critically examined as they apply to the USB conditions, and subsequently, 

adaptations to both methods were proposed to account for local factors. Firstly, the 

application of the CMB method was modified to account for (i) the spatial 

distribution of atmospheric chloride deposition, which decreases exponentially with 

distance from the coast; and (ii) up-gradient recharge areas for each well, which were 

approximated from chlorofluorocarbons (CFC) age dating and aquifer hydraulic 

properties. This provided a narrow range of temporally and spatially averaged 

recharge rates (53–70 mm/year), as well as a preliminary indication of the spatial 

distribution of recharge across the basin. Secondly, the WTF method was modified to 

account for pumping seasonality, which resulted in a relatively wide range of 

temporally and spatially averaged recharge rates (47–128 mm/year), reflecting the 

large uncertainty in specific yield across the basin. The primary contribution to the 

USB recharge characterisation from the WTF analysis was the valuable insights into 

the timing of recharge. 

A rigorous assessment of rainfall and groundwater hydrochemistry and isotopic 

datasets allowed for an improved characterisation of USB recharge mechanisms. 

Despite that there is no runoff to the sea and that runoff is ephemeral and only 
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persists for tens to hundreds of metres, preferential flow features seem to transmit 

water deeper into the unsaturated zone rather than to the water table, which is 

indicated by the differences in rainfall and groundwater chloride concentrations. 

Chloride and 18O data suggest that a substantial proportion of rainfall occurring in 

dryer months may be completely evaporated at the surface, and that unsaturated zone 

water and groundwater are subject to transpiration more so than evaporation. 

Chloride and bromide rainfall and groundwater data seem to confirm that rainfall in 

USB is essentially evaporated seawater and that rainfall is the only source of 

recharge. 

The second objective was to investigate the influence of variants of the 

conceptualisation of recharge processes in USB on recharge predictions based on 

one-dimensional (1D) unsaturated flow modelling. The study focussed particularly 

on different complexities of the unsaturated zone lithology and representations of 

preferential flow. A modified form of the code LEACHM was applied that included 

a simple representation of preferential flow, whereby runoff was redistributed within 

predefined regions of the unsaturated zone or bypassed the unsaturated zone, to allow 

testing of the effects of sinkholes and other preferential flow features. The model 

outcomes were tested against field-based timings of recharge, which indicated that 

only the models with preferential flow correctly reproduced the WTF-inferred timing 

of recharge, and that preferential flow probably redistributes runoff into the 

unsaturated zone rather than passing it to the water table directly. It was found that 

vegetation exerts the most significant control on simulated USB recharge, and a 

better field characterisation of vegetation parameters and distribution would be 

expected to reduce considerably the recharge modelling uncertainty. Because 

different but equally plausible conceptual models produce widely varying recharge 

rates, field-based recharge estimates were shown to be essential to constrain the 

modelling results. 

The third objective was to allow for a comparison between recharge from field-based 

and modelling methodologies integrated across the basin. This also provided total 

USB recharge influxes, for later comparison to pumping and other basin-wide fluxes. 

Temporally and spatially averaged modelled recharge rates were in the range 
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estimated using CMB, and consistency between modelled and fields-based timing of 

recharge was obtained in the simulations where surface runoff was distributed deeper 

into the unsaturated zone. The simulations that better matched the field-based 

estimations produced temporally and spatially averaged recharge rates of 69 and 

74 mm/year. Modelling provided an independently-verified fine resolution of 

recharge distribution in both time and space domains for the basin, which are 

especially valuable for management purposes and for input to groundwater flow 

models. 

The fourth objective was to evaluate two different groundwater management 

strategies, the flux-based management (FBM) and the trigger level management 

(TLM) approaches, as they apply to USB. A simple basin water balance modelling 

approach was used, which required transient recharge estimates from the modelling 

efforts. The results indicate that the addition of TLM to the presently used FBM of 

the system leads to (i) enhanced water availability manifested as higher allowable 

pumping volumes and fewer zero-pumping months; (ii) reduction in the risk of 

aquifer degradation and protection against recharge estimate inaccuracies; and (iii) 

enhanced understanding of basin functioning leading to adaptive management.  
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