
Chapter 5

Adaptive Resonant Control

In this chapter, the natural frequency estimator from Chapter 4 is combined

with the resonant controller from Chapter 3 to form a new adaptive resonant

control (ARC) method. The ARC method is proposed to control systems with

unknown loading conditions. The transient response of the ARC is then improved

by combining it with the M4RC method to form the proposed multi-model multi-

mode adaptive resonant control (M4ARC) method. This chapter begins with an

introduction to adaptive control, with an emphasis given to transient response

of adaptive control, and then it goes on to introduce a multiple model adaptive

control method. The design of the proposed ARC and M4ARC are presented in

Section 5.2 and Section 5.3, respectively. The results from simulation studies and

experimental studies are given in Sections 5.4 and 5.5, respectively.

5.1 Introduction

To achieve optimum attenuation in systems with varying parameters and un-

known loading conditions, the adaptive resonant control method, ARC, is pro-

posed. ARC is formed by combining the resonant controller discussed in Chapter

3 with the on-line natural frequency estimator presented in Chapter 4.

The on-line parameter estimator makes use of a recursive algorithm to identify
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the plant parameters. The recursive algorithm uses previously estimated param-

eters as a starting point to predict the new parameters. Due to its recursive

characteristic, the estimator can easily track variations to the plant parameter

if they change gradually. In this situation, the adaptive control system will give

optimum performance with an acceptable transient response. However, for large

and sudden changes to the load in a mechanical system [64, 65] the recursive

characteristic of the estimator will produce a large transient response. This tran-

sient response in the estimator will in turn generate an unacceptable transient

response in the adaptive control system [30, 41, 50, 157].

To improve the transient response of adaptive control, the multiple model

method with supervisor scheme presented in Chapter 3 can be combined with the

adaptive control method to form the Multiple Model Adaptive Control (MMAC)

method as proposed by Narendra and Balakrishnan [100]. This method assumes

a set of L fixed-parameter models (M1 to ML) each representing an a priori

known plant condition, and an adaptive model (Ma) to accommodate unmodeled

plant conditions. The block diagram of this method is shown in Fig. 5.1. For

each model Mi(i = 1, 2, , L, a), a controller Ki(i = 1, 2, , L, a) is designed to

satisfy the control objective for Mi. At every sampling instant, each model, both

fixed-parameter and adaptive, produces its own output ỹi(i = 1, 2, , L, a) which

is fed into a switching scheme (i.e., a supervisor). The supervisor selects between

these controllers based on a MMSE performance index described in (3.34) or

(3.35). Using this method, the supervisor will choose the most appropriate fixed-

parameter model and its corresponding controller while the adaptive model is still

in the transient phase, and then switch to and stay with the adaptive controller

once its parameters have come out of their transient phase. The fixed-parameter

models can provide speed whenever their parameters are close to those of the

plant, while the adaptive model can provide accuracy because its parameters can

be fine-tuned to match those of the plant.
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Figure 5.1. Block diagram of the MMAC.

The theory of MMAC is well developed. The stability proof of MMAC for a

continuous system is given in [75, 101]. The method is extended to discrete-time

linear systems in the presence of a disturbance in [105] and a proof of overall

system convergence is offered. The method is also extended to stochastic systems

[103, 159], non-linear systems [23, 62, 104] and non-minimum phase systems [149].

The MMAC concept has been applied to a broad range of applications that

includes: flexible transmission systems [64], automobiles [62], robotics [102] and

chemical processes [38, 39]. All of these applications use the MMSE performance

index (3.34) or (3.35) for the supervisor scheme. As discussed in Chapter 3,

this supervisor scheme imposes a high computational demand that increases sig-

nificantly with the number of models. In this research, the MMAC concept is

modified to improve the transient response of the proposed ARC.

The transient response of the ARC is improved by integrating it with the

M4RC method discussed in Chapter 3. The resultant M4ARC uses a simple
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supervisor scheme based on the utility of a filter bank system and the measure-

ment of the output of the natural frequency estimator. The performance of the

proposed controller is evaluated by comparing the M4RC, ARC, and M4ARC

methods through simulation and experimental studies.

5.2 Adaptive Resonant Control (ARC)

The ARC is implemented using the indirect self tuning regulator (STR) scheme.

The block diagram for controlling the first three modes of vibration is shown

in Fig. 5.2. The figure shows that the ARC is formed by combining a natural

frequency estimator with a resonant controller. The adjustable controller param-

eters for each mode are updated independently.
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Figure 5.2. Block diagram of the ARC for controlling three modes.
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ARC Algorithm

The algorithm for each mode is described by the following recursive process:

1. Sample the plant output y(k).

2. Compute the control signal um(k) using (3.13)

um(k) = Amy(k)+Bmy(k−1)+Cmy(k−2)−Dmum(k−1)−Emum(k−2).

(5.1)

3. Send the control signal um(k) to the plant.

4. Compute ω̂m(k) using (4.68)

ω̂m = 2fs

√
1 + a1m + a2m

1− a1m + a2m

. (5.2)

5. Update the controller parameters Am, Bm, Cm, Dm and Em using (3.7) -

(3.11).

Am =
4f 2

s + 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (5.3)

Bm =
−8f 2

s

4f 2
s + 4fsζcmωm + ω2

m

, (5.4)

Cm =
4f 2

s − 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (5.5)

Dm =
2ω2

m − 8f 2
s

4f 2
s + 4fsζcmωm + ω2

m

, (5.6)

Em =
4f 2

s − 4fsζcmωm + ω2
m

4f 2
s + 4fsζcmωm + ω2

m

, (5.7)

The final control signal u(k) is the summation of the control signal for each mode

as in (3.12)

u(k) =
M∑

m=1

um(k)kdm. (5.8)
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Closed-loop stability of ARC

The ARC algorithm shows that the adaptation of the controller parameters for

an indirect adaptive control method is achieved in two steps: (i) estimation of

the plant parameters (step 4), and (ii) computation of the controller parameters

based on the estimated plant parameters (step 5). The resulting control method

should guarantee that the output of the plant remain bounded for bounded input

if separately the three following conditions are satisfied: (i) the plant parameter

estimates are bounded, (ii) the controller parameters are bounded for bounded

plant parameter estimates, and (iii) the estimated plant parameters are admissible

with respect to the control design strategy [70].

The first and second conditions are satisfied by using a stable estimator and

controller, respectively. The third condition is necessary due to the fact that

even the estimated plant parameters are bounded at each time t. The current

estimated parameters may not be admissible in the sense that there is no solution

for the controller. This is known as a singularity problem. For example, estimated

parameters which cause a pole-zero cancellation cannot be used to compute the

controller in the pole-placement control method.

The stability of the resonant controller and the natural frequency estimator

was proven in Chapter 3 and Chapter 4, respectively. Thus only the admissibility

of the parameters from the estimator needs to be proven to guarantee the stability

of the ARC.

The stability proof of the resonant controller in Chapter 3 shows that the

controller will produce a solution for any positive natural frequency, ωm. Thus,

the admissibility of the estimated parameters can be guaranteed by proving that

the natural frequency estimator always produces a positive output.

Estimated parameters admissibility proof

Consider the estimated natural frequency (4.68) which is obtained from a
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comparison of the transfer function of a flexible structure (2.32) with the bilinear

transformation of a second-order discrete time system (4.65), as shown in Chapter

4. For convenience rewrite (4.68), (4.65), and (2.32) here

ωm = 2fs

√
1 + a1m + a2m

1− a1m + a2m

, (5.9)

Gm(z) =
b1mz + b2m

z2 + a1mz + a2m

, (5.10)

G(s, x) =
∞∑

m=1

ym(x)Pm

s2 + 2ζmωms + ω2
m

. (5.11)

The admissibility of the estimated parameters is guaranteed if the term within

the square root operator of (5.9) is positive.

1 + a1m + a2m

1− a1m + a2m

> 0. (5.12)

The inequality (5.12) is valid if both its numerator and denominator are positive

or negative. To find a formulation of coefficients a1m and a2m in terms of the

structure parameters ωm and ζm, apply the bilinear transformation

s = 2fs
z − 1

z + 1
(5.13)

to (5.11) and compare the result with (5.10) to obtain

a1m =
2ω2

m − 8f 2
s

4f 2
s + 4fsζmωm + ω2

m

, (5.14)

a2m =
4f 2

s − 4fsζmωm + ω2
m

4f 2
s + 4fsζmωm + ω2

m

. (5.15)

From (5.14) and (5.15), the numerator and denominator of (5.12) can be written

as

num = 1 + a1m + a2m

=
4f 2

s + 4fsζmωm + ω2
m

4f 2
s + 4fsζmωm + ω2

m

+
2ω2

m − 8f 2
s

4f 2
s + 4fsζmωm + ω2

m

+
4f 2

s − 4fsζmωm + ω2
m

4f 2
s + 4fsζmωm + ω2

m

=
4ω2

m

4f 2
s + 4fsζmωm + ω2

m

> 0 (5.16)
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and

den = 1− a1m + a2m

=
4f 2

s + 4fsζmωm + ω2
m

4f 2
s + 4fsζmωm + ω2

m

− 2ω2
m − 8f 2

s

4f 2
s + 4fsζmωm + ω2

m

+
4f 2

s − 4fsζmωm + ω2
m

4f 2
s + 4fsζmωm + ω2

m

=
16f 2

s

4f 2
s + 4fsζmωm + ω2

m

> 0 (5.17)

respectively. From (5.16) and (5.17), it can be seen that both the numerator and

denominator of (5.12) are always positive which implies that the admissibility of

the parameter from the estimator is guaranteed. Therefore, by separately proving

the stability of the estimator and the controller, and proving the admissibility of

the parameter from the estimator, the ARC is proven to be stable.

5.3 Multi-model Multi-mode Adaptive Resonant

Control (M4ARC)

The M4ARC method is proposed to facilitate the handling of fast transients in

dynamic systems. M4ARC combines the adaptive capability of the ARC with the

fast response feature of M4RC from Chapter 3. M4ARC retains the characteristic

of the M4RC and ARC in that each mode is controlled independently. In the

M4ARC method, the system chooses a fixed-parameter model from the M4RC

method to deal with the transient condition while the adaptive model from the

ARC method is still fluctuating. The system then switches to the adaptive model

once the estimator has reached the vicinity of its steady state. To determine the

condition of the mth mode estimator, the following convergence criterion is used.

|ω̂m(k)− ω̂m(k − 1)| ≤ δm (5.18)

where k is the time base and δm is a positive small number. Using this convergence

criterion, the supervisor scheme (3.35) can be simplified to (5.18) in the M4ARC
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method. The value of δm is obtained empirically. If δm is large then the supervisor

will switch to the estimated parameters faster. However, if δm is too large the

supervisor may select the estimator’s outputs while they are still too far from the

steady-state condition. This results in poor transient performance.

The block diagram of M4ARC for controlling the first three modes of vibration

is shown in Fig. 5.3. The figure shows that for each mode, a supervisor is used

to update the parameters of the adjustable controller. The parameter from the

natural frequency estimator, ω̂, is loaded into the adjustable resonant controller

if criterion (5.18) is satisfied, otherwise the parameter from the closest fixed-

parameter model to the current loading condition, ω, is loaded into the controller.
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Figure 5.3: Block diagram of the M4ARC for controlling three modes.

The filter bank system and switching system are the same as those in the

M4RC method shown in Fig. 3.10 and Fig. 3.11, respectively. In the M4RC
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method, as stated in Section 3.5.2, a large number of fixed-parameter models

is required to span an operating region if all the possible loads are not a priori

known. Because of the two following reasons, however, the number of fixed-

parameter models in the M4ARC method can be significantly reduced.

1. The inclusion of an adaptive model. Because an adaptive model can change

its parameters, it can span a very large operating region. Therefore, once

the steady-state condition is achieved, one adaptive model can accurately

represent all of the possible loading conditions in the operating region.

2. The use of wide band band-pass-filters in the filter bank to represent the

fixed-parameter models. In the M4ARC method, the fixed-parameter mod-

els are used only to handle the transient conditions while the accuracy of

the model to represent the loading conditions is handled by the adaptive

model. Therefore, a band-pass-filter with a wider pass-band can be used in

the filter bank. In this way a small number of fixed-parameter models can

be used, as demonstrated in the following illustrative example.

Example 5.3.1

Similarly to Example 3.5.1, consider a resonant controller that is designed with

operating point 10 Hz and gain kd = 10. Change the damping ratio from ζc =

0.01 to ζc = 0.05 to obtain a wider pass-band. The frequency response of the

controller is shown in Fig. 5.4. The figure shows that a gain of more than 32

dB is still achieved for a 1 Hz variation of the operating point. Assuming that

a controller with a gain of 32 dB gives acceptable attenuation, then one model

for every 2 Hz variation of the operating point is required, as shown in Fig. 5.5.

The band-widths of the operating region from the unload condition to the fully

loaded condition in the experimental plant for the first three modes are 4.5 Hz,

19.2 Hz, and 41.3 Hz, respectively. Therefore, to span the operating region of the
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experimental plant the M4ARC requires 3, 10, and 21 fixed-parameter models for

the 1st, 2nd, and 3rd mode, respectively, or 34 models for the first three modes of

vibration. Compared to the number of models required for the M4RC method,

as illustrated in example 3.5.1, the number of models required in the M4ARC is

significantly reduced from 650 to 34 (a 95% reduction).

Figure 5.4: Frequency response of resonant controller with ζc = 0.05

and kd = 10.

M4ARC algorithm

The M4ARC algorithm for each mode is described by the following iterative

procedure

1. Sample the plant output y(k).
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……

Figure 5.5. Model array in the M4ARC model bank.

2. Compute the control signal um(k) using (3.13)

um(k) = Amy(k)+Bmy(k−1)+Cmy(k−2)−Dmum(k−1)−Emum(k−2).

(5.19)

3. Send the control signal um(k) to the plant.

4. Compute ω̂m(k) using (4.68)

ω̂m = 2fs

√
1 + a1m + a2m

1− a1m + a2m

. (5.20)

5. Compute |ω̂m(k) − ω̂m(k − 1)|. If the result ≤ δm then send ω̂m(k) to the

controller else send ωm to the controller.

6. Update the controller parameters Am, Bm, Cm, Dm and Em using (3.7) -

(3.11)

Am =
4f 2

s + 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (5.21)
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Bm =
−8f 2

s

4f 2
s + 4fsζcmωm + ω2

m

, (5.22)

Cm =
4f 2

s − 4fsζcmωm

4f 2
s + 4fsζcmωm + ω2

m

, (5.23)

Dm =
2ω2

m − 8f 2
s

4f 2
s + 4fsζcmωm + ω2

m

, (5.24)

Em =
4f 2

s − 4fsζcmωm + ω2
m

4f 2
s + 4fsζcmωm + ω2

m

, (5.25)

The final control signal u(k) is the summation of control signal for each mode as

in (3.12)

u(k) =
M∑

m=1

um(k)kdm. (5.26)

Closed-loop stability of M4ARC

Similar to M4RC method, the closed-loop stability of the M4ARC is guaranteed if

it is assumed that the intervals between successive switches have a nonzero lower

bound Tmin > 0, which can be chosen to be arbitrarily small [100]. The condition

in M4RC that there must be at least one controller in the controller bank that

can stabilize the system is not necessary in M4ARC because this condition is

automatically satisfied by the adaptive model once it comes close to the steady-

state condition.

In the following sections, the effectiveness of the proposed ARC and M4ARC

are evaluated through simulation and experimental studies.

5.4 Simulation Studies of ARC and M4ARC

In these simulation studies, the performances of the M4RC, ARC and M4ARC

methods are evaluated using the dynamically loaded cantilevered beam. The

simulation models of the plant, Model 1 to Model 4, are obtained from Chapter

2. The objectives of the simulation studies are twofold. Firstly, to demonstrate

that in contrast to the M4RC, the ARC is able to optimally attenuate the plant
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when the loading conditions are unknown. Secondly, to demonstrate that the

M4ARC can improve the transient performance of the ARC when there are large

and sudden changes to the plant parameters.

To achieve these two objectives, three simulation cases, namely M4ARC.1,

M4ARC.2, and M4ARC.3, are conducted. The M4ARC.1 case is designed to

achieve the first objective while the M4ARC.2 and M4ARC.3 cases are designed

to achieve the second objective. For all the cases, the M4RC, ARC and M4ARC

are designed and implemented to control the first three-modes. Each of the modes

in the M4RC and M4ARC is represented by a filter bank, and each filter bank

contains three band-pass filters representing the known loading models: Model 1,

Model 3, and Model 4, respectively. The loading condition is changed in accor-

dance with the model sequences as shown in Table 5.1. The parameters kd1, kd2,

and kd3 and ζ1, ζ2, and ζ3 for all the controllers are the same as the parameters

of the resonant controller described in Chapter 3. The natural frequency esti-

mator of the ARC has the same parameters as the natural frequency estimator

described in Chapter 4. To make sure that the supervisor selects the adaptive

model when the model is close to the steady-state condition (that is, within 90%

of the steady-state value), the parameters δ1, δ2, and δ3 in (5.18) for the M4ARC

are chosen to be 0.05 using a trial and error procedure. The sampling period T

is 1 kHz. The excitation signal is a summation of three sinusoids representing

the first three natural frequencies of the current model. Each sinusoid has an

amplitude of 1 volt.

Case Loading condition is BPFs in the filter bank of M4RC

represented by Model and M4ARC is based on Model

M4ARC.1 1→2→4 1,3,4

M4ARC.2 1→3→4 1,3,4

M4ARC.3 1→4→1 1,3,4

Table 5.1: Plant and controller configuration for three different simu-

lation study cases.
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M4ARC.1 case

In the M4ARC.1 case, model 2 is deliberately not represented in the three filter

banks, so as to allow the performances of the controllers with unmodeled dynamics

to be assessed. The responses of the three control methods in the time domain

are shown in Fig. 5.6. Plots (a), (b), and (c) represent the response of the M4RC,

ARC and M4ARC, respectively. The plots show that ARC and M4ARC produce

a comparable response, while the M4RC fails to give the optimum attenuation

when the Model 2 loading condition occurs. M4ARC cannot improve the transient

response of the ARC because all of the fixed-parameter models (i.e., Model 1,

Model 3 and Model 4) in the filter bank are significantly different from Model

2. When the loading condition changes to model 4, however, it can be seen that

M4ARC improves the transient response of the ARC. The overshoot percentage

and settling time are reduced from 685 % and 2.5 seconds, respectively in the

ARC to 187 % and 0.6 seconds, respectively in the M4ARC.

Figure 5.7 shows how the M4ARC switches between models in response to

parameter changes. For the sake of clarity, the behaviour of each mode controller

is shown separately. Labels, 1 to 4, on the Y-axes refer to the known fixed-

parameter models, and label 5 refers to the adaptive model. From the figure, it

can be seen that for each mode the system switches to the controller with the

closest matching centre frequency while the adaptive model is still in the transient

phase. The system switches to the adaptive controller once the adaptive model

reaches the steady-state condition.

M4ARC.2 and M4ARC.3 cases

In the M4ARC.2 and M4ARC.3 cases, all the loading conditions are represented

in the filter bank. To demonstrate that transient response improvement is more

significant for large changes, the loading condition is changed directly from Model

1 to Model 4 in the M4ARC.3 case. This loading change produces larger param-
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Model 1 Model 2
Model 4

Figure 5.6: Simulation responses of the (a) M4RC, (b) ARC and (c)

M4ARC for the 1 → 2 → 4 model sequence.

Model 1 Model 2 Model 4

Figure 5.7: M4ARC switching behaviour for the 1 → 2 → 4 model

sequence.
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eter variations compared to when the loading condition changes gradually from

Model 1 to Model 3 and then to Model 4, as in the M4ARC.2 case.

Fig. 5.8 and Fig. 5.9 show the comparison of the three control methods

for the M4ARC.2 and M4ARC.3 cases, respectively. From the figures, it can be

seen that when all the loading conditions are included in the filter banks of the

M4RC and M4ARC, both controllers give better transient performance than the

ARC. The maximum overshoot percentage (Mo) and the settling time (Ts) of the

ARC and M4ARC for different loading model changes are shown in Table 5.2.

The table shows that the M4ARC improves the overshoot and settling time of

the ARC when a large and sudden change occurs in the loading condition. The

improvement is especially significant for the largest sudden change in the plant

parameters when the loading condition changes from 1→ 4. This table also shows

that the overshoot and settling time responses of the ARC when the loading

conditions change from 1 → 4 and from 4 → 1 are significantly different. The

overshoot response when the system releases the loads (i.e., change from Model 1

to Model 4) is larger than when the system picks up the loads (i.e., change from

Model 4 to Model 1). This is because the damping of the system is decreased

when the system releases the loads, causing a large overshoot. Conversely, the

damping of the system is increased when the system picks up the loads and thus

no large overshoot occurs even though the system experiences a large parameter

variation.

Mo (%) Ts (seconds)

Changes of Model ARC M4ARC ARC M4ARC

1→3 286 200 2.5 1

3→4 542 332 3 0.8

1→4 950 320 3.5 0.8

4→1 228 110 3.3 0.9

Table 5.2: Maximum overshoot percentage and settling time of ARC

and M4ARC for different loading changes.
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Model 1 Model 3 Model 4

Figure 5.8: Simulation responses of the (a) M4RC, (b) ARC and (c)

M4ARC for the 1 → 3 → 4 model sequence.

Model 1
Model 4 Model 1

Figure 5.9: Simulation responses of the (a) M4RC, (b) ARC and (c)

M4ARC for the 1 → 4 → 1 model sequence.
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The switching behaviour of the M4ARC for the M4ARC.2 and M4ARC.3 cases

are shown in Fig. 5.10 and Fig. 5.11, respectively. Fig. 5.11 shows that when

the loading is increased (i.e., 4 → 1), the controller continues to use the fixed-

parameter model for a longer period than when the loading is decreased (i.e., 1

→ 4). This behaviour shows that the estimator converges faster when the system

releases the load as opposed to when the system picks up the load. The switching

behaviour also reveals that as a result of the multi-rate sampling scheme, the

estimators for the lower modes, which use a longer sampling period, take a longer

time to settle than the estimators for the higher modes. Consequently with the

M4ARC, the transient times for the lower modes are longer than those for the

higher modes.

Model 1 Model 3 Model 4

Figure 5.10: M4ARC switching behaviour for the 1 → 3 → 4 model

sequence.

From the simulation cases, it is observed that the M4RC gives the best per-

formance if all the possible loading conditions are represented in the filter banks,

but gives poor performance for unmodeled loading conditions. As expected, the
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Model 1 Model 4 Model 1

Figure 5.11: M4ARC switching behaviour for the 1 → 4 → 1 model

sequence.

M4ARC improves the transient response of the ARC when large and sudden

changes in the loading conditions occur provided that at least one model in the

filter bank is close enough to the new unknown loading condition. Since it is

impractical in real applications to construct a fixed-parameter multi-model reso-

nant controller that can accommodate all possible loading conditions and allow

for drift of the model parameters, the M4ARC method offers the best compromise

in terms of transient performance and load matching.

5.5 Experimental Studies

To verify the results obtained from the simulations, the performances of the ARC,

M4RC, and M4ARC are evaluated on the physical beam system in the following

experiments. All the controllers used in the simulation studies are implemented on

a dSPACE DS1103 data acquisition board using Matlab, Simulink, and Real-Time



CHAPTER 5. ADAPTIVE RESONANT CONTROL 200

Workshop software to build a real-time experiment. The schematic diagram of the

experimental set-up is the same as that shown in Fig. 3.34 in Chapter 3. The three

simulation cases M4ARC.1 to M4ARC.3 are repeated in the experiments. For the

M4ARC.1 and M4ARC.2 cases in the experiments, however, the controllers are

turned on and off at several instants to compare the open-loop and closed-loop

responses of the three control methods. Furthermore, due to the limitation of the

experimental apparatus, the M4ARC.3 case in the experiments can only change

the loading condition by releasing the load (i.e., Model 1→ 4), and not by picking

up the load (i.e., Model 1 → 4).

M4ARC.1 case

The performances of the three control methods are shown in Fig. 5.12. The figure

shows that the performance of the M4RC is very poor compared to those of the

ARC and M4ARC when the Model 2 loading condition is encountered. This case

shows that the fixed-parameter controller M4RC is unable to control unknown

models. However when the loading changes to Model 4, it can be seen that the

M4RC and M4ARC produce better transient performance than the ARC. The

maximum overshoot and settling time of the systems are reduced from 607 %

and 7 seconds, respectively, for the ARC to 362 % and 4 seconds, respectively,

for the M4ARC.

The switching behaviour of the M4ARC is shown in Fig. 5.13. By the onset of

each of the three load sequences, the natural frequency estimator has already de-

termined the three mode frequencies before the controller is turned on - hence the

adaptive model parameter set, 5, is initially selected for the adjustable controller.

Fig. 5.13 reveals that for each mode the system selects the fixed-parameter model

closest to the current loading conditions when the adaptive model is in the tran-

sient condition and switches to the adaptive model once the adaptive model

reaches steady-state.
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Figure 5.12: Responses of the (a) M4RC, (b) ARC and (c) M4ARC for

the 1 → 2 → 4 model sequence.

Model 1 Model 2 Model 4

Figure 5.13: M4ARC switching behaviour for the 1 → 2 → 4 model

sequence.
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M4ARC.2 and M4ARC.3 cases

The performances of all the control methods for the M4ARC.2 and M4ARC.3

cases are shown in Figs. 5.14 and 5.15, respectively. Since all the loading condi-

tions are represented in the filter banks of M4RC and M4ARC, both controllers

give equally better performance than the ARC. The transient responses of the

system, as measured by the overshoot and settling time, are improved with the

M4ARC relative to ARC, as is shown in Table 5.3. In the M4ARC.2, when the

loading condition changes from 1 → 3, the differences in performance between

the three control methods are not as clear as when the loading condition changes

from 3 → 4. This is because the changes in parameters from 1 → 3 are smaller

than those from 3 → 4. However, when the loading changes to Model 4, M4ARC

outperforms ARC in terms of transient performances. This observation is rein-

forced in the M4ARC.3 cases which produce the largest sudden changes in the

plant parameters. The corresponding responses shown in Fig. 5.15 demonstrate

that the M4ARC has an improved transient performance relative to that of ARC.

Mo (%) Ts (seconds)

Changes of Model ARC M4ARC ARC M4ARC

1→3 359 253 3 3

3→4 590 302 6 3

1→4 478 239 8 7

Table 5.3: Maximum overshoot percentage and settling time of ARC

and M4ARC for different loading changes.

Figs. 5.16 and 5.17 show the controller switching behaviour for the three

modes of the M4ARC method for the M4ARC.2 and M4ARC.3 cases, respec-

tively. Fig. 5.16 reveals that for the loading sequence 1 → 3 → 4, the system

momentarily switches to the fixed-parameter Model 1 when the load changes from

1 → 3, then switches to the fixed-parameter Model 3, before finally settling with

the adaptive model, 5, once the adaptive model reaches steady-state. For the load
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Figure 5.14: Responses of the (a) M4RC, (b) ARC and (c) M4ARC for

the 1 → 3 → 4 model sequence.

model change

Figure 5.15: Responses of the (a) M4RC, (b) ARC and (c) M4ARC for

the 1 → 4 model sequence.
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Model 1 Model 3 Model 4

Figure 5.16: M4ARC switching behaviour for the 1 → 3 → 4 model

sequence.

Model 1 Model 4

Figure 5.17: M4ARC switching behaviour for the 1 → 4 model se-

quence.
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change 3→ 4, the controllers for modes 2 and 3 first switch to the fixed-parameter

Model 3, then to the fixed-parameter Model 4 before settling on the newly es-

timated adaptive model. Fig. 5.17 demonstrates the switching behaviour under

the extreme loading change 1 → 4. For the first mode, the system switches from

Model 1 to Model 3 and onto Model 4, whereas for modes 2 and 3, the controllers

switch directly from Model 1 to Model 4. All the switching behaviours demon-

strate that while the estimator is in the transient phase, each mode controller will

independently switch to the model with centre frequencies that are closest to the

frequencies of the vibration and then eventually switch to the estimated model

parameters once the mode estimator attains steady-state. In agreement with the

simulation results, the switching diagrams in the experimental results show that

the estimator for the lower modes takes longer to settle than the estimator for the

higher modes. The experimental results also reveal that the proposed switching

scheme avoids undesirable rapid switching.

The experimental apparatus only allows the load(s) to be released. However,

in principle the proposed methods should also work for systems with incremental

loading, as shown in the M4ARC.3 cases in the simulations.

5.6 Summary

In this chapter, the ARC method is proposed to improve the attenuation per-

formance of resonant control by enabling it to control multi-mode vibration in

systems with unknown loading conditions. The ARC method is necessary because

the M4RC method fails to give optimum performance for unknown loading con-

ditions. The ARC method is developed by combining a resonant controller with

a natural frequency estimator, and is implemented as an STR indirect adaptive

control method. The M4ARC method is then proposed to improve the ARC’s

transient response. The M4ARC method is designed by including an adaptive
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model in the M4RC model bank. A simple supervisor, which makes use of a

filter bank to identify the closest matching model and the measurement natu-

ral frequency estimator’s output, is proposed to control the switching between

the fixed-parameter models and the adaptive model. The proposed supervisor

significantly reduces the computational load and avoids unwanted switching.

Simulations and experiments based on the dynamically loaded cantilever beam

with multiple-frequency excitation demonstrate that the proposed ARC has good

attenuation performance, while the proposed M4ARC has both good attenuation

performance and transient performance.

The proposed M4ARC method provides a basis for a controller that with

a minimum number of sensor-actuator pairs is robust to unmodeled dynamics,

able to respond quickly to large and sudden load changes and is simple enough

for real-time implementation. This method offers a solution to a broad range

of control problems where a high performance controller working to stringent

transient performance requirements is required to accommodate large variations

to a system parameters.


