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Abstract

This thesis examines a method for estimating the daytime fluxes of heat, water
vapour and carbon dioxide at regional scales by using ssmple models to combine
spatialy resolved surface properties with bulk meteorological quantities measured at
acentral location. The central themes of this thesis are that the spatial and temporal
variability of regional scale fluxes are contained in the surface properties and
meteorology respectively and that the surface properties can be interpolated across a
heterogeneous landscape using remotely sensed data. The regional scale fluxes
estimated using this technique are compared to the values from three other methods
and this allows some conclusions to be made regarding the relative strengths and
weaknesses of each method. The surface property approach yields robust estimates
of the fluxes that will be useful in researching exchange processes at regional scales,
providing input parameters for, and validation of, the biosphere components of
Genera Circulation Models and testing inventory estimates of CO, budgets.

The surface properties are derived using data from 33 aircraft flights and eight
ground-based sites along a 96 km transect established during the 1995 Observations
At Severa Interacting Scales experiment held near Wagga Wagga, New South
Wales, Australia. Surface properties examined are the evaporative fraction (ratio of
evapotranspiration to available energy), the Bowen ratio (ratio of sensible heat flux
to evapotranspiration), the maximum stomatal conductance (maximum stomatal
opening under optimal conditions) and the water-use efficiency (ratio of CO; flux to
evapotranspiration). Maximum stomatal conductance is calculated using a simple
model of the stomatal response to light and water vapour deficit assuming soil
evaporation occurs at the equilibrium rate. The diurna trend and day-to-day
variability in the surface properties is found to be significantly less than the spatial
variability. All of the surface properties examined show some sensitivity to the

synoptic conditions.

The relationships between the surface properties and the Normalised Difference
Vegetation Index (NDVI ) are examined using a 130 km by 50 km sub-scene from a
Landsat 5 Thematic Mapper (TM) image obtained five days before the start of the

Xiv



experiment period. The ground-based and aircraft observations are used to calculate
the source-area influencing each measurement and this is combined with the Landsat
5 TM data to produce an average, source-area weighted NDVI for each ground-
based site and each aircraft location. The source-area model is important because it
provides the link between the observations and the remotely sensed data by
identifying the surface patch that influences the measurements. Linear relationships
are found between the source-area weighted NDVI and the surface properties. The
observed relationships are used to interpolate the surface properties over the region
covered by the satellite image and spatial variations in water loss and CO, uptake by
the surface vegetation are identified that are not resolved by the ground-based

network.

Analysis of the ground-based data showed that the spatial variability of the bulk
meteorological quantities used in the surface property approach was much less than
the diurnal trend in these data. With the small temporal variation in the surface
properties noted before, this confirms the utility of assigning the spatial and temporal
variability of the fluxes to the surface properties and the meteorol ogy respectively.

The combination of surface properties derived from the aircraft data and
meteorology measured at a single location at the centre of the transect shows good
skill in predicting the observed fluxes. Furthermore, the discrepancies between the
predictions and the observations are explained by the different source-areas of the
aircraft and ground-based data and much of the bias is removed when the surface
properties are scaled from the NDVI of the aircraft source-area to the NDVI of the
ground-based sites. Regional scale fluxes of heat and water vapour cal culated using
the surface property approach agree with averages of the ground-based data and this
indicates that the ground-based network was representative of the OASIS region.
Estimates of regiona scale CO, fluxes are not available from the ground-based
network due to the lack of measurements at the driest ground-based site but the
surface property approach yields plausible values. The results demonstrate the utility
of extrapolating surface properties across heterogeneous landscapes using remotely
sensed data.
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