Free Solution Capillary Electrophoresis for Purity and Identification of Synthetic Oligonucleotides on Polymer Modified Capillary Surfaces

A thesis submitted for fulfilment of the degree of Doctor of Philosophy

Kerrilee Evelyn Allan

BTech (Forensic & Analytical Chemistry), BSc (Hons)

Adelaide, South Australia Faculty of Science & Engineering School of Chemical & Physical Sciences

Supervised by

Associate Professor Amanda V. Ellis (School of Chemical and Physical Sciences)

Co-supervised by

Associate Professor Claire E. Lenehan (School of Chemical and Physical Sciences)

February 2012

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Kerrilee E. Allan on ____/___/

My first thanks must go to my supervisor Associate Professor Amanda Ellis. You tackled my candidature with both brutal honesty and unexpected kindness. And for that and all else, I thank you.

I would also like to thank my co-supervisor Associate Professor Claire Lenehan for the little bits of support and guidance, and helping me get back on track when I derailed.

To my office mate Noni, I'd like to formally thank you for labouring over both the AFM and the editing of this thesis for me.

I have found a true friend in you and I can't thank you enough for everything.

Special thanks to Auntie Diane for taking the time to do the final proof-reading for me. I hope it was at least insightful!

Many, many thanks go to Dad, Mum & Graeme, Andrew, Anthony, Nana & Grandad, Dain & Andrew Blok. It has been almost as much of a journey for you as it has for me. You are my best friends and I love you.

And to all those I have whinged and gossiped to, and played, partied, and shared precious memories with (especially Jez, Ra, Sophie, & Jacqueline), you are simply amazing!

Abstract

This thesis describes a capillary electrophoretic method to determine the identity and purity of oligonucleotides (ODNs) and phosphorothioate antisense oligonucleotides (PS-ODNs) using cationic copolymers as a dynamic coating, based on monomers of ethylpyrrolidine methacrylate (EPyM) and methyl methacrylate (MMA). ODNs are short fragments of single-stranded (ss) or doublestranded (ds) deoxyribonucleic acid (DNA) and their uses range from biological systems to drug delivery and pharmaceutical analysis. In particular, antisense oligonucleotides (AS-ODNs) have a role as therapeutic molecules which inhibit expression of target genes by binding to a specific RNA sequence, blocking the translation process. AS-ODNs exist in various modified forms of which PS-ODNs are the most common. It is therefore necessary to have methods in place to determine the identity and purity of these modified AS-ODNs.

Capillary electrophoresis (CE) has been extensively used for separation of DNA fragments focusing on large strands. Consequently, there is a significant gap in the literature regarding the analysis of short strands of DNA (such as ODNs). DNA strands below the DNA persistence length (p_{DNA}) are rod-like and non-free draining, and exhibit different migration patterns in free solution compared to larger strands which cannot be separated in this way. Operating in free solution has the advantage of only requiring surface confined capillary modification for electroosmotic flow (EOF) suppression allowing for charge-based separation in which larger, more negatively strands exhibit a greater mobility.

In this thesis, homopolymers and copolymers based on EPyM and MMA were prepared by conventional free radical (CFR) and reversible addition-fragmentation chain transfer (RAFT) polymerisation. This work reports for the first time the use of a RAFT block copolymer for the separation of ODNs. Polymer solutions were prepared for surface-confined capillary modification via physical adsorption and the adsorptive properties (onto silicon (Si) wafers) were investigated via atomic force microscopy (AFM). It was observed that the effectiveness of these polymers for capillary surface modification via adsorption was highly dependent on the polymer concentration, tacticity and hence, stereochemistry. A dilute polymer solution of CFR poly(ethylpyrrolidine methacrylate-*co*-methyl methacrylate) (PEPyM-*co*-PMMA) random copolymer (1 mg mL⁻¹) provided a homogenous surface coating owing to the polymer chains being hydrodynamically separated allowing for adsorption as individual globules. Whereas the RAFT poly(ethylpyrrolidine methacrylate-*block*-methyl methacrylate) (PEPyM-*b*-PMMA) block copolymer provided an uneven and incomplete surface coverage owing to the rigidity of the polymer chains.

Enhanced CE separation of ODNs (ds and ss) ranging from 16 - 20 base pairs (bp) (containing the same 16 base (b) sequence) was achieved in free solution on a capillary dynamically coated with CFR PEPyM-co-PMMA random copolymer (21/79). Fast and efficient surface modification was achieved on bare fused-silica capillaries activated with hydrochloric acid (HCl), H₂O, sodium hydroxide (NaOH) and Tris(hydroxymethyl)aminomethane (Tris)-borate (100 mM)/urea (7M) buffer, by flushing with polymer solution and H_2O followed by a final treatment with running buffer. 1 bp resolution (R_s) and was seen for long (30 cm) and short (8 cm) capillaries with partial R_s of the 16 bp and 17 bp mixture. Co-migration of some strands was attributed to ODN-ODN interactions during migration. These interactions were confirmed by the 16 bp peak migration time (t_m) not being additive within each mixture. The 1 bp R_s achieved for the complementary sequence strands was improved by up to 37 % for separation of dsODNs containing non-complementary sequences. Interestingly, separation of a dsODN mixture containing two 16 bp strands of different sequences resulted in partial R_s (0.52) suggesting that the free solution mobility of dsODNs was sequence dependent. Differential mobilities for ssODN fragments of the same length were also observed.

The method described herein was capable of resolving mixtures of PS-ODNs and ODNs, (including R_s of ss impurities from ds fragments) indicating that this method is suitable for determining ODN and PS-ODN purity. Both ODN and PS-ODN mobility was found to be proportional to an increase in bp length, suggesting the separation mechanism is based on the free solution mobility and ion-pairing between the surface and the analyte. The developed method has the advantage of fast and simple preparation, easy regeneration, extended capillary life-time, unrestricted polymer solubility, and enhanced stability under harsh conditions (high voltage and temperature, and extreme pH).

Publications

The publications originating from the work within this thesis are as follows:

Papers

Kerrilee E. Allan; Claire E. Lenehan; Dmitriy A. Khodakov; Hilton J. Kobus; Amanda V. Ellis, High-performance capillary electrophoretic separation of doublestranded oligonucleotides using a poly(ethylpyrrolidine methacrylate-*co*-methyl methacrylate) coated capillary, *Electrophoresis* **2012**, *33*, 1-10

Conference Proceedings

Kerrilee E. Allan, Polymeric Surface Modification of Capillaries for the Separation of DNA by Capillary Electrophoresis. Oral presentation at the *European Polymer* Congress (EPF2011) and XII Congress of the Specialized Group of Polymers (GEP), Granada, Spain, **2011**

Kerrilee E. Allan, Random versus block copolymers for dynamic coatings for capillary electrophoretic separation of DNA. Oral presentation at the *32nd Australasian Polymer Symposium (APS)*, Coffs Harbour, NSW, **2011**

Kerrilee E. Allan, Capillary electrophoretic separation of double-stranded DNA oligonucleotides using a PEPyM-*co*-PMMA dynamically coated capillary. Poster presentation at the *ANZFSS 20th International Symposium on the Forensic Sciences*, Sydney, NSW, **2010**

Kerrilee E. Allan, Investigation of PEPyM-*co*-PMMA copolymer as a dynamic coating for capillary electrophoretic separation of DNA fragments. Oral presentation at the *ARNAM/ARCNN 2010*, Adelaide, SA, **2010**

Kerrilee E. Allan, Capillary electrophoretic determination of double-stranded DNA through an intercalating dye using the zone-passing technique, Poster presentation at the *ANZFSS 19th International Symposium on the Forensic Sciences*, Melbourne, Vic., **2008**

Table of Contents

2.3

Declaration Acknowledgme Abstract Publications Table of Conte List of Figures List of Tables List of Schemes List of Abbrevit	nts nts s ations and symbols Introduction and literature review	i iii v vi ix xv xviii xx 1
1.1	Synopsis	1
1.2	Principles of CE separation of DNA	2
	1.2.1 Background on DNA	2
	1.2.2 Fundamentals of CE	4
	1.2.3 Surface and analyte charge theories	5
1.3	Capillary surface modification for DNA analysis	10
	1.3.1 Polymer wall coatings	11
	1.3.2 Surface modification classification	12
1.4	Separation mechanisms	15
	1.4.1 Free solution mobility	15
	1.4.2 Other models	24
	1.4.3 Gel electrophoresis mechanisms	25
	1.4.4 Application of gel electrophoresis models to CE in polymer solutions	32
	1.4.5 Mechanisms in polymer solutions	33
1.5	Types of polymer coatings in CE	44
	1.5.1 Static coatings	45
	1.5.2 Dynamic coatings	56
1.6	CE separation of short fragments of DNA	71
1.7	Summary	75
Chapter 2.]	Experimental	76
2.1	Synopsis	76
2.2	Materials	77
	2.2.1 Paggants for polymor synthesis	77

2.2.1	Reagents for polymer synthesis	//
2.2.2	Chemicals	79
2.2.3	DNA samples	81
Method	ls	83
2.3.1	Polymer synthesis	83
2.3.2	Polymer characterisation techniques	89
2.3.3	Capillary electrophoresis	94

3.1	Synopsis	
3.2	EPyM monomer synthesis	100
	3.2.1 ¹ H NMR spectroscopy characterisation of EPyM monomer	101
3.3	Conventional free radical polymerisation	102
	3.3.1 PEPyM homopolymer	103
	3.3.2 PMMA homopolymer	107
	3.3.3 PEPyM-co-PMMA random copolymer	111
	3.3.4 PDEAEMA-co-PMMA random copolymerisation	115
3.4	Reversible addition-fragmentation chain transfer polymerisation	119
	3.4.1 PEPyM homopolymer macro-RAFT agent	121
	3.4.2 PMMA homopolymer macro-RAFT agent	126
	3.4.3 PEPyM- <i>b</i> -PMMA block copolymer	132
3.5	Concluding remarks	137
Chapter 4. A	FM imaging of polymer modified surfaces	139
4.1	Synopsis	139
4.2	Rheological study of a dilute CFR PEPyM- co -PMMA random copolymer solution (1 mg mL ⁻¹)	140
4.3	Polymer surface morphology studies via atomic force microscopy	141
	4.3.1 AFM imaging of thin films of CFR PEPyM- <i>co</i> -PMMA random copolymer deposited on Si wafers	142
	4.3.2 CFR versus RAFT polymer solutions	146
4.4	Adsorption properties of CFR PEPyM-co-PMMA random copolymer	152
4.5	Concluding remarks	155
Chapter 5. C	Capillary electrophoretic separation of ODNs	157
5.1	Synopsis	157
5.2	CE Method development	158
	5.2.1 PEPyM-co-PMMA (21/79) coated capillaries	158
	5.2.2 Optimisation of ODN separation on PEPyM- <i>co</i> -PMMA (21/79) coated capillaries	177
5.3	Optimised separation of ODNs on PEPyM- <i>co</i> -PMMA (21/79) coated capillaries	194
	5.3.1 Mobility of ssODNs versus dsODNs	195
	5.3.2 Mobility of dsODNs	197
	5.3.3 Separation of ODN mixtures	200
	5.3.4 Comparison to other polymer surfaces	203
5.4	Concluding remarks	213

99

6.1	Synopsis	215
6.2	Method development	216
	6.2.1 Hydrodynamic injection	216
	6.2.2 Electrokinetic injection	224
6.3	Short-end analysis of synthetic oligonucleotides using optimised method	235
	6.3.1 Sequence dependence	235
	6.3.2 Effect of ionic strength	238
6.4	Concluding remarks	241
Chapter 7. S	Short-end injection CE analysis of PS-ODNs	243
7.1	Synopsis	243
7.2	Background information and literature	244
7.3	CE method development on CFR PEPyM- <i>co</i> -PMMA random copolymer (21/79) coated capillaries	247
	7.3.1 Effect of voltage and temperature on PS-ODN separation	250
	7.3.2 Effect of ionic strength on PS-ODN separation	252
	7.3.3 Effect of capillary diameter on PS-ODN separation	255
7.4	Concluding remarks	259
Chapter 8.	Conclusions & future perspectives	26
Chapter 8. (8.1	Conclusions & future perspectives Synopsis	26 260
Chapter 8. (8.1 Chapter 9. 1	Conclusions & future perspectives Synopsis References	260 260 265
Chapter 8. (8.1 Chapter 9. 1 Chapter 10.	Conclusions & future perspectives Synopsis References Appendices	260 260 265 I
Chapter 8. (8.1 Chapter 9. 1 Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A	260 260 265 I
Chapter 8. (8.1 Chapter 9. 1 Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study	260 260 265 I I
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation	260 265 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation	260 265 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9. 1 Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation 10.1.6 PEPyM coated capillaries	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation 10.1.6 PEPyM coated capillaries 10.1.7 PEPyM-b-PMMA (30/70) coated capillaries	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation 10.1.6 PEPyM coated capillaries 10.1.7 PEPyM-b-PMMA (30/70) coated capillaries 10.1.8 PDEAEMA-co-PMMA (34/66) coated capillaries	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation 10.1.6 PEPyM coated capillaries 10.1.7 PEPyM-b-PMMA (30/70) coated capillaries 10.1.8 PDEAEMA-co-PMMA (34/66) coated capillaries Appendix B B	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Chapter 8. (8.1 Chapter 9.] Chapter 10. 10.1	Conclusions & future perspectives Synopsis References Appendices Appendix A 10.1.1 EOF temperature study 10.1.2 Effect of voltage on ODN separation 10.1.3 Effect of temperature on ODN separation 10.1.4 Coating repeatability study 10.1.5 Effect of capillary diameter on ODN separation 10.1.6 PEPyM coated capillaries 10.1.7 PEPyM-b-PMMA (30/70) coated capillaries 10.1.8 PDEAEMA-co-PMMA (34/66) coated capillaries Appendix B 10.2.1 10.2.1 AS-ODNs	260 265 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

List of Figures

Figure 1.1	Structure of a nucleotide.	2
Figure 1.2	Structure of amine bases in DNA.	2
Figure 1.3	Structure of ssDNA formed by linked nucleotides and complementary base pairing between C and G, and T and A to form dsDNA.	3
Figure 1.4	Structure of the DNA double helix showing the dimensions.	3
Figure 1.5	Diagram of ion movement through a fused-silica capillary using a negative applied voltage.	4
Figure 1.6	Dependence of the μ_{ep} on the number of negatively charged phosphate residues in the oligomer. Adapted from [82].	21
Figure 1.7	Comparison of free solution mobility of pUC19 and dsA5 at varying ionic strengths [94].	23
Figure 1.8	Migration of a dsDNA fragment through a thin agarose gel showing reptation and end-to-end conformational changes, captured by fluorescence microscopy. Adapted from [121].	31
Figure 1.9	Log-log plot of solution viscosity versus PVP concentration to determine c^* . Adapted from [109].	34
Figure 1.10	Time sequence fluorescence images of λ dsDNA as it migrates through the HEC solution. Adapted from [130].	41
Figure 1.11	Zone electrophoresis of aromatic carboxylic acids in a non-coated glass tube and LPA coated capillary [23].	52
Figure 1.12	CE electropherograms of separation of Hae III digest ϕ x174 dsDNA fragments using PDMA and PDEA sieving media [26].	62
Figure 1.13	Structures of the epoxy polymers [25].	65
Figure 1.14	Plot of EOF mobility versus pH for a bare fused-silica capillary compared to a polyE-323 coated capillary. Adapted from [146].	
Figure 1.15	EOF mobility versus pH for bare and PEPyM-co-PDMA coated fused-silica capillaries [77].	
Figure 1.16	EOF mobility versus pH for bare and PEPyM-co-PDMA coated fused- silica capillaries [80].	
Figure 1.17	Structure of PEPyM-co-PMMA copolymer. Adapted from [79].	70
Figure 1.18	CE electropherogram of the separation of synthetic ssODNs using a PAM gel capillary. Adapted from [65].	72
Figure 2.1	Schematic representation of the CMS.	98
Figure 3.1	¹ H NMR spectra for the EPyM monomer synthesis at each stage of the isolation and purification process.	101
Figure 3.2	¹ H NMR spectra for the CFR polymerisation of EPyM monomer at various stages of synthesis of PEPyM homopolymer.	104
Figure 3.3	FTIR spectrum of PEPyM homopolymer synthesised by CFR polymerisation.	107
Figure 3.4	¹ H NMR spectra for the CFR polymerisation of MMA monomer at various stages of synthesis of PMMA homopolymer.	109
Figure 3.5	FTIR spectrum of PMMA homopolymer synthesised by CFR polymerisation.	110
Figure 3.6	¹ H NMR spectra of PEPyM- <i>co</i> -PMMA random copolymer synthesised by CFR polymerisation.	113

Figure 3.7 FTIR spectrum of PEPyM-co-PMMA random copolymer synthesised 115 by CFR polymerisation. Figure 3.8 ¹H NMR spectra of CFR copolymerisation of DEAEMA monomer and 117 MMA monomer at various stages of synthesis of PDEAEMA-co-PMMA random copolymer. Figure 3.9 FTIR spectrum of PDEAEMA-co-PMMA random copolymer 119 synthesised by CFR polymerisation. ¹H NMR spectra for CPDB CTA and RAFT polymerisation of EPyM Figure 3.10 123 monomer at various stages of synthesis of PEPyM homopolymer macro-RAFT agent. FTIR spectrum of PEPyM homopolymer macro-RAFT agent Figure 3.11 125 synthesised by RAFT polymerisation. Figure 3.12 ¹H NMR spectra for RAFT polymerisation of MMA monomer at 127 various stages of synthesis of PMMA homopolymer macro-RAFT agent. FTIR spectrum of PMMA homopolymer macro-RAFT agent Figure 3.13 129 synthesised by RAFT polymerisation. Figure 3.14 ¹H NMR spectra for the kinetic study of RAFT polymerisation of 130 MMA. Figure 3.15 Plots of % conversion, $ln([M_0]/[M])$ and mass of isolated 131 homopolymer, against time. ¹H NMR spectra of PEPyM-*b*-PMMA block copolymer synthesised by Figure 3.16 134 RAFT polymerisation. Figure 3.17 FTIR spectrum of PEPyM-b-PMMA block copolymer synthesised by 136 RAFT polymerisation. Figure 4.1 3D AFM images of a bare Si wafer, compared to CFR PEPyM-co-143 PMMA random copolymer solutions prepared by spotting and spincoating. 3D AFM images of bare oxidised Si, compared to CRF PEPyM-co-Figure 4.2 144 PMMA random copolymer solutions at varying concentrations. Figure 4.3 Plots of roughness RMS and particle height versus CFR PEPyM-co-145 PMMA random copolymer concentration. Figure 4.4 3D AFM images of CFR PEPyM-co-PMMA random copolymer 146 solutions at three concentration regimes. Figure 4.5 3D AFM images of polymer solutions of CFR PMMA homopolymer, 148 RAFT PMMA homopolymer macro-RAFT agent, CFR PEPyM homopolymer, and RAFT PEPyM homopolymer macro-RAFT agent. Figure 4.6 2D AFM images for CFR PMMA homopolymer, compared to RAFT 148 PMMA homopolymer macro-RAFT agent, showing particle analysis regions in blue. Figure 4.7 3D AFM images of oxidised bare Si; and CFR PEPyM-co-PMMA 150 random copolymer solutions compared to RAFT PEPyM-b-PMMA block copolymer solutions. Figure 4.8 2D AFM images of RAFT PEPyM-b-PMMA block copolymer 151 solutions showing particle analysis regions in blue. Figure 5.1 Plot of peak area versus 16 bp dsODN concentration to determine the 159 L.O.D.

Figure 5.2 CE electropherograms of separation of a mixture of 16 bp and 20 bp 162 dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated fused-silica capillary.

- Figure 5.3Ohm's plot of current versus voltage at 30 °C for the Tris-borate (100163mM)/urea (7 M) buffer at pH 9 on a CFR PEPyM-co-PMMA random
copolymer coated fused-silica capillary.163
- Figure 5.4 Plot of v_{EOF} versus voltage for a bare capillary compared to a capillary 166 coated with CFR PEPyM-*co*-PMMA random copolymer.
- Figure 5.5 Plot of μ_{EOF} versus voltage for a bare capillary compared to a capillary 166 coated with CFR PEPyM-*co*-PMMA random copolymer.
- Figure 5.6 CE electropherograms of separation of the buffer/water/acetone neutral 167 marker on a bare and CFR PEPyM-*co*-PMMA random copolymer coated capillary at varying temperatures.
- Figure 5.7 Plot of t_m of the neutral marker versus temperature for a bare capillary 168 compared to a capillary coated with CFR PEPyM-*co*-PMMA random copolymer.
- Figure 5.8 Plot of μ_{EOF} versus temperature for a bare capillary compared to a 171 capillary coated with CFR PEPyM-*co*-PMMA random copolymer.
- Figure 5.9 CE electropherograms of separation of the buffer/water/acetone neutral 173 marker on a bare and CFR PEPyM-*co*-PMMA random copolymer coated capillary at varying pH.
- Figure 5.10 Plot of μ_{EOF} versus pH for a bare capillary compared to a capillary 176 coated with CFR PEPyM-*co*-PMMA random copolymer.
- Figure 5.11 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 180 varying voltages using a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.12 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus voltage for separation of 16 181 bp and 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.13 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 182 varying temperatures using a CFR PEPyM-*co*-PMMA random copolymer coated fused-silica capillary.
- Figure 5.14 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus temperature for separation of 184 16 bp and 20 bp dsODNs using a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.15 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus injection # for separation of 186 16 bp and 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary without between-run conditioning.
- Figure 5.16 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus injection # for separation of 188 16 bp and 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary with between-run buffer conditioning.
- Figure 5.17 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus injection # for separation of 189 16 bp and 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary with between-run polymer conditioning.
- Figure 5.18 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs on a 190 CFR PEPyM-*co*-PMMA random copolymer coated capillary with 50 μm or 75 μm id.
- Figure 5.19 Plots of t_m , W_h , R_s , N, v, and μ_{app} , versus injection # for the separation 191 of 16 bp and 20 bp dsODNs on CFR PEPyM-*co*-PMMA random copolymer coated capillaries with 50 µm or 75 µm id.
- Figure 5.20 CE electropherograms of dsODN individual solutions and mixtures on 192 a bare capillary.
- Figure 5.21 CE electropherograms of repetitive injections of Tris-borate (100 193 mM)/urea (7 M) buffer on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.

- Figure 5.22 CE electropherograms of repetitive injections of Milli-Q water on a 194 CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.23 CE electropherograms of complementary 16 b ssODNs and the 195 hybridized 16 bp dsODN on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.24 CE electropherograms of individual solutions of dsODNs on a CFR 197 PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.25 Plots of t_m , and μ_{obs} , versus bp length for separation of individual 198 solutions of dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.26 CE electropherograms of dsODN mixtures on a CFR PEPyM-*co* 200 PMMA random copolymer coated capillary.
- Figure 5.27 Plots of R_s from 16 bp, and μ_{obs} , versus bp length for separation of 201 dsODN mixtures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 5.28 CE electropherograms of dsODN mixtures on a CFR PMMA 203 homopolymer coated capillary.
- Figure 5.29 CE electropherograms of dsODN individual solutions and mixtures on 204 a CFR PEPyM homopolymer coated capillary.
- Figure 5.30 Plots of R_s from 16 bp, and μ_{app} , versus bp length for separation of dsODN mixtures, and t_m , and μ_{app} , versus bp length for separation of individual solutions of dsODNs on a CFR PEPyM homopolymer coated capillary.
- Figure 5.31 CE electropherograms of individual solutions and mixtures of 16 bp 206 and 20 bp dsODNs on a RAFT PEPyM-*b*-PMMA block copolymer coated capillary.
- Figure 5.32 Plots of R_s , and μ_{app} , versus injection # for the separation of 16 bp and 207 20 bp dsODNs on a RAFT PEPyM-*b*-PMMA block copolymer coated capillary.
- Figure 5.33 CE electropherograms of dsODN mixture on a RAFT PEPyM-*b* 208 PMMA block copolymer coated capillary with a 50 µm id.
- Figure 5.34 Plots of R_s from 16 bp, and μ_{app} , versus bp length for separation of 209 dsODNs mixtures on a RAFT PEPyM-*b*-PMMA block copolymer coated capillary with a 50 μ m id.
- Figure 5.35 CE electropherograms of dsODN mixtures on a CFR PDEAEMA-*co* 209 PMMA random copolymer (34/66) coated capillary.
- Figure 5.36 Plots of R_s from 16 bp, and μ_{app} , versus bp length for separation 210 dsODN mixtures on a CFR PDEAEMA-*co*-PMMA random copolymer coated capillary.
- Figure 5.37 Plots of t_m , W_h , R_s , and μ_{app} , versus injection # for separation of 16 bp 211 and 20 bp dsODNs on a CFR PDEAEMA-*co*-PMMA random copolymer coated capillary.
- Figure 5.38 Plots of t_m , W_h , R_s , and μ_{app} , versus injection # for separation of 16 bp 212 and 20 bp dsODNs on a CFR PDEAEMA-*co*-PMMA random copolymer coated capillary with optimised regeneration.
- Figure 6.1 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 217 varying voltages on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.
- Figure 6.2 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus voltage for separation of 218 dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.

- Figure 6.3 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 219 varying temperatures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.
- Figure 6.4 Plots of t_m , W_h , R_s , N, ν , and μ_{obs} , versus temperature for separation of dsODNs at varying temperatures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.
- Figure 6.5 CE electropherograms of complementary and non-complementary 222 dsODN mixtures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.
- Figure 6.6 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus temperature for separation 223 complementary and non-complementary dsODN mixtures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end hydrodynamic injection.
- Figure 6.7 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs 226 introduced using short-end EKI at various V_{inj} and t_{int} on a CFR PEPyM-*co*-PMMA random copolymer coated capillary.
- Figure 6.8 Plots of t_m , W_h , R_s , N, peak area, peak height, v, and μ_{obs} , versus 227 voltage for separation of dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.9 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 35 229 °C and varying voltages on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.10 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 40 230 °C and varying voltages on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.11 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus voltage for separation of 232 dsODNs at 35 °C and 40 °C on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.12 CE electropherograms of dsODNs at varying temperatures on a CFR 233 PEPyM-*co*-PMMA random copolymer coated using short-end EKI.
- Figure 6.13 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus temperature for separation of dsODNs at varying temperatures on a CFR PEPyM-*co*-PMMA random copolymer coated using short-end EKI.
- Figure 6.14 CE electropherograms of complementary and non-complementary 236 dsODN mixtures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.15 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus temperature for separation of 237 complementary and non-complementary dsODN mixtures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.16 CE electropherograms of a mixture of 16 bp and 20 bp dsODNs at 238 varying ionic strengths on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 6.17 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus [NaCl] for separation of 16 bp 240 and 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Figure 7.1 Structure and base pairing for PS-ODNs showing the replacement of an 245 oxygen atom for a sulphur atom on the deoxyribose groups.
- Figure 7.2 CE electropherograms of individual solutions and mixtures of (ss and 247 ds) PS-ODNs and ODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.

- CE electropherograms of 16* bp and 18* bp dsPS-ODNs at 263.2 V Figure 7.3 250 cm⁻¹ and 131.6 V cm⁻¹ on a CFR PEPyM-co-PMMA random copolymer coated capillary short-end EKI. Figure 7.4 CE electropherograms of 16* bp and 18* bp dsPS-ODNs at varying 251 temperatures on a CFR PEPyM-co-PMMA random copolymer coated capillary short-end EKI. Figure 7.5 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus temperature for separation of 252 16* bp and 18* bp dsPS-ODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary short-end EKI. CE electropherograms of 16* bp and 18* bp dsPS-ODNs at varying Figure 7.6 253 ionic strengths on a CFR PEPyM-co-PMMA random copolymer coated capillary short-end EKI. Figure 7.7 Plots of t_m , W_h , R_s , N, v, and μ_{obs} , versus [NaCl] for separation of 16* 255 bp and 18* bp dsPS-ODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary short-end EKI. Figure 7.8 CE electropherograms of individual solutions and mixtures of (ss and 256 ds) PS-ODNs and ODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary with a 50 µm id using short-end EKI. Ι Figure 10.1 Plot of $ln(t_m)$ of the neutral marker versus temperature for a bare capillary compared to a capillary coated with CFR PEPyM-co-PMMA random copolymer. CE electropherograms of repetitive injections of 16 bp and 20 bp Figure 10.2 IV dsODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary without between-run conditioning. Figure 10.3 CE electropherograms of repetitive injections of 16 bp and 20 bp IV dsODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary with buffer between-run conditioning. CE electropherograms of repetitive injections of 16 bp and 20 bp Figure 10.4 V dsODNs on a CFR PEPyM-co-PMMA random copolymer coated capillary with polymer between-run conditioning. Figure 10.5 CE electropherograms of repetitive injections of a mixture of 16 bp and V
 - 20 bp dsODNs on a CFR PEPyM-*co*-PMMA random copolymer coated capillary with a 50 μm id.
 Figure 10.6 CE electropherograms of repetitive injections of a mixture of 16 bp and VIII
 - Figure 10.6 CE electropherograms of repetitive injections of a mixture of 16 bp and VIII 20 bp dsODNs on a CFR PDEAEMA-*co*-PMMA random copolymer coated capillary.
 - Figure 10.7 CE electropherograms of individual solutions of 16-COMP bp and 16-CAT bp dsODNs on a CFR PEPyM-co-PMMA random copolymer coated 30 cm L_d capillary.

List of Tables

Table 1.1	Classification of polymer surface modifications.	13
Table 1.2	Summary of some CGE methods in the literature.	48
Table 1.3	Examples of surface confined covalent polymer coatings for EOF suppression.	55
Table 1.4	Examples of polymer-buffer solutions as sieving media for the separation of DNA fragments.	59
Table 2.1	Reagents and solvents used for polymer synthesis.	77
Table 2.2	Chemicals used in this study.	79
Table 2.3	ssODNs used in this study.	81
Table 2.4	ssPS-ODNs used in this study.	82
Table 2.5	Preparation of polymer solutions for CE.	88
Table 2.6	Silicon wafer treatments with polymer solutions.	93
Table 3.1	¹ H NMR peak assignments for the EPyM monomer synthesis at each stage of the isolation and purification process.	101
Table 3.2	¹ H NMR peak assignments for the CFR polymerisation of EPyM monomer at various stages of synthesis of PEPyM homopolymer.	105
Table 3.3	¹ H NMR peak assignments for the CFR polymerisation of MMA monomer at various stages of synthesis of PMMA homopolymer.	109
Table 3.4	¹ H NMR peak assignments for the PEPyM- <i>co</i> -PMMA random copolymer synthesised by CFR copolymerisation.	113
Table 3.5	¹ H NMR peak assignments for the PDEAEMA- <i>co</i> -PMMA random copolymer synthesised by CFR copolymerisation.	117
Table 3.6	¹ H NMR peak assignments for the RAFT polymerisation of EPyM at various stages of synthesis of PEPyM homopolymer macro-RAFT agent.	123
Table 3.7	¹ H NMR peak assignments for the RAFT polymerisation of MMA at various stages of synthesis of PMMA homopolymer macro-RAFT agent.	127
Table 3.8	¹ H NMR peak assignments for the PEPyM- <i>b</i> -PMMA block copolymer synthesised by RAFT copolymerisation.	135
Table 5.1	Calculation of v_{EOF} and μ_{EOF} for a bare and CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using a CMS.	165
Table 5.2	Calculation of v_{EOF} and μ_{EOF} at varying temperatures for a bare and CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using the buffer/water/acetone neutral marker.	170
Table 5.3	Calculation of t_{calc} for the Student's <i>t</i> -test.	172
Table 5.4	<i>t</i> -distribution values.	172
Table 5.5	Calculation of v_{EOF} and μ_{EOF} at varying pH for a bare and CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using the buffer/water/acetone neutral marker.	175
Table 5.6	Calculation of mean t_m , R_s , μ_{app} , and μ_{obs} for a 16 bp and 20 bp dsODN mixture with no between-run conditioning on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	185

Table 5.7	Calculation of mean t_m , R_s , μ_{app} , and μ_{obs} for a 16 bp and 20 bp dsODN mixture with between-run buffer conditioning on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	187
Table 5.8	Calculation of mean t_m , R_s , μ_{app} , and μ_{obs} for a 16 bp and 20 bp dsODN mixture with between-run polymer conditioning on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	188
Table 5.9	Calculation of mean t_m , R_s , μ_{app} , and μ_{obs} for a 16 bp and 20 bp dsODN mixture on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary with a 50 μ m id.	190
Table 5.10	Calculation of mean t_m , μ_{app} , μ_{obs} and repeatability for a 16 bp dsODN and its complementary ssODNs on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	196
Table 5.11	Calculation of mean t_m , μ_{app} , μ_{obs} and repeatability for individual dsODN solutions on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	198
Table 5.12	Calculation of mean t_m , μ_{app} , μ_{obs} and repeatability for dsODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	202
Table 5.13	Calculation of mean t_m , μ_{app} , and repeatability for 16 bp and 20 bp dsODN mixture on a RAFT PEPyM- <i>b</i> -PMMA block copolymer coated capillary (75 μ m id).	206
Table 5.14	Calculation of mean t_m , μ_{app} , and repeatability for 16 bp and 20 bp dsODN mixture on a CFR PDEAEMA- <i>co</i> -PMMA random copolymer coated capillary.	210
Table 5.15	Table Calculation of mean t .5.15 _m , μ_{app} , and repeatability for 16 bp and 20 bp dsODN mixture on a CFR PDEAEMA- <i>co</i> -PMMA random	211
	copolymer coated capillary.	
Table 6.1	Calculation of the v _{int} for the EKI of dsODN mixtures.	225
Table 6.1 Table 6.2	copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI.	225 239
Table 6.1 Table 6.2 Table 7.1	copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and dsODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI.	225 239 249
Table 6.1 Table 6.2 Table 7.1 Table 7.2	copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and dsODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs with applied voltages of 263.2 V cm ⁻¹ or 131.6 V cm ⁻¹ on a CFR PEPyM- <i>co</i> - PMMA random copolymer coated capillary using short-end EKI.	225 239 249 250
Table 6.1 Table 6.2 Table 7.1 Table 7.2 Table 7.3	 copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and dsODN mixtures on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs with applied voltages of 263.2 V cm⁻¹ or 131.6 V cm⁻¹ on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs with applied voltages of 263.2 V cm⁻¹ or 131.6 V cm⁻¹ on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs mixture with and without Tris-borate on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. 	225 239 249 250 254
Table 6.1 Table 6.2 Table 7.1 Table 7.2 Table 7.3 Table 7.4	 copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and dsODN mixtures on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs with applied voltages of 263.2 V cm⁻¹ or 131.6 V cm⁻¹ on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs mixture with and without Tris-borate on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs mixture with and without Tris-borate on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and ODN mixtures on a CFR PEPyM-<i>co</i>-PMMA random copolymer coated capillary using short-end EKI. 	225 239 249 250 254 258
Table 6.1 Table 6.2 Table 7.1 Table 7.2 Table 7.3 Table 7.4 Table 10.1	copolymer coated capillary. Calculation of the v_{int} for the EKI of dsODN mixtures. Calculation of R_s and efficiency of a 16 bp and 20 bp dsODN mixture with and without Tris-borate on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and dsODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs with applied voltages of 263.2 V cm ⁻¹ or 131.6 V cm ⁻¹ on a CFR PEPyM- <i>co</i> - PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs mixture with and without Tris-borate on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and ODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of PS-ODN and ODN mixtures on a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary using short-end EKI. Calculation of R_s and efficiency of 16 bp and 20 bp dsODNs at varying voltages using a CFR PEPyM- <i>co</i> -PMMA random copolymer coated capillary.	225 239 249 250 254 258 II

- Table 10.3 Calculation of mean t_m , efficiency, R_s and μ_{app} for mixtures and VI individual solutions of dsODN on a CFR PEPyM homopolymer coated capillary (75 µm id).
- Table 10.4 Calculation of R_s , efficiency and μ_{app} from the t_m of dsODN mixtures on VII a RAFT PEPyM-*b*-PMMA block copolymer coated capillary (50 μ m id).
- Table 10.5Calculation of R_s , efficiency and μ_{app} from the t_m of dsODN mixtures onVIIa CFR PDEAEMA-co-PMMA random copolymer coated capillary.
- Table 10.6Calculation of Rs and efficiency of 16 bp and 20 bp dsODNs at varying
voltages on a CFR PEPyM-co-PMMA random copolymer coated
capillary using short-end hydrodynamic injection.X
- Table 10.7Calculation of Rs and efficiency of 16 bp and 20 bp dsODNs at varying
temperatures on a CFR PEPyM-co-PMMA random copolymer coated
capillary using short-end hydrodynamic injection.XI
- Table 10.8Calculation of t_m , μ_{app} , and μ_{obs} analysis of individual solutions of 16-XIICOMP bp and 16-CAT bp dsODNs on a CFR PEPyM-co-PMMArandom copolymer coated capillary using short-end hydrodynamicinjection.
- Table 10.9Calculation of Rs and efficiency of dsODN mixtures with XIII
complementary and non-complementary sequences using short-end
hydrodynamic injection.
- Table 10.10Calculation of Rs and efficiency of 16 bp and 20 bp dsODNs introducedXIVusing short-end EKI at various Vinj and tint on a CFR PEPyM-co-PMMA random copolymer coated capillary.
- Table 10.11 Calculation of R_s and efficiency of 16 bp and 20 bp dsODNs at 35 °C XV and varying voltages on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Table 10.12Calculation of R_s and efficiency of 16 bp and 20 bp dsODNs at 40 °CXVIIand varying voltages on a CFR PEPyM-co-PMMA random copolymercoated capillary using short-end EKI.
- Table 10.13 Calculation of R_s and efficiency of 16 bp and 18 bp dsODNs at varying XIX temperatures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Table 10.14Calculation of Rs and efficiency of 16 bp and 20 bp dsODNs at varyingXXtemperatures on a CFR PEPyM-co-PMMA random copolymer coated
capillary using short-end EKI.XX
- Table 10.15 Calculation of R_s and efficiency of dsODN mixtures with XXII complementary and non-complementary sequences using short-end EKI.
- Table 10.16
 Calculation of R_s and efficiency of 16 bp and 20 bp dsODNs at varying
 XXIII

 BGE ionic strengths on a CFR PEPyM-co-PMMA random copolymer
 coated capillary using short-end EKI.
- Table 10.17 Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs at XXIV varying temperatures on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.
- Table 10.18 Calculation of R_s and efficiency of 16* bp and 18* bp dsPS-ODNs at XXV varying BGE ionic strengths on a CFR PEPyM-*co*-PMMA random copolymer coated capillary using short-end EKI.

List of Schemes

Scheme 1.1	Schematic representation of the mobility of PSS molecules based on size and conformation and how this relates to hydrodynamic coupling and counterion condensation. Adapted from [101].	18
Scheme 1.2	DNA migration in polymer matrices obeying the Ogston model where $R_{\rm g} < \xi_{\rm b}$. Adapted from [34, 98, 120].	27
Scheme 1.3	DNA migration in polymer matrices where $R_g > \xi_b$ and obeying reptation without orientation and reptation with orientation. Adapted from [34, 98].	30
Scheme 1.4	DNA migration through a gel obeying the BRF model. Adapted from [111].	31
Scheme 1.5	Schematic representation of polymer conformations in dilute solutions, at the overlap concentration, and in semi-dilute solutions. Adapted from [34, 98].	36
Scheme 1.6	Schematic representation of CR. Adapted from [34, 98].	39
Scheme 1.7	Reaction schematic for preparation of an LPA coated capillary.	52
Scheme 1.8	Capillary modification using SCLRP of PAM [13].	54
Scheme 1.9	Synthesis of cat-HEC from HEC. Adapted from [92].	67
Scheme 3.1	Synthesis of EPyM monomer via esterification.	100
Scheme 3.2	Mechanism for CFR polymerisation via vinyl groups.	102
Scheme 3.3	CFR polymerisation of EPyM monomer for synthesis of PEPyM homopolymer.	103
Scheme 3.4	CFR polymerisation of MMA monomer for synthesis of PMMA homopolymer.	108
Scheme 3.5	CFR copolymerisation of EPyM monomer and MMA monomer for synthesis of PEPyM- <i>co</i> -PMMA random copolymer.	111
Scheme 3.6	CFR copolymerisation of DEAEMA monomer and MMA monomer for synthesis of PDEAEMA- <i>co</i> -PMMA random copolymer.	116
Scheme 3.7	RAFT polymerisation reaction mechanism. Adapted from [171, 172].	120
Scheme 3.8	RAFT polymerisation of a block copolymer from a macro-RAFT agent. Adapted from [172].	121
Scheme 3.9	RAFT polymerisation of EPyM for synthesis of a dithiobenzoate- terminated PEPyM homopolymer macro-RAFT agent.	122
Scheme 3.10	RAFT polymerisation of MMA monomer for synthesis of a dithiobenzoate-terminated PMMA homopolymer macro-RAFT agent.	126
Scheme 3.11	RAFT polymerisation of dithiobenzoate-terminated PMMA homopolymer macro-RAFT agent and EPyM monomer for synthesis of a PEPyM- <i>b</i> -PMMA block copolymer.	132
Scheme 3.12	RAFT end-group termination methods (from a macro-RAFT agent homopolymer). Adapted from [172].	133
Scheme 4.1	Schematic representation of AFM instrumentation.	141
Scheme 4.2	Proposed adsorption mechanism for the CFR PEPyM- <i>co</i> -PMMA random copolymer to a silanol surface.	154

Scheme 5.1 A typical approach for CE method development. Adapted from [17]. 158

Scheme 5.2	Optimised CE method for analysis of ODNs on CFR PEPyM- <i>co</i> -PMMA random copolymer capillaries.	195
Scheme 5.3	Proposed ODN migration mechanism through the CFR PEPyM-co- PMMA random copolymer coated fused-silica capillary in free solution.	199
Scheme 6.1	Schematic representation of normal injection (negative polarity) compared to short-end injection utilising a positive polarity.	216

Scheme 6.2 Optimised SEI CE method for analysis of ODNs on CFR PEPyM-co- 235 PMMA random copolymer capillaries.

List of Abbreviations and Symbols

[<i>M</i>]	Concentration of monomer (via integration)
$[M_0]$	Initial concentration of monomer (via integration)
[η]	Intrinsic viscosity
$\sum_{\mathbf{k}}$	Particle (<i>k</i>) surface area
μ_{app}	Apparent electrophoretic mobility
$\mu_{ m BRF}$	BRF mobility
$\mu_{ m BRM}$	BRM mobility
$\mu_{\rm CR}$	CR mobility
$\mu_{\mathrm{CR(tot)}}$	Total CR mobility
$\mu_{ m EOF}$	Electroosmotic mobility
$\mu_{ m ep}$	Electrophoretic mobility
μ_{o}	Free solution mobility
$\mu_{ m obs}$	Observed electrophoretic mobility
$\mu_{ m rep}$	Reptation mobility
Α	Adenine
a_0	Contour length of one DNA bp
ACN	Acetonitrile
ACPA	4,4'azobis(4-cyanovaleric acid)
AFM	Atomic force microscopy
AIBN	Azo-bis-isobutyrylnitrile
APS	Ammonium persulphate
AS-ODN	Antisense oligonucleotide
b	(DNA) base
b	Kuhn length
BGE	Background electrolyte
bp	(DNA) base pair
BRF	Biased reptation with fluctuations
BRM	Biased reptation model
Bu ₃ SnH	Tributylstannane
С	Cytosine
с	Concentration
<i>c</i> *	Overlap concentration
C16-HEC	C16-derivatised 2-hydroxyethyl cellulose
cat-HEC	Cationised hydroxyethylcellulose

CDCl ₃	Chloroform, deuterated
CE	Capillary electrophoresis
CEP	Capillary electrophoresis phase
CFR	Conventional free radical
CGE	Capillary gel electrophoresis
C _k	Bulk concentration of 'k' ions
CMS	Current monitoring system
<i>c</i> _{opt}	Optimum polymer concentration
CR	Constraint release
СТА	Chain transfer agent
D	Tangential distance of chain
d	Mean difference
d6-DMSO	Dimethylsulphoxide, deuterated
DEAEMA	2-(diethylamino)ethyl methacrylate
DMF	Dimethylformamide
DMF	Diethylmalonate
DNA	Deoxyribonucleic acid
ds	Double-stranded
dsAS-ODN	Double-stranded antisense oligonucleotide
dsDNA	Double-stranded DNA
dsODN	Double-stranded oligonucleotide
dsPS-ODN	Double-stranded phosphorothioate antisense oligonucleotide
D _t	Translational diffusion coefficient
Ε	Total field strength
EDL	Electric double layer
EDTA	Ethylenediaminetetraacetic acid
EOF	Electroosmotic flow
epoxy-PDMA	Poly(dimethylacrylamide-co-allylglycidyl ether)
epoxy-poly(AG-AA)	$Poly (a crylamide-{\it co-allyl-\beta-d-glucopy} ranoside-{\it co-allylglycidy}$
	ether)
EPy	N-(2-hydroxyethyl)-2-pyrrolidine
EPyM	Ethylpyrrolidine methacrylate
ez _k	Charge of ion 'k'
F	Faradays constant
F _{drag}	Average drag force acting on the DNA due to one polymer
FTIR	Fourier transform infrared

G	Guanine
g	Grams
g	Polymer globule
GPC	Gel permeation chromatography
h	Hours
H ₃ PO ₄	Hydrogen phosphate
HCl	Hydrochloric acid
HEC	Hydroxyethylcellulose
НМС	Hydroxypropylmethylcellulose
HPLC	High performance liquid chromatography
I _B	Bjerrum length
id	Capillary inner diameter
k	Boltzmann constant
K	Constant of proportionality
<i>K</i> *	Mark-Houwink-Sakurada constant
kDA	Kilodaltons
L	Litres
L	Molecular chain length
$L_{ m c}$	DNA contour length
$L_{ m d}$	Length to the detector (effective capillary length)
LIF	Laser induced fluorescence
$L_{ m p}$	Polymer contour length
L.O.D	Limit of detection
LPA	Linear polyacrylamide
L_{t}	Total capillary length
m	Metres
Μ	Moles per litre (mol L ⁻¹)
MALDI	Matrix-assisted laser desorption/ionisation
MALLS	Multi-angle laser light scattering
MC	Methylcellulose
<i>M</i> _{DNA}	Base pair length of DNA
min	Minutes
MMA	Methyl methacrylate
$M_{ m n}$	Average number molecular mass
mol	Moles
MPTS	γ -methacryloxypropyltrimethoxysilane
$M_{ m w}$	(Average weight) molecular mass

N	Molecular length	
n	Mean number of polymer chains in contact with the DNA	
Ν	Theoretical plates	
$N_{ m A}$	Avogadro's number	
NaCl	Sodium chloride	
NaDM	Sodium diethylmalonate	
NaH ₂ PO ₄	Dihydrogen sodium phosphate	
NaOH	Sodium hydroxide	
$N_{ m bl}$	Number of globules per chain	
N _k	Total number of Kuhn segments	
NMR	Nuclear magnetic resonance	
N _p	Number of polymer molecules	
$N_{ m polymer}$	Degree of polymerisation of the polymer	
od	Capillary outer diameter	
ODN	Oligonucleotide	
ОНР	Outer Helmholtz plane	
р	Persistence length	
Pa	Pascals	
PAM	Polyacrylamide	
Pd(A)	Polydeoxyadenylic acid	
Pd(T)	Polydeoxythymidylic acid	
PDEA	Polydiethylacrylamide	
PDEAEMA	Poly(diethylaminoethyl methacrylate)	
PDEAEMA-co-	Poly(diethylaminoethyl methacrylate-co-methyl methacrylate)	
PMMA		
PDI	Polydispersity index	
PDMA	Polydimethylacrylamide	
PDMA-co-PEPyM	Poly(<i>N</i> , <i>N</i> -dimethylacrylamide- <i>co</i> -ethylpyrrolidine methacrylate)	
PDMA-co-PMAEM	Poly(N,N-dimethylacrylamide-co-4-(ethyl)-morpholine	
	methacrylamide)	
<i>p</i> _{DNA}	Persistence length of DNA	
PEG	Polyethylene glycol	
PEO	Polyethylene oxide	
PEPyM	Poly(ethylpyrrolidine methacrylate)	
PEPyM-b-PMMA	Poly(ethylpyrrolidine methacrylate-block-methyl methacrylate)	
PEPyM-co-PMMA	Poly(ethylpyrrolidine methacrylate-co-methyl methacrylate)	
PHEA	Poly-N-hydroxyethylacrylamide	

PMMA	Poly(methyl methacrylate)
poly(AA-EE)	Poly(acryloylaminoethoxyethanol)
poly(AG-AA)	Polyacrylamide- co -allyl- β -D-glucopyranoside
poly(Agal-AA)	Poly(acrylamide-co-allyl-D-galactopyranoside)
polyE-323	Bis(3-aminopropylamino)ethane
PPS	Potassium persulphate
PS-ODN	Phosphorothioate oligonucleotide
PSS	Polystyrenesulfonate
PVP	Polyvinylpyrrolidone
Q	Total particle charge
R	Gas constant
r	Capillary radius
RAFT	Reversible addition-fragmentation chain transfer
R _g	Radius of gyration/migrating particle radius
RMS	(Roughness) root mean squared
RNA	Ribonucleic acid
R _p	Radius of the polymer chains
R _s	Resolution (of peaks)
RSD	Relative standard deviation
S	Seconds
SCLRP	Surface-confined living radical polymerisation
s _d	Standard deviation
SEC	Size exclusion chromatography
SECE	Size exclusion capillary electrophoresis
SEI	Short-end injection
Si	Silicon
SNP	Single nucleotide polymorphism
SS	Single-stranded
ssAS-ODN	Single-stranded antisense oligonucleotide
ssDNA	Single-stranded DNA
ssODN	Single-stranded oligonucleotide
ssPS-ODN	Single-stranded phosphorothioate antisense oligonucleotide
star-PEO	Star-polyethylene oxide
STRs	Short tandem repeats
Т	Thymine
t	Time
Τ	Temperature

ТА	Tris-acetate
TAE	Tris-acetate-EDTA
TAPS	N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid
TBE	Tris-borate-EDTA
<i>t</i> _{calc}	Calculated <i>t</i> value for <i>t</i> -test
TEA	Triethylamine
TEC	Transient entanglement coupling
TEMED	N, N, N', N'-tetramethylethane-1,2-diamine
THF	Tetrahydrofuran
t _{int}	Injection time
T _m	Melting temperature
t _m	Migration time
TMS	Tetramethyl silane
Tris	Tris(hydroxymethyl)aminomethane
TrisCl	Tris chloride
<i>t</i> _{table}	<i>t</i> value from the table of <i>t</i> -distribution values for <i>t</i> -test
UV	Ultraviolet
UV-Vis	Ultraviolet-visible
V	Applied voltage
V	Volume
V _{DNA}	Velocity of the DNA
$\mathbf{V}_{\mathrm{inj}}$	Injection voltage
V _{int}	Volume of sample introduced/injected
V _n	Electrophoretic velocity of a DNA molecule with n polymers
	attached
$V_{ m par}$	Particle volume
V _p	Curvilinear velocity of the reptating polymer chains
Vs	Surface potential
W _h	Peak width at half height
$\alpha_{ m MHS}$	Mark-Houwink-Sakurada constant
β	Ratio of $\tau_{\rm p}$ to $\tau_{\rm DNA}$
γ	$(ho_{ m solvent}/ ho_{ m polymer}) \ge (N_{ m polymer})^{1+ u}$
δ	Chemical shift
δ	Thickness of the EDL
ΔΡ	Change in pressure
3	Reduced electric field
E ₀	Permittivity of vacuum

$\mathcal{E}_{\mathbf{b}}$	Dielectric constant of the fluid
ζ	Zeta potential
η	Viscosity of solution
$\eta_{ m s}$	Viscosity of solvent
К	Inverse Debye length
<i>K</i> ⁻¹	Debye screening length
μ	Micro
v	Velocity
v _c	Average number of chain centres/cm ³
<i>v</i> _{EOF}	EOF velocity
$ u_{ m F}$	Flory's exponent
ξ	Polymer screening length
ξ	Mesh size normalised to the DNA Kuhn length
$\xi_{ m b}$	Pore (mesh) size
ξſ	DNA friction coefficient per bp
π	Pi
ρ	Density
σ	Surface charge density
$ au_{ m DNA}$	Release time of the polymer from the DNA
$ au_{ m p}$	Release time of the DNA from the polymer
ψ	Electric potential