Surface Modification of Poly(dimethylsiloxane) (PDMS) for Microfluidic Devices

Jinwen Zhou

Flinders University School of Chemical and Physical Sciences Faculty of Science and Engineering GPO Box 2100 Bedford Park, South Australia, 5042

Submitted November 2012

TABLE OF CONTENTS

TABLE OF	CONTENTS	I
ABSTRACT	,	V
DECLARAT	ION	VIII
ACKNOWL	EDGEMENTS	IX
LIST OF PU	BLICATION	X
LIST OF AB	BREVIATIONS	XII
LIST OF FI	GURES	XVII
LIST OF SC	HEMES	XXIII
LIST OF TA	BLES	XXV
CHAPTER	I INTRODUCTION	1
Abstract		1
1.1	Overview	1
1.2	PDMS surface modification methods	9
1.2.1	Gas-phase processing	9
1.2.2	2 Wet chemical methods	15
1.2.3	Combinations of gas-phase and wet chemical methods	24
1.3	Patterned PDMS surfaces	29
1.3.1	Topographical patterning	
1.3.2	2 Chemical patterning	31
1.4	Applications	35
1.4.1	Separation of biomolecules	35
1.4.2	2 Enzyme microreactors	50
1.4.3	Immunoassays	51
1.4.4	Genomic analysis	53
1.4.5	Capture/release of proteins in microfluidic channels	54
1.4.6	6 Cell culture	55
1.4.7	Formation of emulsions inside microfluidic channels	58
1.5	Summary and future perspectives	60
CHAPTER	2 METHODOLOGY	62

2.1	Int	roduction	62
2.2	Ma	aterial and chemical	62
2.3	Pre	eparation of PDMS samples	63
	2.3.1	Thermal assisted hydrosilylation	63
	2.3.2	SAM assisted templating	65
	2.3.3	Combination of Soxhlet-extraction and plasma treatment	66
2.4	Su	rface characterization	67
	2.4.1	WCA measurements	68
	2.4.2	FTIR-ATR spectroscopy	69
	2.4.3	XPS	69
	2.4.4	AFM	70
	2.4.5	Streaming zeta-potential analysis	70
	2.4.6	Fluorescence labeling study	71
	2.4.7	Stability experiments	71
2.5	DN	A hybridization on PDMS surfaces	72
2.6	Fal	brication of PDMS-based microfluidic devices	72
	2.6.1	Fabrication of SU-8 masters	72
	2.6.2	Fabrication of native PDMS-based microfluidic devices	73
	2.6.3	Fabrication of MP2-based microfluidic devices	74
	2.6.4	Fabrication of MP3-based microfluidic devices	75
	2.6.5	EOF measurements	75
	2.6.6	Fluorescence labeling in microchannels	76
CHAP	FER 3	HYDROPHILIZATION OF PDMS BASED ON	THERMAL
ASSIST	FED HY	DROSILYLATION	77
3.1	Int	roduction	77
3.2	Ex	perimental section	78
	3.2.1	WCA measurements	78
	3.2.2	Stability experiment	78
3.3	Re	sult and discussion	79
	3.3.1	PDMS samples with 10:1 base/curing agent weight ratio	79
	3.3.2	Comparison of MP1 samples with different weight ratio of b	base to curing
	agent in	n PDMS prepolymer	84
3.4	Co	nclusion	90
CHAP	FER 4	HYDROPHILIZATION OF PDMS USING SAM	ASSISTED

Π

TEMP	LATIN	3	92
4.1	Int	roduction	92
4.2	Ex	perimental section	94
	4.2.1	Stability experiment	94
4.3	Re	sults and discussion	95
	4.3.1	Surface characterization on PDMS surfaces	95
	4.3.2	Application of DNA hybridization	101
4.4	Co	nclusion	103
CHAP	FER 5	HYDROPHILIZATION OF PDMS BY COMBINATION	OF
SOXH	LET-EX	TRACTION AND PLASMA TREATMENT	104
5.1	Int	roduction	104
5.2	Ex	perimental section	105
	5.2.1	WCA	105
	5.2.2	Stability experiment	105
	5.2.3	AFM	105
	5.2.4	Fluorescence labeling study	106
5.3	Re	sults and discussion	106
	5.3.1	Surface characterization of PDMS surfaces	108
	5.3.2	Application of DNA hybridization	116
5.4	Co	nclusion	118
CHAP	FER 6	APTAMER SENSOR FOR COCAINE USING MINOR GROUP	OVE
BINDE	R BASI	ED ENERGY TRANSFER (MBET)	119
6.1	Int	roduction	119
6.2	Ex	perimental section	121
	6.2.1	Material and Chemical	121
	6.2.2	PDMS Sample Preparation	121
	6.2.3	MBET aptamer sensor for cocaine detection in solution	122
	6.2.4	MBET aptamer sensor for cocaine detection on PDMS surface	122
6.3	Re	sults and discussion	123
	6.3.1	MBET aptamer sensor for cocaine detection in solution	123
	6.3.2	MBET aptamer sensor for cocaine detection on an aptamer-mod	lified
	PDMS	surface	125
6.4	Co	nclusion	127
CHAP	FER 7 F	ABRICATION OF PDMS-BASED MICROFLUIDIC DEVICES	128

III

7.1	In	troduction	128
7.2	E	xperimental section	129
7.3	R	esults and discussion	129
	7.3.1	Fabrication of PDMS-based microfluidic devices	129
	7.3.2	EOF measurements	131
	7.3.3	Fluorescence labeling inside microchannels	133
7.4	C	onclusion	135
CHAPT	FER 8 (OVERALL CONCLUSIONS AND FUTURE WORK	136
8.1	0	verall conclusions	136
8.2	Fu	ıture work	138
REFER	ENCE	S	140

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its relatively low cost, ease of fabrication, oxygen permeability and optical transmission characteristics. However, its highly hydrophobic surface is still the main factor limiting its wide application, in particular as a material for biointerfaces. This being the case, surface modification to tailor surface properties is required to render PDMS more practical for microfluidic applications.

This thesis focuses on three different PDMS surface modification techniques, including 1) thermal assisted hydrosilylation; 2) self-assembled molecule (SAM) assisted templating and 3) a combination of Soxhlet-extraction and plasma treatment. The modified PDMS surfaces were then used for a series of analytical applications, including DNA hybridization and cocaine detection. Finally, the fabrication of native and surface modified PDMS-based microfluidic devices is also presented. The content in each chapter is outlined in the following.

In Chapter 1, a comprehensive review of recent research regarding PDMS surface modification techniques is presented, including gas-phase processes, wet-chemical methods and the combination of gas-phase and wet-chemical methods. In addition, topographical and chemically patterned PDMS is discussed, as well as examples of the application of modified PDMS surfaces in microfluidics.

Chapter 2 is the methodology chapter, which describes the three PDMS surface modification techniques used in this thesis. It also describes the fabrication process involved in the making of PDMS-based microfluidic devices. Moreover, details of the surface characterization techniques used for the analysis of the PDMS surfaces are described. These techniques include water contact angle (WCA) measurements, Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), streaming zeta-potential analysis, electroosmotic flow (EOF) measurements and fluorescence microscopy. Experimental details for the experiments involving DNA hybridization on modified PDMS are also described.

In Chapter 3, we report on a cheap, easy and highly repeatable PDMS surface modification method by heating pre-cured PDMS with a thin film of undecylenic acid (UDA) at 80 °C in an oven. A hydrosilylation reaction between the UDA and the PDMS curing agent was induced during heating. The results showed the modified PDMS surfaces became more hydrophilic compared to native PDMS and showed a more or less constant WCA for up to 30 d storage in air. In addition, the stability of the modified PDMS surface was further improved by reducing the weight ratio of PDMS base and curing agent from 10:1 to 5:1.

In Chapter 4, we present a chemical modification strategy for PDMS by curing a mixture of 2 wt % UDA in PDMS prepolymer on a pretreated gold coated glass slide. The pretreatment of the gold slide was achieved by coating the gold with a self-assembled monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA/PDMS prepolymer on the MPA/gold coated slide the hydrophilic UDA carboxyl moieties diffuse towards the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of UDA within the PDMS prepolymer to the surface is a direct result of surface energy minimization. Once completely cured, the PDMS was peeled off the gold substrate, thereby exposing the interfacial carboxyl groups. These groups were then available for subsequent attachment of 5'-amino-terminated oligonucleotides *via* amide linkages. Finally, fluorescently tagged complementary oligonucleotides were successfully hybridized to this surface, as determined by fluorescence microscopy.

In Chapter 5, the surface modification of PDMS was carried out by using a 2-step plasma modification with Ar followed by acrylic acid (AAc). The stability of the modified PDMS surface was further improved by Soxhlet-extracting the PDMS with hexane prior to plasma treatment. 5'-amino-terminated oligonucleotides were covalently attached to the PAAc modified PDMS surface *via* carbodiimide coupling. Results show that the covalently tethered oligonucleotides can successfully capture fluorescein-labeled complementary oligonucleotides *via* hybridization, which were visualized using fluorescence microscopy.

In Chapter 6, we report on an optical aptamer sensor for cocaine detection by first using minor groove binder based energy transfer (MBET) technique. First, a carboxyl-functionalized PDMS was prepared using SAM assisted templating as described in Chapter 4. A cocaine sensor was then fabricated on this carboxyl-functionalized PDMS surface by covalently immobilizing DNA aptamers *via* amide linkages. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from partial single-stranded DNA to a double stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double stranded T-junction, bringing the dye within the Förster radius of FITC. This process initiated MBET, thereby reporting on the presence of cocaine. In addition, this aptamer sensor was also implemented for cocaine detection in solution.

In Chapter 7, the fabrication of microfluidic devices based on the native PDMS and/or the modified PDMS is described. First standard soft-lithography was used to produce PDMS microchannels. Then, the sealing of the microchannels was achieved with the assistance of thermal treatment or an O₂ plasma. Finally, for the modified PDMS-based devices, the presence of reactive carboxyl groups from the initial UDA or AAc plasma treatment were verified by the immobilization of Lucifer Yellow CH dye in modified PDMS microchannels.

In Chapter 8, an overall comparison between the three different PDMS surface modification methods is provided and the future perspectives are outlined.

DECLARATION

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Signed

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my two supervisors Prof. Nicolas H. Voelcker and Ass. Prof. Amanda V. Ellis. Thank you both so very much for introducing me to this excited project and your invaluable support, advice, time, encouragement, patience and wisdom throughout my postgraduate study. This thesis would not have been possible without your great input.

I would like to thank everyone in Voelcker's group who has helped me throughout this project. Especially thanks to Steve McInnes for your time and help with my written English and experimental assistance. Thanks to Abdul Mutalib Md Jani for some discussions and suggestions. Thanks to Martin Cole for your help with XPS analysis. I also would like to thank Hilton Kobus for supplying cocaine and structural analogues.

Many thanks to those working in the mechanical and electronic workshops at Flinders University for your guidance and innovations.

I am grateful to Amit Asthana from ANFF-Q for sharing your acknowledge and skills of the fabrication of SU-8 masters.

I wish to acknowledge the National Institute of Forensic Science, Australia, and Faculty of Science and Engineering Research Award, Flinders University, for financial support.

Finally, many, many thanks for the love and support from my family. To my beloved husband Fang, who deserves special thanks for always being supportive and patient.

LIST OF PUBLICATION

Papers arising from Chapter 1

- Zhou, J. W., Ellis, A. V., Voelcker, N. H., Recent developments in poly(dimethylsiloxane) surface modification for microfluidic devices. *Electrophoresis* 2010, *31*, 2-16. <u>http://onlinelibrary.wiley.com/doi/10.1002/elps.200900475/abstract</u>
- Zhou, J. W., Khodakov, D. A., Ellis, A. V., Voelcker, N. H., Surface modification for PDMS-based microfluidic devices. *Electrophoresis* 2012, *33*, 89-104. http://onlinelibrary.wiley.com/doi/10.1002/elps.201100482/abstract

Papers arising from Chapter 3

 Zhou, J. W., McInnes, S. J. P., Mutalib Md Jani, A., Ellis, A. V., Voelcker, N. H., One-step surface modification of poly(dimethylsiloxane) by undecylenic acid. *Proceedings of SPIE* 2008, 7267 (726719), 1-10.

http://spie.org/x648.html?product_id=810101

Papers arising from Chapter 4

- Zhou, J. W., Voelcker, N. H., Ellis, A. V., Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. *Biomicrofluidics* 2010, *4*, 046504. <u>http://bmf.aip.org/resource/1/biomgb/v4/i4/p046504_s1</u>
- Zhou, J. W., Ellis, A. V., Kobus H., Voelcker, N. H., Aptamer sensor for cocaine using minor groove binder based energy transfer (MBET). *Analytica Chimica Acta* 2012, *719*, 76-81. <u>http://www.sciencedirect.com/science/article/pii/S0003267012000797</u>

Papers arising from Chapter 5

 Zhou, J. W., Ellis, A. V., Voelcker, N. H., Poly(dimethylsiloxane) surface modification by plasma treatment for DNA hybridization applications. *Journal of Nanoscience and Nanotechnology* 2010, *10*, 7266-7270.

http://www.ingentaconnect.com/content/asp/jnn/2010/00000010/00000011/art00061

Papers arising from Chapter 6

 Zhou, J. W., Ellis, A. V., Kobus H., Voelcker, N. H., Aptamer sensor for cocaine using minor groove binder based energy transfer (MBET). *Analytica Chimica Acta* 2012, *719*, 76-81. http://www.sciencedirect.com/science/article/pii/S0003267012000797

Other papers

 Mutalib Md Jani, A., Zhou, J. W., Nussio, M. R., Losic, D., Shapter, J. G., Voelcker, N. H., Pore spanning lipid bilayers on silanised nanoporous alumina membranes. *Proceedings of SPIE* 2008, 7267 (2670T), 1-10.

LIST OF ABBREVIATIONS

AA	ascorbic acid
AAc	acrylic acid
AAm	acrylamide
AFM	atomic force microscope
AHPCS	allylhydridopolycarbosilane
Ala	alanine
AMPS	2-acrylamido-2-methyl-1-propanesulfonic acid
4-AP	4-aminophenol
AP	alkaline phosphatase
APDMES	3-aminopropyldimethylethoxysilane
APTES	3-aminopropyltriethoxysilane
APTMS	3-aminopropyltrimethoxysilane
Arg	arginine
Asn	asparagine
Asp	aspartic acid
ATRP	atom transfer radical polymerization
BAS	1-butyl-3-methylimidazolium dodecanesulfonate
BGE	background electrolyte
BMImBF ₄	1-butyl-3-methylimidazolium tetrafluoroborate
BODIPY® FL CASE	N-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacen
	e-3propionyl)cysteic acid, succinimidyl ester
BP	benzophenone
BSA	bovine serum albumin
CAD	computer-aided design
CE	capillary electrophoresis
CEC	capillary electrochromatography
Chit	chitosan
COMOSS	collocated monolith support structure
CPTCS	3-chloropropyltrichlorosilane

CTMS	chlorotrimethylsilane
CVD	chemical vapor deposition
Cys	cysteine
3D	three dimensional
DA	dapamin
DBA	dobuamine
DDAB	didodecyldimethylammoniumbromide
DDM	n-Dodecyl-β-D-maltoside
DNA	deoxyribonucleic acid
DOC	sodium deoxycholate
dsDNA	double stranded deoxyribonucleic acid
ECM	extracellular matrix
EDAC	N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide
	hydrochloride
EDTA	ethylenediaminetetraacetic acid
μ_{eo}	electroosmotic mobility
EOF	electroosmotic flow
EP	epinephrine
ERα	estrogen receptor α
FAM	6-carboxyfluorescein
FITC	fluorescein isothiocyanate
FRET	fluorescence resonance energy transfer
FTIR-ATR	Fourier transform infrared-attenuated total reflection
Gln	glutamine
Glu	glutamic acid
Gly	glycine
GMA	glycidyl methacrylate
GPTMS	3-glycidoxypropyltrimethoxysilane
HA	hyaluronic acid
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
His	histidine
HPGs	hyperbranched polyglycerols
h-PSMA	hydrolyzed poly(styrene-co-maleic anhydride)

HQ	hydroquinone
HSA	human serum albumin
5-HT	5-hydroxytryptamine
Ig	immunoglobulin
Ile	isoleucine
IPA	isopropyl alcohol
LBL	layer-by-layer
LPEI	linear polyethyleneimine
Lys	lysine
MA	maleic anhydride
MAAc	methacrylic acid
MALDI	matrix-assisted laser desorption/ionization
MBET	minor groove binder based energy transfer
Met	methionine
2-MP	2-mercaptopyridine
MPA	3-mercaptopropionic acid
mPEG	methyl-poly(ethylene glycol)
MPTMS	3-mercaptopropyltrimethoxysilane
MS	mass spectrometry
NHS	<i>N</i> -hydroxysuccinimide
O/W	oil-in-water
PA	phosphatidic acid
PAAc	poly(acrylic acid)
PAAm	Poly(acrylamide)
РАН	poly(aromatic hydrocarbon)
PAS	poly(4-aminostyrene)
PBS	phosphate buffered saline
PDDA	poly (diallyldimethylammonium chloride)
P(DMA-co-GMA)	poly(dimethylacrylamide-co-glycidyl methacrylate)
PDMS	poly(dimethylsiloxane)
PE	poly(ethylene)
PEG	poly(ethylene glycol)
PEGMEM	poly(ethylene glycol) methyl ether methacrylate

PEI	poly(ethyleneimine)
PEMEA	propylene glycol methyl ether acetate
PEMs	polyelectrolyte multilayers
PEO	poly(ethylene oxide)
PGA	poly(L-glutamic acid)
PGMA	poly(glycidyl methacrylate)
Phe	phenylalanine
РНМА	poly(hydromethylsiloxane)
PLLA	poly(L-lactic acid)
PMAAc	poly(methacrylic acid)
PNIPAAm	poly [N-isopropyl acrylamide]
P(NIPAAm-co-AAc)	poly(N-isopropyl acrylamide-co-acrylic acid)
p-PDA	p-phenylenediamine
PPEGMA	poly(poly(ethylene glycol)methacrylate)
РРО	poly(propylene oxide)
Pro	proline
PSCA	prostate stem cell antigenv
PSS	poly(sodium 4-styrenesulfonate)
РТХ	paclitaxel
PVA	poly(vinyl alcohol)
PVA-g-GMA	poly(vinyl alcohol)-g-glycidyl methacrylate
PVC	poly(vinyl chloride)
PVP	poly(vinylpyrrolidone)
PVP-g-GMA	Poly(vinylpyrrolidone)-g-glycidyl methacrylate
QD	quantum dot
RB	rhodamine B
RGDS	Arg-Gly-Asp-Ser
RMS	root mean square
RSD	relative standard deviation
SAMs	self-assembled monolayers
SDS	sodium dodecyl sulfate
SELEX	systematic evolution of ligands by exponential enrichment
Ser	serine

SP-PCRs	solid phase-polymerase chain reactions
STB	sodium tetraborate
TAPS	N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid
TBE	Tris-borate-EDTA
TEOS	tetraethyl orthosilicate
TFOS	trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane
Thr	threonine
TOF	time of flight
Tris	tris(hydroxymethyl)aminomethane
Try	tryptophan
TTE	Tris-TAPS-EDTA
Tyr	tyrosine
UDA	undecylenic acid
UV	ultraviolet
UVO	ultraviolet/ozone
Val	valine
WCA	water contact angle
W/O	water-in-oil
W/O/O	water-in-oil-in-oil
W/O/W	water-in-oil-in-water
XPS	x-ray photoelectron spectroscopy

LIST OF FIGURES

Figure 1-1. PDMS microchip with injected electrode pads for generating localized plasma
in main channel. (a) Chip design, showing the injected electrodes, the main
channel and the localized plasma. (b) Injected gallium electrodes adjacent to
main channel. (c) PDMS microchip with patterned gallium electrodes adjacent
to main channel. Cross-section of main channel and gallium electrodes is
shown in the inset [36]11
Figure 1-2. Schematic illustration of the bonding process between two complementary
reactive CVD coatings 1 (poly(4-aminomethyl-p-xylylene-co-p-xylylene))
and 2 (poly(4-formyl- <i>p</i> -xylylene- <i>co</i> ¬xylylene)) [40]13
Figure 1-3. Schematic of a PDMS microchannel modified with LPEI and citrate-stabilized
gold nanoparticles using LBL assembly [46]17
Figure 1-4. Scanning electron micrographs of cross-sections of (a) uncoated and (b) coated
PDMS channels by mixture of TEOS and methyltriethoxysilane using the
sol–gel method [59]19
Figure 1-5. Schematics of the process of surface modification of PDMS with Pluronic
F127. (a) The microchannel based on Pluoonic F127 embedded PDMS; (b)
when the microchannel based on Pluronic F127 embedded PDMS was filled
with water, Pluronic F127 molecules migrated to the water interface with
hydrophilic PEO towards to water and hydrophobic PPO towards to PDMS
[124]21
Figure 1-6. PDMS surface modification with hydrophobins followed by covalent
immobilization of chicken IgG and demonstration of immunogenicity using
FITC-labeled anti-chicken IgG [74]22
Figure 1-7. Scheme of fabricating the protein G-immobilized hydrogel chip. (a) The
PDMS surface modification with PEMs (PEI/PAAc) in microchannel by layer
by layer (LBL) technique; (b) absorption of photoinitiator (PI) into the
PEMs-modified PDMS microchannel; (c) protein G was covalently bonded to
NHS-PEG-acrylate molecules for copolymerization with the AAm/bisAAm;
(d) certain region in the PEMs-modified PDMS microchannel were exposed
to UV light through the microscope objective for in situ synthesis of hydrogel

- Figure 1-10. Schematic illustration of producing patterned PDMS using bond-detach lithography method. (a) PDMS patterned surface was formed *via* capturing a plasma oxidized film onto another plasma oxidized PDMS stamp corresponding to the stamp patterns [133]. (b) PDMS patterned surface was formed *via* capturing PDMS from a plasma oxidized PDMS stamp onto substrates (silicon, glass or PDMS) with/without plasma oxidization [128]...34
- Figure 1-11. Integrated elastomeric valves. (A) Scheme for fabrication of PDMS elastomeric valve. A patterned oxidized PDMS 1, achieved by bonding and detaching an entire oxidized PDMS 1 with a native PDMS 3, was bonded with PDMS 3/PDMS 2 to form elastomeric valve. (B) Elastomeric valve in a closed position with the membrane flat. Scale bar: 0.25 mm. (C) Elastomeric valve in an open position with the membrane deflected [130]......34
- Figure 1-12. (Left) schematic of a COMOSS separation column made from PDMS and (right) scanning electron micrograph of the inlet section of the COMOSS [60].
- Figure 1-13. Schematic of surface functionalization and the application of an immunoassay: (a) carboxy-terminated silane monolayer derived from the PDMS surface by three steps, including oxygen plasma pretreatment, silanization of 7-octenyltri(chloro)silane and permanganate-periodate oxidation; (b) biotin-PEG-functionalized surface silane monolayer after 1-ethyl-3(dimethylamino)-propylcarbodiimide-N-hydroxysuccinimide

- Figure 1-14. Conjugate capture schematics responding to temperatures. (a) Conjugate capture schematic (cold start). Conjugates were loaded at room temperature. When the temperature was raised above 36 °C, conjugates aggregated and moved onto the PNIPAAm-modified surface; (b) Conjugate enrichment schematic (Hot Start). When the microfluidic device was heated above 36 °C and conjugates were introduced into the microchannel under continuous flow, conjugates were sequentially captured onto the PNIPAAm surface as they aggregated and were concentrated. Hereafter, a cool wash was applied to release surfaces bound conjugates from the PNIPAAm surface into the solution, following a warm buffer for removing unbound conjugates in both cold start (a) and hot start (b) procedures. Conjugate solution with higher concentration than that in the original sample stream (enrichment) was obtained in hot start (b) procedure [95].
- Figure 1-16. Schematic illustrations of double emulsification devices. (a) One-step breakup of droplet for double emulsion formation [92]; (b) two-step breakup of droplet for double emulsion formation [93]......60

- Figure 3-4. FTIR-ATR spectra of (a) 1 d MP1 (10:1) before zeta potential analysis, (b) 1 d MP1 (10:1) after zeta potential analysis at pH 4, and (c) 1 d MP1 (10:1) after

Figure 3-7. FTIR-ATR spectra of (a) 1 d MP1 (5:1) and (b) 1 d MP1 (10:1)......86

- Figure 4-2. FTIR-ATR spectra of (a) NP2 and (b) MP2......97
- Figure 4-3. High resolution XPS C 1s spectra of (a) NP2 and (b) MP2......98
- Figure 4-4. Streaming zeta potential measurements for NP2 and MP2 at pH 4, 6, 8, 10 and 12; (n=3).
- Figure 4-5. Stability of the carboxyl peak in FTIR-ATR spectra of MP2 immersing in: (a) MilliQ water, (b) PBS (pH 4.8) and (c) PBS (pH 7.4) for 3 h and 17 h at room temperature and/or 50 °C.
- Figure 4-6. Fluorescence images of (a) NP2 and (b) MP2 with Lucifer Yellow CH labeling.
- Figure 4-7. Fluorescence microscopy images of (a) Oligo 1/NP2 and (b) Oligo 1/MP2 after DNA hybridization with Oligo2. (c) shows the line intensity profile,

- Figure 5-2. FTIR-ATR spectra of AAc plasma modified PDMS with different treatmenttimes ((a) 0.5 min, (b) 1 min, (c) 2 min, (d) 3 min, (e) 4 min, (f) 5 min and (g)10 min) and fixed 0.2 mbar operational pressure on an Ar pretreated surface(0.7mbar,0.5
 - min).....107
- Figure 5-4. FTIR-ATR spectra of (a) NP3 and (b) MP3.....110
- Figure 5-5. High resolution XPS C 1s spectra of (a) Soxhlet-extracted NP3 and (b) MP3.111

- Figure 5-8. Fluorescence images of (a) NP3 and (b) MP3 with Lucifer Yellow CH labeling, and (c) the line intensity profile of images (a) NP3 and (b) MP3 (from left to right). The samples are placed on a glass slide for microscopy imaging.115
- Figure 6-1. Fluorescence emission spectra upon excitation at 360 nm recorded for solutions of aptamer/cocaine/Hoechst 33342 after different incubation protocols: (a) A solution containing aptamer (100 nM) and cocaine (100 nM) in Tris buffer (pH 8.4) was then maintained at room temperature for 20 min;

- Figure 7-4. Fluorescence images of (a) native PDMS, (b) MP2 and (c) MP3-based microchannels, and (d) the line intensity profile of images (a) native PDMS, (b) MP2 and (c) MP3-based microchannels (from left to right)......134

LIST OF SCHEMES

Scheme 2-1. Schematic illustration of the procedure for preparing native PDMS 1 (NP1
and modified PDMS 1 (MP1)6
Scheme 2-2. Schematic illustration of the procedure for preparing modified PDMS 2
(MP2)6
Scheme 2-3. Schematic illustration of (a) plasma system and (b) the procedure for
preparing modified PDMS 3 (MP3)6
Scheme 2-4. Schematic illustration of the static sessile drop for the measurement o
WCA
Scheme 2-5. Schematic illustration of the procedure for preparing SU-8 master. 1) Rinse
with acetone IPA, then dried with nitrogen gas, and finally dehydrated at 200
°C for 20 min. 2) Spin-coat 50 µm thick SU-8 2050 photoresist. 3) Pre-bake a
65 °C for 3 min and 95 °C for 9 min. 4) Exposure to UV light at an intensity
of 215 mJ/cm for 22 sec through the glass mask. 5) Post-bake at 65 °C for 2
min and 95 °C for 7 min. 6) Develop in PEMEA for 7 min, then rinse with
PGMEA and IPA, and finally dried under a stream of nitrogen. (Dimensions
main channel = 2 cm length, side channel = 0.5 cm length. Both channels are
250 μm wide and 50 μm in deep)7
Scheme 2-6. Schematic illustration of the procedure for fabrication of (a) native
PDMS-based, (b) MP2-based and (c) MP3-based microfluidic devices. 1
Pour PDMS in Petri dish and cure at 80 °C for 20 min for (a) native
PDMS-based microfluidic devices or 1 h for (c) MP3-based microfluidic
devices. 2) Peel flat PDMS slides off Petri dish. 3) Pour PDMS over SU-8
master and cure at 80 °C for 20 min for (a) native PDMS-based microfluidie
devices or 1 h for (c) MP3-based microfluidic devices. 4) Peel microchanne
featured PDMS slides off the master. 5) Bring two PDMS slides together and
keep for 2 h at 80 °C. 6) Soxhlet-extract native PDMS with hexane and the
treat the surfaces with 2-step plasma (Ar and AAc). 7) Treat the surfaces with
O ₂ plasma for 10 sec, then clean with ethanol and finally apply another 10 sec
O ₂ plasma for bonding the devices
Scheme 2.7 Schemetic Illustration of the new scheme for EOE masses (

Scheme 2-7. Schematic illustration of the procedure for EOF measurements......76

Scheme 3-1. Immobilization of Lucifer Yellow CH dipotassium salt dye on carboxyl
functionalized PDMS surface
Scheme 4-1. Process of PDMS surface modification by UDA and DNA hybridization on
MP2 surface94
Scheme 6-1. Schematic illustration of MBET aptamer sensors for cocaine detection on
MP2 surface
Scheme 6-2. Schematic illustration of fluorescence resonance energy transfer MBET
aptamer sensors for cocaine detection in solution
Scheme 7-1. Hydrosilylation reaction between PDMS curing agent and UDA

LIST OF TABLES

Table 1-1. Comparison of different PDMS surface modification methods (and submethods)
4
Table 1-2. Comparison of separation conditions for different biomolecule groups in
microchannels featuring surface-modified PDMS
Table 2-1. Details of the surface characterization methods used on each modified PDMS
surface
Table 4-1. Chemical compositions of the surfaces of NP2 and MP2 within the depth of
information of XPS97
Table 5-1. Chemical compositions of the the surfaces of NP3 and MP3 within the depth of
information of XPS
Table 5-2. Fluorescent microscopy results of DNA hybridization on two different surfaces
using different Oligo combinations117