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Abstract

This thesis examines a method for estimating the daytime fluxes of heat, water

vapour and carbon dioxide at regional scales by using simple models to combine

spatially resolved surface properties with bulk meteorological quantities measured at

a central location.  The central themes of this thesis are that the spatial and temporal

variability of regional scale fluxes are contained in the surface properties and

meteorology respectively and that the surface properties can be interpolated across a

heterogeneous landscape using remotely sensed data.  The regional scale fluxes

estimated using this technique are compared to the values from three other methods

and this allows some conclusions to be made regarding the relative strengths and

weaknesses of each method.  The surface property approach yields robust estimates

of the fluxes that will be useful in researching exchange processes at regional scales,

providing input parameters for, and validation of, the biosphere components of

General Circulation Models and testing inventory estimates of CO2 budgets.

The surface properties are derived using data from 33 aircraft flights and eight

ground-based sites along a 96 km transect established during the 1995 Observations

At Several Interacting Scales experiment held near Wagga Wagga, New South

Wales, Australia.  Surface properties examined are the evaporative fraction (ratio of

evapotranspiration to available energy), the Bowen ratio (ratio of sensible heat flux

to evapotranspiration), the maximum stomatal conductance (maximum stomatal

opening under optimal conditions) and the water-use efficiency (ratio of CO2 flux to

evapotranspiration).  Maximum stomatal conductance is calculated using a simple

model of the stomatal response to light and water vapour deficit assuming soil

evaporation occurs at the equilibrium rate.  The diurnal trend and day-to-day

variability in the surface properties is found to be significantly less than the spatial

variability.  All of the surface properties examined show some sensitivity to the

synoptic conditions.

The relationships between the surface properties and the Normalised Difference

Vegetation Index ( NDVI ) are examined using a 130 km by 50 km sub-scene from a

Landsat 5 Thematic Mapper (TM) image obtained five days before the start of the
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experiment period.  The ground-based and aircraft observations are used to calculate

the source-area influencing each measurement and this is combined with the Landsat

5 TM data to produce an average, source-area weighted NDVI  for each ground-

based site and each aircraft location.  The source-area model is important because it

provides the link between the observations and the remotely sensed data by

identifying the surface patch that influences the measurements.  Linear relationships

are found between the source-area weighted NDVI  and the surface properties.  The

observed relationships are used to interpolate the surface properties over the region

covered by the satellite image and spatial variations in water loss and CO2 uptake by

the surface vegetation are identified that are not resolved by the ground-based

network.

Analysis of the ground-based data showed that the spatial variability of the bulk

meteorological quantities used in the surface property approach was much less than

the diurnal trend in these data.  With the small temporal variation in the surface

properties noted before, this confirms the utility of assigning the spatial and temporal

variability of the fluxes to the surface properties and the meteorology respectively.

The combination of surface properties derived from the aircraft data and

meteorology measured at a single location at the centre of the transect shows good

skill in predicting the observed fluxes.  Furthermore, the discrepancies between the

predictions and the observations are explained by the different source-areas of the

aircraft and ground-based data and much of the bias is removed when the surface

properties are scaled from the NDVI  of the aircraft source-area to the NDVI  of the

ground-based sites.  Regional scale fluxes of heat and water vapour calculated using

the surface property approach agree with averages of the ground-based data and this

indicates that the ground-based network was representative of the OASIS region.

Estimates of regional scale CO2 fluxes are not available from the ground-based

network due to the lack of measurements at the driest ground-based site but the

surface property approach yields plausible values.  The results demonstrate the utility

of extrapolating surface properties across heterogeneous landscapes using remotely

sensed data.
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