
Chapter 3

Multiple Model Resonant

Control

In this chapter, a new control method, able to attenuate the multi-mode vibration

of a flexible structure with varying natural frequencies, is presented. The method

is referred to as multi-model multi-mode resonant control (M4RC). Two M4RC

design cases are discussed. In the first case, the M4RC design assumes that all of

the possible variations to the plant natural frequencies are a priori known. In the

second case, this assumption is relaxed. Only the upper and lower bounds of the

operating region are presumed to be a priori known. This chapter starts with a

brief introduction to resonant control. The resonant controller structure and its

characteristics are presented in Section 3.2. In Section 3.3, discrete-time resonant

control is derived using a bilinear transformation, and the stability of the discrete-

time resonant control system is proven using the passivity theorem. The multiple

model control approach that forms the basis of the proposed control method is

presented in Section 3.4. The proposed multiple model resonant control method

is then presented in Section 3.5. An evaluation of the proposed control method

through simulation studies is given in Section 3.6. The experimental results used

to verify the simulation results are reported in Section 3.7.
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3.1 Introduction

As shown in Chapter 2, one of the characteristics of flexible structures is their

highly resonant nature. For the case of the cantilever beam used in this research

this characteristic is made evident by the relatively large vibration at or near

to the natural frequencies of the structure, as shown in Fig. 3.1. From the

Figure 3.1. Frequency response of a flexible cantilever beam.

figure, it is clear that suppressing the vibration of a structure at or very close to

the natural frequencies of the structure is more important than suppressing the

vibration at other frequencies. However, suppressing the vibration at one or more

natural frequencies may excite or amplify other natural frequencies. Therefore,

one important design requirement for flexible structure control is to achieve high

attenuation for modes of interest without driving the other modes into instability

or exciting and amplifying the vibration of other modes.

As stated in Chapter 1, a resonant controller has necessary characteristics that

satisfy the design requirements for multi-mode vibration attenuation of flexible

structures investigated in this research. Exploiting the highly resonant charac-
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teristic of the flexible structure, the resonant controller only applies high gain at

or close to the natural frequencies of interest, and is therefore able to suppress

the vibration at those frequencies without causing adverse effects at other fre-

quencies. In the following section, a further analysis on the characteristics of a

resonant controller is presented.

3.2 Structure of a Resonant Controller

Consider a flexible structure with a collocated piezoelectric sensor-actuator pair

attached to it as shown in Fig. 3.2 [114]. The piezoelectric patch at the top

of the beam is used as an actuator, while the patch on the bottom serves as a

sensor. The controller output is u(t), the sensor voltage is y(t), and the external

disturbance is f(t). The block diagram for the control system can be depicted

as in Fig. 3.3. The approximate transfer function of the flexible structure is the

truncated version of (2.47):

GM(s, x) =
M∑

m=1

ym(x)ym(x1)

s2 + 2ζmωms + ω2
m

m = 0, 1, 2, ...,M (3.1)

where M is the highest resonant mode to be controlled.

The resonant controller K(s) as given in [113, 114] is described by

K(s) =
M∑

m=0

Km(s) (3.2)

with

Km(s) = kcm
s2 + 2ζcmωms

s2 + 2ζcmωms + ω2
m

(3.3)

where ωm is the mth controller centre frequency, which is the same as the mth

natural frequency of the vibrating system, ζcm is the mth mode controller damping

factor, and kcm is the gain for the mth mode controller.

The controller Km(s) is a second-order filter with two zeros and two poles.

One zero is at the origin and the other is a real zero in the Left Half Plane
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Figure 3.2. Flexible structure control system.

GM(s,x)

U(s)
R(s)

-

F(s)

++ Y(s)

K(s)

Figure 3.3. Block diagram of resonant control.
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(LHP) of the s-plane. The controller has a band-pass filter which has a high

Q characteristic, with a high gain at the natural frequency of the system and a

sharp drop in gain away from the natural frequency of the system. This highly

resonant characteristic of the controller is shown in Fig 3.4. The transfer function

Figure 3.4. Frequency response of a dual mode resonant controller.

of the closed loop system is

Y (s)

R(s)
=

GM(s)

1 + GM(s)K(s)
. (3.4)

To suppress vibration the term on the right hand side of (3.4) must be small.

Hence it can be seen that the feedback is effective only for the frequency range

close to the natural frequency of the system where |GM(jω)K(jω)| is large. This

characteristic makes the controller robust to spillover effects caused by mode

truncation, because the controller will not excite the unmodeled dynamics away

from the frequency of concern. The effect of the controller is localized to each

mode of a structure. Due to this localized effect of the controller, a single sensor-

actuator pair can be used to suppress multi-mode vibration in the structure.
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Equation (3.2) shows that to control M modes of vibration, M controllers can

be arranged in parallel to form a summation of the different mode controllers.

Each of the mode controller parameters, ωm, ζcm, and kcm in (3.3) is designed

independently, and solely based on the plant parameters for the corresponding

mode. The parameter kcm in (3.3) can be set to zero for a particular m if that

mode is not to be controlled, giving designers the freedom to choose which mode

they wish to control.

Of all the three controller design parameters, only the controller centre fre-

quency is sensitive to variations of the plant parameters. To achieve optimum

attenuation, the controller centre frequency must be set to be the same as the

natural frequency of the plant. In contrast, the controller damping ratio, ζcm,

and the controller gain, kcm, are not sensitive to variations of the plant param-

eters, and there is no simple relationship between ζcm and kcm with the plant

parameters. Optimum values of ζcm and kcm can be found through a trial and

error procedure. The parameters ζcm and kcm have differing effects on control

performance. As the chosen value of ζcm is decreased, the attenuation at the

corresponding natural frequency becomes higher. If, however, the selected value

of ζcm is too small, the vibration at the other frequencies outside this natural

frequency will be amplified. The effect of kcm selection demonstrates a converse

result to that of the ζcm selection. The higher the value of kcm, the higher the

attenuation associated with that natural frequency. However, if the selected value

of kcm is too high, then the vibration amplitudes for the other frequencies out-

side this natural frequency will be amplified. The sensitivity of the controller

parameters to variations of the plant parameters, which affect the control system

performance, is demonstrated in the following example.
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Example 3.2.1

A resonant controller K(s) with kcm = 10, ζcm = 0.01, and ω = 62.8 rad/sec is

used to control a second-order plant in five different cases. In the first case the

controller is used to control the nominal plant, G1(s). In the second and third

cases, the natural frequency of G1(s) is decreased and increased by 5% to form

G2(s) and G3(s), respectively. In the fourth and fifth cases the damping factor

of the plant are two times larger and ten times lower, respectively, compared to

the damping factor of G1(s). This yields G4(s) and G5(s). The parameters and

the transfer function of the plant for all five cases are shown in Table 3.1.

Case ζ ω (rad/sec) Transfer function

1 0.001 62.8 G1(s) = 1
s2+0.126s+3947.8

2 0.001 59.7 G2(s) = 1
s2+0.1196s+3562.9

3 0.001 65.9 G3(s) = 1
s2+0.1326s+4352.5

4 0.002 62.8 G4(s) = 1
s2+0.251s+3947.8

5 0.0001 62.8 G5(s) = 1
s2+0.0126s+3947.8

Table 3.1. Models’ parameters used in the example.

The responses of the controlled system for all the cases are shown in Fig. 3.5

and Fig. 3.6. Fig. 3.5 shows that a significant degradation of the attenuation

performance occurs for a small change in the natural frequency of the plant. The

attenuation performance decreases around 13 dB for only a 5% change in the

plant natural frequency. However, the attenuation performance is not sensitive

to the plant damping factor variation. The attenuation performance only varies

around 1 dB for 2 times (100%) and 10 times variations in the plant damping

factor as shown in Fig. 3.6.

In the implementation of the resonant controller, it is assumed that the natu-

ral frequencies of the structure are known through a modeling process or modal
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Figure 3.5: Closed-loop responses for variations in a plant natural

frequencies.

61.5 62 62.5 63 63.5 64 64.5
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

Frequency (rad/sec)

M
ag

ni
tu

de
(d

B
)

open loop
case 1
case 4
case 5

Figure 3.6: Closed-loop responses for variations in a plant damping

factors.
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testing measurement. Then, based only on the natural frequencies of the struc-

ture, the resonant controller can be designed. This promotes a simple design

procedure suitable for a real-time implementation. However, since a resonant

controller is designed for specific narrow frequencies and is very sensitive to the

structure natural frequencies variations, then it becomes ineffective if the struc-

ture natural frequencies are altered due to changes in its configuration and or

loading.

3.3 Discrete-time Resonant Control

To embed the resonant control algorithm in a real-time micro controller platform,

the continuous resonant controller (3.2) must be transformed into its correspond-

ing discrete-time form. There are five common methods that can be used to

discretize continuous systems into discrete-time systems: the impulse-invariant

method, the backward-difference method, the forward-difference method, the bi-

linear transformation method, and the step-invariance method [107].

In this research, the selection of the discretization method is based on preser-

vation of the passivity of the continuous systems through the discretization pro-

cess and practical minimisation of the computational load of the discretization

method. A method that preserves the passivity characteristic of continuous res-

onant control is chosen to ensure stability. A proof for this is given in Section

3.3.1 and 3.3.2.

Not all of the five methods mentioned above preserve the passivity of the

continuous systems. Jiang [58] examined the passivity preservation properties of

the five methods. The conclusion of the study is that only backward-difference,

bilinear transformation and impulse-invariant methods are capable of preserving

the passivity of the continuous system. Furthermore, of these three methods,

the bilinear transformation method has the lowest computational demand [107].
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Therefore, the bilinear transformation is chosen in this research as the discretiza-

tion method.

Applying the bilinear transformation

s = 2fs
z − 1

z + 1
(3.5)

to (3.3), where fs is the sampling frequency, one obtains the discrete-time resonant

controller for the mth mode as

Km(z) = kdm
Amz2 + Bmz + Cm

z2 + Dmz + Em

(3.6)

with

Am =
4f 2

s + 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (3.7)

Bm =
−8f 2

s

4f 2
s + 4fsζcmωm + ω2

m

, (3.8)

Cm =
4f 2

s − 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (3.9)

Dm =
2ω2

m − 8f 2
s

4f 2
s + 4fsζcmωm + ω2

m

, (3.10)

Em =
4f 2

s − 4fsζcmωm + ω2
m

4f 2
s + 4fsζcmωm + ω2

m

, (3.11)

and kdm is the gain for the mth controller. From (3.6), the discrete-time resonant

control law u(k) for sampling time k is given by

u(k) =
M∑

m=1

um(k)kdm, (3.12)

with

um(k) = Amy(k)+Bmy(k−1)+Cmy(k−2)−Dmum(k−1)−Emum(k−2) (3.13)

where y(k) is the controlled output at sampling time k.

The continuous resonant control system is proven to be stable [114]. In the

next two sections there is a discussion on system stability and a proof that for

a discrete-time resonant control system preservation of a system passivity using

bilinear transformation also preserves the stability of the system.
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3.3.1 Input-output Stability

One general approach that is widely used to address the stability problems that

arise in control systems is the input-output stability theory [56, 99]. This stability

theory considers the effect of external inputs on a system’s stability. If a system

is described by an operator W that maps an input space U to an output space Y ,

the concept of the input-output stability is based on the properties of U and Y .

If a property Lp space of the input is invariant under the transformation W , the

system is said to be Lp-stable [99]. For any fixed p ∈ [1,∞), variable u is said to

belong to Lp if the Lp norm of u exists [56] or

‖u‖p

4
=

 ∞∫
0

|u(t)|pdt

1/p

< ∞, (3.14)

and for p = ∞

‖u‖∞
4
= sup

t≥0
|u(t)| < ∞. (3.15)

Then the system represented by the operator W is said to be Lp-stable if u ∈

Lp is mapped into y ∈ Lp. When p = ∞, Lp-stability is also referred to as

bounded-input bounded-output (BIBO) stability. The familiar BIBO stability

notion contends that if the input signal is finite, then the output signal also must

be finite.

Consider now a canonical feedback system as shown in Fig. 3.7. G1 and G2

are operators that act on input u1 and u2, respectively, to produce output y1 and

y2. r is an external input to the system. The equations describing the system are

given by

y1 = G1u1

y2 = G2u2 (3.16)

The stability problem then is to determine conditions for G1 and G2, so that if

u1 and u2 are in the same class Lp, then y1 and y2 are in the same class.
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-

+ u1 y1
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Figure 3.7. A canonical feedback system.

One concept, which is widely used in input-output stability problems, is that

of passivity [99]. In the passivity concept, a system is considered as a device

which interacts with its environment by transforming inputs into outputs. From

an energy viewpoint, a passive system can be defined as a system which cannot

store more energy than is supplied by some source, with the difference between

stored energy and supplied energy, being the dissipated energy [82]. Hence for a

bounded input, a passive system will produce bounded output. Therefore it is

clear that a passive system is stable in the input-output stability sense.

A fundamental property of passive systems is that the negative feedback in-

terconnection of two passive systems yields a passive system. This property is

formalized in the passivity theorem which states that a negative feedback inter-

connection of two passive system is stable [29]. Therefore, the stability of the

feedback system in Fig 3.7 can be achieved by proving that G1 and G2 are pas-

sive. Another property of passive systems is that a system resulting from the

parallel interconnection of passive systems is passive [70].
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3.3.2 Stability of a Discrete-time Resonant Control Sys-

tem

As shown in Fig. 3.3, a resonant control system is a feedback interconnection

between the truncated plant GM and the resonant controller K. The stability

of the discrete-time resonant control system will be proven using the passivity

theorem. To accomplish this, it is sufficient to prove that both the discrete-time

controller K(z) and the discretization of truncated plant (3.1) are passive. Fur-

thermore, due to the passivity of the parallel interconnection of passive systems,

it is sufficient to prove that the discrete-time controller (3.6) is passive.

Two steps are undertaken in the stability proof. Step 1 proves that the

discrete-time controller (3.6) is passive, and Step 2 proves that the discretize

truncated plant (3.1) is also passive.

Step 1

In Appendix B, it is stated that a discrete-time system is passive if all the poles

of the system lie inside the unit circle and the real value of the system for z = 1

is greater than or equal to zero. Therefore it can be proven that the discrete-time

resonant controller (3.6) is passive by confirming that all the zeros of (3.6) lie

inside the unit circle and that the real value of (3.6) for z = 1 is greater than or

equal to zero. Write (3.6) as

Km(z) =
P (z)

Q(z)
= kdm

Amz2 + Bmz + Cm

z2 + Dmz + Em

. (3.17)

According to the Jury criterion [107] all the poles of (3.17) are inside the unit

circle if

1. Em < 1,

2. Q(z)|z=1 > 0, and

3. Q(z)|z=−1 > 0.
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From (3.11) it can be seen that the first condition is satisfied. Substituting z = 1

and z = −1, respectively, into Q(z) in (3.17) results in

Q(1) =
4ω2

m

4f 2
s + 4fsζcmωm + ω2

m

> 0 (3.18)

and

Q(−1) =
16f 2

s

4f 2
s + 4fsζcmωm + ω2

m

> 0, (3.19)

respectively, which shows that the second and third conditions are also satisfied.

Thus all the poles of Km(z) lie inside the unit circle. Inserting z = 1 in (3.17)

results in

Re[Km(z)] = 0. ∀z = 1 (3.20)

Therefore, (3.17) satisfies the conditions for passive systems as in Definition B.2

of Appendix B, and hence the controller (3.6) is passive.

Step 2

Applying the bilinear transformation (3.5) to (3.1) one obtains the transfer func-

tion of the discrete-time plant as

G(z, x) =
R(z)

S(z)
=

M∑
m=1

ym(x)ym(x1)(z
2 + 2z + 1)

amz2 + bmz + cm

(3.21)

with

am = 4f 2
s + 4fsζmωm + ω2

m, (3.22)

bm = −8f 2
s + 2ω2

m, (3.23)

and

cm = 4f 2
s − 4fsζmωm + ω2

m. (3.24)

From (3.21) to (3.24), it can be seen that

am > cm, (3.25)

S(z)|z=1 = 4ω2
m > 0, (3.26)
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and

S(z)|z=−1 = 16f 2
s > 0. (3.27)

Hence all the poles of (3.21) lie inside the unit circle. Furthermore, by substituting

z = 1 in (3.21) and because eigenfunctions, ym(x) and ym(x1), have the same sign

for collocated systems, then

Re[G(z, x)] =
4y2

m(x)

4ω2
m

> 0, ∀z = 1. (3.28)

Following Definition B.3 of Appendix B, the discrete plant (3.21) is strictly pas-

sive.

Hence, the closed loop system comprising the discrete-time resonant controller

(3.6) and the plant (3.1) is stable according to passivity theorem.

The control system is stable with respect to incorrect resonant frequencies.

The incorrectly specified natural frequencies of the model will only make the

controller perform sub optimally without destabilizing the closed-loop system.

To obtain optimum performance for a system with varying natural frequencies, a

resonant controller based on the multiple model control approach, referred to as

M4RC, is proposed. Prior to the discussion of the M4RC design, a brief review

of the multiple model control method is presented in the next section.

3.4 Multiple Model Control

As mentioned in Chapter 1, the multiple model control (MMC) method is a

control method that is designed to cope with systems that have varying param-

eters. MMC is a model-based control method which integrates a bank of model-

controller pairs to handle all possible operating conditions. Two approaches to

MMC can be found in the literature: the weighting function scheme [5, 22, 40,

48, 119] and the supervisor scheme [6, 38, 100, 75].
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Weighting Function Scheme

In the weighting function scheme approach, as shown in Fig. 3.8, a model bank

is designed based on a priori knowledge of the plant. Corresponding to each

model in the bank, a controller is designed. At each step, the output of the plant,

y, is compared with the output of the models yi, i = 1 to L. The differences

generated from the comparisons are the errors ei, i = 1 to L. Using these errors,

a weighting function is used recursively to measure the probability of each model

in the model bank representing the current plant. Based on the measurement,

suitable weights are given to individual controllers in the controller bank such that

the most probable model carries the highest weight. The sum of the weighted

controllers’ outputs is then used as the control signal to the plant. In this way,

control signals from the controllers, ui, i = 1 to L, for models which closely

represent the current plant will exert greater influence on the final control signal

u.

The most common method used in the weighting function design employs a

probability estimate based on Bayes’ rule [22, 40, 48]. Using this method, the

likelihood of the ith model fitting the plant can be measured, and the weighting

value for each corresponding controller can be determined. At the kth step, the

probability for the ith model being the true model of the plant is computed as

[22]

pi,k =
exp(−1

2
eT

i,kCfei,k)pi,k−1∑L
j=1 exp(−1

2
eT

i,kCfej,k)pj,k−1

, (3.29)

where

ei,k = yk − yi,k, i = 1 . . . L, (3.30)

is the error at the kth step. L denotes the total number of models in the model

bank and Cf is the convergence factor used to tune the rate of convergence of

the probabilities. The recursion is initialized by assigning equal probability 1
L

to all models in the bank. At each iteration the new probability, pi,k, is calcu-
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Figure 3.8: Multiple model control method using weighting function

scheme.

lated, improving upon the probability calculated at the previous iteration, pi,k−1.

Equation (3.29) shows that once a probability reaches zero it will remain zero

thereafter. A threshold δ is added to prevent pi,k from becoming zero,

pi,k = pi,k ∀pi,k > δ,

pi,k = δ ∀pi,k ≤ δ. (3.31)

At the kth step, a weight Wi,k for the ith model is calculated as [130]

Wi,k =
pi,k∑L

j=1 pj,k

∀pi,k > δ,

Wi,k = 0 ∀pi,k = δ. (3.32)

Then the final control signal applied to the plant is

uk =
L∑

j=1

Wi,kui,k. (3.33)

From (3.33), it can be seen that the unique feature of this approach is the

capability of the weighting function to find a proper combination of control signals
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from the individual controllers which can be applied to the plant as the final

control signal. Due to the highly resonant characteristic, the resonant controller

works effectively only for a narrow-band frequency. For a certain plant, only a

controller with a centre frequency that matches or is close to the plant natural

frequency will produce an optimum control signal. A weighted combination of

several controllers with different centre frequencies will not produce the optimum

control signal. For that reason, a multi-model control with a weighting function

scheme will not improve the performance of resonant control when the natural

frequencies of the system under control are varied. Hence, this multiple-model

control method is not suitable for use as a basis for a multi-model controller based

on resonant control.
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Figure 3.9. Multiple model control method using supervisor scheme.

Supervisor Scheme

In the supervisor scheme approach, as shown in Fig. 3.9, a bank of models and a

supervisor scheme are used to choose a model that gives the best approximation
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to the current plant condition. A controller corresponding to the model is then

used to supply the control action to the plant. In contrast to the weighting

function scheme, in the supervisor scheme only a single controller is chosen for

the final control action through a switching process in the controller bank. Since

only one controller is selected at any instant, then horizon-based error tracking

such as minimum mean-squares error (MMSE) is commonly used to design the

supervisor [6, 38, 75, 101]. This method identifies which model produces the

lowest error over a fixed period of time and selects the corresponding controller

as the most suitable for the given condition.

The algorithm for the supervisor scheme can be written as [101]

Jl(t) = αe2
l (t) + β

∫ t

0
e−λ(t−τ)e2

l (τ)dτ, α ≥ 0, β, λ > 0 (3.34)

for a continuous-time system or

Jl(k) = αe2
l (k) + β

k∑
j=0

e−λ(k−j)e2
l (j) (3.35)

for a discrete-time system. The error el is the difference between the output of the

plant, y, and the output of the model L, ỹl, as shown in Fig. 3.9. The constants

α and β are the weighting factors which are used to weight the importance of

current and past errors, respectively. For β = 0 the index performance (3.34) can

be written as

Jl(t)
4
= e2

l (t). (3.36)

The index performance (3.36) is based only on the current errors. It will quickly

detect transient peaks in e2
l (t) resulting in very rapid switching. However, very

rapid switching between the controllers may lead to poor system performance

[100]. If the current errors weighting factor, α, is set to be zero, the index

performance (3.34) becomes

Jl(t)
4
=
∫ t

0
e−λ(t−τ)e2

l (τ)dτ. (3.37)
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In the index performance (3.37), the constant λ plays an important role in deter-

mining the response of the system. The selection of an appropriate value for λ for

a given problem is essentially heuristic and can be different for each model [6]. It

is affected by several factors such as the parameter variation period, disturbance

effect, and noise effect [65]. For a system with slow parameter variations, small

λ should be selected. For a small λ, the index performance (3.37) will approach

Jl(t)
4
=
∫ t

0
e2

l (τ)dτ, (3.38)

and this index is a good indicator of steady-state identifier accuracy which leads

the system to select the best model in the model bank. On the other hand,

for a system with frequent parameter variations a large value of λ might be

chosen. A large value of λ will give more weight to the latest errors resulting in

a quick response to abrupt parameter changes. However, disturbance and noise

affect the error signal el, and a large value of λ makes the index performance

very sensitive to noise and disturbance, leading to unwanted switching resulting

in poor performance. Hence, for a noisy system and/or a system subjected to

disturbance, a small value of λ needs to be chosen.

From the discussion above it can be seen that the choice of λ for a noisy system

with frequent parameter variations that are subject to disturbance is conflicting.

In such a situation choosing a different set of parameters (i.e., α, β, and λ) can

be a difficult task, hence greater knowledge about the system is required. Besides

the difficulty of selecting parameters, as can be seen from the second term of

(3.34) or (3.35) the switching scheme poses a high computational demand that

increases significantly with the number of models employed. Index performance

is calculated for each model, and then a comparison is made to determine the

minimum index performance. For example, if 100 samples (i.e., k = 100 in (3.35))

are required to calculate the performance index for each model, then a further

100 samples are required for every additional model. The computation demand
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can be reduced by setting β = 0, as shown in (3.36). However, as discussed above

extremely rapid switching between controllers may occur, resulting in ineffective

control. To reduce the computational demand and to avoid too rapid switching,

a simple supervisor scheme for use with the M4RC method is proposed in the

next section.

3.5 Multi-model Multi-mode Resonant Control

(M4RC)

As discussed in Section 3.2, due to its highly resonant characteristic, resonant

control will only give optimum performance when the controller centre frequency

coincides with the natural frequency of the system. For a system with varying

natural frequencies, even though the system is stable, the closed loop system will

not achieve optimum performance. In order to cope with the system natural

frequency variations, M4RC is proposed.

The M4RC design is based on the multiple model control with supervisor

scheme. Two design cases are presented. In the first case, a priori information

about all the plant condition is assumed to be available. From that information,

a model bank and its associated controller bank can be designed. In the second

case, only the upper and lower bounds of the operating region are a priori known.

3.5.1 Case 1: All the Possible Loading Condition are a

priori Known

Two design problems need to be addressed in the design process for the multiple

model control method with supervisor scheme: (i) the design of the supervisor

scheme and (ii) the determination of how many models in the model bank are

required to span the operating region. Due to the assumption that all of the

possible loading conditions are a priori known, the second problem is not an
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issue. The number of required models is determined from the a priori information

regarding how many different loading conditions exist in the operating region.

This leaves the design of the supervisor scheme as the main focus of the M4RC

design.

M4RC Design

In principle, the role of the supervisor in the multi-model control method is to

determine which model in the model bank most closely represents the current

plant condition. In the M4RC, the models are designed to represent the natural

frequencies of the different plant conditions. Since the effectiveness of the resonant

control depends on how close the controller centre frequency is to the excitation

frequency, a simple supervisor can be designed to replace the MMSE scheme

described in (3.35).

From the linearity principle, a linear structure will vibrate with the same

frequency as the frequency of excitation signal. Thus the excitation frequency

applied to a linear structure can be measured by measuring the output frequency.

Using this principle, the determination of the closest model to the current plant

can be determined by comparing the plant’s output vibration frequency with the

centre frequencies of the models. To achieve this for single-mode control, the

model bank Model 1 to Model L used in Fig. 3.9 is replaced by the filter bank

system shown in Fig. 3.10.

In this approach, a bank of band-pass filters, BPFm1 to BPFmL, is used to

represent the mth natural frequency of Model 1 to Model L. The representation is

achieved by employing a narrow band-pass filter where the centre frequency is the

same as the natural frequency of the corresponding model. In this way if the plant

vibration signal is injected into the filter bank, the BPF with the closest centre

frequency to the vibration signal frequency will produce the maximum output.

To identify which model (BPF) gives the maximum output, a decision making
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component, formed from an absolute (abs) block, a low-pass filter (LPF), and a

maximum (MAX) block, is used. The abs block obtains the absolute value of the

vibration signal. The absolute value of the signal is then passed through a LPF

to obtain the dc value of the signal. The MAX block is then used to select which

LPF produces the maximum dc value. In this way the most appropriate known

model and its corresponding controller for the current single-mode frequency can

be identified. An output of the filter bank system then sets a switch to select the

appropriate plant controller.

y

BPFm2 abs LPF

BPFm1 abs

Max

LPF

out

BPFmL abs LPF

Figure 3.10. Filter bank system for the mth mode.

Theoretically, a bank of fixed-parameter controllers needs to be implemented

with one controller for each model in the model bank. Since each model only

retains the plant natural frequency, and each fixed-parameter resonant controller

only needs the natural frequency as a design parameter, then only one adjustable

controller is used to replace the controller bank. At each sampling time the pa-

rameter ωm of the closest model to the current plant is loaded into the adjustable

controller through a switching system, as shown in Fig. 3.11.

To enable the multi-mode control, the above principle can be simply extended

by replicating the filter bank system and the switching system repeatedly for all
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From mth mode filter 
bank system’s output 

Sm

1mω

mω
2mω

mLω

To mth mode 
adjustable 
controller 

Figure 3.11. Switching system for the mth mode.

the modes of interest. In this way the most appropriate models for all the modes

of interest can be identified. A schematic diagram of the M4RC for M modes of

interest is shown in Fig. 3.12.

Band-pass filter design

The complexity of the proposed supervisor scheme is significantly reduced relative

the complexity of the existing MMSE supervisor scheme. Only implementation of

the BPF in the filter bank system is required in the design process of the proposed

scheme. The centre frequency of the BPF is chosen to be the same as the natural

frequency of each corresponding model. The pass-band of the BPF is chosen to

be as narrow as possible so as to accurately represent the natural frequency of

the model. However, to implement a very narrow pass-band, a high order filter

is required. In the digital filter implementation, higher order filters require more

memory and more computational time. Therefore, it is desirable to design a

low order BPF with a narrow pass-band close to the filter centre frequency. To

obtain a narrow low order BPF, a BPF with resonant controller structure is used

in the filter bank of the M4RC. The BPF with resonant controller structure is

a second-order filter which produces a sharper shape than the commonly used
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Figure 3.12. Block diagram of M4RC for controlling M modes.

high order Butterworth filter. A comparison of the BPF with resonant controller

structure (kc = 10 and ζc = 0.01) with Butterworth BPFs of different order is

shown in Fig. 3.13. The figure shows that for frequencies close to the filter centre

frequency, the BPF with resonant controller structure produces a sharper shape

than a tenth-order Butterworth BPF.

Since the filter bank system selects the closest model that represents the cur-

rent vibration frequencies at every sample time, it requires lower computational

demand than the MMSE supervisor scheme. The new supervisor scheme only

needs to determine which BPF produces the maximum output. Moreover, rapid

switching does not occur in this scheme because the supervisor does not measure

the error signal between the plant’s output and the models’ output, which could

change rapidly, but instead uses the proximity of the plant natural frequencies

to the fixed mode frequencies of the known models. Another advantage of the

proposed supervisor scheme is that the parallel filter bank system can be easily

embedded in a hardware system, which would reduce the computational time

even more thus making it more suitable for real-time implementation.
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Figure 3.13: Comparative responses of BPF with resonant controller

structure with Butterworth BPF.

The M4RC Algorithm

The algorithm for each mode is as follows:

1. Using the filter bank system select the BPF that gives the maximum output.

2. Load the parameters of the corresponding model into the adjustable reso-

nant controller.

3. Calculate the control signal

um(k) = Amy(k)+Bmy(k− 1)+Cmy(k− 2)−Dmum(k− 1)−Emum(k− 2)

(3.39)

The final control signal is the summation of control signal for each mode

u(k) =
M∑

m=1

um(k)kdm, (3.40)
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M4RC Stability

The multiple model control system using a supervisor scheme such as the

M4RC can be categorized as a linear switched system. A linear switched system

can be considered as a system that is composed of linear sub-systems. It is

well-known that when all the linear systems which make up a switched system

are stable, then the entire system is stable for any switching signal if the time

between consecutive switching, known as the dwell time, τ , is sufficiently large

[76, 156]. Furthermore, as stated in [100], the stability of multiple model control is

guaranteed under the assumption that at every time there is at least one controller

in the controller bank stabilize the system, and the interval between successive

switches have a nonzero lower bound, which can be arbitrarily chosen to be small.

For the proposed M4RC, stability is guaranteed because all the controllers in the

controller bank stabilize the system and no rapid switching occurs between the

controllers. To ensure stability an arbitrary small τ can be applied to the M4RC.

3.5.2 Case 2: Only the upper and Lower Bounds of Op-

erating Region are a priori Known

Determining the number of required models needed to span an operating region in

the multi-model control approach becomes a design problem if a priori knowledge

about all the possible loading conditions is not available. The number of required

models is determined by the bandwidth of the operating region and the choice of

controller design. For a given bandwidth and operating region, a large number

of models is required if narrow-band controllers are used, and fewer models are

required if wide-band controllers are used.

The number of required models in the M4RC is very large due to the very

narrow-band of the resonant controller, as demonstrated in the following illustra-

tive example.
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Example 3.5.1

Consider a resonant controller that is designed with an operating point at 10 Hz

with a damping ratio ζc = 0.01 and a gain kd = 10. The frequency response of the

controller is shown in Fig. 3.14. From the figure, it can be seen that the controller

gain decreases by 15 dB for only a 0.05 Hz operating point variation. Assuming

that a 15 dB reduction in the controller gain gives an acceptable closed-loop

attenuation performance, then one model is required for every 0.1 Hz operating

point variation, as shown in Fig. 3.15. As can be seen from Table 2.3, the

operating regions for the physical plant under investigations are : 6 Hz - 10.5 Hz

; 44.8 Hz - 64 Hz ; 132.7 Hz - 174 Hz for the 1st, 2nd, and 3rd mode, respectively.

Therefore, to span the operating region of the experimental plant the M4RC would

require 45, 192, and 413 models for the 1st, 2nd, and 3rd mode, respectively or

650 models for the first three modes of vibration. The number of required models

would increase for a tighter requirement (e.g., 5 dB reduction in the controller

gain) or a wider operating region which would lead to a system with a very large

number of models.

The example demonstrates that if only the lower and upper bounds of the

operating region are a priori known in the M4RC method then a very large

number of fixed-parameter models are required. A fast computer with lots of

memory is required to implement such a control method. Therefore, the M4RC

method is only practical for systems where all the loading conditions are a priori

known. Simulation and experimental studies comparing the performance of the

M4RC method for known loading conditions and for unknown loading conditions

are reported in the following sections.
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Figure 3.14: Frequency response of resonant controller with ζc = 0.01

and kd = 10.

……

Figure 3.15. Model array in the M4RC model bank.
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3.6 Simulation Studies

In the following simulation studies, the resonant control method and the M4RC

method are applied to control the cantilever beam when loaded with the various

loads (Model 1 to Model 4), as described in Chapter 2.

The objectives of the first simulation study (3.6.1) of the resonant control

method are to demonstrate that:

1. Resonant control is able to attenuate multi-mode vibration using only a

single sensor-actuator pair.

2. Resonant control has an independent characteristic, in the sense that the

controller is able to control a particular mode without destabilising the

other modes.

3. Resonant control fails to give optimum performance when the natural fre-

quencies of the system are altered due to load changes.

The objective of the second simulation study (3.6.2) is to demonstrate that:

1. The proposed M4RC supervisor scheme does avoid rapid switching.

2. The proposed M4RC supervisor scheme has a reduced computational de-

mand vis-a-vis a multiple model control system using the MMSE supervisor

scheme (3.35) [6, 38, 75].

3.6.1 Resonant Controller

The resonant controller (3.6) is used to control the first three vibration modes of

simulation models. The parameters of the controller are chosen as kd1 = kd2 =

kd3 = 10 and ζc1 = ζc2 = ζc3 = 0.01 through a trial and error process. Six

simulation cases, referred to as RC.1 to RC.6, are conducted in this study. In
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the RC.1 to RC.4 cases, controllers that are specifically designed for Model 1 to

Model 4 are used to control each corresponding model. These cases are designed to

test the performance of the resonant controller’s ability to attenuate multi-mode

vibration when the controller centre frequencies match the natural frequencies

of the plant. The RC.5 case is similar to the RC.1 case, however, only the

controller for the second mode is activated by setting kd1 = kd3 = 0. The objective

of the RC.5 case is to demonstrate the capability of the resonant controller to

independently attenuate a single mode for multi-mode excitation. In the RC.6

case, a controller that is specifically designed for Model 3 is used to control the

system where the loading conditions change from Model 1→3 →4. This case is

designed to test the performance of the controller when the natural frequencies

of the plant vary due to changes in the plant’s loading. The configurations of the

plant and the controller for all the cases are shown in Table 3.2. The excitation

signal for all cases is a summation of three 1 volt sinusoidal signals representing

the first three natural frequencies of the particular model.

Case Loading condition Controller design

represented by Model based on Model

RC.1 1 1

RC.2 2 2

RC.3 3 3

RC.4 4 4

RC.5 1 1∗

RC.6 1→3→4 3
∗ only the 2nd mode controller is activated

Table 3.2: Plant and controller configurations for resonant controller

simulation study.

RC.1 to RC.4 cases

The system responses and the control signals for cases RC.1 to RC.4 are shown

in Figs. 3.16 to 3.19. From the figures it can be seen that the resonant control is

able to attenuate multi-mode vibration using only a single sensor-actuator pair.
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The attenuation level for the different models is shown in Table 3.3, and the

attenuation of each mode for all the different models are shown in Figs. 3.20 to

3.23. The figures show that for each model and for each mode the attenuation

level is different. These differences in levels of attenuation are attributable to the

sensitivity of the sensor to the different vibration modes and the authority of the

actuator in attenuating the same modes, which are in-turn determined by the

position of the sensor-actuator pair along the beam. It is observed in Chapter 2

that positioning the sensor close to the cantilevered end makes the sensor most

sensitive to the second mode vibration. Similarly due to the collocated position

of the sensor and actuator, the control authority for the second mode is at its

highest.

Attenuation (dB)

mode 1 mode 2 mode 3 overall

Model 1 10.0 17.8 17.2 19.7

Model 2 15.2 22.3 20.3 23.9

Model 3 17.2 19.9 16.2 21.4

Model 4 18.9 31.5 23.6 30.3

Table 3.3. Attenuation level for the range of models.

RC.5 case

The response of the system in the frequency domain for the RC.5 case is shown in

Fig. 3.24. From the figure it can be seen that the resonant controller produces the

same attenuation as the RC.1 case for the second mode but gives no attenuation

or amplification for the other two modes. The result shows that the resonant

controller is capable of attenuating specific modes independently of the other

modes, which is an advantage for certain applications where only specific modes

need to be controlled.
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Figure 3.16: Response of Model 1 and the corresponding control signal.

Figure 3.17: Response of Model 2 and the corresponding control signal.
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Figure 3.18: Response of Model 3 and the corresponding control signal.

Figure 3.19: Response of Model 4 and the corresponding control signal.
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Figure 3.20. Frequency response of Model 1.

Figure 3.21. Frequency response of Model 2.
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Figure 3.22. Frequency response of Model 3.

Figure 3.23. Frequency response of Model 4.
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Figure 3.24: Frequency response of Model 1 with only the 2nd mode

controller active.

RC.6 case

In the RC.6 case, the loading condition changes from Model 1 to Model 3 at t

= 30 seconds, and to Model 4 at t = 60 seconds. The open-loop and closed-

loop time domain responses of the system are shown in Fig. 3.25 and Fig. 3.26,

respectively. From the comparison of the two figures, it can be seen that between

t = 30 and t = 60 when the system loading condition is represented by Model

3, the controller gives a good performance with 21.4 dB attenuation. However,

when the system loading conditions are represented by either Model 1 or Model 4,

although the system is stable, the controller gives poor attenuation performance

with only 0.7 dB and 8.7 dB attenuation, respectively. When the Model 1 loading

condition is used, the controller only produces a maximum amplitude control

signal of around 0.3 volts, as shown in Fig. 3.26(b). Since this control signal only

generates a small force at the actuator, only a small amount of attenuation is
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achieved. When the Model 4 loading condition is used, the controller produces a

maximum amplitude control signal of around 3 volts. However, due to mismatches

between the controller centre frequencies and the natural frequencies of the system

under control, optimum attenuation cannot be achieved. Therefore, it can be

evident that the resonant controller is sensitive to unforeseen changes in the

natural frequencies of the system for which it was not designed and for which it

could not compensate. In the next subsection, it will be shown that the multiple

model resonant controller is able to give better performance than the single model

resonant controller for systems with varying natural frequencies.

Model 1

Model 3

Model 4

Figure 3.25: Open-loop system response for the 1 → 3 → 4 model

sequence.

3.6.2 M4RC

To control the first three modes of vibration, the proposed multiple model res-

onant control uses three sets of filter banks (BF1, BF2, and BF3), one for each
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Model 1
Model 3

Model 4

Figure 3.26: Closed-loop system response for the 1 → 3 → 4 model

sequence.

mode of vibration. The band-pass filters (BPFs) in the filter bank are imple-

mented as BPFs with a resonant controller structure. The centre frequency of

each filter is set according to the frequencies of the corresponding first 3 modes

of Model 1, Model 3 and Model 4, respectively. The performance of the proposed

M4RC supervisor scheme is compared with that of the MMSE supervisor scheme

(3.35). To give balance to both instantaneous and long-term measurement accu-

racy, the parameters α and β are chosen to have the same value. A moderate

value of λ is chosen to accomodate both disturbances and sudden changes. A

moderate value of λ should avoid unwanted switching due to disturbances in the

system and yet be fast enough to follow sudden changes in the system parameters.

Based on this reasoning, the supervisor scheme is implemented with α = β = 1

and λ = 0.5, and the performance index is computed for every 100 samples. The

model bank includes three models, Model 1, Model 3, and Model 4 where each

model is of order 20, as obtained in Chapter 2. The controllers’ parameters kdi
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and ζci are the same as those of the resonant controller described in the previous

subsection. The schematic diagrams of the implemented M4RC and of the multi-

model control with the MMSE supervisor scheme are shown in Fig. 3.27 and Fig.

3.28, respectively.

Two simulation cases referred to as M4RC.1 and M4RC.2 are tested. The

loading sequences and the controllers configurations for both cases are shown in

Table 3.4. The loading conditions in both cases are changed at t = 5 seconds and

t = 15 seconds.

S1

S2

S3

BF1

BF2

BF3

PlantK

Adjustable 
controller

Switch 
system

Filter bank
system

r = 0 u y

-

Figure 3.27. Schematic diagram of the implemented M4RC.

Case Loading condition is Models in the model bank

represented by Model are based on Model

M4RC.1 1→3→4 1,3,4

M4RC.2 1→2→4 1,3,4

Table 3.4: Plant and controller configurations for M4RC simulation

study.
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Figure 3.28: Schematic diagram of the multi-model control with

MMSE supervisor scheme.

M4RC.1 case

For the M4RC.1 case, all the loading conditions are represented in the model

bank. In this case, both supervisor schemes select the appropriate controller

corresponding to the current loading condition, as can be seen from the switching

behaviour shown in Figs. 3.29 (a) to (f). Fig. 3.30 shows that both supervisor

schemes give similarly good attenuation performance. This result confirms that

if the assumption that all the loading conditions are a priori known is satisfied,

then the proposed supervisor scheme will select the appropriate controller, and

the system performance will be optimum, similar to the more complex MMSE

supervisor scheme.

M4RC.2 case

For the M4RC.2 case, Model 2 is not included in the model bank. As the loading

condition changes to Model 2, rapid switching occurs between all the controllers

in the controller bank when using the MMSE supervisor scheme. The rapid

switching shown in Figs. 3.31(a) to (c) leads the controller to produce a satu-
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Model
1 3 4 1 3 4

Model

Figure 3.29: M4RC switching behaviour for the 1 → 3 → 4 model

sequence. (a)-(c) using MMSE supervisor scheme for mode 1, 2 and 3

respectively. (d)-(f) using proposed supervisor scheme for mode 1, 2

and 3 respectively.

Model 1 Model 4
Model 3

Figure 3.30: Closed-loop multiple model resonant control responses for

the 1 → 3 → 4 model sequence. (a) using MMSE supervisor scheme.

(b) using proposed supervisor scheme.
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rated control signal as shown Fig. 3.32(a), resulting in poor performance. The

controller amplifies the vibration during the period 9 to 14 seconds as shown in

Fig. 3.33 (a). Conversely, rapid switching does not occur for the M4RC using

Model
1 2 4 1 2 4

Model

Figure 3.31: M4RC switching behaviour for the 1 → 2 → 4 model

sequence. (a)-(c) using MMSE supervisor scheme for mode 1, 2 and 3

respectively. (d)-(f) using proposed supervisor scheme for mode 1, 2

and 3 respectively.

the proposed supervisor scheme. Instead, the supervisor chooses the model with

the closest natural frequencies to the excitation signal when the exact model is

not in the model bank. Due to the values of the models’ natural frequencies, as

shown in Table 2.6, when the loading condition changes to Model 2 the supervi-

sor chooses Controller 1, Controller 3 and Controller 4 for mode 1, mode 2, and

mode 3, respectively, as shown in Figs. 3.31 (d) to (f). In this way, although the

controller cannot give optimum performance for the unknown Model 2, it still

gives 3.64 dB attenuation as shown in Fig. 3.33(b).

Relative to the MMSE supervisor scheme, the proposed supervisor requires

less computational time. With three models in the model bank, the actual time
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Model 1 Model 2 Model 4

Figure 3.32: Control signals generated by the multiple model resonant

control for the 1 → 2 → 4 model sequence. (a) using MMSE supervisor

scheme. (b) using proposed supervisor scheme.

Model 1
Model 2

Model 4

Figure 3.33: Closed-loop responses of multiple model resonant control

for the 1 → 2 → 4 model sequence. (a) using MMSE supervisor scheme.

(b) using proposed supervisor scheme.



CHAPTER 3. MULTIPLE MODEL RESONANT CONTROL 118

required to compute 25 seconds of simulation time is 100 seconds using the MMSE

supervisor scheme compared to only 50 seconds using the proposed supervisor

scheme. In the MMSE supervisor scheme, the time needed for the computation

will significantly increase as the number of models increase, as mentioned in

Section 3.4. In the case of the proposed supervisor scheme, increasing the number

of models will only increase the number of band-pass filters without significantly

increasing the time needed to compute which band-pass filter gives the maximum

output. The difference in the computation times between the two supervisor

schemes shows that for the real-time implementation, the proposed supervisor

scheme is more practical than the MMSE supervisor scheme.

3.7 Experimental Studies

Experimental studies are used to verify the results of the simulation studies.

The resonant controller and the proposed multiple model resonant controller are

implemented on a dSPACETM DS1103 data acquisition and control board using

MatlabTM , SimulinkTM and Real-Time WorkshopTM software. The schematic

diagram of the experimental set-up is shown in Fig. 3.34. The power supply

drives the coils that hold the loads to the beam through a switch box. Since

the maximum output voltage from the digital to analogue converter (DAC) in

the dSPACE is 5 volts and the maximum allowable voltage to be applied to the

piezoactuator is 100 volts, a piezo power amplifier with a gain of 20 is used to drive

the piezoactuator. The output signal from the piezosensor which has a maximum

amplitude in order of 500 volts is divided by 100 using a differential probe before

feeding it back to the analogue to digital converter (ADC) in the dSPACE board.

As a precaution, and so as not to break the piezoactuator, the voltage applied

to the piezoactuator is limited to ± 80 volts. Therefore, a saturation block with

a maximum and a minimum output ± 4 is added to the controller’s output to
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limit the control signal. In the experiment, the control signal and the disturbance

signal are applied to the system through the same piezoactuator. All the filter

and controller parameters are the same as those used for the simulation studies in

the previous section. Similarly to the simulation studies two sets of experimental

studies are conducted, one using the resonant controller and the other using the

multiple model resonant controller.

dSpace

Piezo
amplifier

Differential
probe

Power 
supply

A B

Switch box

Figure 3.34. The experimental set-up.

3.7.1 Resonant Controller

The same protocol is followed for the physical experiments as for the simulation

studies in Section 3.6.1. Once again, six experimental cases, RC.1 to RC.6, as

shown in Table 3.2 are conducted.

RC.1 to RC.4 cases

For the RC.1 to RC.4 cases, the system responses and the control signals in

the time domain are shown in Figs. 3.35 to 3.38, and the system responses in
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the frequency domain are shown in Figs. 3.39 to 3.42. The figures show good

agreement with the simulation results. The attenuation levels for the different

models are shown in Table 3.5.

Attenuation (dB)

mode 1 mode 2 mode 3 overall

Model 1 14.0 23.3 12.0 21.0

Model 2 17.6 20.8 18.2 25.1

Model 3 16.7 24.8 20.2 24.4

Model 4 22.6 27.3 21.4 30.5

Table 3.5. Attenuation level for the range of models.

Figure 3.35: Response of Model 1 and the corresponding control signal.

RC.5 case

The frequency response of the system for the RC.5 case, as shown in Fig. 3.43,

confirms that the resonant control is able to control a specific mode of vibration

without destabilizing uncontrolled modes.
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Figure 3.36: Response of Model 2 and the corresponding control signal.

Figure 3.37: Response of Model 3 and the corresponding control signal.
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Figure 3.38: Response of Model 4 and the corresponding control signal.

Figure 3.39. Frequency response of Model 1.
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Figure 3.40. Frequency response of Model 2.

Figure 3.41. Frequency response of Model 3.
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Figure 3.42. Frequency response of Model 4.

Figure 3.43: Frequency response of Model 1 with only the 2nd mode

controller active.
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RC.6 case

For the RC.6 case, the open loop response of the system, when the system changes

from one loading condition to the next, is shown in Fig. 3.44. The figure shows

that there is good agreement with the corresponding simulation result. However,

the experiment result shows that there is a peak in the downward direction when

the system changes from one loading condition to the next. The explanation for

this phenomenon is that releasing a load is equivalent to applying a pulse of force

which causes a large non-symmetric oscillation. The amplitude of the upward

oscillation is smaller because the force of gravity makes the upward resultant

force smaller than the downward resultant force. The closed-loop response and

the control signal for the system are shown in Fig. 3.45. This figure also shows

that there is good agreement with the corresponding simulation result.

Model 1
Model 3

Model 4

Figure 3.44: Open-loop system response for the 1 → 3 → 4 model

sequence.
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Model 1

Model 3
Model 4

Figure 3.45: Closed-loop system response for the 1 → 3 → 4 model

sequence with the controller designed based on Model 3.

3.7.2 M4RC

For the M4RC experimental study, only the proposed supervisor scheme is tested.

Three cases are tested in this study. The first two cases M4RC.1 and M4RC.2

are the same as those in the simulation studies in Section 3.6.2 which are shown

in Table 3.4. The third case referred to as M4RC.3 is similar to the M4RC.1

case. However, in the M4RC.3 case the loading is directly changed from Model 1

(full load) to Model 4 (unloaded), resulting in a larger percentage change of the

parameters.

M4RC.1 case

For the M4RC.1 case, the controller is turned on at t = 8.7 seconds, and the

loading condition is changed to Model 3 at t = 27.3 seconds. In order to observe

the vibration amplitude for Model 3 without control, the controller is turned off
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at t = 63.8 seconds. The controller is then turned on again at t = 82.5 seconds,

before the loading condition is changed to Model 4 at t = 100 seconds. Again, the

amplitude of Model 4 without control is observed by turning off the controller at

t = 137 seconds. Finally the controller is turned back on at t = 155 seconds. The

system response and the control signal are shown in Fig. 3.46. From the figure,

it can be seen that if all the possible loading conditions are included in the model

bank, the M4RC will give optimum attenuation for a system with varying loading

condition. The supervisor scheme selects the corresponding controller associated

with the current loading condition as shown in Fig. 3.47. The figure shows good

agreement with the corresponding simulation result.

controller on

model 
change

model change

controller on

controller on
controller off controller off

Figure 3.46: M4RC closed-loop response for the 1 → 3 → 4 model

sequence.

M4RC.2 case

For the M4RC.2 case, the times at which the controller is turned on and off,

and the loading condition changed are similar to the M4RC.1 case. The system
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Model 1 Model 3 Model 4

Figure 3.47: M4RC switching behaviour for the 1 → 3 → 4 model

sequence.

response and control signal are shown in Fig. 3.48. The figure shows that the

controller performs well for the Model 1 and Model 4 loading conditions. When

the Model 2 loading condition, which is not included in the model bank, is ap-

plied, the supervisor selects the closest mode controller as shown by the switching

behaviour given in Fig. 3.49. Since Controller 3 has the closest centre frequencies

to those of Model 2 for all modes, as shown in Table 2.3, the supervisor then

selects Controller 3 for all the modes. However, because Controller 3’s centre

frequency are significantly different from the natural frequencies of the current

loading condition the attenuation performance could be poor, as can be seen for

the Model 2 case. Overall, although there are times when the supervisor selects a

less than ideal controller, the rapid switching that can degrade the performance

of the system or lead to instability of the system does not occur in the proposed

M4RC.
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controller on

model change
model change

controller on

controller oncontroller off
controller off

Figure 3.48: M4RC closed-loop response for the 1 → 2 → 4 model

sequence.

M4RC.3 case

For the M4RC.3 case the controller is turned on at t = 8.7 seconds and the

loading condition is changed to Model 4 at t = 27.3 seconds. To obtain a clear

comparison between the amplitude of the vibration for Model 4 without and with

control, the controller is turned off at t = 63.8 seconds and turned back on at

t = 82.5 seconds. The system response and corresponding control signal, and

the supervisor scheme switching behaviour are shown in Fig. 3.50 and Fig. 3.51,

respectively. Fig. 3.50 shows that as long as all the possible loading conditions are

included in the model bank, the M4RC will give optimum attenuation, regardless

of the magnitude of the parameter variations. By comparing Fig. 3.50 with Fig.

3.46 in the M4RC.1 case, it can be seen that the only difference in the system

response is the transition time when the loading condition is changed. The results

show that larger load changes produce larger transition times.



CHAPTER 3. MULTIPLE MODEL RESONANT CONTROL 130

Model 1 Model 2 Model 4

Figure 3.49: M4RC switching behaviour for the 1 → 2 → 4 model

sequence.

controller on

model change controller on
controller off

Figure 3.50: M4RC closed-loop response for the 1 → 4 model sequence.
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Model 1 Model 4

Figure 3.51: M4RC switching behaviour for the 1 → 4 model sequence.

From the M4RC.2 case, it can be seen that the controller fails to give optimum

performance when the range of possible loading conditions is not fully represented

in the model bank. The optimum performances of the M4RC can be achieved

by adding additional models to the model bank to cover all loading possibilities.

However, this approach could be impractical especially for a large number of

models. Therefore, it is important to find an alternative method for improving

the performance of resonant control for systems with varying natural frequencies.

3.8 Summary

Due to its sensitivity to the variations of the natural frequencies of the system, the

resonant control cannot give optimum performance when controlling the vibration

of a flexible beam under varying load conditions. To improve the performance of

the resonant control, the M4RC with a reduced complexity supervisor scheme is
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proposed in this chapter. The supervisor scheme design uses a filter bank scheme

to determine how close the plant’s vibration frequencies are to the natural fre-

quencies of the a priori known models. At every sampling instant the supervisor

identifies the closest model to the plant’s current condition and selects the corre-

sponding controller to produce the control signal. Because the basis for selection

is only dependant on how close the models are to the plant’s current conditions

in the frequency domain, the supervisor scheme is computationally simple and is

able to avoid rapid switching between controllers.

The simulation experimental studies are in agreement and show that the pro-

posed M4RC gives good performance for the control of vibration in a cantilever

beam with varying loads. However, when not all of the possible loading conditions

are represented in the model bank, the performance of the controller is degraded.

Although the performance can be improved by increasing the models in the model

bank to represent all the possible loading conditions, the large number of models

required make this method impractical. The large number of models necessitate

the use of fast computers with lots of memory. Therefore, an alternative method

such as adaptive control should be considered to obtain better performance for

systems with unknown possible loading conditions.


