
Online Learning for Short Term Arterial
Traffic Prediction and Incident Detection

by

Jonathan Glenn Mackenzie, B.Eng.(Software) (Hons)

College of Science and Engineering

July 24, 2020

A thesis presented to

Flinders University

in total fulfilment of the requirements for the degree of

Doctor of Philosophy

Adelaide, South Australia, 2020

© (Jonathan Glenn Mackenzie, 2020)

Contents

Abstract x

Certification xii

Acknowledgements xiii

1 Introduction 1

1.1 Intelligent Transportation Systems 1

1.2 Motivation . 1

1.3 Function . 3

1.4 Advanced Transportation Management Systems 5

1.4.1 Research Issues in ATMS 7

1.4.2 Challenges Posed by ATMS Data 8

1.5 Research Impact . 10

1.6 Thesis Organisation . 10

1.6.1 Note About Notation . 11

2 Data Sources 13

2.1 Data Storage . 14

2.2 SCATS Data . 15

2.2.1 LX Data . 17

2.2.2 Strategic Monitor Data . 21

2.2.3 Volume Store Data . 22

2.3 Traffic Signal Location Data . 26

2.4 SCATS Diagrams and Turning Movements 28

2.4.1 Extracting Sensors with Template Matching 30

ii

CONTENTS iii

2.4.2 Extracting Sensors with Contour Detection and Optical

Character Recognition . 32

2.4.3 Algorithms Used . 32

2.5 DPTI Accident Data . 35

2.6 Conclusion . 36

3 Hierarchical Temporal Memory 38

3.1 HTM Model . 38

3.1.1 Sparse Distributed Representations 39

3.1.2 Spatial Pooler . 43

3.1.3 Temporal Memory . 46

3.2 Applications of HTM . 48

3.2.1 Making Predictions . 48

3.2.2 Anomaly Detection . 57

3.3 Conclusion . 60

4 HTM and LSTM For Aggregated Traffic Prediction in CBD Lo-

cations 61

4.1 Background . 61

4.1.1 Related Work . 64

4.2 Long Short-Term Memory . 66

4.2.1 Definition . 67

4.2.2 LSTM Architecture . 69

4.3 Methodology . 69

4.3.1 Performance Measures . 69

4.3.2 HTM . 70

4.3.3 LSTM . 70

4.3.4 Batch Learning (LSTM-Batch) 71

4.3.5 Online Learning (LSTM-Online) 71

4.4 Results . 71

4.4.1 Datasets . 71

4.4.2 Analysis . 72

4.5 Conclusion . 77

CONTENTS iv

5 Predicting Next Phase and Aggregated Traffic Flows in Urban

Areas 78

5.1 Introduction . 78

5.2 Hyperparameter Optimisation . 80

5.3 Methodology . 85

5.3.1 Dataset . 86

5.3.2 HTM and LSTM . 86

5.3.3 SARIMA . 89

5.3.4 Markov Model . 90

5.4 Results . 94

5.5 Conclusion . 101

5.6 Future Work . 101

6 Arterial Incident Detection via Anomalies 103

6.1 Background . 103

6.2 Automated Incident Detection for Arterial Road Networks 105

6.3 Stream Mining . 111

6.3.1 Stream Mining for Outliers 111

6.4 Stream Outliers for Incident Detection 115

6.5 Dataset . 116

6.6 Method . 117

6.6.1 Interface . 120

6.7 Results . 120

6.8 Conclusion . 125

6.9 Future Work . 125

7 Conclusions and Future Work 126

7.1 Short Term Arterial Traffic Prediction 128

7.2 Anomalies for Incident Detection 129

7.3 Final Remarks . 130

A Publications, Awards and Software Produced 131

A.1 Publications . 131

A.2 Awards . 131

A.3 Software Projects . 131

CONTENTS v

B Accident Data 133

C HTM and LSTM Performance Comparison for Traffic Prediction

on TS3044 135

D Hyperparameter Search Space for TS115 140

D.0.1 Markov Models . 143

E Incident Detection 147

Bibliography 149

List of Figures

1.1 Estimates of Australian Domestic Passenger Travel by Mode BI-

TRE (2017) . 2

2.1 Close up photograph of loop detector showing the outline of the loop 16

2.2 Photograph of a typical intersection with loop detectors (fore-

ground) and control cabinet (background) 16

2.3 Stackplot of sensor readings 1,2 and 3 at intersection 113. Sensor

1 is flickering during this period, recording extremely high counts

(especially considering the flows recorded between 7:30 PM and

1:30 AM) while sensors 2 and 3 report normal flows 24

2.4 Total flow through intersection 113, strategic input 108 25

2.5 SCATS diagram for intersection 157 28

2.6 Subset of the network of intersections, with intersections that are

most 2 steps from 3001 . 29

2.7 ‘SCATS Picture’ and ‘SCATS Image Exporter’ programs 29

2.8 Intersections 3043 and 3084 . 31

3.1 High level flow chart of HTM algorithm 39

3.2 Connections from input SDR to a single Spatial Pooler Column . 45

3.3 Layout of an ANN with a three inputs, a single hidden layer and

3 outputs . 51

3.4 Thursday readings, with a particularly high peak 57

4.1 Typical Weekday Traffic Flow . 62

4.2 Traffic Flow from TS3104 to TS3044 63

4.3 Layout of an LSTM cell where xt is the input vector at timestep

t. Activations are the activation functions at for each variable are

shown on edges . 68

4.4 Sigmoid Activation . 68

vi

LIST OF FIGURES vii

4.5 Standard deviation of traffic 5 minute vehicle flow readings per

day, showing that there is both a change in traffic flow variability

throughout the day, and over time 73

4.6 LSTM Predictions for successive Tuesdays 74

4.7 Zoomed Area for Traffic Flow Distribution and HTM Predictions 74

4.8 Zoomed Area for Traffic Flow Distribution and LSTM Batch Pre-

dictions . 75

4.9 Zoomed Area for Traffic Flow Distribution and LSTM-Online Pre-

dictions . 75

5.1 SCATS Diagram of Intersection 115 79

5.2 Test Accuracy over time where grey models are dead and blue

models are alive. Model complexity is increasing over time along

with the highest achieved fitness score. It is purely by chance that

some very poorly performing models are still alive (Real et al. 2017) 84

5.3 Daily Traffic Flow through Intersection 115 at Strategic Input 2 . 87

5.4 Histogram of 5 Minute Flow Counts at Intersection 115 87

5.5 Histogram of Per Phase Flow Counts at Intersection 115 88

5.6 Sample of Phase Level Flow (from the SM dataset) at Intersection

115 where the change in flow between subsequent phases changes

frequently in a similar fashion to how VS data changes direction

frequently in 5 minute periods (see Figure 4.2a) 88

5.7 Predictions from the best HTM model on VS data. Shows error

scores over time, which peak during high volume periods 96

5.8 Predictions from the best LSTM model on VS data 96

5.9 Predictions from the best ARIMA model on VS data 97

5.10 Predictions from the best Markov Model on VS data 97

5.11 Closeup of Markov Model Predictions on VS Data 98

5.12 Predictions from the best LSTM model on SM data 98

5.13 Predictions from the best HTM model on SM data 99

5.14 Predictions from the best ARIMA model on SM data 99

5.15 Comparison of Rolling Mean (n = 8) and ARIMA(4,0,3) on SM

Data . 100

5.16 Markov Model Predictions from the best Markov model on SM

data. Orange data points show when it made a prediction from

its observed state transition probability distributions, green data

points show when it used the mean fallback mechanism 100

LIST OF FIGURES viii

6.1 Heatmap of accidents (from DPTI crash dataset) in the period

1/1/2006 - 12/12/2015 in Adelaide clustering mostly around inter-

sections of major roads . 119

6.2 Map of city shown by the application. Intersections are labelled

with their unique identifier and coloured by their SCATS region.

Clicking on a particular intersection will show a popup with some

details about the intersection and a link to a page with more details120

6.3 Details of the intersection . 121

6.4 Accidents at intersection 67 with coincident anomalies. Anomalies

are shown along with their damage cost, severity, strategic input,

data source, algorithm, time and a link to the view of Figure 6.3

showing flow for the SI around the time of the incident. 122

6.5 A map showing accidents for the currently plotted traffic flow . . 123

6.6 Flows near an accident that caused anomalous reduction in traf-

fic flow at strategic input 168. The bottom plot shows incidents

in green, HTM anomalies in blue and SHESD anomalies in red.

Both algorithms successfully identified this incident as an anomaly.

Other anomalies in this particular time period were detected but

not coincide with a recorded incident 124

C.1 Traffic Flow Distribution and HTM Predictions 137

C.2 Traffic Flow Distribution and LSTM Predictions 138

C.3 Traffic Flow Distribution and LSTM-Online Predictions 139

List of Tables

4.1 Summary of Results for TS3044 76

4.2 Summary of Results for TS3002 76

5.1 Error scores for best models (as determined by hyperparameter

search) for each algorithm and dataset 95

6.1 Results of Ivan et al. (1995) . 106

6.2 Incident detection via anomaly by dataset and algorithm 122

6.3 Breakdown of True Positive Incident detections via anomaly for

each site, dataset and algorithm 123

C.1 Hyperparameter Optimisation Search Space Used for Tuning LSTM

Network With Optimal Paramaters Based off Minimum GEH . . 136

C.2 Summary of Results for TS3002 During Period of Varying Distri-

bution at k = 1 . 136

D.1 Hyperparameter Optimisation Search Space Used for Tuning HTM.

. 141

D.2 Hyperparameter Optimisation Search Space Used for Tuning LSTM

in the VS Task . 141

D.3 Hyperparameter Optimisation Search Space Used for Tuning LSTM

in the SM Task . 142

D.4 TPE Results for SM and VS ARIMA including the selection of

exogenous variables . 142

D.5 Grid Search Results for SM Markov Models 144

D.6 Grid Search Results for VS Markov Models 145

D.7 Grid Search Results Rolling Mean Model (scores are RMSE) . . . 146

E.1 Breakdown of detected incidents for all algorithms by accident type

and severity . 148

ix

Abstract

Sydney Coordinated Adaptive Traffic System (SCATS) is an Intelligent Trans-

portation System currently deployed in Adelaide, Australia, that is responsible

for (amongst other tasks) controlling the sequences, cycles and timing at sig-

nalised road intersections, and collecting and storing a record of these operations

and vehicle flow counts. Within the context of this SCATS data, the research

presented in this thesis investigates:

� How traffic flows at specific intersections can be used to make predictions

about future traffic volumes in the short term, specifically, in the next phase

of traffic and on aggregate over the next 5/10/15 minutes.

� Whether outliers within these observations and predictions can indicate

that traffic flow is indicative of an incident or otherwise anomalous traffic

behaviour.

The task of answering these questions is of global significance, as the effective-

ness of the tools that solve these problems has the potential to impact the safety

and efficiency of travel for hundreds of millions of commuters every single day, as

they travel through road networks monitored by ITS.

In this work, traffic data for the Adelaide metropolitan arterial road network

are used to evaluate a variety of existing and novel models on their predictive

performance. The dataset has two distinct road areas:

Central Business District: those monitored intersections within the CBD. Traf-

fic flow in this area is not typical of that on arterial areas due to its unique

traffic usage among other factors.

Arterial: those high flow intersections that are outside the CBD but are not

freeways.

HTM, LSTM, ARIMA and Markov models are predictive evaluated for short

term arterial traffic prediction in 5 minute aggregate and on a next-phase basis.

HTM and LSTM models perform particularly well at both tasks. The practical

implications of this finding allows for the development of traffic control systems

that act in a proactive (rather than a reactive manner).

HTM is also evaluated for its ability to indicate the presence of an incident

purely from prediction anomalies and compared to SHESD (a statistical time

x

LIST OF TABLES xi

series anomaly detection algorithm). While anomalous data exists in the SCATS

dataset, these anomalies do not imply the presence of an incident and incidents

do not necessarily cause anomalous vehicle flow counts. Practically, this means

that anomalies in vehicle flows should not be used to infer the presence of an

incident.

Certification

I certify that this thesis does not incorporate without acknowledgement any ma-

terial previously submitted for a degree or diploma in any university; and that to

the best of my knowledge and belief it does not contain any material previously

published or written by another person except where due reference is made in the

text.

As requested under Clause 14 of Appendix D of the Flinders University Re-

search Higher Degree Student Information Manual I hereby agree to waive the

conditions referred to in Clause 13(b) and (c), and thus

� Flinders University may lend this thesis to other institutions or individuals

for the purpose of scholarly research;

� Flinders University may reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

Jonathan Glenn Mackenzie

November 2019

xii

Acknowledgements

I would like to thank:

� My partner, Laura, and son, Logan, for putting up with me.

� My supervisors, Prof. John F. Roddick, Prof. Rocco Zito and Dr. Carl

Mooney.

� Flinders University for providing me with the FURS scholarship, the space,

and resources to do my research.

� DPTI for providing SCATS and incident data for the Adelaide area.

� Dr. Denise de Vries and Dr. Anna Shillabeer for providing me with valuable

advice and feedback.

� Prof. Rocco Zito, Branko Stazic and Tai Dinh for providing me with the

traffic datasets and a wealth of knowledge about the data, associated sys-

tems and their operation.

� Dr. Darfiana Nur for helping with my understanding and use of SARIMA

models.

Jonathan Glenn Mackenzie

jonathan.mackenzie@flinders.edu.au

July 24, 2020

Adelaide, Australia

xiii

mailto:jonathan.mackenzie@flinders.edu.au

Chapter 1

Introduction

1.1 Intelligent Transportation Systems

Intelligent transportation systems (ITS) utilise a wide range of technologies that

automatically control transportation infrastructure with the aim of reducing in-

efficiencies in large and complex systems. Improvements in factors such as travel

time, congestion, health and safety are paramount when designing ITS applica-

tions, given that road transport is an indispensable component of modern life and

the average Australian commuter spends at least 1 hour on the road every day

(Core Data 2016).

In this chapter, ITS will be introduced in broad terms and within the specific

context of the research in this thesis, research questions described and .

1.2 Motivation

There is a significant need for such systems now and into the future given that:

� The population of humans is continuously growing, projected to reach 9.7

billion by 2050 (United Nations 2017) who will require persons and objects

to be transported between physical locations.

� The majority of this transport will occur on a road. In 2017, in Australia

there were 300.7 billion passenger kilometres and 213.9 billion freight kilo-

metres travelled on roads (BITRE 2017). These numbers far outstrip the

other modes of transport: rail, sea and air and are only projected to increase

according to BITRE (2017), see Figure 1.1.

� According to the OECD, as the wealth of the world’s population increases,

so too will their spending power and desire for transportation and trans-

ported goods (Kharas 2010). For example in China there were over 300

1

CHAPTER 1. INTRODUCTION 2

million registered vehicles in 2018 (Zheng 2018) (up from 250 million in

2015 (Toroyan 2015)) and a population of 1.3 billion with an increasing

average household wealth profile (Stratford & Cowling 2016).

� In 2018, the World Health Organisation (WHO) reported that road traffic

injuries are the eighth leading cause of death across all age groups worldwide

and that there is a road related death every 24 seconds accounting for 1.35

million deaths annually (Toroyan 2018). In the USA, 94% of traffic related

fatalities are caused by human error (Terry & Tanner 2018). ITS can play

a significant role in increasing safety and reducing road mortality.

� Santos (2017) urges the need to reduce greenhouse gas (GHG) emissions to

keep global temperature rise below 2°C and prevent a catastrophic global

warming event, which necessitates the optimisation of all infrastructure in

terms of emissions, of which road transportation accounted for 20% globally

in 2017. ITS is a key technology in the optimisation of road transport flow

and, the work presented in this thesis evidences an opportunity for a big-

data driven approach to traffic control systems and thus a reduction in GHG

emissions.

Figure 1.1: Estimates of Australian Domestic Passenger Travel by Mode BITRE

(2017)

The WHO reports that low-income nations, with only 1% of vehicles, account

for 13% of all deaths, whereas 40% of vehicles in high-income nations account

for 7% of deaths. It is clear here that the deployment of ITS plays a key role in

saving lives, especially in developing nations where the cost of deploying ITS is far

CHAPTER 1. INTRODUCTION 3

cheaper than constructing additional roads. Khanal (2012) posits that, given the

limited space and financial constraints in countries such as India, ITS provides a

way to ease existing congestion and related issues through more effective traffic

control. For example:

� Incident detection can be used to deploy emergency services to incident

locations and rerouting traffic, easing resultant congestion and reducing

the likelihood of subsequent incidents.

� The increased level of control over traffic flow may also alleviate dangers

posed by non-existent or otherwise uncoordinated traffic control.

� Data collected and analysed by these systems can be used to better inform

the control of signals and the design of new infrastructure based on observed

and forecast flows.

Considering these applications of ITS to road transport efficiency, safety, GHG

emissions, research into intelligent systems to control and manage these growing

transport networks is essential. In light of this, research in this thesis is focused

on 2 main areas within the context of arterial traffic networks: the short term

prediction of traffic flow and the detection of incidents from raw traffic flow data.

Research into solutions to the first issue will allow for improved traffic signal

timings which account for expected flow, and the second will improve emergency

response and incident clearing time, both of which will address the above con-

cerns.

1.3 Function

At a high level, ITS seeks to improve the efficiency and safety of transport systems

via the collection and utilisation of data about the state of the system. Sussman

(2008) describes the 6 main components of ITS as:

1. Advanced Transportation Management Systems (ATMS): systems that man-

age roadway functions based on real time collected data, such as congestion

prediction and detection, providing alternate routing instructions to vehi-

cles and maintaining priority for high-occupancy or emergency vehicles.

2. Advanced Traveller Information Systems (ATIS): systems that provide data

directly to travellers, for things such as incident locations, weather issues,

road conditions, road restrictions and optimal routes. This information

may be communicated via mobile phone or internet applications directly

accessible by road users.

CHAPTER 1. INTRODUCTION 4

3. Advanced Vehicle Control Systems (AVCS): systems that provide enhanced

vehicle control to improve safety and efficiency. Such features include colli-

sion detection and avoidance, semi-autonomous or fully autonomous driv-

ing. This functionality is made possible by the fusion of various onboard

sensors including: camera (including stereoscopic and traditional cameras),

high accuracy global positioning systems (GPS), radio detection and rang-

ing (RADAR), light imaging detection and ranging (LIDAR), proximity

sensors, powerful onboard computation facilities and advanced models that

control the vehicle. Safety features include driver fatigue detection and

alarms (Clement et al. 2015), and lane departure warning (Suzuki & Jans-

son 2003).

These features may also integrate between vehicles and other infrastructure

(including devices on the roadside, embedded in the road, or at greater

distances via radio communication) to further augment their operation.

Improvements in this area go beyond passenger safety and will see greater

transport accessibility for seniors, the disabled and those who would other-

wise have limited mobility.

4. Business Vehicle Management Systems (BVMS): these are systems that al-

low businesses to track and monitor their fleet vehicles in car, truck, taxi

and bus domains. Such tools allow fleet owners and managers to track the

fuel consumption, driver behaviours (such as poor driving, rule violations

and downtime), vehicle maintenance status and vehicle life cycle manage-

ment.

5. Advanced Public Transportation Systems (APTS): systems that increase

the public accessibility of information about the state of public transport

such as arrival times, delays, service substitutions and route changes, as

well as to provide operators with current information for monitoring and

planning.

6. Advanced Rural Transportation Systems: systems that address the special

constraints of relatively low-density, high speed roads. Such road networks

can only be sparsely monitored and serviced due to the relatively large

distances involved between road users and services. There is very little

literature on these types of specialised systems, indicating future research

opportunities, especially as the deployment of global telecommunications

services expands to provide coverage in remote areas.

The full potential of these components has not been fully realised or im-

plemented yet. For example, fully autonomous vehicles have yet to overcome

significant technological, legal, social and ethical hurdles:

� Bonnefon et al. (2016) report the results of surveys where people would

paradoxically approve of and prefer that other people buy and use au-

CHAPTER 1. INTRODUCTION 5

tonomous vehicles that take a utilitarian action in making a decision be-

tween injuring small number of passengers over a larger number of by-

standers, but would not buy or ride in such a vehicle themselves.

� Howard & Dai (2014) report that public perception of an acceptable injury

rate is far higher than that for human drivers. Other barriers to adoption

were cost and perceived levels of control, liability and safety.

� Terry & Tanner (2018) report the numerous road conditions in which au-

tonomous vehicles experience significant difficulty in navigating safely. For

example, autonomous vehicles systems that rely heavily on video footage

in the visible light spectrum do not handle heavy snow safely.

� Legal and regulatory issues of control and liability are only recently being

considered in Australia, where laws are being amended in order to allow

for limited and tightly controlled trials while in the USA, regulations in a

number of states allow for autonomous vehicle operation that place acci-

dent liability on the manufacturer with far greater insurance requirements

(Goplan 2018). Goldstein (2016) reports that governments need to find

a balance in legislation that does not prohibit the development of such

technology, but still maintains an acceptable level of safety and just legal

outcomes in case of accidents. For example, laws that require a human

driver to have their hands on the wheel while driving in order to not be

considered “reckless driving” eliminates many large benefits of autonomous

vehicles.

1.4 Advanced Transportation Management Sys-

tems

The research in this thesis is chiefly concerned with ATMS, specifically the de-

velopment of methods and systems to better predict traffic short term flows, and

detect incidents from such data. In general terms, ATMS performs the following

functions:

� Collection and monitoring of data about the state of infrastructure. This

includes information such as:

– Vehicle volume: the approximate number of vehicles on a particular

stretch of road at any given time.

– Degree of congestion: as road networks have a physical limit to the

amount of vehicles that can travel upon them, this data reports the

degree to which this capacity is reached or exceeded.

CHAPTER 1. INTRODUCTION 6

– Link journey time (LJT): the average time it takes a vehicle to travel

a given stretch of road during a particular time period.

– Route journey time (RJT): the average time taken for a vehicle to

travel between selected locations, and can be derived by combining

several link journey times. Typically RJT systems (Cox 2014, 2013,

Zhou et al. 2013, Michau et al. 2014, Thogulava et al. 2015) use Blue-

tooth detectors that monitor time between the detection of unique

devices (usually in the form in-car hands-free mobile communication

facilities or mobile phones themselves) throughout the road network.

– Current state of traffic signals and vehicle detectors. This includes

factors such as signal state, sensor occupancy and failure.

� Real-time adjustment of signal timings to optimise vehicle throughput. In

the context of SCATS which is a proprietary product, there is no publicly

available information on how this is achieved or by what mechanism.

� Adjustment of other signage to reroute traffic and inform network users of

factors such as accidents and approximate travel times.

� Detection of incidents.

� Providing real time video feed to traffic monitoring staff.

� Informing system operators of hardware failures.

Once these factors are optimised, Dimitrakopoulos & Demestichas (2010) cites

the secondary effects on a road-network as:

� Reduced travel time, as automatically adjusted signal controls and traf-

fic routing ensure drivers take improved routes and intersections provide

optimal timings according to current demand.

� Faster maintenance response times as infrastructure self-reports hardware

degradation or failures. With more responsive maintenance, equipment

downtime is reduced, the system is kept fully operational and drivers aren’t

required to navigate dangerous uncontrolled roads and intersections.

� Improved incident response time as incidents are detected rapidly and emer-

gency services or other appropriate responders are deployed. With this,

resultant congestion and risk of secondary incidents is eliminated. In the

case of human injury, the mortality of victims is reduced as precious time

is saved transporting them to hospitals.

� Improved traveller safety as signal control ensures that drivers and signals

are acting in a predictable and orderly manner. The safety implications

of ATMS are readily apparent when considering the incident rates in cities

with ITS are far lower than those without (Toroyan 2018).

CHAPTER 1. INTRODUCTION 7

� Increased traveller satisfaction and improved quality of life as people see

road travel as an acceptably safe and convenient mode of transport that

allows them to achieve their goals in a timely manner without undue delays.

� Reduced non-renewable fossil fuel consumption leading to improved air

quality as vehicles spend less time on the road, requiring less fuel to power

them. This result is particularly pertinent given the ongoing negative im-

pacts of climate change caused in part by greenhouse gas emissions gener-

ated road vehicles.

1.4.1 Research Issues in ATMS

There are numerous problems and research opportunities within ATMS. Due to

the large number of deployed traffic management systems across the globe, devel-

oped by both governments and private enterprises, covering motorway, freeway,

arterial road contexts, it comes as no surprise that there are numerous approaches

to managing traffic. With no clear optimal strategy or standard traffic control

method (evidenced by the ongoing issues of congestion and traffic jams), it is

of vital importance that research into novel ATMS be actively engaged in con-

cert with research into infrastructure construction, planning, and management to

ensure safer and more efficient transport for all.

The upside to this fact means is that there are a wealth of data being gener-

ated and collected regarding ATMS, presenting numerous directions for research.

Examining the direct outputs of these systems for tasks such as signal control,

and the topics discussed in the present work: traffic flow prediction (see Chap-

ter 4), and incident detection (see Chapter 6). These tasks are far from being

solved problems, for example, the task of predicting traffic flow is an active area

of research, Alsrehin et al. (2019) describes 165 different approaches to traffic

flow prediction using machine learning or data mining techniques.

The enhancement of existing Traffic Management Systems (TMSs) and the de-

velopment of new traffic management systems is of significant concern (de Souza,

Brennand, Yokoyama, Donato, Madeira & Villas 2017, Nellore & Hancke 2016,

Gettman et al. n.d., Coconea & Bellini 2019, de Souza, da Fonseca & Villas 2017),

as new data sources become available (Pack et al. n.d.), opportunities arise to

better manage existing traffic, especially in a world where semi-autonomous and

fully autonomous vehicles become the norm and traffic may be managed at the

level of individual or cohorts of vehicles. Whereas conventional ATMS simply

uses existing sensors to monitor and control traffic flow, future systems may ex-

ploit auxiliary data sources such as social media (Chen et al. 2017, Fu et al. 2015),

weather data, emergency data, satellite imagery, Internet-of-Things (IoT) devices

(Lakshminarasimhan 2016), and in-vehicle sensors.

The so-called Internet-of-Things consists of self-configuring devices, or things,

that connect to the internet and form the basis of smart cities, where once iso-

CHAPTER 1. INTRODUCTION 8

lated devices such as parking meters or street lamps can communicate amongst

themselves intelligently in order to deliver enhanced infrastructure experiences

and management. Devi & Rukmini (2016) describe the development of a subset

of the Internet-of-Things referred to as the Internet-of-Vehicles (IoV), in which

connected vehicles (either in small transient clusters, in larger fleets or more glob-

ally) communicate their status between each other to coordinate their operation.

Research issues abound, as such systems require investigation into their design,

integration, privacy, infrastructure, networking, security, redundancy, and mul-

tiple levels of interoperability amongst heterogeneous elements. Brandl (2016)

posits that the development of such systems may even lead the abandonment of

stationary sensors as part of ATMS altogether.

The integration and communication between existing ITS such as ATMS,

ATIS and APTS, where data flows enhance the operation of both systems (Smarter

and more connected: Future intelligent transportation system 2018). For exam-

ple, data collected by the ATMS can be communicated to travellers in order to

inform their routes or status of public transport.

The realisation of such technology requires significant efforts in data stan-

dardisation to ensure that vehicles and ATMSs can communicate and coordinate

to provide positive outcomes for commuters. This applies to communication be-

tween the various kinds of ITS, third party data sources utilised by ITS, and the

communication of varying devices within the specific systems (vehicle-to-vehicle

(V2V) and vehicle-to-anything (V2X) communication for example).

The mere existence of such large datasets and dependencies presents signif-

icant issues of security, resilience, and privacy (Zhang et al. 2020, de Souza,

Brennand, Yokoyama, Donato, Madeira & Villas 2017). It is of critical impor-

tance that cyber-attacks cannot disrupt the function of ATMS that heavily rely

on third-party data, and as such there are opportunities for research into exist-

ing and potential (novel or otherwise) attack vectors, and their mitigation. In

the case of data-breaches or data-leakages, the anonymity of commuters must be

maintained to ensure that personally identifying information cannot be recovered

(Dukkipati et al. 2018).

1.4.2 Challenges Posed by ATMS Data

Considering the following facts about a typical city managed by a single ITS:

� There are hundreds and potentially thousands of signalised intersections.

� Each intersection (and selected links between intersections) have a number

sensors and other inputs including:

– Loop based vehicle detectors at stop lines

– Vehicle detecting cameras

CHAPTER 1. INTRODUCTION 9

– Pedestrian crossing buttons

– Bicycle crossing buttons and detectors

– Bus detectors

� These permitted movements through an intersection may cycle through

multiple phases every minute.

� Stretches of road between two intersections, called links, may have addi-

tional loop detectors covering:

– Mid block: to detect the presence of vehicles between intersections

– Queuing detectors: to detect vehicles waiting at a road-level rail cross-

ings

– Incident detectors: on freeways, detectors are used to count and detect

missing vehicles and the incidents that their absence may imply.

� It would not be economical to install and monitor closed circuit television

beyond covering selected critical locations as additional sensors incur ad-

ditional installation, monitoring, maintenance, data processing and storage

costs.

The tasks of predicting traffic flow in the short term and detecting incidents

within this network is far beyond that of human capabilities given the large

amount of data being produced and its spatiotemporally varying nature. One

advantage of such large amounts of data being produced by the current ITS in

Adelaide, Australia is that hardware and algorithms now exist that can:

� Rapidly store and retrieve large amounts of data

� Use these large amounts of data to produce models that can effectively and

efficiently:

– Predict future data from and within the context of previously observed

data where the distribution of that data changes over time. Such

models are said to engage in “online learning”.

– Detect anomalies within data where that data has a seasonal compo-

nent. That is, where the data has recurring patterns over time where

anomalies may appear at different locations within those patterns.

– Determine the ideal parameters of such models to ensure the highest

accuracy possible.

Motivated by these challenges and opportunities, the research presented in

this thesis focuses on two areas in an arterial context: short term traffic flow

CHAPTER 1. INTRODUCTION 10

prediction (in the next phase of a intersections cycle and in aggregate) and auto-

mated detection of arterial incidents. Discussion of the development of a dataset

containing traffic network and flow information is covered in section 2.5. Greater

detail of these tasks and literature reviews of incident detection is covered in

Chapter 6 and traffic flow prediction in Chapter 4.

1.5 Research Impact

The four main contributions described in this thesis are:

1. The creation of two new large datasets for researching traffic flows within

the Adelaide metropolitan area:

(a) Traffic signal location data describing the logical connections between

signalised intersections used by SCATS in Adelaide

(b) Traffic flow data, describing traffic flows through all intersections in

Adelaide over a multi-year period

2. Demonstration of the use of HTM for predicting aggregated traffic flows

with competitive results when compared to state of the art methods. These

results were published in IEEE Transactions on Intelligent Transportation

Systems, see Mackenzie et al. (2018). These efficacy of these models and

a novel Markov based model are also demonstrated on a next phase traffic

flow prediction task.

3. The development of a novel Markov based method for short term traffic

flow prediction, with performance scores higher than those of other more

complex methods.

4. The finding that anomalous traffic flows do not necessarily indicate acci-

dents, and that accidents do not necessarily cause anomalous traffic flows.

These findings are accompanied by scripts and other software that readily allow

others to validate the above results, or extend and use them for their own research

purposes as described in section A.3.

1.6 Thesis Organisation

This thesis is organised as follows:

Chapter 1 Introduction to this thesis and ITS.

CHAPTER 1. INTRODUCTION 11

Chapter 2 Description and background into the datasets used in the research,

their preprocessing and storage.

Chapter 3 Description of the Hierarchical Temporal Memory (HTM) algorithms

used throughout the research.

Chapter 4 Report of research into the suitability of HTM and Long Short Term

Memory (LSTM) for 5, 10 and 15 minute arterial traffic flow prediction.

Chapter 5 Report of research into suitability of HTM, LSTM, and Markov Mod-

els for 5 minute and next phase traffic prediction.

Chapter 6 Report of research into the use of HTM, and Seasonal Hybrid Ex-

treme Studentized Deviate Test (SHESD) for arterial incident detection.

Chapter 7 Conclusion and recommendations for future work.

Appendices

Bibliography

Separate literature reviews are provided in chapters where appropriate. The

author acknowledges the discrepancy between this organisation, and the standard

thesis organisation of a distinct literature review chapter, but feels that the chosen

format enhances the flow of the document, as literature relevant to each research

area is kept in close proximity to the research itself.

1.6.1 Note About Notation

In this work, the following conventions (which are close to the semantics of the

python programming language) are used in pseudocode:

� A list is a data structure that can store an arbitrary number of values in a

sequence. Values are added to the end of a list L with L.append(v).

� The number of elements in a list is retrieved via L.length or length(L).

� Retrieving a value at index i in an a list L is shown as L[i]. Negative indexes

count from the end of the list, for example L[−1] returns the last element,

L[−2] returns the 2nd to last element.

� Retrieving a slice of a list, that is the sublist of elements from index i

(inclusive, starting from 0) to index j (exclusive) (these indexes may be

positive or negative as described above), is shown as L[i : j]. For example,

if L = [1, 2, 3, 4, 5], L[2 : 4] = [3, 4].

CHAPTER 1. INTRODUCTION 12

� A map M is a data structure that associates a key k (a key can be any

value such as integer, character string or a list of values) with a value v

where values may be any values including lists or other maps. Associations

are assigned using M [k] ← v. A value is retrieved using M [k]. If k is not

in M , ‘null’ is returned.

� The keys and values of map are retrieved as a list by M.keys and M.values

respectively.

� A counter C is a map data structure that counts occurrences of values.

The default retrieved value for any key is 0. Counts for a particular key are

incremented by C[k]+ = 1.

Dates described in this document use the least to most significant Australian

date format: DD/MM/YYYY, for example 7/9/2018 is the 7th of September 2018.

The exception to this is when describing dates in JSON data, in which case

ISO 8601 format is used: YYYY-MM-DD HH:mm:ss.0000 (year, month, day, hour

minute, second, milliseconds).

Chapter 2

Data Sources

A number of different data sources are used in this thesis, their collection, proper-

ties, extraction, storage and issues, are described in this chapter. The data is the

basis for all models and their evaluation in this research. The datasets created

are spatiotemporal in nature, that is, each record has an associated time and

geographical location (amongst other features). The spatial features of the data

do not change between records, while the time feature does as we are observing

the change in features over time at a particular location.

The interpretation of the raw SCATS specific datasets is largely derived from

definitions provided in the SCATS 6.4.1 Operating Instructions RTANSW (2004).

The strategic monitor (SM) and volume store (VS) data are provided as binary

files and converted into human readable comma separated value text by the pro-

prietary SCATS Traffic Reported Program provided by the Transport Systems

Centre, Flinders University (TSC).

The main data introduced here are:

� Traffic signal location data describing the location and layout of signalised

intersections within SCATS as used in Adelaide.

� Accident data describing the time, location, severity, and other features of

vehicle accidents within Adelaide.

� SCATS data describing the operation and control of the SCATS system,

logging signal cycle lengths, vehicle flow counts and the configuration of

the SCATS implementation.

The dataset and tools devised and described in this chapter are used through-

out the research in following chapters, and made available within the TSC at

Flinders University for future research in traffic engineering and elsewhere within

the university for timeseries analysis and graph data research. Unfortunately due

to the privacy demands of SCATS and DPTI, these data and tools cannot be

13

CHAPTER 2. DATA SOURCES 14

made publicly available and are thus only provided by request subject to appro-

priate authorisation.

Although there is no personal information within the accident dataset, it

remains private, as the time and location of incidents may potentially reveal per-

sonal details about the persons involved. DPTI do maintain an updated dataset

without the exact time and date of each accident via the Data.SA initiative here:

https://data.sa.gov.au/data/dataset/road-crashes-in-sa.

Due to the proprietary nature of the SCATS signalling and traffic flow datasets,

formats, and tools, they are provided to the TSC commercial-in-confidence and

thus cannot be shared publicly.

2.1 Data Storage

The majority of data used in the research in this thesis is stored in MongoDB, a

free and open source document oriented database system developed by MongoDB

Inc. Data in MongoDB are organised into databases which have many collections.

Each collection has many documents. Each document is a BSON object (Mon-

goDB 2018), an extended version of the JSON data format used to describe data

in the JavaScript programming language. The subset of available BSON types

we are concerned with are:

Object a mapping from a string key to a value. Values can be any valid BSON

value. These use the format {"key": value}, where the object is enclosed

in curly braces, the key is between double quotes and the key and value are

separated by a colon.

Array a sequence of BSON values. These have the format

[value1, value2,... valueN], where the values are between square brack-

ets and values are comma separated.

String a sequence of characters. They have the format "characters", where

the characters are between double or single quotes.

Integer an integer number. They have the format 1 or -1.

Float a floating point value representing a real number. These have the format

1.2345 or -1.23456.

Boolean either true or false.

null a null value.

Date an object that stores information about a date and time, optionally in-

cluding information about its timezone. These have the format

ISODate("2016-01-01 00:00:00.000") with values in the order: year,

month, day, hour, minute, seconds and milliseconds.

https://data.sa.gov.au/data/dataset/road-crashes-in-sa

CHAPTER 2. DATA SOURCES 15

MongoDB can also create indexes on its documents to allow fast querying

over the documents within a collection; by default an index is created on an _id

field which must be unique for every document in the collection. For example,

if there is a collection of documents that contain a site_no field, and a query

is performed to find those documents that have site no = “3001”, the database

needs only to look in the index for the position on disk of those documents. This

index uses a B-tree data structure, which takes on average O(log(n)) comparison

operations for search. For example, if a collection contains 1 billion records along

with an index on some field, a search for a particular value in the index will

require only 20 comparison operations.

When no index is present, the database must check each document in the

collection for a match on site_no, which can take a significant amount of time

[O(n) on average as it is linear with respect to the number of elements in the

collection] if there are millions or billions of individual documents. Thus, care

must be taken as to create indexes that aid in the performance of queries that

are expected to be performed on each collection so as to not consume excessive

amounts of memory or computation time executing long running queries that

must manually scan or sort an inordinate number of documents.

2.2 SCATS Data

In South Australia, the Department of Planning, Transport and Infrastructure

(DPTI) is tasked with (among other duties) managing road traffic control signals.

They use SCATS as their traffic control system and infrastructure.

The SCATS data provided by DPTI is collected by an inductive loop detector

sensor beneath the road for each lane coming into an intersection where each

sensor is uniquely identifiable on a per site basis. An image of one such detector

as visible from the road is shown in Figure 2.2 and Figure 2.1, the black lines on

the road outline the physical detector as it lies beneath the surface.

Klein et al. (2006) describe the principal by which these inductive loop de-

tectors (ILDs) operate. The ILD is a loop of insulated wire with an alternating

current passing through it, which induces a magnetic field around the wire. The

presence of a vehicle or other sufficiently large metal object over this loop will

distort this magnetic field which in turn reduce the inductance of the circuit.

This change in the circuit is detected by a controller and when this change ex-

ceeds a specified threshold, the detector is marked as occupied until such time as

the voltage of the circuit returns to normal, at which the point the detector is

marked as unoccupied. Care must be taken in order to configure the threshold of

the sensor appropriately for its application, as it may not be ideal for objects such

as a pedestrian with coins or a phone to trigger the detector, but must still be

able to register bicycles, motorbikes or scooters. At the other extreme, it may be

required that the sensor only activates on large vehicles such as buses or trucks.

CHAPTER 2. DATA SOURCES 16

Figure 2.1: Close up photograph of loop detector showing the outline of the loop

Figure 2.2: Photograph of a typical intersection with loop detectors (foreground)

and control cabinet (background)

Such loop detector systems can have numerous issues which become present in

the output data and effect data quality. These issues are (as seen in Figure 2.4):

� Missing data where the sensor does not report occupancy regardless of the

presence of a vehicle

� Flickering where the sensor is either misconfigured or malfunctioning and

reports more vehicles than actually pass over it. It is possible that a low rate

CHAPTER 2. DATA SOURCES 17

of flickering causes a valid traffic flow count (ie. less than 255), depending

on the time and duration of this flickering, can be difficult to detect and

may impact the quality of models that learn from it

� Constantly active where a malfunctioning sensor is always marked as occu-

pied.

Traffic engineers may elect to ignore sensors in the last two cases so that

their outputs are not used by the signal control system. Such error states must

be corrected manually by sending a technician to the site which requires use of

limited human time and equipment resources. As such, periods where erroneous

values are being generated may last for weeks or months at a time. Because of

this, care must be taken to clean the data and detect and ignore these values

(where they can be reasonably identified) when implementing signal controllers

and associated models.

In addition to managing traffic signals, SCATS also produces a number of

files as a record of its configuration and activity on a daily basis. This research

is concerned only with the following subset of its outputs:

� Region Configuration (LX) files: text files describing the organisation of

sensors, intersections and cycle plans on a daily basis.

� Volume Store (VS) files: binary files containing vehicle count data aggre-

gated into 5 minute blocks for every sensor at each intersection.

� Strategic Monitor (SM) files: binary files that contain reports about every

phase and cycle at each intersection

Each region covers a number of intersections which are linked physically by

roads, and within the SCATS system by links. There can be links between

intersections in different regions, although these are in the minority and must

be marked specifically as inter-region links when configuring the intersection

(RTANSW 2004).

2.2.1 LX Data

Each file describes the intersections within a SCATS region for a day and how

the signalling planner associates them, providing the following:

Intersection - information about an intersection and its internal communication

configuration.

Cycle plans - each intersection has 4 plans and each is described in terms of

the ordering and duration of each phase.

CHAPTER 2. DATA SOURCES 18

Phases - the discrete movements permitted at each intersection.

Strategic inputs - the sensors that are logically grouped together at each in-

tersection. Each strategic input has 1 to 4 sensors.

Strategic approaches - a strategic input and the downstream phase associated

with it.

The main goal of this work is to effectively analyse the SM data, specifically

the strategic input field, the strategic inputs and their associated sensors at each

intersection must be identified. This information is to be stored in the locations

collection in the database. The LX data files have many data fields as described

in SCATS 6.4.1 Operating Instructions (RTANSW 2004, Chapter 15), the ones

of concern to this research work are:

� Intersections, which use the format:

SLOT10=6,1,4!INT=3001!VC=5!CS=273!PK=/ZSL=0!, this tells us that slot

10 (denoted by SLOT10) of the SCATS system is used by intersection 3001

(denoted by INT=3001). The other fields are not used in this research.

� Strategic Approach, which use the format:

SA121=20!S^=121!VF=8,15**!VK=0!SD=3001A10C10F0!, that is, strategic

approach 121 (denoted by SA121) is part of intersection 3001 (denoted by

SD=3001) and uses strategic input 121 (denoted by S^121). These are useful

because they can be used to link strategic inputs with intersections. The

remaining fields such as VF and VK are not used in this research.

� Strategic Inputs, which use the format:

SI121=3001,2!D#=6-7!, that is, strategic input 121 (denoted by SI121) for

the region are sensors 6 and 7 (denoted by D#6-7) of intersection 3001 (de-

noted by SI121=3001). Other strategic inputs may use the format: D#1,3-5

to indicate that the SI uses sensors 1, 3, 4 and 5.

Algorithm 1 is presented to analyse the LX files in order to determine:

� Which intersections use which strategic inputs

� Which sensors each strategic input indicates

Additionally, a history of changes to strategic inputs at intersections is created,

so that during data retrieval, VS data for a SI can be correctly generated by

CHAPTER 2. DATA SOURCES 19

fetching the correct sensor values of an SI for any given day.

Algorithm 1: LX Intersection to Strategic Input Extraction Algorithm

input : lxtext the content of the .lx file

output: Map of Intersections for region to their strategic inputs and

associated sensors

1 intersections ← empty map;

2 intersection names ← all matches for regular expression INT=(\d+)! in

lxtext;

3 for intersection←intersection names do

4 intersections[intersection][‘strategicInputs’] ← empty map;

5 end

6 lines ← lxtext split into lines;

7 for line ← lines starting with ‘SI’ do

8 intersection ← intersection number from line;

9 si ← empty map;

10 si[‘site no’] ← intersection;

11 si[‘sensors’] ← list of sensors following ‘#=’;

12 strategic inputs[intersection] ← si;

13 end

14 for row ← lines starting with ‘SA’ do

15 strategic input ← strategic input from line;

16 intersection ← intersection number from line;

17 intersections[intersection][strategic input] ←
strategic inputs[strategic input];

18 end

19 return intersections

For example, in the ACC region, the associations for intersection 3001 are:

"3001": {

"121": { "sensors": [6, 7],

"site_no": "3001"},

"122": { "sensors": [2, 3],

"site_no": "3001"},

"123": { "sensors": [13, 14, 15],

"site_no": "3001"},

"124": { "sensors": [10, 11, 12],

"site_no": "3001"},

"125": { "sensors": [4, 20],

"site_no": "3001"},

"6": { "sensors": [8],

"site_no": "3001"}

}

CHAPTER 2. DATA SOURCES 20

Essentially, this means that intersection 3001 has 6 strategic inputs labelled 121,

122, 123, 124, 125 and 6. Strategic input 121 corresponds to the sensors labelled

6 and 7 of intersection 3001, strategic input 122 corresponds to sensors 2 and 3 of

intersection 3001, and so on. Storing these associations then allows easy retrieval

of grouped sensor counts from VS data, and to determine which sensors are being

counted in the SM data. It is important to note that the intersection number

is included (interchangeably referred to as ‘site no’) as some intersections have

strategic inputs from neighbouring intersections. For example, intersection 3056

has strategic input 188 that uses sensors from intersection 3020:

"3056" :{

"188": {"sensors": [9, 10, 11], "site_no": "3020"},

"29": {"sensors": [12, 13], "site_no": "3056"},

"31": {"sensors": [5, 6], "site_no": "3056"},

"33": {"sensors": [2, 3], "site_no": "3056"}}

Additionally, these strategic input configurations are subject to change by

traffic engineers, such that the sensors used in a strategic input can be added

or removed. The reasons for this are usually that a section of road has been

physically modified, traffic demand has changed and so an engineer has modified

the signalling, or an entire signalised intersection has been decommissioned.

To ensure that the correct sensor readings can be retrieved from the VS data

for any particular day, LX files were parsed for every day and any changes to

strategic inputs were added to a list for each intersection along with the day it

changed. For example, here is the a subset of the history for intersection 3056:

[{

"date" : "20070101",

"si" : {

"28" : {"site_no" : "3056","sensors" : [1, 2, 3]},

"29" : {"site_no" : "3056","sensors" : [11, 12, 13]},

"30" : {"site_no" : "3062","sensors" : [1, 2, 6, 7]},

"31" : {"site_no" : "3056","sensors" : [4, 5, 6]},

"32" : {"site_no" : "3066","sensors" : [1, 2, 3]},

"33" : {"site_no" : "3056","sensors" : [8, 9, 10]}}

}, {

"date" : "20070217",

"si" : {

"28" : {"site_no" : "3056","sensors" : [1, 2, 3]},

"29" : {"site_no" : "3056","sensors" : [11, 12, 13]},

"30" : {"site_no" : "3062","sensors" : [1, 2, 6, 7]},

"31" : {"site_no" : "3056","sensors" : [5, 6]},

"32" : {"site_no" : "3066","sensors" : [1, 2, 3]},

CHAPTER 2. DATA SOURCES 21

"33" : {"site_no" : "3056","sensors" : [8, 9, 10]}}

}, {

"date" : "20100708",

"si" : {

"28" : {"site_no" : "3056","sensors" : [2, 3]},

"29" : {"site_no" : "3056","sensors" : [11, 12, 13]},

"31" : {"site_no" : "3056","sensors" : [5, 6]},

"33" : {"site_no" : "3056","sensors" : [9, 10]}

}]

That is, sensor 4 was removed from strategic input 31 on 2007/02/17. On

2010/07/08 strategic inputs 30 and 32 were removed along with with sensor 1

from SI 28 and sensor 8 from SI 33.

2.2.2 Strategic Monitor Data

Strategic Monitor (SM) data stores information about every executed phase at an

intersection during operation and exported to a file at the end of each day. The

exported files are parsed using the SCATS Traffic Reporter program, the outputs

as defined in SCATS 6.4.1 Operating Instructions for every cycle of which we are

concerned are:

Timestamp a record of when the phase occurred (without seconds), thus we

must sort by sequence (the order in which the records appear in the SM

file) in order to get the actual sequence of phases.

Site number the intersection identifier

Strategic approach for each strategic approach at the intersection:

Strategic approach number the identifier of the strategic approach

Phase mask the movements permitted during the phase

Phase time duration in seconds of the phase

Measured flow (VF) the total number of vehicles counted over the sen-

sors of the strategic approach during the phase

Reconstituted flow (VK) a smoothed number of vehicles on the strate-

gic approach during the phase in order to prevent frequent switching

between cycle plans for high and low volume observations. Calculated

as the average of the previous volume (VFt−1) over specified sensors

and the vehicles per hour (VPH) divided by 20, or

VKt =
(
VFt−1 + VPH

20

)
/2.

Data was imported into MongoDB from all SCATS regions in the period 1 Jan-

uary, 2012 to 13 December, 2017. Each record contains the data for 1 phase, for

example:

CHAPTER 2. DATA SOURCES 22

{

"datetime" : ISODate("2016-01-01 00:00:00.000"),

"phase_time" : 30,

"site_no" : "376",

"strategic_input" : 55,

"measured_flow" : 0,

}

That is, at midnight on 1 January 2016, the strategic input 55 at intersection 376

measured 0 flow and the phase lasted for 30 seconds. There are 11,214,646,724

(between 1/1/2012 and 4/6/2018) such records stored in the database with a

compound index on site_no, strategic_input and datetime, allowing perfor-

mant queries over a strategic input at a particular site in a given time period

ordered by their occurrence.

2.2.3 Volume Store Data

Volume store (VS) data stores data for each sensor at each intersection for the

following 5 minutes and are parsed using the ndp program provided by the TSC.

Datetime the date and time when the period starts

Site Number the intersection at which the reading was taken. Site numbers

are an abstraction and do not indicate that two sites are in connected or

indicate the distance between sites.

Sensor the unique identifier for a particular sensor at a site which typically

corresponds to one lane of traffic. The majority of sensors are loop detectors,

but may be from other sources, such as cameras. Each site can have up to

24 sensors.

Vehicle count the number of vehicles detected over the sensor during the period

The SCATS data was inserted into a MongoDB collection with each document

having the following layout:

{

"site_no" : "3060",

"datetime" : ISODate("2006-10-13T23:55:00.000+0000"),

"readings" : {

"1" : 2047,

"2" :3,

"3" :2047,

...

CHAPTER 2. DATA SOURCES 23

"24" :0

}

}

That is, on 13 October, 2006, at 11:55 PM, at intersection 3060, sensors 1 and 3

were in error state, and sensor 2 recorded 3 vehicles. All other sensors recorded 0

vehicles or were not connected. Since each site can have up to 24 sensors, missing

sensors are 0.

Each document in the collection covers five minutes of traffic flow at a partic-

ular site. This data is stored with indices on datetime, site_no and a compound

index over datetime and site_no. This allows for fast querying for site over any

given time period.

The sensor counts may also be in an error state (RTANSW 2004):

2046 if a sensor has a detector alarm (DA). DA is caused by the detector not

changing states between occupied and unoccupied.

2047 if the intersection does not return a VS volume after 4 requests by SCATS.

While not described by RTANSW (2004), the sensor may also be in a flickering

state where it reports a vehicle count much higher than the number of vehicles

that physically passed over it. This can show as a reading of 256, the largest

possible flow that VS can store for a sensor (ie. VS stores flows as an unsigned 8

bit integer). Given that there are 300 seconds in 5 minutes, a VS readings of 256

would mean 1 vehicle passing over the sensor every 1.17 seconds continuously for

the 5 minute duration. This event is extremely unlikely and thus must be filtered

out before analysis can be performed. Additionally, the sensor may be flickering

and report a number of vehicles below 256, but is still far beyond the average of

other sensors in the strategic input. These types of erroneous values are shown

in Figure 2.3.

2.2.3.1 Generating a Dataset

There are two forms of data that can be extracted from the VS data:

Sensor flow - this is the flow data over a group of one or more sensors at in-

tersection. Its retrieval is trivial as the VS dataset can be queried by the

intersection and date range required. The resulting data is the flow values

of desired sensors in the returned documents.

Strategic input flow - this is the flow through a strategic input. Because

strategic input configuration may change over time, VS data must be re-

trieved for each configuration period. Thus, Algorithm 2 has been devised

to extract a subset of data for the experiments used in the following chap-

ters.

CHAPTER 2. DATA SOURCES 24

Figure 2.3: Stackplot of sensor readings 1,2 and 3 at intersection 113. Sensor

1 is flickering during this period, recording extremely high counts (especially

considering the flows recorded between 7:30 PM and 1:30 AM) while sensors 2

and 3 report normal flows

Both of these datasets are filtered during generation to exclude error values

which can drastically affect the distribution of the data. For example, intersection

113, strategic input 108 has a change in distribution as seen in Figure 2.4. This

particular strategic input does not change configuration over the period and only

records sensors 1, 2 and 3. Plotting the flow of each sensor individually shows

that at many times, some sensors fall into an error state for extended periods.

Additionally, sensor 1 frequently goes into the ‘flickering’ state.

CHAPTER 2. DATA SOURCES 25

Figure 2.4: Total flow through intersection 113, strategic input 108

CHAPTER 2. DATA SOURCES 26

Algorithm 2: Method to Generate a dataset containing the flow for a

strategic input at an intersection

input : intersection, strategic input

output: List of timestamps and flow for that timestamp for the given

strategic input

1 siConfigurations ← strategic input configurations for

intersection=intersection;

2 sort siConfigurations by date;

3 flows ← empty list;

4 for n = 1 to length(siConfigurations)− 1 do

5 conf1 ← siConfigurationsn;

6 conf2 ← siConfigurationsn+1;

7 si ← conf1strategic input;

8 for s← 1 to length(si) do

9 sensor ← sis;

10 readings ← get VS data sorted by timestamp where:

(conf1date ≤ timestamp < conf2date) ∧ (site no = sensorsite no);

11 for r ← 1 to length(readings) do

12 flow ← 0 ;

13 reading ← readingsr;

14 for s← 1 to length(sisensors) do

15 sensorFlow ← readings.sensorss;

16 if sensorF low is not an error value then

17 flow += sensorFlow;

18 end

19 end

20 flows.append([reading.datetime, flow]);

21 end

22 end

23 end

24 return flows

2.3 Traffic Signal Location Data

This is derived from Geographical Information Systems (GIS) shape files provided

by the Flinders TSC about each set of traffic signals:

� The geographical coordinates, local government area (LGA) and SCATS

region

� Description of the signals (ie. which road(s) the signals lie on)

� The type of signals (signalised intersection or pedestrian crossing)

CHAPTER 2. DATA SOURCES 27

� The intersection code (eg. TS3001)

The data has been extended with data described in subsection 2.2.1, each in-

tersection has been inserted into the database in the following format, including

additional fields as derived in this chapter:

{

"site_no" : "157"

"loc": {"type": "Point", "coordinates": [138.59784, -34.81626]},

"type": "Traffic Signals",

"description": "* 3-ARM * Port Wakefield Rd RN3500-Salisbury Hwy RN5406",

"scats_region": "WALKVL",

"lga": "CITY OF SALISBURY",

"scats_diagram": "iVBORw0KGgoAAA...",

"neighbours": ["156", "8", "344"],

"strategic_inputs": [{

"date": "20080310",

"si": {

"264": {

"site_no" : "157",

"sensors" : [1, 2]},

"265": {

"site_no" : "157",

"sensors" : [3, 4]}}

}

]}

scats_diagram is a base 64 encoded image of the SCATS diagram for the inter-

section, an example is shown in Figure 2.5

lga is the Local Government Area in which the intersection is located

loc is a GeoJSON Point indicating the location of the intersection in longitude

and latitude

strategic_inputs is an array of historical strategic input configurations for this

intersection

neighbours is an array of site_no for intersection that are immediately up-

stream or downstream of this intersection

CHAPTER 2. DATA SOURCES 28

Figure 2.5: SCATS diagram for intersection 157

2.4 SCATS Diagrams and Turning Movements

Previous work (Zhang 2005) has shown improved incident detection performance

when upstream and downstream flows are provided as model inputs in addition

to link flow. To construct such inputs for the models used in this work, a dataset

was created that stores for each intersection:

� The upstream sensors for a strategic input

� The downstream intersection for a sensor

Having such data enables the modelling of the Adelaide road network as a graph

where the nodes are intersections and edges are the upstream and downstream

sensors of a link. This shown in Figure 2.6, where intersection 3001 is shown with

all other intersections that are at most 2 link journeys away and arrows indicating

the direction of permitted travel between intersections.

The data is not readily available from the SCATS system, and thus an appro-

priate dataset was generated by extracting the sensor and neighbour intersection

data from SCATS diagrams generated by the ‘SCATS Picture’ program. An ad-

ditional program was written that could quickly perform the repetitive task of

using this application to retrieve the SCATS diagram for every intersection. Both

applications are shown in Figure 2.7.

SCATS diagrams (examples shown in Figure 2.8) provide the following infor-

mation:

� Intersection name at top left, eg. TCS 3084

CHAPTER 2. DATA SOURCES 29

Figure 2.6: Subset of the network of intersections, with intersections that are

most 2 steps from 3001

Figure 2.7: ‘SCATS Picture’ and ‘SCATS Image Exporter’ programs

� SCATS region

� SS indicates the SCATS subsystem identifier. SCATS subsystems are log-

CHAPTER 2. DATA SOURCES 30

ically grouped collections of intersections for the purpose of coordination

(RTANSW 2004)

� Discrete intersection phases and movements available during those phases.

� The illustration of the intersection intended to be an approximation of its

physical layout.

� The numbered parallel yellow lines indicate pedestrian crossings

� Green areas indicate areas that are not road

� Black areas indicate road

� Grey areas indicate traffic islands (areas excluded from traffic, as described

by ARRB (2015))

� Green boxes with a number inside indicate a detector and its identifier.

When the detector is occupied, the box is filled with blue and the number

turns white

� White dashed lines indicate the lanes of the road

� White words indicate the name of the road

� Blue numbers near the image border indicate the name of the neighbouring

intersection

� Magenta numbers indicate the traffic signal group number. Signal groups

are collections of individual lanterns on the signals for a specific movement.

For example, in Figure 2.8, the sensors labelled 6,7,8,9,13 and 14 at intersec-

tion 3084 are upstream of intersection 3043’s sensors on its south side labelled

5,6,7,8,9 and 10.

In order to extract this information from the files provided, then for each

neighbouring intersection with a provided SCATS diagram the upstream sensor

numbers were extracted using the method described in algorithm 4. Multiple

methods were used to extract information, with optical character recognition

over contour enclosed regions of a heavily preprocessed image working better

than template matching.

2.4.1 Extracting Sensors with Template Matching

Template matching (Lewis 1995) is the process whereby a small template image

is made from a reference image which is then passed over a query image and an

array of matching scores at each location in the image returned. Each template

is then moved over a simplified grayscale version of the image. Where template

CHAPTER 2. DATA SOURCES 31

Figure 2.8: Intersections 3043 and 3084

matches overlap, the match with the highest match score and longest label name

are used (this removes matches where a single digit is matched over a double digit

number eg. 1 and 16 or 8 and 18).

To determine the downstream sensors for a particular link, extracting the

arrows from the SCATS image was attempted using template matching, which

involves the following steps:

1. Crop an image to a given area to select the template

CHAPTER 2. DATA SOURCES 32

2. Slide the template over the image you wish to find the template in and

calculate a score for how well the template matches over the current target

area.

3. Return the template matching scores

4. The match scores can then be filtered by a threshold to determine if there

are several matches

In practice this method was unreliable and slow, namely because the arrows

used in the SCATS diagrams are inconsistently drawn and so would often match.

2.4.2 Extracting Sensors with Contour Detection and Op-

tical Character Recognition

Optical character recognition is the process of extracting a text string from an

image. Many methods exist to do this Google’s Tesseract OCR library: libtesser-

act, (Smith 2007) was selected because of its ease of use and free and open source

status.

Contour detection in image processing is the process of extracting contours.

Suzuki & Be (1985) describe the border following method as implemented in

OpenCV OpenCV (2015) which was used for the implementation.

The following steps were used to extract sensor locations and labels from the

intersection images:

1. Convert the image to grayscale to remove colour

2. Find contours in the image that are approximately the same size as those

sensor labels in the image

3. Perform OCR on the region enclosed by the contour

4. Return the results of OCR along with their location in the image

2.4.3 Algorithms Used

Although template matching was successful on the image the templates were ex-

tracted from, these templates did not accurately match to arrows in other SCATS

diagrams. Because of these limitations, data was automatically extracted from

a spreadsheet provided by TSC to determine upstream sensors in the Adelaide

City Council (ACC) region.

To determine downstream sensors, OCR was used to extract sensor labels

from contours that enclosed regions of the image with a specific size as described

in Algorithm 3.

CHAPTER 2. DATA SOURCES 33

These clusters of sensors are then joined with the neighbouring intersections

as described in Algorithm 4

CHAPTER 2. DATA SOURCES 34

Algorithm 3: Function for extracting groups of sensors at a given in-

tersection
Input: image of intersection, intersection

Output: Clusters of sensors for intersection

1 Assume image is represented using Blue,Green,Red format with each

channel’s intensity in the range 0,255 ;

2 Convert (0, 127, 0) and (0, 0, 255) coloured pixels in image to black;

3 Convert image to grayscale;

4 SensorPositions← empty list;

5 /* Extract the position of each label from the image */

6 contours← findContours(image);

7 foreach contour ← contours do

8 if 26 ≤ contourheight ≤ 29 and 39 ≤ contourwidth ≤ 42 then

9 subImg ← section of image enclosed by contour;

10 remove border pixels from subImg;

11 apply a binary threshold to subImg;

12 sensorLabel ← OCR(subImg);

13 /* Each sensor has its label and x,y positions */

14 SensorPositions.append([sensorLabel, subImgx, subImgy]);

15 end

16 end

17 /* Cluster the sensors */

18 clusters← DBSCAN(SensorPositions,minPts = 1, ε = 80);

19 foreach cluster ← clusters do

20 minx,miny ← minimum x,y values from cluster;

21 maxx,maxy ← maximum x,y values from cluster;

22 clusterisHorizontal ← abs(minx −maxx) > abs(miny −maxy) ;

23 clusterxMedian ← median(cluster x values) ;

24 clusteryMedian ← median(cluster y values) ;

25 end

26 return clusters

CHAPTER 2. DATA SOURCES 35

Algorithm 4: Function for associating sensor clusters with neighbouring

intersections
Input: clusters of sensors for intersection, intersection

Output: For each neighbour of the intersection, the set of sensors that

monitor traffic flow from the neighbouring intersection to the

intersection being analysed

1 /* neighbours is an associate array mapping north, east,

south, west to their respective neighbouring intersection,

null if no neighbouring intersection exists in that

direction */

2 neighbours← getNeigbouringIntersections(intersection);

3 /* Associate each cluster of sensors with a neighbouring

intersection */

4 foreach cluster ←in clusters do

5 if clusterisHorizontal then

6 if imageheight − clusteryMedian < imageheight/2 then

7 intersectionneighbours[′south′] ← cluster

8 else

9 intersectionneighbours[′north′] ← cluster

10 else

11 /* Differentiate by distance from middle of image */

12 if imagewidth/2− clusterxMedian < imagewidth/4 then

13 intersectionneighbours[′east′] ← cluster;

14 else

15 intersectionneighbours[′west′] ← cluster;

16 end

17 return intersection

2.5 DPTI Accident Data

DPTI has provided a dataset of all 142,514 reported vehicular accidents in the

Adelaide metropolitan area for the period 1/01/2006 to 1/2/2015. Each record

contains:

� Date and time

� Street address

� Road speed limit at point of accident

� Cause of accident

� Road type

� Whether or not a four-wheel drive vehicle was involved

CHAPTER 2. DATA SOURCES 36

� Current weather conditions

� Road moisture level (wet or dry)

� Crash type

� Other remarkable features of the crash site

� Exact location (latitude and longitude)

� Approximate dollar value of damages

� If traffic controls were being used

� Number of vehicles involved

� Severity, one of:

– Fatality (F)

– Serious Injury (SI)

– Minor Injury (MI)

– Property Damage Only (PDO)

The possible weather conditions, types and causes of accidents are listed in

Appendix B. These crashes were inserted into a MongoDB collection with an

index on datetime and location.

The accidents recorded are only those reported to the police, as such the

full dataset may not accurately reflect every single accident, as very low severity

incidents may not be reported. Such potential gaps in the data are likely to be

irrelevant to the problem of incident detection, as they are likely to be quickly

cleared and not effect the traffic flow.

The vast majority of accidents are PDO (70.92%), while MI account for

25.91%, SI are 2.90% and fatalities are 0.26%. Future work on this data could

look at correlations between traffic delay, crash type, severity and location in

order to advise the targeted improvement of road safety initiatives.

2.6 Conclusion

The traffic flow, reported vehicle incidents, road network configuration datasets

and associated algorithms presented in this chapter are used throughout the fol-

lowing chapters in this thesis and form the foundation of the models developed.

Furthermore, the datasets introduced here are made available within the TSC

at Flinders University could be readily used to facilitate teaching and future re-

search work in the fields of traffic engineering and data science. It is unfortunate

CHAPTER 2. DATA SOURCES 37

that this dataset is not available to the wider research community, but due to

licensing restrictions placed on these datasets by DPTI and SCATS, this is not

possible.

Approved researchers may use the database to easily extract traffic flows,

network configurations, and accident data to:

� Understand and investigate sections of the road network and their usage

over time

� Design new or updated road network configurations

� Investigate the nature of road incidents and their impact on traffic flows

� Develop more accurate traffic models based off the large volume of historic

data for use with existing traffic simulation software

� Develop new algorithms for short term timeseries prediction models and

evaluating them against the baseline results presented in the following chap-

ters of this work.

Chapter 3

Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a collection of algorithms for modelling

the processes of the mammalian neocortex. Experiments show that it can perform

competitively compared to other state of the art time series prediction algorithms

such as ARIMA and LSTM.

In this chapter, the HTM algorithms are described with their biological mo-

tivations as introduced by Hawkins et al. (2016) and utilised in Chapter 4 and

Chapter 5.

3.1 HTM Model

HTM uses a model of the mammalian neocortex, a section of the brain made up

of vertically aligned columns, with horizontal layers between them responsible

for taking in sensory input (visual, auditory, tactile, etc.) and outputting signals

for tasks such as motor function and object recognition (Byrne 2015, Mount-

castle 1997). Subsequent layers are responsible for different outputs (eg. motor

function, language) where regions (groups of columns) within each layer are sen-

sitive to different inputs (Hawkins & Ahmad 2016). HTM seeks to implement a

computational model of this theory of the neocortex.

HTM at a high level has 4 main steps (see Figure 3.1) (Hawkins et al. 2016):

1. Encoders are fed time series inputs such as scalars, categories, date/time, or

location and output a Sparse Distributed Representation (SDR). A single

field must be marked as a Predicted Field (PF).

2. This SDR is then fed to a Spatial Pooler (SP), which produces an SDR

from its active columns. The SP attempts to learn the spatial properties

(ie. the distribution of on-bits for similar encodings) of its input SDRs.

38

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 39

Inputs

Encoders

Spatial Pooler

Temporal Memory

Classifier

Output

Scalars,

Categories,

Coordinates,

Date/Time

SDR

SDR
Predicted Field,

Record Num,

Bucket Index

SDR

Predictions

Figure 3.1: High level flow chart of HTM algorithm

3. This SDR is then fed to a Temporal Memory (TM) and produces an output

SDR from its active columns. The TM attempts to learn the input sequence

of SDRs over time.

4. This SDR is then fed to the Classifier along with the value of the PF,

bucket index of the PF and the record number to give predictions from

which anomalies can be inferred. The classifier will produce a probability

distribution over the PF k steps into the future.

3.1.1 Sparse Distributed Representations

Empirical evidence suggests that the neocortex represents information using sparse

distributed representations (Ahmad & Hawkins 2016). This means that for a

given input to the neocortex, only a small subset of neurons will be activated.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 40

Cognition would be impossible if a majority of neurons activated for any given

input, for example, one subset of columns may have learned to activate when a

‘light’ visual input is detected in a certain part of vision. If other columns also

activated that normally reacted to ‘dark’ or ‘blurry’ , one would be deeply con-

fused as to what they were seeing. It is this behaviour that is emulated by SDRs,

exploiting the fact that small regions of neurons are sensitive only to specific

inputs. This indicates that the neocortex is a robust learner, using an ensemble

of a large number of small models, each specialising in activating in response to

a particular type of input. It is this property that SDRs and HTM attempts to

emulate and take advantage of.

Within HTM, data is encoded using sparse distributed representations (SDR),

Ahmad & Hawkins (2015) describe these as binary vectors of length n with a con-

stant number w of ON bits1. Each input to the algorithm, typically a timestamp

or location along with a scalar or categorical value, is encoded into an SDR. The

w value is typically very small in comparison to n, so as to maintain sparsity (s)

typically between 0.05% and 2%, defined by:

s =
w

n

This low sparsity means that SDRs can cover a large input space, so given n

and w the number of unique encodings is the binomial coefficient of n and w:

(
n

w

)
=

n!

w!(n− w)!

This small sparsity and large number of unique possible encodings also ensures

that the probability of any 2 inputs, x and y, having the same representation is

exceedingly small:

P (x = y) =
1(
n
w

)
The overlap between any two SDR encodings can be calculated as their overlap

score, that is, the number of common on bits (which is conveniently their algebraic

dot product since the product of two overlapping zeros, or a one and zero will

always be zero):

overlap(a,b) =
n∑
1

aibi = a · b

The simplest encoding scheme is simply to mark w continuous bits as 1 and

the remainder 0. The ON bits are centred at index:

1Bits may be either ON (1), or OFF (0). The biological reality of neuronal activation levels

is beyond the scope of this thesis.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 41

centerIndex =
input−minV alue+ resolution

2

resolution
+ padding

Where:

resolution =

⌊
maxV alue−minV alue

n− w

⌋
padding =

w − 1

2

The encoded output will have ON bits in the interval

[centerIndex− padding, centerIndex+ padding].

As an example, suppose a field with possible values in the range [0, 10], when

encoding the values [0, 10] into an SDR with w = 5 and n = 32 (calling such an

encoding function E), the output is:

E(0) = 11111000000000000000000000000000

E(1) = 00011111000000000000000000000000

E(2) = 00000111110000000000000000000000

E(3) = 00000000111110000000000000000000

E(4) = 00000000000111110000000000000000

E(5) = 00000000000000111110000000000000

E(6) = 00000000000000001111100000000000

E(7) = 00000000000000000001111100000000

E(8) = 00000000000000000000001111100000

E(9) = 00000000000000000000000011111000

E(10) = 00000000000000000000000000011111

It can be observed here, that similar values, eg. 0 and 1, are quite similar in

their encoding and dissimilar values have very different encodings. In the above

examples, overlap(E(0), E(1)) = 2 while overlap(E(0), E(9)) = 0. This is ideal

for non-periodic data, for example:

� Counts such as number of vehicles,

� Readings such as temperature, pressure, or load.

When encoding cyclical data, such as:

� Day of week

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 42

� Hour of day

� Day of year

It is assumed that data with significant numerical distance, may have similar

semantic distance. For example, if a numerical mapping is made from weekdays

to numbers: 0 → Sunday, 1 → Monday, 2 → Tuesday . . . 6 → Saturday, while

Sunday and Saturday have a numeric distance of 6, their actual distance is 1 when

considering Sunday comes immediately after Sunday. To this end, an encoding is

defined such that inputs near the minimum and maximum values have a higher

degree of overlap than they would otherwise. In order to do this, the centerIndex

becomes:

centerIndex =
(input−minV alue)× n
maxV alue−minV alue

ON bit indexes outside the range minV alue ≤ idx ≤ maxV alue are reas-

signed to idx mod n (where mod is the remainder from division). Exam-

ple outputs for days of the week with n = 32, w = 5, minV alue = 0 and

maxV alue = 7 to define the encoder Ep. The outputs for the days of the week

are (where 6.5 is close to midday on the last day):

Ep(0) = 11100000000000000000000000000011

Ep(1) = 00111110000000000000000000000000

Ep(2) = 00000001111100000000000000000000

Ep(3) = 00000000000111110000000000000000

Ep(4) = 00000000000000001111100000000000

Ep(5) = 00000000000000000000111110000000

Ep(6) = 00000000000000000000000001111100

Ep(6.5) = 00000000000000000000000000011111

It can be observed here that overlap(Ep(0), Ep(6.99)) = 4, which is a signifi-

cantly higher overlap than if the encoder were non-periodic.

In order to feed multiple inputs to a HTM, individual fields are encoded with

separate encoding schemes and concatenated to create the final input. Care must

be taken when specifying the number of ON bits in each encoding, given that fields

with significantly greater w values will dominate the activations for that input.

Although it may be discovered automatically through hyperparameter optimisa-

tion (or based on the model designer’s experimentation, intuition or knowledge)

that such domination/relegation would result in better model performance due

to the field’s significance in relation to the value being predicted.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 43

For example, suppose there are two inputs, daily count and day of week. A

periodic encoder would be used for day of week, and non-periodic encoder for

count, using the above encoders E and Ep examples, the following encodings for

inputs day = 1 = Monday and count = 4.5 are:

E(4.5) + Ep(1) =00000000000011111000000000000000

00111110000000000000000000000000

In practice, encoders are used with far larger n, and more sophisticated en-

coding schemes for more varied and composite datatypes. For example:

1. Geospatial data containing latitude, longitude, speed and altitude could be

made into a single unique encoding by concatenating the scalar encodings

of each respective field.

2. Categories can be encoded using a scalar encoder where each category is

converted to an integer in the range 1 to the maximum number of encoun-

tered categories.

3. Logarithmically scaled data can be encoded such that values are similar as

the order of magnitude of the value grows.

3.1.2 Spatial Pooler

The Spatial Pooler (SP) as described by Hawkins et al. (2016), takes as input

an SDR and produces an SDR as output from its active columns, which aims to

represent the minicolumns in the brain (Byrne 2015). The main goals of the SP

are to:

1. Maintain a fixed sparsity in the output, this means that it will produce

SDRs with a constant number of on-bits.

2. Maintain overlap properties between input and output where similar inputs

should produce similar outputs.

The output of the SP for a given SDR will not necessarily resemble the layout

of the input SDR, but will produce an output SDR from its active columns; that

is, it will produce an SDR with the columns that are most active for semantically

similar inputs.

The spatial pooler has the following parameters:

Column Count The number of columns in the pooler.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 44

Potential Connections Percent The proportion of the input SDR’s bits that

each column will potentially connect to. These mappings are randomly

distributed during initialisation

Number of Active Columns Per Inhibition Area The number of columns

that can be active per inhibition area.

Connection Threshold The permanence value threshold to determine if a col-

umn is connected to a given input bit. During initialisation, these values

are given a normal distribution about Potential Connections Percent, with

approximately 50% being connected

Active Connection Increment The value to increase permanence values dur-

ing learning

Active Connection Decrement The value to decrease permanence values by

during learning.

The spatial pooler attempts to learn the spatial semantics, or fingerprint, of

its SDR encoded inputs, it does this by generating another SDR consisting of its

active columns. The SP is made up of a number of columns, where each column

is potentially connected to a number (Potential Connections Percent × Column

Count) of inputs. This emulates the behaviour of the brain where there may be

thousands of potential inputs to each column and the strength of this connection

can change over time (Hawkins et al. 2016). Each of these potential connections

has an associated permanence score and a column is considered connected when

its permanence value exceeds Connection Threshold.

For any given column to be active, the number of its potential connection per-

manences exceeding Connection Threshold (we call this ConnectedCount) must

be in the top Number of Active Columns Per Inhibition Area of columns ranked

by their ConnectedCount. When a column is activated for a given input, per-

manence scores for connections that map to an on-bit of the input SDR are

incremented by Active Connection Increment and connections that map to an

off-bit are decremented by Active Connection Decrement. This means that over

time, particular columns will become sensitive to particular regions in the input,

and that the regions the column is sensitive to may change depending on how

the distribution changes over time. This enables the spatial pooler to perform

online-learning and effectively adjust to changes in distribution.

Figure 3.2 provides a visual representation of an SDR input (left) and the

columns of a spatial pooler (right):

� Blue cells in the input indicate ON bits

� White cells indicate OFF bits

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 45

� Each blue line represents a potential connection. This will considered con-

nected if its current permanence value exceeds the Connection Threshold.

� Green dots on the input indicate an ON bit that is potentially connected

to the highlighted SP column. These will be incremented by

� Grey dots on the input indicate an OFF bit that is potentially connected

to the highlighted SP column

Figure 3.2: Connections from input SDR to a single Spatial Pooler Column 2

In order to prevent only a minority of columns from ever being active, the

SP implements boosting, which replicates the phenomenon of homeostatic regu-

lation of neuronal excitability (Williams et al. 2013). In HTM, this means that as

a particular column becomes more active, its permanence value will be artificially

decreased to allow more inactive columns to become active. Conversely, increas-

ingly inactive columns will have their permanence scores artificially increased to

raise their chances of becoming active. This ensures that over time, all columns

should become active and thus the SP becomes more robust and prevents a small

subset of columns from dominating the output.

More formally, the SP algorithm can be described as follows (Hawkins et al.

2016):

1. An input SDR is created from some data

2. Initialisation: datastructures are allocated to allow the algorithm’s execu-

tion before the first input is processed

2Graphic generated using the htm-school-viz tool suite by Taylor (2019)

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 46

3. For all columns, determine the active synapses from the current input based

on those that exceed the connection threshold

4. Boosting: the count of each each column’s active synapses is multiplied by

a boosting factor

5. The columns with the highest number of active columns are now marked

as active

6. Learning: for each active column, the synapses that exceed the permanence

threshold are increased by Active Connection Increment and those below

the threshold are decreased by Active Connection Decrement. Permanence

values are clipped to the range [0, 1]. This process may bring some synapses

above or below the permanence threshold

7. Outputs of the SP is the SDR of active columns.

8. Subsequent inputs repeat this process from step 3.

3.1.3 Temporal Memory

The aim of Temporal Memory (TM) is to learn the relationship between each

input in the sequence it has seen (Hawkins et al. 2016). In a similar fashion

to how the SP learns the spatial relationships between different encoded inputs

by making connections between the input layer and the SP, the TM learns the

sequential relationship between inputs by forming connections within its columns.

It takes as input an SDR representing the active columns of the spatial pooler

and performs two major tasks:

� Forming a representation of its inputs that captures the temporal context

of previous inputs

� Making a prediction based on the current input in the context of its previous

inputs

The parameters to the TM are:

Column Count the number of columns in the TM

Activation threshold the sum of proximal dendrite

Cells Per Column the number of cells in each column

Max segments per cell the maximum number of segments per cell

Max synapses per segment the maximum number of synapses per segment

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 47

Permanence Increment the amount to increase permanences by during learn-

ing

Permanence Decrement the amount to decrease permanences by during learn-

ing

The TM is made up of columns (the same number of column used by the SP),

where each column has a number of cells that each receive the same subset of

the feed-forward input via ‘proximal dendrites’. Different columns are connected

to different subsets of the feed-forward input. As an example, if the TM has

100 active columns each with 4 cells and only 1 cell per column is active at any

given time, then there are 4100 different ways of representing the same input.

This means that the TM can represent the same input in a large number of

ways depending on the context, and these representations can be distinguished

by checking their overlap score.

A cell can be in one of three states: inactive, active and predictive. A cell

is active from a feed-forward input (from the previous layer), then it is termed

‘active’, if it is active due to inputs from neighbour cells in other columns, then

it is in the ‘predictive’ state. Each cell has a potential connection to many cells

in other columns called ‘synapses’ that have an associated permanence value

representing the strength of the connection. Two cells are considered connected

when their permanence value exceeds a specified threshold.

‘Dendrite segments’ are used to group the synapses between cells of which

there are two types. Proximal dendrite segments connect feed-forward inputs to a

cell and linearly summed, if this sum exceeds a threshold, the column is considered

active. ‘Distal dendrite segments’ connect synapses between cells (and potentially

to other cells within the same column) within the layer and are considered active

when the sum of their synapse permanence values exceeds a threshold and the

associated cell enters a predictive state.

In order to form a prediction on the current input in the context of previous

inputs, the TM will take the active columns from the SP output. Hawkins et al.

(2016) describe the TM algorithm for each input as:

1. For each of the active columns in the feed-forward input (the SDR received

from the SP), activate the associated column in the TM.

2. For each active column, the predictive cells become active. If there are no

predictive cells, all cells in the column become active. The set of active cells

is thus the representation of the input in the context of prior input.

3. For each dendrite segment, count the number of connected synapses that

correspond to currently active cells. If this count exceeds a threshold, the

dendrite is considered active. Cells with active dendrites are put in the

active state unless they are already active from feed-forward input. Cells

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 48

with no feed-forward input or active dendrites exceeding the threshold re-

main inactive. Columns with cells in the predictive state now form the

prediction.

4. Whenever a dendrite segment becomes active, permanence values of all as-

sociated synapses are increased if the cell is active, otherwise it is decreased.

These changes are marked as temporary.

5. When cells switch from inactive to active due to feed-forward input, each po-

tential synapse connected to this cell has its temporary permanence changes

status removed.

6. When a cell switches from active to inactive, temporary permanence changes

are removed.

To this end, cells are activated based only on the feed-forward input, from

which the TM will learn by strengthening connections to other cells that also

activate with similar input. Additionally cells in a predictive state will become

active only if they made a correct prediction, resulting in the TM learning and

predicting sequences over time.

3.2 Applications of HTM

3.2.1 Making Predictions

Two classifiers are presented here that take as input the output SDR of the TM

and make a prediction about a particular field k steps into the future:

Cortical Learning Algorithm the classifier used in the initial work in Chap-

ter 4.

SDR Classifier a neural network based classifier used in the work in Chapter 5.

Neither algorithm is biologically inspired, but provide a useful tool for utilising

the output of the TM, namely, predicting the value of a predicted field k steps into

the future. They do this by learning a mapping from an SDR at time t (SDRt)

to a probability distribution over possible outputs k steps into the future.

3.2.1.1 Cortical Learning Algorithm Classifier

The CLA Classifier is not biologically inspired, but is a useful tool for interpreting

the SDR output from the temporal memory and generating predictions. Essen-

tially, it attempts to learn a function of an SDR at time t (SDRt), such that it

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 49

produces a probability distribution over the predicted field (PF), k steps into the

future:

f(SDRt)→ P (PFt+k)

The CLA Classifier takes the following parameters:

α The value used to compute the moving average. A lower α values give a longer

memory

Steps The set of steps into the future that the classifier will learn and predict,

eg. {1, 3, 7, 12}.

To do this, for each predicted step (k), the CLA Classifier maintains a mapping

of:

f(SDRt−k)→ PFt

This mapping essentially stores a history of input SDRs it has seen, so, given

an input, it can refer to the history and determine the probability distribution

over the PF from a given input. It does this by:

� Storing two arrays H and A, with shape N ×B, where N is the number of

bits in the SDR and B is the number of buckets on the PF as defined by

the input encoding:

H A histogram that stores the relative frequency of bucketed input values

from when its corresponding SDR bit (n) is active. That is:

H[n][b] =
times input was seen when n was active

times n was active

A A moving average of the input values, whose length is defined by α.

When this array’s corresponding SDR bit n is active with a given

predicted field value v that falls into bucket b, the array is updated by:

A[n][b] = ((1− α)× A[n][b]) + α× v

This ensures that when a bucket covers a range of values (ie. non-

categorical values), the output is a prediction about the average value

that fell into each bucket.

� For a given input SDR of length N with N ′ active bits, predictions are

generated for each bucket (b) of the predicted field, at each timestep (k)

by averaging the product of the associated histogram value and moving

average table for each active bit:

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 50

P (PFt+k) =

 1

N ′

∑
SDR[n]=1

A[n][b]×H[n][b] : b ∈ [1, B]

Thus we have a probability for each bucket of the predicted field, which

may end up being very low for all buckets. We can use the bucket given the

highest probability as our prediction, or not, depending on the context and

the significance of the prediction. For example, the highest prediction may

be for 100% engine load with a 0.1% probability, such a low probability

would not necessitate the same response that a 95% probability would with

the same load.

Another useful property of these predictions, is that they essentially form an

ensemble, where on-bits associated prediction makes a small contribution

to the final probability distribution.

3.2.1.2 SDR Classifier

The SDR classifier introduced by Cui et al. (2015), has the same goal as the CLA

classifier, that is, it takes an input SDR from the TM and makes a prediction

about a predicted field k steps into the future. It also does this by learning a the

probability distribution function:

f(SDRt)→ P (PFt+k)

The SDR classifier learns this using a single-layer feedforward neural network

with a softmax output.

3.2.1.3 Neural Networks

An artificial neural network (ANN) is a type of model that takes as input a vector

of data, and produces a vector output via finding a large number of weighted sums

passed through an activation function. Typically these outputs are a classification

or a prediction. For example, one could input a vector features about a fruit such

as colour, size and mass, and the network would output a series of probabilities

of target classifications, such as apple, banana, orange. Or, the network may take

as input a continuous value, such as a traffic flow count, timestamp and produce

a predicted value for the traffic flow k steps into the future (Zhang 2018).

The most simple ANN achieves these results by supervised learning, where

the network is given inputs (x) and expected outputs (Y). Training the net-

work involves repeatedly evaluating the network with input examples and then

adjusting the weights so that its outputs are closer to the provided Y.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 51

It does this by storing 1 or more layers of cells (each with a weight value

w ∈ R), which are repeatedly adjusted until the output comes closer to the

target classifications or predictions. It does this in 2 phases, the feedforward pass

where outputs are produced, and the backward propagation of errors (commonly

referred to as backpropagation) where layer weights are adjusted in order to

reduce a loss function of the network’s output.

A conceptual layout of an ANN is shown in Figure 3.3. It is important to note

that initial values of these weights are normally set to 0, Although, it has been

shown that intelligently selecting a weight distribution can improve performance,

especially on networks with a large number of layers or when paired with an ap-

propriate activation function (Glorot & Bengio 2010, Bengio 2012). For example,

the ‘Glorot uniform’ (sometimes referred to as ‘Xavier Uniform’ 3) initialisation

uses a random uniform distribution in the range [−limit, limit] where:

x1Input #1

x2Input #2

x3Input #3

a1

a2

a3

a4

o1

o2

o3

W1,1

W
1,2

W
1,3

W
1,4

W 2,
1

W2,2

W
2,3

W
2,4

W
3,
1

W 3,
2

W3,3

W
3,4

Hidden

layer

Input

layer

Output

layer

Figure 3.3: Layout of an ANN with a three inputs, a single hidden layer and 3

outputs

limit =

√
6

fanIn+ fanOut

Where

3Named after its inventor, Xavier Glorot

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 52

fanIn is the number of input units to the layer

fanOut is the number of output units of the layer.

Two common tasks that ANNs can perform are regression and classification,

each requiring an appropriate loss function:

Regression is the prediction of a continuous variable. For example the neural

network may output a single value that is a prediction of a house price

based off features of the house such as floor size, post code and number of

bedrooms.

A typical loss function for regression tasks is mean squared error (MSE),

given the true values y and the predicted values ŷ, MSE =
∑n

t=1(yt−ŷt)2
n

.

Classification is the identification of inputs by labelling them with a class.

For example, images can be labelled as fruit, animal or car, or given an

audio sequence, predict which word is being spoken out of a vocabulary.

Typically the output is a vector of probabilities that a particular input

belongs to any of a set of predefined classes. Classification can also be used

to make predictions about continuous variables by discretising the input

into a number of buckets, and using the network’s output predictions of the

bucket with the highest probability as the prediction.

A typical loss function for classification is categorical cross entropy. Given

the true distribution p and the predicted distribution q, this is calculated

as H(p, q) = −
∑

x p(x) log(q(x)). Al-Rfou et al. (2016) defines the cross

entropy of 2 distributions over n categories, as a measure of the average

number of bits needed to identify an event from a set of possibilities if the

coding scheme used on a given probability distribution q rather than the

true distribution p.

For example, if an input has the true distribution p = (1.0, 0.0, 0.0), that

is, the input only belongs to class 1, and a model gives a prediction of the

distribution for the same input as q = (0.4, 0.1, 0.5), then:

H(p, q) = −
∑
x

p(x) log(q(x))

= − ((1× log(0.4)) + (0× log(0.1)) + (0× log(0.5)))

≈ 0.916

Alternatively, if the predictions q are very close to the truth values, then

the categorical cross entropy approaches zero. Given the same p, if q was

(0.98, 0.01, 0.01), then H(p, q) ≈ 0.02. In the case of a neural network, it is

the minimisation of this score for the network’s output that the optimiser

tries to achieve.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 53

The loss function needs only to be differentiable for backpropagation to de-

termine the gradients of weights of the network with respect to the error, so any

such function will do.

Feedforward Pass The feedforward pass of a neural network is:

� The output of the input layer is the vector x of input values

� For each cell in each subsequent layer, multiply each input by a specific

weight. That is, for each input to a cell, a corresponding weight is stored.

� For each cell, calculate the sum of the weighted inputs

� Apply an activation function f , to obtain the cell output. This must be

a differentiable function so that the weights can be adjusted towards a

minimum error during the backpropagation step

� For example, in Figure 3.3, the output of a1 will be: f(x1W1,1 + x2W2,1 +

x3W3,1)

� The network’s output is then the vector y of activations at the final layer.

Alternatively, for each layer n except the input layer (the output of the input

layer is the input vector x), the output of each layer can be expressed as the

vector:

aj = fn

(
N∑
i=1

Wijxi

)

Where:

aj is the activation of the jth input unit to this layer

N is the number of units in this layer

Wij is the weight for input i in unit j

xi is the state of the ith input

fn is the activation function for layer n. Each layer can have any suitable acti-

vation function

In terms of computation, the weights of each layer can be stored as an array.

Given a layer with I inputs and J units, this can be represented as a matrix L

with I rows and J columns:

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 54

L =

W11 W12 . . . W1J

W21 W22
...

. . .

WI1 WIJ

Thus the output of a layer can be represented by a, the matrix multiplication

of the vector of inputs x (with I features) with L. That is:

a = x× L

This calculation can be extended to allow parallel processing of multiple in-

put samples (often referred to as batches) by making x a matrix of I features as

rows and K samples as columns. The output in this case becomes a matrix of

K rows (representing the batch samples) and J columns (representing the fea-

tures). Software libraries that implement neural networks will take advantage of

parallel processing opportunities, especially GPUs which provide a large number

of concurrent operations to be performed, to make these matrix multiplications

as fast as possible and allow the training and implementation of very deep and

very large networks viable (Oh & Jung 2004).

The final activation of the layer is the activation function fn applied to each

element in a, which may also be performed in parallel.

Backpropagation Pass As the weights of the network are initialised randomly

(or to a single value such as 0 or 1), it is unlikely that the network will produce an

accurate output. Before the discovery of backpropagation, network weights were

set by hand in a tedious process that required significant domain knowledge and

trial-and-error work. In order to gain the optimal set of weights for a network

(a configuration that produces the lowest error score for the dataset we will

eventually feed it), the weights must be modified in such a way that the error is

eventually minimised. Choromanska et al. (2014) has shown that this minimum

does not necessarily have to be the global minimum (which may incur overfitting

where the network is unable to effectively predict inputs it has not seen) and that

local minima have a similar function to the global minimum. There are several

methods of doing this, the most common of which is backpropagation of errors

(often referred to as ‘backprop’). Rumelhart et al. (1986) introduces the steps of

backpropagation as:

� Given the output of the feedforward step for the last network layer: ŷ,

calculate the error using a loss function. The aim of the loss function is

to provide a measure by which the error of the network is calculated and

which backpropagation aims to minimise.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 55

� Given a differentiable loss function E, backpropagation will attempt to min-

imise the error with respect to the neural network’s weights. The first step

is to calculate the ∂E
∂y

for each output unit (yj). Given the first derivative

of E ′:

E ′ =
∂E

∂y

Applying the chain rule to find ∂E
∂xj

:

∂E

∂xj
=
∂E

∂yj
· dyj
dxj

The result is a function that describes how a change in x will affect the

error. This means that we can find the gradient of the layer’s weights with

respect to the loss:

∂E

∂wji
=
∂E

∂xj
· ∂xj
∂wji

=
∂E

∂xj
· yi

This function can now produce a function that describes the loss surface

of a particular network and so the network’s weights at each layer can be

updated by:

∆w = −ε∂E
∂w

Where ε is a learning rate. In geometric terms, the network gradient ∂E
∂w

is the direction and ε is the magnitude of the step toward a minima for

the network’s error. This use of a gradient and learning rate is referred to

as Stochastic Gradient Descent (SGD). Modern variants of this process use

more sophisticated updates incorporating normalisation, momentum and

regularisation, the discussion of which are beyond the scope of this work.

3.2.1.4 SDR Classifier Neural Network

The SDR classifier uses a single layer ANN in order to learn the class probability

of TM’s SDR output. Given:

� x SDR output vector of TM, the activation state caused by an input SDR

sk of bucket C at step k .

� Ck the bucket index of the input to the HTM model at step k.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 56

The SDR classifier attempts to learn the probability distribution of bucket

indexes yk given the TM’s SDR output x:

yk = P (Ck|x) =
eak∑K
i=1 e

ai

It does this by using a single layer ANN with a softmax activation. Softmax

activation is an activation function that squashes values into the range (0, 1).

Thus, the output of the network will be a vector of probabilities in the range:

yk,n = [0, 1)

Where yk,n is the probability that the input at step k belongs to bucket index

n out of N possible buckets. Additionally, this vector will sum to 1:

N∑
i=1

yk,n = 1

And the predicted bucket is the index of the greatest value in yk.

To summarise, the SDR classifier has the following architecture:

1. Inputs to the network are the output of the TM

2. The classifier has a single softmax layer with number of cells equal to the

number of buckets

3. Outputs are a probability distribution of predicted buckets

4. Softmax layer weights are updated after each input by ∆wij = α(yj − zj)xi
where:

α is the learning rate

wij is the connection weight from the ith input cell to the jth output cell

zj is the target distribution, which is a vector of size N filled with 1
N

yj is the predicted distribution

To this end, the SDR classifier should learn which TM outputs correspond to

a particular bucket index. Nominally, the network’s final prediction at step k can

be taken as the index of the maximum value from yk.

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 57

3.2.2 Anomaly Detection

In addition to making future predictions, HTM can also be used to detect if the

current input is anomalous (Ahmad & Purdy 2016). The aim of anomaly detec-

tion in the context of HTM and streaming data is to detect novel input sequences

and previously seen sequences in novel contexts. For example, Figure 3.4 shows

a stackplot of sensor readings for intersection 115 (see Figure 5.1) strategic input

2, from successive Thursdays in 2015. There is an anomalously high flow for one

peak and 2 low peaks:

� The first on 24th September, was caused by a closure of the nearby Southern

Expressway’s southbound traffic (Josephine Lim 2015), causing that same

traffic to be diverted through intersection 115.

� The following 2 low peaks occur on the 31st and 24th of December, caused

because they are on or near public holidays and as such, fewer people travel

on those days. Without this important context, it would appear that traffic

flows on these days are anomalous, but they should not be, and ideally

anomaly detection should indicate this if it was provided with the context

of examples of those days from previous years and by providing the model

with an input that indicates if a day is a holiday.

These first anomalous peak are the types of values that ideally should be

marked as anomalous while the latter should not given appropriate context.

Figure 3.4: Thursday readings, with a particularly high peak

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 58

3.2.2.1 Algorithm

The anomaly detection algorithm in HTM takes as input the stream of data xt,

that is a vector of values at time t:

..., xt−2, xt−1, xt, xt+1, xt+2, ..., xt+n

And produces two outputs:

Anomaly Score this is a raw value that simply measures the correctness of the

previous prediction.

Anomaly Likelihood this is a percentage value of the likelihood that the cur-

rent anomaly score indicates an anomaly in the context of previous inputs.

3.2.2.2 Anomaly Score

The anomaly score is the percentage of active SP columns that were not predicted

by the TM. We use this because the aim of the TM is to predict the output of

the SP, and working under the assumption that the TM has sufficiently learned

the input sequences, should be a good indicator of whether or not the TM has

encountered an anomaly.

anomalyScore =
|At − (Pt−1 ∩ At)|

|At|

Where:

Pt Predicted columns at time t

At Active columns at time t

Alternatively put, the SP will produce an SDR at time t, we can get an

anomaly score by calculating the percentage overlap between At and the predicted

cells of the TM (Pt−1) before the TM has made learnt and inferred from the

input at t. Thus, an anomaly score of 1 means none of the cells matched, and an

anomaly score of 0 means all cells matched, ie. the TM made a perfect prediction

about the state of the SP output at t+ 1.

Assuming that the TM has had sufficient time to adequately learn the se-

quences of SDRs coming from the SP, anomalyScore can be used as a measure

of anomaly. For this reason the anomaly score is usually ignored for some initial

number of records, typically we can begin using the score after 500 records have

been seen, but this is highly dependent on the context of the data. This is impor-

tant because the TM can learn different contexts, so what may be anomalous on

a weekday, may not be anomalous on a weekend, thus the anomaly score can be

trusted as a robust measure regardless of context (so long as it has been learned).

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 59

3.2.2.3 Anomaly Likelihood

While Ahmad & Purdy (2016) describe anomaly score as an instantaneous mea-

sure of HTM’s internal predictive performance, anomaly likelihood seeks to mea-

sure changes in predictability. That is, a value may be incorrectly predicted,

but that does not make it unusual in context. For example, a sequence may be

observed that has periodic changes and we would expect an increase in anomaly

score when the changeover occurs but this is not actually anomalous because such

changeovers are expected. Anomaly likelihood should indicate when previously

unobserved sequences are encountered or those which are novel in an observed

context.

Anomaly likelihood is calculated by (Ahmad & Purdy 2016):

� Keeping a window of the last W anomaly scores st

� Storing the mean (µt) and variance (σ2
t) distribution over the anomaly score

window

� A short term average (µ̃t) of W ′ anomaly scores is calculated where W ′ �
W

� The final likelihood is calculated as the complement of the tail probability,

also known as the Q function. The Q function is the probability that a

normally distributed value is larger than x standard deviations. Given that

Y is a normally distributed random variable with mean µ and variance σ2,

X = Y−µ
σ

, then Q(x) = P (X > x) (Karagiannidis & Lioumpas 2007) where

µt =

∑W−1
i=0 st−i
W

σ2
t =

∑i=W−1
i=0 st−i
W − 1

µ̃t =

∑i=W ′−1
i=0 st−i
W ′

Lt = 1−Q
(
µ̃t − µt
σt

)

An anomaly is reported if Lt exceeds some threshold (ε), that is when: Lt ≥
1− ε. Typically anomalies are only reported when the likelihood exceeds 0.99999

(equivalent to 4.5 standard deviations or a 1 in 147,160 occurrence).

CHAPTER 3. HIERARCHICAL TEMPORAL MEMORY 60

3.3 Conclusion

In this chapter, the HTM background, processes and applications were described.

HTM represents a family of algorithms that continuously learns to predict future

sequences from input sequences through a biologically inspired model of the neo-

cortex. This model takes a sparse encoding of input data, and outputs a learned

representation of that data which can then be used by a classifier to make pre-

dictions about inputs in future steps, and to determine if the data is anomalous

within the context of the observed input sequence.

HTM will be compared to other novel and existing methods for both prediction

and anomaly detection in Chapter 4, Chapter 5 and Chapter 6.

Chapter 4

HTM and LSTM For Aggregated

Traffic Prediction in CBD

Locations

In this chapter, the focus of research will be to investigate the usage of 2 timeseries

prediction techniques: HTM and LSTM in order to assess their effectiveness at

predicting traffic flow in a variety of conditions using the VS data source. This

chapter has been accepted for publication in IEEE Transactions on Intelligent

Transportation Systems and has been cited multiple times , signifying is impact

within the field. The description of HTM has been moved to Chapter 3 for a

more comprehensive description. A more extensive explanation of LSTM models

is also included.

4.1 Background

Traffic flow prediction is one of the most useful tools in ITS as it allows systems

to act in a proactive way, facilitating the automatic adjustment of signal tim-

ings to optimise traffic flow through groups of intersections. Additionally, these

predictions allow traffic controllers to provide accurate and timely traffic flow

information for individuals, businesses and government (Tian & Pan 2015).

One of the main difficulties in predicting future arterial traffic flow is the

non-linear nature of the raw data. Figure 4.1 shows that over the course of a

day at intersection TS3044, there are clearly identifiable morning and afternoon

peaks in traffic flow with drops during midday and throughout the evening. Even

though these overall trends are apparent, individual data points show that there

is no distinct pattern from one data point to the next aside from alternating local

maxima and minima. Additionally, these patterns depend on the day of week,

that is, in particular Fridays, Saturdays and Sundays (see Figure 4.2b) differ

markedly to those from Monday to Thursday (see Figure 4.2a). Moreover, the

61

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 62

Figure 4.1: Typical Weekday Traffic Flow

overall distribution varies between weeks due to extended factors such as holidays,

events and ongoing roadworks. Seasonal factors are also significant, for example,

during summer it is reasonable to see increased traffic near metropolitan beaches

and reduced traffic near schools. These observations concur with previous findings

by Stathopoulos & Karlaftis (2001) which infer that short-term traffic prediction

techniques cannot rely heavily on cycles within the data (such as daily, weekly or

hourly) to accommodate the noisy nature of such spatiotemporal data.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 63

(a) Monday to Thursday Traffic Flows

(b) Friday to Sunday Traffic Flows

Figure 4.2: Traffic Flow from TS3104 to TS3044

The nature of traffic flow as described necessitates the implementation of a

predictive system that can not only deal with periodic distribution variations, but

also sustained changes in distribution caused by external factors such as extended

roadworks, accidents, road infrastructure changes, or hardware reconfiguration.

To this end, an algorithm is required that can learn these patterns and, impor-

tantly, relearn when those patterns change. Online learning is one such method

that allows models to adjust with each individual input which HTM performs. In

this chapter, performance results of traffic prediction using HTM are compared

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 64

to LSTM with and without online learning.

4.1.1 Related Work

This section examines the previous work into short-term traffic prediction. The

majority of work into traffic flow prediction falls into three main categories (Lv

et al. 2014):

� Parametric models that use time series analysis such as Kalman Filtering,

Autoregressive Integrated Moving Average (ARIMA) and its derivatives,

� Simulation models that use traffic simulation tools to predict traffic flow,

(see for example the work of Zhang (2016))

� Non-parametric models such as ANNs and k-nearest neighbours. These

techniques are the main focus of our research.

Early use of neural networks for predicting traffic flow were first described by

Smith & Demetsky (1994), where a network with 10 elements in a single hidden

layer using backpropagation was used to learn vehicle counts over a 2 day period

on a section of highway at 15 minute intervals. They compare results to historical

average and ARIMA models, and show superior results and future potential for

the use of neural networks prediction models with an RMSE of 2620, average

absolute error of 144 (with peak volumes around 4,000 vehicles). Using such a

small dataset is not sufficient to learn patterns or trends that occur over larger

time scales at smaller intervals simply because the model does encounter them.

An analysis by Clark (2003) aimed to predict the traffic on London’s M25

orbital motorway using multiple non-parametric regression over loop detector

data at 1 minute intervals. The M25 uses variable speed signs in order to control

traffic flow, thus they have a dataset combining speed limits, occupancy and

traffic flow. Their model uses a k -nearest neighbour (KNN), that searches an

historical database of observations for the k -nearest matches to the current state

(occupancy and flow) and averages the result to make a prediction about the

future traffic state and thus the optimal speed for that state. They tested this

method on 3 weeks of data at 10 minute intervals, but due to the relatively

small amount of training data used, it is unclear how the KNN method could

be generalised in more varied traffic flow scenarios such as weekends or public

holidays.

A database lookup method for imputing missing SCATS data is introduced

by Vogiatzis et al. (2009), which essentially looks up different histories over each

sensor and averages the result. This method could potentially be adapted to

make predictions by treating the future readings as missing data, but no research

is available regarding its performance in short term traffic prediction.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 65

The majority of recent efforts in short-term traffic prediction involve the use

of neural networks and is focussed around investigating the efficacy of their nu-

merous variants and associated algorithms. A network is presented by Chan et al.

(2012), where an exponential smoothing method is used to pre-process raw data

and the network is optimised using the Levenberg-Marquardt algorithm (Lourakis

2005) for solving non-linear least squares problems. This scheme was evaluated

at on/off ramps on the Mitchell Freeway in Perth, Australia for 6 separate weeks

(Monday to Thursday) during AM peaks (7:30 - 9:30AM). Results showed that

smoothing provided superior error rates to non-smoothed data.

Neural networks have seen a resurgence after the development of deep learn-

ing (LeCun et al. 2015), that is, networks with large numbers of hidden layers

and appropriate techniques and algorithms that effectively train them, and the

introduction of software libraries that employ the use of General Purpose Graph-

ics Processing Unit (GPGPU) devices that make their implementation, training,

and usage viable. One of the first such investigations into the use of these tech-

niques for traffic prediction is by Lv et al. (2014), who examine the use of Stacked

AutoEncoders (SAE) (Gang et al. 2015). Following this work, the use of deep

belief networks Huang et al. (2014), Tan et al. (2016) and graph neural networks

Shahsavari & Abbeel (2015) were also investigated.

A variant of recurrent neural networks term Long Short-Term Memory (LSTM)

is first investigated by Tian & Pan (2015). They implement a single hidden layer

with between 5 and 40 units and evaluate this model using the Californian Cal-

trans Performance Measurement System over a dataset for 6 freeways over 249

workdays in 2014 at 5 minute intervals. They compare the results of LSTM to

random walk, support vector machines with radial basis function, single layer

feed-forward neural network and SAEs. The results of this comparison showed

that LSTM had superior mean absolute percentage error and root mean squared

errors for all tested intervals. This chapter acknowledges these successes, and

now seeks to build and extend on these results.

Another non-parametric method that does not use neural networks termed

Fast Incremental Model Trees - Drift Detection (FIMT-DD) is introduced by

Wibisono et al. (2016). FIMT-DD is a decision tree designed to model very large

datasets that optimises the splits for each input attribute, such as link positions,

link journey time, average link speed, link length and average link flow. This

method is evaluated on data collected at 15 minute intervals over 5 years and

2500 individual sensors for motorways in the UK and evaluation shows that this

method has a reduction in prediction percentage error, as data size increases, to

around 15%.

In other work, Hamed et al. (1995) developed a time-series model for fore-

casting traffic volume in urban arterials using a Box-Jenkins auto-regressive inte-

grated moving average (ARIMA) model, while Vlahogianni et al. (2005) used a

genetic algorithm based optimisation strategy help model the traffic flow data in

an urban arterial and Stathopoulos & Karlaftis (2003) employed a multivariate

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 66

time-series state space model to provide traffic parameters such as traffic volumes,

travel speeds and occupancies.

Driver behaviour varies between motorways, freeways and arterial roads (Ben-

Akiva et al. 1984, Aghabayk et al. 2011) as does their connectivity and many other

characteristics (Xie & Levinson 2007). Since the majority of research published

around traffic prediction analyses freeway traffic and in limited time periods, this

motivates the expansion of research into the arterial road domain with datasets

covering multiple years of readings over the entire 24 hour period. The Adelaide

traffic network in South Australia is a natural choice for such arterial road anal-

ysis as its road network mostly consists of arterial roads (with two expressways)

(Norley 2011), whereas other cities have a much higher proportion of freeways

and motorways to arterial roads.

To this end we also wish to verify that non-parametric metric methods (with

their suitability demonstrated by Tan et al. (2016), Lv et al. (2014), Tian & Pan

(2015), Shahsavari & Abbeel (2015)) such as HTM and LSTM can be transferred

from the freeway and motorway domains to an arterial one. Additionally, previous

studies have not addressed the effect of changes in traffic patterns and their effect

on prediction quality. Furthermore, the above experiments often used limited

datasets, limiting their evaluation periods, either to specific days of the week,

hours of days or a few weeks in a year. This research seeks to evaluate the

predictive efficacy of models that work around the clock over several years.

4.2 Long Short-Term Memory

Long Short-Term Memory is a type of recurrent cell in neural networks introduced

by Hochreiter & Schmidhuber (1997) and is notable because it uses its output

from previous timesteps as input as part of its evaluation. This recurrent input

allows the network to learn long-term dependencies, allowing it to better predict

sequence values especially where an output may be dependent on inputs from

previous timesteps. These previous inputs may be from an arbitrary amount of

time steps ago.

Additionally, the cells also have a ‘forget gate’, allowing it to reset its memory

state. This structure makes sense, as humans attempt to read and understand a

sentence, the previous words are kept in short term memory, allowing cognition

of the sentence as new words are read in context with previous ones. Eventually

the individual words and their ordering are forgotten but the meaning behind the

sentence is understood (Olah 2015).

LSTM has been shown to produce state of the art results on a variety of tasks,

especially time sequence prediction and classification problems including:

� Speech recognition (Tian et al. 2017)

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 67

� Weather prediction (Shi et al. 2015)

� Short term traffic flow prediction (Tian & Pan 2015)

4.2.1 Definition

The full definition of an LSTM cell is (Olah 2015, Jozefowicz et al. 2015):

it = σ1(Wxixt +Whiht−1 + bi) (4.1)

ft = σ1(Wxfxt +Whfht−1 + bf) (4.2)

ot = σ1(Wxoxt +Whoht−1 + bo) (4.3)

c̃t = σ2(Wxc̃xt +Whc̃ht−1 + bc) (4.4)

ct = ct−1 � ft + it � c̃t (4.5)

ht = σ2(ct)� ot (4.6)

Where:

� is the element-wise vector product operation

σ1 is the recurrent activation function. Typically this is the sigmoid function:

sigm(x) = ex

ex+1
. This squashes its input into the range [0, 1). In this work,

the hard sigmoid is used, which is computationally faster linear approxima-

tion of the sigmoid: hardsigm(x) = max(0,min(1, x× 0.2 + 0.5))

σ2 is the cell’s activation function. Typically this is the hyperbolic tangent (tanh)

W∗ are the weight matrices. There are five sets of weight matrices stored:

Wi,Wf ,Wo, c̃t.

b∗ are the bias vectors, bi, bf , bo, bc.

ft is the forget gate layer. This decides which values will not be passed onto the

next layer. A low output here will cause the cell to forget its carry state. A

high value will keep the carry state. It is important that the network learns

to remember and forget the carry state through this variable.

it is the input gate layer. This decides which values will be passed onto the next

layer.

ct is the carry state, passed onto the next timestep

ht is the memory state, passed onto the next timestep and is the output of the

cell.

(ht, ct) the concatenation of ht and ct constitutes the hidden state which is the

recurrent input for the next timestep.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 68

ct−1

ht−1

xt

ct

htft it c̃t ot

� +

�

�
σ1

σ1

σ1

σ
2

σ 2

Figure 4.3: Layout of an LSTM cell where xt is the input vector at timestep t.

Activations are the activation functions at for each variable are shown on edges

See Figure 4.4 for plots of the activation functions. The layout of a LSTM

cell is shown in Figure 4.3

As discussed in the 3.2.1.3, a layer in a neural network is composed of a series

of LSTM cells, the outputs of which can be passed into other layer types including

LSTM layers or simple densely connected layers.

Figure 4.4: Sigmoid Activation

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 69

4.2.2 LSTM Architecture

In this work, the LSTM type models use a stacked model, where outputs of

successive LSTM layers are passed onto the final dense layer. The last layer uses

rectified linear unit (f(x) = max(0, x)) activation and outputs a single floating

point prediction for the traffic flow k steps into the future (for a value of k that

the model has been trained on). It is possible to have multiple k from the same

network by having multiple cells in the final layer, provided that the network is

fed these values, but this configuration was not investigated and would be an

avenue of future work.

4.3 Methodology

There are 3 main aims of this work:

1. Determine if LSTM can be applied to short term arterial traffic flow predic-

tion given that it has been proven in the freeway and motorway domains.

2. Determine if HTM is suitable for short term traffic prediction, and

3. Evaluate HTM’s performance in comparison to LSTM.

These tasks are solved by implementing the models and feeding them data from

two intersections in the Adelaide central business district over a 2 year period.

4.3.1 Performance Measures

As these experiments are a regression analysis, the predicted values (y) are

compared against the ground truth values (Y) and the following metrics cal-

culated: Mean Absolute Percentage Error (MAPE), and Root Mean Squared

Error (RMSE), Mean GEH1. GEH is a statistic commonly used to evaluate pre-

dictive traffic models (Feldman 2012) and is useful for evaluating predictions at

small numbers (the dataset used contains times when there is zero flow, so any

prediction near this, such as 1-10 would generate a large relative error, as with

MAPE). MAPE and RMSE are recorded in order to make reasonable compar-

isons to previous work; the author argues that GEH is the most useful metric for

evaluating traffic predictions. Calibration criteria provided by the South Aus-

tralian Department for Transport, Energy and Infrastructure (DTEI 2010, p. 27)

gives acceptable ranges for GEH when defining AIMSUN models as less than 5

for individual flows/movements and less than 4 for sum of all flows movements.

These metrics are defined as:

1 Named after its creator, Geoffrey E. Havers.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 70

MAPE =
1

n

n∑
i=1

|yi − Yi|
Y

(4.7)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − Yi)2 (4.8)

MGEH =
1

n

n∑
i=1

√
2(yi − Yi)2
yi + Yi

(4.9)

4.3.2 HTM

HTM was evaluated using the NuPIC implementation (Taylor et al. 2016). The

model was fed the first 40% of the data to allow it to learn the patterns, followed

by the remaining test data and statistics were collected regarding its predictions.

The encoder parameters for the sensor count were decided by evaluating predic-

tions for various bucket counts and using the one that produced the lowest GEH

score2. Bucket width is determined by:

bucketWidth = max

(
0.001,

maxInput−minInput
buckets

)
(4.10)

4.3.3 LSTM

The LSTM network architecture and parameters were determined by TPE hy-

perparameter optimisation (see section 5.2 for a full explanation) using hyperopt

(Bergstra et al. 2013) and the best parameter set selected as the network with

the lowest GEH score for the evaluation dataset. The search space and optimal

parameters are described in Table C.1 and a full description of the optimisation

algorithm is given in section 5.2.

The models were implemented using the Keras frontend (Chollet 2015) to

Theano (Al-Rfou et al. 2016). Data was split into training and test data with

40% training, 60% evaluation. The inputs to the network are:

� Sum of lane counts

� Day of week

� Hour of day

� Minute of hour

2The source code repositories are available on github at https://github.com/JonnoFTW/

traffic-prediction for LSTM and https://github.com/JonnoFTW/htm-models-adelaide/tree/

master/engine for HTM.

https://github.com/JonnoFTW/traffic-prediction
https://github.com/JonnoFTW/traffic-prediction
https://github.com/JonnoFTW/htm-models-adelaide/tree/master/engine
https://github.com/JonnoFTW/htm-models-adelaide/tree/master/engine

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 71

The label is traffic flow k steps into the future, and it is this value that the

network attempts to predict by minimisation of the Mean Squared Error (MSE)

score using the Adam optimiser (Kingma & Ba 2014). Two models are evaluated,

one with batch learning and another using online learning.

4.3.4 Batch Learning (LSTM-Batch)

The first method uses the traditional batch learning method, where the entire

training set is split into batches, each batch is fed into the model, the error is

calculated and backpropagation through time is used to update the weights in

the network proportional to the error. This process is then repeated until the

error score reaches a minimum. Whether or not this minimum is local or global

depends on the type of optimiser and learning rate used (Jain et al. 2014). Once

an acceptable minimum is found, the network is then used to process the testing

set and statistics collected about the predictions.

4.3.5 Online Learning (LSTM-Online)

This method feeds data into a stateful LSTM network in small batches (or mini-

batches), typically of 1-5 records, the error score is calculated and backpropa-

gation through time (BPTT) is used to update the network weights (Jain et al.

2014). This training method allows the network to learn continually while also

learning time based dependencies by remembering the state of from the previous

batch LSTM cell’s state.

During testing, the network is used to make a prediction from which the error

score is calculated using the next value and the network weights are updated. Per-

formance measures are then collected from these predictions. Additional testing

was performed to see if resetting the carry state values improved performance.

4.4 Results

4.4.1 Datasets

The data used in these experiments is a time series containing a timestamp and

the lane counts (recorded from stop line loop detectors) during the 5 minutes pre-

ceding the timestamp. The analysis here covers counts that correspond to traffic

flow over 2 separate links in the period from 1 January, 2012 to 11 July, 2013.

The first link examined is northbound to a 4-way intersection along a corridor

(TS3044), the second is a southbound link into a 3-way inner-city intersection

(TS3002); all counts are from the sensor readings at the end of the link. All

models were fed the same input:

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 72

� Day of week

� Whether or not the day is on a weekend

� Time of day

� Sum of the sensor counts for link

If any individual sensor’s count exceeded 200 vehicles, then the entire timestep

is skipped so as to prevent the system from learning error values (this work is

only concerned only with predictions about the state of traffic flow, and not the

state of the sensor which may be in an error state).

In order to evaluate each model’s effectiveness when distributions change,

metrics are provided for the period 23 April, 2013 to 15 June, 2013 Table C.2.

During this period, a single sensor’s distribution (of the 3 sensors for the link)

varied dramatically, see Figure 4.5, where a higher standard deviation indicates

a significant variance in traffic flows throughout a given day.

� Up until 1 May, 2013, the morning peak peaked at around 30 vehicles at

9AM

� Between 1-7 May, it peaked at around 20 vehicles at 9AM

� Between 7 May and 8 June, 2013, it began collecting at distributions similar

to a tram sensor; peaking at 4 vehicles per interval, with a significantly

higher than normal error count

� After 8 June, it returned to peaking at around 20 vehicles.

Each model was evaluated during this period at k = 1.

4.4.2 Analysis

The results show that HTM, LSTM-Batch and LSTM-Online can indeed be ap-

plied to the domain of short term arterial traffic prediction as they give RMSE

scores superior to other state of the art usage in the freeway domain Tian & Pan

(2015), Wibisono et al. (2016). The MAPE scores provided by all models used

here are worse than those in previous works, but this is likely due to the increased

amount of noise in arterial traffic flows compared to freeways and motorways.

Results from both datasets, Table 4.1 and Table 4.2 show that HTM suffers

from a loss in prediction quality as k increases while LSTM does not, this is due

to the fact that each LSTM model is trained for a specific k whereas HTM does

not.

A subset of predictions for the varied distribution dataset are listed in Fig-

ure 4.7 for HTM, Figure 4.8 for LSTM-Batch, and Figure 4.9 for LSTM-Online.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 73

Figure 4.5: Standard deviation of traffic 5 minute vehicle flow readings per day,

showing that there is both a change in traffic flow variability throughout the day,

and over time

It can be observed here that both HTM and LSTM-Online adjusted to the change

in volume. Whether or not this behaviour would be useful in this case is debat-

able as it would be highly dependent on the cause of the change, for example, if

a single detector were to be in an error state, adapting to the new sensor counts

would cause the model to make predictions about the remaining sensors and not

the actual number of vehicles on the road. Nevertheless, it can be assumed that

the large MAPE errors for LSTM-Batch on TS3002 are caused by its inability

to adapt to change in the absence of the online-learning seen in the other two

models, see Figure 4.8.

A summary of results for each intersection tested are provided in Table 4.1 and

Table 4.2. Results for TS3002 specifically during the period of varied distribution

are in Table C.2.

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 74

Figure 4.6: LSTM Predictions for successive Tuesdays

Figure 4.7: Zoomed Area for Traffic Flow Distribution and HTM Predictions

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 75

Figure 4.8: Zoomed Area for Traffic Flow Distribution and LSTM Batch Predic-

tions

Figure 4.9: Zoomed Area for Traffic Flow Distribution and LSTM-Online Pre-

dictions

C
H
A
P
T
E
R

4.
H
T
M

&
L
S
T
M

F
O
R

T
R
A
F
F
IC

P
R
E
D
IC

T
IO

N
-
C
B
D

76

Table 4.1: Summary of Results for TS3044

Time Step (k)
Model HTM LSTM-Batch LSTM-Online

Metric GEH RMSE MAPE GEH RMSE MAPE GEH RMSE MAPE

5 Minute 1.78483 24.3256 25.6438 1.4327 19.1937 20.9013 1.6701 15.5476 27.9095

15 Minute 1.92271 26.1495 28.1514 1.4552 19.6388 21.6877 1.6324 15.3397 25.3137

30 Minute 2.13217 28.6643 31.8891 1.4688 19.6402 22.2586 1.7231 16.1951 27.1289

45 Minute 2.27641 30.1221 34.9188 1.5125 20.4665 22.115 1.8050 16.9344 29.0042

60 Minute 2.37946 31.4697 37.2002 1.58235 21.4208 23.2616 1.91873 18.009 31.3967

Table 4.2: Summary of Results for TS3002

Time Step (k)
Model HTM LSTM-Batch LSTM-Online

Metric GEH RMSE MAPE GEH RMSE MAPE GEH RMSE MAPE

5 Minute 1.36306 12.4738 33.1574 1.59367 15.8388 40.2894 1.5299 10.525 39.68655

15 Minute 1.50805 13.8317 36.7716 1.57015 15.6433 39.5736 1.52929 10.5314 38.955

30 Minute 1.80306 16.7724 43.7712 1.41763 13.1827 38.3119 1.45773 9.75738 39.5527

45 Minute 1.97191 18.248 49.9565 1.57309 15.6521 41.2436 1.57453 10.8052 40.9037

60 Minute 2.24488 20.9259 57.6634 1.43799 13.5727 40.4709 1.5429 10.3995 41.4226

CHAPTER 4. HTM & LSTM FOR TRAFFIC PREDICTION - CBD 77

4.5 Conclusion

This chapter presents the findings of an investigation into the suitability of HTM

for short-term traffic prediction in an arterial road network and compare it to

LSTM models. The efficacy of HTM to learn and predict short term arterial traffic

flows is clearly demonstrate, competitive performance with another state of the

art method (LSTM), and novel given the state of literature on arterial and freeway

traffic prediction. Furthermore, findings show that LSTM can be transferred

from the highway and motorway domains into the arterial road domain and that

improved performance can be found when LSTM is used in an online learning

fashion. It was found that LSTM gives improved performance over HTM at

the cost of training and running 5 separate LSTM models per link; although

HTM can adequately predict traffic flows based on its GEH scores. It was also

demonstrated that both HTM and LSTM-Online have the benefit of adjusting

to changes in traffic flow distributions. Despite HTM’s decreased performance at

increasing k, it is suitable as a tool for short term traffic prediction on arterial

roads.

Avenues for future work around predicting short term traffic flow include:

1. The optimisation of HTM parameters, especially experimentation around

encoder parameters and input feature selection.

2. Investigating parameters for a single LSTM network that outputs a pre-

diction with multiple outputs, one for each desired time step, rather than

separate models for each timestep.

3. Investigating a gated recurrent unit (a simpler variant of LSTM) model as

described by Cho et al. (2014).

4. Investigating an LSTM model that uses a convolutional LSTM cell as de-

scribed by Shi et al. (2015).

5. Experimenting with feeding additional parameters to the models, including

the flow counts of upstream, downstream or other nearby intersections,

public holiday status and the week of year. The fields would ideally be

included in the search space of additional hyperparameter optimisations.

6. Investigating how anomalous traffic flow can be detected from the output

of predictive models and then used to infer the presence of incidents.

Points 1 and 4 are investigated in Chapter 5 while 6 is investigated in Chap-

ter 6.

Chapter 5

Predicting Next Phase and

Aggregated Traffic Flows in

Urban Areas

5.1 Introduction

Motivated by initial successes in predicting short term traffic flows on 2 intersec-

tions in the Adelaide CBD with HTM and LSTM based models, research effort

is now turned to:

� Applying HTM and LSTM-Online techniques to intersections in other ar-

terial areas (ie. those areas not in the CBD).

� Applying Seasonal Autoregressive Integrated Moving Average (SARIMA)

models to the traffic prediction problem.

� Applying a Markov Model approach to traffic prediction.

� Improving hyperparameter optimisation search space and methodology, ad-

ditionally searching over selecting input features in HTM and LSTM mod-

els. That is, models were trialled with and without certain inputs.

� Verifying that these methods work on both VS (5 minute aggregated dataset)

and SM (phase level dataset) with a 1 step prediction task at an urban in-

tersection.

� Making a comparison of these models and their transferability between VS

and SM datasets.

Optimisation tasks were performed with a much wider parameter search space

and on data that is free from erroneous flow values due to sensor flickering but

78

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 79

also experiences anomalous traffic flows and changes in distribution. In this

chapter, additional prediction tasks using HTM, LSTM-Online and SARIMA are

evaluated in their effectiveness on traffic flow prediction and the suitability of

TPE-based hyperparameter optimisation is demonstrated for HTM and LSTM.

Intersection 115 is examined (shown in Figure 5.1). It was selected because of

its consistent dataset containing a minimal number of error values and no flicker-

ing across a two year period. Observing the VS dataset generally in Figure 5.3,

at a daily level, clear weekly cycles can be observed:

� Weekdays Tuesdays through to Thursday have similar flows

� Fridays, Saturdays and Sundays all have distinct total flows

There are also several outliers in this dataset, for example:

� The last weeks of December and first week of January have significantly

lower total flow. Given this context, these weeks are outliers but not anoma-

lous.

� A large spike on 24 September, 2015 was caused by an accident elsewhere

in the network that caused significantly more traffic to be routed through

this intersection.

Figure 5.1: SCATS Diagram of Intersection 115

Due to the random and irregular nature of short-term traffic flow (as described

in Chapter 4 and by Stathopoulos & Karlaftis (2001)), it is imperative that

models be devised that can avoid concentrating on the mean of previous values

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 80

as ARIMA models are likely to do (Angeline et al. 1994). This becomes apparent

when examining the sign of the change between each volume count, for VS data,

46.25% of changes are positive, 46.61% changes are negative and 7.13% have no

change.

The method of automatically choosing the best model hyperparameters and

model configuration has previously been investigated by Vlahogianni et al. (2005).

They use evolutionary hyperparameter optimisation techniques to determine ideal

hyperparameters and network configuration for a Multilayer Perceptron (MLP)

model. In the absence of memory units (as seen in more modern LSTM mod-

els, (Lv et al. 2014)), and in order to capture the temporal nature of the data,

the input to their model included volumes for n previous steps for the target,

upstream and downstream sensors. This particular model used a 3 minute aggre-

gated traffic volume count dataset and evaluated 2 models, a univariate model

that included the last 3 readings from the sensor and a multivariate model that

also included the last 3 readings from the nearby sensors. Their results showed

that genetic algorithms (and by extension, meta-learning algorithms) can improve

the performance of neural network models for short term traffic prediction and

find their optimal structure. As such, work in this chapter is driven by previous

successes (in Chapter 4 and in previous work) to find the optimal model structure

for various types of models to the short term arterial traffic prediction problem

in Adelaide.

5.2 Hyperparameter Optimisation

Hyperparameters are the factors used when training a network (as opposed to the

weights of the networks themselves), such as learning rate, dropout, initialisation

scheme, optimiser algorithm, batch size, layer count, layer type, layer shape, acti-

vation function and input features. Appropriate hyperparameters vary depending

on task and may not be immediately obvious and as such the task of hyperpa-

rameter optimisation seeks to automatically select the best hyperparameters for

a given model architecture and task. Moreover, the search space can be expanded

by finding the best parameters on a per layer basis, for example, layer shape and

learning rate can be optimised for each separate layer.

The selection of such parameters can significantly improve a model’s predictive

performance (in addition to conventional parameter learning via methods such as

stochastic gradient descent) and as such, a trade-off exists between the amount

of computing time spent learning the weights in a particular network, and time

spent searching the experimenter’s defined search space. To this end, algorithms

have been devised to find the optimal set of hyperparameters for a specified

fitness function f , where f returns a fitness score for a particular model using the

provided hyperparameters. Such fitness functions can encapsulate a single value

(such as accuracy or root mean squared error), or a combination of values (such

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 81

as accuracy, parameter count, and execution time).

The search space must be devised by the experimenter and typically involves

specifying a probability distribution and range (along with mean and standard

deviation where applicable) for each hyperparameter, such as uniform, Gaussian,

log-normal and categorical. These distributions may also be quantised where dis-

crete outputs are desired, as opposed to floating point values. Because the search

spaces may be very large, contain many local minima and that the execution of

models with any particular selection from the search space may take a several

days, the development of algorithms that most efficiently find a global minimum

(or close approximation) are of great interest. The benefits of such techniques

are:

1. Experimenters do not need to spend what is often inordinate amounts of

time in the process of selecting parameters and network configurations,

training the network, evaluating results and repeating. Significant research

work has gone into finding such optimal network configurations by hand, for

example the task of image classification has received significant attention

(Krizhevsky et al. 2012, He et al. 2016, Simonyan & Zisserman 2014, Long

et al. 2015) after the publication of image datasets containing millions of

labelled samples such as CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton

2009), and ImageNet (Deng et al. 2009). Automating this task frees a

researcher’s time for other work.

2. Model execution can be performed concurrently, scalable with the number

of machines available for use.

3. The resultant models are likely to perform better for a specific problem and

may identify novel configurations applicable to other tasks.

One drawback of such methods, is that the search space may be quite large

and require more computational time than researchers have access to or can

readily afford (although this does provide additional motivation to find efficient

hyperparameter optimisation methods).

In general hyperparameter optimisation takes a fitness function (f , in this

work f is the RMSE of model predictions on the last 60% of readings), search

space (M), parameter selection function (S, which takes the historical evaluation

results H and M), a maximum trial count (T) and returns a history of function

evaluations over the search space (see Algorithm 5). The challenge lies in selecting

S such that it produces a set of parameters that result in a minimum being found

over f . The optimal set of evaluated hyperparameters is then the minimum from

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 82

H with the lowest fitness function result.

Algorithm 5: Hyperparameter Optimisation

Input: T , f , S, M

Output: H

1 H ← [];

2 for t = 1 to T do

3 x∗ ← S(H,M) ;

4 H.append([x∗, f(x∗)]);
5 /* History has parameters and their resultant score */

6 end

7 return H

The simplest such method is grid search, where S iterates over all combina-

tions of specified parameters. Such a method would require T to be very high

(T = inf in the case of an exhaustive search) so as to evaluate all possible com-

binations and subsequently would require significantly more models to be eval-

uated than a method that takes a more considered approach. Another method

is random-search, where S simply draws candidate parameter values randomly

from their distributions.

A similar type of random search is simulated annealing (SA), as proposed by

Kirkpatrick et al. (1983) and has shown to be effective at finding global minima

in non-linear search spaces with numerous local minima (Lewis 2007). SA is

a global optimisation technique that emulates the controlled cooling process of

metal, where the crystal structure of a material experiences greater localised

changes at high temperatures and eventually settles at low temperature. The

algorithm works by:

1. Picking a random initial state S

2. Set d← f(S)

3. Selecting a starting temperature T

4. For a given number of trials:

(a) Pick a random neighbour state Snew

(b) Calculate dnew ← f(s)

(c) If e
−(d−dnew)

T > random uniform value between 0 and 1 then S ← Snew

(d) Decrease T using cooling scheme

5. Return S

In this way, SA can escape local minima randomly by selecting locally suboptimal

states, which occurs less as the system cools. Random restarts may also be

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 83

used in to attempt to find the global minimum from a variety of starting states.

Performance may also be dependent on the cooling scheme, which is typically

logarithmic, which makes large changes more likely during early trials, and small

changes more likely during later trials.

Tree-structured Parzen Estimators (TPE) is an optimisation technique pro-

posed by Bergstra et al. (2011) as an algorithm for optimizing the hyper-parameters

of neural networks and deep belief networks. Additionally, they also show that

TPE is capable of training deep belief networks where random-search is not able

to and achieve superior results over manual tuning. TPE works by substituting

the specified distributions by:

� Uniform with truncated Gaussian mixture

� Log-Uniform with exponential truncated Gaussian mixture

� Categorical with re-weighted categorical

Bergstra et al. (2011) says that, given different evaluations (x = {x1, x2, . . . , xk}),
these substitutions represent a learning algorithm that produces densities over the

original search space, producing two densities p(x|y) (x is a particular parameter

selection, y is the fitness score) where:

p(x|y) =

{
l(x) if y < y∗l

g(x) if y ≥ y∗
(5.1)

Where l(x) is the density of observations {xi} such that f(xi) < y∗ and g(x)

is the density of remaining observations. TPE selects y∗ to be a quantile γ such

that p(y < y∗) = γ. Thus after each evaluation, new substitute distributions

are selected in the search space so as to maximise the likelihood under l(x) and

minimise the probability under g(x) . Neighbour distributions over an interval

(a, b) are selected over the observations in x, so gradually as more models are

evaluated, the density distribution of each parameter is likely to centre at an

optimum for f .

One other method for optimising hyperparameters is the “genetic algorithm”

technique, demonstrated by Real et al. (2017), with results comparable to state-

of-the-art human designed models. This process uses a population based optimi-

sation scheme to automatically determine the optimal neural network structure

for an image classification task. It works by creating a population of very simple

neural network models (where models are marked as alive or dead), a worker pro-

gram selects two living models randomly, compares their fitness after training for

a set number of iterations (although this is not enough to fully train the network

under a single model training scheme), kills the weaker one and the other becomes

a parent. The parent model will then have a child with a mutation applied, its

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 84

fitness is evaluated and finally the child is returned to the population as alive, see

Figure 5.2.1. Each mutation may be one of several different operations: learning

rate change, do nothing (ie. continue training), reset weights, add an untrained

convolutional layer at a random position, remove random convolutional layer,

modify a random convolutional layer’s filter size, add skip (where the outputs of

one random layer are passed to a random deeper layer) and remove a random

skip.

The end result after a specified number of models have been evaluated, or the

fitness score does not increase is a fully trained model with optimal structure.

This method can easily be scaled to an arbitrary number of worker processes

to speed up the exploration of the search space and the discovery of the most

efficient model structure for a given problem. As the authors mention, this is a

drawback of the method, the significant computation cost of evaluating so many,

often highly complex and deep models requires many hundreds of machines in

order to effectively explore the search space. With this method they were able

to achieve a 94.6% test accuracy with the need for post-processing, compared to

96.4% of the state of the art model on the same 10 class image classification task

described by Zoph & Le (2016).

Figure 5.2: Test Accuracy over time where grey models are dead and blue mod-

els are alive. Model complexity is increasing over time along with the highest

achieved fitness score. It is purely by chance that some very poorly performing

models are still alive (Real et al. 2017)

1This method of selection where a loser is eliminated from the population and the winner

lives is referred to as “tournament selection” (Goldberg & Deb 1991) and is by no means the

only such selection scheme, their discussion is beyond the scope of this work

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 85

5.3 Methodology

In this research, a greater number of models (selected primarily due to their ability

to perform online learning, along with some baseline models) were examined for

the traffic prediction problem from simple to more complex:

� HTM

� LSTM-Online

� SARIMA

� Markov Model

� A simple n shift model: xt−n, where the prediction is the nth previously

observed value

� Rolling mean of the previous n values. Where the prediction for time t is
1
n

∑n
1 xt−i.

In order to determine optimal parameters for each model to the VS and SM

1-step prediction problem, hyperparameter optimisation via TPE was performed

for HTM, LSTM and SARIMA. Due to the small parameter space, grid search

was used for xt−n, rolling average and Markov models. The models are all trained

on the first 60% of data according to their timestamp (ie. values where fed to each

model in the order they occurred, without shuffling). All models are evaluated

based on predictions from the last 40% of flow readings in order to give learning

models time to adequately learn the distribution of the data. As in previous

work, RMSE is used to compare model performance.

In typical supervised machine learning tasks, the data are separated into three

non-overlapping groups:

Training the data used to train the model and by which model parameters

are adjusted according to the loss function. An epoch is when the model

has trained on the entire training set once. Training typically stops after a

predefined number of epochs have run, the validation score stops improving,

or some other early stopping condition is met 2.

Validation the data used to evaluate the model’s performance at the end of each

epoch. The validation score is calculated in the same way as the testing

score, and used to ensure that the model is not overfitting (where the model

simply memorises the training set and fails to adequately generalise on the

validation and testing sets).

2A full discussion of supervised learning training schemes is beyond the scope of this work

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 86

Testing the data used after all epochs have run to give a final performance

measurement.

A validation set was not used in the present study because subsequent epochs

of training did not increase predictive performance on the testing set, while sub-

sequently increasing computation time and running the risk of overfitting.

In this section, the particulars of the dataset and explanation of the models

used and the determination of their parameters are described. Because of the

increased search space, hyperparameter optimisations were only carried out for

k = 1. The full set of search spaces for each method and dataset are shown in

Appendix D.

5.3.1 Dataset

For this chapter, strategic input 2 (consisting of sensors 1,2,3,4 heading in in

the Southern direction) of intersection 115 (see Figure 5.1) is investigated. This

particular intersection was chosen because it has a very low error rate across all

sensors in their selected periods within the VS dataset. In the period 2015-01-01

- 2017-12-12, there are 69 error readings out of 306,621, or a 0.023% error rate.

The per phase data uses the SM dataset of the same intersection (see Fig-

ure 5.5 for the distribution of this data). It is important to note here that SCATS

in Adelaide has been configured to combine readings of 0 and 1 into a reading of

0, the reason being that a reading of 1 may cause the oscillation between cycle

plans (RTANSW 2004, p. 109). This data still exhibits the same varying dis-

tributions through the week and interphase random variation as seen in the VS

data, (see Figure 5.6).

5.3.2 HTM and LSTM

HTM is as described in Chapter 3 and LSTM as in section 4.2. LSTM in this

chapter refers to LSTM-Online from previous work as LSTM-Batch was found

not to be effective when distributions in flow change. In order to determine

the optimal parameters, for the two datasets, TPE is used again but with a

wider hyperparameter search space as described in Table D.1. A major difference

between this work and Chapter 4 is that HTM hyperparameter optimisation was

carried out via TPE instead of particle swarm optimisation and searched over a

greater number of the possible hyperparameters 3.

The search space for these two models is also extended to cover the inclusion

of extra fields to the input of models, specifically:

3Source code for VS and SM hyperparameter optimisation experiments are in vs model and

sm model folders respectively: https://github.com/JonnoFTW/htm-models-adelaide/blob/

master/engine/

https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/
https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 87

Figure 5.3: Daily Traffic Flow through Intersection 115 at Strategic Input 2

Figure 5.4: Histogram of 5 Minute Flow Counts at Intersection 115

� Weekday

� Minute of day

� Is weekend (Saturday or Sunday)

� Is a public holiday in South Australia

� Week of year

� Phase duration in seconds (for SM models)

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 88

Figure 5.5: Histogram of Per Phase Flow Counts at Intersection 115

Figure 5.6: Sample of Phase Level Flow (from the SM dataset) at Intersection

115 where the change in flow between subsequent phases changes frequently in a

similar fashion to how VS data changes direction frequently in 5 minute periods

(see Figure 4.2a)

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 89

5.3.3 SARIMA

Seasonal AutoRegressive Integrated Moving Average (SARIMA) is a general and

commonly used statistical model for forecasting timeseries data and is a combi-

nation of autoregressive, differencing and moving average models. SARIMA has

the following parameters:

p the number of time lags

d degree of differencing, ie. how many previous values are subtracted from the

current value in order to make the data stationary

q order of the moving average model

P,D,Q refer to the autoregressive, differencing and moving average terms for the

seasonal part of the ARIMA model

m the number of samples in each season

An autoregressive (AR) model is a linear combination of past p values and is

thus referred to an autoregressive model of order p (Hyndman & Athanasopoulos

2018). This can be written as:

yt = c+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

Where εt is some random noise and values of c and φi are determined by standard

linear regression optimisation techniques.

A Moving Average (MA) model uses past forecast errors in a linear regression

to determine future values. An MA of order q can be written as:

yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

= c+ εt +

q∑
i=1

θiεt−i

A differencing model (y
′
t) is the change between consecutive observations. It

transforms a sequenced dataset into a stationary one. Stationary means that

samples in a timeseries sequence do correlate with previous values, meaning that

there are not long term patterns and with constant variance. The definition of

a first order difference (where the previous value is subtracted from the current

value) is:

y′t = yt − yt−1

A differencing model of order 2 represents the difference of differences:

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 90

y′′t = y′t − y′t−1
= ytt− yt−1 − yt−1 − yt−2
= yt − 2yt−1 + yt−2

More generally, a differencing model of order d is defined as:

y
′d
t = −

′d−1∑
i=0

yt−i

A seasonal model where seasons are m readings long is defined as:

y′t = yt − yt−m

A non-seasonal ARIMA model is the combination of autoregressive (AR),

differencing (I) and moving average (MA) as described above:

y′t = c+ φ1yt−1 + · · ·+ φpy
′
t−p + θ1εt−1 + · · ·+ θpεt−p + εt

Where y′t is the differenced series.

The SARIMA is written as the combination of ARIMA with an extra ARIMA

component for the seasonal part (Hyndman & Athanasopoulos 2018). Typically

the order of these models are selected by examining autocorrelation (a measure

of the relationship between yt and yt−k for various values of k) to determine p,

partial autocorrelation (a measure of the relationship between yt and yt−k for

various values of k after removing the effects of lag) to determine q. In this

chapter, a novel approach is taken by applying TPE to find the optimal set of

orders and the selection of an additional seasonal component. The search space

is listed in Table D.4.

5.3.4 Markov Model

Markov Models have a history of applications within sequence prediction for prob-

lems such as DNA sequencing classification (Salzberg et al. 1998, Henderson et al.

1997, Burge & Karlin 1998, Kulp et al. 1996) and speech recognition (Levinson

et al. 1986, Rabiner 1989). Although hidden Markov models have fallen out of

favour in recent years to other neural network models such as deep LSTMs (Lo

Bosco & Di Gangi 2017) and deep convolutional neural networks (Rizzo et al.

2016), their previous efficacy still gives motivation to evaluate them on the short

term traffic prediction task.

The Markov Model algorithm introduced here implements a n-order Markov

chain (fn) using an online transition probability updating scheme, that is, it

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 91

learns the probability distribution function (P) of state transition changes in an

observed sequence (x) where a state at time t is st = xt−n, . . . , xt−1, xt:

fn(st)→ P (xt+1)

When presented with a state (a history of traffic flow values in this case),

the model will return a probability distribution over potential next state values.

A new state randomly chosen according to P then becomes the prediction. If

a state (s) to be predicted on is not in the model (ie. the model has not seen

that state before), then a number of fallback methods are evaluated to produce

a prediction:

� Return xt

� Return the mean of st

� Return the median of st

� Return a randomly chosen value from st with uniform probability

The first step involves observing a sequence and recording it in terms of

a series of state transitions of order n along with the observed frequency of

those transitions. For example, given an order of n = 2 and the sequence

x = 1, 2, 3, 1, 2, 2, 1, 2, 3, the following state transition are observed:

(1, 2)→ 3

(2, 3)→ 1

(3, 1)→ 2

(1, 2)→ 2

(2, 2)→ 1

(2, 1)→ 2

(1, 2)→ 3

This can be represented as a transition matrix where Ajk is the observed

frequency of transitioning from state j to state k:

A =

1 2 3

(1, 2) 0/3 1/3 2/3

(2, 3) 1/1 0/1 0/1

(3, 1) 0/1 1/1 0/1

(2, 2) 1/1 0/1 0/1

(2, 1) 0/1 1/1 0/1

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 92

That is, when (1, 2) has been observed, the probability that the next obser-

vation will be 1 is 0, 2 is 1/3 and 3 is 2/3.

The training and prediction algorithm used in this work is implemented in

Algorithm 64. The use of a map in the implementation is important especially as

the number of potential states increases with the order n of the model. Given d

distinct states, there are nd possible states that would require a transition matrix

of shape nd × d. For the SM data used, an order 3 model would require the

storage of 361×61 = 13845841 floating point values, requiring 443MB of memory

to store the transition probabilities as 32bit floating point numbers. Using a

map of counters, the algorithm needs only to store the 19, 300 occurring states

and 107, 386 observed transitions. In the VS dataset, the flow values are also

discretised to reduce the number of potential states, the level of discretisation

forms one of the parameters iterated over during grid search. The search space

4Full code available at https://github.com/JonnoFTW/htm-models-adelaide/tree/master/

engine/markov model

https://github.com/JonnoFTW/htm-models-adelaide/tree/master/engine/markov_model
https://github.com/JonnoFTW/htm-models-adelaide/tree/master/engine/markov_model

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 93

for the Markov Models are listed in Table D.6.

Algorithm 6: Algorithm to approximate state transition probability

distributions and make predictions on a sequence using a Markov Chain

input : sequence the sequence of values

parameter: order the order of the model

parameter: missingScheme the method used to make predictions in

the absence of a particular state

output : Predictions on xt+1 for all xt in sequence

1 model ← empty map with default values as empty counters;

2 predictions ← empty list;

3 for i ← 0 to sequence.length - order do

4 state ← sequence[i:i+order];

5 next ← sequence[i+1];

6 if state in model then

7 p ← randomly choose k from probability distribution,

k = model[state][k]∑
model[state].values

: k ∈ model[state];
8 else

9 if missingScheme is last then

10 p ← state[−1];

11 else if missingScheme is mean then

12 p ← 1
order

∑
state;

13 else if missingScheme is median then

14 p ← median(state);

15 else if missingScheme is random then

16 p ← random value in state

17 end

18 predictions.append(p);

19 model[state][next] += 1;

20 end

21 return predictions

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 94

5.4 Results

Models are evaluated here using the RMSE score as described in section 4.3,

where 0 indicates a model whose predictions are exactly those observed in the

next timestep. Increasing RMSE values indicate models who comparatively make

more inaccurate predictions. For the two tasks involved: next phase volume

prediction (from SM data) and predicting aggregated total flow in the next 5

minutes, (from VS data) ideal predictors will:

� Continuously learn overall distributions and adjust when they change,

� Learn and predict accurately the seasonal and rare variations in distribution

such as public holidays,

� Predict the frequent oscillations in volume direction between individual

readings (see Figure 5.6).

RMSE is selected here as the evaluation metric (over those described in sec-

tion 4.3) for 2 reasons:

� Most other literature publish model scores as RMSE

� RMSE does not suffer from a relatively high error score at low flow values.

As there are times of zero vehicle flow, percentage based scores such as

MAPE give a near infinite error value when the real value is 0 (or near-zero

when using a small epsilon value to ensure this doesn’t happen). When

y = 1, Y = 0, MAPE = inf, RMSE = 1, thus a prediction of 1 during

zero flow according to RMSE is very good, but infinitely poor according to

MAPE.

It must be noted that when comparing models here with models in other work

that total vehicle flow and standard deviations must be taken into account, as

these are unique to each intersection. That is, the best score attainable by a

particular model at a particular intersection in one city, may be different for the

same model at another intersection in a different city.

The best error score for each algorithm on each dataset are shown in Table 5.1.

Tables of hyperparameters and grid search spaces are shown in Appendix D.

A n-shift model performed the worst of all models even with grid search over

n ∈ {1, . . . , 15} as would be expected of such a simple model. The more complex

models performed better as they have mechanisms to automatically learn data

distributions.

The HTM models (Figure 5.7, Figure 5.13) both effectively learned to pre-

dict the highly variable data and adjust when encountering holidays, as seen in

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 95

Algorithm

Best

RMSE

VS SM

HTM 9.32 5.79

LSTM 9.10 6.27

SARIMA 9.43 5.16

xt−n 11.01 (n = 2) 7.234 (n = 3)

Markov 6.99 4.887

Rolling Mean 9.84 5.495

Table 5.1: Error scores for best models (as determined by hyperparameter search)

for each algorithm and dataset

Chapter 4. The predictions made by HTM were comparable to the both LSTM

and SARIMA in terms of error score.

The LSTM models (Figure 5.8 and Figure 5.12) both eventually learned to

approximate a rolling average. The optimal VS LSTM model (see Table D.2)

was a 3 layer network with decreasing LSTM layer sizes (176, 88 and 60 cells

each), indicating that there is a higher order pattern to the data (ie. some degree

of seasonality). The optimal SM LSTM model (see Table D.3) was a single

layer of 212 units and more closely resembled a rolling mean than the VS model,

suggesting that future work may involve forcing the SM model to have 3 or more

layers.

A close inspection of the SARIMA model’s prediction in Figure 5.9, reveals

that it does indeed closely follow a rolling mean over the last 8 elements Fig-

ure 5.15. This behaviour, while achieving a competitive error score, is not desir-

able.

Markov Model with mean fallback had the best prediction score in both tasks

(see Figure 5.10. Figure 5.16). The best model for SM data an order of 6 and a

mean fallback scheme (see Table D.6). Two observations are made when closely

examining the output of this model (Figure 5.11):

� The Markov Model predicts effectively at low flow periods, resulting in a

low error score during these periods.

� The fallback method (employed mostly at high volume times, when changes

in flow are erratic) as the mean of the previous 6 values is somewhat accu-

rate, although this behaviour is not desirable.

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 96

Figure 5.7: Predictions from the best HTM model on VS data. Shows error scores

over time, which peak during high volume periods

Figure 5.8: Predictions from the best LSTM model on VS data

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 97

Figure 5.9: Predictions from the best ARIMA model on VS data

Figure 5.10: Predictions from the best Markov Model on VS data

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 98

Figure 5.11: Closeup of Markov Model Predictions on VS Data

Figure 5.12: Predictions from the best LSTM model on SM data

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 99

Figure 5.13: Predictions from the best HTM model on SM data

Figure 5.14: Predictions from the best ARIMA model on SM data

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 100

Figure 5.15: Comparison of Rolling Mean (n = 8) and ARIMA(4,0,3) on SM

Data

Figure 5.16: Markov Model Predictions from the best Markov model on SM

data. Orange data points show when it made a prediction from its observed

state transition probability distributions, green data points show when it used

the mean fallback mechanism

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 101

5.5 Conclusion

This chapter gave an overview of some hyperparameter optimisation techniques

and their previous use in optimising models for short term arterial traffic pre-

diction. Such techniques have been effective at significantly improving model

performance and detecting novel model structures. Most previous research fo-

cuses on aggregate flow prediction (in limited spatiotemporal contexts), and so

this research which expands into predicting traffic volumes through a particular

movement in the next phase is novel in the current literature. A novel Markov

Chain model is presented with superior results compared to the other models

tested, although it did not exhibit desired behaviours of emulating the frequently

changing flow between readings.

TPE hyperparameter optimisation was shown to be effective at improving

model performance of HTM (where previous work optimising a small subset of

HTM parameters using particle swarm optimisation), LSTM and SARIMA. Fur-

thermore, it could effectively select the optimal order for SARIMA models, with-

out human input, automatically determining that adding a seasonal component

to both models would not improve performance (see Table D.4). A significant

drawback is both the LSTM and ARIMA models tended to approximate the

rolling mean (see Figure 5.15), and despite their competitive RMSE score, did

not effectively model the frequent oscillations of the real data, which would not

be useful when automatically adjusting cycle plans.

HTM and LSTM models did effectively model the frequent changes in data and

overall trend, their predictions were still not entirely accurate, although HTM is

the preferred model as the others all had issues of estimating a rolling mean. The

proposed Markov Model with fallback achieved superior performance to all other

models, due to its ability to switch between a learned sequence prediction, and

rolling mean. With appropriate extensions, the Markov Model could overcome

issues where it does not accommodate changes in distribution over long periods.

5.6 Future Work

Future work in the area of meta-optimised short term traffic prediction models

could investigate:

� Increasing the search space for multivariate models over surrounding sen-

sors, beyond those of upstream and downstream intersections. It may be the

case that for some intersections, their future flow may be correlated with

the flows of nearby intersections. Identifying such relationships (should

they improve model performance) may also be of great interest to traffic

engineers when planning road improvements or devising intersection cycle

plans.

CHAPTER 5. PREDICTING TRAFFIC FLOW IN URBAN AREAS 102

� The direction change in data may be of interest in feature search spaces, ie. a

field which indicates the sign of the change between xt and xt−1: sgn(xt −
xt−1) with values in {−1, 0, 1} or a history of such sign changes. For a

Markov Model, this means that the set of potential next flow states are

filtered by those matching the direction of a randomly selected sign, where

the sign is randomly chosen with probability according to the observed sign

change frequency.

� Extending the Markov Model to accommodate changes in overall distribu-

tion. Potential methods by which this can be achieved include: adding a

small decay factor over all transition probabilities, maintaining a history of

observed state transitions and decaying those that are not used or recal-

culating transition probabilities from a temporal history window (although

this would come at a significant memory and computation cost).

� Using evolutionary methods to build up a neural network model (that may

or may not include various recurrent layers such as LSTM or Convolutional

LSTM). The efficacy of such methods were shown by Real et al. (2017) for

a 10 class image classification task and may be transferable to time-series

regression tasks such as short term arterial traffic prediction.

� Evaluating these models again on phase level data that contains flow counts

of 1 to determine if such volumes can improve model performance (although

this would require adjustment to the ITS data collection software). Further

investigation should also investigate models that predict at increasing values

of k, with multiple outputs where models permit, across a greater number

of intersections and strategic inputs.

Chapter 6

Arterial Incident Detection via

Anomalies

Given the datasets introduced in section 2.5, the tasks approached in this chapter

differ greatly from those traffic flow volume tasks tackled and contributed to

in Chapter 4 and Chapter 5. In this chapter, the tasks moves away from the

problem of flow prediction and into utilising observed flow values to determine

the occurrence of incidents within arterial road networks. Whereas much of the

previous work approach this task in a freeway context, the work presented here

contributes towards incident detection in arterial traffic, evaluated over long time

periods while developing tools that could facilitate different approaches in the

future.

This chapter discusses:

� The aims of arterial incident detection

� A review of techniques for detecting outliers in stream data

� A review of techniques for road based incident detection

� An investigation into the novel application of anomalies to incident detec-

tion and an evaluation of this approach

6.1 Background

Roadway incidents refer to those non-recurring events that result in increased

traffic congestion (Parkany & Hall 2005) by partially or completely blocking the

flow of traffic. Examples of incidents are:

� Accidents, breakdowns and illegal parking.

� Natural events such as flooding and landslides.

103

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 104

� Spilled loads and debris.

� Public events such as protests, riots or fairs.

� Unscheduled infrastructure maintenance.

� Signal malfunctions or improper signal configuration.

During an incident the capacity of the road is restricted, resulting in queues

and delays which have a wide variety of consequences including congestion which

can result in traffic jams, increased pollution, increased travel cost, fuel wastage,

reduced productivity and a danger of secondary incidents. Prompt and accurate

incident detection is vital in reducing congestion and improving emergency re-

sponse times (Parkany & Hall 2005). According to Farradyne (2000), incident

based congestion is responsible for 50%-60% of all delays. This should not be

confused with recurrent congestion, which is known, normal, and does not war-

rant an emergency response. A prime example of this peak-hour traffic exceeding

roadway capacity (Zhang 2005). This issue is a significant motivator in develop-

ing systems that can prevent incidents from occurring, and rapidly detecting and

responding to them when they do.

The task of detecting these non-recurrent congestion events (NRCs) is difficult

because of the heterogeneous nature of the urban road network and its utilisation

(Anbaroglu et al. 2014):

� Links are of varying length, speed limits, and typical commuter lane usage.

� Network usage across time varies, ie. weekday morning traffic is different

from weekday afternoon, which is entirely different to weekend and public

holiday usage. Thus the distribution of incidents throughout time will vary

along with their implications for nearby traffic flows.

� Evaluation of detection methods is difficult because of the lack of ground-

truth data. That is, it is difficult to confirm whether or not an NRC is

occurring in reality, and so prediction evaluation is difficult. This can be

mitigated (Cheu & Ritchie 1995) by using accident datasets, although not

all NRCs are caused by accident (and recorded as such) per se. Addition-

ally these datasets may not be transferable between locations. Since the

ramifications for traffic flow from an accident in one time and place cannot

be used to infer the occurrence of an incident in another due to the unique

nature of the road and its usage at the time.

Given the above difficulties, the following observations can be made that can

help drive the development of systems to detect NRCs:

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 105

� Ideally individual models would be trained for specific locations to ensure

that individual distributions in traffic flow are captured and minimise the

need for human intervention when developing models considering that cities

often have hundreds of signalised intersections, each with their own unique

usage and NRC impacts.

� Comprehensive datasets covering the occurrence of all types of NRCs (or

as is practically possible to collect) must be created in order to aid the

development of models that learn from previous data.

6.2 Automated Incident Detection for Arterial

Road Networks

In this section only those Automated Incident Detection (AID) algorithms that

are applicable to arterial road networks are examined. This is because the vast

majority of AID methods are made for freeway traffic and are not transferable

to the more complex arterial network. Moreover, the discussion is narrowed to

those algorithms that can be applied to loop-detector data, as some algorithms

use other forms of vehicle detection such as image processing, probe vehicles and

emergency call monitoring (Parkany & Hall 2005).

Previous reviews into state-of-the-art AID algorithms are listed in Subrama-

niam (1991), Stephanedes et al. (1992), Balke (1993),Mahmassani et al. (1998),

Peterman (1999), Black & Sreedevi (2001), Black & Sreedevi (2001) and Parkany

& Hall (2005). These reviews also cover algorithms outside of loop-detector meth-

ods.

Abdulhai et al. (1999) covers the development of algorithms that use adap-

tive algorithms, specifically those that use artificial neural networks, and briefly

evaluates their effectiveness and how their implementation can be improved using

genetic algorithms.

The investigation of methods for AID in arterial road networks started in the

late 1980’s (Bell & Thancanamootoo 1988). This study used data collected by

SCOOT in London and Middlesbrough which continuously monitors loop detector

data. Additionally, MULTISIM was used for microscopic traffic simulation.

Their algorithm uses a continuously updated, exponentially smoothed average

and variance of the cyclic occupancy (the percentage of time a vehicle is over a

detector per cycle (Ivan et al. 1995), which correlates negatively with speed and

positively with flow) which is derived from flow, vehicle length, loop length, ve-

locity, velocity variance and covariance of velocity and vehicle length. Upper and

lower bounds are established as the exponentially smoothed mean and variance,

anything outside these limits is an incident.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 106

The results of simulation are not well described, they use no metrics that are

developed in later papers so are not readily comparable to other methods. Two

intersections were tested and could detect an incident initially, but the algorithm

eventually classified the disruption as normal and no longer indicated an incident.

The authors admit that this algorithm is suitable when it can be configured on a

per intersection basis and only at those intersections deemed critical.

Han & May (1989) uses an expert system methods, where alarms are defined

by human experts as a series of “if-then” statements, a task which can be tedious

and error prone. They system developed (called TOPDOG 1.0), was evaluated

on real-world flows on weekdays, from 5pm until 9pm but no actual metrics are

provided by Han et al. Modern predictive systems have mostly abandoned expert

system methods (in favour of neural network based models) due to their inability

to learn autonomously or automatically adapt to changes in input (or simply that

the system did not encapsulate some cases) (Leith 2010).

Ivan et al. (1995) use fused data from both loop detectors and probe vehicles.

Separate algorithms (these are not described by the authors) process each of

the two data sources separately, which are then fused together by a feedforward

neural network trained by back propagation. Training data is generated using

100 different micro simulations with the ADVANCE simulator on a 5km section

of major arterial streets with 39 loop detectors at 11 intersections and one in four

cars as probe vehicles. The two neural networks tested were:

� Algorithm Output Fusion (AOF): in which the outputs of the fixed detec-

tor algorithm (FDA) and probe vehicle algorithm (PVA) are fed into the

network to produce a combined output that indicates incident probability.

� Integrated Fusion (IF): in which loop detector and probe vehicle data is fed

directly into the network to produce an incident probability output.

Algorithm: Dataset Detection Rate False Alarm Rate

AOF: Training 81.50% 0.11%

AOF: Reserved 100.00% 0.00%

IF: Training 65.00% 0.54%

IF: Reserved 70.00% 0.96%

Fixed Detector Algorithm 65.90% 0.00%

Probe Vehicle Algorithm 53.70% 0.00%

Table 6.1: Results of Ivan et al. (1995)

The results summarised in table 6.1 show that the AOF outperforms IF, FDA

and PVA. IF had a poor detection rate of 70% after training with an unaccept-

able 0.96% error rate. AOF achieved a DR of 100% on the reserved data with

an error rate of 0.00% while the training data had 81.5% DR, the authors credit

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 107

this discrepancy to the types of crashes used in the partitioning being too similar,

ie. the reserved dataset used more extreme examples. This could have been mit-

igated by the authors if they averaged results over several randomised test/train

partitions.

This work is expanded on by Ivan (1997), in which several neural network

variants are tested using the described data fusion framework:

� Two input network, the network used in the previous paper.

� Output memory network, utilises a memory unit that returns the sum of

every previous network output value weighted by one-half for every time

interval since the value was computed. The memory unit is an additional

input.

� Adjacent link network, which takes 6 inputs, 3 scores from both FDA and

PVA from upstream, downstream and target links.

� Full network: combines the adjacent link network with an output memory

module.

Training data was generated by simulating traffic flow in suburban Chicago

using the INSTRAS simulation program with the same properties as the previous

paper. As in the previous work, the author’s random partitioning of the data into

training/train sets resulted in more severe incidents being placed into the testing,

which resulted in experimental results showing a higher DR on the test data

partition. The full network outperformed all other tested networks with a 92.5%

DR on training data and 100% DR on test data, and 0% FAR for both partitions.

Although there is improved performance, conclusions about the transferability of

these algorithms is not reliable due to the way the experiment was performed.

Additionally, in the absence of real world data, the authors may have introduced

significant bias in their simulation-based dataset, causing the neural network to

only be effective at detecting certain types of incidents.

Stephanedes & Hourdakis (1996) investigate the transferability of three free-

way incident detection algorithms to the arterial road space. They test on two

sites I-35W in Minnesota and I-880 in California using the DEtection LOgic with

Smoothing (DELOS) (Chassiakos & Stephanedes 1993, Stephanedes & Chas-

siakos n.d.) algorithm. DELOS works by smoothing (using a low pass filter

(Stephanedes & Chassiakos n.d.)) the raw sensor data to remove random fluctu-

ations, pulses and compression waves. An incident is detected when an adjacent

detector station finds a significant difference in the filtered occupancy of the link

in a short period of time. The method was tested in comparison to two other

comparative type algorithms (CALIFORNIA and Algorithm#7 (Payne & Tignor

1978), a decision tree system) on a dataset of 159 incidents over 20km. DELOS

achieved a DR of 89% compared to California’s 72.4% and Algorithm#7’s 76.33%.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 108

The drawback of these algorithms is that they require considerable configuration

for every detection site.

Weil et al. (1998) use neural networks and fuzzy logic for incident detection.

They evaluate their use against McMaster (Persaud et al. 1990) incident detection

algorithm as a baseline. A drawback of the McMaster algorithm is that it relies

on temporal data only, and not spatial differential data, and so has difficulty

differentiating between changes in traffic due to factors such as weather conditions

which are distinct from those caused by incidents.

Khan & Ritchie (1998) investigate the use of multilayer feed-forward neural

networks. They examine three types of problems: lane blocking incidents, special

event conditions and detector malfunctions. They describe the problem of AID

as a pattern recognition and classification one. A stochastic microsimulation was

run using the NETSIM traffic simulation system and the interlane interactions

were observed as a result of a variety of different incidents. The output of the

described ANN was a simple binary classification: 0 for non incident, and 1 for

incident.

The simulated incidents blocked between 1 and 3 lanes and went from 2 to

16 minutes in length. The ANN achieved a poor detection rate of approximately

67% for 1 lane at all time lengths and 100% detection for 3 lane blocking with

0.23% FAR and 1.16% FAR respectively.

Thomas (1998) addresses the problem of AID as a multiple attribute decision

making problem with Bayesian scores. Her system uses data collected from link

wide detectors (to gather link travel times) and station detectors (to measure

intersection occupancy). These 2 data vectors are then used to calculate a score

for the link and station, the smallest of which is then fed to a Bayesian classifier

to determine the traffic state (incident or non-incident).

The data used in her experiments is derived from a microsimulation of 9 multi-

lane intersections using the INTRAS simulation software. The system achieved

a FAR of 1.45% and a classification rate of 96%.

Yuan & Cheu (2003) use several Support Vector Machines (SVM) with non-

linear kernel functions to perform AID on arterial and freeway traffic. They

simulated 648 different incidents across 9 links using the INTEGRATION traffic

simulator and compared their accuracy to that of a multilayer feed forward neural

network and probabilistic neural network as baselines.

The input vectors consisted of upstream and downstream volume of each lane

for the current and 3 previous cycles. Two different SVMs were used in testing,

one with a polynomial kernel function (SVM P) and one with a radial basis kernel

function (SVM RB), all implemented in the SVM MATLAB toolbox. These

models were compared with Probabilistic Neural Network (PNN) and Multilayer

Feedforward Network (MLF) on the same training data. The SVMs outperformed

the neural networks, getting drastically improved detection rates on single lane

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 109

blockages, 80.2% for SVM P, 74.7% for SVM RB, 27% for MLF and 61% for

PNN. The neural networks performed better on multi-lane blockages although

still below the SVMs, 97.5% for SVM P and SVM RB, and 93.2% for MLF and

PNN. These findings suggest that pattern recognising machine learning methods

(specifically SVMs) can be useful for performing arterial AID on both single and

multi-lane blockages, although it is not apparent whether they can be applied to

real world datasets.

Zhang (2005) and Zhang & Taylor (2006), attempt to make freeway algorithms

transferable to arterial road networks with the TSC fr algorithm. This solution

employs Bayesian networks, which attempts to replicate the rule based reasoning

used by experts in a traffic management centre. Essentially, they reason that:

� Low upstream volume and high upstream occupancy indicate either bottle-

neck or back propagated congestion.

� If the downstream volume is low and downstream occupancy is high as well,

there is back propagated congestion.

What constitutes high, medium and low occupancy and volume for a partic-

ular time and place is learned from historical data and used to make a decision

about new data by calculating a probability of a reading indicating an incident.

Additionally, Zhang (2005) introduces a framework for incident detection, with a

focus on algorithm transferability.

Zhang et al. (2007) reportedly improve on their previous work by adding some

additional optimisations to the Bayesian network used, although this updated

model is then tested in a micro simulation of 3 intersections and 3 incidents

which achieves a 100% detection rate. The new system had the same DR (100%),

improved FAR (2.22%→ 1.85%) and MTTD (127s→ 80s) over the old system.

Viswanathan et al. (2006) use fuzzy association rule mining using the adaptive-

network-based fuzzy inference system (ANFIS) to fuse numerous data sources.

The algorithm generates a number of IF-THEN rules, which are then used to

classify traffic flow from probe vehicles. This method was tested using inputs

from a 30 day period and achieved a DR of 92.72% and FAR of 11.54%. Ivan

et al. (1995) cites this failure rate as unacceptably high, although the original

author thinks it is acceptable.

Chen et al. (2007) use neural network ensembles to perform AID. This tech-

nique involves training up numerous neural networks and then combining their

results which provides additional performance over a single neural network. The

individual models within the ensemble are MLP networks, based on the work

of Yuan & Cheu (2003). The analysis used freeway data from I-880 freeway in

San Francisco with 45 incidents in 1993 morning and evening peak periods. The

networks were trained on 6442 instances of which 2100 are incidents, with each in-

stance covering 7 features including: speed, volume and occupancy upstream and

downstream of the detector station with a class field for incident or non-incident.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 110

The testing method used consisted of 5 different MLP networks being used

individually and then in an ensemble. The ensemble was trained using bagging

and outputs combined using boosting. The ensemble had a DR of 86.96%, FAR

of 3.04% and MTTD of 3.1 minutes; these scores were an improvement on the

average performance of the individual networks, although the average MTTD for

the individual networks was lower at 2.63 minutes. Though some networks scored

higher and some lower than the ensemble.

Although this was only tested on freeway traffic, it appears robust enough

that the techniques could be expanded to work on arterial traffic, based on the

fact that previous research has investigated the use of neural networks (Yan &

Han 2003, Khan & Ritchie 1998, Ivan et al. 1995, Ivan 1997) for arterial AID,

though none have utilised boosting and bagging yet.

Šingliar & Hauskrecht (2010) proposed to detect incidents from noisily labelled

data using a learner based on SVM. Due to the noise inherent in the large volume

of training data of traffic sensor measurements, they use incident label realign-

ment (as often the recorded time of an incident did not properly align with when

it actually occurred) using a dynamic Bayesian network to estimate the incident

time which leads to improved incident classification performance. The motiva-

tion for their research is to move away from AID methods that require extensive

tweaking of location specific parameters and thresholds, and expert knowledge.

Additionally they sought to improve on previous supervised techniques that, while

showing good results, suffered from overfitting due to the small training dataset.

Before label realignment was performed, the SVMs were compared to dynamic

näıve bayes (DNB) using the Activity Monitor Operating Characteristic (AMOC)

curve metric to simplify results as this is more suitable to evaluating the detection

of rare events. The SVM scores 0.693 AUC while DNB scored 1.094, where a

smaller AUC is better.

Lee et al. (2011) uses spatiotemporal bottleneck mining. They source their

data entirely from location-based service (LBS) based applications, so that any

vehicle using the service becomes a probe vehicle. The system combines data from

individual vehicle journeys, traffic network snapshots and uplink information.

The prototype system was tested on a fleet of 500 taxis within the urban net-

work of Taipei City and was operational from February 2006 to March 2007 with

0.5 million uplink reports per day in 30s intervals. Only peak hours in AM (0730-

0930) and PM (1730-1930) as these periods have reasonably high congestion.

Numerous heuristics are compared to detect bottlenecks, the best was Conges-

tion Propagation Heuristic (CPH) showing 79% accuracy on weekdays and 72.1%

accuracy on weekends with a standard deviation of 0.055 which was a significant

improvement over the others tested. CPH uses the idea that traffic demand of a

congested area propagates to nearby congested areas) was less accurate on week-

ends due to the instability of data during these periods, ie. one weekend’s traffic

patterns may differ significantly to those of another.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 111

Anbaroglu et al. (2014) describes the use of spatiotemporal clustering to per-

form AID. They use four separate pieces of data to identify NRCs:

1. Link Journey Times (LJTs)(Robinson & Polak 2006) collected by Auto-

matic Number Plate Recognition (ANPR); this allows operators to estimate

travel time between two locations.

2. An adjacency matrix of the road network

3. Historic LJT data used in statistical analysis to estimate the present LJT.

4. Congestion factor used as a factor to multiply by the expected LJT to

identify excessive LJT. This input requires expert knowledge though.

The output is then clustered and a metric of severity and duration derived from

the episode of NRC where severity indicates the total excess LJTs. The spatio-

temporal element can allow the detection of NRCs that span multiple links as

they will have similar flow disruption as their LJTs will overlap. When this

overlap occurs, it can be clustered and an incident can be inferred in both time

and space.

The main drawback of this spatio-temporal method is the requirement of ex-

pert input for the congestion factor. The detection of episodes is highly dependent

on the given congestion factor.

6.3 Stream Mining

6.3.1 Stream Mining for Outliers

In stream mining, an outlier is defined as those events that are rare, occurring with

frequency that is dependent on the application domain, though typically they are

in less than 5% of all readings (Pokrajac et al. 2007). These readings should not

be confused with errors (readings that indicate a sensor has not collected valid

data) and noise (readings from a faulty sensor that has not disclosed itself as

being in error)(Zhang et al. 2010).

Pokrajac et al. (2007) uses incremental Local Outlier Factor (LOF) (Breunig

et al. 2000) for a density based stream outlier detection algorithm. LOF is a

not a binary classification (ie. outlier versus non-outlier), but rather a degree to

which a point is considered a local outlier. In the proposed incremental LOF

algorithm, LOF is calculated as a ratio of the average local reachability density

of its k nearest neighbours and local reachability density of point q where:

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 112

lrd(q) =
1∑

p∈kNN(q)

reach− distk(q, p)/k

LOF(q) =
1
k

∑
p∈kNN(q) lrd(p)

lrd(q)

As new data points are inserted, old data points are deleted, which improves

performance. Data points themselves are labelled with LOF that indicates their

degree of being an outlier. Points with smaller neighbours have a higher factor

than those in large neighbourhoods, so outliers are those points with a LOF below

a certain threshold. The advantage of this algorithm is that outliers are found

with respect to their neighbours and not the global model, and allows outliers to

be found in a dataset with multiple densities. This final property is not pertinent

to the traffic dataset as its density is uniform because it arrives in 5 minute

intervals and the slowing of traffic after an incident is quite sudden.

Jain et al. (2006) propose a non-linear stream clustering algorithm that adapts

to changes in the evolving high-dimensional stream. They analyse first separate

the data stream into partitions using a novel kernel method approach. These

partitions are then mapped into a low-dimensional space before assigning them to

a cluster. Their method is successfully applied to a number of real-world datasets,

including news documents and network intrusions. They report that within their

algorithm, any cluster that contains a single point only is an outlier, which could

potentially be of use, although no detail is provided about its effectiveness in

detecting such outliers.

In order to address the typically high computational cost and lack of expla-

nation in density based outlier detection, Abe et al. (2006) uses classification of a

labelled dataset containing artificially generated examples to simulate outliers to

generate a training set. A selective sampling technique based on active learning

is then employed to perform the classification.

Silva et al. (2013) surveys stream data mining algorithms and identifies the

following clustering algorithms that can detect outliers in large data streams:

BIRCH: first introduced by Zhang et al. (1996), Balanced Iterative Reducing

and Clustering using Hierarchies (BIRCH), aims to find clusters in large

datasets in a single pass. Provided a dataset of multi-dimensional points

and target number of clusters k, BIRCH has 2 main phases:

1. Create a Cluster Feature (CF) tree, where a cluster hasN d-dimensional

points (X̄) and a CF is a triple consisting of: number of points in the

cluster, linear sum of points (encapsulating the location of the clus-

ter), and square sum of data points (encapsulating the spread of the

cluster), ie. CF =
(
N,
∑N

i=1 x̄i,
∑N

i=1 x̄i
2
)

. The CF tree is a height

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 113

balanced tree with nodes containing a CF and pointers to at most B

(where B is the branching factor) child nodes. New data points are

added to the tree by descending the hierarchy and selecting child nodes

based on closest linear sum. Once a leaf node is reached, the point is

added to the CF and a new child created if its radius now exceed a

threshold T .

2. Global Clustering: where an existing clustering algorithm (such as

k-means) is used to cluster subclusters at the leaf nodes of the CF

tree. Points that are too far from their resultant cluster are considered

outliers.

This method is highly efficient as it only stores clusters as a summary of data

into which new points can constantly be added and the summary updated.

The downside here is that in order to identify outliers in incoming data, the

global clustering algorithm must be run for every new data point.

CluStream: Aggarwal et al. (2003) introduce CluStream as a framework for

clustering data streams with a two step process: online micro-clustering

and online macro-clustering. Their online component uses CFs for both

the datapoints and their corresponding timestamps to summarise a set of

observed datapoints. As new datapoints are added, they are merged into

existing cluster or a new is created in a similar manner to BIRCH. The

offline component uses a weighted k-means algorithm on the microclusters

to obtain the clusters for the current timestamp. Microclusters are removed

after after a specified period has passed. Outliers are obtained in the same

manner as BIRCH does.

DenStream: Cao et al. (2006) expands on the previous methods by allowing the

creation of an arbitrary number of dense micro-clusters with arbitrary shape

(previous methods only allow for a fixed number of spherical clusters). This

algorithm uses a density based clustering algorithm to group multiple core-

micro-clusters (using CF tuples) with a fading function for their associated

timestamp f(t) = 2−λt into micro-clusters. Micro clusters that do not meet

a weight threshold in their CF are designated outliers.

D-Stream: Chen & Tu (2007) uses a density based approach in which incoming

points are placed onto a grid and the density of points within all grid cells

used to determine the presence of a cluster, outliers are those cells with

insufficient density. The recorded density of each grid cell is decayed over

time to reduce the importance of historical datapoints, meaning that many

resultant clusters can appear and fade over time.

6.3.1.1 Anomaly Detection In Streams

Ahmad & Purdy (2016) provides a survey of the the state of the art methods for

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 114

anomaly detection in streams. They are:

� HTM (Cui et al. 2015) as described in Chapter 3

� Seasonal Hybrid ESD and Seasonal ESD introduced by Hochenbaum et al.

(2017), described in subsubsection 6.3.1.2

� Etsy Skyline by Etsy (2015). Skyline is an ensemble method that calculates

a score based off an average of binary scores from multiple simple methods:

median absolute deviation, Grubbs’ test, standard deviation from average,

standard deviations from moving average, mean subtraction cumulation,

least squares prediction and histogram bins. 1

� Bayesian online change point detection introduced by Adams & MacKay

(2007)

6.3.1.2 Seasonal Hybrid ESD

Hochenbaum et al. (2017) presents two methods for anomaly detection in streams:

Seasonal ESD and Seasonal Hybrid ESD. Motivated by the increasing need for

uptime and reliability in social network applications, where user demand is sea-

sonal, the novel methods introduced are able to detect anomalies when the data

has a seasonal component. Critically, they show that SHESD is effective at de-

tecting anomalies in real world production data.

Given a sequence of readings xt, statistical anomaly detection uses hypothe-

sis testing for a given significance level, to determine if a reading is anomalous.

The null hypothesis (H0) is that the dataset contains no anomalies, the alter-

nate hypothesis (H1) is that the data contains at least one anomaly. Extreme

Studentized Deviate (ESD) is such a test where an upper bound is specified as

the number of anomalies k, (where k < 50% of |x|), Hochenbaum et al. (2017)

recommend setting k as less than 5%. ESD runs the following k times:

Ck =
maxk|xk − x̄|

s
(6.1)

Where x̄ and s are the mean and variance of x. This picks k most extreme

values and then compares them with the critical value (where n is the number of

elements in x):

λk =
(n− k)tp,n−k−1√

(n− k − 1 + t2p,n−k−1)(n− k + 1)
(6.2)

1Full details of measures and their parameters are in https://github.com/etsy/skyline/blob/

master/src/analyzer/algorithms.py

https://github.com/etsy/skyline/blob/master/src/analyzer/algorithms.py
https://github.com/etsy/skyline/blob/master/src/analyzer/algorithms.py

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 115

If this value is anomalous, it is removed from x and repeated k times producing

anomalies equal to the largest k such that Ck > λk. A significant drawback of

this method is that x̄ is sensitive to outliers. The ESD is then modified to use the

more robust Median Absolute Deviation, the median of the absolute deviations

from the median, or MAD = median(|xi − median(x)|). The final algorithm is

then:

Algorithm 7: Seasonal Hybrid ESD

input : x: the values to find anomalies

parameter: k the number of anomalies to find satisfying k < 1
2
n

parameter: α the statistical significance level to accept/reject anomalies

output : list of anomalies

1 anoms ← empty list;

2 n← x.length;

3 for i ← 0 to k do

4 ares ← median(x)−x
MAD(x)

;

5 candAnomalyIndex← argmax(ares);

6 delete x[candAnomalyIndex];

7 p← 1− α
2(n−i+1)

;

8 t← ppf(p, n− i− 1) ;

9 λ = t(n−1)√
(n−i−1+t2)(n−i+1)

;

10 if max(ares) > λ then

11 anoms.append(x[candAnomalyIndex]);

12 end

13 end

14 return anomalies

Where ppf(q, µ) is the percent point function, which calculates the probability

that a random variable from a normal distribution centred at (µ) is above the

given percentile (q).

6.4 Stream Outliers for Incident Detection

Based on the literature presented above, there is a gap wherein much research

reports the efficacy of algorithms for incident detection trained and evaluated on

simulated data. The upside of this is that models can be developed that take

in large amounts of data and the effects of simulated incidents can be readily

monitored. The drawbacks of this are significant:

� The generated data may be biased to only those types of incidents simulated

and the spatiotemporal conditions under which they are conducted.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 116

� Simulations of traffic flow and incidents must be run for every location in

order to generate data to train the model.

� Readers are not informed of how these methods perform under real world

conditions and incidents.

To this end, a method is preferable that learns to detect incidents from real

world data, around the clock, reflecting the types of incidents that actually occur.

This research attempts to answer the question “do outliers in traffic flow data

indicate the presence of an incident”. This is evaluated by using different methods

of anomaly detection and evaluating whether or not these anomalies coincide with

observed incidents. The following algorithms are selected to detect anomalies

in the traffic flow data because of their ability to detect anomalies in seasonal

contexts:

� HTM (as described in Chapter 3)

� S-H-ESD (as described in subsubsection 6.3.1.2)

A system was built with the goal of detecting incidents from loop detector

data using an algorithm shown to have good properties at anomaly detection on

temporal data. It must be stressed that not all anomalous readings necessarily

indicate an incident. For example, a Monday public holiday will typically show

lower traffic volumes compared to the previous Mondays. To minimise the impact

these factors to traffic volume that are not caused by incidents, models inputs

must be devised that encode properties about the current date.

There are various kinds of incidents that impact the flow of traffic on a road

network that are separate from normal congestion due to increased traffic volume,

some examples are:

Obstacles where part of the road becomes blocked off by an obstacle such as

crashed vehicles, roadworks, spills, emergency response persons/vehicles.

Disruption where the entire road is blocked off from things such as parades,

protests, riots, public events and traffic jams.

6.5 Dataset

The entire dataset was provided by DPTI containing 142,514 accidents in the

period 1/1/2006 to 12/2/2015 and is divided into three areas: Adelaide CBD,

Adelaide Metropolitan and South Australian Rural. This work only analyses

the first two areas, as the majority of traffic flow in those areas is sparse and

unrecorded by SCATS. After removing country incidents, there are 137,322 inci-

dents. The provided data has a large number of fields as described in section 2.5,

but the ones this work is concerned with are:

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 117

� Latitude and longitude of the incident

� Date and time

The traffic data used to infer the occurrence of an incident via its anomalies

are the VS and SM datasets as described in section 2.2. In order to reduce

the size of the problem of analysing the large amounts of data, this research is

only concerned with the last 3 years of incident data in the period 30/1/2012 to

12/2/2015 and traffic data in the period starting 1/1/2012. This should provide

adequate time for the algorithms to learn the distribution of the traffic flow data

and effectively detect anomalies given that the first incident occurs as 12:40AM

on 1/1/2012. During the selected period, there were 299 incidents, 2,836,622 VS

records (each record has 24 sensor readings) and 52,281,377 SM readings. The

large number of flow readings will also test the ability of the selected methods

to process large amounts of data in a workable amount of computation time and

memory.

6.6 Method

In order to test the effectiveness of each algorithm for AID, the following test

procedure has been devised:

1. For each intersection in a subset of all intersections:

(a) For each anomaly detection algorithm:

i. For each dataset in SM and VS for the intersection:

A. Run the algorithm against and record the time of the anoma-

lies for each strategic input at the intersection (along with any

other factors the algorithm outputs regarding the anomaly

such as significance) in the database. Each record has the

following format:

{"intersection": "3001",

"strategic_input": 125,

"algorithm": "HTM",

"ds": "vs",

"datetime": 2012-01-01 14:10:00,

"other":{"field": value}}

Where the other field stores information about the anomaly

specific to the algorithm such as expected value, significance

or anomaly likelihood.

(b) For each incident in the dataset within 100 metres of a selected inter-

section:

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 118

i. Query the database for anomalies within ±10 minutes of the inci-

dent occurring in any of the strategic inputs of the nearest inter-

section. This should account for incidents that may have inaccu-

racies in the reported occurrence time or that are dependent on

flows from specific movements.

ii. Record the the number of incidents that had associated anomalies

as a true positive.

iii. Record those incidents without an associated anomaly as a false

negative.

iv. Record those anomalies that do not have an associated incident

as false positive.

v. Record those non-anomalous readings without incidents as true

negative. Because this number greatly dominates the other cases

(most of the time an incident is not occurring and flow is not

anomalous), these values are omitted when making a comparison

between methods.

The code used to perform this process (along with anomaly detection model

parameters and algorithm configuration) is available at https://github.com/JonnoFTW/

incident detection eval. Due to the sensitive nature of the incident dataset, it is

only made available by request the TSC.

The subset of selected intersections are a variety from both CBD and metropoli-

tan locations with varying flow distributions:

� 3001: a CBD location that also includes a tram line

� 3043: a CBD location that connects the CBD with the metropolitan area

� 115 and 100: busy arterial intersections approximately 13km south of the

CBD

� 67: a busy intersection just south of the city

� 221: an intersection just south of the city near a street-level tram crossing

� 347: a street-level tram crossing

Given this subset, during the period 1/1/2012 to 12/2/2015 there are:

� 309 crashes within 100 metres of any of the selected intersections.

� 2,897,102 individual VS readings.

� 52,281,377 individual phase count readings from SM data.

https://github.com/JonnoFTW/incident_detection_eval
https://github.com/JonnoFTW/incident_detection_eval

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 119

The selection of incidents near intersections is not by coincidence, by observing a

heatmap (see Figure 6.1) of all accidents in the period: 1/01/2006 to 1/2/2015,

it is clear that accidents occur mostly at the intersection of main roads and as

such, the incidents selected for detection via anomalous traffic flow should be

those causing the most disruption to traffic flow.

Figure 6.1: Heatmap of accidents (from DPTI crash dataset) in the period

1/1/2006 - 12/12/2015 in Adelaide clustering mostly around intersections of ma-

jor roads

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 120

6.6.1 Interface

As part of the evaluation process, an interface was developed to visualise:

� The layout of signalised intersections in the city, see Figure 6.2

� Information about each signalised intersection, see Figure 6.3:

– The SCATS diagram

– The neighbours of the intersection

– The intersection’s strategic input configuration history

– A plot of traffic flow

� The occurrence of incidents and coincident anomalies, see Figure 6.4

Figure 6.2: Map of city shown by the application. Intersections are labelled

with their unique identifier and coloured by their SCATS region. Clicking on a

particular intersection will show a popup with some details about the intersection

and a link to a page with more details

6.7 Results

The scores for HTM and SHESD methods are shown in Table 6.2, given that

there are:

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 121

Figure 6.3: Details of the intersection

� 299 incidents within 100m of the selected intersections

� 2,836,622 VS readings

� 52,281,377 SM readings

The standard implementation of SHESD as provided by Hochenbaum et al. (2017)

provides two methods for anomaly detection: SHESD TS for timeseries data and

SHESD-Vec for other data (ideally temporal sequence data that is missing its

timestamp component). Both are evaluated here for completeness, although it

is apparent that SHESD TS was not effective at detecting anomalies in either

datasets.

While some incidents did coincide with anomalous traffic flow, it is clear here

that anomalous traffic flow (as determined by the selected algorithms) does not

highly correlate with a crash. Observing Figure 6.6, a few important features can

be seen:

� An incident occurred that caused an anomalous drop in traffic around 7am

on Tuesday 11 July, 2012. This drop is greater than other drops seen around

the same time on other days.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 122

Figure 6.4: Accidents at intersection 67 with coincident anomalies. Anomalies

are shown along with their damage cost, severity, strategic input, data source,

algorithm, time and a link to the view of Figure 6.3 showing flow for the SI around

the time of the incident.

Algorithm Dataset
True

Positive

False

Positive

True

Negative

False

Negative

Anomalies

Detected

HTM
VS 43 41447 2795175 256 41490

SM 41 50091 32650733 258 50132

SHESD Vec
VS 156 143872 2692750 143 144028

SM 143 238637 32462187 156 238780

SHESD TS
VS 0 756 2835866 299 756

SM 1 434 32700390 298 435

Table 6.2: Incident detection via anomaly by dataset and algorithm

� Both algorithms regularly find anomalies on this detector, possibly because

it is downstream from a level tram crossing. When a tram crosses there is

an irregular effect on the flow of traffic, especially during peak hours.

The reasons for these results may be:

� An accident does not cause anomalous traffic flow.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 123

Figure 6.5: A map showing accidents for the currently plotted traffic flow

Algorithm Dataset
Crashes By Intersection Total

Crashes3001 3043 347 67 115 100 221

HTM
VS 12 24 5 23 12 28 7 111

SM 10 24 6 27 14 19 8 108

SHESD Vec
VS 19 41 9 36 24 45 12 186

SM 35 49 10 48 33 53 19 247

SHESD TS
VS 1 1 0 0 1 2 0 5

SM 0 2 0 1 0 0 0 3

Actual 47 54 13 58 41 63 23 299

Table 6.3: Breakdown of True Positive Incident detections via anomaly for each

site, dataset and algorithm

� Anomalous traffic flow does not necessarily indicate an incident.

� Incidents may occur at non-peak hours, such as very early morning, when

disruptions to traffic do not cause anomalous flows.

� Some accidents may be at low speed and cleared very quickly, such that

vehicles involved may be able to drive off before making an impact on flow.

Although 43/299 ≈ 14.4% accidents did coincide with a HTM/VS anomaly,

there were 41490 anomalies found meaning that only 43/41490 ≈ 0.104 of anoma-

lies indicate an incident and that the remaining 41447 anomalies were false alarms.

This level of false alarms is unacceptably low by most metrics discussed above.

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 124

Figure 6.6: Flows near an accident that caused anomalous reduction in traffic

flow at strategic input 168. The bottom plot shows incidents in green, HTM

anomalies in blue and SHESD anomalies in red. Both algorithms successfully

identified this incident as an anomaly. Other anomalies in this particular time

period were detected but not coincide with a recorded incident

The coincidence of anomaly and incident for each algorithm and dataset are (ex-

cluding SHESD TS):

HTM/VS 0.104%

HTM/SM 0.0818%

SHESD/VS 0.108%

SHESD/SM 0.06%

One reason for this discrepancy may be that the dataset of incidents is domi-

nated by small incidents, where people are rear ended at low speed. Additionally,

some incidents may not be detectable by this method at all, since they occur

during periods of low traffic flow. The large number of anomalies is likely due to

other factors not seen in the existing crash dataset causing anomalous flows.

Table E.1 shows that some incident types do have more anomalies associated

with them than others, although this may be due to the small sample size. Future

CHAPTER 6. ARTERIAL INCIDENT DETECTION VIA ANOMALIES 125

work should examine the entire crash dataset and any anomalies that may be

associated with them.

6.8 Conclusion

In this chapter, anomaly detection was evaluated as a novel method for AID.

Anomalies were detected using methods that take into account seasonality and

their incidence compared with a real-world databases of accidents at selected lo-

cations in the Adelaide metropolitan area. While anomalies were found in the

data, they far outnumbered accidents, indicating that there are far more anoma-

lies in traffic flow than accidents (at a rate of around 0.1%). While accidents are

the cause of some anomalous traffic flows, they are by no means an effective way

of indicating incidents in general.

6.9 Future Work

Future work in the area of incident detection should aim to develop models based

off real world sensor readings and incident data, with a focus on models that can

operate regardless of the time of day or date. Other work may also investigate

the nature of anomalous traffic flow and its causes beyond crashes by extending

the anomaly detection over the full set of cities. It may become evident that

particular kinds of anomalies indicate specific incident types.

Chapter 7

Conclusions and Future Work

In this chapter the main motivations, original contributions, findings and results

are summarised and directions for potential future work are described.

The research conducted as part of this thesis was motivated by the poten-

tial for intelligent transportation systems, specifically advanced transportation

management systems (ATMS) to improve the safety and efficiency of urban road

networks. As the population and average wealth of the world increases, so too

will the use of road transportation and associated infrastructure. With this comes

the inevitable problems and implications of increasingly congested roads: reduced

safety, increased travel delay, reduced traveller satisfaction, increased greenhouse

gas emissions and reduced productivity. ATMS has a key role to play in bringing

order to the otherwise chaotic road environment and improvements and optimi-

sations in this control must be aggressively sought after to improve the safety

and efficiency of a foundational part of modern infrastructure.

As the implementation of ITS infrastructure and other data sources such as

autonomous vehicles grows, so too will the amount of data produced and stored.

Ideally this data would be collected centrally or in a localised swarm of vehicles

and used by ITS to make better predictions about network usage, and also used by

traffic engineers to assist in system management and the planning of extensions

to the existing infrastructure. To this end, algorithms and the hardware they

run on such as those showed in previous chapters will need to be extended or

developed to accommodate this new influx of data.

The development of traffic control schemes that work in a proactive, rather

than reactive manner, based on large volumes of data collected about the road

network from a variety of sources will assist in the development of predictive

models and decision making systems that ideally exceed the performance of hu-

man or current systems. Two tasks that such systems can perform are: short

term traffic prediction and automated incident detection. The former seeks to

make predictions about the volume of traffic through in an intersections permit-

ted movements into the next phase or in aggregate over a set time period (5 or

126

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 127

15 minutes in SCATS’ case). The latter seeks to detect incidents on roads, that

is, non-recurrent events that partially or totally inhibit the flow of traffic.

These two issues are actively being researched within in ATMS, as Alsrehin

et al. (2019) describes, there continues to be ongoing investigation into the task

of traffic flow prediction. The research covered in this thesis makes novel contri-

butions to both tasks, but these topics remain far from closed, as new research

will likely integrate the use of external and third party data sources to further

improve model performance and ATMS integration.

Literature reviews on short term arterial traffic prediction and arterial incident

detection both found two significant problems with much of the existing published

work:

1. Experiments are frequently conducted on simulated data, without discus-

sion of their effectiveness or transferability into real world conditions. Such

use of simulations can lead to biased models, or the creation of models that

cannot be generated or applied to real world data simply because real world

data does not exist at the granularity available during simulation.

2. Where real world data is examined, much of it is limited to:

� Short periods (such as two weeks) of time with fairly typical traffic

flows

� Certain days of the week

� Selected periods during the day, for example the morning or afternoon

peaks of workdays

Such gaps can make the described methods seem more effective than if

they had been analysed on a complete dataset that operated non-stop over

the course of several years. This research seeks to rise to the challenge of

creating models that can operate regardless of the date, time or location,

allowing the investigation of long-term effects of distribution changes on

model performance .

To this end, the work described in Chapter 2 contributes a dataset containing

a large number of readings from both phase level and aggregated traffic flow

SCATS readings in combination with road network and traffic signal configuration

information. Such a collection of data and associated software made available

within the TSC will allow future research into not only traffic engineering tasks,

but wider timeseries and graph data analysis tasks. Unfortunately, due to the

privacy demands of SCATS and DPTI, access to this data is not available to the

wider research community without special permission.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 128

7.1 Short Term Arterial Traffic Prediction

Short term traffic prediction is the task of predicting future traffic flows through

an intersection. Here previous work largely worked on aggregate flows, typically

between 3 and 15 minutes, in this research, next phase flows in addition to ag-

gregate data were examined. Flow data in SCATS is collected by loop detectors

embedded in the road for each monitored lane at a signalised intersection and typ-

ically used by SCATS in order to select cycle plans that define phase durations

as defined by a traffic engineer. These sensors can be on freeways, motorways,

at various places on arterial roads, and signalised intersection stop lines. These

contributions focus on those flows through signalised intersections in an urban set-

ting, predicting flows in the next phase and in aggregated intervals of 5 minutes.

This research sets itself apart from previous work by making predictive models

that perform online based on years of historical data and evaluating performance

over a variety of locations. The intuition being that when models are required to

run for years without human intervention, they must adapt to inevitable changes

in overall distribution of flow.

Numerous methods were evaluated for short term arterial traffic prediction

in a variety of urban locations, from central business district to urban arterial

roads. Online learning models had not been explored in the literature of traffic

flow prediction, that is, models that continuously update their parameters as new

data is received. The advantage being that they can adjust to changes in overall

distribution (as opposed to seasonal cycles of arbitrary length), caused by factors

such as infrastructure additions or reconfiguration, changes in transport demand,

and extended roadworks. This novel application and demonstration of efficacy of

online learning is deemed to be a useful contribution to the body of knowledge

on this particular task.

HTM has emerged (Hawkins et al. 2016) as a group of algorithms capable of

online learning and predicting timeseries data. Inspired by empirical models of the

mammalian neocortex (the region of the brain responsible for sensory perception,

cognition and motor control), HTM seeks to replicate the behaviour by creating

binary encodings of input data and passing them to a layer of columns that

learn the spatial layout of inputs and then another layer that learns the temporal

layer. This particular model had not been applied to the task of short term traffic

prediction before; proving to be effective and competitive with the other state of

the art sequence prediction model: LSTM (Lv et al. 2014).

The contributions of this research showed the efficacy of HTM at short term

traffic prediction and that hyperparameter optimisation techniques could enable

HTM and LSTM, SARIMA models to achieve competitive results in both next-

phase and aggregated tasks. Additionally, a novel Markov Model variant (in-

corporating online learning and a variety of fallback methods) was introduced

and shown to outperform all other models in terms of root mean squared error.

This result is likely because it reverted to a rolling mean when it could not use

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 129

a transition probability predict the next step, both methods that made for ac-

curate predictions, although falling back to a rolling mean meant the model did

not effectively predict the frequent variation in flow between readings.

Extensions to the contributed Markov Model include:

� Adding a decay factor (similar to that used by HTM, where transitions that

are not used have their probability decreased) to the transition probability

table.

� Using transition probabilities from a historic period (as opposed to the

entire observed history).

� Adding additional hidden features

Future work in this field should investigate the use of feature selection tech-

niques to select the most relevant factors to a particular intersection’s future flows

(TPE hyperparameter optimisation appears to be a prime candidate method for

this). Specifically investigating temporal history from nearby intersections be-

yond the upstream and downstream readings of previous work. Neural network

models could also be investigated that use additional recurrent layer types than

used here, namely Gated Recurrent Units (Cho et al. 2014) and Convolutional

LSTM (Shi et al. 2015). Models may also be developed that predict multiple steps

ahead, beyond the single step predictions performed for next-phase prediction.

Real et al. (2017) showed that genetic algorithms can produce a fully trained

neural network that performs with near state-of-the-art performance on a 10

class image classification task with little human intervention (the system started

with the simplest possible network and built from there, removing bias from the

experimenter about any particular structure). This success can be drawn upon

to develop novel neural networks for short term traffic prediction, and potentially

other time-series regression tasks.

7.2 Anomalies for Incident Detection

Incidents are those non-recurrent congestion events events that cause partial or

complete congestion of roads, limiting the amount of traffic that can flow. These

incidents are separate from normal congestion, where a significant enough flow of

traffic on a road causes the overall flow of a road to decrease simply due to in-

creased occupation. Non-recurrent congestion is caused by external factors such

as illegal parking or breakdown of vehicles, crashes, spilled loads, burst water in-

frastructure, road or other infrastructure maintenance, and public events such as

protests, marches or riots. The detection of these incidents is of vital importance

to traffic management as the deployment of services ensures the quick clearance of

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 130

the incident in order to reduce the duration of the subsequent congestion, delays

and secondary incidents.

Automatic Incident Detection (AID) has long been the subject of research,

with the majority of previous work focusing on highway traffic where simple

algorithms have been devised to detect incidents. A review of existing literature

into investigations of AID in arterial roads was often limited to specific types

of incidents modelled using simulation software at certain times of the day. The

work in this research attempts to identify the presence of accident based incidents

in real world from anomalies in flow data and evaluating the performance of this

idea by comparing the presence of known accidents against anomalies.

The methods used to detect anomalies in strategic input data (where a strate-

gic input is the collection of sensors used in a particular movement), were HTM

and SHESD. The incidence of anomalies in traffic flow data far exceeds the num-

ber of accidents, and it was found, that even though anomalies exist in traffic flow

in both SM and VS datasets, their incidence did not necessarily coincide with an

accident. HTM found 50,132 anomalous datapoints in the SM flow data, 41 of

these anomalies were found to have occurred within 10 minutes of a recorded ac-

cident out of 299 total accidents. In other words the contribution of this research

effort is that accidents do not necessarily cause anomalous traffic flow. This isn’t

to say that anomalous traffic flow is not of interest, just that it should not be

used to infer the presence of an incident.

Future work here may involve investigating the actual causes of anomalous

traffic flows, creating larger datasets that record the occurrence of real-world

vehicle breakdowns, emergency road maintenance, protests etc. so that the effects

of all types of incidents can be determined and modelled. As with future work

suggested above for short term traffic flow prediction, when developing future

algorithms for AID, research should aim to develop models that have been shown

to work at all times of the year and all hours of every day, ideally based off

real-world data.

7.3 Final Remarks

The datasets and tools generated as part of this work have already enabled work

in other fields at Flinders University, specifically, traffic engineering students and

researchers now readily access and generate easy to use data files and diagrams for

use in their own educational and research projects. It is hoped that the database

of VS, SM, crash and location data will be the basis of future research work into

traffic behaviour in the Adelaide area.

The author would like to give his sincerest gratitude to Flinders University in

providing the space, resources and assistance needed to complete this important

research.

Appendix A

Publications, Awards and

Software Produced During

Candidature

A.1 Publications

The following paper has been accepted for publication (of which the thesis author

is the primary author):

� Mackenzie, J., Roddick, J. F., & Zito, R. (2018). An Evaluation of HTM

and LSTM for Short-Term Arterial Traffic Flow Prediction. IEEE Trans-

actions on Intelligent Transportation Systems, 99, 1–11. http://doi.org/10.

1109/TITS.2018.2843349

A.2 Awards

� Flinders University Research Scholarship (FURS), 2014-2018

� First Prize in Numenta HTM Challenge 2015 for “HTM for Adelaide Ar-

terial Traffic Flow” https://devpost.com/software/htm-models-adelaide

A.3 Software Projects

The following software projects were completed during the PhD candidature (al-

though not necessarily related to the main research) at Flinders University:

� “HTM Models Adelaide” for viewing and analysing SCATS data with a

variety of models https://github.com/JonnoFTW/htm-models-adelaide

131

http://doi.org/10.1109/TITS.2018.2843349
http://doi.org/10.1109/TITS.2018.2843349
https://devpost.com/software/htm-models-adelaide
https://github.com/JonnoFTW/htm-models-adelaide

APPENDIX A. PUBLICATIONS, AWARDS AND SOFTWARE PRODUCED132

� “Webcan” for analysing and reporting vehicle data captured by “rpi-can-

logger” https://github.com/JonnoFTW/webcan

� “rpi-can-logger” suite for extracting and parsing CAN data from a range of

vehicles including OBD-II compliant cars, Tesla Model X, Mitsubishi Out-

lander Plugin Hybrid Electric Vehicle, Bustech Prototype Electric Buses,

and other FMS equipped buses https://github.com/JonnoFTW/rpi-can-

logger

� “TonsleyLEDManager” application for development and display of pixel art

animations on the LED display at Tonsley. https://github.com/JonnoFTW/

TonsleyLEDManager

� “htm-cl” parallel and performant implementation of HTM in Python and

OpenCL https://github.com/JonnoFTW/htm-cl

� “nn-cl” neural network implementation in Python and OpenCL https://

github.com/JonnoFTW/nn-cl

� “markov-img-gen” research into using Markov Chains for image/texture

and audio generation

https://github.com/JonnoFTW/markov-img-gen

https://github.com/JonnoFTW/webcan
https://github.com/JonnoFTW/rpi-can-logger
https://github.com/JonnoFTW/rpi-can-logger
https://github.com/JonnoFTW/TonsleyLEDManager
https://github.com/JonnoFTW/TonsleyLEDManager
https://github.com/JonnoFTW/htm-cl
https://github.com/JonnoFTW/nn-cl
https://github.com/JonnoFTW/nn-cl
https://github.com/JonnoFTW/markov-img-gen

Appendix B

Accident Data

The different types of accidents are:

� Hit Parked Vehicle

� Right Angle

� Side Swipe

� Rear End

� Right Turn

� Hit Pedestrian

� Head On

� Roll Over

� Hit Fixed Object

� Other

� Left Road - Out of Control

� Hit Animal

� Hit Object on Road

The causes of accidents are:

� Opening or Closing Door

� Disobey - Traffic Lights

� Fail to Give Way

� Change Lanes to Endanger

� Inattention

� Follow Too Closely

� Fail to Stand

133

APPENDIX B. ACCIDENT DATA 134

� Overtake Without Due Care

� Fail to Keep Left

� Incorrect Turn

� Disobey - Stop Sign

� Disobey - Give Way Sign

� Reverse Without Due Care

� Fail to Give Way Right

� Vehicle Fault

� D.U.I.

� Dangerous Driving

� Died Sick or Asleep At Wheel

� Excessive Speed

� Brake Failure

� Drunken Pedestrian

� Misjudgement

� Insecure Load

� Other

� Disobey - Police Signal

� Incorrect or No Signal

� Disobey - Railway Signal

� No Errors

The types of weather are:

� Not Raining

� Unknown

� Raining

Appendix C

HTM and LSTM Performance Comparison for Traffic

Prediction on TS3044

135

A
P
P
E
N
D
IX

C
.
H
T
M

A
N
D
L
S
T
M

P
E
R
F
O
R
M
A
N
C
E
C
O
M
P
A
R
IS
O
N
F
O
R
T
R
A
F
F
IC

P
R
E
D
IC

T
IO

N
O
N
T
S
3044136

Table C.1: Hyperparameter Optimisation Search Space Used for Tuning LSTM Network With Optimal Paramaters Based off

Minimum GEH

Parameter Range
Optimal Parameter at k steps

1 3 6 9 12

Hidden Neurons

{128,196,212,230,244,256,

300, 332, 375, 400,

420}
332 256 332 332 332

Batch Size {96, 105, 128,148,156,164,196} 128 105 105 105 105

Dropout [0,1) 0.0923 0.0923 0.0042 0.0042 0.0042

Extra Layer True, False True True True True True

Extra Layer Dropout [0,1) 0.2269 0.001 0.1314 0.1314 0.1314

Extra Layer Neurons [0, 1.1)× hidden neurons 269 72 329 329 329

Table C.2: Summary of Results for TS3002 During Period of Varying Distribution at k = 1

Model GEH RMSE MAPE

HTM 1.4401 13.5220 38.9275

LSTM-Batch 1.8144 17.9990 50.4074

LSTM-Online 1.1809 10.8066 33.6014

A
P
P
E
N
D
IX

C
.
H
T
M

A
N
D
L
S
T
M

P
E
R
F
O
R
M
A
N
C
E
C
O
M
P
A
R
IS
O
N
F
O
R
T
R
A
F
F
IC

P
R
E
D
IC

T
IO

N
O
N
T
S
3044137

Figure C.1: Traffic Flow Distribution and HTM Predictions

A
P
P
E
N
D
IX

C
.
H
T
M

A
N
D
L
S
T
M

P
E
R
F
O
R
M
A
N
C
E
C
O
M
P
A
R
IS
O
N
F
O
R
T
R
A
F
F
IC

P
R
E
D
IC

T
IO

N
O
N
T
S
3044138

Figure C.2: Traffic Flow Distribution and LSTM Predictions

A
P
P
E
N
D
IX

C
.
H
T
M

A
N
D
L
S
T
M

P
E
R
F
O
R
M
A
N
C
E
C
O
M
P
A
R
IS
O
N
F
O
R
T
R
A
F
F
IC

P
R
E
D
IC

T
IO

N
O
N
T
S
3044139

Figure C.3: Traffic Flow Distribution and LSTM-Online Predictions

Appendix D

Hyperparameter Search Space

for TS115

The below tables use the following distribution functions as provided by Bergstra

et al. (2013):

1. quniform(min, max, q) is a quantised uniform distribution over the in-

terval range [min,max] with step q.

2. uniform(min, max) is a uniform distribution over the interval [min,max].

3. choice([a,b,c...]) is a categorical distribution over the given options.

Multiple optimisation jobs were run and some had parameters excluded, these

are listed as “unused” where appropriate.

For HTM models, both sets of distributions were used for VS and SM datasets

(excluding cycle time from VS as VS does not have a cycle time). Complete pa-

rameter files are available online for SM HTM Model

(https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/sm model/

best htm.json) and

VS HTM Model (https://github.com/JonnoFTW/htm-models-adelaide/blob/master/

engine/vs model/best htm.json).

140

https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/sm_model/best_htm.json
https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/sm_model/best_htm.json
https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/vs_model/best_htm.json
https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/vs_model/best_htm.json

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 141

Table D.1: Hyperparameter Optimisation Search Space Used for Tuning HTM.

Parameter Range Optimal (VS) Optimal (SM)

activeColumns quniform(20, 64, 1) 56 47

synPermInactiveDec uniform(0.0003, 0.1) 0.0632 0.0377

synPermActiveInc uniform(0.001, 0.1) 0.0836 0.1212

potentialPct uniform(0.2, 0.85) 0.7573 0.5862

activationThreshold quniform(5, 20, 1) 8 9

pamLength quniform(1, 10, 1) 5 7

cellsPerColumn quniform(8, 32, 2) 14 24

minThreshold quniform(4, 32, 1) 31 23

alpha uniform(0.0001, 0.2) 0.04423 0.091

boost uniform(0.0, 0.1) 0.00722 0.019

tmPermanenceInc uniform(0.05, 0.2) 0.05875 0.066

maxSynapsesPerSegment quniform(28, 72, 2) 50 50

newSynapseRatio uniform(0.4, 0.8) 0.667 0.47

initialPerm uniform(0.1, 0.33) 0.11619 0.316

maxSegmentsPerCell quniform(32, 66, 2) 44 40

permanenceDec uniform(0.01, 0.2) 0.0587 0.192

timeOfDay width quniform(16, 201, 2) 54 45

dayOfWeek width quniform(20, 201, 2) 132 73

holiday width quniform(16,201,2) 133 Unused

dayOfWeek radius uniform(6, 15) 11.099 12.44

timeOfDay radius uniform(6, 15) 11.389 9.69

weekend width quniform(0, 90, 2) 127 70

weekend radius quniform(0,90,2) 12.654 1

cycle time buckets quniform(10, 50, 1) Unused 10

Table D.2: Hyperparameter Optimisation Search Space Used for Tuning LSTM

in the VS Task

Parameter Range Optimal

lstm size 1 quniform(96, 300, 4) 176

lstm size 2 quniform(96, 300, 4) 88

lstm size 3 quniform(69, 300, 4) 60

optimizer choice([’adam’, ’rmsprop’]) rmsprop

l1 dropout uniform(0.001, 0.7) 0.0493

l2 dropout uniform(0.001, 0.7) 0.6184

l3 dropout uniform(0.001, 0.7) 0.0120

output activation choice([’relu’, ’tanh’, ’linear’]) relu

state reset interval quniform(1, 100, 1) Unused

layer count quniform(1, 3, 3) 3

l1 reg uniform(0.0001, 0.1) Unused

l2 reg uniform(0.0001, 0.1) Unused

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 142

Table D.3: Hyperparameter Optimisation Search Space Used for Tuning LSTM

in the SM Task

Parameter Range Optimal

lstm size 1 quniform(96, 300, 4) 212.0

lstm size 2 quniform(96, 300, 4) Unused

lstm size 3 quniform(96, 300, 4) Unused

l1 dropout uniform(0.001, 0.7) 0.0019

l2 dropout uniform(0.001, 0.7) Unused

l3 dropout uniform(0.001, 0.7) Unused

layer 1 l1l2 reg uniform(0.00001, 0.1) [0.0375, 0.0375]

layer 2 l1l2 reg uniform(0.00001, 0.1) Unused

layer 3 l1l2 reg uniform(0.00001, 0.1) Unused

optimizer choice([’adam’, ’rmsprop’]) adam

layer count choice([1,2,3]) 1

use weekday choice([True, False]) False

use minute of day choice([True, False]) False

use month choice([True, False]) False

use weekend choice([True, False]) False

use holidays choice([True, False]) True

use week number choice([True, False]) False

use phase time choice([True, False]) True

Table D.4: TPE Results for SM and VS ARIMA including the selection of ex-

ogenous variables

Order Range Optimal (SM) Optimal (VS)

p quniform(0, 15, 1) 4 15

d quniform(0, 2, 1) 0 0

q quniform(0, 5, 1) 3 1

P quniform(0, 15, 1) Unused Unused

D quniform(0, 2, 1) Unused Unused

Q quniform(0, 10, 1) Unused Unused

trend choice([’n’, ’c’, ’t’, ’ct’]) c c

s choice([0, 1094, 7919, 288, 1440]) Unused Unused

use holidays choice([True, False]) True True

use trend choice([True, False]) True True

use seasonal choice([True, False]) False False

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 143

D.0.1 Markov Models

The of the grid search over the VS dataset is all combinations of the following:

� Schemes: RAND, MEDIAN, MEAN, LAST

� Bins: {10, 15, 20, . . . , 200}

� Order: {1, 2, 3, 4, 5, 6, 7}

This resulted in the evaluation of 1064 models, so only the best 32 are listed

in Table D.5. Full results are available at https://github.com/JonnoFTW/htm-

models-adelaide/blob/master/engine/markov model/mc 115 2 vs results.txt. Data

binning was not used for SM models as the range of observed flow values was

smaller.

https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/markov_model/mc_115_2_vs_results.txt
https://github.com/JonnoFTW/htm-models-adelaide/blob/master/engine/markov_model/mc_115_2_vs_results.txt

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 144

Table D.5: Grid Search Results for SM Markov Models

Bins Order Time (s) Rows Missing Missing % Scheme RMSE

195 6 23.8081 122643 93600 76.319 MEAN 6.99923

190 6 23.2013 122643 93249 76.033 MEAN 6.99928

195 5 25.1342 122644 80413 65.566 MEAN 7.00572

185 6 24.3707 122643 93124 75.931 MEAN 7.01247

175 6 24.3138 122643 92397 75.338 MEAN 7.01499

180 6 22.7549 122643 92986 75.818 MEAN 7.02108

190 5 23.955 122644 79374 64.719 MEAN 7.02838

170 6 24.6002 122643 91883 74.919 MEAN 7.03385

165 6 22.9402 122643 90535 73.82 MEAN 7.05292

185 5 25.8578 122644 78558 64.054 MEAN 7.06903

160 6 24.689 122643 89199 72.731 MEAN 7.07897

155 6 22.1582 122643 87949 71.711 MEAN 7.11051

180 5 22.492 122644 77717 63.368 MEAN 7.11103

150 6 24.9125 122643 87050 70.978 MEAN 7.13133

175 5 22.9533 122644 76691 62.531 MEAN 7.13167

145 6 24.1353 122643 85559 69.763 MEAN 7.15705

140 6 24.7023 122643 84679 69.045 MEAN 7.177

170 5 25.9684 122644 74415 60.676 MEAN 7.18855

195 6 39.3313 122643 93600 76.319 MEDIAN 7.20709

190 6 35.9802 122643 93249 76.033 MEDIAN 7.21547

185 6 33.8394 122643 93124 75.931 MEDIAN 7.21982

135 6 24.4222 122643 82919 67.61 MEAN 7.2218

180 6 37.2545 122643 92986 75.818 MEDIAN 7.22493

175 6 38.4867 122643 92397 75.338 MEDIAN 7.23096

195 7 24.2653 122642 99806 81.38 MEAN 7.23742

185 7 24.6952 122642 99717 81.307 MEAN 7.24254

175 7 25.0973 122642 98273 80.13 MEAN 7.24326

190 7 22.7966 122642 99728 81.316 MEAN 7.24417

170 6 37.0945 122643 91883 74.919 MEDIAN 7.24765

130 6 24.4451 122643 81415 66.384 MEAN 7.24905

180 7 22.7223 122642 99712 81.303 MEAN 7.25237

170 7 21.858 122642 98214 80.082 MEAN 7.25578

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 145

Table D.6: Grid Search Results for VS Markov Models

Order Time (s) Rows Missing Missing % Scheme RMSE

7 77.4235 497650 294962 59.271 MEAN 4.88703

6 93.6856 497651 271721 54.601 MEAN 4.88929

8 84.5633 497649 310698 62.433 MEAN 4.91375

9 87.6242 497648 324706 65.248 MEAN 4.94931

6 114.978 497651 271721 54.601 MEDIAN 5.03245

8 106.013 497649 310698 62.433 MEDIAN 5.05052

5 98.4471 497652 215213 43.246 MEAN 5.06826

7 98.8524 497650 294962 59.271 MEDIAN 5.09192

9 109.846 497648 324706 65.248 MEDIAN 5.12009

5 112.448 497652 215213 43.246 MEDIAN 5.29344

4 102.497 497653 101721 20.44 MEAN 5.71327

4 107.231 497653 101721 20.44 MEDIAN 5.78467

3 104.902 497654 22156 4.452 MEAN 6.59921

5 87.0419 497652 215213 43.246 RAND 6.66108

6 82.4185 497651 271721 54.601 RAND 6.67318

3 105.047 497654 22156 4.452 MEDIAN 6.69884

7 79.5588 497650 294962 59.271 RAND 6.75312

4 93.0203 497653 101721 20.44 RAND 6.8159

8 77.6794 497649 310698 62.433 RAND 6.82689

9 78.1388 497648 324706 65.248 RAND 6.89268

3 101.511 497654 22156 4.452 RAND 7.10937

5 73.6237 497652 215213 43.246 LAST 7.20176

6 69.6085 497651 271721 54.601 LAST 7.20779

7 69.978 497650 294962 59.271 LAST 7.25797

2 103.434 497655 816 0.164 LAST 7.27048

8 67.9915 497649 310698 62.433 LAST 7.29602

4 85.7695 497653 101721 20.44 LAST 7.34066

2 108.423 497655 816 0.164 MEDIAN 7.34255

2 109.12 497655 816 0.164 MEAN 7.36081

9 66.1888 497648 324706 65.248 LAST 7.36119

2 107.49 497655 816 0.164 RAND 7.41978

3 96.8796 497654 22156 4.452 LAST 7.60059

1 120.196 497656 1 0 MEAN 9.97659

1 118.462 497656 1 0 RAND 9.97749

1 114.642 497656 1 0 LAST 9.97791

1 110.951 497656 1 0 MEDIAN 10.0179

APPENDIX D. HYPERPARAMETER SEARCH SPACE FOR TS115 146

Table D.7: Grid Search Results Rolling Mean Model (scores are RMSE)

n VS SM

1 11.765 6.264

2 10.152 5.883

3 9.85 5.689

4 9.84 5.588

5 9.995 5.535

6 10.221 5.516

7 10.507 5.496

8 10.852 5.495

9 11.222 5.504

10 11.598 5.52

11 11.984 5.534

12 12.375 5.558

13 12.78 5.586

14 13.193 5.617

Appendix E

Incident Detection

147

A
P
P
E
N
D
IX

E
.
IN

C
ID

E
N
T

D
E
T
E
C
T
IO

N
148

Type All Detected HTM VS SHESD VS HTM SM SHESD SM Undetected

Rear End 160 81 (50.6%) 15 (9.4%) 39 (24.4%) 11 (6.9%) 39 (24.4%) 79 (49.4%)

Side Swipe 50 21 (42.0%) 6 (12.0%) 14 (28.0%) 4 (8.0%) 2 (4.0%) 29 (58.0%)

Right Angle 41 15 (36.6%) 2 (4.9%) 11 (26.8%) 1 (2.4%) 8 (19.5%) 26 (63.4%)

Right Turn 26 15 (57.7%) 1 (3.8%) 8 (30.8%) 2 (7.7%) 9 (34.6%) 11 (42.3%)

Hit Fixed Object 7 5 (71.4%) 1 (14.3%) 2 (28.6%) 0 (0.0%) 2 (28.6%) 2 (28.6%)

Roll Over 5 2 (40.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 0 (0.0%) 3 (60.0%)

Hit Pedestrian 3 2 (66.7%) 1 (33.3%) 1 (33.3%) 0 (0.0%) 1 (33.3%) 1 (33.3%)

Hit Parked Vehicle 3 1 (33.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (33.3%) 2 (66.7%)

Other 2 1 (50.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 1 (50.0%)

Hit Animal 1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%)

Head On 1 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (100.0%)

Total 299 143 28 62 28 62 156

PDO 210 103 (49.0%) 22 (10.5%) 56 (26.7%) 15 (7.1%) 42 (20.0%) 107 (51.0%)

MI 84 37 (44.0%) 5 (6.0%) 20 (23.8%) 3 (3.6%) 18 (21.4%) 47 (56.0%)

SI 5 3 (60.0%) 1 (20.0%) 1 (20.0%) 0 (0.0%) 2 (40.0%) 2 (40.0%)

Total 299 143 28 62 28 62 156

Table E.1: Breakdown of detected incidents for all algorithms by accident type and severity

Bibliography

Abdulhai, B., Ritchie, S. G. & Chair (1999), Towards adaptive incident detection

algorithms, in ‘Proc., 6th World Congress on Intelligent Transport Systems’.

URL: https:// trid.trb.org/ view/ 714257

Abe, N., Zadrozny, B. & Langford, J. (2006), Outlier detection by active learning,

in ‘Proceedings of the 12th ACM SIGKDD international conference on Knowl-

edge discovery and data mining - KDD ’06’, ACM Press, New York, New York,

USA, p. 504.

URL: http:// dl.acm.org/ citation.cfm?id=1150402.1150459

Adams, R. P. & MacKay, D. J. C. (2007), ‘Bayesian Online Changepoint Detec-

tion’.

URL: https:// arxiv.org/ abs/ 0710.3742

Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J. & Yu, P. S. (2003),

‘A Framework for Clustering Evolving Data Streams’, Proceedings of the 29th

international conference on Very large data bases pp. 81–92.

URL: http:// citeseerx.ist.psu.edu/ viewdoc/ summary?doi=10.1.1.13.8650

Aghabayk, K., Moridpour, S., Young, W., Sarvi, M. & Wang, Y.-B. (2011),

‘Comparing Heavy Vehicle and Passenger Car Lane-Changing Maneuvers on

Arterial Roads and Freeways’, Transportation Research Record: Journal of the

Transportation Research Board 2260(1), 94–101.

URL: http:// journals.sagepub.com/ doi/ 10.3141/ 2260-11

Ahmad, S. & Hawkins, J. (2015), ‘Properties of Sparse Distributed Representa-

tions and their Application to Hierarchical Temporal Memory’.

URL: http:// arxiv.org/ abs/ 1503.07469

Ahmad, S. & Hawkins, J. (2016), ‘How do neurons operate on sparse distributed

representations? A mathematical theory of sparsity, neurons and active den-

drites’.

URL: http:// arxiv.org/ abs/ 1601.00720

Ahmad, S. & Purdy, S. (2016), ‘Real-Time Anomaly Detection for Streaming

Analytics’.

URL: http:// arxiv.org/ abs/ 1607.02480

149

https://trid.trb.org/view/714257
http://dl.acm.org/citation.cfm?id=1150402.1150459
https://arxiv.org/abs/0710.3742
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.8650
http://journals.sagepub.com/doi/10.3141/2260-11
http://arxiv.org/abs/1503.07469
http://arxiv.org/abs/1601.00720
http://arxiv.org/abs/1607.02480

BIBLIOGRAPHY 150

Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas,

N., Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A.,

Bergstra, J., Bisson, V., Snyder, J. B., Bouchard, N., Boulanger-Lewandowski,

N., Bouthillier, X., de Brébisson, A., Breuleux, O., Carrier, P.-L., Cho, K.,

Chorowski, J., Christiano, P., Cooijmans, T., Côté, M.-A., Côté, M., Courville,

A., Dauphin, Y. N., Delalleau, O., Demouth, J., Desjardins, G., Dieleman, S.,

Dinh, L., Ducoffe, M., Dumoulin, V., Kahou, S. E., Erhan, D., Fan, Z., Firat,

O., Germain, M., Glorot, X., Goodfellow, I., Graham, M., Gulcehre, C., Hamel,

P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S., Jain, A., Jean, S., Jia,

K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent,

C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A.,

Lorenz, C., Lowin, J., Ma, Q., Manzagol, P.-A., Mastropietro, O., McGibbon,

R. T., Memisevic, R., van Merriënboer, B., Michalski, V., Mirza, M., Orlandi,

A., Pal, C., Pascanu, R., Pezeshki, M., Raffel, C., Renshaw, D., Rocklin, M.,

Romero, A., Roth, M., Sadowski, P., Salvatier, J., Savard, F., Schlüter, J.,

Schulman, J., Schwartz, G., Serban, I. V., Serdyuk, D., Shabanian, S., Simon,

É., Spieckermann, S., Subramanyam, S. R., Sygnowski, J., Tanguay, J., van

Tulder, G., Turian, J., Urban, S., Vincent, P., Visin, F., de Vries, H., Warde-

Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S.

& Zhang, Y. (2016), ‘Theano: A Python framework for fast computation of

mathematical expressions’.

URL: http:// arxiv.org/ abs/ 1605.02688

Alsrehin, N. O., Klaib, A. F. & Magableh, A. (2019), ‘Intelligent transportation

and control systems using data mining and machine learning techniques: A

comprehensive study’, IEEE Access 7, 49830–49857.

Anbaroglu, B., Heydecker, B. & Cheng, T. (2014), ‘Spatio-temporal clustering

for non-recurrent traffic congestion detection on urban road networks’, Trans-

portation Research Part C: Emerging Technologies 48, 47–65.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X14002186

Angeline, P. J., Saunders, G. M. & Pollack, J. B. (1994), ‘An evolutionary algo-

rithm that constructs recurrent neural networks’, IEEE transactions on Neural

Networks 5(1), 54–65.

ARRB (2015), ‘Austroads Glossary of Terms’.

Balke, K. N. (1993), An evaluation of existing incident detection algorithms,

Technical report, Texas Transportation Institute.

URL: http:// trid.trb.org/ view.aspx? id=1170418

Bell, M. & Thancanamootoo, B. (1988), AUTOMATIC INCIDENT DETEC-

TION WITHIN URBAN TRAFFIC CONTROL SYSTEMS, Technical report,

http://arxiv.org/abs/1605.02688
http://www.sciencedirect.com/science/article/pii/S0968090X14002186
http://www.sciencedirect.com/science/article/pii/S0968090X14002186
http://trid.trb.org/view.aspx?id=1170418

BIBLIOGRAPHY 151

University of Newcastle upon Tyne.

URL: http:// trid.trb.org/ view.aspx? id=263331

Ben-Akiva, M., Bergman, M. J., Daly, A. J. & Ramaswamy, R. (1984), Modeling

inter-urban route choice behaviour, in ‘Proceedings of the 9th international

symposium on transportation and traffic theory’, VNU Science Press Utrecht,

The Netherlands, pp. 299–330.

Bengio, Y. (2012), ‘Practical recommendations for gradient-based training of deep

architectures’.

URL: http:// arxiv.org/ abs/ 1206.5533

Bergstra, J., Bardenet, R., Bengio, Y. & Kégl, B. (2011), ‘Algorithms for

Hyper-Parameter Optimization’.

URL: http:// papers.nips.cc/ paper/ 4443-algorithms-for-hyper-parameter-

optimization

Bergstra, J., Yamins, D. & Cox, D. D. (2013), Hyperopt: A python library for

optimizing the hyperparameters of machine learning algorithms, Citeseer.

BITRE (2017), Australian Infrastructure Statistics Yearbook 2017, Technical re-

port, Bureau of Infrastucture, Transport and Regional Economics.

Black, J. & Sreedevi, I. (2001), ‘Automatic incident detection algorithms’, ITS

Decision Database in PATH .

Bonnefon, J.-F., Shariff, A. & Rahwan, I. (2016), ‘The social dilemma of au-

tonomous vehicles’, Science 352(6293), 1573 LP – 1576.

URL: http:// science.sciencemag.org/ content/ 352/ 6293/ 1573.abstract

Brandl, O. (2016), ‘V2x traffic management’, e & i Elektrotechnik und Informa-

tionstechnik 133(7), 353–355.

Breunig, M. M., Kriegel, H.-P., Ng, R. T. & Sander, J. (2000), ‘LOF: Identifying

Density-Based Local Outliers’, ACM SIGMOD Record 29(2), 93–104.

URL: http:// dl.acm.org/ citation.cfm?id=335191.335388

Burge, C. B. & Karlin, S. (1998), ‘Finding the genes in genomic DNA’, Current

Opinion in Structural Biology 8(3), 346–354.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

S0959440X98800699

Byrne, F. (2015), ‘Encoding Reality: Prediction-Assisted Cortical Learning Al-

gorithm in Hierarchical Temporal Memory’.

URL: http:// arxiv.org/ abs/ 1509.08255

Cao, F., Ester, M., Qian, W. & Zhou, A. (2006), ‘Density-based clustering over an

evolving data stream with noise’, Proceedings of the Sixth SIAM International

http://trid.trb.org/view.aspx?id=263331
http://arxiv.org/abs/1206.5533
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
http://science.sciencemag.org/content/352/6293/1573.abstract
http://dl.acm.org/citation.cfm?id=335191.335388
https://www.sciencedirect.com/science/article/pii/S0959440X98800699
https://www.sciencedirect.com/science/article/pii/S0959440X98800699
http://arxiv.org/abs/1509.08255

BIBLIOGRAPHY 152

Conference on Data Mining pp. 328–339.

URL: https:// archive.siam.org/ meetings/ sdm06/ proceedings/ 030caof.pdf

Chan, K. Y., Dillon, T. S., Singh, J. & Chang, E. (2012), ‘Neural-Network-Based

Models for Short-Term Traffic Flow Forecasting Using a Hybrid Exponential

Smoothing and Levenberg–Marquardt Algorithm’, IEEE Transactions on

Intelligent Transportation Systems 13(2), 644–654.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

6088012

Chassiakos, A. P. & Stephanedes, Y. J. (1993), ‘Smoothing algorithms for

incident detection’, (1394).

URL: https:// www.researchgate.net/ publication/ 240247850 Smoothing

algorithms for incident detection

Chen, S., Wang, W., Qu, G. & Lu, J. (2007), Application of Neural Network

Ensembles to Incident Detection, in ‘2007 IEEE International Conference on

Integration Technology’, IEEE, pp. 388–393.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

4290502

Chen, Y., Mittal, A. & Mahmassani, H. S. (2017), Twitter or chatter? involving

social media data analysis in traffic incident management, Technical report.

Chen, Y. & Tu, L. (2007), ‘Density-based clustering for real-time stream data’,

Proceedings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining KDD 07 d, 133.

URL: http:// portal.acm.org/ citation.cfm?doid=1281192.1281210

Cheu, R. L. & Ritchie, S. G. (1995), ‘Automated detection of lane-blocking

freeway incidents using artificial neural networks’, Transportation Research

Part C: Emerging Technologies 3(6), 371–388.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

0968090X9500016C

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H. & Bengio, Y. (2014), ‘Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation’.

URL: http:// arxiv.org/ abs/ 1406.1078

Chollet, F. (2015), ‘Keras’, https://github.com/fchollet/keras.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B. & LeCun, Y. (2014),

‘The Loss Surfaces of Multilayer Networks’.

URL: http:// arxiv.org/ abs/ 1412.0233

https://archive.siam.org/meetings/sdm06/proceedings/030caof.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6088012
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6088012
https://www.researchgate.net/publication/240247850_Smoothing_algorithms_for_incident_detection
https://www.researchgate.net/publication/240247850_Smoothing_algorithms_for_incident_detection
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4290502
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4290502
http://portal.acm.org/citation.cfm?doid=1281192.1281210
http://www.sciencedirect.com/science/article/pii/0968090X9500016C
http://www.sciencedirect.com/science/article/pii/0968090X9500016C
http://arxiv.org/abs/1406.1078
https://github.com/fchollet/keras
http://arxiv.org/abs/1412.0233

BIBLIOGRAPHY 153

Clark, S. (2003), ‘Traffic Prediction Using Multivariate Nonparametric Regres-

sion’, Journal of Transportation Engineering 129(2), 161–168.

URL: http:// ascelibrary.org/ doi/ abs/ 10.1061/ (ASCE)0733-947X(2003)

129:2(161)

Clement, F. S. C., Vashistha, A. & Rane, M. E. (2015), Driver fatigue detection

system, in ‘Information Processing (ICIP), 2015 International Conference on’,

IEEE, pp. 229–234.

Coconea, L. & Bellini, E. (2019), ‘Advanced traffic management systems sup-

porting resilient smart cities’, Transportation Research Procedia 41, 556–558.

Core Data (2016), The Australian Commuting Survey - October 2016, Technical

report, Core Data, Sydney.

URL: https:// www.realinsurance.com.au/ RealInsurance/ media/ documents/

resources/ 2016-coredata-australian-commuting-survey.pdf

Cox, J. (2013), Development of a permanent system to record and analyse Blue-

tooth travel time and SCATS lane count data, in ‘Australian Institute of Traffic

Planning and Management (AITPM) National Conference, 2013, Perth, West-

ern Australia’.

URL: http:// trid.trb.org/ view.aspx? id=1262365

Cox, J. (2014), ‘Adelaide’s Bluetooth Travel Time System’.

Cui, Y., Ahmad, S. & Hawkins, J. (2015), ‘Continuous online sequence learning

with an unsupervised neural network model’.

URL: http:// arxiv.org/ abs/ 1512.05463

de Souza, A. M., Brennand, C. A., Yokoyama, R. S., Donato, E. A., Madeira,

E. R. & Villas, L. A. (2017), ‘Traffic management systems: A classification, re-

view, challenges, and future perspectives’, International Journal of Distributed

Sensor Networks 13(4), 1550147716683612.

URL: https:// journals.sagepub.com/ doi/ full/ 10.1177/ 1550147716683612

de Souza, A. M., da Fonseca, N. L. S. & Villas, L. (2017), A fully-distributed

advanced traffic management system based on opportunistic content sharing,

in ‘2017 IEEE International Conference on Communications (ICC)’, pp. 1–6.

Deng, J., Dong, W., Socher, R., Li, L., Li, K. & Fei-Fei, L. (2009), ImageNet: A

large-scale hierarchical image database, in ‘2009 IEEE Conference on Computer

Vision and Pattern Recognition’, pp. 248–255.

Devi, Y. U. & Rukmini, M. S. S. (2016), Iot in connected vehicles: Challenges

and issues — a review, in ‘2016 International Conference on Signal Processing,

Communication, Power and Embedded System (SCOPES)’, pp. 1864–1867.

http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-947X(2003)129:2(161)
http://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-947X(2003)129:2(161)
https://www.realinsurance.com.au/RealInsurance/media/documents/resources/2016-coredata-australian-commuting-survey.pdf
https://www.realinsurance.com.au/RealInsurance/media/documents/resources/2016-coredata-australian-commuting-survey.pdf
http://trid.trb.org/view.aspx?id=1262365
http://arxiv.org/abs/1512.05463
https://journals.sagepub.com/doi/full/10.1177/1550147716683612

BIBLIOGRAPHY 154

Dimitrakopoulos, G. & Demestichas, P. (2010), ‘Intelligent Transportation Sys-

tems’, IEEE Vehicular Technology Magazine 5(1), 77–84.

URL: http:// ieeexplore.ieee.org/ document/ 5430544/

DTEI (2010), ‘AIMSUN Model Development Manual’.

Dukkipati, C., Zhang, Y. & Cheng, L. C. (2018), Lstm based multiple squashing

functions deep learning model for advanced traffic management system attack

detection, in ‘2018 IEEE 14th International Conference on Control and Au-

tomation (ICCA)’, pp. 417–422.

Etsy (2015), ‘skyline’.

URL: https:// github.com/ etsy/ skyline

Farradyne, P. B. (2000), ‘Traffic incident management handbook’.

Feldman, O. (2012), The GEH Measure and Quality of the Highway Assignment

Models, European Transport Conference, Glasgow, Scotland.

Fu, K., Nune, R. & Tao, J. X. (2015), Social media data analysis for traffic

incident detection and management, Technical report.

Gang, X., Kang, W., Wang, F., Zhu, F., Lv, Y., Dong, X., Riekki, J. & Pirttikan-

gas, S. (2015), Continuous Travel Time Prediction for Transit Signal Priority

Based on a Deep Network, in ‘2015 IEEE 18th International Conference on

Intelligent Transportation Systems’, IEEE, pp. 523–528.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

7313184

Gettman, D., Toppen, A., Hales, K., Voss, A., Engel, S. & El Azhari, D. (n.d.),

‘Integrating Emerging Data Sources into Operational Practice : Opportunities

for Integration of Emerging Data for Traffic Management and TMCs.’.

URL: https:// rosap.ntl.bts.gov/ view/ dot/ 34175

Glorot, X. & Bengio, Y. (2010), ‘Understanding the difficulty of training deep

feedforward neural networks’.

URL: http:// proceedings.mlr.press/ v9/ glorot10a/ glorot10a.pdf

Goldberg, D. E. & Deb, K. (1991), ‘A Comparative Analysis of Selection Schemes

Used in Genetic Algorithms’, Foundations of Genetic Algorithms 1, 69–93.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

B9780080506845500082

Goldstein, D. (2016), ‘Autonomous Vehicles Will Drive Themselves-But They

Won’t Regulate Themselves’, Hastings Bus. LJ 13, 241.

Goplan, S. (2018), ‘Legal lessons for Australia from Uber’s self-driving car fatal-

ity’.

http://ieeexplore.ieee.org/document/5430544/
https://github.com/etsy/skyline
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7313184
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7313184
https://rosap.ntl.bts.gov/view/dot/34175
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.sciencedirect.com/science/article/pii/B9780080506845500082
https://www.sciencedirect.com/science/article/pii/B9780080506845500082

BIBLIOGRAPHY 155

URL: http:// theconversation.com/ legal-lessons-for-australia-from-ubers-self-

driving-car-fatality-93649

Hamed, M. M., Al-Masaeid, H. R. & Said, Z. M. B. (1995), ‘Short-Term Pre-

diction of Traffic Volume in Urban Arterials’, Journal of Transportation Engi-

neering 121(3), 249–254.

URL: https:// doi.org/ 10.1061/ (ASCE)0733-947X(1995)121:3(249)

Han, L. D. & May, A. D. (1989), Automatic Detection of Traffic Operational

Problem on Urban Arterials, Technical Report 8, Institute of Transportation

Studies, University of California, Davis.

URL: http:// trid.trb.org/ view.aspx? id=318298

Hawkins, J. & Ahmad, S. (2016), ‘Why Neurons Have Thousands of Synapses, a

Theory of Sequence Memory in Neocortex’, Frontiers in Neural Circuits 10.

URL: http:// arxiv.org/ abs/ 1511.00083

Hawkins, J., Ahmad, S., Purdy, S. & Lavin, A. (2016), Biological and Machine

Intelligence (BAMI), 0.4 edn.

URL: http:// numenta.com/ biological-and-machine-intelligence/

He, K., Zhang, X., Ren, S. & Sun, J. (2016), Deep Residual Learning for Im-

age Recognition, in ‘The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR)’.

Henderson, J., Salzberg, S. & Fasman, K. H. (1997), ‘Finding Genes in DNA with

a Hidden Markov Model’, Journal of Computational Biology 4(2), 127–141.

URL: http:// www.liebertpub.com/ doi/ 10.1089/ cmb.1997.4.127

Hochenbaum, J., Vallis, O. S. & Kejariwal, A. (2017), ‘Automatic Anomaly De-

tection in the Cloud Via Statistical Learning’.

URL: http:// arxiv.org/ abs/ 1704.07706

Hochreiter, S. & Schmidhuber, J. (1997), ‘Long Short-Term Memory’, Neural

Computation 9(8), 1735–1780.

URL: http:// www.mitpressjournals.org/ doi/ abs/ 10.1162/ neco.1997.9.8.

1735

Howard, D. & Dai, D. (2014), Public perceptions of self-driving cars: The case of

Berkeley, California, in ‘Transportation Research Board 93rd Annual Meeting’,

Vol. 14.

Huang, W., Song, G., Hong, H. & Xie, K. (2014), ‘Deep Architecture for Traffic

Flow Prediction: Deep Belief Networks With Multitask Learning’, IEEE

Transactions on Intelligent Transportation Systems 15(5), 2191–2201.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

6786503

http://theconversation.com/legal-lessons-for-australia-from-ubers-self-driving-car-fatality-93649
http://theconversation.com/legal-lessons-for-australia-from-ubers-self-driving-car-fatality-93649
https://doi.org/10.1061/(ASCE)0733-947X(1995)121:3(249)
http://trid.trb.org/view.aspx?id=318298
http://arxiv.org/abs/1511.00083
http://numenta.com/biological-and-machine-intelligence/
http://www.liebertpub.com/doi/10.1089/cmb.1997.4.127
http://arxiv.org/abs/1704.07706
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6786503
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6786503

BIBLIOGRAPHY 156

Hyndman, R. J. & Athanasopoulos, G. (2018), Forecasting: principles and prac-

tice, OTexts.

Ivan, J. N. (1997), ‘Neural network representations for arterial street incident

detection data fusion’, Transportation Research Part C: Emerging Technologies

5(3-4), 245–254.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X97000181

Ivan, J. N., Schofer, J. L., Koppelman, F. S. & Massone, L. L. E. (1995), ‘Real-

time data fusion for arterial street incident detection using neural networks’,

Transportation research record (1497), 27–35.

URL: https:// trid.trb.org/ view/ 452678

Jain, A., Zhang, Z. & Chang, E. Y. (2006), Adaptive non-linear clustering in

data streams, in ‘Proceedings of the 15th ACM international conference on

Information and knowledge management - CIKM ’06’, ACM Press, New York,

New York, USA, p. 122.

URL: http:// dl.acm.org/ citation.cfm?id=1183614.1183636

Jain, L. C., Seera, M., Lim, C. P. & Balasubramaniam, P. (2014), ‘A review of

online learning in supervised neural networks’, Neural Computing and Appli-

cations 25(3-4), 491–509.

URL: http:// link.springer.com/ 10.1007/ s00521-013-1534-4

Josephine Lim (2015), ‘Police shocked by wild daylight chase on Southern

Expressway which reached 160 km/h — Adelaide Now’.

URL: https:// www.adelaidenow.com.au/ news/ south-australia/ police-chase-

on-southern-expressway-ends-with-car-in-flames-at-ohalloran-hill/ news-

story/ 164a02748e4ea95b25db7145a3e06758

Jozefowicz, R., Zaremba, W. & Sutskever, I. (2015), An empirical exploration

of recurrent network architectures, in ‘Proceedings of the 32nd International

Conference on International Conference on Machine Learning - Volume 37’,

JMLR.org, pp. 2342–2350.

URL: https:// dl.acm.org/ citation.cfm?id=3045367

Karagiannidis, G. & Lioumpas, A. (2007), ‘An Improved Approximation for the

Gaussian Q-Function’, IEEE Communications Letters 11(8), 644–646.

URL: http:// ieeexplore.ieee.org/ document/ 4289989/

Khan, S. I. & Ritchie, S. G. (1998), ‘Statistical and neural classifiers to detect

traffic operational problems on urban arterials’, Transportation Research Part

C: Emerging Technologies 6(5-6), 291–314.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X99000054

http://www.sciencedirect.com/science/article/pii/S0968090X97000181
http://www.sciencedirect.com/science/article/pii/S0968090X97000181
https://trid.trb.org/view/452678
http://dl.acm.org/citation.cfm?id=1183614.1183636
http://link.springer.com/10.1007/s00521-013-1534-4
https://www.adelaidenow.com.au/news/south-australia/police-chase-on-southern-expressway-ends-with-car-in-flames-at-ohalloran-hill/news-story/164a02748e4ea95b25db7145a3e06758
https://www.adelaidenow.com.au/news/south-australia/police-chase-on-southern-expressway-ends-with-car-in-flames-at-ohalloran-hill/news-story/164a02748e4ea95b25db7145a3e06758
https://www.adelaidenow.com.au/news/south-australia/police-chase-on-southern-expressway-ends-with-car-in-flames-at-ohalloran-hill/news-story/164a02748e4ea95b25db7145a3e06758
https://dl.acm.org/citation.cfm?id=3045367
http://ieeexplore.ieee.org/document/4289989/
http://www.sciencedirect.com/science/article/pii/S0968090X99000054
http://www.sciencedirect.com/science/article/pii/S0968090X99000054

BIBLIOGRAPHY 157

Khanal, M. (2012), ‘How Rapidly should Developing Countries Implement

Intelligent Transportation Systems (ITS) to Solve the Growing Urban Traffic

Congestion Problem?’.

URL: https:// www.omicsonline.org/ open-access/ how-rapidly-should-

developing-countries-implement-intelligent-transportation-systems-its-to-

solve-the-growing-urban-traffic-congestion-problem-2165-784X.1000e106.php?

aid=6900

Kharas, H. (2010), ‘The Emerging Middle Class in Developing Countries’, (285).

URL: https:// www.oecd-ilibrary.org/ content/ paper/ 5kmmp8lncrns-en

Kingma, D. & Ba, J. (2014), ‘Adam: A Method for Stochastic Optimization’.

URL: http:// arxiv.org/ abs/ 1412.6980

Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. (1983), ‘Optimization by Simulated

Annealing’, Science 220(4598), 671 LP – 680.

URL: http:// science.sciencemag.org/ content/ 220/ 4598/ 671.abstract

Klein, L. A., Mills, M. K. & Gibson, D. R. P. (2006), Traffic Detector Handbook,

Technical Report October, Federal Highway Administration.

URL: http:// trid.trb.org/ view.aspx? id=349412

Krizhevsky, A. & Hinton, G. (2009), Learning multiple layers of features from

tiny images, Technical report.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), ImageNet Classification

with Deep Convolutional Neural Networks, in F. Pereira, C. J. C. Burges,

L. Bottou & K. Q. Weinberger, eds, ‘Advances in Neural Information Process-

ing Systems 25’, Curran Associates, Inc., pp. 1097–1105.

URL: http:// papers.nips.cc/ paper/ 4824-imagenet-classification-with-deep-

convolutional-neural-networks.pdf

Kulp, D., Haussler, D., Reese, M. G. & Eeckman, F. H. (1996), ‘A generalized

hidden Markov model for the recognition of human genes in DNA.’, Proceedings.

International Conference on Intelligent Systems for Molecular Biology 4, 134–

42.

URL: http:// www.ncbi.nlm.nih.gov/ pubmed/ 8877513

Lakshminarasimhan, M. (2016), ‘Iot based traffic management system’.

LeCun, Y., Bengio, Y. & Hinton, G. (2015), ‘Deep learning’, Nature

521(7553), 436–444.

URL: http:// dx.doi.org/ 10.1038/ nature14539

Lee, W.-H., Tseng, S.-S., Shieh, J.-L. & Chen, H.-H. (2011), ‘Discovering

Traffic Bottlenecks in an Urban Network by Spatiotemporal Data Mining on

Location-Based Services’, IEEE Transactions on Intelligent Transportation

https://www.omicsonline.org/open-access/how-rapidly-should-developing-countries-implement-intelligent-transportation-systems-its-to-solve-the-growing-urban-traffic-congestion-problem-2165-784X.1000e106.php?aid=6900
https://www.omicsonline.org/open-access/how-rapidly-should-developing-countries-implement-intelligent-transportation-systems-its-to-solve-the-growing-urban-traffic-congestion-problem-2165-784X.1000e106.php?aid=6900
https://www.omicsonline.org/open-access/how-rapidly-should-developing-countries-implement-intelligent-transportation-systems-its-to-solve-the-growing-urban-traffic-congestion-problem-2165-784X.1000e106.php?aid=6900
https://www.omicsonline.org/open-access/how-rapidly-should-developing-countries-implement-intelligent-transportation-systems-its-to-solve-the-growing-urban-traffic-congestion-problem-2165-784X.1000e106.php?aid=6900
https://www.oecd-ilibrary.org/content/paper/5kmmp8lncrns-en
http://arxiv.org/abs/1412.6980
http://science.sciencemag.org/content/220/4598/671.abstract
http://trid.trb.org/view.aspx?id=349412
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.ncbi.nlm.nih.gov/pubmed/8877513
http://dx.doi.org/10.1038/nature14539

BIBLIOGRAPHY 158

Systems 12(4), 1047–1056.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

5766752

Leith, P. (2010), ‘The Rise and Fall of the Legal Expert System’, European Jour-

nal of Law and Technology 1(1).

URL: http:// ejlt.org/ article/ view/ 14

Levinson, S. E., Rabiner, L. R. & Sondhi, M. M. (1986), ‘Hidden Markov model

speech recognition arrangement’.

Lewis, J. P. (1995), Fast template matching, in ‘Vision interface’, Vol. 95, pp. 15–

19.

Lewis, R. (2007), ‘Metaheuristics can solve sudoku puzzles’, Journal of heuristics

13(4), 387–401.

Lo Bosco, G. & Di Gangi, M. (2017), Deep Learning Architectures for DNA

Sequence Classification, in ‘Lecture Notes in Computer Science’, Vol. 10147,

pp. 162–171.

Long, J., Shelhamer, E. & Darrell, T. (2015), Fully Convolutional Networks for

Semantic Segmentation, in ‘The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR)’.

Lourakis, M. I. A. (2005), ‘A Brief Description of the Levenberg-Marquardt Al-

gorithm Implemened by levmar’.

Lv, Y., Duan, Y., Kang, W., Li, Z. & Wang, F.-Y. (2014), ‘Traffic Flow

Prediction With Big Data: A Deep Learning Approach’, IEEE Transactions

on Intelligent Transportation Systems 16(2), 1–9.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

6894591

Mackenzie, J., Roddick, J. F. & Zito, R. (2018), ‘An Evaluation of HTM and

LSTM for Short-Term Arterial Traffic Flow Prediction’, IEEE Transactions on

Intelligent Transportation Systems 99, 1–11.

Mahmassani, H., Haas, C., Zhou, S. & Peterman, J. (1998), ‘Evaluation of inci-

dent detection methodologies’, Work .

URL: https:// www.researchgate.net/ publication/ 237786152 Evaluation of

Incident Detection Methodologies

Michau, G., Nantes, A., Chung, E., Abry, P. & Borgnat, P. (2014), ‘Retrieving

dynamic origin-destination matrices from Bluetooth data’.

URL: http:// eprints.qut.edu.au/ 66511/ 1/ Michau et al 2014 Retrieving

Dynamic Origin-Destination Matrices from Bluetooth Data.pdf

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5766752
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5766752
http://ejlt.org/article/view/14
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6894591
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6894591
https://www.researchgate.net/publication/237786152_Evaluation_of_Incident_Detection_Methodologies
https://www.researchgate.net/publication/237786152_Evaluation_of_Incident_Detection_Methodologies
http://eprints.qut.edu.au/66511/1/Michau_et_al_2014_Retrieving_Dynamic_Origin-Destination_Matrices_from_Bluetooth_Data.pdf
http://eprints.qut.edu.au/66511/1/Michau_et_al_2014_Retrieving_Dynamic_Origin-Destination_Matrices_from_Bluetooth_Data.pdf

BIBLIOGRAPHY 159

MongoDB (2018), ‘BSON Types — MongoDB Manual 3.6’.

URL: https:// docs.mongodb.com/ manual/ reference/ bson-types/

Mountcastle, V. (1997), ‘The columnar organization of the neocortex’, Brain

120(4), 701–722.

URL: http:// brain.oxfordjournals.org/ content/ 120/ 4/ 701.short

Nellore, K. & Hancke, G. P. (2016), ‘A survey on urban traffic management

system using wireless sensor networks’, Sensors 16(2).

URL: https:// www.mdpi.com/ 1424-8220/ 16/ 2/ 157

Norley, K. (2011), Urban rail infrastructure – the path from comprehensive trans-

port plans to the recent experience, in ‘Australasian Transport Research Forum

(ATRF), 34th, 2011, Adelaide, South Australia, Australia’, p. 15.

URL: http:// www.worldtransitresearch.info/ research/ 4352

Oh, K.-S. & Jung, K. (2004), ‘GPU implementation of neural networks’, Pattern

Recognition 37(6), 1311–1314.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

S0031320304000524

Olah, C. (2015), ‘Understanding LSTM Networks – colah’s blog’.

URL: http:// colah.github.io/ posts/ 2015-08-Understanding-LSTMs/

OpenCV (2015), ‘Open Source Computer Vision Library’, https://github.com/

opencv/opencv.

Pack, M. L., Ivanov, N., Bauer, J. & Birriel, E. (n.d.), ‘Considerations of Current

and Emerging Transportation Management Center Data’.

URL: https:// rosap.ntl.bts.gov/ view/ dot/ 43582

Parkany, E. & Hall, M. (2005), ‘A Complete Review of Incident Detection Algo-

rithms & Their Deployment : What Works and What Doesn’t’, (00).

Payne, H. J. & Tignor, S. C. (1978), ‘Freeway incident-detection algorithms based

on decision trees with states’, Transportation Research Record (682).

Persaud, B. N., Hall, F. L. & Hall, L. M. (1990), ‘CONGESTION IDENTIFICA-

TION ASPECTS OF THE MCMASTER INCIDENT DETECTION ALGO-

RITHM’, Transportation Research Record (1287).

URL: https:// trid.trb.org/ view.aspx? id=352877

Peterman, J. (1999), ‘Calibration and evaluation of automatic incident detection

algorithms’, University of Texas, Austin, TX. Master’s Thesis .

Pokrajac, D., Lazarevic, a. & Latecki, L. (2007), ‘Incremental Local Outlier

Detection for Data Streams’, 2007 IEEE Symposium on Computational

Intelligence and Data Mining (Cidm), 504–515.

https://docs.mongodb.com/manual/reference/bson-types/
http://brain.oxfordjournals.org/content/120/4/701.short
https://www.mdpi.com/1424-8220/16/2/157
http://www.worldtransitresearch.info/research/4352
https://www.sciencedirect.com/science/article/pii/S0031320304000524
https://www.sciencedirect.com/science/article/pii/S0031320304000524
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://rosap.ntl.bts.gov/view/dot/43582
https://trid.trb.org/view.aspx?id=352877

BIBLIOGRAPHY 160

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

4221341

Rabiner, L. R. (1989), ‘A tutorial on hidden Markov models and selected appli-

cations in speech recognition’, Proceedings of the IEEE 77(2), 257–286.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Le, Q. V. & Kurakin,

A. (2017), ‘Large-Scale Evolution of Image Classifiers’, CoRR abs/1703.0.

URL: http:// arxiv.org/ abs/ 1703.01041

Rizzo, R., Fiannaca, A., La Rosa, M. & Urso, A. (2016), Classification Experi-

ments of DNA Sequences by Using a Deep Neural Network and Chaos Game

Representation, in ‘Proceedings of the 17th International Conference on Com-

puter Systems and Technologies 2016’, CompSysTech ’16, ACM, New York,

NY, USA, pp. 222–228.

URL: http:// doi.acm.org/ 10.1145/ 2983468.2983489

Robinson, S. & Polak, J. W. (2006), Inductive Loop Detector Data Cleaning

Treatments and Their Effect on Performance of Urban Link Travel Time Mod-

els, in ‘Transportation Research Board 85th Annual Meeting’.

URL: http:// trid.trb.org/ view.aspx? id=776647

RTANSW (2004), ‘SCATS 6.4.1 Operating Instructions’.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986), ‘Learning representa-

tions by back-propagating errors’, Nature 323(6088), 533–536.

URL: http:// www.nature.com/ doifinder/ 10.1038/ 323533a0

Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. (1998), ‘Microbial

gene identification using interpolated Markov models’, Nucleic Acids Research

26(2), 544–548.

URL: https:// dx.doi.org/ 10.1093/ nar/ 26.2.544

Santos, G. (2017), ‘Road transport and CO2 emissions: What are the chal-

lenges?’, Transport Policy 59, 71–74.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

S0967070X17304262

Shahsavari, B. & Abbeel, P. (2015), Short-Term Traffic Forecasting: Modeling

and Learning Spatio-Temporal Relations in Transportation Networks Using

Graph Neural Networks, PhD thesis, University of California, Berkeley.

URL: http:// www.eecs.berkeley.edu/ Pubs/ TechRpts/ 2015/ EECS-2015-243.

html

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k. & Woo, W.-c. (2015),

‘Convolutional LSTM Network: A Machine Learning Approach for Precipita-

tion Nowcasting’.

URL: http:// arxiv.org/ abs/ 1506.04214

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221341
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4221341
http://arxiv.org/abs/1703.01041
http://doi.acm.org/10.1145/2983468.2983489
http://trid.trb.org/view.aspx?id=776647
http://www.nature.com/doifinder/10.1038/323533a0
https://dx.doi.org/10.1093/nar/26.2.544
https://www.sciencedirect.com/science/article/pii/S0967070X17304262
https://www.sciencedirect.com/science/article/pii/S0967070X17304262
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-243.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-243.html
http://arxiv.org/abs/1506.04214

BIBLIOGRAPHY 161

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., de Carvalho, A. C. P.

L. F. & Gama, J. (2013), ‘Data Stream Clustering: A survey’, ACM Computing

Surveys 46(1), 1–31.

URL: http:// dl.acm.org/ citation.cfm?id=2522968.2522981

Simonyan, K. & Zisserman, A. (2014), ‘Very deep convolutional networks for

large-scale image recognition’, arXiv preprint arXiv:1409.1556 .

Šingliar, T. & Hauskrecht, M. (2010), ‘Learning to detect incidents from noisily

labeled data’, Machine Learning 79(3), 335–354.

Smarter and more connected: Future intelligent transportation system (2018),

IATSS Research 42(2), 67 – 71.

Smith, B. L. & Demetsky, M. J. (1994), ‘SHORT-TERM TRAFFIC FLOW PRE-

DICTION: NEURAL NETWORK APPROACH’, Transportation Research

Record (1453).

URL: http:// trid.trb.org/ view.aspx? id=424677

Smith, R. (2007), An Overview of the Tesseract OCR Engine, in ‘Proc. Ninth Int.

Conference on Document Analysis and Recognition (ICDAR)’, pp. 629–633.

URL: https:// research.google.com/ pubs/ pub33418.html

Stathopoulos, A. & Karlaftis, M. (2001), ‘Temporal and Spatial Variations

of Real-Time Traffic Data in Urban Areas’, Transportation Research Record

1768(16), 135–140.

Stathopoulos, A. & Karlaftis, M. G. (2003), ‘A multivariate state space approach

for urban traffic flow modeling and prediction’, Transportation Research Part

C: Emerging Technologies 11(2), 121–135.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

S0968090X03000044

Stephanedes, Y. J. & Chassiakos, A. P. (n.d.), ‘Application of Filtering Tech-

niques for Incident Detection’, Journal of Transportation Engineering (1), 13–

26.

URL: https:// www.researchgate.net/ publication/ 245306239 Application of

Filtering Techniques for Incident Detection

Stephanedes, Y. J., Chassiakos, A. P. & Michalopoulos, P. G. (1992), ‘COM-

PARATIVE PERFORMANCE EVALUATION OF INCIDENT DETECTION

ALGORITHMS’, Transportation Research Record (1360).

URL: http:// trid.trb.org/ view.aspx? id=370955

Stephanedes, Y. J. & Hourdakis, J. (1996), ‘Transferability of freeway incident

detection algorithms’, Transportation Research Record: Journal of the Trans-

portation Research Board 1554(1), 184–195.

http://dl.acm.org/citation.cfm?id=2522968.2522981
http://trid.trb.org/view.aspx?id=424677
https://research.google.com/pubs/pub33418.html
https://www.sciencedirect.com/science/article/pii/S0968090X03000044
https://www.sciencedirect.com/science/article/pii/S0968090X03000044
https://www.researchgate.net/publication/245306239_Application_of_Filtering_Techniques_for_Incident_Detection
https://www.researchgate.net/publication/245306239_Application_of_Filtering_Techniques_for_Incident_Detection
http://trid.trb.org/view.aspx?id=370955

BIBLIOGRAPHY 162

Stratford, K. & Cowling, A. (2016), Chinese Household Income, Consumption

and Savings, Technical report, Reserve Bank of Asutralia.

URL: https:// www.rba.gov.au/ publications/ bulletin/ 2016/ sep/ 4.html

Subramaniam, S. (1991), ‘Literature review of incident detection algorithms to

initiative diversion strategies’, University Center of Transportation Research,

Virginia Polytechnic Institute and State University, Blacksburg, VA, Tech. Rep

.

Sussman, J. S. (2008), Perspectives on intelligent transportation systems (ITS),

Springer Science & Business Media.

Suzuki, K. & Jansson, H. (2003), ‘An analysis of driver’s steering behaviour

during auditory or haptic warnings for the designing of lane departure warning

system’, JSAE review 24(1), 65–70.

Suzuki, S. & Be, K. (1985), ‘Topological structural analysis of digitized binary

images by border following’, Computer Vision, Graphics, and Image Processing

30(1), 32–46.

URL: http:// linkinghub.elsevier.com/ retrieve/ pii/ 0734189X85900167

Tan, H., Xuan, X., Wu, Y., Zhong, Z. & Ran, B. (2016), A Comparison of Traffic

Flow Prediction Methods Based on DBN, in ‘CICTP 2016’, American Society

of Civil Engineers, Reston, VA, pp. 273–283.

URL: http:// ascelibrary.org/ doi/ 10.1061/ 9780784479896.026

Taylor, M. (2019), ‘htm-community/htm-school-viz: Visualizations supporting

HTM School’.

URL: https:// github.com/ htm-community/ htm-school-viz

Taylor, M., Breznak, Surpur, C., Purdy, S., Marshall, A., Ragazzi, D., Ahmad,

S., Numenta-ci, Akhila, Weinberger, P., Crowder, R., Simons, C., Vitaly-krugl,

McCall, R. J., Lavin, A., Eric, M., Keithcom, Song, U., Yuwei, Borgne, M. L.,

Bolliger, S., Bridgewater, J., Danforth, I., Weiss, J., Tomsilver, Ray, D., Kam-

lani, A., Erasmo, H., Gilsho & Blas, E. (2016), ‘nupic: 0.5.0’.

URL: https:// doi.org/ 10.5281/ zenodo.46074

Terry, T. N. & Tanner, S. (2018), ‘Problematic Roadway Environments for Au-

tomated Vehicles’.

Thogulava, H., Antonovs, V., Bingham, S., Hill, M. & Hanchett, K. (2015), De-

veloping Origin-destination Matrices Using Bluetooth Data for Strategic Trans-

port Models- Worcester Case Study, in ‘European Transport Conference 2015’.

URL: https:// trid.trb.org/ view.aspx? id=1371977

Thomas, N. (1998), ‘Multi-state and multi-sensor incident detection systems

for arterial streets’, Transportation Research Part C: Emerging Technologies

https://www.rba.gov.au/publications/bulletin/2016/sep/4.html
http://linkinghub.elsevier.com/retrieve/pii/0734189X85900167
http://ascelibrary.org/doi/10.1061/9780784479896.026
https://github.com/htm-community/htm-school-viz
https://doi.org/10.5281/zenodo.46074
https://trid.trb.org/view.aspx?id=1371977

BIBLIOGRAPHY 163

6(5-6), 337–357.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X99000030

Tian, X., Zhang, J., Ma, Z., He, Y., Wei, J., Wu, P., Situ, W., Li, S. & Zhang, Y.

(2017), ‘Deep LSTM for Large Vocabulary Continuous Speech Recognition’.

URL: http:// arxiv.org/ abs/ 1703.07090

Tian, Y. & Pan, L. (2015), Predicting Short-Term Traffic Flow by Long

Short-Term Memory Recurrent Neural Network, in ‘2015 IEEE International

Conference on Smart City/SocialCom/SustainCom (SmartCity)’, IEEE,

pp. 153–158.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

7463717

Toroyan, T. (2015), Global Status Report on Road Safety 2015, Technical report,

World Health Organisation.

Toroyan, T. (2018), Global Status Report on Road Safety 2018, Technical report,

World Health Orgnanisation.

United Nations (2017), World Population Prospects The 2017 Revision, Technical

report, United Nations.

Viswanathan, M., Lee, S. H. & Yang, Y. K. (2006), Neuro-fuzzy Learning for

Automated Incident Detection, in M. Ali & R. Dapoigny, eds, ‘Advances in

Applied Artificial Intelligence SE - 95’, Vol. 4031 of Lecture Notes in Computer

Science, Springer Berlin Heidelberg, pp. 889–897.

URL: http:// dx.doi.org/ 10.1007/ 11779568 95

Vlahogianni, E. I., Karlaftis, M. G. & Golias, J. C. (2005), ‘Optimized and

meta-optimized neural networks for short-term traffic flow prediction: A

genetic approach’, Transportation Research Part C: Emerging Technologies

13(3), 211–234.

URL: https:// www.sciencedirect.com/ science/ article/ pii/

S0968090X05000276

Vogiatzis, N., Zito, R. & Stazic, B. (2009), Initial DTEI-SCATS Signalling Sys-

tem Log Reports, Technical report, University of South Australia Institute for

Sustainable Systems and Technologies – Transport Systems, Adelaide.

Weil, R., Wootton, J. & Garćıa-Ortiz, a. (1998), ‘Traffic incident detection:

Sensors and algorithms’, Mathematical and Computer Modelling 27(9-11), 257–

291.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0895717798000648

http://www.sciencedirect.com/science/article/pii/S0968090X99000030
http://www.sciencedirect.com/science/article/pii/S0968090X99000030
http://arxiv.org/abs/1703.07090
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7463717
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7463717
http://dx.doi.org/10.1007/11779568_95
https://www.sciencedirect.com/science/article/pii/S0968090X05000276
https://www.sciencedirect.com/science/article/pii/S0968090X05000276
http://www.sciencedirect.com/science/article/pii/S0895717798000648
http://www.sciencedirect.com/science/article/pii/S0895717798000648

BIBLIOGRAPHY 164

Wibisono, A., Jatmiko, W., Wisesa, H. A., Hardjono, B. & Mursanto, P. (2016),

‘Traffic big data prediction and visualization using Fast Incremental Model

Trees-Drift Detection (FIMT-DD)’, Knowledge-Based Systems 93, 33–46.

Williams, A. H., O’Leary, T. & Marder, E. (2013), ‘Homeostatic Regulation of

Neuronal Excitability’, 8(1), 1656.

Xie, F. & Levinson, D. (2007), ‘Measuring the Structure of Road Networks’,

Geographical Analysis 39(3), 336–356.

URL: https:// doi.org/ 10.1111/ j.1538-4632.2007.00707.x

Yan, X. & Han, J. (2003), ‘CloseGraph’, Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining - KDD ’03

6, 286.

URL: https:// dl.acm.org/ doi/ 10.1145/ 956750.956784

Yuan, F. & Cheu, R. L. (2003), ‘Incident detection using support vector

machines’, Transportation Research Part C: Emerging Technologies 11(3-

4), 309–328.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X03000202

Zhang, C., Zhu, L., Ni, J., Huang, C. & Shen, X. (2020), ‘Verifiable and privacy-

preserving traffic flow statistics for advanced traffic management systems’,

IEEE Transactions on Vehicular Technology pp. 1–1.

Zhang, K. (2005), UNIVERSAL INCIDENT DETECTION : A BAYESIAN

NETWORK APPROACH, PhD thesis, University of South Australia.

Zhang, K. & Taylor, M. A. (2006), ‘Effective arterial road incident detection: A

Bayesian network based algorithm’, Transportation Research Part C: Emerging

Technologies 14(6), 403–417.

URL: http:// www.sciencedirect.com/ science/ article/ pii/

S0968090X0600088X

Zhang, K., Vogiatzis, N. & Taylor, M. A. P. (2007), A new design for an intelli-

gent event-responsive urban traffic management system, in ‘30th Australasian

Transport Research Forum’, Victorian Department of Infrastructure and Bu-

reau of Transprot and Regional Economics.

Zhang, M. (2016), ‘Real-time Traffic Flow Prediction using Augmented Reality’,

Electronic Theses and Dissertations .

URL: http:// scholar.uwindsor.ca/ etd/ 5687

Zhang, T., Ramakrishnan, R. & Livny, M. (1996), ‘BIRCH: An Efficient Data

Clustering Method for Very Large Databases’, SIGMOD Rec. 25(2), 103–114.

URL: http:// doi.acm.org/ 10.1145/ 235968.233324

https://doi.org/10.1111/j.1538-4632.2007.00707.x
https://dl.acm.org/doi/10.1145/956750.956784
http://www.sciencedirect.com/science/article/pii/S0968090X03000202
http://www.sciencedirect.com/science/article/pii/S0968090X03000202
http://www.sciencedirect.com/science/article/pii/S0968090X0600088X
http://www.sciencedirect.com/science/article/pii/S0968090X0600088X
http://scholar.uwindsor.ca/etd/5687
http://doi.acm.org/10.1145/235968.233324

BIBLIOGRAPHY 165

Zhang, Y., Meratnia, N. & Havinga, P. (2010), ‘Outlier Detection Techniques

for Wireless Sensor Networks: A Survey’, IEEE Communications Surveys &

Tutorials 12(2), 1–12.

Zhang, Z. (2018), Artificial Neural Network, in Z. Zhang, ed., ‘Multivariate Time

Series Analysis in Climate and Environmental Research’, Springer International

Publishing, Cham, pp. 1–35.

URL: http:// link.springer.com/ 10.1007/ 978-3-319-67340-0 1

Zheng, S. (2018), ‘China now has over 300 million vehicles’.

URL: https:// www.scmp.com/ news/ china/ economy/ article/ 2088876/

chinas-more-300-million-vehicles-drive-pollution-congestion

Zhou, Y., Chen, S., Mo, Z. & Yin, Y. (2013), Privacy preserving origin-

destination flow measurement in vehicular cyber-physical systems, in ‘2013

IEEE 1st International Conference on Cyber-Physical Systems, Networks, and

Applications (CPSNA)’, IEEE, pp. 32–37.

URL: http:// ieeexplore.ieee.org/ lpdocs/ epic03/ wrapper.htm?arnumber=

6614243

Zoph, B. & Le, Q. V. (2016), ‘Neural Architecture Search with Reinforcement

Learning’.

URL: http:// arxiv.org/ abs/ 1611.01578

http://link.springer.com/10.1007/978-3-319-67340-0_1
https://www.scmp.com/news/china/economy/article/2088876/chinas-more-300-million-vehicles-drive-pollution-congestion
https://www.scmp.com/news/china/economy/article/2088876/chinas-more-300-million-vehicles-drive-pollution-congestion
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6614243
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6614243
http://arxiv.org/abs/1611.01578

	Abstract
	Certification
	Acknowledgements
	Introduction
	Intelligent Transportation Systems
	Motivation
	Function
	Advanced Transportation Management Systems
	Research Issues in ATMS
	Challenges Posed by ATMS Data

	Research Impact
	Thesis Organisation
	Note About Notation

	Data Sources
	Data Storage
	SCATS Data
	LX Data
	Strategic Monitor Data
	Volume Store Data

	Traffic Signal Location Data
	SCATS Diagrams and Turning Movements
	Extracting Sensors with Template Matching
	Extracting Sensors with Contour Detection and Optical Character Recognition
	Algorithms Used

	DPTI Accident Data
	Conclusion

	Hierarchical Temporal Memory
	HTM Model
	Sparse Distributed Representations
	Spatial Pooler
	Temporal Memory

	Applications of HTM
	Making Predictions
	Anomaly Detection

	Conclusion

	HTM and LSTM For Aggregated Traffic Prediction in CBD Locations
	Background
	Related Work

	Long Short-Term Memory
	Definition
	LSTM Architecture

	Methodology
	Performance Measures
	HTM
	LSTM
	Batch Learning (LSTM-Batch)
	Online Learning (LSTM-Online)

	Results
	Datasets
	Analysis

	Conclusion

	Predicting Next Phase and Aggregated Traffic Flows in Urban Areas
	Introduction
	Hyperparameter Optimisation
	Methodology
	Dataset
	HTM and LSTM
	SARIMA
	Markov Model

	Results
	Conclusion
	Future Work

	Arterial Incident Detection via Anomalies
	Background
	Automated Incident Detection for Arterial Road Networks
	Stream Mining
	Stream Mining for Outliers

	Stream Outliers for Incident Detection
	Dataset
	Method
	Interface

	Results
	Conclusion
	Future Work

	Conclusions and Future Work
	Short Term Arterial Traffic Prediction
	Anomalies for Incident Detection
	Final Remarks

	Publications, Awards and Software Produced
	Publications
	Awards
	Software Projects

	Accident Data
	HTM and LSTM Performance Comparison for Traffic Prediction on TS3044
	Hyperparameter Search Space for TS115
	Markov Models

	Incident Detection
	Bibliography

