Estimating Surface-Atmosphere Exchange at Regional Scales

A thesis presented for the degree of Doctor of Philosophy by

Peter Robert Isaac

School of Chemistry, Physics and Earth Sciences Faculty of Science and Engineering The Flinders University of South Australia

September 2004

Table of Contents

Table	of Contents	ii
List of	f Figures	iv
List of	f Tables	vi
List of	f Symbols	viii
Abstra	ict	xiv
Staten	nent	xvi
Ackno	owledgments	xvii
Chapter	1 : General Introduction	
1 1		3
1.1	General Concepts and Topics	
1.2	Thesis Hypothesis	2.5
1.4	Thesis Outline	
Chapter	2 : The OASIS Experiments	
2 1	Introduction	31
2.1	Overview of OASIS	
2.2	Description of the Ground-based Sites	
2.3 2 4	Description of the Aircraft Programme	
2.4	Description of Remote Sensing Data	
2.6	Meteorology of the 1995 OASIS Experiment	
2.7	Concluding Remarks	
Chapter	3 : Aircraft Instrumentation and Calibration	65
3.1	Introduction	67
3.1 3.2	Introduction	67
3.1 3.2 3.3	Introduction Aircraft, Instrumentation and Data Description of Instrumentation	67 69 73
3.1 3.2 3.3 3.4	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results	
3.1 3.2 3.3 3.4 3.5	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results	
3.1 3.2 3.3 3.4 3.5 3.6	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration	
3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4 1	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3 4.4	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons Discussion of Systematic Errors.	
$3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 3.5 \\ 3.6 \\ 3.7 \\ 3.8 \\ Chapter \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ $	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons Discussion of Systematic Errors Summary and Conclusions	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3 4.4 4.5 Chapter	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Nown Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons Discussion of Systematic Errors Summary and Conclusions 5 : Surface-atmosphere Exchange Parameters from Aircraft an	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3 4.4 4.5 Chapter	 Introduction	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3 4.4 4.5 Chapter 5.1	 Introduction	
$3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 3.5 \\ 3.6 \\ 3.7 \\ 3.8 \\ Chapter \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ Chapter \\ 5.1 \\ 5.2 \\ $	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Dynamic Calibration: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons. Discussion of Systematic Errors Summary and Conclusions 5 : Surface-atmosphere Exchange Parameters from Aircraft an based Observations Introduction Introduction Simple Ratios	
$3.1 \\ 3.2 \\ 3.3 \\ 3.4 \\ 3.5 \\ 3.6 \\ 3.7 \\ 3.8 \\ Chapter \\ 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \\ Chapter \\ 5.1 \\ 5.2 \\ 5.3 \\ $	Introduction Aircraft, Instrumentation and Data Description of Instrumentation Static Calibrations: Methods and Results Optimisation of the Wind Measurement Calibration Known Instrumentation Problems Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons Discussion of Systematic Errors Summary and Conclusions 5 : Surface-atmosphere Exchange Parameters from Aircraft an based Observations Introduction Introduction Simple Ratios Maximum Stomatal Conductance	
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Chapter 4.1 4.2 4.3 4.4 4.5 Chapter 5.1 5.2 5.3 5.4	Introduction Aircraft, Instrumentation and Data. Description of Instrumentation Static Calibrations: Methods and Results. Dynamic Calibration: Methods and Results. Optimisation of the Wind Measurement Calibration Known Instrumentation Problems. Summary and Concluding Remarks 4 : Comparison of Aircraft and Ground-based Data Introduction Data and Techniques Results of Comparisons. Discussion of Systematic Errors. Summary and Conclusions 5 : Surface-atmosphere Exchange Parameters from Aircraft an based Observations Introduction Simple Ratios Maximum Stomatal Conductance Results	

Chapter	6: Relating Surface-atmosphere Exchange to Remotely Sens	sed Quantities. 203
6.1	Introduction	
6.2	Remotely Sensed Data	
6.3	Description of the Source-area Model	
6.4	Source-area Weighted NDVI	
6.5	Surface Properties and NDVI	
6.6	Summary and Conclusions	
6.7	Appendix: Source-area Model	
Chapter	7 : Estimation of Regional-scale Fluxes of Heat, Water Vapo	ur and Carbon
	Dioxide	
7.1	Introduction	
7.2	Models for Estimating Regional Fluxes	
7.3	Spatial Variability of Meteorological Quantities	
7.4	Results	
7.5	Summary and Conclusions	
Chapter	8 : Summary and Concluding Remarks	
8.1	Preamble	
8.2	Summary of Major Points	
8.3	Hypothesis Revisited	
8.4	Concluding Remarks	
Referen	ces	

List of Figures

Chapter 1 : General Introduction	1
Figure 1.1 Length and time scales in the atmosphere and biosphere.	9
Chapter 2 : The OASIS Experiments	29
Figure 2.1 Location of the OASIS experiments.	39
Figure 2.2 NDVI image of The Wattles property.	48
Figure 2.3 Schematic of the Browning site.	49
Figure 2.4 The OASIS experiment domain.	51
Figure 2.5 Annual total rainfall and monthly average rainfall.	
Figure 2.6 Cumulative rainfall during October 1995.	57
Figure 2.7 Daily average and diurnal cycle of meteorology during 1995 OASIS	
Figure 2.8 Aircraft observations for the OASIS transect in 1994 and 1995.	01
Chapter 3 : Aircraft Instrumentation and Calibration	65
Figure 3.1 Dynamic pressure correction versus measured dynamic pressure	97
Figure 3.2 Angle of attack and sideslip calibrations.	99
Figure 3.3 Spectra of the horizontal wind speed at 6 m.	108
Figure 3.4 p_s and τ for the low-level runs on 19 October 1995	109
Figure 3.5 τ , filtered p_s , $f_{est}(p_s)$ and p_s for the runs on 19 October 1995	
Figure 3.6 Aircraft and ground based measurements σ_q , F_E , σ_T and F_H	113
Figure 3.7 Photograph of the reverse flow sensor in the wind tunnel	114
Figure 3.8 Temperature measured by the <i>PT100</i> element and reverse flow sensor	116
Figure 3.9 10 second segment of the wind tunnel run	
Figure 3.10 Time series, spectra and cospectra of q , T_{aRF} (cor) and T_{aRF} (mod)	119
Figure 3.11 Spectra and cospectra of q and CO ₂ from the NOAA IRGA and the	
LICOR 6251	122
Figure 3.12 Spectra and cospectra of q and filtered q from the NOAA IRGA and	
CO ₂ from the LICOR 6251	124
Figure 3.13 Cospectra and phase spectra of wT and wq at 6, 20 and 50 m	126
Chapter 4 : Comparison of Aircraft and Ground-based Data	129
Figure 4.1 Spectra of θ and q for the low-level flights.	139
Figure 4.2 Comparison of aircraft and ground-based data at the Wattles site	143
Figure 4.3 Comparison of aircraft and ground-based data for the grid flights	145
Figure 4.4 Comparison of aircraft and ground-based data for the transect flights	147
Figure 4.5 Comparison of the aircraft and ground-based measurements of the SEB	150

Chapter 5 : Surface-atmosphere Exchange Parameters from Aircraft and Ground-based Observations
Figure 5.1 Observed and modelled G_s for the Browning crop and pasture sites
Figure 5.2 Diurnal variation of S_{\downarrow} , D and G_s at the Browning sites
Figure 5.3 Diurnal variation of F_A , F_E , F_C , α_E , g_{rr} , β and W_{UE} at Browning 190
Figure 5.4 Diurnal variation of $\alpha_{\rm E}$, $g_{\rm err}$, β and $W_{\rm ur}$ at the crop and pasture sites 191
Figure 5.5 Daily values of $\alpha_{\rm E}$, $g_{\rm er}$, β and $W_{\rm er}$ at Wagga, Browning and Urana 194
Figure 5.6 Contour maps of $\alpha_{\rm E}$, g , β and $W_{\rm ur}$ over the grid area,
Figure 5.7 Variation of $\alpha_{\rm E}$, g_{sx} , β and W_{UE} along the OASIS transect
Chapter 6 : Relating Surface-atmosphere Exchange to Remotely Sensed Quantities
Figure 6.1 <i>NDVI</i> image for the OASIS domain on 8 October 1995
Figure 6.2 Histogram of NDVI values for the OASIS domain
Figure 6.3 Cross-wind integrated source-area weight function for 4.5 m and 20 m 214
Figure 6.4 Isopleths of 80%, 50% and 20% contribution to the flux measured at 4.5 m and 20 m
Figure 6.5 Schematic of method for calculating the source-area weighted <i>NDVI</i>
Figure 6.6 NDVL images of Wagga Browning and Urana showing source areas 210
Figure 6.7 NDVI images showing source-area of aircraft data and contours of source-
area weighted <i>NDVI</i> for the grid area during October 1995
Figure 6.8 <i>NDVI</i> image showing source-area of aircraft data and plot of source-area
weighted NDVI for the transect ground-based and aircraft data
Figure 6.9 $\alpha_{\rm E}$, $g_{\rm sx}$, β and $W_{\rm UE}$ as functions of the source-area weighted NDVI for
the ground-based sites
Figure 6.10 $\alpha_{\rm E}$, $g_{\rm sx}$, β and $W_{\rm UE}$ as functions of the source-area weighted NDVI
for the aircraft and ground-based sites
Figure 6.11 Contours of $\alpha_{\rm E}$, $g_{\rm sx}$, β and $W_{\rm UE}$ for the OASIS domain
Figure 6.12 3-D plot of source-area weight function for 4.5 m and 20 m
Chapter 7 : Estimation of Regional-scale Fluxes of Heat, Water Vapour and Carbon Dioxide
Eigune 7.1 Completion of meteorological quantities with distance 254
Figure 7.2 Spatial variation of fluxes during October 1995
Figure 7.3 Spatial variation of bulk meteorological quantities during October 1995 257
Figure 7.4 Diurnal trend in and daily averages of the observed and modelled fluxes for
Figure 7.5 Diurnal trend in and daily averages of the observed and modelled fluxes for
the OASIS transect
Figure 7.6 Daily averages of the observed and modelled fluxes at Wagga, Browning and Urana
Figure 7.7 Daily averages of the observed fluxes and the fluxes predicted by the
coupled g_{sx} -PM model, the ICBL technique and DARLAM/SCAM

List of Tables

Chapter 2 : The OASIS Experiments	29
Table 2.1 Location, leaf area index and canopy height for the ground-based sites	
Table 2.2 Number and height of aircraft grid flights	50
Table 2.3 Pass details for the Landsat 5 TM image	53
Table 2.4 Wavelengths of the 7 bands in the Landsat 5 TM image.	53
Table 2.5 Rainfall for Wagga Wagga, Lockhart and Urana.	56
Chapter 3 : Aircraft Instrumentation and Calibration	65
Table 3.1 Details of the Grob G109B aircraft VH-HNK.	69
Table 3.2 Meteorological instruments on HNK during OASIS	70
Table 3.3 Aerological instruments on HNK during OASIS.	70
Table 3.4 Effect of uncertainties in the data logger calibration offset.	79
Table 3.5 Estimates of the recovery factor at different airspeeds	95
Table 3.6 Estimates of static pressure correction at different airspeeds	96
Table 3.7 Estimates of the dynamic pressure correction at different airspeeds	97
Table 3.8 Calibration coefficients derived from 9 October 1996 flight.	99
Table 3.9 Phase differences between AHS-85 and GPS pitch, roll and yaw	.101
Table 3.10 Phase differences between AHS-85 and GPS velocity components	.101
Table 3.11 Phase differences between analogue data and AHS-85 attitude rates	103
Table 3.12 Optimised values for the dynamic pressure correction derived from data	
for low-level runs during the 1995 OASIS experiment	.106
Chapter 4 : Comparison of Aircraft and Ground-based Data	129
Table 4.1 Integral length scales and correlation coefficients for vertical velocity,	
horizontal wind speed, temperature and specific humidity	
Table 4.2 Statistics for comparison of aircraft and ground-based observations at the	
Wattles site.	
Table 4.3 Statistics for the comparison of aircraft and ground-based observations for	
the grid flights.	
Table 4.4 Statistics for the comparison of aircraft and ground-based observations for	
the transect flights.	
Table 4.5 Statistics for the surface energy budget closure for the aircraft and ground-	
based data	150
Table 4.6 Source-area dimensions for ground-based and aircraft observations	156
Table 4.7 Statistics for comparison of aircraft and ground-based observations of F_H	
and F_E after correction for the effect of surface heterogeneity	.158
Chapter 5 · Surface-atmosphere Exchange Parameters from Aircraft and Cround-	
based Observations	
Table 5.1 Values of α , β , α , and W for the ground-based sites	188
μ_{E} in μ_{E}	.100

Chapter 6 : Relating Surface-atmosphere Exchange to Remotely Sensed Quantities.	203
Table 6.1 Calibration data for Landsat 5 Thematic Mapper	209
Table 6.2 Source-area weighted NDVI values for the ground-based sites	220
Table 6.3 Statistics for the linear best fit between the surface properties and NDVI at the ground-based sites.	t 224
Table 6.4 Statistics for the linear best fit between the surface properties and NDVI for the ground-based and aircraft data.	228
Chapter 7 : Estimation of Regional-scale Fluxes of Heat, Water Vapour and Carbon Dioxide	n 243
Table 7.1 Statistics for comparison of observed and modelled daily averages of F_E ,	
F_H and F_C for the grid area	259
Table 7.2 Statistics for comparison of observed and modelled daily averages of F_E ,	
F_H and F_C for the transect sites	262
Table 7.3 Surface properties and NDVI derived from the aircraft and ground-based data at Wagga, Browning and Urana.	266
Table 7.4 Statistics for comparison of daily averages of the observed fluxes and the	
fluxes predicted by the coupled g_{sx} -PM model, the ICBL technique and	
DARLAM/SCAM.	269
	-07

List of Symbols

Symbol	Units	Eq.	Description
а	g m ⁻³	-	absolute humidity
$a_{_{0}}(\lambda)$	-	6.1	Landsat 5 TM calibration offset at λ
$a_1(\lambda)$	-	6.1	Landsat 5 TM calibration slope at λ
Α	-	3.19	PT100 time constant weight
В	-	3.19	reverse flow housing time constant weight
c_A	-	-	extinction coefficient in soil evaporation model
C _p	$J kg^{-1} K^{-1}$	1.1	specific heat at constant pressure
C _v	$J kg^{-1} K^{-1}$	-	specific heat at constant volume
c_Q	-	5.8	short wave radiation extinction coefficient
С	µmol mol ⁻¹	-	CO ₂ concentration
d	m	5.6	displacement height
d	-	6.2	ratio of actual to mean Sun-Earth distance
D	kg kg ⁻¹	5.8	specific humidity deficit
D_0	kg kg ⁻¹	5.8	empirical constant in model for g_{sx}
Ε	$kg m^{-2} s^{-1}$	1.4	evaporation
$E_{s}(\lambda)$	$W m^{-2} \mu m^{-1}$	6.2	solar radiance at wavelength λ
f	Hz	-	frequency
f	-	6.6	3-D source-area weight function
fPAR	-	-	fraction of photosynthetically active radiation absorbed by vegetation
\overline{f}^{y}	-	6.9	cross wind integrated source-area function
F_{A}	$W m^{-2}$	1.2	available energy
F_{C}	mg m ⁻² s ⁻¹	5.3	CO ₂ flux
F_{E}	$W m^{-2}$	1.2	latent heat flux
$F_{E,leaf}$	$W m^{-2}$	1.3	latent heat flux at the leaf surface
F_{H}	$W m^{-2}$	1.1	sensible heat flux

Symbol	Units	Eq.	Description
$F_{H,leaf}$	$W m^{-2}$	1.3	sensible heat flux at the leaf surface
F_{G}	W m ⁻²	1.2	ground heat flux
$F_{_N}$	W m ⁻²	1.2	net radiation
$F_{N,leaf}$	W m ⁻²	1.3	net radiation at the leaf surface
$F_{\scriptscriptstyle P\!A\!R}$	$W m^{-2}$	-	flux of photosynthetically active radiation
F_s	-	4.1	flux of scalar s
8	m s ⁻²	1.1	acceleration due to gravity
g_s	$m s^{-1}$	-	stomatal conductance
g_{sx}	$m s^{-1}$	5.8	maximum stomatal conductance
GPP	tC ha ⁻¹ yr ⁻¹	1.5	gross primary productivity
G_{a}	$m s^{-1}$	5.5	aerodynamic conductance
G_{c}	m s ⁻¹	5.7	canopy conductance
G_{i}	m s ⁻¹	5.5	isothermal conductance
G_{s}	m s ⁻¹	5.5	surface conductance
G_{sx}	m s ⁻¹	-	maximum surface conductance
h_{c}	m	-	canopy height
IAS	m s ⁻¹	-	indicated airspeed
k	-	1.1	von Karman constant
K_p	-	3.3	static pressure correction factor
K_{q}	-	3.2	dynamic pressure correction factor
K_T	-	3.5	temperature correction factor $(1-r)$
K_{α}	-	3.8	angle of attack sensitivity
K_{β}	-	3.9	angle of sideslip sensitivity
L	m	1.1	Monin-Obukhov length
$L(\lambda)$	$Wm^{-2}sr^{-1}\mu m^{-1}$	6.1	spectral radiance at wavelength λ
L_{ai}	-	5.8	leaf area index

Symbol	Units	Eq.	Description
L_d	tC ha ⁻¹ yr ⁻¹	1.7	CO ₂ loss due to biome disturbance
L_{s}	m	4.1	integral length scale for scalar s
$L_{_{ws}}$	m	4.1	integral length scale for ws covariance
L_{\downarrow}	$W m^{-2}$	1.2	incoming long wave radiation
L_{\uparrow}	$W m^{-2}$	1.2	outgoing long wave radiation
n	-	-	non-dimensionalised frequency
NBP	tC ha ⁻¹ yr ⁻¹	1.7	net biome productivity
NDVI	-	-	normalised difference vegetation index
NEP	tC ha ⁻¹ yr ⁻¹	1.6	net ecosystem productivity
р	kg m ⁻² s ⁻¹	1.4	precipitation
p_a	hPa	-	pressure altitude
P_s	hPa	3.3	static pressure
$P_{s,m}$	hPa	3.3	measured static pressure
P_t	hPa	3.13	total pressure
P_{AV}	S	4.1	averaging period
P_{γ}	-	3.4	ratio of static to total pressure
q	kg kg ⁻¹	-	specific humidity
q_{c}	hPa	3.2	dynamic pressure
$q_{c,m}$	hPa	3.2	measured dynamic pressure
q^{*}	kg kg ⁻¹	-	saturation specific humidity deficit
$Q_{_{cal}}(\lambda)$	-	6.1	byte value of pixel radiance at wavelength λ
r	-	-	temperature sensor recovery factor
<i>r</i> _a	s m ⁻¹	5.13	aerodynamic resistance, single observation
r_{c}	-	-	correlation coefficient between w and C
r_d	s m ⁻¹	5.13	deficit resistance, single observation
r _s	s m ⁻¹	-	surface resistance, single observation

Symbol	Units	Eq.	Description
r _{ws}	-	4.1	correlation coefficient between w and s
R_a	tC ha ⁻¹ yr ⁻¹	1.5	autotrophic respiration
R_a	s m ⁻¹	5.14	aerodynamic resistance, average
R_d	s m ⁻¹	5.14	deficit resistance, average
R_h	tC ha ⁻¹ yr ⁻¹	1.6	heterotrophic respiration
R_{s}	s m ⁻¹	-	surface resistance, average
S_{\downarrow}	$W m^{-2}$	1.2	incoming short wave radiation
S_{\uparrow}	$W m^{-2}$	1.2	outgoing short wave radiation
S_{50}	$W m^{-2}$	5.8	empirical constant in model for g_{sx}
SD _{ITCE76}	-	-	random error in difference between variance and covariance measurements during ITCE76
SD _{ran}	-	4.2	expected random error in difference between aircraft and ground-based measurements
T_a	°C	-	air temperature
T_F	°C	3.19	final temperature after step change
T_I	°C	3.19	initial temperature before step change
T_{leaf}	°C	-	leaf temperature
T_m	°C	3.19	measured temperature at time t
T_s	°C	3.6	static temperature
T_{sfc}	°C	-	surface radiometric temperature
T_t	°C	3.5	total temperature
$T_{t,m}$	°C	3.5	measured total temperature
u_{hdg}	$m s^{-1}$	3.12	along-heading component of wind speed
$u_{GS,hdg}$	$m s^{-1}$	3.12	along-heading component of ground-speed
\mathcal{U}_{*}	$m s^{-1}$	1.1	friction velocity
U	$m s^{-1}$	3.1	ambient wind vector
\mathbf{U}_{GS}	m s ⁻¹	3.1	ground speed vector

Symbol	Units	Eq.	Description
\mathbf{U}_{TAS}	$m s^{-1}$	3.1	true airspeed vector
U	$m s^{-1}$	-	ambient wind magnitude
U_{GS}	$m s^{-1}$	3.10	ground speed magnitude
V_{hdg}	m s ⁻¹	3.12	cross-heading component of wind speed
$V_{GS,hdg}$	m s ⁻¹	3.12	cross-heading component of ground speed
W_{UE}	mgCO ₂ g ⁻¹ H ₂ O	5.3	water-use efficiency
WD	deg.	-	wind direction
W	m s ⁻¹	-	vertical component of the wind speed
Z.	m	-	height
Z_i	m	-	mixed layed depth
Z_0	m	-	roughness length for momentum
Z_{0h}	m	-	roughness length for heat
α	-	-	surface albedo
α	deg.	3.8	angle of attack
\pmb{lpha}_{0}	deg.	3.8	angle of attack offset
$lpha_{_{ m E}}$	-	5.1	evaporative fraction
β	-	5.2	Bowen ratio
β	deg.	3.9	angle of sideslip
$oldsymbol{eta}_{0}$	deg.	3.9	angle of sideslip offset
Δp_{α}	hPa	3.8	pressure difference across α ports
Δp_{β}	hPa	3.9	pressure difference across β ports
Δr	-	1.4	net runoff in the hydrological balance
ΔS	-	1.4	net storage in the hydrological balance
ε	-	5.7	change in latent heat content of saturated air with change in sensible heat content
\mathcal{E}_{s^2}	-	4.1	random error in variance of scalar s

Symbol	Units	Eq.	Description
${oldsymbol{\mathcal{E}}}_{\scriptscriptstyle WS}$	-	4.1	random error in flux of scalar s
λ	J kg ⁻¹	-	latent heat of vaporisation
ϕ	deg.	-	aircraft roll angle
ϕ'	deg. s ⁻¹	-	aircraft roll rate
γ	-	3.4	Poisson's constant
Θ	rad.	6.2	solar zenith angle
ρ	kg m ⁻³	1.1	air density
$ ho(\lambda)$	-	6.2	spectral reflectance at wavelength λ
$\sigma_{_C}$	µmol mol ⁻¹	-	standard deviation of CO ₂ concentration
$\sigma_{_q}$	kg kg ⁻¹	-	standard deviation of specific humidity
σ_s^2	-	4.1	variance of scalar s
σ_{T}	°C	-	standard deviation of temperature
$\sigma_{_{u}}$	m s ⁻¹	-	standard deviation of wind speed
$\sigma_{_w}$	m s ⁻¹	-	standard deviation of vertical wind speed
$\sigma_{\scriptscriptstyle W\!D}$	deg.	-	standard deviation of wind direction
$\sigma_{\scriptscriptstyle heta}$	Κ	-	standard deviation of potential temperature
heta	Κ	1.1	potential temperature
heta	deg.	-	aircraft pitch angle
θ'	deg. s ⁻¹	-	aircraft pitch rate
τ	$m s^{-1}$	-	aircraft true airspeed
τ	-	5.7	fraction of available energy at soil surface
$ au_1$	S	3.19	PT100 sensing element time constant
$ au_2$	S	3.19	reverse flow housing time constant
Ψ	deg.	-	aircraft yaw (heading) angle
ψ'	deg. s ⁻¹	-	aircraft yaw rate

Abstract

This thesis examines a method for estimating the daytime fluxes of heat, water vapour and carbon dioxide at regional scales by using simple models to combine spatially resolved surface properties with bulk meteorological quantities measured at a central location. The central themes of this thesis are that the spatial and temporal variability of regional scale fluxes are contained in the surface properties and meteorology respectively and that the surface properties can be interpolated across a heterogeneous landscape using remotely sensed data. The regional scale fluxes estimated using this technique are compared to the values from three other methods and this allows some conclusions to be made regarding the relative strengths and weaknesses of each method. The surface property approach yields robust estimates of the fluxes that will be useful in researching exchange processes at regional scales, providing input parameters for, and validation of, the biosphere components of General Circulation Models and testing inventory estimates of CO_2 budgets.

The surface properties are derived using data from 33 aircraft flights and eight ground-based sites along a 96 km transect established during the 1995 Observations At Several Interacting Scales experiment held near Wagga Wagga, New South Wales, Australia. Surface properties examined are the evaporative fraction (ratio of evapotranspiration to available energy), the Bowen ratio (ratio of sensible heat flux to evapotranspiration), the maximum stomatal conductance (maximum stomatal opening under optimal conditions) and the water-use efficiency (ratio of CO_2 flux to evapotranspiration). Maximum stomatal conductance is calculated using a simple model of the stomatal response to light and water vapour deficit assuming soil evaporation occurs at the equilibrium rate. The diurnal trend and day-to-day variability in the surface properties is found to be significantly less than the spatial variability. All of the surface properties examined show some sensitivity to the synoptic conditions.

The relationships between the surface properties and the Normalised Difference Vegetation Index (*NDVI*) are examined using a 130 km by 50 km sub-scene from a Landsat 5 Thematic Mapper (TM) image obtained five days before the start of the

experiment period. The ground-based and aircraft observations are used to calculate the source-area influencing each measurement and this is combined with the Landsat 5 TM data to produce an average, source-area weighted *NDVI* for each groundbased site and each aircraft location. The source-area model is important because it provides the link between the observations and the remotely sensed data by identifying the surface patch that influences the measurements. Linear relationships are found between the source-area weighted *NDVI* and the surface properties. The observed relationships are used to interpolate the surface properties over the region covered by the satellite image and spatial variations in water loss and CO_2 uptake by the surface vegetation are identified that are not resolved by the ground-based network.

Analysis of the ground-based data showed that the spatial variability of the bulk meteorological quantities used in the surface property approach was much less than the diurnal trend in these data. With the small temporal variation in the surface properties noted before, this confirms the utility of assigning the spatial and temporal variability of the fluxes to the surface properties and the meteorology respectively.

The combination of surface properties derived from the aircraft data and meteorology measured at a single location at the centre of the transect shows good skill in predicting the observed fluxes. Furthermore, the discrepancies between the predictions and the observations are explained by the different source-areas of the aircraft and ground-based data and much of the bias is removed when the surface properties are scaled from the *NDVI* of the aircraft source-area to the *NDVI* of the ground-based sites. Regional scale fluxes of heat and water vapour calculated using the surface property approach agree with averages of the ground-based data and this indicates that the ground-based network was representative of the OASIS region. Estimates of regional scale CO_2 fluxes are not available from the ground-based network due to the lack of measurements at the driest ground-based site but the surface property approach yields plausible values. The results demonstrate the utility of extrapolating surface properties across heterogeneous landscapes using remotely sensed data.

Statement

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Peter Isaac School of Chemistry, Physics and Earth Sciences, Faculty of Science and Engineering The Flinders University of South Australia

Acknowledgments

In the first instance, I must thank my partner Julie Noonan, and our children Tam and Rab, for their patience and support throughout my candidature, though thank seems too insubstantial a word to convey the debt. This work was my obsession, not theirs, but they have paid a high price and done so with such grace and compassion that I am humbled as well as thankful.

Next, I thank my supervisor, Associate Professor Jörg Hacker, for providing me with the opportunity to undertake this challenge and for his patience, unquestioning support and provision of funding. I end my candidature with a great respect and admiration for his passion and commitment to maintaining a meteorological research aircraft facility in Australia against enormous odds. Above all else, he has allowed me the freedom to explore my own research interests and has made sure I had the resources to do so.

The appearance of my parents in the third paragraph does not rank their importance, for in this respect they are equal to the first two. They have at all times encouraged and supported me, particularly in this midlife crisis that become a PhD thesis. Sadly, my father did not live to see it complete but his presence saturates these pages. Thankfully my mother has outlasted my folly and now, perhaps, will see her son "settled, with a family and an education".

There is one other individual to be thanked, before introducing the cast of thousands who are behind any PhD. Again, his position in this list does not do justice to his importance. Ray Leuning has selflessly devoted many hours to my education for little reward but altruism. He has been at times demanding, at others playful but always patient and wise. I thank him for enforcing scientific rigour while exhorting me to balance perfectionism with progress.

I also acknowledge here the work of all the staff and students of Flinders University who have contributed to the aircraft group over the years, for they have all helped to keep the facility alive. In my particular case, I am indebted to the following people. Andrew McGrath for flying *HNK* during the 1995 OASIS experiment, Wolfgang Leiff for flying and his enormous contribution to development and maintenance of

HNK and to Alastair Williams and Scott Chambers for help in the field and for introducing me to the art of processing aircraft data.

I have also benefited from discussions and collaboration with Helen Cleugh, John McAneney, Mike Raupach and Keith McNaughton and am indebted to Mark Hibberd for his insightful comments on a draft of this thesis. All have been encouraging and generous with their time. I have found this selfless devotion of time, the modern researchers most precious commodity, to be one of the most inspirational aspects of my studies.

For the first three and a half years of my candidature, I was supported by a scholarship from the National Greenhouse Advisory Committee. The aircraft, *VH*-*HNK*, and most of its instrumentation, was donated by the late Dr Don Schultz and his wife Joyce. The work undertaken for this thesis would not have been possible without their generous support of the aircraft group over many years.