
Chapter 2

Modelling of Flexible Structures

In this chapter, the design and implementation of the experimental plant and

the models used to simulate the experimental plant are discussed. The purpose

for the modeling is outlined and the reasons for choosing the experimental plant,

and the modeling steps, are given. The description of the cantilever beam used

in the experimental plant is followed by a description of the analytical method

used to obtain the mathematical models of the plant. The implementation of the

simulation models is then discussed.

2.1 Introduction

As mentioned in Chapter 1, an experimental plant together with its mathemat-

ical representation are required as a design and evaluation tool for the proposed

controllers.

Once the experimental plant is selected, modeling methods can then be ap-

plied to find models that represent the experimental plant. Using these models

the dynamics of the plant can be studied. As all of the proposed control methods

employ natural frequency as the controller parameter, the modeling methods are

focused on finding models with accurate representations of the natural frequencies

of the systems studied.
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The mathematical model of a flexible structure is derived using fundamental

theories of physics and mathematics such as Newton’s laws, Hooke’s laws, La-

grange’s equations, Hamilton’s principle, etc. The mathematical model that is

obtained is known as the equation of motion, which is usually given in the form of

a Partial Differential Equation (PDE). To determine the dynamics of the model,

the solution of the PDE needs to be found. There are two common methods

used to find the solution of the PDE: the analytical method and the numerical

method.

The analytical method gives an exact solution of the PDE. The solution is in

a closed form and is expressed in terms of known functions. Although analytical

methods can be used to very accurately describe the dynamics of structures, the

types of applications where this method can be applied are limited. The analyt-

ical method is only applicable for systems that are characterized by uniformly

distributed parameters and simple boundaries [92]. In many cases, even though

closed-form solutions may be possible, great effort and time are required to obtain

them. Therefore in practice the analytical method has fewer application areas

than the numerical method.

In the numerical method, a discrete version of the model is produced. The spa-

tial dependence in the solution of the PDE is eliminated by applying spatial dis-

cretization and the differential eigenvalue problems are transformed into an alge-

braic form [91]. Several methods exist for constructing the discrete model [27, 91,

92]: Rayleigh’s method, Rayleigh-Ritz’s method, Galerkin’s method, assumed-

modes method, collocation method, Holzer’s method, Myklestad’s method and

the finite element method (FEM). FEM is currently the most widely used method

for representing discrete models [92]. The FEM package ANSYSTM is used here

to study the dynamics of the structures. Due to the use of approximation, numer-

ical methods do not give the same exact results as analytical methods. However,
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improvements in the computational power of computers and improvements to

approximation algorithms have led to accuracy improvements for the numerical

method.

Computer simulation is an important step in the control design process. It

provides a flexible and relatively inexpensive means by which to study the dynam-

ics of a plant, design controllers, and evaluate the performances of the controllers

prior to their implementation in an actual system. The computer based simu-

lation tool SimulinkTM is used for the simulations. To use Simulink simulation

models derived from the modification of the mathematical models obtained from

the analytical method or from the modification of the numerical models obtained

from the numerical method, need to be implemented.

The implementation of the models is undertaken in four steps. In the first step,

the experimental plant (experimental models), which consists of the cantilevered

beam and associated loads is built. In the second step, analytical models of

the experimental models are derived. In the third step, numerical models of

the experimental models are built using ANSYS. The numerical models are then

compared with the analytical models and the experimental models to determine

their accuracy. In the fourth step, the numerical models are used to construct

the simulation models in Simulink.

2.2 Description of Experimental Plant (Experi-

mental Model)

A cantilever beam carrying relatively heavy loads mounted along the beam can

serve as a basic representative model for a number of flexible structures such as

robot arms and aircraft wings [137, 138]. If the loading on the structure is changed

the natural frequencies of the system will change. Depending on the locations

and mass of the loads, relatively drastic changes in the natural frequencies can
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be experienced.

For a cantilever beam, the sensitivity of a sensor to different modes of vi-

bration, and the authority of an actuator in attenuating the different modes of

vibration are determined by the position of the sensor-actuator pair along the

beam. For an actuator to have maximum authority over a specific mode it must

be placed at the position where the curvature is maximum for that particular

mode [27]. The same also applies for the sensitivity of the sensor. Because there

is a high average strain at the root of a cantilever structure, maximum sensitivity

and control authority can be achieved by placing the sensor-actuator pair close

to the root of the structure [42, 63, 153].

The schematic of the experimental plant is shown in Fig. 2.1. A uniform mild

steel beam with two identical bonded piezoceramic patches, and two magnetically

clamped loads, M1 and M2 are mounted in a cantilever arrangement to a concrete

block. The piezoceramics are 50mm×50mm PSI-5A4E, 1.02 mm thick patches,

placed 1 cm from the root of the beam in order to obtain the maximum sensitivity

and control authority. The top patch is used as an actuator and the bottom patch

is used as a sensor. The properties of the beam are shown in Table 2.1.

Property Notation Value

Length L 500 (mm)

Width w 50 (mm)

Thickness h 3 (mm)

Mass m 589.5 (gram)

Cross section area A 150 (mm2)

Mass density ρ 7860 (kg/m3)

Elastic modulus E 210 (GPa)

Table 2.1. Properties of the beam.

From this configuration, four different experimental models with different

loading conditions are tested. The models referred to as Model 1, Model 2,

Model 3 and Model 4 are illustrated in Figs. 2.2(a), (b), (c) and (d), respectively.
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Figure 2.1. Plant with a collocated sensor-actuator pair.

The parameters of the models are shown in Table 2.2. In Model 1, two masses M1

and M2 are attached at x1 and x2, respectively. In Model 2 only M2 is attached

to the beam. In Model 3 only M1 is attached to the beam. Model 4 is a cantilever

beam with no attached masses. The positions of x1 and x2 are chosen arbitrarily

within the broad consideration that the closer the attached masses are to the free

end of the beam the lower the natural frequencies of the structures.

Parameter Notation Value

Position of load 1 x1 350 (mm)

Mass of load 1 M1 283.3 (gram)

Position of load 2 x2 475 (mm)

Mass of load 2 M2 193.4 (gram)

Table 2.2. Model parameters.

The natural frequencies of the experimental models are the most important

parameters to be considered for the proposed control methods. Therefore, a series

of experiments are undertaken to measure the natural frequencies of the four

experimental models. The natural frequencies are obtained by applying a sweep
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Figure 2.2. Loading model configurations.

signal to each model. The amplitude of the vibration is then measured against the

frequency of the signal. The frequencies where the amplitude of vibration forms

a peak are the natural frequencies of the models. In the experiments, a sweep

signal from a signal generator is amplified using an in-house built piezo power

amplifier, and the output from the amplifier is applied to the piezoactuator.

The maximum output from the piezosensor is of the order of 500 volts. The

piezosensor’s output is attenuated by 100 using a differential probe, HZ115 from

Hameg InstrumentsTM . The attenuation is necessary in order to make the signal

level suitable for input to the analog-to-digital converter. Experiments show that

the dominant modes for all the experimental models are the first three modes.

The frequencies for the first three modes are shown in Table 2.3.

The table shows that frequencies for the first mode of all four experimental

models are separated by more than one decade from their corresponding third

mode frequencies. This confirms that the experimental plant is wide-band, which
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Model Natural frequency (Hz)

1 6

44.8

132.7

2 7.1

53.7

155.1

3 8.1

59.4

147.5

4 10.5

64

174

Table 2.3: The first three natural frequencies of the experimental mod-

els.

is one of the requirements for the plant used in this research. It is also observed

that the added loads make the first three natural frequencies decrease by as much

as 43.4%, 30.0%, and 27.0%, respectively. The changes to the frequency response

as the model changes are shown in Fig. 2.3. From the figure it can be seen

that the added loads not only change the natural frequencies but also change the

magnitudes of the vibration at each natural frequency. The figure also reveals

the highly resonant characteristic of the flexible structure.

In the next section analytical models of the experimental model will be de-

rived.

2.3 Analytical Model

Two steps are used in building an analytical model of vibrating structures: (i)

formulating the physical dynamics of the plant, and (ii) finding the solution of the

dynamic formulation. The dynamics of the plant are formulated in the language

of mathematics to form equations of motion, which for distributed parameter

systems such as flexible beams are typically given in the form of a PDE. To solve
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Figure 2.3: Change of frequency responses for various loading condi-

tions.

this PDE, two analytical methods, the modal approach and the wave approach,

are commonly used [27]. All the proposed control methods considered in this

research are based on modal control. Therefore, to obtain suitable models for the

proposed modal-based controllers, the modal approach is used to solve the PDE

for the experimental models.

This section is divided into two subsections. In the first subsection, an equa-

tion of motion for flexural vibration in a cantilever beam is derived. In the second

subsection, modal analysis is used to find the solution of the equation of motion.

2.3.1 Flexural Vibration of Beams

Flexural vibration can occur in many structures such as aircraft wings, robot ma-

nipulators, bridges and buildings. In structures where the thickness is relatively

small compared to the length and width, flexural vibration is usually more critical

to structural integrity than other vibration such as axial vibration and torsional

vibration [35]. In the experimental plant, the cantilever beam that is used is

thin and relatively long. Hence the torsional and axial vibration in this structure
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is negligible compared to the flexural vibration. The research here is concerned

with controlling the flexural vibration of the structure. Hence, the equation of

motion derived here is only for the flexural vibration.

Consider a thin beam of length L with cross-sectional area A, as shown in Fig.

2.4, whose density and flexural rigidity at point x are ρ(x) and EI(x), respectively.

The distributed transverse force is f(x, t). The following assumptions are valid

for the beam:

1. The material follows Hooke’s Law.

2. The shear deformation is negligible compared to the bending deformation.

3. The rotation of the element is negligible compared to the vertical/transverse

translation.

The free-body diagram of an element dx is shown in Fig. 2.5, where Q denotes

the shearing force and M the bending moment. Applying Newton’s second law

to vertical force components (y direction) gives(
Q(x, t) +

∂Q(x, t)

∂x
dx

)
−Q(x, t) + f(x, t)dx = ρA(x)dx

∂2y(x, t)

∂t2
(2.1)

which is equivalent to

∂Q(x, t)

∂x
+ f(x, t) = ρA(x)

∂2y(x, t)

∂t2
. (2.2)

The moment equation of motion about the axis normal to x and y (out-of-the

page direction) is(
M(x, t) +

∂M(x, t)

∂x
dx

)
−M(x, t) +

(
Q(x, t) +

∂Q(x, t)

∂x
dx

)
dx

+f(x, t)dx
dx

2
= 0. (2.3)

The terms involving the second power in dx are negligible. Cancelling M(x, t) in

(2.3) and disregarding the terms involving the second power in dx, the shearing
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force in terms of the bending moment is

Q(x, t) = −∂M(x, t)

∂x
. (2.4)

Using the relation from (2.4), (2.2) becomes

−∂2M(x, t)

∂x2
+ f(x, t) = ρA(x)

∂2y(x, t)

∂t2
. (2.5)

From the theory of beam bending, the bending moment can be related to the

deflection as [120]

M(x, t) = EI(x)
∂2y(x, t)

∂x2
. (2.6)

By inserting (2.6) into (2.5), the equation of motion for the forced flexural vibra-

tion could be described as

∂2

∂x2

(
EI(x)

∂2y(x, t)

∂x2

)
+ ρA(x)

∂2y(x, t)

∂t2
= f(x, t). (2.7)

The experimental plant is a uniform beam. Therefore, (2.7) can be simplified to

EI
∂4y(x, t)

∂x4
+ ρA

∂2y(x, t)

∂t2
= f(x, t). (2.8)

The PDE (2.8) describes the deflection of the beam y(x, t) for different positions

x at different times t. To find a unique solution for y(x, t) from (2.8), two initial

conditions and four boundary conditions are needed. The boundary conditions

for the models of the experimental plant in this research are [120]

• Fixed at the left end (x = 0): The deflection and the slope of the deflection

at the left end are zero.

y(0, t) = 0,

∂y(0, t)

∂x
= 0. (2.9)

• Free at the right end (x = L): The shearing force and the bending moment

at the right end are zero.
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EI
∂2y(L, t)

∂x2
= 0,

∂

∂x

(
EI

∂2y(x, t)

∂x2

)∣∣∣∣∣
(L,t)

= 0. (2.10)

• A mass (M) attached at the right end (x = L): The shearing force at the

right end is zero, the bending moment at the right end is equal to the tensile

force caused by the lumped mass (M).

EI
∂2y(L, t)

∂x2
= 0,

∂

∂x

(
EI

∂2y(x, t)

∂x2

)∣∣∣∣∣
(L,t)

= M
∂2y(L, t)

∂t2
. (2.11)

To find the solution of PDE (2.8) for all the experimental models, modal analysis

is used.

2.3.2 Modal Analysis

Modal analysis can be used to solve the PDE that describes the equation of

motion of a structure [27, 45, 66, 91, 92]. The solution is obtained by first solving

the eigenvalue problem for the PDE to produce a set of orthogonal functions

known as eigenfunctions. The eigenfunctions are the basis functions used to

describe the dynamics of the structure. The orthogonality of the eigenfunctions

allows one to replace the PDE with the superposition of an infinite number of

decoupled second-order ordinary differential equations (ODE). Each decoupled

ODE represents the motion of the structure for a specific mode of vibration, which

is characterized in terms of a natural frequency, mode shape, and damping. To

find the natural frequency of the structure, a frequency equation is generated from

the eigenfunctions and the boundary conditions. Two methods that are widely

used to find the frequency equation are the frequency determinant method and the

Laplace transforms method [85, 86]. While the mode shape and natural frequency

can be found either analytically or experimentally, the damping parameter can
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only be found experimentally [45]. Modal analysis is used here to find analytical

models for the experimental plant. To find the frequency equation, the frequency

determinant method is used.

Consider the typical PDE for flexible structures

L [y(x, t)] + C
[
∂y(x, t)

∂t

]
+M

[
∂2y(x, t)

∂t2

]
= f(x, t). (2.12)

L and M are linear homogeneous differential operators of order 2p and 2q re-

spectively and q ≤ p. Here, x is the spatial coordinate, which is defined over a

domain D. The general arbitrary input is denoted by f , which is distributed over

D. The boundary conditions corresponding to PDE (2.12) can be expressed as

Bi [y(x, t)] = 0, i = 1, 2, ..., p (2.13)

where Bi is a linear homogeneous differential operator of order less than or equal

to 2p− 1.

In many practical structures, it is sufficiently accurate to assume proportional

damping for the purposes of estimating the natural frequencies and mode shapes

of the structures [45]. Proportional damping is a special type of damping where

the damping matrix is proportional to the mass and stiffness matrices. By as-

suming proportional damping, C can be defined as a linear combination of the

mass and stiffness operators, L and M

C = c1L+ c2M, (2.14)

where c1 and c2 are non-negative constants. The advantage of using proportional

damping is that the mode shapes (eigenfunctions) for both the damped and un-

damped cases are the same and the natural frequencies (eigenvalues) are also very

similar [45]. Therefore, the eigenfunctions ym(x) can be obtained by solving the

eigenvalue problem associated with undamped version of (2.12)

L [ym(x)] = λmM [ym(x)] , m = 1, 2, ... (2.15)
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and its associated boundary conditions (2.13). The natural frequencies ωm are

determined from the eigenvalues

λm = ω2
m. (2.16)

To be used as the basis function to find the solution of PDE (2.12), the eigen-

functions need to be orthogonal. To develop the general principle of orthogonality,

define the self-adjoint eigenvalue problem. For any two arbitrary eigenfunctions

ym(x) and yn(x), the eigenvalue problem is self-adjoint if [27]

∫
D

ym(x)L [yn(x)] dD(x) =
∫
D

yn(x)L [ym(x)] dD(x) (2.17)

and ∫
D

ym(x)M [yn(x)] dD(x) =
∫
D

yn(x)M [ym(x)] dD(x). (2.18)

Now, let ω2
m and ω2

n be two distinct eigenvalues with corresponding eigenfunctions

ym(x) and yn(x) resulting from the solution of the self-adjoint eigenvalue problem.

Then the generalized condition of the orthogonality equation can be obtained as

∫
D

ym(x)M [yn(x)] dD(x) = 0, for ω2
m 6= ω2

n. (2.19)

From the eigenvalue problem, it follows that

∫
D

ym(x)L [yn(x)] dD(x) = 0, for ω2
m 6= ω2

n. (2.20)

For simplicity, the eigenfunctions are typically normalized with respect to M

such that ∫
D

ym(x)M [yn(x)] dD(x) = δmn, (2.21)

where δmn is the Kronecker delta function, where δmn = 1 for m = n, and zero

otherwise. Thus, (2.20) can be written as

∫
D

ym(x)L [yn(x)] dD(x) = δmnω
2
m. (2.22)
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Since proportional damping is assumed,

∫
D

ym(x)C [wn(x)] dD(x) = c1δmnω
2
m + c2δmn (2.23)

which can be written as

∫
D

ym(x)C [wn(x)] dD(x) = δmn2ζmωm (2.24)

with

ζm =
1

2ωm

(c1ω
2
m + c2) (2.25)

where ζm is damping ratio of the mode m. Equations (2.21), (2.22), and (2.24)

are orthonormal eigenfunctions which form a basis that span the solution space

of the eigenvalue problem. Thus, the response of the system can be computed at

any arbitrary point in the domain D as a superposition of these basis functions

[27]

y(x, t) =
∞∑

m=1

ym(x)qm(t), (2.26)

where qm(t) are the generalized coordinates.

To solve PDE (2.12) using modal analysis, substituting (2.26) into (2.12), one

obtains

L
[ ∞∑

m=1

ym(x)qm(t)

]
+ C

[
∂

∂t

∞∑
m=1

ym(x)qm(t)

]

+M
[

∂2

∂t2

∞∑
m=1

ym(x)qm(t)

]
= f(x, t). (2.27)

Multiplying (2.27) by yn(x) and integrating over the domain D, gives

∞∑
m=1

qm(t)δmnω
2
m +

∞∑
m=1

q̇m(t)δmn2ζmωm +
∞∑

m=1

q̈m(t)δmn = Qn(t) (2.28)

where

Qn(t) =
∫
D

yn(x)f(x, t)dD(x) (2.29)

is defined as the nth generalized force. Taking advantage of the orthogonality

conditions (2.22), (2.21) and (2.24), the summation in (2.28) only holds when
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m = n. Thus, one obtains an infinite set of uncoupled ordinary differential

equations

q̈m(t) + 2ζmωmq̇m(t) + ω2
mqm(t) = Qm(t), m = 1, 2, ... (2.30)

From (2.30) it can be seen that the system is described by an infinite set of

second-order differential equations that can be solved independently.

In control design, due to the versatility of the frequency domain method, the

frequency domain model is often required. The solution to each second-order

differential equation in the frequency domain can be found using Laplace trans-

forms. In many cases, the generalized force Qm can be written as a decomposition

of the spatial and temporal components [96]

Qm(t) = Pmu(t), (2.31)

where u(t) is the input to the system and Pm is the time-independent forcing

term. Taking the Laplace transform of the second-order equation (2.30), the

transfer function of the system can be shown to be

G(s, x) =
∞∑

m=1

ym(x)Pm

s2 + 2ζmωms + ω2
m

. (2.32)

Equation (2.32) is an infinite-dimensional transfer function due to the existence

of an infinite number of modes. This is a general solution for PDE (2.12). The

solution for a particular structure is then solved by finding the eigenfunction (ym),

the natural frequency (ωm), and the structural damping (ζm). The solutions for

the experimental models are now discussed. The solution for the cantilever beam

without loads is solved first, followed by the solution for the cantilever beam with

loads located at arbitrary positions along the beam. In finding the solutions the

following assumptions are made:

1. The beam is perfectly clamped to the concrete.
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2. The effects of the cables connected to the magnetically clamped loads on

the dynamics of the structure can be ignored.

3. The masses of the piezoceramic patches are negligible compared to the

mass of the beam and the masses of the loads, thus the loading effects of

the piezoceramic patches on the dynamics of the structure can be ignored.

4. The placement of the loads are accurately positioned and the loads are

perfectly clamped to the beam.

Solution for a cantilevered beam

Consider a cantilevered uniform beam of length L where a point force u is acting

at point x = x1 as shown in Fig. 2.6. For a linear system, such as the experimental

plant in this research, the solution for general excitation can be obtained from

the solution with a point force. The PDE that describes the dynamics of the

beam is (2.8), and the boundary conditions are described as in (2.9) and (2.10).

For a uniform beam the boundary conditions in (2.9) and (2.10) can be written

as

y(0) = 0,

dy(x)

dx

∣∣∣∣∣
x=0

= 0,

d2y(x)

dx2

∣∣∣∣∣
x=L

= 0,

d3y(x)

dx3

∣∣∣∣∣
x=L

= 0. (2.33)

Comparing the general notations in (2.12) and (2.13) with the notations in (2.8)

and (2.33) one obtains

L = EI
∂4

∂x4
,

M = ρA,

...
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Figure 2.6. A cantilever beam.

B1 = 1,

B2 = EI
∂2

∂x2

f(x, t) = u(t)δ(x− x1) (2.34)

and D = [0, L]. C is defined as in (2.14) to include damping in the structure.

Using (2.34), the orthogonality conditions (2.21) and (2.22) can be written as

L∫
0

ym(x)yn(x)ρAdx = δmn, (2.35)

L∫
0

ym(x)y
′′′′

n (x)EIdx = δmnω
2
m, (2.36)

where ym and ωm are the solutions to the eigenvalue problem (2.15). The general

solution to the eigenvalue problem (2.15) is [27, 120]

ym(x) = C1m cos βmx + C2m sin βmx + C3m cosh βmx + C4m sinh βmx, (2.37)

where

β4
m =

ρAω2
m

EI
(2.38)
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and C1m, C2m, C3m and C4m are constants. The constants C1m, C2m, C3m and

C4m can be found from the boundary conditions.

To find the frequency equation for the cantilevered beam, apply the frequency

determinant method to the eigenfunctions (2.37) and the boundary conditions

(2.33). Dropping the subscript m in (2.37) to simplify the notation, and substi-

tuting it into the first and the second rows of (2.33) yields

y(0) = 0 = C1 + C3,

dy(x)

dx

∣∣∣∣∣
x=0

= 0 = β(C2 + C4). (2.39)

Using results from (2.39), (2.37) can be simplified to

y(x) = C1(cos βx− cosh βx) + C2(sin βx− sinh βx). (2.40)

Substituting (2.40) into the third and fourth rows of (2.33), results in the following

two homogeneous equations

d2y(x)

dx2

∣∣∣∣∣
x=L

= 0

= −β2 × [C1(cos βL + cosh βL) + C2(sin βL + sinh βL)] ,

(2.41)

and

d3y(x)

dx3

∣∣∣∣∣
x=L

= 0

= −β3 × [C1(sinh βL− sin βL) + C2(cos βL + cosh βL)] .

(2.42)

For a nontrivial solution of C1 and C2 from (2.41) and (2.42), the determinant of

their coefficients must be zero, i.e.,∣∣∣∣∣ (cos βL + cosh βL) (sin βL + sinh βL)

β(sinh βL− sin βL) β(cos βL + cosh βL)

∣∣∣∣∣ = 0. (2.43)
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Solving the determinant gives the frequency equation

cos βL cosh βL = −1. (2.44)

The roots βmL are found by inserting the subscript m into β in (2.44) and solving

(2.44). Applying βmL into (2.38), gives the natural frequency of vibration

ωm = (βmL)2

√
EI

ρAL4
, m = 1, 2, ... (2.45)

Furthermore, solving (2.41) for C2 in terms of C1 and substituting it into (2.40),

the equation of modes shapes is obtained as

ym(x) = Cm ×[
(sin βmx− sinh βmx)− (sin βmL + sinh βmL)

(cos βmL + cosh βmL)
(cos βmx− cosh βmx)

]
.

(2.46)

The coefficient Cm can be obtained by substituting (2.46) into the orthogonality

conditions (2.35) and (2.36). After finding the eigenfunction (ym) and the natu-

ral frequencies (ωm), introduce damping into the system, where ζm denotes the

damping ratio associated with mode m. Then following (2.32), the transfer func-

tion from the applied force U(s) to the transverse deflection of the beam Y (s, x)

is found to be

Y (s, x)

U(s)
=

∞∑
m=1

ym(x)ym(x1)

s2 + 2ζmωms + ω2
m

(2.47)

where ym(x) and ym(x1) are the mth eigenfunctions at the degrees of freedom x

and x1 respectively.

Solution for a cantilevered beam with attached masses at arbitrary

positions

The analysis of a beam carrying multiple concentrated masses has been of interest

to researchers since the late sixties [10, 80, 83, 84, 85, 86, 139]. This is due to the

fact that the problem of a beam carrying concentrated masses is widely found
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in engineering applications such as robotics, aerospace, railway bridges and long

highway bridges. Analytical methods and numerical methods can be used to

obtain the natural frequencies of beam structures. Stanĭsić and Hardin [139]

developed a method based on Fourier analysis to solve the natural frequencies

of a simply supported beam carrying a moving mass. The equation of motion

is given in terms of δ-dirac functions and is solved through the use of the first

term Fourier finite sine and cosine series. Due to the use of the first term series

approximation only, this method gives inaccurate results. Approximation using

higher terms can only be solved numerically because the solution is not in a

closed form. Other methods use the Laplace transform [36, 80] and a combined

analytical and numerical method [151]. In the Laplace transform method, the

effect of the attached masses is expressed by the use of δ-dirac function and

the equation of motion is derived by using the Timoshenko or Euler-Bernoulli

beam theories. The differential equation is then solved by means of the Laplace

transform method. In the combined analytical-numerical method the eigenvalue

equation is derived analytically and then the eigenvalues and eigenfunctions are

calculated numerically. Low [83, 84, 85, 86] has done extensive research on the

vibration analysis of beams carrying concentrated masses at arbitrary locations.

He compared the effectiveness of the Laplace transform method and the frequency

determinant method to generate the eigenfrequency equation of a beam carrying

multiple concentrated masses at arbitrary positions. He also compared the results

from the analytical method and numerical method using Rayleigh’s method and

he concluded that the solution obtained using the frequency determinant method

can be obtained faster than by using the Laplace transform method [85], and that

the Rayleigh’s numerical method gives a good approximation to the analytical

method with the advantage of a saving in computation time.

From the above discussion, it can be concluded that the combination of ana-

lytical and numerical methods is the best way to find the natural frequencies of
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a beam carrying concentrated masses at arbitrary positions along the beam. In

this research, the frequency equation of the system is derived analytically using

the frequency determinant method, and the natural frequencies of the system are

determined numerically. Due to the complexity of the equations, the MatlabTM

symbolic mathematics toolbox is used to derive the frequency equations of the

systems, and the natural frequencies are found numerically and/or graphically

using Matlab.

Consider a cantilever beam of mass m carrying n concentrated masses M1

to Mn at arbitrary positions as shown in Fig. 2.7. The beam is assumed to be

segmented into n + 1 segments. The general solutions of the eigenvalue problem

for the loaded beam system are as in (2.37). To simplify the notation drop the

subscript m and define the solution for different segments as

m, EIx1

L

x

y

x2

xn

y1 y2 yn yn+1

M1 M2 Mn

Figure 2.7. A cantilever beam with n attached masses.



y1(x) = C1 cos βx + C2 sin βx + C3 cosh βx + C4 sinh βx,

y2(x) = C5 cos βx + C6 sin βx + C7 cosh βx + C8 sinh βx,
...

yn+1(x) = C4(n+1)−3 cos βx + C4(n+1)−2 sin βx+

C4(n+1)−1 cosh βx + C4(n+1) sinh βx,

(2.48)
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where C1 to C4(n+1) are constants to be determined, and y1 to yn+1 are the

transverse displacements associated with the respective concentrated masses M1

to Mn. The compatibility conditions at the locations of n concentrated masses

are given as follows [86]
y1(x1) = y2(x1),

y′1(x1) = y′2(x1),

y′′1(x1) = y′′2(x1),

y′′′1 (x1)− y′′′2 (x1) + α1β
4y1(x1) = 0,

y2(x2) = y3(x2),

y′2(x2) = y′3(x2),

y′′2(x2) = y′′3(x2),

y′′′2 (x2)− y′′′3 (x2) + α2β
4y2(x2) = 0,

...
yn(xn) = yn+1(xn),

y′n(xn) = y′n+1(xn),

y′′n(xn) = y′′n+1(xn),

y′′′n (xn)− y′′′n+1(xn) + αnβ
4yn(xn) = 0,

(2.49)

where

αi =
Mi

m
, i = 1, 2, ..., n (2.50)

is the corresponding mass ratio. The boundary conditions for a cantilever beam

are as in (2.9) and (2.10) and can be written as

y1(0) = 0,

y′1(0) = 0,

y′′n+1(L) = 0,

y′′′n+1(L) = 0. (2.51)

There are 4(n+1) constants, C1 to C4(n+1) in (2.48), 4n equations in (2.49) and 4

equations in (2.51). Substituting (2.48) into (2.49) and (2.51) results in 4(n + 1)

equations with 4(n + 1) constants which can be written as

BC = 0, (2.52)
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where C =
{
C1, C2, ..., C4(n+1)

}T
and B is the associated 4(n + 1) × 4(n + 1)

matrix. For a non trivial solution of C1 to C4(n+1), the determinant of their

coefficient must be zero i.e.,

|B| = 0. (2.53)

Solving the determinant (2.53) gives the frequency equation. The eigenvalues

which are associated with the natural frequencies can be found by solving the

generated frequency equation. The maximum number of loads attached to the

cantilever beam in the experimental plant is two. Therefore, only the frequency

equations for a cantilever beam with one and two loads at arbitrary positions are

derived in this section.

Solution a for cantilevered beam with one attached mass

For only one mass M attached to the cantilever beam, the beam is considered as

being split into two segments y1 and y2 with the general solution

y1(x) = C1 cos βx + C2 sin βx + C3 cosh βx + C4 sinh βx,

y2(x) = C5 cos βx + C6 sin βx + C7 cosh βx + C8 sinh βx. (2.54)

The compatibility conditions at the location of the concentrated mass are

y1(x1) = y2(x1), (2.55)

y′1(x1) = y′2(x1), (2.56)

y′′1(x1) = y′′2(x1), (2.57)

y′′′1 (x1)− y′′′2 (x1) + α1β
4y1(x1) = 0. (2.58)

The boundary conditions are

y1(0) = 0, (2.59)

y′1(0) = 0, (2.60)

y′′2(L) = 0, (2.61)
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y′′′2 (L) = 0. (2.62)

Subtituting y1(x) from (2.54) to (2.59) gives

C1 + C3 = 0. (2.63)

Deriving y1(x) in (2.54) once against x and substituting the results into (2.60)

gives

βC2 + βC4 = 0. (2.64)

Substituting the second derivative of y2(x) against x in (2.54) into (2.61) gives

−C5β
2 cos βL− C6β

2 sin βL + C7β
2 cosh βL + C8β

2 sinh βL = 0. (2.65)

Substituting the third derivative of y2(x) against x in (2.54) into (2.62) gives

C5β
3 sin βL− C6β

3 cos βL + C7β
3 sinh βL + C8β

3 cosh βL = 0. (2.66)

Substituting (2.54) into (2.55), (2.56), (2.57) and (2.58) gives the following equa-

tions

C1 cos βx1 + C2 sin βx1 + C3 cosh βx1 + C4 sinh βx1

−C5 cos βx1 − C6 sin βx1 − C7 cosh βx1 − C8 sinh βx1 = 0, (2.67)

−C1β sin βx1 + C2β cos βx1 + C3β sinh βx1 + C4β cosh βx1

+C5β sin βx1 − C6β cos βx1 − C7β sinh βx1 − C8β cosh βx1 = 0, (2.68)

−C1β
2 cos βx1 − C2β

2 sin βx1 + C3β
2 cosh βx1 + C4β

2 sinh βx1

+C5β
2 cos βx1 + C6β

2 sin βx1 − C7β
2 cosh βx1 − C8β

2 sinh βx1 = 0, (2.69)

C1

[
β3 sin βx1 + αβ4 cos βx1

]
+ C2

[
αβ4 sin βx1 − β3 cos βx1

]
+C3

[
β3 sinh βx1 + αβ4 cosh βx1

]
+ C4

[
β3 cosh βx1 + αβ4 sinh βx1

]
−C5β

3 sin βx1 + C6β
3 cos βx1 − C7β

3 sinh βx1 − C8β
3 cosh βx1 = 0. (2.70)
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Using (2.63) to (2.70), (2.52) can be formed with B of dimension 8×8. Solving the

det(B) = 0 using MatlabTM symbolic mathematics toolbox, gives the frequency

equation as follows

2αβ cosh βx1 sin βx1 − 2β cos βx1α sinh βx1 +

2βα sin β(−L + x1) cosh β(−L + x1)− 2βα cos β(−L + x1) sinh β(−L + x1)−

βα sinh βL cos β(−L + 2x1) + βα sin βL cosh β(−L + 2x1) +

βα sin βL cosh βL− βα cos βL sinh βL− 4 cos βL cosh βL− 4 = 0.

(2.71)

Equation (2.71) is the frequency equation for a cantilever beam with a load at

arbitrary position (x1) along the beam. The validity of this equation needs to be

checked prior to the application of the equation to find the natural frequencies

of the system. This is done by making comparisons against known valid models

using a comparison technique [128]. The two valid frequency equations available

from the literature are frequency equation for a cantilever beam without load

[92, 120] which is (2.44), and the frequency equation for a cantilever beam with

a load at the tip of the beam [71, 92]

αβ sin βL cosh βL− αβ cos βL sinh βL− cos βL cosh βL− 1 = 0. (2.72)

To compare frequency equation (2.71) against the two valid frequency equations

(2.44) and (2.72), the parameters α and x1 in (2.71) need to be set properly. To

compare frequency equation (2.71) against the frequency equations of a beam

without load (2.44), set α = 0 in (2.71). By setting α = 0 in (2.71) frequency

equation (2.44) is obtained. To compare the frequency equation (2.71) against

the frequency equations of a beam with load at the tip of the beam (2.72) set

x1 = L in (2.71). By setting x1 = L in (2.71) frequency equation (2.72) is

obtained. Therefore, from the comparisons with two different valid frequency

equations (2.44) and (2.72), it can be seen that the frequency equation (2.71) is
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valid. The natural frequencies of a beam with a load at an arbitrary position can

then be found using frequency equation (2.71).

Solution for cantilevered a beam with two attached masses

For two masses M1 and M2 attached to the cantilever beam, there are eight com-

patibility conditions, four boundary conditions and twelve constants (C1 to C12).

Using the same procedure as for a cantilever beam with one mass attached to the

cantilever beam, (2.52) can be formed with B of dimension 12× 12. Solving the

det(B) = 0 using MatlabTM symbolic mathematics toolbox, gives the frequency

equation as follows

16− 8α1β cosh βx1 sin βx1 +

β2α1α2 sinh βL sin β(L− 2x2)− β2α1α2 cos βL cosh β(L− 2x1) +

β2α1α2 sin β(L− 2x1) sinh β(L− 2x2)− β2α1α2 cos βL cosh β(L− 2x2) +

β2α1α2 sin β(L− 2x2) sinh β(L− 2x1)− β2α1α2 sin βL sinh β(L− 2x1)−

β2α1α2 cos βL cosh β(−2x2 + L + 2x1) + β2α1α2 cosh βL cos β(L− 2x2)−

β2α1α2 sinh βL sin β(L− 2x1) + β2α1α2 cosh βL cos β(−2x2 + L + 2x1) +

β2α1α2 sin βL sinh β(L− 2x2) + 4βα2 cos βL sinh βL +

β2α1α2 cosh βL cos β(L− 2x1) + 16 cos βL cosh βL +

4β2α1α2 sin β(−x1 + L) sinh β(−x1 + L) + 2β2α1 sin βx2α2 sinh β(−x2 + 2x1)−

4βα2 sin βL cosh βL + 2β2α1α2 sinh βx2 sin β(−x2 + 2x1)−

2β2α1α2 cos β(−x1 + L− x2) cosh β(x1 + L− x2) +

2β2α1α2 cosh βx2 cos β(−x2 + 2x1)−

2β2α1α2 cos β(−2x2 + x1 + L) cosh β(−x1 + L) +

2β2α1α2 cos β(x1 + L− x2) cosh β(−x1 + L− x2)−

2β2α1α2 sin β(−2x2 + x1 + L) sinh β(−x1 + L) +

2β2α1α2 sin β(x1 + L− x2) sinh β(x1 + L− x2)−
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2β2α1 cos βx2α2 cosh β(−x2 + 2x1) +

8β2α1α2 sin β(−x2 + x1) sinh β(−x2 + x1) +

2β2α1α2 cos β(−x1 + L) cosh β(−2x2 + x1 + L)−

2β2α1α2 sin β(−x1 + L) sinh β(−2x2 + x1 + L)−

2β2α1α2 sin β(−x1 + L− x2) sinh β(−x1 + L− x2)−

2α1β
2α2 sin βL sinh βL− 4α1β

2 sin βx2α2 sinh βx2 +

4βα1 cos βL sinh βL− 4βα1 sin βL cosh βL− 8β sin βx2α2 cosh βx2 +

8 cos βx1α1β sinh βx1 + 8β cos βx2α2 sinh βx2 − 4βα2 sin βL cosh β(L− 2x2) +

4βα1 sinh βL cos β(L− 2x1) + 4βα2 sinh βL cos β(L− 2x2) +

8βα1 sin β(−x1 + L) cosh β(−x1 + L)− 4βα1 sin βL cosh β(L− 2x1) +

8βα2 sin β(L− x2) cosh β(L− x2)− 8βα1 cos β(−x1 + L) sinh β(−x1 + L)−

8βα2 cos β(L− x2) sinh β(L− x2) = 0.

(2.73)

Equation (2.73) is the frequency equation for a cantilever beam with two masses

at arbitrary positions (x1) and (x2) along the beam. The validity of the frequency

equation (2.73) is tested by the same procedure as for the one mass case. The

frequency equation (2.71) is now a valid equation, therefore, the validity of (2.73)

can be tested by comparing it against (2.71). To compare (2.73) against (2.71),

set α2 = 0 in (2.73). Setting α2 = 0 in (2.73) makes all terms in (2.73) except the

1st, 2nd, 16th, 33rd, 34th, 36th, 39th, 41st, 42nd and 44th terms equal to zero. All the

ten non-zero terms form an equation which is the same as (2.71). Furthermore,

setting α1 = α2 = 0 in (2.73) results in (2.44) and setting x2 = L, α1 = 0 in (2.73)

results in (2.72). Therefore, comparisons with all the valid frequency equations

(2.44), (2.72) and (2.71) show that the frequency equation (2.73) is valid. The

natural frequencies of a beam with two masses at arbitrary positions then can be

found using frequency equation (2.73).
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To find the natural frequencies of all the models in the experimental plant,

insert the corresponding parameters values x1, x2, α1 and α2 from Table 2.1

and Table 2.2 into frequency equation (2.73), find the equation roots (βm) then

insert into (2.45). The experiments with the experimental plant show that the

most dominant modes for all the different loading conditions are the first three

modes. Therefore, only natural frequencies of the first three modes are identified

here. The roots (βm) for each model are found graphically using MatlabTM . It is

achieved by plotting the frequency equation (2.73) and finding the values where

the graph intercepts the frequency axis. The first three roots (βm), m= 1 to 3

are shown in Table 2.4. From the values of (βm), the natural frequencies of the

Model βm, m = 1-3

1 1.4477

3.9842

6.8439

2 1.5486

4.3478

7.5599

3 1.6482

4.5595

7.1418

4 1.8749

4.6941

7.8547

Table 2.4. The first three frequency equation’s roots of the models.

models can be calculated. The first three natural frequencies of all the models

compared to the first three natural frequencies from the experimental results are

shown in Table 2.5.

From Table 2.5, it can be seen that the analytical results are very close to the

experimental results with the errors ranging from 0.32% for the second natural

frequency of Model 2 to 4.82% for the first natural frequency of Model 4.

There are several factors that may cause the discrepancies between the an-
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Model Experimental results (Hz) Analytical results from (Hz) error (%)

1 6 5.9726 0.46

44.8 45.2367 0.97

132.7 133.48 0.58

2 7.1 6.834 3.89

53.7 53.8702 0.32

155.1 162.87 4.77

3 8.1 7.7416 4.63

59.4 59.2439 0.26

147.5 145.3532 1.48

4 10.5 10.0176 4.82

64 62.7934 1.92

174 175.8200 1.04

Table 2.5: Comparison of natural frequencies obtained from experi-

mental and analytical results.

alytical and experimental results, such as imperfect clamping conditions at the

fixed end, imperfect clamping of the loads to the beam, imperfect positioning of

the loads, the loading effect of cabling from the magnetically clamped loads, and

the loading effect of the piezoceramic patches. These factors are ignored or as-

sumed to be perfect in the four assumptions for finding the solution analytically.

The discrepancies, however, are reasonably small (less than 5%). Hence the mod-

els are considered to be reasonably accurate for the purpose of the experiments.

Furthermore, the proposed controllers are designed to cope with plants with nat-

ural frequency variations and unmodeled dynamics. Therefore, in the context

of the modeling for control design purposes as proposed in this thesis, the four

assumptions for finding an analytical solution do not detract from the validity

and usefulness of the proposed design methods. The analytical obtained models

are valid models, with the small variations between analytical and experimental

results explicable by the assumptions made.
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2.4 Modal Analysis Using ANSYS (Numerical

Models)

The previous section shows that modal analysis can be used to find the solution

of a cantilever beam with loads attached at arbitrary positions. However, it

can be seen from (2.52) that the determinant of a matrix needs to be solved

to find the frequency equation of the structure. The dimension of the matrix

increases with an increase in the number of the attached loads, which increases

the complexity of the matrix. This complexity is associated with an increase in

the number of terms in the frequency equation as shown in (2.71) and (2.73).

Increasing the number of loads from one to two, causes the number of terms in

the frequency equation to increase from 10 to 45. For more than two attached

loads, the frequency equation becomes very long. Therefore, even though the

analytical method provides a solution for finding the natural frequencies of a

cantilever beam with n attached masses at arbitrary positions, it is impractical

and computationally intense.

In practice, especially for complex structures, a software tool such as ANSYS

can be used to find the natural frequencies of the structures. ANSYS uses the

finite-element method (FEM) to solve the underlying governing equations and the

associated problem-specific boundary conditions. FEM tools are used widely in

industry to simulate the responses of a physical system to structural loading, and

thermal and electromagnetic effects. In this research, ANSYS software version

9.0 is used to find the natural frequencies of the flexible beam with varying load

conditions and the results are validated through comparison with the results from

the analytical method.

The natural frequencies of the models are obtained using modal analysis in

ANSYS. For comparison purposes, the first three natural frequencies of the mod-

els are shown along the results from the analytical solution in Table 2.6. From
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Model Results from ANSYS (Hz) Results from analytical (Hz) error(%)

1 5.9752 5.9726 0.04

45.2360 45.2367 0.0015

133.50 133.48 0.015

2 6.8345 6.834 0.0073

53.8710 53.8702 0.0015

162.86 162.87 0.0061

3 7.7432 7.7416 0.02

59.2430 59.2439 0.0015

145.3400 145.3532 0.009

4 10.0200 10.0176 0.02

62.7920 62.7934 0.002

175.8000 175.8200 0.01

Table 2.6: Comparison of natural frequency results from ANSYS with

results from analytical method.

the comparison, it can be seen that the difference between the results from the

analytical method and the results from ANSYS are very small (maximum 0.02%).

From this comparison it can be concluded that the ANSYS results are accurate.

Based on the accuracy of the results, numerical models from ANSYS will be used

here to form simulation models for the experimental plant.

2.5 Simulation Models

In this research, computer simulation using Simulink is used to design and eval-

uate the proposed controllers. The simulation results are then used as a bench-

mark for real-time implementation of the proposed controllers in the experimental

plant. To use Simulink as a simulation platform, the numerical models from AN-

SYS need to be modified into simulation models in the form of transfer functions

or state space equations.

In this section simulation models to represent the experimental plant (Model

1 to Model 4) are designed and implemented. The simulation models are created

in transfer functions form. A description on how to obtain the transfer functions
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using modal analysis in ANSYS together with the transfer functions for all the

models are given in Appendix A.

In the implementation, the order of the simulation models, which is related to

how many modes need to be included in the models, must be determined. From

a control design perspective, only those modes within a particular bandwidth

need to be included in the model. A seemingly natural method to determine how

many modes must be included in a model is to simply ignore the modes which

correspond to frequencies that lie outside of the bandwidth of interest [95]. Other

methods are to use a mode selection criterion based on modal information such

as damping ratios and natural frequencies [52], or to use dc gain sorting [46]. In

these methods, the inclusion of modes in the model is not simply based on the

frequencies of the modes, but also on how dominant the modes are in forming

the overall response of the system.

In this research, mode truncation is based on the dc gain sorting method as

presented in [46]. The dc gain for each mode can be obtained from (2.47) by

setting s = 0 as explained in Appendix A. All the numerical models from ANSYS

show that the first three modes of vibration are the most dominant modes, and

the dc gains of the modes higher than the tenth mode are very small (< 10−2)

of the dc gain of the first three modes. Moreover, the inclusion of the first 10

modes gives a bandwidth of more than 2 kHz, which is as large as one might

reasonably expect for a cantilever beam system to be controlled with an active

control. Therefore, the simulation models for all the plants are based on the

first ten modes, and implemented in Simulink as twentieth-order systems. When

compared to the experimental results where the most dominant modes are the first

three modes, the simulation models with 10 modes are adequate for representing

the responses of the real plant with an active an control system where most of

the disturbance frequencies are less than 2 kHz[45].
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The frequency responses of the models are shown in Fig. 2.8. It can be

seen that in every interval between the consecutive resonance frequencies there

is a frequency where the amplitude of the frequency response function (FRF)

tends to zero. This is the anti-resonance frequency. This is because the transfer

functions of the models have alternating poles and zeros near the imaginary axis,

as shown in Fig. 2.9. This frequency response is typical of a collocated system

[115].

Figure 2.8. Frequency responses of simulation models.

Remark 2.1. A collocated system is obtained by the collocated placement of

sensor-actuator pairs. One advantage of a collocated system is that it is always

asymptotically stable for a wide class of single-input single-output (SISO) control

systems even if the system parameters are subject to large perturbations [115].

The experiments with the experimental models and the results from the sim-

ulation models show that the most dominant modes are the first three modes.
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Figure 2.9: Alternating pole-zero pattern of flexible structures with

collocated sensor and actuator.

Based on this, the proposed controllers will be designed to attenuate the first

three modes of vibration. Therefore, it is necessary to ensure that the contribu-

tions of modes higher than the first three are negligible to the overall vibration.

To show that the modes higher than the first three modes would has insignifi-

cant effect on the overall responses of the system, simulations that compare the

responses of three-mode models with ten-mode models for different input signals

are conducted.

Two types of signal are chosen as input signals: white noise and pulses. White

noise is used as an input signal to give a uniform amplitude over a wide range of

frequencies and to make sure that all the modes are excited with approximately

the same amplitude. The pulse signal is used to observe the responses of the

systems when subjected to impulse or shock. This type of signal contains higher

harmonics, which can be expected to excite the higher modes and contribute to

the overall vibration. To approximate an impulse signal, a pulse signal with short

duration is used in the simulation. A pulse signal with duration 0.05 second is

chosen, because for shorter durations, the models would not respond due to dead-



CHAPTER 2. MODELLING OF FLEXIBLE STRUCTURES 65

time. Of all the models, Model 1 and Model 4 are the extreme loading condition

models. The responses of Model 2 and Model 3 are intermediate between those

of Model 1 and Model 4. Therefore, only a three-mode model and a ten-mode

model of Model 1 and Model 4 are chosen for the simulations.

Four simulations are conducted. In the first simulation, white noise is used as

an input to the three-mode model and the ten-mode model of Model 1. In the

second simulation the white noise is replaced by the pulse signal. The third and

fourth simulations are similar to the first and second simulations with Model 1

replaced by Model 4.

The responses of the simulations are shown in Figs. 2.10 - 2.13. From the

figures it can be seen that the differences between the three-mode models and

the ten-mode models are very small. For a pulse signal input, the differences

between the three-mode models and the ten-mode models only occurs in the first

0.05 second, corresponding to the duration of the pulse signal and it vanishes

quickly after that period, as can be seen in Figs. 2.11 and 2.13. From the

simulations, it can be verified that the first three modes of vibration are the most

dominant modes and the contribution of the modes higher than the first three

to the overall vibration are negligible. Hence, attenuating the first three modes

of vibration would in this case adequately control the vibration of the flexible

beam with varying load conditions. This would also be generally true for many

structure encountered in practice.

To see how close the responses of the first three modes of the simulation models

are to those of the experimental plant, comparisons in the frequency domain are

made. In the experiments each model is excited with a combined sinusoidal signal

containing signals with the frequencies corresponding to the first three natural

frequencies of each model. The responses are then compared with the responses

of the first three modes of the simulation models excited with the same signals.
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Figure 2.10: Comparative responses of the three-mode model and the

ten-mode model of Model 1 with white noise input.

The comparison results are shown in Figs. 2.14 to 2.17. From the figures it can

be seen that the simulation models’ responses are close to the experimental plant

responses. In the figures, the natural frequencies are displayed in rad/second,

whereas the corresponding natural frequencies in Table 2.5 are shown in Hz. In

agreement with the finding of other researchers [26, 95, 96], the simulations show

that mode truncation has no effect on the natural frequency of the system. The

natural frequencies of the system are still the same after the truncation. The

truncation only changes the zero locations of the systems, indicated by a slightly

different shape between the frequency response functions (FRFs) of experimental

models and simulation models as shown in Figs. 2.14 to 2.17. Therefore, the

truncated model is adequate for use as a tool for designing controllers which only

need the natural frequency as a design parameter.

Figs. 2.14 to 2.17 also reveal that the vibration amplitude of the second mode
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Figure 2.11: Comparative responses of the three-mode model and the

ten-mode model of Model 1 with pulse signal input.

vibration for all the models is greater than those of the first and third modes.

This phenomenon occurs due to the placement of the sensor-actuator pair close

to the root of the cantilever beam as stated in Section 2.2. Close to the root of

the beam, the curvatures for the second mode vibration for all the models are

the largest, as can be seen from the mode shape of the simulation models shown

in Figs. 2.18 to 2.21.

2.6 Summary

In this chapter an experimental plant and simulation models of the plant are

implemented. To obtain the simulation models of the experimental plant several

steps are undertaken. In the first step, the frequency equation of the system

is solved analytically using the frequency determinant method, and the natural

frequencies of the system are obtained graphically. In the next step, numerical
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Figure 2.12: Comparative responses of the three-mode model and the

ten-mode model of Model 4 with white noise input.

models obtained from modal analysis using ANSYS are compared to the analyt-

ical results to verify the validity and accuracy of the ANSYS generated models.

In the last step, the simulation models are implemented in transfer function form

in Simulink.

Comparisons show that the responses for the simulation models are in agree-

ment with the responses for the experimental plant. The following conclusions

can be drawn from the results:

• The first three modes of the system are the dominant modes, and the con-

tributions of the higher modes to the overall vibration are negligible. There-

fore, it would be sufficient to suppress the vibration of the first three modes

to control the vibration of the flexible beam considered in this research.

• In the modeling process, the loading effects of the piezoceramic patches on
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Figure 2.13: Comparative responses of the three-mode model and the

ten-mode model of Model 4 with pulse signal input.

Figure 2.14: Comparative responses of real plant and simulation model

for Model 1.
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Figure 2.15: Comparative responses of real plant and simulation model

for Model 2.

Figure 2.16: Comparative responses of real plant and simulation model

for Model 3.
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Figure 2.17: Comparative responses of real plant and simulation model

for Model 4.

Figure 2.18. Mode shapes for Model 1.
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Figure 2.19. Mode shapes for Model 2.

Figure 2.20. Mode shapes for Model 3.
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Figure 2.21. Mode shapes for Model 4.

the accuracy of the natural frequencies of the models are determined to

be negligible. The objective of the modeling in this research is to obtain

reasonable and usable models that can be used for control design. All the

proposed controllers considered in this research only require the natural

frequency as the design parameter. Therefore, neglecting the patch loading

effect in the modeling is valid for the purposes of the resonant controller

design.

• Mode truncation in the modeling process does not affect the accuracy of the

natural frequency estimates for the structure. Therefore, for the design of

controllers such as resonant controller that only use the natural frequency

as the design parameter, truncated models are sufficient.


