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Summary 
Bank storage is the process of river water mixing with near-river groundwater as a result of 

an increase in river stage due to a flow event. Such mixing causes temporal and spatial 

variation in near – river groundwater chemistry. However, the extent of the interaction is 

poorly defined. The extent of the interaction has important ramifications for 

biogeochemical cycling, contaminant mixing and degradation, and resource assessment 

techniques that differentiate between surface water and groundwater reservoirs. Previous 

assessments of bank storage have primarily relied on hydraulic methods, particularly 

pressure propagation, and chemistry measurements with limited temporal resolution. This 

work aimed to evaluate the relative rates of solute and pressure propagation and develop 

new assessment techniques for bank storage in a variety of hydrogeological environments. 

In contrast to pressure propagation into homogeneous aquifers in response to river stage 

rise, the relationships between water propagation and aquifer properties were not well 

understood prior to this study. Practically, water movement is most readily measured using 

a conservative solute or tracer. Numerical assessment of a new analytical relationship 

between solute and pressure travel times and distances and aquifer and flow event 

characteristics determined that the solution may be used in variably saturated aquifers with 

errors generally less than 30%. In homogeneous aquifers the ratio of solute to pressure 

travel time is independent of hydraulic conductivity. Consequently, under certain 

hydrological conditions time series measurement of pressure and a solute (or proxy) and 

computation of pressure and solute travel times enables a first-order estimate of aquifer 

properties and the lateral extent of river water penetration into an aquifer. 

In homogeneous systems river stage rise causes pressure to propagate faster and further 

into an aquifer than water (or solutes). Numerical testing of two conceptual models of 

alluvial heterogeneity indicated that pressure and solute propagation are unequally 

affected by aquifer heterogeneity. Hence, under certain conditions, substantial solute 
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change can be recorded in an aquifer before substantial pressure change. This may be 

identified by computing a solute travel time less than a pressure travel time. Flux estimates 

obtained from solute travel times using homogeneous solutions were determined to be 

more accurate than estimates obtained from pressure data. The error in estimates derived 

from pressure data was proportional to the contrast in hydraulic conductivity in a system. 

Theoretical investigations of bank storage have not systematically quantified the influence 

of the hydraulic gradient between aquifer and river. In this work analytical and numerical 

techniques demonstrated that variation in the hydraulic gradient influences bank storage 

exchange, penetration distance and residence time, at a scale similar to substantial 

variation in hydraulic conductivity, wave height and period, dispersivity, and river partial 

penetration. Consideration of the hydraulic gradient is therefore integral to quantitative 

assessments of exchange.  

Simultaneous measurement of pressure and solutes at high temporal resolution within 

rivers and adjacent aquifers is a useful technique for improving understanding of the spatial 

and temporal extent of river – aquifer exchange during flow events. The utility of the theory 

relies on contrasting river and aquifer chemistries. Future work should consider the use of 

alternative tracers to test residence time distribution theories, and geostatistics, spatial 

imaging, and uncertainty techniques to further understand the influence of heterogeneity. 
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1 Introduction 

1.1 The research problem 
Quantifying the exchange of water and solutes between rivers and aquifers has become 

crucial in many water-limited environments as climatic conditions and human consumption 

stress surface water and groundwater systems simultaneously (Baillie et al., 2007). This 

situation has highlighted the interconnection between the two resources, and historical 

over-allocation of water in some areas (Nevill, 2009; Sophocleous, 2002). A variety of 

methods are available to quantify water fluxes between aquifers and rivers, but many are 

limited by the localised nature of the measurements, and spatial heterogeneity in 

hydrogeological properties (Kalbus et al., 2006). This can result in highly variable and 

uncertain volume estimates, and, where such values are subsequently used for 

management purposes, potential sub-optimal allocation of resources. In addition, estimates 

made using hydraulic and chemistry based methods often produce conflicting results 

(Kirchner, 2003). 

Characterising the river-aquifer exchange processes occurring in a system is the first step to 

appropriately quantifying groundwater discharge or recharge. Exchange processes occur 

over a continuum of timescales and include hyporheic exchange (minutes to weeks), 

parafluvial flow (hours to months) and bank storage (hours to years). Hydrological, 

geological, and geomorphological controls on the significance of these processes vary 

throughout time and space, as do the drivers for the exchange (Winter, 1998). These short 

to medium term mixing processes occur, and therefore need to be considered, in the 

context of regional processes that occur over decades to millennia as a result of aquifer-

wide recharge/discharge dynamics.  

Chemical mass balance flux quantification methods are considered most appropriate on a 

scale potentially useful to water resource managers due to their ability to integrate 

processes over larger scales (Kalbus et al., 2006). However, interpretation of chemistry data 
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using simple models requires that processes are lumped, and hence, results can be highly 

dependent on the conceptual model and parameterisation. Lack of consideration of 

hyporheic exchange, for example, can significantly affect estimates of groundwater 

discharge to rivers (Cook et al., 2006). Furthermore, river aquifer exchange processes mix 

river water with groundwater. In many cases this creates a temporally and spatially variable 

zone of water around a river with a chemistry that is distinct from the wider aquifer. Lack of 

consideration of this temporal variability has rarely been considered but can lead to 

significant errors in estimates of groundwater discharge to rivers (McCallum et al., 2010). 

Techniques that exploit temporal chemistry changes to determine, for example, travel 

times from rivers to aquifers, are increasing as measurement technologies improve, but 

existing analysis methods such as deconvolution (e.g., Cirpka et al., 2007; Vogt et al., 2010) 

and principal component analysis (Lewandowski et al., 2009; Page et al., 2012) cannot 

explicitly identify the influences of individual aquifer properties or processes. 

Temporal changes in groundwater chemistry have many drivers. In aquifers connected to 

rivers, flow events are considered to be one of the main drivers. As the river level rises 

above that of the adjacent groundwater, river water moves into the aquifer, and mixes with 

the existing groundwater. As the flood wave passes, this mixture of water returns to the 

river. This process is termed bank storage (Todd, 1956). Bank storage occurs regardless of 

whether a river is gaining or losing water from the adjacent aquifer, as long as the river and 

aquifer are hydraulically connected. 

Analytical solutions that relate pressure propagation as a function of river stage rise to 

aquifer properties, and from that estimate flux, have long been available for homogeneous 

systems (Cooper and Rorabaugh, 1963) and for rivers with clogging layers (Hall and 

Moench, 1972; Hantush, 1965). However, pressure change alone cannot be directly 

correlated to the extent of water movement into an aquifer. Conventional theory indicates 

that pressure propagates further and faster than water or any solutes it contains. However, 
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explicit relationships between solute propagation, river stage rise, and aquifer properties 

have not been described in analytical solutions. Consequently, solute data has been under-

utilised. Similarly, numerical investigation of the process of bank storage has been 

predominantly hydraulic, and in homogenous systems, as pressure data is more readily 

available for model calibration and simulating solute transport is more numerically 

intensive. Field assessment of bank storage has also predominantly used hydraulic 

methods, or measurements of river chemistry obtained at low temporal resolution. 

Systematic assessment of the movement of water and solutes during bank storage was 

required to facilitate exploitation of increasingly available high temporal resolution solute 

data for the purposes of improved management of surface water and groundwater 

resources. 

1.2 Research aim 
The aim of this research was to increase bank storage process understanding in general, 

evaluate the relative rates of pressure and solute propagation during bank storage, and 

develop new techniques for assessment of river – aquifer exchange during flow events. The 

research was based on two hypotheses: 

i. River stage rise and fall induces a predictable variation in near-river groundwater 

chemistry, the spatial and temporal extent of which is dependent on key aquifer 

properties and the degree of stage change; and 

ii. Continuous measurement of a solute (or proxy) in addition to pressure in near-river 

groundwater will assist with the determination of additional aquifer properties 

(compared to solely measuring pressure) and the conceptual model of the river-

aquifer interface. 

In order to address these hypotheses this work aimed to: 

• use analytical and numerical methods to explore relationships between water 

(which can be represented by a generic conservative solute) and pressure travel 
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time and distance and aquifer and wave characteristics in variably saturated 

aquifers with a wide range of characteristics and conceptual models; 

• provide a preliminary assessment of the influence of heterogeneity structures on 

the relative rates of solute and pressure propagation identified for homogenous 

aquifers using transient numerical flow and transport simulations; 

• examine the relationships of bank storage exchange, penetration distance and 

return time to aquifer properties, river – aquifer conceptual models, and hydraulic 

gradients; and 

• verify the practical application of theoretical findings using data collected in distinct 

hydrogeological environments. Field sites were instrumented in semi-arid northern 

New South Wales on the Cockburn River and tropical north Queensland on the 

Mitchell River. 

1.3 Structure of this thesis 
This thesis consists of a broad overview (Chapter 1), three pieces of work published in or 

submitted to international peer-reviewed journals (Chapters 2 – 4) and overarching 

conclusions of the research, including the research contribution and recommendations for 

further work (Chapter 5). The three manuscripts included are: 

(1) Welch, C., P. G. Cook, G. A. Harrington, and N. I. Robinson (2013), Propagation of 

solutes and pressure into aquifers following river stage rise, Water Resources 

Research, 49, 5246–5259, doi:10.1002/wrcr.20408 [Chapter 2]; 

(2) Welch, C., G. A. Harrington, M. Leblanc, J. Batlle-Aguilar, and P. G. Cook (2014), 

Relative rates of solute and pressure propagation into heterogeneous alluvial 

aquifers following river flow events, Journal of Hydrology, 511, 891-903, doi: 

10.1016/j.jhydrol.2014.02.032 [Chapter 3]; and 
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(3) Welch, C., G. A. Harrington, and P. G. Cook (under review), Influence of hydraulic 

gradient on bank storage exchange, penetration distance and return time, 

submitted to Groundwater [Chapter 4]. 

Supplementary information for Chapters 2-4 is contained in appendices, as are conference 

papers which resulted directly from this research.  
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