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Abstract

In this thesis, three control methodologies are proposed for suppressing multi-

mode vibration in flexible structures. Controllers developed using these methods

are designed to (i) be able to cope with large and sudden changes in the system’s

parameters, (ii) be robust to unmodelled dynamics, and (iii) have a fast transient

response. In addition, the controllers are designed to employ a minimum number

of sensor-actuator pairs, and yet pose a minimum computational demand so as

to allow real-time implementation.

A cantilever beam with magnetically clamped loads is designed and con-

structed as the research vehicle for evaluation of the proposed controllers. Using

this set-up, sudden and large dynamic variations of the beam loading can be

tested, and the corresponding changes in the plant’s parameters can be observed.

Modal testing reveals that the first three modes of the plant are the most sig-

nificant and need to be suppressed. It is also identified that the first and third

modes are spaced more than a decade apart in frequency. The latter characteris-

tic increases the difficulty of effectively controlling all three modes simultaneously

using one controller. To overcome this problem, the resonant control method is

chosen as the basis for the control methodologies discussed in this thesis.

The key advantage of resonant control is that it can be tuned to provide

specific attenuation only at and immediately close to the resonant frequency

of concern. Consequently, it does not cause control spillover to other modes

owing to unmodeled dynamics. Because of these properties, a resonant controller

xv
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can be configured to form a parallel structure with the objective of targeting

and cancelling multiple modes individually. This is possible regardless of the

mode spacing. In addition, resonant control requires only a minimum number

of collocated sensor-actuator pairs for multi-mode vibration cancellation. All

these characteristics make resonant control a suitable candidate for multi-mode

vibration cancellation of flexible structures.

Since a resonant controller provides negligible attenuation away from the nat-

ural frequencies that it has been specifically designed for, it is very sensitive to

changes of a system’s natural frequencies and becomes ineffective when these

mode frequencies change. Hence, for the case of a dynamically loaded structure

with consequent variations in mode frequencies, the resonant control method must

be modified to allow tracking of system parameter changes. This consideration

forms the theme of this thesis, which is to allow adaptive multi-mode vibra-

tion control of dynamically-loaded flexible structures. Three controller design

methodologies based on the resonant control principle are consequently proposed

and evaluated.

In the first approach, all possible loading conditions are assumed to be a priori

known. Based on this assumption, a multi-model multi-mode resonant control

(M4RC) method is proposed. The basis of the M4RC approach is that it comprises

a bank of known loading models that are designed such that each model gives op-

timum attenuation for a particular loading condition. Conceptually, each model is

implemented as a set of fixed-parameter controllers, one for each mode of concern.

In reality, each mode controller is implemented as an adjustable resonant con-

troller that is loaded with the fixed-model parameters of the corresponding mode.

The M4RC method takes advantage of the highly frequency-sensitive nature of

resonant control to allow simple and rapid selection of the optimum controller.

Identification of the set of resonant frequencies is implemented using a bank of
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band-pass filters that correspond to the mode frequencies of the known mod-

els. At each time interval a supervisor scheme determines for each mode which

model has the closest frequency to the observed vibration frequency and switches

the corresponding model controller output to attenuate the mode. Selection is

handled on a mode-by-mode basis, such that for each mode the closest model

is selected. The proposed M4RC is relatively simple and less computationally

complex compared to other multi-model methods reported in the literature. In

particular, the M4RC uses a simple supervisor scheme and requires only a single

controller per mode. Other multi-model methods use more complex supervision

schemes and require one controller per model. The M4RC method is evaluated

through both simulation and experimental studies. The results reveal that the

proposed M4RC is very effective for controlling multi-mode vibration of a flexible

structure with known loading conditions, but is ineffective for unmodeled loading

conditions.

In the second approach, the assumption that all loading conditions are a priori

known is relaxed. An adaptive multi-mode resonant control (ARC) method is

proposed to control the flexible structure for all possible (including unknown)

loading conditions. On-line estimation of the structure’s natural frequencies is

used to update the adaptive resonant controller’s parameters. The estimation of

the natural frequencies is achieved using a parallel set of second-order recursive

least-squares estimators, each of which is designed for a specific mode of concern.

To optimise the estimation accuracy for each mode frequency, a different sampling

rate suitable for that mode is used for the corresponding estimator. Simulation

and experiment results show that the proposed adaptive method can achieve

better performance, as measured by attenuation level, over its fixed-parameter

counterpart for a range of unmodeled dynamics. The results also reveal that,

for the same sequences of known loading changes, the transient responses of the

ARC are slower than those of the M4RC.
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In the third approach, a hybrid multi-model and adaptive resonant control is

utilized to improve the transient response of the ARC. The proposed multi-model

multi-mode adaptive resonant control (M4ARC) method is designed as a combi-

nation of the M4RC and ARC methods. The basis of the proposed method is to

use the M4RC fixed-parameter model scheme to deal with transient conditions

while the ARC adaptive parameter estimator is still in a state of fluctuation.

Then, once the estimator has reached the vicinity of its steady-state, the adap-

tive model is switched in place of the fixed model to achieve optimum control

of the unforeseen loading condition. Whenever a loading change is experienced,

the simple M4RC supervisor scheme is used to identify the closest model and

to load the adjustable resonant controllers with the fixed parameters for that

model. Meanwhile, the mode estimators developed for the ARC method are used

to identify the exact plant parameters for the modes of concern. As soon as these

parameters stop rapidly evolving and reach their steady-state, they are loaded

into the respective adjustable controllers. The same process is repeated whenever

a loading change occurs. Given the simplicity of the M4ARC method and its min-

imal computation demand, it is easily applicable for real-time implementation.

Simulation and experiment results show that the proposed M4ARC outperforms

both the ARC with respect to transient performance, and the M4RC with respect

to unmodeled loading conditions.

The outcomes of this thesis provide a basis for further development of the

theory and application of active control for flexible structures with unforeseen

configuration variations. Moreover, the basis for the proposed multi-model adap-

tive control can be used in other areas of control (not limited to vibration can-

cellation) where fast dynamic reconfiguration of the controller is necessary to

accommodate structural changes and fluctuating external disturbances.
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ADC Analog to Digital Converter

AIS Adaptive Input Shaping

ARC Adaptive Resonant Control

ARMAX Auto Regressive Moving Average with eXternal input

ARX Auto Regressive with eXternal input

BIBO Bounded Input Bounded Output

BPF Band Pass Filter
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FEM Finite Element Method

FFT Fast Fourier Transform
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HPF High Pass Filter

IIR Infinite Impulse Response
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LPF Low Pass Filter

M4ARC Multi-Model Multi-Mode Adaptive Resonant Control

M4RC Multi-Model Multi-Mode Resonant Control

MIMO Multi Input Multi Output

MMAC Multiple Model Adaptive Control

MMC Multiple Model Control

MMSE Minimum Mean Squares Error

MRAS Model Reference Adaptive System

ODE Ordinary Differential Equation

PDE Partial Differential Equation

PLL Phase Locked Loop

PPF Positive Position Feedback

RLS Recursive Least Squares

SDOF Single Degree of Freedom

SISO Single Input Single Output

STR Self Tuning Regulator
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