
Chapter 4

Natural Frequency Estimator

A parameter estimator is required to form an adaptive control method. In this

chapter, a new method for estimating the natural frequency of a flexible structure

is presented. The chapter starts with a review of the various methods for esti-

mating the natural frequency of a system, along with their shortcomings. This

is followed by a description of the proposed method. A brief discussion of the

general concept of on-line parameter estimation, and a review of the standard

RLS algorithm are given in Section 4.2. Stability analysis and an analysis of

the factors that influence the accuracy of RLS are given in Sections 4.3 and 4.4,

respectively. The proposed natural frequency estimator method is then given in

Section 4.5. The results from the simulation studies and the experimental imple-

mentation to evaluate the performance of the proposed method are presented in

Sections 4.6 and 4.7, respectively.

4.1 Introduction

As can be seen from Chapter 3, the M4RC method is capable of effectively con-

trolling a vibrating system with varying loads if all the possible loading conditions

are a priori known. If, however, the loading conditions cannot be previously pre-

dicted (e.g., when the damage to an aircraft wing changes its loading or damping

properties, or when a robot arm is lifting samples of unknown mass and/or is
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being subjected to unforeseen disturbances), then an adaptive resonant control

method is required to handle such variability, which goes beyond the control

capability of its fixed-parameter multiple-model counterpart.

In an adaptive control method, the plant parameters are identified on-line at

every instant and the controller parameters are updated in response to variations

of the plant parameters. This adaptation of the parameters enables the controller

to achieve optimum attenuation during load variations.

Three parameters (i.e., controller gain, damping ratio and centre frequency)

are involved in the resonant control design, as can be seen in (3.3). To implement

an efficient and effective adaptive resonant controller, an analysis to determine

which parameter(s) need to be updated is required. The analysis takes into

account the amount of computation needed to update the controller parameters,

and the sensitivity of the controller’s attenuation performance to variations of

the plant parameters.

To achieve optimum attenuation, the controller centre frequency can be readily

set to be the same as the natural frequency of the plant. However, there is

no simple relationship between the controller gain and damping ratio with the

plant parameters. Optimum values of the controller gain and damping ratio can

be found through a trial and error procedure. From the relation between the

controller parameters and the plant parameters, it can be seen that the amount

of computation needed to calculate the controller centre frequency is much less

than that needed to calculate the other controller parameters.

As can be seen from example 3.2.1 in Chapter 3, the attenuation of the reso-

nant control is sensitive to the plant natural frequency variation and not sensitive

to the plant damping ratio variation. A small discrepancy between the plant nat-

ural frequency and the controller centre frequency produces poor attenuation,

while a large variation to the plant damping ratio only produces a small variation
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to the attenuation. Therefore the controller centre frequency plays a major role

in the determination of the controller’s performance.

From this discussion, it can be concluded that effective adaptive resonant

control can be obtained by setting the damping ratio and gain of the controller

to fixed values, and choosing the controller centre frequency as the adjustable

parameter.

Since in and adaptive resonant control method the controller centre frequency

must be set to the same value as the plant natural frequency, a natural frequency

estimator is required to update the controller centre frequency. In the context

of adaptive control, the overall performance of the control system is significantly

affected by the performance of the estimator. Therefore to obtain a high perfor-

mance adaptive control, a high performance estimator is required.

To implement adaptive resonant control several requirements for the natural

frequency estimator are essential. The estimator must be: on-line, accurate,

multi-mode, and simple. To be able to up-date the controller centre frequency at

every instant, the estimator must be able to operate on-line. Due to the sensitivity

of the controller to the plant natural frequencies estimation accuracy is essential

for optimum performance. Since the controller is intended to control multi-mode

vibration, the estimator must be able to estimate multiple modes of natural

frequency simultaneously. Finally, a feasible real-time implementation requires

an estimator that uses the minimal amount of computation. An estimator with

a simple algorithm is favoured for adaptive resonant control.

Several methods which can be used to estimate the natural frequencies of

flexible structures can be found in the literature: modal testing [31, 140], goal

programming optimisation [124], maximum likelihood [145, 146], transformation

[111, 127, 155], adaptive input shaping [28], modal filter [17, 77, 78] and the

combined RLS-Bairstow method [121, 122].
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Modal testing is the most widely used method [31]. Modal testing is an exper-

imental procedure in which the natural frequencies of a structure are determined

by vibrating the structure with a known excitation. While it vibrates, the struc-

ture will behave in such a way that some of the frequencies will not respond

at all or be highly attenuated, and some frequencies will be amplified in such a

way that the only limiting factor is the energy available to sustain the vibration.

These frequencies, where the structure resonates, are the natural frequencies of

the structure. Stöbener and Gaul [140] used modal testing to find the modal

parameters of a car body, and using the parameters they obtained they designed

a modal controller to attenuate the vibration in the car body. Although the re-

sults show that modal testing is able to accurately find the natural frequencies of

the structure, this method can only be applied to structures with fixed parame-

ters. Computing the modal parameters for variable structures is computationally

demanding and not feasible for on-line adaptation.

The goal programming optimisation method [124] and the maximum likelihood

method [145, 146] are methods that can be used to accurately estimate modal pa-

rameters (i.e., natural frequency and damping ratio) in noisy frequency response

functions (FRFs). In both methods, an initial estimation of modal parameters

is used to form an estimate of FRFs. The accurate values of the modal parame-

ters are then estimated by minimising the difference between the measured FRFs

and the estimated FRFs iteratively, using the goal programming algorithm or the

maximum likelihood algorithm. Both of the methods, however, can only be used

off-line since they require the full set of experimentally measured FRFs as the

basis for minimisation.

Transformation methods such as the Fast Fourier Transform (FFT) [155] and

the Wavelet Transform (WT) [111, 127] are also used to estimate the natural

frequency of a structure. In the transformation methods an excitation is applied



CHAPTER 4. NATURAL FREQUENCY ESTIMATOR 137

to vibrate a structure. The structure’s output signal is then transformed into the

frequency domain to obtain a frequency spectrum. The natural frequencies of the

system are identified in terms of the spectrum’s peak responses. One shortcom-

ing of the transformation methods is computational complexity. The number of

calculations for the Radix-2 FFT algorithm is N
2

log2N complex multiplications

and Nlog2N complex additions, where N is the number of samples of the signal

[117]. The FFT also requires batch processing of N time samples of the signal

simultaneously to produce spectrum estimates at discrete frequency spacings of

N−1 times the sampling frequency. As an illustration, to obtain 0.5 Hz esti-

mation accuracy using a 1 kHz sampling frequency, 2048 samples are required.

For this number of samples, 11,264 complex multiplications and 22,528 complex

additions need to be executed in the FFT algorithm. Therefore to estimate the

natural frequencies of multiple modes with reasonable accuracy, a large compu-

tational effort is required. While the FFT computational complexity may be

acceptable for some signal processing methods, it is less likely to be satisfactory

for adaptive control methods, where estimates of the plant are used to tune the

controller [15]. Similarly to the FFT method, the WT method is computationally

complex.

The adaptive input shaping method (AIS) [28] is a method which can be used

to estimate and track the natural frequency of a system. In this method, a learn-

ing rule based on the measurement of the phase and the vibration percentage of

the residual vibration is used to estimate the natural frequency of the system.

The vibration percentage is calculated by comparing the magnitude of vibration

before and after the shaping process, and the phase is estimated using a least-

squares method based on trigonometric identity. This method offers more efficient

computation than the FFT. For N signal samples, AIS only needs 14N + 6 real

multiplications, 10N − 7 real additions, N power calculations, 2N table look-ups

and one division. To obtain the same accuracy as with FFT only 0.05N signal
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samples are required with AIS [28]. As an illustration, to obtain a 0.5 Hz estima-

tion accuracy using a 1 kHz sampling frequency, 103 samples are required. The

method then needs to calculate 1448 real multiplications, 1023 real additions,

103 power calculations, 206 table look-ups and one division, around 10% of the

number of computations required by the FFT. This method can be used to es-

timate the natural frequency of a multi-mode system by isolating each mode of

interest using filters, and then applying the algorithm to the filtered responses,

one algorithm for each mode. The computational load, however, will increase in

proportion to the number of modes. Another limitation of this method is that

the convergence of the estimation to the actual frequency is only guaranteed if

the initial estimate is within the region ±50% of the actual frequency. Therefore

for systems with large natural frequency variations, the method cannot track the

variations and consequently accurate estimation cannot be obtained.

Lim et al. [77] used an adaptive filter to estimate the natural frequency of

a flexible structure to detect structural damage. The adaptive filter is formed

as a modal filter to represent a single-degree-of-freedom transfer function, and

the coefficients of the filter are updated using the least-mean-squares algorithm.

Due to the use of a modal filter, which represents a single mode system, this

method is only able to estimate the natural frequency for a single mode. To

enable multi-mode frequency estimation, Bosse et al. [17] combined the modal

filter with neural networks in their endeavour to estimate the natural frequencies

of a space truss structure. The neural networks updates the filter’s coefficients

and works as a band-pass filter to isolate any one mode from the other modes. To

estimate multi-mode natural frequencies, a set of parallel combined modal filter

- neural networks is used. The use of a modal filter requires one sensor for each

mode of interest, which is a disadvantage. Furthermore, due to the large number

of computations required, this method converges slowly. This slow convergence

rate is acceptable for a space structure, but it is not suitable for structures that
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have a relatively short time constant compared to that of a space structure.

Rew et al. [121, 122] surveyed the frequency estimation approaches and devel-

oped a real-time multi-mode natural frequency estimator based on the Recursive

Least-Squares (RLS) method combined with the Bairstow method. The Bairstow

method is an algorithm for finding the roots of a real polynomial of arbitrary or-

der. Using this method an even order polynomial can be decomposed into several

second-order polynomials. In the combined RLS-Bairstow method, estimation

is achieved in two steps. In the first step the coefficients of the characteristic

equation of the system are estimated using the RLS algorithm. The result from

the estimation is a polynomial of order 2M , where M is the number of modes of

interest. In the second step, the polynomial is decomposed into M second-order

polynomials. From each second-order polynomial, the natural frequency of each

mode can be extracted. The RLS method is selected for this application because

it gives fast parameter convergence allowing fast adaptation under changing con-

ditions and requires a relatively small computational effort, which is crucial for

real-time applications. The total number of calculations required in the RLS is

only 4n2 where n is the order of the system [61], which is very low compared to

the FFT and AIS methods. Rew et al. [121, 122] then used the estimator in

an adaptive positive position feedback control to attenuate vibration in a wing

like composite structure. The experimental results from those papers show that

for multi-mode frequency estimation, the estimator is sensitive to the choice of

sampling rate and to unmodeled high frequency modes. The estimator will fail to

give reasonable estimations for the lowest mode if the sampling rate is too high

relative to the natural frequencies of those modes. Thus, for a system with reso-

nant modes that are spaced more than a decade apart in frequency, the estimator

cannot give reasonable results.

Of the above methods, only FFT, AIS, combined modal filter - neural networks
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and combined RLS-Bairstow are able to work on-line and estimate the multi-mode

natural frequency. Comparing the four methods, RLS is the simplest to compute,

while the estimation accuracy of all the methods are similar. Hence, RLS is the

design method chosen for the natural frequency estimator used in this research.

A further analysis of the RLS method is undertaken with a view to improve the

estimation accuracy for wide-band systems.

One reason why the RLS method fails to give an accurate estimation of the

natural frequency for wide-band systems is that it has to deal with data that

are scattered across the frequency domain [21]. Frequency domain analysis by

Wahlberg and Ljung [148] reveals that the RLS method has a high-pass charac-

teristic which becomes more pronounced as the sampling rate is increased. This

high-pass characteristic gives a higher weighting to the higher frequencies and

a lower weighting to the lower frequencies. Hence, the estimation for the lower

frequency modes becomes inaccurate. This analysis leads designers to use pre-

filtering to compensate for the low weighting at low frequencies [20, 125, 126] by

giving more weighting to the lower frequencies and removing frequencies above the

highest mode of interest. However, although Rovner and Franklin [126] show that

prefiltering improves the estimation accuracy, particularly for the highest modes,

the estimator’s high-pass filter characteristic still produces inaccurate results for

the lowest mode. Another reason for the estimation inaccuracies is round-off er-

rors as a result of finite word-length in digital system realizations [9, 59]. For

limited bit representations, the estimation accuracy will decrease as the sampling

rate and/or the order of the estimator increase.

These reasons prompt further consideration of prefiltering design and of cri-

teria for selecting minimal-order and appropriate sampling rates for the imple-

mentation of the RLS estimator. A new approach to obtain an accurate natural

frequency estimator for flexible structure based on the prefiltering design, sam-
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pling rate selection, and structure selection of an RLS estimator is proposed in

this thesis.

In the following section, the on-line parameter estimation concept is briefly

discussed and the implementation of an on-line estimator based on the RLS al-

gorithm is reviewed.

4.2 On-line Parameter Estimation Using RLS

On-line plant parameter estimation is a technique for solving system identification

problems by using parametric estimation methods to process sequential pairs of

input-output data measurements. Fig. 4.1 [68] illustrates a schematic diagram of

the on-line parameter estimation principle. An input u(t) is applied to both the

plant and the adjustable model. The adjustable model’s parameter vector θ is

then updated by the parameter adaptation algorithm. The parameter adaptation

algorithm updates the adjustable model’s parameters by reducing the error ε(t)

between the plant output, y(t), and the output predicted by the model, ŷ(t), at

each sampling instant t.

In general the parameter adaptation algorithm has a recursive structure as

illustrated in Fig. 4.2 [70]. The new values of the estimated parameters are

equal to the previous values plus a correcting term that depends on the most

recent measurements. There are several approaches for deriving the parameter

adaptation algorithm such as gradient descent, least-mean-squares minimization,

least-squares minimization, and fuzzy logic or neural networks. While the gradi-

ent descent technique and the least-mean-squares method have a lower compu-

tational load than the least-squares method, they have a slower convergence rate

[18, 47].

The first step in the estimator design is to determine a class of model. In
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Figure 4.1. Block diagram of an on-line parameter estimator.
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general a linear time-invariant discrete-time model can be given by [81]

y(t) = G(q, θ)u(t) + H(q, θ)e(t), (4.1)

where u(t) and y(t) are the input and output of the system, respectively, e(t) is

the disturbance with zero-mean value and variance λ, and θ is the set of system

parameters. The model spectrum of the disturbance is [81]

Φe(ω, θ) = λ
∣∣∣H(eiω, θ)

∣∣∣2 . (4.2)

The transfer function G(q, θ) and H(q, θ) are functions of the delay operator q−1,

where q−kx(t) = x(t− k). If the disturbance filter H(q, θ) is minimum phase, the

disturbance e(t) in (4.1) can be written as

e(t) = H−1(q, θ)y(t)−H−1(q, θ)G(q, θ)u(t). (4.3)

Then the optimal predictor for y(t) is

ŷ(t|θ) = y(t)− e(t)

ŷ(t|θ) = H−1(q, θ)G(q, θ)u(t) +
(
1−H−1(q, θ)

)
y(t). (4.4)

Then if H−1(q, θ)G(q, θ) and H−1(q, θ) are both stable, one can write:

H−1(q, θ)G(q, θ) =
∞∑

k=1

bkq
−k, (4.5)

H−1(q, θ)− 1 =
∞∑

k=1

akq
−k. (4.6)

Truncating these expansions at k = nb and k = na, respectively where nb and na

are the order of the polynomial B(q) and A(q), respectively, (4.1) can be written

as (
1 +

na∑
k=1

akq
−k

)
y(t) =

nb∑
k=1

bkq
−ku(t) + e(t) (4.7)

or in the compact form

A(q)y(t) = B(q)u(t) + e(t) (4.8)
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with

A(q) = 1 + a1q
−1 + a2q

−2 + . . . + anaq
−na (4.9)

and

B(q) = b1q
−1 + b2q

−2 + . . . + bnb
q−nb . (4.10)

It can be seen that (4.8) corresponds to (4.1) with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

1

A(q)
. (4.11)

Defining

θ = [a1, . . . , ana , b1, . . . , bnb
]T (4.12)

and

φ(t) = [−y(t− 1), . . . ,−y(t− na), u(t− 1), . . . , u(t− nb)]
T , (4.13)

(4.8) can then be written as

y(t) = θT φ(t) + e(t). (4.14)

Model (4.8) is known as the AutoRegressive with eXternal input (ARX) model

or the least-squares model. Since the disturbance term e(t) in (4.8) enters as a

direct error in the equation, the model (4.8) is often referred to as an equation

error model or structure [81, 135].

The limitation of the ARX model (4.8) is the lack of adequate freedom in

describing the properties of the disturbance term in the governing equations of

a system, resulting in a possible inaccurate estimation [20]. The estimation ac-

curacy can be improved by describing the equation error as a moving average of

white noise [20, 81]. This modifies (4.8) into

A(q)y(t) = B(q)u(t) + C(q)e(t) (4.15)

with

C(q) = 1 + c1q
−1 + c2q

−2 + . . . + cncq
−nc (4.16)
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where nc is the order of polynomial C(q). Clearly (4.15) corresponds to (4.1)

with

G(q, θ) =
B(q)

A(q)
, H(q, θ) =

C(q)

A(q)
(4.17)

where now

θ = [a1, . . . , ana , b1, . . . , bnb
, c1, . . . , cnc ]

T . (4.18)

The model given in (4.15) is referred as the AutoRegresive Moving Average with

eXternal input (ARMAX) model.

Although the ARMAX model is better than the ARX model in terms of the

estimation accuracy, computationally it is much more complex than the ARX

model. In the computation of the coefficients θ, the ARMAX model involves

non-linear optimisation [32, 47], which is complicated, computationally intensive,

and also sensitive to the initial guess parameter values [32]. From this viewpoint,

the ARX model offers the advantages of simpler computation and simpler im-

plementation compared to the ARMAX model. Furthermore, since only the AR

parameters (i.e., a1, a2, , ana) are required to estimate the natural frequency of

the system, as will be explained in Section 4.5, the ARX model is chosen as a

basis for the on-line estimator.

In the computation of the unknown parameter θ in the ARX model, the RLS

estimator ignores the disturbance e(t), and only uses the input pair u(t) and y(t).

Therefore, in the derivation of the RLS estimator algorithm, the disturbance e(t)

can be omitted from (4.14), then (4.14) can be written as

y(t + 1) = −
na∑

k=1

aky(t + 1− k) +
nb∑

k=1

bku(t + 1− k) = θT φ(t) (4.19)

where

θ = [a1, . . . , ana , b1, . . . , bnb
]T (4.20)

and

φ(t) = [−y(t), . . . ,−y(t− na + 1), u(t), . . . , u(t− nb + 1)]T . (4.21)
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From (4.19), the adjustable prediction model can described by [70]

ŷo(t + 1) = ŷ
[
(t + 1)|θ̂(t)

]
= −

na∑
k=1

âk(t)y(t + 1− k) +
nb∑

k=1

b̂k(t)u(t + 1− k)

= θ̂T φ(t) (4.22)

where ŷo(t + 1) is the a priori predicted output and

θ̂(t) = [â1(t), . . . , âna(t), b̂1(t), . . . , b̂nb
(t)]T . (4.23)

is the estimated parameter vector at instant t. In a similar way the a posteriori

predicted output can be given by

ŷ(t + 1) = ŷ
[
(t + 1)|θ̂(t + 1)

]
= −

na∑
k=1

âk(t + 1)y(t + 1− k) +
nb∑

k=1

b̂k(t + 1)u(t + 1− k)

= θ̂T (t + 1)φ(t). (4.24)

From (4.19) and (4.22) an a priori prediction error can be defined as

εo(t + 1) = y(t + 1)− ŷo(t + 1). (4.25)

Similarly, from (4.19) and (4.24), an a posteriori prediction error can be defined

as

ε(t + 1) = y(t + 1)− ŷ(t + 1). (4.26)

Based on the prediction models (4.22) and (4.24), a recursive parameter adap-

tation algorithm with the structure

θ̂(t + 1) = θ̂ + ∆θ̂(t + 1) = θ̂(t) + f
[
θ̂(t), φ(t), εo(t + 1)

]
(4.27)

can be formed. To design an RLS estimator, the parameter adaptation algorithm

(4.27) is solved by minimizing the least-squares criterion

θ̂N = arg min
θ̂∈M

JN(θ̂, t),

JN(θ̂, t) =
1

N

N∑
t=1

[
y(t)− θ̂T (t)φ(t− 1)

]2
, (4.28)
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where the arg min function is the value of θ̂ which minimizes the cost function

JN(θ̂, t), and M is the domain of admissible parameters related to the ARX

model. By setting the derivative of the cost function JN(θ̂, t) in (4.28) with

respect to θ̂ equal to zero, one can obtain the RLS algorithm as [70]:

θ̂(t + 1) = θ̂ + F (t)φ(t)ε(t + 1), (4.29)

F (t + 1)−1 = λ1(t)F (t)−1 + λ2(t)φ(t)φT (t), (4.30)

F (t + 1) =
1

λ1(t)

F (t)− F (t)φ(t)φT (t)F (t)
λ1(t)
λ2(t)

+ φT F (t)φ(t)

 , (4.31)

ε(t + 1) =
y(t + 1)− θ̂T (t)φ(t)

1 + φT F (t)φ(t)
, (4.32)

with

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F (0) > 0 (4.33)

where F (t) is the adaptation gain matrix and λ1(t) and λ2(t) are weighting se-

quences.

From (4.31), it can be seen that the gain matrix F (t) is varying with time,

where the type of variation is determined by the choice of λ1(t) and λ2(t). The

weighting sequences λ1(t) and λ2(t) have an opposite effect to the variation of

F (t). While λ1(t) < 1 tends to increase F (t), λ2(t) > 0 tends to decrease it. For

λ1(t) = λ1 = 1 and λ2(t) = λ2 = 1, the algorithm gives progresively less weight

to the new prediction error and thus to the new measurements. Consequently,

this type of variation of the adaptation gain is not suitable for the estimation

of time-varying parameters. For λ1(t) = λ1; 0 < λ1 < 1 and λ2(t) = λ2 = 1

the algorithm gives less weighting to the old data (k < t) and maximum weight

is given to the most recent error. This RLS algorithm is known as RLS with

constant forgetting factor, where λ1 is the forgetting factor. The value of the

forgetting factor, λ1, determines the response of the algorithm. A small value of λ1

produces a fast response for tracking parameter variations, but large fluctuations
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in the steady-state. On the contrary, small steady-state fluctuations with a slow

tracking response are obtained for a large value of λ1. The typical values for λ1

which give a relatively fast but small fluctuation response are between 0.95 and

0.99 [70]. This algorithm is suited to the estimation of systems with time-varying

parameters. Due to its suitability, the RLS with constant forgetting factor is used

as the estimator in this research.

In the context of adaptive control, the stability of the estimator is a necessary

condition for the stability of the control system. Therefore, a stable estimator

must be employed in the adaptive control method.

4.3 Stability of the RLS Algorithm

The stability of an estimator is closely related to the convergence of the estimator.

An estimator that converges can be said to be stable. The convergence of an

estimator is determined from the behaviour of the prediction error. An estimator

converges if for bounded input, u(t), and bounded output, y(t), the prediction

error ε(t) is bounded. For the RLS estimator the convergence is guaranteed if the

prediction error in (4.32) is bounded or

lim
t→∞

ε(t + 1) = 0. (4.34)

The stability of the RLS algorithm can be explained by the passivity theorem.

Using the passivity theorem it can be shown that for a bounded input, u(t) and

bounded output, y(t), the prediction error ε(t) is bounded. To apply the passivity

theorem, the equivalent feedback representation of the RLS algorithm needs to

be derived.

Define the parameter error as

θ̃(t) = θ̂(t)− θ. (4.35)
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Subtracting both sides of (4.29) by θ, and taking into account (4.35), one obtains

θ̃(t + 1) = θ̃(t) + F (t)φ(t)ε(t + 1). (4.36)

From the definition of the a posteriori prediction error ε(t + 1) given by (4.26)

and taking into account (4.19), (4.24) and (4.35), one gets

ε(t + 1) = y(t + 1)− ŷ(t + 1)

= θT φ(t)− θ̂T (t + 1)φ(t)

= −θ̃T (t + 1)φ(t)

= −φ(t)T θ̃(t + 1). (4.37)

and using (4.36) one can write

φT (t)θ̃(t + 1) = φT (t)θ̃(t) + φT (t)F (t)φ(t)ε(t + 1). (4.38)

Equation (4.36), (4.37) and (4.38) define an equivalent feedback system which

can be represented as in Fig. 4.3. From the figure, it can be seen that the RLS

algorithm can be described as the interconnection of a linear time invariant block

and a non-linear time-varying block. It is therefore reasonable to use the passivity

theorem to analyse the stability of the RLS algorithm.

After the equivalent feedback representation is obtained, it can then be proven

that the RLS algorithm is stable by showing that the interconnection of these two

blocks is passive (see [70] for detailed proof).

In the next section, the analyses of the effect of the high-pass characteristics

of the RLS, the effect of the sampling period selection, and the effect of the

word-length on the estimation accuracy, are discussed. The analyses provide

the justification for the use of the proposed method to improve the estimation

accuracy.
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Figure 4.3. Equivalent feedback representation of RLS.

4.4 Factors Which Influence the Accuracy of

RLS

As mentioned in Section 4.1 there are several factors which affect the ability of

the RLS estimator to accurately estimate the natural frequencies of a flexible

structure. The detailed analyses of these factors are presented in this section.

The discussion is divided into three subsections. In the first subsection, the high-

pass characteristic of the RLS is analysed using frequency domain analysis. In the

second subsection, the effects of sampling period and finite word-length on the

estimator’s parameter tracking resolution are analysed. In the third subsection,

an examination of the sensitivity of the poles to the parameter perturbation

error is used to explain the effects of sampling period and finite word-length on

the estimation accuracy.
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4.4.1 RLS Characteristics

The parametric identification for a flexible structure gives biased results since

the order of the estimator is much smaller than the theoretically infinite order of

the plant [2, 147]. To examine the bias distribution of the RLS estimator over a

range of frequencies, frequency domain analysis of the estimator is discussed in

this subsection.

A recursive estimator can be considered as an algorithm that recursively min-

imizes a quadratic criterion in terms of the plant model prediction error or the

adaptation error. The least-squares criterion in (4.28) can be written in terms of

the prediction error, ε(t), as

θ̂N = arg min
θ̂∈M

JN(θ̂, t),

JN(θ̂, t) =
1

N

N∑
t=1

ε2(θ̂, t). (4.39)

For large N (i.e., N approaches infinity) the cost function JN(θ̂, t) can be written

as

lim
N→∞

JN(θ̂, t) = J∗N(θ̂, t) (4.40)

where

J∗N(θ̂, t) = lim
t→∞

1

N

N∑
t=1

ε2(θ̂, t)

= E{ε2(θ̂, t)}, (4.41)

is the asymptotic least-squares criterion. Assuming that the RLS estimator con-

verges, the estimated parameter θ̂N will converge to the optimal parameter esti-

mation θ̂∗, and can be written as [148]

θ̂N → θ̂∗, as N →∞ (4.42)

where

θ̂∗ = arg min
θ̂∈M

J∗N(θ̂, t), (4.43)
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Applying the Parseval Theorem to (4.41), a frequency interpretation of the asymp-

totic least-squares criterion can be obtained as [148]

θ̂∗ = arg min
θ̂∈M

π/T∫
−π/T

Φε(e
jω)dω, (4.44)

where Φε(e
jω) is the spectrum of the prediction error and T is the sampling period.

Equation (4.44) shows how the cost function of the RLS criterion in terms of the

adaptation error, ε(t), is distributed in frequency. By expressing the prediction

error in terms of the bias between the model and the estimation model, (4.44)

can be used to assess how the bias is distributed in frequency. To express the

prediction error, ε(t), in the estimation model’s parameters θ̂, write ε(t) as the

difference between the model output, y(t), and the estimation output, ŷ(t),

ε(t) = y(t)− ŷ(t). (4.45)

The model output, y(t), is given in (4.1) and the optimal estimation output, ŷ(t),

is given by

ŷ(t) = Ĥ−1(q, θ̂)Ĝ(q, θ̂)u(t) +
(
1− Ĥ−1(q, θ̂)

)
y(t), (4.46)

which is obtained by replacing the parameters H(q, θ) and G(q, θ) in (4.4) with the

estimation parameters Ĥ(q, θ̂) and Ĝ(q, θ̂). Using (4.1) and (4.46), the prediction

error (4.45) can be written as

ε(t) = y(t)− ŷ(t)

= G(q)u(t) + H(q)e(t)− Ĥ−1(q)Ĝ(q)u(t)−
(
1− Ĥ−1(q)

)
y(t)

= Ĥ−1(q)
[
G(q)− Ĝ(q)

]
u(t) + Ĥ−1(q)H(q)e(t)

= Ĥ−1(q)
{[

G(q)− Ĝ(q)
]
u(t) +

[
H(q)− Ĥ(q)

]
e(t)

}
+ e(t).

(4.47)

To obtain the spectrum of (4.47), write

E{ε2(t, θ̂)} = |Ĥ−1(q)|2
[
|G(q)− Ĝ(q)|2E{u2(t)}+ |H(q)− Ĥ(q)|2E{e2(t)}

]
+E{e2(t)}. (4.48)
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Taking the Fourier transform of (4.48) and neglecting the terms that do not

depend upon the estimated parameters, one obtains

Φε(e
jω) = |Ĥ−1(ejω)|2

[
|G(ejω)− Ĝ(ejω)|2Φu(ω) + |H(ejω)− Ĥ(ejω)|2Φe(ω)

]
,

(4.49)

where Φu(ω) and Φe(ω) are the spectrums of input and disturbance, respectively.

Inserting the spectrum of the prediction error (4.49) into (4.44), one obtains

θ̂∗ = arg min
θ̂∈M

π/T∫
−π/T

|Ĥ−1(ejω)|2

×
[
|G(ejω)− Ĝ(ejω)|2Φu(ω) + |H(ejω)− Ĥ(ejω)|2Φe(ω)

]
dω.

(4.50)

Equation (4.50) is an interpretation of the asymptotic least-squares criterion as

a function of the system model in the frequency domain. It can be seen that

the optimum estimation value θ̂∗ is influenced by the weighted error between the

true system parameter G and the estimated system parameter Ĝ. Optimum θ̂∗

is obtained by minimizing the bias between Ĝ and G. The weighting function,

|Ĥ−1(ejω)|2, determines how much weight the estimator will give to minimize the

bias contribution at each particular frequency. For a large weight in a particu-

lar frequency range, the algorithm will tend to give small bias, resulting in an

accurate estimation in that range [88].

For RLS using the ARX model the weighting function |Ĥ−1(ejω)|2 is equal to

|Â(ejω)|2 (see (4.11)). For any order and any random coefficients |Â(ejω)|2 has a

high-pass filter (HPF) profile as illustrated in Fig. 4.4. Therefore, for a broadband

input φu(ω), the RLS algorithm will give a higher weighting to higher frequency

components and a lower weighting to the lower frequency components. This will

result in higher accuracies for the estimation of higher modes and, conversely,

lower accuracies for the estimation of lower modes. As T decreases, the pass-

band of |Â(ejω)|2 will shift to the right, resulting in a corresponding reduction
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of |Ĥ−1(ejω)|2 for the same frequency. Consequently, for smaller T , the RLS will

produce even poorer estimates of the lower modes.

8th order
4th order
3rd order
2nd order

Figure 4.4. Frequency responses of Â(ejω) for different order.

Prefiltering can be used to compensate for the low weighting in the low fre-

quency ranges, thereby improving the accuracy of estimation in the low frequency

ranges. Let L(q) be a prefilter that is applied to both u(t) and y(t). Then from

(4.47), the filtered prediction error can be written as

ε(t) = L(q) [y(t)− ŷ(t)]

= L(q)
[
G(q)u(t) + H(q)e(t)− Ĥ−1(q)Ĝ(q)u(t)−

(
1− Ĥ−1(q)

)
y(t)

]
= L(q)

[
Ĥ−1(q)

[
G(q)− Ĝ(q)

]
u(t) + Ĥ−1(q)H(q)e(t)

]
= L(q)Ĥ−1(q)

{[
G(q)− Ĝ(q)

]
u(t) +

[
H(q)− Ĥ(q)

]
e(t)

}
+ L(q)e(t).

(4.51)
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The optimal value of the estimated parameter in (4.50) can be written as

θ̂∗ = arg min
θ̂∈M

π/T∫
−π/T

|L(ejω)|2|Ĥ−1(ejω)|2

×
[
|G(ejω)− Ĝ(ejω)|2φu(ω) + |H(ejω)− Ĥ(ejω)|2φe(ω)

]
dω.

(4.52)

From (4.52) it can be seen that prefiltering modifies the weighting function from

|Ĥ−1(ejω)|2 to |L(ejω)|2|Ĥ−1(ejω)|2, thus increase the flexibility to set the weight-

ing function. Therefore, the overall weighting at the low frequencies can be

increased by choosing a prefilter L(q) with a high gain at low frequencies.

From the frequency domain analysis in this subsection, it can be seen that

the RLS method has a tendency to emphasize the weightings attached to high

frequencies. This characteristic becomes more pronounced as T decreases, and

this implies that, without prefiltering and for very small T , the RLS method

will give inaccurate results for low frequency estimations. The effect of sampling

period and finite word-length on the estimation accuracy from the parameter

tracking resolution viewpoint is investigated further in the next subsection.

4.4.2 Parameter Tracking Resolution

The role of the estimator in an adaptive control system is to identify and track

changes in the plant parameters, no matter how small the changes are, and to pro-

duce accurate estimates which reflect these changes. This requirement is directly

influenced by the selection of the sampling period for the estimator as discussed

below.

The influence of the sampling period T on the estimation tracking resolution

can be illustrated by mapping the plant poles from the s-plane to the z-plane for

different values of T . Assume that, for a fixed-value of T , as the plant changes

from one model to another, one of the plant poles changes accordingly in the
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s-plane from s1 = σ1 + jω1 to s2 = σ2 + jω2. The corresponding pole locations

in the z-plane are

z1 = es1T = eσ1T ejω1T = |eσ1T |6 ω1T ,

z2 = es2T = eσ2T ejω2T = |eσ2T |6 ω2T . (4.53)

The difference between the arguments of z1 and z2 is

∆Φ = |(ω1 − ω2)T | = 2πT |f1 − f2|. (4.54)

If, however, T changes from T1 to T2, where T2 = nT1(n > 0), then the ratio of

the corresponding differences between the arguments of z1 and z2 can be written

as

∆Φ1

∆Φ2

=
T1|f1 − f2|
T2|f1 − f2|

=
T1

nT1

=
1

n
. (4.55)

From (4.55) it can be seen that, as T becomes n-times larger, the differences

between the arguments of z1 and z2 also becomes n-times larger, thus resulting

in more accurate estimates. The following example illustrates this effect.

Consider a plant that changes from Model A with natural frequency 9.77 Hz

to Model B with natural frequency 7.53 Hz. The transfer functions of Model A,

Ma, and Model B, Mb, are as follows:

Ma =
0.02768

s2 + 1.229s + 3775
, Mb =

0.3398

s2 + 0.9461s + 2238
.

The models are both sampled with different sampling periods, T1 = 1/500 second

and T2 = 1/50 second (i.e., n = 10). The locations of the plant poles in the

z-plane for differing T are shown in Fig. 4.5. From the figure it can be seen

that, when the plant changes from Ma to Mb, ∆Φ2 = 16.2o associated with T2 is

10-times larger than ∆Φ1 = 1.62o associated with T1. This demonstrates that the

estimator’s capacity to resolve small changes in natural frequency between one



CHAPTER 4. NATURAL FREQUENCY ESTIMATOR 157

model and another can be compromised by the use of inappropriately selected

high sampling rates when the bit-precision of the computing platform is limited.

The higher the sampling rate, the smaller the argument and, consequently, the

higher the bit-precision required.

2∆Φ

1∆Φ

Figure 4.5. Effect of sampling period on pole location.

The determination of the sampling period of the estimator is dependent on

the natural frequency of interest in the estimated system. If the sampling rate

is too high relative to the natural frequency, the resolution of the estimator will

be low and hence the estimation results will be inaccurate. Empirical results

show that a sampling rate between 4 to 20 times the natural frequency of the

system gives accurate estimates. This sampling rate range is in agreement with

recommendations from the literature [33, 45, 70, 107, 123, 150].
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4.4.3 Parameter Perturbation Error

The RLS estimator (4.29) to (4.32) is realized as an Infinite Impulse Response

(IIR) filter. In a digital hardware realization, the filter’s coefficients are quantized

and stored as finite-word length values in a register. Due to the limitation of

the word-length, quantization errors occur which perturb the parameters of the

estimator and hence affect the estimator accuracy. This in turn is effected by the

sampling rate and the order of the estimator, as shown in the following analysis.

The IIR filter has the following transfer function [117]

G(z) =

nb∑
k=0

bkz
−k

1 +
na∑

k=1

akz
−k

. (4.56)

When the IIR filter is realized with quantized coefficients, its tranfer function is

modified as follows

Gq(z) =

nb∑
k=0

bqkz
−k

1 +
na∑

k=1

aqkz
−k

(4.57)

where the quantized coefficients {bqk} and {aqk} are obtained from their unquan-

tized counterparts {bk} and {ak}

aqk = ak + ∆ak k = 1, 2, . . . , na

bqk = bk + ∆bk k = 0, 1, 2, . . . , nb (4.58)

and where {∆ak} and {∆bk} are the quantization errors. The denominator of

G(z) in (4.56) can be expressed as

A(z) = 1 +
na∑

k=1

akz
−k =

na∏
k=1

(1− pkz
−k) (4.59)

where {pk} are the poles of A(z). Similarly, the denominator of Gq(z) in (4.57)

can be expressed as

Aq(z) = 1 +
na∑

k=1

aqz
−k =

na∏
k=1

(1− pqkz
−k) (4.60)
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where

pqk = pk + ∆pk, k = 1, 2, . . . , na (4.61)

and ∆pk is the error or perturbation resulting from the quantization of the filter

coefficients. The relationship between the total perturbation error for the ith pole,

∆pi, and the quantization error {∆ak} can be given by [117]

∆pi =
na∑

k=1

∂pi

∂ak

∆ak

= −
na∑

k=1

pna−k
i

na∏
l=1,l 6=i

(pi − pl)

∆ak. (4.62)

Effectively, the expression for ∆pi in (4.62) gives a measure of the sensitivity of

the ith pole to changes in the coefficients {ak} due to the quantization error for

∆ak. From (4.62) it can be seen that the perturbation error also depends on:

1. the order of the estimator na. The higher the order na, the larger the error

for a fixed word-length;

2. the sampling rate, which determines the separation of the poles. As the

sampling rate increases, the poles are drawn closer together, i.e., the term

(pi − pl) representing the distance between poles {pl} to pi (where l 6= i)

becomes smaller. This results in a larger perturbation error ∆pi. This effect

is illustrated in Fig. 4.5, where the separation of the poles for a given model

is decreased when the sampling rate is increased.

4.5 Design of the Natural Frequency Estimator

for Flexible Structures

The analysis in Section 4.4 shows that there are several factors which influence

the accuracy of an RLS estimator. The factors can be summarized as the:
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1. High-pass characteristic of the RLS algorithm. The RLS algorithm gives

higher gain for signals at higher frequencies, and consequently produces less

accurate results for lower frequencies.

2. Selection of the sampling period T . If the sampling period is too short with

respect to the mode of interest, it will make the estimation inaccurate for

that particular mode.

3. Parameter word-length representation. Higher estimation accuracy will be

obtained as the word-length for the IIR filter implementation is increased.

4. Order of the estimator. The higher the order of the estimator, the larger

the quantization error, thus resulting in less accurate estimation.

The high-pass characteristics of the RLS algorithm can be compensated for

by adding a prefilter to the estimator. The prefilter increases the weighting at

the frequency ranges of concern. However, as shown in [126] prefiltering alone

is not adequate for obtaining accurate estimations for the lower modes of wide-

band systems due to the miss match between the chosen sampling rate and the

frequencies of the lower modes. Using longer word lengths to improve the accuracy

is not always possible due to implementation cost and availability constraints.

Therefore a combination of prefiltering design, sampling period selection and

estimator order selection is required if improvements in estimation accuracy are

to be achieved.

What follow is an exposition of a design methodology for a multi-mode nat-

ural frequency estimator with superior performance in terms of accuracy and

simplicity to known natural frequency estimators described in the literature.

Rule of the estimator

In the proposed design, a bank of band-pass filters (BPFs) is used in the prefilter-

ing process to decompose a system into several bands in the frequency domain.
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Each band can be described as a second-order system which represents a system

mode of interest. A second-order estimator with an appropriate sampling pe-

riod for a specific mode is then used to estimate the natural frequency for that

mode. To estimate the multi-mode natural frequency, a parallel combination of

prefiltered second-order estimators can be employed.

Estimator Design

A linear time-invariant system can be band-wise approximated by the summation

of lower order systems [142]. Given a plant with a transfer function G(q), consider

the second-order approximation Gm(q) = G(q)Lm(q) where Lm(q) is a BPF with

centre frequency ωm

Gm(q) =
b1mq−1 + b2mq−2

1 + a1mq−1 + a2mq−2
. (4.63)

Then the transfer function of the system can be described as

G(q) =
M∑

m=1

Gm(q) (4.64)

where M is the maximum number of modes of interest. From (4.64), it can be seen

that the plant can be approximated as a sum of M decoupled systems Gm(q).

The identification of plant G(q) can therefore be achieved by using cascaded

banks of M -parallel band-pass prefilters Lm(q) and M -parallel second-order RLS

estimators operated in a chain fashion, with each chain targeting an individual

mode. Assuming that the structure natural frequencies are widely spaced and

independent of each other (which is valid for many flexible beam structures [90]),

each mode can be identified independently through their respective chains. The

cut-off of the band-pass prefilter within each chain is chosen to admit the full

range of frequencies associated with its respective mode for all possible loading

conditions.

The RLS-based estimator within the chain uses a specific sampling rate ap-

propriate for that chain’s mode of interest, thus allowing the RLS pass-band to
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be positioned over the mode of interest. The sampling rate is chosen to be greater

than 4 times the upper-bound frequency and less than 20 times the lower-bound

frequency of that mode, thus satisfying the consideration discussed in Section

4.4. The upper and lower bound frequencies of each mode for different loadings

can be predetermined through modal testing of the structure. In this way, the

proposed multi-mode estimator bank can effectively and accurately identify the

multiple resonant modes over a wide bandwidth for different loading conditions.

Different sampling rates can be applied to the various mode estimators without

affecting the stability of the overall estimator, because the estimator for each

mode is independent of the estimators for all the other modes.

To derive the natural frequency estimation algorithm for the mth mode using

RLS, rewrite (4.63) as

Gm(z) =
b1mz + b2m

z2 + a1mz + a2m

. (4.65)

Applying the bilinear transformation

z =
2fs + s

2fs − s
(4.66)

to (4.65), where fs is the specific sampling rate for the mth mode, gives

Gm(s) =
c0s

2 + c1s + c2

s2 + d1s + d2

(4.67)

where

c0 =
b1m + b2m

1− a1m + a2m

,

c1 =
4fsb2m

1− a1m + a2m

,

c2 =
4f 2

s (b1m + b2m)

1− a1m + a2m

,

d1 =
4fs − 4fsa2m

1− a1m + a2m

,

d2 =
4f 2

s (1 + a1m + a2m)

1− a1m + a2m

.
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Comparing the denominator of (4.67) with the denominator of (2.47), the natural

frequency associated with the mth mode can be identified as

ωm = 2fs

√
1 + a1m + a2m

1− a1m + a2m

. (4.68)

From (4.68), it can be seen that ωm depends only on the coefficients of the de-

nominator of (4.65) which decide the poles of that mode. As shown in Section

2.5 in Chapter 2, the locations of the system’s poles are not influenced by mode

truncation. Hence, truncation of the higher modes in the modeling will only give

inaccurate locations for the system’s zeros, but not for the system’s poles. The

natural frequency estimation obtained from (4.68) is therefore not affected by

mode-truncation. This implies that the proposed natural frequency estimator is

robust to unmodeled dynamics caused by mode truncation.

Estimator Algorithm

The algorithm for each component estimator is therefore specified as follows:

1. Find the parameters of (4.63) using the RLS algorithm

θ̂(t + 1) = θ̂ + F (t)φ(t)ε(t + 1), (4.69)

F (t + 1)−1 = λ1(t)F (t)−1 + λ2(t)φ(t)φT (t), (4.70)

F (t + 1) =
1

λ1(t)

F (t)− F (t)φ(t)φT (t)F (t)
λ1(t)
λ2(t)

+ φT F (t)φ(t)

 , (4.71)

ε(t + 1) =
y(t + 1)− θ̂T (t)φ(t)

1 + φT F (t)φ(t)
. (4.72)

2. Calculate the corresponding natural frequency using (4.68).

Hence, the M -modes of interest can be collectively identified by a bank of M

parallel estimators.

For a single-input single-output system the number of multiply-accumulate

operations for the RLS algorithm is of the order of 4(2M)2, where 2M is the



CHAPTER 4. NATURAL FREQUENCY ESTIMATOR 164

order of the system [61]. Therefore, in addition to increasing the estimation

accuracy, the proposed M -parallel second-order estimator bank also reduces the

number of mathematical operations from 4(2M)2 to around 16M operations. For

example, for M=3, there is a reduction in the number of operations from 144

operations to 48 operations (i.e., a 66.7% reduction). The reduction becomes

more significant for larger M (e.g., 90% for M = 10).

The effectiveness of the proposed estimator is evaluated through simulation

and experimental studies which are discussed in the following sections. A real-

time estimator for estimating the natural frequency estimator of the first three

modes of the beam is implemented using the Simulink Real-Time Workshop C

S-function.

4.6 Simulation Studies of the Proposed Natural

Frequency Estimator

In this section, two sets of simulation studies are undertaken to evaluate the

effectiveness of the proposed method.

The results of the first set of simulations demonstrate how the choice of pre-

filtering and sampling period affect the accuracy of the estimator. They further

show that (i) the decomposition of a plant into several bands according to its

modes using a bank of BPFs improves the accuracy of estimation, and (ii) fur-

ther improvement can be achieved by using an appropriate sampling period for

each specific band.

In the second set of simulations, the estimator is used to estimate the natural

frequencies of the cantilever beam models. In this set of simulations, the accuracy

and convergence rate of the proposed estimator in tracking the changes to the

natural frequencies of the system are evaluated.
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4.6.1 Effects of Prefiltering and T Selection

For the first set of simulations, the twentieth-order Model 4 (the unloaded model)

obtained from Chapter 2 is considered to be a true model. Model 4 is chosen in

this simulation because this model has the highest first mode natural frequency.

Therefore if inaccurate estimations of lower mode frequencies are obtained for

this model, inaccurate estimations would also be obtained for the lower modes in

the other models (Model 1 to Model 3). From the ten modes of the model, only

the first three modes are estimated.

Four simulation cases for the beam model are designed as follows: the first

case uses no prefiltering; the second case uses a single sixth-order estimator with

low-pass filter (LPF); the third case uses three parallel second-order estimators,

each with a BPF and a common value of T ; the fourth case uses three parallel

second-order estimators, each with a BPF and a specifically selected T according

to the mode of concern. To minimize frequencies outside the modes of concern

from entering the estimator, the cut-off frequency for the LPF is set slightly

higher than the natural frequency of the third mode. Similarly, the upper cut-off

frequencies of the three BPFs: fu1, fu2, and fu3, are set slightly higher than the

first, second, and third natural frequencies, respectively. To isolate each mode

separately, the lower cut-off frequencies of the three BPFs: fl1, fl2, and fl3, are

set in such a way that the side lobes of each filter do not overlap. In the first

three simulation cases, the sampling periods are all equal to T = 0.001 sec. In

the last simulation case, the sampling periods are T1 = 0.02 sec, T2 = 0.002 sec,

and T3 = 0.001 sec. The FRF of the estimation results for the four simulation

cases are shown in Figs. 4.6 to 4.9.

From Figs. 4.6 to 4.9, it can be seen that the choice of prefilter L(q) and

sampling period T influence the estimation accuracy. Fig. 4.6 shows that without

prefiltering the estimator produces a poor result. Fig. 4.7 shows that using a
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single LPF with a value of T , which is based on the third mode frequency, gives an

accurate estimation for the third mode, a less accurate estimation for the second

mode, and a false estimation for the first mode. This demonstrates that the LPF

alone cannot compensate for the HPF characteristic of the RLS algorithm, and

that the RLS cannot handle a high-order system where the natural frequencies

are separated by more than one decade. This problem can be improved, as shown

in Fig. 4.8, by using a parallel set of second-order estimators with a bank of BPFs

where both third and second modes are correctly estimated. However, the first

mode estimation is still inaccurate. This is because the 1 kHz sampling rate

used is far higher than the first-mode frequency. Further improvement in the

estimation accuracy for all modes can be obtained by using the proposed multi-

rate, multi-mode estimator in which independent sampling rates are assigned to

the three parallel second-order estimators, as confirmed by Fig. 4.9.

true model
estimation result

Figure 4.6. Estimation result without prefiltering.
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true model
estimation result

Figure 4.7. Estimation result with prefiltering using single LPF.

true model
estimation result

Figure 4.8. Estimation result with prefiltering using BPFs.
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true model
estimation result

Figure 4.9: Estimation result with prefiltering using BPFs and different

sampling periods.

4.6.2 Natural Frequency Estimator for Cantilever Beam

Models

In the second set of simulations, a bank of three parallel second-order estimators,

E1 to E3, is implemented. The same forgetting factor λ1 = 0.98 is chosen for all

the estimators. This value is chosen as a trade-off between fast response to track

parameter variations and fluctuations in the steady-state as mentioned in Section

4.2. The estimators are used to estimate the first three natural frequencies of

the simulation models, Model 1 to Model 4, with natural frequencies as shown in

Table 2.5. To have appropriate sampling periods for each mode in the models,

as discussed in Section 4.4, the sampling periods for E1, (T1), E2, (T2), and E3,

(T3), are chosen as 0.02 sec, 0.002 sec and 0.001 sec, respectively. The sampling

rate selected for the simulation is 1 kHz, therefore the sampling periods T1 and

T2 are obtained by down-sampling the simulation rate by 20 and 2, respectively.



CHAPTER 4. NATURAL FREQUENCY ESTIMATOR 169

Considering the natural frequencies of the models, the upper and lower cut-off

frequencies for band-pass filters L1, L2 and L3 are chosen as follows: fu1 = 20 Hz,

fl1 = 2 Hz, fu2 = 90 Hz, fl2 = 30 Hz, fu3 = 200 Hz, fl3 = 100 Hz. The filter order

chosen is based on a trade-off between attenuation and latency. Higher order

filters give better attenuation but they increase the delay and take longer to

compute. Experiments show that a sixth-order BPF gives adequate attenuation

for signals outside the ranges of interest, then all the filters are implemented as

sixth-order Butterworth digital filters. The schematic diagram of the natural

frequency estimator bank is shown in Fig. 4.10. Four simulation cases referred

to as Est.1 to Est.4 cases are considered. The Est.1 and Est.2 cases assess the

accuracy of the estimator bank, and the Est.3 and Est.4 cases investigate how

the estimator copes with dynamic loading conditions. A white noise disturbance

is used in all cases.
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L2

L3

Plant

E3

E2

E1

↓2

Input
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Bandpass
filtersDown-

samplers
estimators

f1
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L2

L3

↑20

↑2

Bandpass
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↓20

↓2

Down-
samplers

Estimator bank

Figure 4.10. Schematic diagram for natural frequency estimator.
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Est.1 and Est.2 cases

In the Est.1 and Est.2 cases, Model 1 and Model 4, respectively, are used. These

cases represent the two extreme loading models for the beam. The estimates for

Model 1 are shown in Fig. 4.11, and the magnified portion of the steady-state

condition, which illustrates the accuracy of the estimates, is shown in Fig. 4.12.

Similarly the estimates for Model 4 are shown in Fig. 4.13, and the corresponding

magnified capture is shown in Fig. 4.14. From Figs. 4.11 to 4.14, it can be seen

that the estimator converges to the true values of the models and gives very

accurate results for all modes (the first three modes) of the models with bias

errors ranging from 0.06% for the first mode of Model 4 to 0.2% for the first

mode of Model 1. The results show that the largest bias error occurred for the

first mode of Model 1, which has the lowest natural frequency of all the models.

Est.3 and Est.4 cases

In the Est.3 and Est.4 cases, two loading configuration sequences namely 1 → 3

→ 4, and 1 → 2 → 4, respectively, are tested. The result for the Est.3 and Est.4

cases are shown in Figs. 4.15 and 4.16, respectively. Figs. 4.15 and 4.16 show

that the estimator is able to track the varying parameters of the models when the

loading is suddenly changed. The convergence time of the estimator depends on

the magnitude of the loading change between the initial condition and the final

condition. The larger the magnitude the longer the convergence time. The two

figures also reveal that regarding the use of different sampling periods for each

mode, the convergence rate of the mode estimators is slower for the lower mode

than for the higher mode. From the figures, it can be seen that the convergence

time ranges from around 1 second (for the third mode when the model changes

from Model 1 to Model 2) to about 7 seconds (for the first mode when the model

changes from Model 3 to Model 4), which is fast enough to be used in a practical

adaptive control system.
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Figure 4.11. Estimation results for Model 1.

Figure 4.12. Magnified steady-state results for Model 1 estimation.
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Figure 4.13. Estimation results for Model 4.

Figure 4.14. Magnified steady-state results for Model 4 estimation.
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Figure 4.15. Estimation results for the 1 → 3 → 4 load sequence.

Figure 4.16. Estimation result for the 1 → 2 → 4 load sequence.
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4.7 Experimental Studies

To test the effectiveness of the proposed estimator in a real-time implementation,

and to verify the simulation results given in Section 4.6, experimental studies of

the proposed estimator are conducted and described here. The on-line natural

frequency estimator is implemented on a dSPACE DS1103 data acquisition and

control board using Matlab, Simulink and Real-Time Workshop software. In the

implementation, a first-order LPF with low frequency cut-off (2 Hz) is added to

the output of each mode estimator. The filters are placed to filter the coefficients

a1m and a2m from (4.29) before feeding them to (4.68). The low frequency cut-off

is chosen to minimize the fluctuation (i.e., non dc component) in the coefficients

a1m and a2m, while retaining the tracking ability of the estimator.

The set-up for this experiment is the same as that employed for the controller

implementation described in Chapter 3, with the schematic diagram shown in

Fig. 3.34. All the estimators’ parameters and the filters’ parameters are the

same as those used in the simulation in Section 4.6.2. The sampling rate is set

at 1 kHz and the beam is excited with white noise. The simulation cases Est.3

and Est.4 are repeated in the experiments.

The experimental results for the estimated frequencies for each mode are

shown in Fig. 4.17 for the Est.3 case, and in Fig. 4.18 for the Est.4 case. From

the figures, it can be seen that the estimator tracks the changes in the natural

frequency of the system as the system changes from one model to the next. The

estimated natural frequencies converge to their respective true values between 1

second (for the third mode when the model changes from Model 1 to Model 2)

and 3.5 seconds (for the first mode when the model changes from Model 3 to

Model 4).

The convergence rate of the estimator used in the experiments is faster than

the convergence rate of the same estimator used in the simulations. This is rea-
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sonable since in the physical implementation, the estimator receives data input

from real plant, which is faster than the simulation model. Moreover, in the phys-

ical implementation, the algorithm is embedded in the DSpace board resulting in

very fast execution, while in the simulated version the algorithm is executed by a

PC processor which also processes other tasks such as calculating and displaying

model responses. The convergence rate of the estimator in the physical imple-

mentation confirms that the estimator is fast enough to be used in a practical

adaptive control system.

Figure 4.17. Estimation results for the 1 → 3 → 4 load sequence.

To examine the accuracy of the estimator, the magnified outputs of the esti-

mations during steady-state are shown in Figs. 4.19 to 4.22. From the figures,

it can be seen that the estimator gives very accurate results with a maximum

variance of 0.11% for mode 1 of Model 1.

The physical implementation shows that the proposed estimator is able to

give accurate natural frequency estimations for a wide range of frequencies. The
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Figure 4.18. Estimation results for the 1 → 2 → 4 load sequence.

Figure 4.19. Magnified steady-state results for Model 1 estimation.
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Figure 4.20. Magnified steady-state results for Model 2 estimation.

Figure 4.21. Magnified steady-state results for Model 3 estimation.
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Figure 4.22. Magnified steady-state results for Model 4 estimation.

estimation accuracy of the lowest mode of interest is comparable to the estimation

accuracy of the highest mode of interest regardless of the high-pass characteristic

of the RLS algorithm employed. It can be concluded from the experimental results

that the prefiltering selection and sampling period selection can be designed so as

to increase the estimation accuracy of RLS-based estimator. Experimental results

reveal that the proposed estimator gives accurate estimations for the first three

natural frequencies of the flexible structure. This demonstrates that the proposed

natural frequency is able to give accurate results in the presence of unmodeled

dynamics due to mode truncation.

4.8 Summary

In this chapter, a real-time natural frequency estimator for flexible structures is

proposed. The estimator is designed to perform with high estimation accuracy
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for wide-band flexible structures. An analysis of the affect of sampling period

and finite word-length on the estimation accuracy reveals that the use of a higher

order and a lower sampling period in estimator produces poor estimation results.

To achieve high accuracy, therefore, the proposed estimator is built as a set

of parallel second-order RLSs with band-pass prefilters and with independent

sampling periods for each mode. The parallel structure is constructed using a

bank of BPFs, which decomposes the plant into several decoupled second-order

systems. This parallel structure enables different sampling periods to be applied

independently with different modes. In this way a lower order estimator with

a suitable sampling period for each particular mode is obtained. In addition to

increasing the estimation accuracy, the parallel structure of the estimator with

its own prefiltering for each mode also increases the robustness of the estimator

to unmodeled dynamics, and also reduces the computational complexity.

The simulation results and experimental results show that the proposed es-

timator gives accurate estimation, and the estimator is able to cope with the

varying plant parameters and unmodeled dynamics.


