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ABSTRACT 

Poly(dimethylsiloxane) (PDMS) is a popular material for microfluidic devices due to its 

relatively low cost, ease of fabrication, oxygen permeability and optical transmission 

characteristics. However, its highly hydrophobic surface is still the main factor limiting its 

wide application, in particular as a material for biointerfaces. This being the case, surface 

modification to tailor surface properties is required to render PDMS more practical for 

microfluidic applications. 

 

This thesis focuses on three different PDMS surface modification techniques, 

including 1) thermal assisted hydrosilylation; 2) self-assembled molecule (SAM) assisted 

templating and 3) a combination of Soxhlet-extraction and plasma treatment. The modified 

PDMS surfaces were then used for a series of analytical applications, including DNA 

hybridization and cocaine detection. Finally, the fabrication of native and surface modified 

PDMS-based microfluidic devices is also presented. The content in each chapter is outlined 

in the following. 

 

In Chapter 1, a comprehensive review of recent research regarding PDMS surface 

modification techniques is presented, including gas-phase processes, wet-chemical 

methods and the combination of gas-phase and wet-chemical methods. In addition, 

topographical and chemically patterned PDMS is discussed, as well as examples of the 

application of modified PDMS surfaces in microfluidics. 

 

Chapter 2 is the methodology chapter, which describes the three PDMS surface 

modification techniques used in this thesis. It also describes the fabrication process 

involved in the making of PDMS-based microfluidic devices. Moreover, details of the 

surface characterization techniques used for the analysis of the PDMS surfaces are 

described. These techniques include water contact angle (WCA) measurements, Fourier 

transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, X-ray 

photoelectron spectroscopy (XPS), atomic force microscopy (AFM), streaming 

zeta-potential analysis, electroosmotic flow (EOF) measurements and fluorescence 

microscopy. Experimental details for the experiments involving DNA hybridization on 
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modified PDMS are also described. 

 

In Chapter 3, we report on a cheap, easy and highly repeatable PDMS surface 

modification method by heating pre-cured PDMS with a thin film of undecylenic acid 

(UDA) at 80 ºC in an oven. A hydrosilylation reaction between the UDA and the PDMS 

curing agent was induced during heating. The results showed the modified PDMS surfaces 

became more hydrophilic compared to native PDMS and showed a more or less constant 

WCA for up to 30 d storage in air. In addition, the stability of the modified PDMS surface 

was further improved by reducing the weight ratio of PDMS base and curing agent from 

10:1 to 5:1. 

 

In Chapter 4, we present a chemical modification strategy for PDMS by curing a 

mixture of 2 wt % UDA in PDMS prepolymer on a pretreated gold coated glass slide. The 

pretreatment of the gold slide was achieved by coating the gold with a self-assembled 

monolayer of 3-mercaptopropionic acid (MPA). During curing of the UDA/PDMS 

prepolymer on the MPA/gold coated slide the hydrophilic UDA carboxyl moieties diffuse 

towards the hydrophilic MPA carboxyl moieties on the gold surface. This diffusion of UDA 

within the PDMS prepolymer to the surface is a direct result of surface energy 

minimization. Once completely cured, the PDMS was peeled off the gold substrate, 

thereby exposing the interfacial carboxyl groups. These groups were then available for 

subsequent attachment of 5’-amino-terminated oligonucleotides via amide linkages. Finally, 

fluorescently tagged complementary oligonucleotides were successfully hybridized to this 

surface, as determined by fluorescence microscopy. 

 

In Chapter 5, the surface modification of PDMS was carried out by using a 2-step 

plasma modification with Ar followed by acrylic acid (AAc). The stability of the modified 

PDMS surface was further improved by Soxhlet-extracting the PDMS with hexane prior to 

plasma treatment. 5´-amino-terminated oligonucleotides were covalently attached to the 

PAAc modified PDMS surface via carbodiimide coupling. Results show that the covalently 

tethered oligonucleotides can successfully capture fluorescein-labeled complementary 

oligonucleotides via hybridization, which were visualized using fluorescence microscopy. 

 

In Chapter 6, we report on an optical aptamer sensor for cocaine detection by first 

using minor groove binder based energy transfer (MBET) technique. First, a 
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carboxyl-functionalized PDMS was prepared using SAM assisted templating as described 

in Chapter 4. A cocaine sensor was then fabricated on this carboxyl-functionalized PDMS 

surface by covalently immobilizing DNA aptamers via amide linkages. The cocaine 

sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational 

change from partial single-stranded DNA to a double stranded T-junction in the presence of 

the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double 

stranded T-junction, bringing the dye within the Förster radius of FITC. This process 

initiated MBET, thereby reporting on the presence of cocaine. In addition, this aptamer 

sensor was also implemented for cocaine detection in solution. 

 

In Chapter 7, the fabrication of microfluidic devices based on the native PDMS and/or 

the modified PDMS is described. First standard soft-lithography was used to produce 

PDMS microchannels. Then, the sealing of the microchannels was achieved with the 

assistance of thermal treatment or an O2 plasma. Finally, for the modified PDMS-based 

devices, the presence of reactive carboxyl groups from the initial UDA or AAc plasma 

treatment were verified by the immobilization of Lucifer Yellow CH dye in modified 

PDMS microchannels. 

 

In Chapter 8, an overall comparison between the three different PDMS surface 

modification methods is provided and the future perspectives are outlined. 
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