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SUMMARY 

Dengue fever is a mosquito-borne disease caused by the dengue virus, with a high global incidence. 

More than 70 % of the world’s population are living in areas that are vulnerable to dengue fever, and 

most of them are in tropical regions. One of the most affected regions is Southeast Asia, where 

cases of dengue fever and deaths associated with dengue fever account for 40% of global reported 

dengue fever cases (data from 2010 to 2013). Vientiane, the capital of Laos, has a long history of 

dengue disease, with the first report of dengue fever in 1983, and large outbreaks recorded in 1985, 

1987, 1995, 1996, 1998, 2003, 2010, 2013, 2017 and the present (2019), with over 1,000 cases. 

The emergence of this increasing incidence is presumably associated with several factors, one of 

them is likely to be surface water, including both artificial and natural water bodies. Water bodies act 

as an important component in the number of dengue mosquitos – Aedes aegypti, and Aedes 

albopictus. Several previous studies have found that water bodies, a vector breeding site, tend to 

result in dengue mosquito proliferation under favourable conditions of temperature and rainfall. 

Vientiane is a mix of urban and rural areas and is surrounded by plenty of standing water and 

streams. During rainy seasons, many areas encounter poor water drainage, and this has caused 

marshland development. Given the nature of dengue disease mosquito vectors, small surface water 

bodies are likely to facilitate the expansion of mosquito populations. 

In this study, freely available satellites images were used to derive surface water throughout the year 

2017. Before selecting the suitable images, a process of selecting satellite imageries was conducted. 

Sentinel-1 SAR, Sentinel-2, PlanetScope, and RapidEye were assessed. A field survey was also 

conducted in order to observe the sites within the study area, focusing on water body size and 

vectors breeding sites. Three main datasets were used in this project; the satellite imageries – 

PlanetScope, and RapidEye, dengue incidence in 2017, and rainfall data. Surface water extraction, 

normalized difference water index (NDWI), and normalized difference moisture index (NDMI) were 

the main methods used to detect water areas.  

To determine the relationship between surface water and dengue incidence, Spearman correlation 

and regression was used. As surface water acts as the breeding habitats for the dengue virus 

carriers, expected mosquito life development time was defined from the onset date of dengue fever 

symptoms. Estimated surface water extracted from satellite images showed a relationship with 

dengue incidence, at significant level, but many aspects may need to be considered. Rainfall data 

was also compared with dengue incidence and showed a positive correlation with the disease cases, 

however surface water and rainfall were found not to associate with dengue vector populations.  
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CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW 

1.1. Background of Study 

Dengue fever is an infectious disease transmitted to humans by mosquitoes (Ebi & Nealon 2016) 

that is spread around the world, especially in tropical and subtropical regions. According to the World 

Health Organization (2011) and Gubler (2011) more than 70% of the global population live in 

vulnerable regions and most are in tropical areas. From 2010 to 2013, it was reported that the 

number of cases of dengue fever had increased from 2.4 million to over 3 million people. This 

increase was seen primarily in three affected regions including the Americas, Southeast Asia, and 

the Western Pacific, under tropical climate (Murray, Quam & Wilder-Smith 2013). Around 1.3 million 

of those at risk are in the Southeast Asia (SEA) region (World Health Organization 2011).  

The virus is carried by Aedes aegypti and Aedes albopictus female mosquitoes and transmitted by 

the mosquito biting an infected person and transmitting it to a healthy person. The A. aegypti is 

originally from Africa, while A. albopictus is from Asia, and they have, over 50 years, expanded their 

ranges through many ways. This includes increased transportation, human mobility and the rapid 

growth of urbanisation (Murray, Quam & Wilder-Smith 2013). There are two forms of the virus 

causing dengue 1) dengue fever (DF) and 2) dengue haemorrhagic fever (DHF) – which can develop 

severe symptoms (Derouich, Boutayeb & Twizell 2003). There are four types of dengue virus, or 

serotypes, DENV-1, -2, -3, and -4. These serotypes develop differently and have differing levels of 

severity. The recovery from infection by one of them provides lifelong immunity, however, the 

immunity will only be against such type not for other serotypes. Cross-immunity to the other type of 

serology could happen partially and temporally, but this secondary infection will heighten the risk of 

developing severe dengue (M Grandadam 2019, personal communication, 18 August). The virus 

stemmed from Aedes mosquitoes which is clinically more efficient than other mosquito vectors such 

as A. albopictus regarding the infectious symptoms and reactions on protection (World Health 

Organization 1986). Regarding factors influencing the distribution of dengue fever, climate, 

environment, and geographical aspects as well as population growth are likely to be critically 

associated with the disease occurrence. As the mosquito vector spreading dengue virus is climate 

dependent, the changes of climate, an increased average global temperature and humidity will 

increase the epidemic potential of dengue (Hales et al. 2002; Hii et al. 2009; Murray, Quam & Wilder-

Smith 2013). Although it appears that the changes of climate would have an impact on dengue 

incidence, temperature and humidity which are the main drivers of disease incidence are varied due 

to topographical characteristic patterns. Geographical factors have an indirect influence (Hii et al. 

2009) on temperature, precipitation and relative humidity which in turn impact on mosquito 

development. For instance, high humidity during rainy seasons facilitates longer mosquito survival 

and growth (Jetten & Focks 1997). Similarly, temperatures higher than 20°C provide favourable 
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conditions for Aedes aegypti mosquitoes (Gould 1998). Some studies also show that temperature, 

humidity, and precipitation provide appropriate conditions to the survival of mosquitoes (Banu et al. 

2011; Murray, Quam & Wilder-Smith 2013). An example of this was a study of higher temperatures 

affecting dengue fever transmission in Taiwan. This study estimated that for every 1°C increase, the 

incidence of dengue fever transmission, especially in urban areas, could be up to 1.95 times (Wu et 

al. 2009). This is supported by a study that showed a relationship between higher temperature and 

higher population of mosquitoes at 28°C – 36°C (Nasir et al. 2017). In addition to climatic influence, 

the physical environment, such as land use and land cover are also considered as crucial variables 

for analysis of dengue occurrence (Nakhapakorn & Tripathi 2005). 

Water bodies, including artificial and natural surface water, are one of physical environmental factors 

that play an important role in the spread of dengue. The areas that have reported an outbreak of 

dengue cases are likely to occur nearby water sources including rivers, streams, coastlines, lakes, 

ponds, and standing water bodies (Halstead et al. 1965; Hsueh, Lee & Beltz 2012; Nakhapakorn & 

Tripathi 2005; Qi et al. 2015; Raghavendra, Sharma & Dash 2008). Water bodies are breeding sites 

for mosquitoes to undergo part of their life cycle, from egg laying to hatching stage (Bowatte et al. 

2013). With favourable conditions, including temperature, larval development in water takes a shorter 

time, and increases capacity to produce offspring (Githeko et al. 2000).  

Examining the factors that influence the distribution of dengue fever by investigating the temperature 

and other environmental aspects might help predict the potential areas where an outbreak could 

happen (Wu et al. 2009). However, exploring the association of physical environment, land use/land 

cover types, especially surface water, and life cycle of mosquito vectors would help understand the 

vector’s natural behaviour as it is regarded to be a critical indicator in epidemiology (Cheong, Leitão 

& Lakes 2014; Li et al. 2017; Nasir et al. 2017). 

1.2. The Association Between Water Bodies and Dengue Fever 

A systematic literature review was conducted in order to find out how water bodies and dengue 

incidence are correlated. This was divided into four sections which includes the method used to 

systematically search for the relevant literature and selection criteria, results of searching – study 

inclusion and the analysis of the relationship between water bodies and the vector, discussion, and 

conclusion. 

1.2.1. Methods 

Searching Strategy and Selection Criteria 

PubMed and Web of Science databases were used to obtain studies on the association between 

dengue incidence and water bodies. The key words used to search for related studies were “dengue 

fever”, “dengue haemorrhagic fever”, “environment”, “tropical climate”, “water bodies”, “river”, 
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“stream”, “dam”, “physical environment”. The search focussed on two aspects. First, the studies 

reporting dengue cases that occurred near rivers or streams or other water bodies. Second, studies 

that emphasised water bodies or surface water as one of the influences on dengue incidence. 

Selection Criteria 

The search had no restrictions in geographical characteristics, but only English language and 

published journal articles were considered. In addition, reviews were included in the search, but for 

use in the discussion section of this paper only. The studies were limited to those published from 

1960 until the present. The terms “dengue fever”, and “dengue haemorrhagic fever” were initially 

applied in the search system. However, using these terms, seemed to be too broad and plenty of 

irrelevant articles were selected as a result of that. Hence, to narrow the search to the specific field 

of interest, terms such as “physical environment”, “water bodies and streams”, “land-use/land-cover”, 

and “tropical climate” were added (Table 1.1). 

The search was restricted by excluding studies of dengue fever, or dengue incidence that focussed 

on clinical aspects, serological examinations, surveillance, and vaccination. The articles which were 

written by reviewing and summarising related literature were not included since they were unlikely 

to provide sufficient information, such as the methods used in individual studies. However, some of 

them (Githeko et al. 2000; Morin, Com & Ernst 2013; Sutherst 2004; Tabachnick 2010) will be used 

as additional information to support the selected articles. The studies highlighting climatic factors 

were considered in this search as temperature and relative humidity are conditions that support an 

increase in mosquito populations. 

1.2.2. Results 

Study Inclusion 

The search categories were divided into six different groups according to the terms used (as 

presented in Table 1.1). However, for the second to the fourth category; the focus is about surface 

water so that they were grouped together. The search found148 articles related to dengue fever and 

dengue haemorrhagic fever in tropical climate regions in PubMed and Web of Science, with 26 

identical articles. There were 81 articles (26 from PubMed, 55 from Web of Science) which contained 

the information on water bodies, rivers, and streams as the concerned aspects influencing dengue 

fever and dengue haemorrhagic fever, with nine similar articles. The articles highlighting physical 

environment, and land-use/land-cover as one of the factors contributing to dengue disease were 

found from PubMed (16) Web of Science (23).  

Only 21 articles were selected out of these search results (see Table 1.2) as they cover all needed 

aspects such as tropical climate, the occurrence of dengue disease, physical environment, as well 

as types of land-use/land cover. The focus of these articles was their major findings which were 
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divided into two categories – dengue incidence in the regions where either surface water, rivers or 

streams are located, and the influence of dengue prevalence associated with climatic conditions 

such as precipitation, temperature and humidity. All articles in the final selection were published 

between 1965 and 2019. Five of the studies were in China, two each were in Sri Lanka, India, 

Malaysia, Taiwan, Thailand and Vietnam, and one each was in Indonesia, Pakistan, Cuba, and 

Australia.  

Table 1.1: Search results from PubMed and Web of Science databases 

 

Terms used 

Results of search 

PubMed Web of 
Science 

Similarity 

Dengue fever, dengue haemorrhagic 
fever, tropical climate 

59 89 26 

Dengue fever, dengue haemorrhagic 
fever, water bodies 

2 9 1 

Dengue fever, dengue haemorrhagic 
fever, river 

18 43 6 

Dengue fever, dengue haemorrhagic 
fever, stream 

6 3 2 

Dengue fever, dengue haemorrhagic 
fever, physical environment 

10 15 3 

Dengue fever, dengue haemorrhagic 
fever, land-use/land-cover 

6 8 3 

Table 1.2: Characteristics of studies on association of dengue fever, dengue haemorrhagic 

fever with water bodies 

Study Location Methods Findings 

Nakhapakorn and 

Tripathi (2005) 

Thailand Multiple regression 

Bayesian classifier 

Built-up areas have the highest spatial 

risk factors for dengue. 

Agricultural areas were shown to have 

the second level of high risk. 

Water bodies showed a positive 

relationship with three districts, among 

those, only one district in which water 

bodies was determined by the authors of 

the study to present a significant risk. 

Hsueh, Lee and 

Beltz (2012) 

Taiwan Weighted regression Density of population has a stronger 

correlation with dengue fever than the 

comparison of the incidence with 
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Study Location Methods Findings 

Moran’s index 

 

population counts. In five years (2003 to 

2007), the spatial distribution of dengue 

fever was different in each year. 

With the distance from DF cases to 

roads, the large majority of incidence was 

found within 1.0 km in 2004 and 2007. 

However, many cases occurred around 

1.75 km away in 2006. 

About 75% of dengue incidence occurred 

within 1.5 km from a river. The greater the 

distance from roads and rivers, the 

smaller number of dengue fever cases 

was found. 

Raju and Sokhi 

(2008) 

India Correlation and 

regression analysis 

Invert distance 

weighing (IDW) 

interpolation 

Uncommon connections in urban area 

could limit the flight ranges of Aedes 

aegypti. The connectivity of the houses 

had a negative correlation with dengue 

incidence. 

Drainage where water is collected, and 

overflow of tank water in household sites 

are suitable sites for the Aedes to breed. 

Nasir et al. (2017) Pakistan Logistic regression 

model 

Chi-square  

Aedes aegypti mosquitoes were 

collected from 810 water containers in 

urban and rural areas (83 sites). 

Population of the Aedes aegypti was 

found to be positive with high variation in 

the density of mosquitoes found in all 

seasons.  52.4% of total collected 

population in rainy season due to high 

temperature (28°C to 36°C), and high 

humidity up to 75%. In summer, 41.7% of 

total mosquitoes were found, while there 

was 5.9% in winter. 

Water quality had a significant influence 

on mosquito population density. They 

were found in turbid water (46.1%), turbid 

foul (33.8%), and clear and clear foul with 

17.4% and 2.7% respectively. Most of the 

population was found in standing water 

(97.8%), while flowing water had only 

2.2%. 

Abiotic factors (temperature and relative 

humidity) had a significant impact on 

Aedes aegypti population, as more rain 

fell, and more floods, increased relative 

humidity. This resulted in an increase of 

the population. 
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Study Location Methods Findings 

Artificial containers were the major 

breeding habitats for Aedes aegypti 

mosquitoes as 44.8% were found in 

tyres, 37.8% in tanks and cans, while 

17.4% of the total collected mosquitoes 

were found in water bodies, and none in 

natural tree holes. 

Most of the population of mosquitoes 

were found in urban areas (78.1%), the 

rest were found in rural areas (21.9%). 

The rainy season was shown to play a 

significant role in Aedes aegypti 

population dynamics compared with the 

summer time. 

Spiegel et al. 

(2007) 

Cuba Logistic regression 

Chi-square test 

Water pipe leaks, deposits of water as a 

result of uncovered tanks were not a 

significant risk factor of dengue 

incidence. 

Poor condition of houses was a highly 

significant risk factor – perhaps due to the 

accumulation of water leakages inside 

houses. 

Sirisena et al. 

(2017) 

Sri Lanka Autoregressive 

moving average 

(ARIMA) 

Correlation analysis 

R studio 

Dengue incidence was found in both wet 

and dry zones where there was a high 

human population number. 

An increase in the average rainfall had a 

positive correlation with dengue 

incidence, while temperature had no 

relationship with dengue incidence. 

Humidity was significantly correlated with 

the disease incidence. 

During heavy rain, there was not a strong 

correlation between dengue fever and 

rainfall, but when the rainfall decreased, 

and the area was flooded, there was a 

positive correlation. 

The occurrence of dengue fever was 

associated with water storage practices 

undertaken due to the scarcity of water. 

Schmidt et al. 

(2011) 

Vietnam Poisson regression—

space-time scan 

statistics 

Ross-MacDonald 

model 

In rural areas, a high rate of dengue fever 

was also found – as high as in the urban 

areas. A high density of population in 

rural areas with lack of piped water 

supply experienced higher risk of dengue 

than in urban areas where there was 

adequate water supply. 
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Study Location Methods Findings 

Bi et al. (1998) China Correlation and 

multiple linear 

regression analyses 

Higher incidence rates of dengue disease 

were associated with lower levels of 

precipitation, and with less inundation of 

farmland around the lake. 

Difference of water level in the Huai River 

was significantly correlated with the 

incidence rate. 

Angel and Joshi 

(2009) 

India Descriptive Analysis 

Mosquitoes collected 

from urban, rural, 

peri-urban, in which 

three zones were 

divided into desert, 

forest and river, 

semi-arid. All 

mosquitoes were 

subjected to the 

Indirect fluorescence 

antibody test (IFAT). 

In urban areas, desert zone showed 

highest mosquito infectivity (21.6%), 

while that was found 7.1% in forest and 

river area, and the least was in semi-arid 

area (3.2%). 

In rural areas, desert areas showed the 

highest natural infection in mosquitoes 

(25%) in semi-arid areas, it was 24.1%. 

In peri-urban areas, one of total 

mosquitoes (11) collected in this area 

showed positive IFA test in desert area, 

and no mosquito infectivity was found in 

the non-desert area. 

Qi et al. (2015) China Generalized additive 

model (GAM) 

Spline smooth 

Dengue incidence was clustered in the 

middle of the area of interest (Pearl River 

Delta economic zone). 

DF incidence showed a significant 

positive correlation with boundary, and 

urban and rural areas in study areas, 

which indicated an association of dengue 

fever with people living in urban areas. 

Population density with 30,000 to 40,000 

people per square kilometre was found to 

have lower risk than areas with higher or 

lower population densities. 

Road density and risk of dengue fever 

were positive correlated, which indicated 

that high accessibility can increase the 

incidence. 

The increase of normalized difference 

vegetation index values showed a 

decline in risk of dengue fever. 

Higher GDP per capita appeared to be 

related to lower in risk of dengue 

occurrence, while lower GDP in poorer 

areas was related to high risk of dengue 

infection 
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Zheng et al. 

(2019) 

China Generalized additive 

model (GAM) 

Socioeconomic and environmental 

factors were tested and compared in two 

regions, and it was found that 

socioeconomic factors such as 

population, and urban land ratio showed 

the largest variance in regional 

epidemics. 

Normalized difference vegetation index 

(NDVI), and temperature as 

environmental factors showed a slight 

difference of variance compared with 

socioeconomic factors. 

Dengue fever was more severe in areas 

with temperatures greater than 17.8°C, at 

moderate level of rainfall of 170 to 190 

mm, or water bodies with ratio of 

approximately 0.15 to 0.2. 

Wijayanti et al. 

(2016) 

Indonesia Bayesian Poisson 

spatial analysis 

Employment and education level in each 

village showed a positive correlation with 

the risk of dengue fever. 

Distance to hospital was negatively 

correlated to the risk of dengue cases. 

The increase of dengue infection risk was 

up to 28% in the area with temperature at 

night time between 10°C and 15°C, and 

that increased by 64% in the areas with 

night temperatures below 10°C. 

Urban areas contained breeding sites for 

mosquitoes like buckets, water storage 

containers, traditional bath tubs. 

Rural areas, in this study, showed 

comparable numbers of adult Aedes 

aegypti during the rainy season. 

Shang et al. 

(2010) 

Taiwan Logistic and Poisson 

regression model 

Lower rainfall and relative humidity were 

significantly related to dengue cases. 

Drier conditions may facilitate dengue 

transmission due to an increase of water 

storage behaviour, this results in creating 

breeding sites for mosquitoes Aedes 

aegypti, particularly in the areas without 

a reliable water supply. 

Li et al. (2017) China Meta-analysis 

Correlation analysis 

Dengue incidence and weather factors 

such as temperature, humidity, and 

rainfall show different lagged 

relationships. 
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Generalized additive 

model (GAM) 

It was found that mean temperature, 

maximum temperature, and minimum 

temperature at lags of 0-3 months had 

positive correlations with monthly dengue 

occurrence. 

Mean relative humidity and precipitation 

were strongly correlated with dengue 

fever cases but not significant. 

Dengue fever cases were shown to be 

higher, which was assumed to be due to 

the construction project of the artificial 

lake in the study site. Since this project 

was implemented, water areas in the city 

have been expanded. 

Tian et al. (2016) China Bayesian Marckov 

Chain Monte Carlo 

Mosquito population sizes may vary 

according to water areas, especially the 

larger water area may lead to higher virus 

relative diversity. 

Surface water areas and dengue 

epidemics: the number of DF cases was 

found to be associated with the surface 

water as the study site had largest 

surface area in history, and a large 

dengue outbreak occurred. 

Rainfall significantly influenced surface 

water as heavy rainfall caused an 

increase of surface water. 

The lake construction project in the study 

site had disturbed the surface water. 

Although the amount of rainfall 

decreased, the surface water still 

increased. 

It was speculated that the larger surface 

water area could provide more breeding 

sites for Aedes albopictus mosquitoes, 

which possibly leads to a high chance of 

disease contact. 

Dickin, Schuster-

Wallace and 

Elliott (2013) 

Malaysia Descriptive analysis 

– Water associated 

disease index 

(WADI) 

Each region in Malaysia has different 

patterns of dengue distribution. This is 

due to the changing climate patterns. For 

instance, the eastern coast of Malaysia 

had low exposure to dengue fever as it is 

affected by the monsoon season which 

brings heavy rain to the area. Heavy 

rainfall washed away mosquito breeding 

sites, while in drier months, moderate 

rainfall provides favourable conditions for 



 

10 

Study Location Methods Findings 

mosquitoes to breed in so that large 

mosquito populations were found during 

this time. 

Low vulnerability of dengue fever was 

observed in areas with dense vegetation 

and forest as they are not favourable for 

Aedes vectors. 

Low temperature is not suitable for 

mosquitoes to survive. 

Water use and behaviour relate to the 

susceptibility to the disease as it can 

create sources for vector survival both 

indoors and outdoors. 

Regions without proper piped water 

supply showed high risk of dengue fever 

due to the need to store water. 

Tiong et al. (2015) Malaysia Spearman’s rank 

order 

For land cover type, large water bodies 

did not appear to influence dengue 

prevalence. Large water bodies were not 

suggested to be an indicator of dengue 

prevalence as most of them are located 

further away from human settlements. 

Tun‐Lin, Burkot 

and Kay (2000) 

Queensland, 

Australia 

Descriptive analysis Survival to adulthood of mosquitoes was 

found to be 88-98% of the total at 20-

30°C, and that was reduced to 67% at 

35°C, and to 23.5% at 15°C. All immature 

mosquitoes died at temperatures of 10°C 

and 40°C. 

Larval development was found to vary 

according to water temperature and 

water level. 

Food supply such as organic matter was 

an important component that affects the 

density of mosquito Aedes aegypti. 

Phuanukoonnon, 

Brough and Bryan 

(2006) 

Thailand Descriptive Analysis Water-holding bodies and volume and 

other characteristics of water like 

cleanliness were found to be significant 

impacts on the breeding sites of 

mosquitoes. 

Numbers of mosquitoes increased 

dramatically when water supply and 

electricity were available in the study 

areas. This leads to the successive use 

of water, which resulted in water disposal 

leading to ground surface water and 

drains which are favourable for 

mosquitoes. 



 

11 

Study Location Methods Findings 

Bowatte et al. 

(2013) 

Sri Lanka ANOVA Analysis Water with tadpoles was favourable for 

mosquitoes to lay eggs as tadpoles 

provide food, while water with no 

tadpoles was found to have a smaller 

number of eggs. 

Hatching pattern of eggs found to be 

different in water with tadpoles and no 

tadpoles. Hatching percentage of 

mosquito eggs from water with no 

tadpoles was higher than that of in water 

with tadpoles. This indicates that female 

mosquitoes prefer to lay eggs in water 

with tadpoles, but during the hatching, 

the tadpoles destroyed larvae. 

For isolated water bodies it is suggested 

considering biological control such as 

tadpoles. 

Halstead et al. 

(1965) 

Vietnam Descriptive Analysis DF occurred in south Vietnam along the 

Mekong delta. This incidence was found 

in the area where there was a high 

population density despite the small size 

of villages. In addition, the effect of traffic 

between neighbouring countries such as 

Cambodia and Vietnam were suspected 

of assisting the spread, but this was not 

assessed. 

Numbers of Aedes aegypti were 

presented in the study site along Mekong 

River. 

 

The association analysis between dengue incidence and water bodies  

From this searching, studies evaluated the relationship between dengue incidence and water bodies 

(Bi et al. 1998; Bowatte et al. 2013; Morin, Comrie & Ernst 2013; Nasir et al. 2017; Schmidt et al. 

2011; Tian et al. 2016), however, among these studies, only one, a review article, discussed the 

mosquito life cycle (Morin, Comrie & Ernst 2013), and three of them included water bodies as one of 

the major dengue risk factors (Bowatte et al. 2013; Nasir et al. 2017; Tian et al. 2016). Of 21 

published studies, fifteen studies have examined the dengue cases occurring in the outbreak areas 

and mention water resources as another potential factor in dengue distribution. Other published 

journal articles reviewed the correlation of climatic conditions and dengue transmission (Morin, 

Comrie & Ernst 2013), the effects of environment on vector borne disease, as well as human 

vulnerability to the disease (Githeko et al. 2000; Sutherst 2004; Tabachnick 2010). These have 
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outlined how water, in conjunction with climate – temperature, precipitation – can influence dengue 

incidence in tropical and sub-tropical regions.  

The main variables assessed in these studies (Table 1.2) are the number of dengue cases and their 

distribution, and mosquito density. Most studies collected climatic data including temperature, 

precipitation and relative humidity (Bi et al. 1998; Dickin, Schuster-Wallace & Elliott 2013; Li et al. 

2017; Nakhapakorn & Tripathi 2005; Nasir et al. 2017; Phuanukoonnon, Brough & Bryan 2006; Raju 

& Sokhi 2008; Shang et al. 2010; Sirisena et al. 2017; Tian et al. 2016; Zheng et al. 2019). Several 

used non-climatic factors such as house patterns, land use types, house cleaning and maintenance 

management (Raju & Sokhi 2008), topography (Bi et al. 1998), economic conditions and vegetation 

index as environmental variables. Population density, road density and land use/land cover are 

designated as social factors (Qi et al. 2015; Zheng et al. 2019) and are regarded as independent 

variables. Three studies assessed land cover, but focussed on developed land, vegetation, water 

bodies such as lakes, wetland, rivers and seas (Hsueh, Lee & Beltz 2012; Tian et al. 2016; Tiong et 

al. 2015), water supply (Schmidt et al. 2011), and water level (Bi et al. 1998). Two studies included 

night time surface temperature as environmental factors, sunshine hours, water vapour, evaporation 

and mean wind speed as weather factors (Li et al. 2017), as well as employment types, and health 

service accessibility in the assessment of dengue occurrence (Wijayanti et al. 2016). 

Water samples were collected from ponds, sewage, rain water (Nasir et al. 2017), rivers, and 

wetlands where inundation is likely to occur during rainy seasons (Bowatte et al. 2013; Nasir et al. 

2017; Tun‐Lin, Burkot & Kay 2000) to test for nutrients and organic carbon and to compare with 

dengue prevalence.  

Studies have collected serum, clinical data, (Halstead et al. 1965), serotype of dengue virus (Shang 

et al. 2010; Tiong et al. 2015), and gene sequences (Tian et al. 2016). 

Different methods were used to evaluate the association between observed variables and dengue 

incidence, or vector borne disease. For instance, spatial analysis was used to identify land use/land 

cover type, and examine the incidence of spatial distribution and climatic factors (Nakhapakorn & 

Tripathi 2005; Raju & Sokhi 2008; Sirisena et al. 2017; Tiong et al. 2015; Zheng et al. 2019). There 

were five descriptive analyses (Angel & Joshi 2009; Dickin, Schuster-Wallace & Elliott 2013; 

Halstead et al. 1965; Phuanukoonnon, Brough & Bryan 2006; Tun‐Lin, Burkot & Kay 2000). 

Regression methods, such as multiple regression, regression predictive model, logistic regression, 

weighted regression, and logistic and passion regression, were applied to evaluate dengue risk 

factors and predict future disease transmission. These regression models are used to analyse 

weather variables, the distributions of population density and dengue incidence. They were also 

used to assess the relationship between other risk factors which can be used to generate predictive 

models of dengue incidence. A generalized additive model (GAM) was used to identify potential 

contributing factors affecting dengue distribution patterns, and autoregressive moving average 
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(ARIMA) was used to predict future dengue outbreaks (Li et al. 2017; Qi et al. 2015; Sirisena et al. 

2017). Other statistical approaches, including spline smooth, and Bayesian statistics, were applied 

to evaluate the socioeconomic and environmental effects on dengue cases (Qi et al. 2015), to 

quantify risk factors (Wijayanti et al. 2016), and to assess the temperature effect on probability of 

disease transmission (Tian et al. 2016).  

1.2.3. Discussion 

In this systematic review, the focus was an association between dengue incidence and water bodies 

which include surface water, rivers, ponds, and other open water areas. The previous reviews have 

revealed that there is a clear connection between dengue transmission and water areas, despite the 

fact that only one-third of recent studies considered water bodies as one of the main risk factors of 

dengue incidence. Water bodies such as ponds, and isolated surface water appear to play a role as 

a provider of breeding sites for proliferation vectors since the beginning of egg laying to hatching 

stages (Bowatte et al. 2013). This finding is supported by the studies from Nasir et al. (2017) which 

revealed that 97.8% of mosquitoes were found in standing water, and only 2.2% in flowing water. 

Tian et al. (2016) found that dengue cases are associated with surface water as it is likely to have 

an impact on mosquito population size, however that the presence of water bodies alone might not 

provide favourable sites for breeding of mosquitoes. Bi et al. (1998) stated that a relationship 

between incident rates of disease occurring in a particular region may relate to the system of surface 

water, rivers, or streams. Additionally, water quality, and nutrition in water are significant factors in 

contributing to mosquito population levels (Morin, Comrie & Ernst 2013; Nasir et al. 2017). Organic 

matter in water, for example, is important for the expansion of mosquito populations, and can provide 

conditions for shorter life cycle development, and higher survival rates as a result (Tun‐Lin, Burkot 

& Kay 2000). This is also found in a review from Morin, Comrie and Ernst (2013) noting that although 

rainfall, one of the essential aspects to favour dengue incidence, can exacerbate the influence on 

density of mortality, it is relatively low when compared to nutrients in water. Nutrients in water provide 

suitable conditions which is a key to supporting larval development and therefore mosquito survival. 

The size of water areas is considered to have an impact on mosquito development. It has been found 

that large water areas can potentially limit the effect of the vector and pathogen as within these the 

light from the sun is limited and the oxygen can be reduced. These are likely to create unfavourable 

conditions for mosquito development (M Grandadam 2019, personal communication, 09 August). 

This is consistent with a study in Malaysia which showed that there was no connection between 

large water bodies – rivers, coasts – and dengue prevalence because larger water bodies have less 

influence on the incidence (Tabachnick 2010; Tiong et al. 2015). In contrast with these studies, it 

has also been reported that surface water areas, especially large surface water, seems to be 

associated with large epidemics (Tian et al. 2016). To add to this, Li et al. (2017) conducted research 

about dengue infection in Guangzhou, China to find out the factors which caused the issue. From 
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this study, it was found that the incidence seemed to relate to the artificial lake which was recently 

created in the study areas, because before the lake was there, there was no outbreak in the area.   

Water temperature and humidity critically influence host and vector distribution (Githeko et al. 2000; 

Tabachnick 2010). When the temperature rises, larvae will take a shorter time to mature, and will 

have a higher capacity of producing vectors. A study in Punjab, Pakistan, showed that populations 

of mosquitoes were found to be up to 52.4% higher than at other times at temperatures between 

28°C to 36°C, and humidity of 75% in the rainy season (Nasir et al. 2017). However, Shang et al. 

(2010) pointed out that higher temperatures may not cause an increase of dengue transmission but 

only supports mosquito proliferation, unlike precipitation. 

Rainfall appears to be significantly related to dengue prevalence as the number of dengue cases 

increases when there is an increase of rainfall (Shang et al. 2010), however this contrasts with a 

study in Sri Lanka which reported that heavy rain has a negative correlation with the dengue 

incidence because eggs and larvae are washed away by heavy rain (Sirisena et al. 2017). Decline 

in rainfall creating drier conditions has been found to have a positive correlation with dengue 

transmission. Low precipitation creates less inundation and low water levels, especially in wetlands 

(Bi et al. 1998).  

Apart from the factors such as precipitation and humidity that link to vector’s breeding sites, some 

other components may need to be considered. It was highlighted that poor management of water 

supply and house condition have a connection to dengue cases to some extent (Schmidt et al. 2011; 

Spiegel et al. 2007). Lack of water supply in highly populated areas tends to increase the rate of 

dengue disease transmission, especially in rural areas. This is assumed to be because water 

deposition on the surface due to leaking water pipes, and poor management of water drainage 

systems may assist the capacity of mosquito development.  

Geographical and topographical patterns also affect the emergence of dengue incidence. For 

example, a study in Malaysia found that dengue distributions showed different patterns in each 

region across the country due to the changing of climate patterns (Dickin, Schuster-Wallace & Elliott 

2013). Likewise, a study in Yingshang County, China, also showed that low land and wetland within 

100 metres above sea level and under mild ecological conditions were at high risk of epidemic (Bi et 

al. 1998; Nasir et al. 2017).  

Some evidence has been reported that road density or transportation is one of the risk factors of 

dengue incidence as they are assumed to facilitate infected commuters who travel from place to 

place (Zheng et al. 2019). A study in the Pearl River Delta, China showed that a semi-urban area 

where the transportation was extensively linked is likely to be at higher risk of dengue disease than 

the urban area (Qi et al. 2015). None of the previous studies, however, have mentioned the distance 

from outbreak sites to water bodies such as rivers, lakes, ponds, irrigation, wetland, deltaic areas, 
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regardless of the fact that most dengue occurred in the regions where water areas are located (Angel 

& Joshi 2009; Bi et al. 1998; Halstead et al. 1965; Qi et al. 2015).  

There are several limitations to this study that should be considered. First, strong evidence to show 

the correlation between water bodies and dengue incidence has not been clearly identified even 

though water bodies, the breeding habitats for larval development, were predominantly mentioned 

in the discussion. Most of the previous studies have provided some clues that water area might have 

the potential to affect dengue transmission and it should be the focus of further studies. Second, 

although socioeconomic and environmental factors are considered to be important factors in dengue 

distribution, it has not been identified which of them should be the major focus, whereas this was 

under climatic factors in a numbers of studies (Nakhapakorn & Tripathi 2005). Third, statistical 

methods were applied differently among the studies in finding out dengue distribution patterns and 

future anticipation without mentioning the restrictions or limitations. It may be useful for further 

studies if the tools used in the field of public health, like dengue incidence in terms of predicting 

disease and distribution patterns are compared to find the better fit models in this particular field. 

1.2.4. Conclusion 

This study aimed to assess the influence of water areas on dengue incidence through previous 

studies. Water bodies are essential for mosquito proliferation as they provide breeding sites for 

mosquitoes from egg laying and larval development to maturity stage. Temperature, precipitation 

and relative humidity are also crucial conditions that favour mosquito development. Study sites in 

the studies that have experienced dengue outbreaks are mostly located close to water areas. 

However, in some regions, there is no connection between water areas and dengue incidence 

particularly larger surface waters such as rivers, streams and lakes. Organic materials and nutrients 

in water might also have an impact on dengue incidence. To assess this, apart from climatic factors, 

further studies need to consider ecological domains on which mosquitos rely as breeding sites as 

an important aspect in order to understand the disease prevalence.  

1.3. Geographic Information System and Remote Sensing in 

Epidemiology 

Geographic information systems (GIS) and remote sensing (RS) technologies have been widely 

applied in the field of infectious diseases to study spatial and temporal distribution patterns. 

Epidemiology which is tightly associated with spatial data could help in determining disease risk by 

connecting locations to disease. GIS, Remote Sensing, and spatial analysis in epidemiology have 

been developed for over 25 years with the increasing capability of storage, retrieval, analysis and 

display of spatial data (Graham, Atkinson & Danson 2004). It has previously been suggested that 

utilising spatial analysis could aid the examination of the factors that influence the distribution of 

dengue incidence by investigating the climatic and environmental aspects which can not only predict 
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the potential areas but also identify the risk factors of dengue cases (Wu et al. 2009). Remote 

sensing and GIS have been applied in the field of infectious disease, with an emphasis on vector 

borne diseases. For instance, the use of satellite images has been largely used to determine the 

distribution of diseases and their variations through time. Particularly, when diseases correlate with 

environmental data such as climate, vegetation, land-use, these can be used as the indicators to 

forecast the emergence of diseases through predictive models (De La Rocque et al. 2004), and help 

prepare and develop effective early warning systems (Kitron 2002). Additionally, georeferenced 

data, which is processed through GIS software, can assist remotely sensed technologies to enhance 

public health surveillance. For example, high resolution satellite imageries provided timely and 

detailed in digital form to represent land formation and landscape can classify and identify the 

correlation between disease host and vector habitats (Croner, Sperling & Broome 1996). 

Several studies have used remote sensing and GIS to investigate the relationship between the 

emergence of dengue incidence and specific factors in order to search for risk factors and to predict 

future risk. For instance, Khormi and Kumar (2011) created their model of dengue fever risk by using 

GIS and remote sensing. High resolution satellite images were used to examine the density of 

houses in different neighbourhoods in each district, while GIS was applied as a tool to predict risk 

level of dengue fever victims. Similarly, Zheng et al. (2019) investigated the factors that influenced 

dengue fever epidemics in China based on environmental factors such as vegetation index, and 

socioeconomic factors by applying GIS and satellite imageries (Qi et al. 2015).  

Notably, it is clearly seen in previous studies that integrating GIS and remote sensing techniques in 

the epidemic field to investigate disease prevalence, factors causing the incidence can be identified 

as well as future risk model developed. However, concerning the availability of high resolution 

remotely sensed data and the high precision data seem to be the main challenge to some countries, 

like Laos, in obtaining highly accurate results.  

1.3.1. Remote Sensing Sensors  

Remote sensing systems have a long history of development since 1972 when the first satellite – 

Landsat-1— was launched. From that time onward, many satellites have been developed with an 

improvement of high resolution and sensors which can detect more accurate ground feature 

information (Joseph 2005). Regarding the availability of sensors, two sensor systems which are 

optical sensors and radio detection and ranging (RADAR) have presented high spatial resolution 

with the development of hyperspectral sensors which can obtain genuine world data (Donoghue 

2000). Ground information is provided by the measurement of the sensor boarded on satellites which 

extract data from the electromagnetic radiation. The quality of this information detection would be 

varied depending on wavelength, polarisation, direction and intensity (Zhu et al. 2018). Two types of 

remote sensing sensors have been used, active sensor and passive sensor (Figure 1.1). Active 

remote sensor basically relies on its source of energy to measure the ground objects’ illumination. 
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The wavelength range of this sensor type ranges from visible spectrum (700 nm – 400 nm) and near-

infrared (780 nm – 2500 nm), and radar waves (Joseph 2005) (see Figure 1.2). Passive remote 

sensor, on the other hand, depends on solar energy as a radiance to measure the reflectance from 

earth surface illumination (Zhu et al. 2018). Basically, the wavelength ranges from visible to near-

infrared electromagnetic spectrum (430 nm – 720 nm, and 750 nm – 950 nm respectively), however, 

some satellite sensors have provided a long wavelength up to 1580 nm – 1750 nm (mid-infrared) to 

derive more accurate information from surface information. 

Figure 1.1: Active and Passive Remote Sensors 

Source: http://www.gisresources.com/passive and active remote sensing 

Figure 1.2: Electromagnetic spectrum 

Source: Hexagon (n.d) 

Image removed due to copyright restriction.

Image removed due to copyright restriction.

http://www.gisresources.com/passive
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Table 1.3: Major regions of the electromagnetic spectrum 

Region Name Wavelength Comments 

Gamma Ray < 0.03 nm Entirely absorbed by the Earth's atmosphere 

and not available for remote sensing. 

X-ray 0.03 to 30 nm Entirely absorbed by the Earth's atmosphere 

and not available for remote sensing. 

Ultraviolet ray 0.03 to 0.4 µn Wavelengths from 0.03 to 0.3 micrometres 

absorbed by ozone in the Earth's 

atmosphere. 

Visible 0.4 to 0.7 µn Available for the Earth remote sensing. 

Surface objects can be imaged with cameras 

and sensors. 

Near and 
Mid-Infrared 

0.7 to 3.0 µn Available for the Earth remote sensing. 

Surface objects can be imaged with cameras 

and sensors. 

Thermal-Infrared < 0.7 to 3.0 µn Available for the Earth remote sensing. This 

wavelength cannot be captured by film 

cameras. Specific sensors are used to image 

this wavelength band.  

Microwave or 
Radar 

0.1 to 100 
centimetres 

Longer wavelengths of this band can pass 

through clouds, fog, and rain. Images using 

this band can be made with sensors that 

actively emit microwaves. 

Radio >100 centimetres Not normally used for the Earth remote 

sensing 

Adopted from Baumann (2010) 

1.3.2. Remote Sensing used for Water Bodies Detection 

Remotely sensed imageries and its allied techniques – Geographic Information System – have been 

widely used to observe water bodies for many years for two main reasons. Firstly, the need to assess 

the existing water resources and the changes of these resources due to the scarcity of water 

resources and issues related to water. Secondly, the effects caused by the changes in climate which 

influence the change of water cycling. Applying these technologies to study water bodies, might help 

develop feasible ways to mitigate the water related problems (Nath & Deb 2010).   

To map open surface water, several methods have been used, for instance, using synthetic aperture 

radar (SAR) imagery to map out open fresh water areas in large regions; applying remote sensing 
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and GIS to identify type of land cover (Prakash & Gupta 1998), as well as a model developed based 

on EOS/MODIS model to extract water bodies called normalized difference water index (NDWI) or 

NDVI (Zhang, Wang & Shinohara 2007). The decision tree and programming method are also used 

for detecting water body information from flood affected areas (Gouveia & DaCamara 2006; Hu, 

Gong & Zhu 2007), and using semi-automated methods to extract water features from satellite 

images such as IKONOS and other high resolution satellite images to investigate temporal water 

changes (Di et al. 2003; Sharma, Mioc & Anton 2007).  

To acquire more accurate results of surface water features, several remote sensing sensors which 

actively and passively detect the information have been developed. For example, optical sensors 

which cover visible, infrared channels of electromagnetic spectrum and thermal infrared radiance 

(optical systems), and active remote sensing like radars which use microwave pulses and record the 

received signals (Nath & Deb 2010). Although these two sensor systems have been developed for 

a better ground feature detection, each of them has some limitations which need to be considered. 

Passive remote sensing is claimed to detect water bodies well, however, under poor weather 

conditions such as cloud cover, and dense vegetation canopy, extracting water information becomes 

an issue. In contrast, active remote sensing or active microwave sensors, such as synthetic aperture 

radar (SAR) can penetrate darkness, cloud coverage and tree canopies at the longer wavelength. 

Synthetic aperture radar has become an important source of remotely sensed data to detect flood 

and to monitor surface water. SAR data have been acquired by many instruments such as 

RADARSAT, Envisat ASAR, PALSAR, with a provision of different areas of observations over the 

globe. Using SAR data for mapping surface water bodies is thought to be suitable in the tropical 

areas and forest zones with satisfactory performance up to 90% at local and regional levels, but in 

terms of freely access data and global observation seem to be a main limitation (Pham, Prigent & 

Aires 2017). Some SAR data could be freely obtained such as Sentinel-1, the active sensor radar 

imageries, which has been created with the ability to quantify the spatial and temporal variation of 

surface features under all weather and day and night. This Sentinel-1 SAR funded by the European 

Space Agency (ESA) is designed to capture the highly dynamic nature of several aquatic habitats 

with a wide swath of 250 km, high geometric, radiometric resolution, and six days revisit cycle (Zeng 

et al. 2017). Surface water can be detected by using SAR backscatter as open water bodies are 

relatively smooth so that they can be distinguished from other land cover types (Hardy et al. 2019; 

Huang et al. 2018). A number of studies have been carried out applying Sentinel-1 C bands to detect 

water bodies, for instance, Huang et al. (2018) employed Sentinel-1 data IW mode, GRD format 

cooperating with Landsat optical data to extract water extent by using automated extraction. 

Similarly, Hardy et al. (2019) used Setinel-1 with Sentinel-2 and Pleiades optical imageries to help 

detect open and vegetated water bodies to map African malaria vector mosquito breeding habitats. 

Also, Cazals et al. (2016) deployed Sentinel-1A with C bands sensor to acquire data retrieved from 

GRD mode at dual polarisation (VV/VH) to map and characterise hydrological dynamics in a coastal 

marsh. However, under some conditions such as wind-induced waves, or surface water roughened 
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by vegetation, SAR seems to be limited to discriminating water features. Passive microwave 

measurements can detect water areas through dense cloud cover and vegetation, but spatial 

resolution seems to be a main challenge to extracting small water areas. Despite cloud cover issues, 

some passive remote sensing technology, especially the use of freely available high spatial 

resolution optical satellite data, such as Landsat series, Advanced Spaceborne Thermal Emission 

and Reflectance Radiometer (ASTER) and Sentinel2 multispectral imageries are widely applied to 

achievably extract surface water bodies (Chen et al. 2018) – lakes (Bhardwaj et al. 2015), rivers 

(Jiang et al. 2014), coastlines (Li & Gong 2016), and water bodies in rural areas (McFeeters 1996). 

Regardless of the ability of mapping surface water, when dealing with urban and peri-urban water 

areas, this type of sensor is likely to encounter the issues of heterogeneous and mixed ground 

features caused by built-up areas which typically introduce shadow (Zhou et al. 2014). In addition, 

some water regions are covered by small grasses and trees which could limit the potential of satellite 

imageries to detect the edge of the water because vegetation could potentially be classified as part 

of water bodies so that water body under canopy is hard to be detect (Pham, Prigent & Aires 2017). 

1.3.3. Spectral Water Indices used for Water Bodies Extraction 

Different methods used to detect water features have been developed. Many of them are widely 

applied, for example, thematic classification method, Linear unmixing model, single-band 

thresholding method, spectral water index methods (Ji, Zhang & Wylie 2009), and classification 

methods (Yan et al. 2018). Of these methods, water index is currently accepted due to its ability of 

differentiating water features from other features based on the combination of two or more spectral 

bands in different formulas (see Table 1.4). The typical water index that has been developed is the 

normalized difference water index (NDWI). This renowned approach has used two or more spectral 

bands with an appropriate threshold of the index to detect water bodies from other land-cover types: 

for example, applying of near- infrared (NIR) reflectance of the NOAA/AVHRR satellite to delineate 

lakes, and the use of positive values of the modification of normalized difference water index 

(MNDWI) to detect surface water bodies (Bryant & Rainey 2002; Crétaux et al. 2011; McFeeters 

1996; Xu 2006). The basic principle of the water index is based on the absorption of water bodies at 

near-infrared (NIR) and shortwave-infrared (SWIR) wavelengths as these areas are highly absorbed 

by water (Ji, Zhang & Wylie 2009). This normalized difference water index (NDWI) (Equation 1.2) 

was primarily adopted from the normalized difference vegetation index (NDVI) (Equation 1.1) by 

McFeeters (1996), where Green and NIR are the reflectance of green and near-infrared bands 

respectively. The values of NDWI range from -1 to +1 with the threshold value at zero: NDWI > 0 if 

the cover type is water, and for the non-water type NDWI ≤ 0. Gao (1996) then developed a new 

form of NDWI by using NIR and SWIR (Equation 1.3) to extract water content from vegetation 

canopy. This water index was later defined as normalized difference moisture index (NDMI) 

(Equation 1.6) by Xu (2006). Rogers and Kearney (2004) had generated the use of Red and SWIR 

bands based on Landsat TM as another formula of NDWI to detect water information (Equation 1.4). 
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Xu (2006) discovered that previous NDWI was not able to thoroughly distinguish water areas from 

built-up features so he proposed another form of water index (Equation 1.5) which can improve the 

water index discovered by McFeeters (1996). This water index based on Landsat TM was introduced 

as the modified NDWI (MNDWI). Instead of using NIR, SWIR is used because the NIR appears as 

lower reflectance than the Green reflectance which results in overestimating built-up areas to be 

water areas. This modification helps improve the separability of built-up areas. Apart from these 

water indices, Lacaux et al. (2007) has created a normalized difference pond index (NDPI) based 

on SPOT-5 satellite. This index was developed in a study in West Africa as an attempt to identify 

ponds. This index makes use of the Green reflectance band and SWIR (Equation 1.7). The MNDWI 

and NDPI are found to be similar but the threshold used is different, for instance, if NDPI < threshold 

1 and SWIR < threshold 2, the cover is identified as pond.  

Despite the use of these different methods and indices, the accuracies of water body extraction 

results can vary because most of these methods were tested with a particular sensor and in specific 

areas so that specific methods used and threshold in a particular study site may require to be 

examined (Zhou et al. 2017).  

Table 1.4: Common water indices used to extract water features 

Algorithm based on index used Algorithm Values Threshold 

NDVI 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑

-1 to +1 < 0 Equation 1.1 

NDWI 𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅

-1 to +1 > 0 Equation 1.2 

NDWI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅

-1 to +1 > 0 Equation 1.3 

NDWI 𝑅𝑒𝑑 − 𝑆𝑊𝐼𝑅

𝑅𝑒𝑑 + 𝑆𝑊𝐼𝑅

-1 to +1 > 0 Equation 1.4 

MNDWI 𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅

-1 to +1 > 0 Equation 1.5 

NDMI 𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅

-1 to +1 > 0 Equation 1.6 

NDPI 𝑆𝑊𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑆𝑊𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛

NDPI < 1 < 1 Equation 1.7 
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1.4. Aims and Objectives 

This study aimed to answer the following research questions: 

1. What are the better methods used to extract surface water from satellite images?

2. Is there any relationship between water bodies and dengue incidence?

In order to answer these questions, there were two objectives that needed to be accomplished: 

1). Extracting water bodies including natural water and artificial water bodies by applying freely 

available remotely sensed data analysis tools. The image data, and methods for surface water 

extraction were evaluated. 

2). To determine the lag time of a mosquito developing into an adult, and the lag time of disease 

infection based on the onset date. These lag times were used in the statistical analysis to compare 

with surface water in order to find out the relationship between them.  

1.5. Research Questions 

The questions in this research aimed to answer are: 

1). What are the suitable free-of-charge satellite image analysis tools that can be used to extract 

small surface water areas in urban and peri-urban areas like the study site in this research? 

2). What is the method used in the image analysis tools to identify small surface water images? 

3). What are the factors that affect this surface water extraction?  

4). Does surface water correlate with dengue incidence?  

1.6. Hypothesis 

This study hypothesised that surface water is likely to have a relationship with dengue incidence. 

1.7. Scope of the Study 

This study attempted to examine the relationship between surface water and dengue incidence in 

Vientiane, the capital of Laos using 2017 data. To achieve this, the changes in surface water in that 

year were investigated by using satellite image datasets of PlanetScope and RapidEye in different 

time series (rainy season – May to November, and dry season – December to April). These image 

data were used to detect water information at the study site. Water features investigated in this 

research project included both natural and artificial surface water such as ponds, fish farms, lakes, 

rivers, streams, and water deposited on the ground. Rainfall data in 2017 obtained from Department 

of Meteorology, Ministry of Natural Resource and Environment (MoNRE), Laos, was also used to 

compare with the association between surface water and dengue incidence. Dengue fever data in 

the 2017 dataset were georeferenced – derived from Economic development, Ecosystem 
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Modifications, and emerging infectious diseases Risk Evaluation project (ECOMORE), Institut 

Pasteur du Laos (IPL). These data were statistically compared with the surface water generated 

from satellite image data. For this comparison, the two were analysed using Spearman’s correlation 

coefficient to determine relationships between the changes in water bodies throughout different times 

and changes in disease incidence. 

This research will contribute to the study of dengue incidence in Laos, especially in Vientiane, which 

has been affected by the disease each year. This contribution shows how rainfall and the changes 

of surface water have an impact on dengue. It will also help related organisations understand better 

the picture of the disease emergence and this may help current surveillance systems to actively and 

effectively act before the disease occurs.  

1.8. Study Area 

1.8.1. Dengue Incidence Situations 

Laos is one of the Mekong basin nations which has been affected by dengue fever with less 

knowledge of the recent epidemiological profile of this disease (Van Panhuis, Guha-Sapir & Oshitani 

2005). Specifically, in Vientiane, there are two types of vector-borne disease – Aedes aegypti and 

Aedes albopictus. The dominant species which is commonly found in central Vientiane is the A. 

aegypti which naturally breed in household water containers such as jars, tanks and drums and 

mostly are found in urban areas, whereas A. albopictus species is found in peri-urban areas (Vallée 

et al. 2009). However, it can be observed that the nature of these vectors has been changed due to 

the changes of environment. According to a survey conducted by the Entomological and Biological 

team, ECOMORE 2, IPL, since 2016 until now, both dengue vectors species have been found not 

just in urban but also in peri-urban areas (S Marcombe 2019, personal communication, 26 July). 

Figure 1.3 shows the numbers of dengue mosquito vectors adults collected in 2017 derived from the 

Medical Entomology and Biology of disease vectors laboratory team, IPL, in central Vientiane. A 

high number of dengue mosquitoes were found from January, the dry season time, before the rate 

dropped at the beginning of the rainy season (April to May). There was a considerable number of 

adult dengue vectors found during the wet season toward the onset of the dry season (June to 

December).  

According to the World Health Organization (2007), prevalence of dengue fever stems from the rapid 

growth of urban development with inappropriate planning, and most of the cases are associated with 

poor management of sanitation and water storage. Laos, like other developing countries has many 

regions which are in transition from rural to urban areas so that there are still many places which 

mixed urban and peri-urban areas are. Dengue infection has become an epidemic since 1983 in 

Vientiane, where there were 1,759 cases of dengue haemorrhagic fever (DHF) (Fukunaga et al. 

1994). Since then, dengue disease has been at an epidemic level across the country (Vallée et al. 

2009). Major epidemics were reported in 1987 and again almost a decade later in 1995, 1996, 1998 
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and 2003 with more than 7,000 cases reported in hospitals annually (World Health Organization 

2008). The outbreaks also occurred in 2010 and 2013, but were even larger than before with more 

than 22,000 cases (46 deaths), and 44,171 cases (95 deaths) respectively (National Centre of 

Laboratory and Epidemiology 2010; World Health Organization n.d-a). 

Figure 1.3: Aedes aegypti and Aedes albopictus adults collected in the Centre of Vientiane 

Source: Medical Entomology and Biology of Disease Vectors Laboratory, IPL 

1.8.2. Location 

Vientiane is the capital of Laos which is rapidly growing due to ongoing urbanisation. It is located in 

the centre of the country on the left bank of the Mekong River (Rafiqui & Gentile 2009). As it is still 

in the ongoing transition from rural to urban areas, more than 50% of the region is still rural and peri-

urban. The total area of Vientiane is 3,583 square kilometres, consisting of nine districts: 

Chanthabouly, Sikhottabong, Xaysetha, Sisattanak, Naxaithong, Xaythany, Hadxaifong, Sangthong, 

and Mayparkngum. Among these, only four districts are considered to be urbanised (Chanthabouly, 

Sikhottabong ,Xaysetha, Sisattanak) (see Figure 1.4), whereas the rest are highly irrigated to supply 

agricultural activities (Sharifi et al. 2014). The area is characterised by a tropical climate which 

influences weather. There are two seasons: the rainy season from May to November, and the dry 

season from December to April. The average annual temperature (30-year period) ranges from 

22.73C (min) to 31.05C (max) with average annual precipitation of 1660.5 mm (Wolrd Meteorological 

Organization 2019). Many areas in Vientiane are prone to flooding during the rainy season, and 

several areas are wetland with poor drainage systems where water typically is deposited during the 

wet season which has caused major floods in recent times (Comte 2009).  
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Figure 1.4: Vientiane Capital classified by urbanised regions 

Source: Administrative boundary data retrieved from http://www.decide.la/. Urban index and 

population data retrieved from Lao Census 2015 

The total population in Vientiane is 820,940 with 209 people per square kilometre which indicates 

that Vientiane is the most urbanised area in the country according to the Population and Household 

Census Report in 2015. The density of population in this area combined with a rapid growth of 

urbanisation which is likely to be associated with dengue disease (World Health Organization 2007), 

therefore it is no wonder that Vientiane has the second highest prevalence of the disease in Laos. 

In 2017, there were over 1,695 suspected cases   1,076 cases were confirmed as dengue fever, with 

603 proving to be negative cases, and 16 cases were likely to contract the disease (see Figure 1.5). 

http://www.decide.la/
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Figure 1.5: Dengue Incidence in 2017 

Source: ECOMORE 2, IPL 

Later in 2018, more than 1,200 cases were reported to be at risk of dengue fever and 705 people 

were confirmed to be infected. Earlier this year (2019), according to an unofficial report from the 

Ministry of Public Health, it was reported that since the beginning of 2019 there were more than 

7,000 cases of dengue infection across the country with 25 deaths (Vientiane capital: 6, 

Borikhamxay: 1, Khammuane: 2, Savanakhet: 8, Saravane:3, and Champasack: 5). Vientiane has 

the second highest number of people with dengue disease with a total number of 2,374 from the end 

of December 2018 to the beginning of July 2019 (see Figure 1.6). It is known that dengue is not 

curable, but it is a preventable disease and the best method used to effectively prevent the disease 

transmission is to control the breeding sites. It is claimed that “good knowledge, attitudes and 

practices (KAP) among public are required to successfully prevent or minimize dengue outbreaks.” 

However, few people are aware of the severity of dengue (Mayxay et al. 2013).  

Therefore, the aim of this current study is to examine the relationship between changes of surface 

water as a source of breeding habitats to dengue vectors and dengue incidence in 2017 which was 

declared to be the largest epidemic since 2013.  
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Figure 1.6: Current Dengue Epidemic (29/12/2018 to 01/07/2019) by Province 

In short, this chapter determined possible aspects that are associated with the emergence of dengue 

fever disease by conducting the systematic literature review. According to the review, water bodies 

seem to influence dengue cases, so that applying advanced technologies such as Geospatial 

information system (GIS), and Remote Sensing (RS) in examining surface water was considered. 

To achieve the objectives provided in this study, further investigation of appropriate techniques, as 

well as factors correlated with the disease cases, will be implemented in the next chapter.  
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CHAPTER TWO: RESEARCH METHODS 

This chapter presents the methodologies used throughout this research project. Three main sections 

are included in this chapter: 1) Ethics Approval, 2) sources of data, and 3) methods used in carrying 

out this current study in order to extract surface water areas and find out the relationship between 

water areas and dengue incidence.  

2.1. Ethics Approval 

This study followed the application form of the Social and Behavioural Research Ethics Committee 

(SBREC), Flinders University, and it fulfilled the criteria for negligible risk research under the Risk 

and Benefit of the National Statement on Ethical Conduct in Human Research (March 2007). It was 

approved by the Executive out-of-session on the basis of the information contained in the application 

with approval notice No. 8359, approved on 20 May 2019.  

2.2. Data Collection 

2.2.1. Image Dataset Selection for Surface Water Extraction 

Four sets of image data – Sentinel-2 optical imageries, Sentinel-1 SAR, PlanetScope 3B, and 

RapidEye level 3A – were tested in order to obtain the most suitable images used in this present 

study, regarding the availability of data at different times and spatial resolutions. These image 

datasets are the free of charge images which are freely provided for those who are interested in 

applying satellite data in fields of interests, except PlanetScope and RapidEye.  

Indices concerned to be the most used for extracting surface water such as normalized vegetation 

index (NDVI), normalized difference water index (NDWI), normalized difference moisture index 

(NDMI), were also evaluated and compared in order to achieve more accurate results of surface 

water.  
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Figure 2.1: Flowchart method process of extracting surface water data 

Sentinel-2 Multispectral Instrument (MSI) 

Sentinel-2 MSI is freely available funded by the European Space Agency (ESA). The Sentinel-2 

mission was launched with the purpose of observing the over earth surface with a high revisit of five 

days using a bi-satellite system which is highly beneficial for mapping the dynamics of land cover 

over time. Thirteen spectral bands are carried by this instrument ranging from visible (Red, Green, 

Blue – RGB) channel and near-infrared (NIR) to Short-wave infrared (SWIR) channels with a ground 

resolution from 10 m to 60 m (Drusch et al. 2012) (See Table 2.1). 

PlanetScope 
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Table 2.1: Sentinel-2 satellite sensor specifications 

Sentinel-2 Bands Central Wavelength (µm) Resolution (m) 

Band 1 – Coastal aerosol 0.443 60 

Band 2 – Blue 0.490 10 

Band 3 – Green 0.560 10 

Band 4 – Red 0.665 10 

Band 5 – Vegetation Red Edge 0.705 10 

Band 6 – Vegetation Red Edge 0.740 20 

Band 7 – Vegetation Red Edge 0.783 20 

Band 8 – NIR 0.842 20 

Band 8A – Vegetation Red Edge 0.865 20 

Band 9 – Water vapour 0.945 60 

Band 10 – SWIR – Cirrus 1.375 60 

Band 11 – SWIR 1.610 20 

Band 12 – SWIR 2.190 20 

Source: Adopted from ESA (2019) 

Many researchers have applied Sentinel-2 MSI in discriminating water features. Yang and Chen 

(2017) attempted to map urban surface water by using moderate resolution remote sensing which is 

freely available. Sentinel-2 was used as a main image data source applying methods of normalized 

difference water index (NDWI), the modified NDWI combined with the automated water extraction 

index (AWEI). It was found that a Kappa coefficient of 0.92 could be achieved. Similarly, Chen et al. 

(2018) had used Sentinel-2 MSI imagery to detect urban surface water bodies with high accuracy, 

as well as Kulinkina et al. (2018) who compared three satellites imageries Landsat 8, Sentinel-2 ,and 

RapidEye and found that Sentinel-2 was the most accurate data source. Thus, this study explored 

the advantages of Sentinel-2 MSI in extracting water information in the study area.  

Sentinel-2 MSI imageries were downloaded from https://scihub.copernicus.eu. Image data were 

acquired for two dates (see Table 2.2). These dates were selected according to seasonality as March 

represents the dry season (December to April) and October represents the wet season (May to 

November). Figure 2.2 shows Sentinel-2 imageries in true-colour composite. 

https://scihub.copernicus.eu/
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Table 2.2: Sentinel-2 MSI image dataset 

Dates Number of Images Acquisition Date 

18 March 2018 

28 March 2018 

04 October 2018 

1 

2 

3 

20 May 2019 

20 May 2019 

20 May 2019 

Figure 2.2: Sentinel-2 MSI in true-colour composite with radiometry adjust—Equalised 

Percentage (March 2018-left) and Histogram Equalisation (October 2018-right) 

The presence of cloud was the major challenge so removing cloud was implemented using spatial 

modeler. A cloud removal model was created by applying Spatial modeler, Toolbox, ERDAS Imagine 

2018. Figure 2.4 shows the spatial model built as an attempt to mask out the cloud. Band 2 (Blue) 

was used to threshold the cloud reflectance due to its high reflectance of dense cloud (ESA 2019). 

The threshold value used to detect cloud was examined by using the Inquire tool, ERDAS Imagine. 

The threshold value was set to be greater than 15,00; and with the use of Either/Or function (Figure 

2.3) where the test is converted to binary, and the Output Otherwise is returned. All values of clouds 

were converted to zero, however, most of the areas covered ground features such as water bodies, 

settlements, and roads were lost (see Figure 2.5). 

Figure 2.3: Either/Or Function used in Spatial Model 
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Figure 2.4: Cloud removal model 

Figure 2.5: Cloud masked image in March 2018 displayed in true-colour composite 

Even though cloud was masked out from the study area, most of the surface features, especially 

surface water, were removed. In addition, although the spatial resolution of this Sentinel-2 MSI has 

been improved up to 10 m, the resolution is still not at the best option to use in extracting small ponds 

and surface water in this study site. Hence, Radar image data became another option.  

Sentinel-1 SAR 

Sentinel-1A SAR is operating at 5.405 GHz with four modes – Interferometric Wide Swath Mode 

(IW), Extra Wide Swath Mode (EW), Strip Map (SM), and Wave (WV) (for more detail see 

https://sentinel.esa.int/documents/Sentinel-1-Product-Definition). In this current study, Interferome-

tric Wide Swath (IW) mode was selected for the initial experiment. This mode is suitable for 

investigating the ground surface with the ability of capturing the highly dynamic nature of several 

aquatic habitats with a swath width of 250 km and 400 km at ground resolution of 5 m x 20 m, and a 

moderate geometric resolution of 10 m (see detail in Table 2.3). IW is predominantly used for 

systematic monitoring large land and coastal areas (Pham, Prigent & Aires 2017; Yagüe-Martínez 

https://sentinel.esa.int/documents/Sentinel-1-Product-Definition
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et al. 2016) with dual polarisation (VV+VH or HH+HV) capacity which provide more ground surface 

information (Zeng et al. 2017). It is commonly used in detecting and monitoring surface water with 

relatively high accurate results in detecting water regions under poor weather conditions (Twele et 

al. 2016). IW mode consists of two different types of format – ground range, multi-look, detected 

(GRD) and single look complex (SLC). From a review of previous studies, between these two 

products, it was found that a number of studies have been carried out applying Sentinel-1 C bands 

to detect water bodies: for instance, Huang et al. (2018) employed Sentinel-1 data IW mode, GRD 

format cooperating with Landsat optical data to extract the water extent by using automated 

extraction. Similarly, Hardy et al. (2019) used Setinel-1 with Sentinel-2 and Pleiades optical 

imageries to help detect open and vegetated water bodies to map African Malaria vector mosquito 

breeding habitats. Also, Cazals et al. (2016) deployed Sentinel-1A with a C band sensor to acquire 

data derived from GRD mode at dual polarisation (VV/VH) to map and characterise hydrological 

dynamics in a coastal marsh.  

Table 2.3: Sentinel-1C band, Interferometric Wide swath mode nominal measurement modes 

Characteristic Value 

Swath width 

Incidence angle range 

Sub-swaths 

Azimuth steering angle 

Polarisation options 

Maximum Noise Equivalent Sigma Zero (NESZ) 

Pixel size 

250 km 

29.1º – 46.0º 

3 

± 0.6º 

Dual HH+HV, VV+VH 

Single HH, VV 

-22 dB

10 m 

Source: sentinel.esa.int/user-guide/sentinel-1-sar/acquisition-modes 

The Sentinel-1A, IW mode, in GRD formats can be downloaded from Sentinel Scientific Data Hub 

(https://scihub.copernicus.eu/dhus). GRD (Figure 2.6.) was downloaded for a primary examination 

in March 2018. Sentinel Application Platform toolbox (SNAP) was used to process the image 

analysis – pre-processing – before observing surface water. During pre-processing of image 

analysis, SAR images had been through three processes, 1) Calibration, 2) Speckle reduction, and 

3) Geometric correction.

https://scihub.copernicus.eu/dhus
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Figure 2.6: Original image of SAR from amplitude VV (left) and VH (right) 

Calibration: Digital images were calibrated by applying radiometric correction under the Radar 

function. This calibration converts amplitude digital pixel values into radar brightness which contains 

returned backscatter information from the objects (Dong et al. 2011; Frulla et al. 1998). 

Speckle Reduction: De-speckle is necessary when dealing with SAR sensors. This type of sensor 

performs in the microwave electromagnetic channel causing a noise effect which degrades the 

accuracy of image analysis (Frulla et al. 1998). To reduce noise effects, speckle filtering on SNAP 

was used. There are many techniques used to reduce noise in SAR images, and the choice of 

selecting a specific filter depends on the study area figures (Li 1988). It is suggested that however, 

“regions with large variations in greys show fine details in the image, small filter window size is 

preferred, whereas homogeneous regions where little variation in greys are typical, a large window 

size to preserve homogeneity is preferable” (Frulla et al. 1998). In this study, the study area is likely 

to contain large area of greys so that window size 3 x 3 and 5 x 5 of Lee Filter were tested in Single 

Product Speckle Filter under Speckle Filter function, SNAP. To display the de-speckle outputs in 

RGB image (Figure 2.7), bands Sigma0_VH and VV were converted to decibel (dB). Apparently, 

window size 3 x 3 of Lee Filter visually presents clearer ground features than the 5 x 5 window size 

(Figure 2.8).  



35 

Figure 2.7: Red, Green, Blue image channels 

Figure 2.8: A combination of VH-dB, VH-dB, VV-dB Lee filter 3x3 (left) and 

5x5 (right) displayed in RGB 

Terrain Correction: This SAR data was obtained in the form of a GRD product which is in a multi-

look from the original Single Look Complex (SLC) with no terrain correction. To obtain ortho-image 

correction, a digital elevation model (DEM) or a polynomial correction which assumes that surface 

is flat can be used (Frulla et al. 1998). In this present research, the digital terrain model SRTM 1arc-

second with approximately 30 metres derived from Global dem from https://earthexplorer.usgs.gov 

was used. The study area shown in SAR data is mostly covered by a long river, a dam and the 

Mekong River. These water features were detected using SAR imaging. This data is useful when 

dealing with flood events during the rainy seasons as during this time there is high cloud coverage. 

In this study, however, detecting water areas where dengue mosquitoes are likely to breed is the 

main purpose. Favourable sites of breeding for mosquitoes are small sized surface water, and areas 

https://earthexplorer.usgs.gov/
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where small amounts of water are accumulating. Therefore, with the issue of spatial resolution, 

PlanetScope and RapidEye imageries seemed to be better options to use in extracting surface water 

information with small sizes of less than 10 metres.  

Field Survey 

Field survey was implemented to observe surface water areas in the study site, and to obtain dengue 

incidence data from ECMORE 2 project, Institut Pasteur du Laos (IPL). Ground surveys were 

conducted over six days in July and August 2019, and 33 ground points were collected (see 

Appendix 1). However, due to the time constraints and the large amount of water around the study 

site (more than 3,000 square kilometres), this survey was begun from the areas where IPL has 

determined to be the most prevalent dengue areas in Vientiane, at the village level, based on dengue 

incidence data in 2017. The observed areas were the targeted regions where the team from the 

Medical Entomology and Biology of Disease Vectors Laboratory, ECOMORE 2, IPL has frequently 

been to collect mosquito vectors.  

The tool used in this field survey was the application of Survey 123. It is a GIS application which has 

been created for collecting data by forms with a provision of skip logic, defaults and support for 

multiple languages. Users can use these functions to create a form to be used during a field survey 

in web or mobile devices and it can be used even when there is no internet connection during the 

field observation. To log in, an ArcGIS organisational account is required (ESRI n.d). This current 

study, Survey 123 was performed under the Flinders University account. The survey form (See 

Appendix 2) was created from the application installed in a mobile phone (iPhone 8 Plus). From field 

observations, it was found that many surface water areas appear smaller than 10 metres and some 

of them are approximately 10 metres or bigger than that, as shown in Figure 2.9. Numbers of areas 

are properties which are not able to be identified, so the observer collected the data as close to the 

area as possible, and during surveying, internet connection was activated. From this field survey, 

Sentinel-2 and Sentinel-1 SAR were considered as inappropriate choices of imagery data to use in 

this current study due to their low spatial resolution to detect small surface water regardless of the 

ability of penetrating cloud cover. 

Therefore, relatively high-resolution imaging data, such as PlanetScope and RapidEye, with 3 m and 

5 m, respectively, were used as another option for examining surface water.  
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Figure 2.9: Ground point data collected from Survey 123 overlaid on Open Street Map 

Relatively High-Resolution Satellite Imageries 

PlanetScope datasets were the main data chosen in this current study. Twelve dates from January 

to December 2017 were expected to be acquired. In order to obtain PlanetScope with 3 m spatial 

resolution, an application under their Education and Research Program is required. Planet provides 

access to Planet data for students and faculty who are conducting research into fields such as the 

world’s ecosystems, climate, humanitarian crises, markets and global challenges in real-time. A 

certain amount of image data (10,000 km2 per month) in a specific region can be downloaded under 

personal research licenses and students need to apply under the University account.  

A Flinders University student account was used to register under the Planet program and the 

download quota for this research was 10,000 km2 per month in the study area. However, due to the 

presence of cloud in a large area study site and unavailability of PlanetScope, only PlanetScope 

image data from January to May, and August to December 2017 were derived. The image in March 

was RapidEye, while June, July and September were not able to be downloaded because the cloud 

cover over the study area was more than 50%. Although an attempt was made to access RapidEye 

data from other sources such as Earth Online operated by European Space Agency (ESA) the data 

was not freely accessible.  
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PlanetScope Ortho Tile Product Level 3B 

PlanetScope is the new high spatial resolution satellite image which captures the earth’s surface 

area of up to 150 million km2 per day (Planet 2018). The images can be produced daily with a high 

ground resolution of 3 m. There are four bands provided ranging from visible bands (Blue, Green, 

Red), to near-infrared (NIR) (Table 2.6). The PlanetScope analytic ortho tile product is orthorectified, 

multispectral data derived from the satellite constellation. The products (Table 2.4) are projected in 

a Universal Transverse Macerator (UTM) cartographic projection and calibrated which allow analysts 

to use data for scientific analysis. Throughout the processes, distortion caused by terrain is removed 

as well as the perspective effect on the ground being eliminated. Orthorectified visual imagery is 

optimal for image processing with an enhancement of radiometric correction. With this correction, 

any sensor artefacts and transformation to at-sensor radiance are corrected, thus image processing 

such as vegetation indices, and land cover classification can be effectively analysed (Planet 2018).  

Table 2.4: PlanetScope 3B analytic ortho tile product attributes 

Product Information Description 

Analytic Bands 

Ground Sample Distance 

Pixel Size (orthorectified) 

Bit Depth 

Geometric Corrections 

Positional Accuracy 

Radiometric Calibration 

Accuracy 

Four band multispectral image (blue, green, red, near-

infrared) 

3.7 m (at reference altitude 475 km) 

3.125 m 

16-bit

Sensor-related effects are corrected using sensor telemetry 

and a sensor model, bands are co-registered, and 

spacecraft-related effects are corrected using altitude 

telemetry and best available ephemeris data. Orthorectified 

using GCPs and fine DEMs (30 m to 90 m) to <10m RMSE 

positional accuracy 

Less than 10 m RMSE 

Initial availability 

• No correction applied

• Pixel values are digital numbers

Source: Adopted from Planet (2018) 

RapidEye Ortho Tile Product Level 3A 

The RapidEye product is orthorectified data derived from a constellation of five identical earth 

observation satellites. The product is multispectral data which provides five bands and frequent 
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revisits of approximately five days, and 5 m of ground resolution (Table 2.6). The distortion which is 

caused by terrain has been removed and the perspective effect on the ground has also been 

eliminated. Radiometric correction has been corrected for any sensor artefacts and transformed to 

at-sensor radiance (Table 2.5). This orthorectified imagery can optimise the results of image 

processing such as vegetation indices and land cover classification.  

For this research project, PlanetScope images at the 3B level, and RapidEye images at the 3A level 

downloaded from the Planet (https://www.planet.com/explorer) were used. Forty-nine tiles of 

PlanetScope (45 tiles) and RapidEye (4 tiles) were used in this present study (Table 2.7). 

PlanetScope and RapidEye have already made the products of surface reflectance so atmospheric 

correction on the orthorectified images is not needed (Collison & Wilson 2017; Wicaksono & Lazuardi 

2018). 

Table 2.5: RapidEye analytic ortho tile products attribute 

Product Information Description 

Analytic Bands 

Pixel Size (Orthorectified) 

Bit Depth 

Geometric Corrections 

Positional Accuracy 

Radiometric Correction 

Five band multispectral image (blue, red, red edge, near-
infrared) 

5 m 

16-bit

Effects at sensor are corrected using sensor telemetry and a 
sensor model, bands are co-registered, and effects from 
spacecraft are corrected using altitude telemetry and available 
ephemeris data.  

Orthorectified using GCPs and fine DEMs (30 m to 90 m) to <10 
m RMSE positional accuracy. 

Less than 10 m RMSE 

• Correction of relative differences of the radiometric response
between detectors

• Non-responsive detector filling which fills null values from
detectors that are no longer responding

• Conversion to absolute radiometric values based on
calibration coefficients

Source: Adopted from Planet (2018) 

Table 2.6: PlanetScope and RapidEye sensor specifications 

Satellites Band Wavelength (nm) Spatial Resolution (m) 

1 (VIS) Blue 455 – 515 3 

PlanetScope 2 (VIS) Green 500 – 590 3 

3 (VIS) Red 590 – 670 3 

https://www.planet.com/explorer
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Satellites Band Wavelength (nm) Spatial Resolution (m) 

4 (NIR) Near-Infrared 780 – 860 3 

RapidEye 

1 (VIS) 

2 (VIS) 

3 (VIS) 

4 (VIS) 

5 (NIR) 

Blue 

Green 

Red 

Red Edge 

Near-Infrared 

440 – 510 

520 – 590 

630 – 685 

690 – 730 

760 – 850 

5 

5 

5 

5 

5 

Source: Planet (2018) 

Table 2.7: Image datasets used in this study 

Satellite Images Dates Number of Tiles 

PlanetScope 

04 January  

16 January 

17 February  

04 April  

10 May  

June  

July 

23 August 

September 

17 October 

14 November 

24 December 

4 

4 

3 

4 

4 

- 

- 

6 

- 

8 

5 

7 

RapidEye 13 March 4 

2.2.2. Dengue Incidence Data 

To obtain dengue incidence data and other dengue related data, a Memorandum of Understanding 

(MoU) was established between Flinders University and the ECOMORE 2 Project, Institut Pasteur 

du Laos (IPL). Two main datasets which included dengue incidence (georeferenced point data), and 

Aedes mosquito populations (Aedes aegypti, Aedes albopictus) collected in 2017 were obtained 

from IPL, under the ECOMORE 2 Project, and used in this study. 

Dengue incidence in 2017 collected from hospitals that have a partnership with IPL’s surveillance 

system was obtained from ECOMORE 2, IPL (see Appendix 3). The data were mainly collected 

using a smartphone via a link developed by IPL – https://geo.pasteur.la/ – for direct data transfer. 

https://geo.pasteur.la/
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Spatial data were recorded in a link server by patients whose cases were confirmed positive, and by 

district volunteers and the team members of Arboviral and Emerging Disease Laboratory team, IPL, 

who normally contact patients for collecting data. The data collected were geocoded indicating 

locations of the dengue cases (Appendix 4). Other information such as patients’ information, 

including symptoms – onset date, village, and district – were collected using questionnaires 

completed by medical doctors. For clinical information, reverse transcription polymerase chain 

reaction (RT-PCR) and non-structural protein antigen 1 (NS1 antigen) were used to confirm dengue 

infection which was tested by the laboratory team members.  

Georeferenced data indicating dengue cases in specific locations were firstly performed on data from 

2015 until the present. However, past collection of this spatial data between in 2012 to 2014 were 

able to be collected and stored as .xml Excel files. Clinical data was recorded in the system known 

as Pathogen Asset Control System (Pacs).  

This study only used data from 2017, due to the availability of clinical data at village and district 

levels and spatial data (GPS). Despite the fact that spatial and clinical data has been collected and 

stored according to the proper methods, the GPS data and the clinical data still needed to be verified 

before they were used in this study. To verify the data, two files (Pacs and GPS) were compared by 

matching patients’ identification (ID) codes attached in the files. During this matching task, some 

issues were found, for instance, some ID codes for patients in the GPS file did not exist in the Pacs 

file. Some dengue incidence dates were recorded as 2017 data in the GPS file, but in the Pacs file 

those data belong to data in 2018. The ID codes which were not found in the Pacs file had been 

checked by the Lab team members because when the cases were too large, it is likely that all GPS 

data could not be collected. Furthermore, when the Pacs file was updated, the GPS data file was 

rarely checked for an update. Thus, only the matched ID codes from GPS and Pacs were used in 

this study. To solve the problem with the dates of incidence, the onset date of dengue fever recorded 

in clinical data was used as a reference. For example, if the data was in 2018, but the onset date 

was in 2017, such data will be included in the 2017 dataset.  

From this validation, total dengue numbers used in this study equalled 354 cases (GPS points 

projected in Geographic Coordinate Systems, World WGS 1984) or around 33% of total confirmed 

cases of 1,076 with all clinical data attached. 

2.2.3. Meteorological Data 

Daily and monthly rainfall data from 2016 to 2018 was derived from the Department of Meteorology, 

Ministry of Natural Resource and Environment (MoNRE), Laos (Figure 2.10). The monthly rainfall 

data helped visualise the trends in rainfall in 2017 and provided data to be compared with dengue 

incidence data in order to initially analyse the relationship between dengue prevalence and rainfall.  
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Figure 2.10: Monthly precipitation data from 2016 to 2018 

2.3. Software Used 

2.3.1. Earth Resource Data Analysis System (ERDAS) Imagine 2018 

ERDAS Imagine is a software generated by Hexagon Geospatial company. It is a tool used to 

perform advanced remote sensing analysis and spatial modelling 2 Dimensional and 3 Dimensional 

views with high quality map compositions.   

In this project, the processes of image analysis from pre-processing, surface water detection 

generated by using spatial modeller, Toolbox, were performed using this software. In this version, 

the ERDAS 2018 62-bit was used for examining the PlanetScope images and RapidEye to identify 

water bodies.  

2.3.2. ArcGIS Version 10.6 

ArcGIS software is a system designed to work with maps and geographic information in a field of 

architecture, geographic information. It was developed by the Environmental System Research 

Institute (ESRI) – an international supplier of geographic information systems software, web GIS and 

geodatabase management systems.  

This study used ArcGIS version 10.6.1 under the licence of the College of Science and Engineering, 

Flinders University. It was applied to image analysis to separate surface water through a method of 

water indices from non-water features, and to generate maps in different series. This software was 

also used for accuracy assessment to produce confusion matrix of Kappa coefficient.  
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2.3.3. Google Earth Pro 

Google Earth Pro is a geospatial software application that is used to explore features on the ground, 

capture geographical data as well as display a virtual globe. With these various abilities, it enables 

users to analyse data in the field of interest.  

This software was used as a tool to help visualise the area of interest by linking it with ERDAS 

Imagine software to view and compare particular spots between satellites imageries and aerial 

imageries from Google Earth. Additionally, it was used as a base map to create ground truth points 

in the process of accuracy assessment once the digital image analysis had been performed.  

2.3.4. Statistical Package for the Social Sciences (SPSS) 

The Statistical Package for the Social Sciences is the software registered trademark of International 

Business Machines (IBM) which has been developed for the use of statistical data analysis. It has 

been widely used in the field of business and research solving problems by quantitative and 

qualitative analysis with the capacity of testing hypothesis and predicting analysis tools.  

This study used IBM SPSS software version 25 under the register of Flinders University for analysing 

the association between surface water and dengue incidence. The main statistical models used in 

this software are correlation and regression analysis to experiment whether there is a relationship 

between variables, and to find out the association and predictions from the regression model.  

2.4. Areas of Interest (AOI) 

The whole area of the study site is approximately 3,583 square kilometres, however, due to the 

limited amount of satellite image data downloaded from the Planet, the specific areas of interest 

which were considered as the most prevalent dengue fever areas were selected. Figure 2.11 

presents the sample area used to investigate the monthly surface water in 2017. AOI was created 

by the Create Features using the Editor Tool in ArcMap in Shapefile format. A polygon was drawn 

according to the selected areas of interest on the top of PlanetScope covering the study site. This 

AOI was then used as the feature mask data to mask the surface water output by Extract by Mask 

under Spatial Analyst tool, ArcMap.   
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Figure 2.11: Area of interest and dengue incidence in the study 

site overlaid on PlanetScope image in January 2017 displayed in true-colour composite 

2.5. Image Correction 

2.5.1. Atmospheric Correction 

The atmospheric effect at remotely sensing sensors caused by variable atmospheric conditions, 

solar illumination and view angles must necessarily be corrected. This correction removes 

radiometric distortions, and the true reflectance can be retrieved (El Hajj et al. 2008). Typically, 

sensors that detect electromagnetic radiance from ground surface by using visible and near-visible 
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radiance will record pixel locations which fail to represent the true ground features at particular 

points. The effects caused by the interference of the atmosphere on satellite imageries are mostly 

found in the visible or NIR bands (Figure 2.12) (Hadjimitsis et al. 2010). Thus correcting atmospheric 

effects enhances the quality of the reflectance radiance values of image data (Themistocleous & 

Hadjimitsis 2008).  

In this study, the main source of satellite imageries used were PlanetScope and RapidEye images 

which include visible (Blue, Green Red), and NIR. In order to obtain more accurate results of image 

analysis, the disturbance from atmosphere needed to be corrected. To correct for the atmosphere 

in image data, image values were converted to surface reflectance by calibrating radiometric which 

involves the conversion of digital number values to radiance and to top of atmosphere (TOA) 

radiance. Bottom of atmosphere is another step needed to perform the correction (Chen & Cheng 

2012). To process this, the top of the atmosphere radiance is converted to surface reflectance. The 

bottom of the atmosphere correction is performed by applying a simple correction of Dark Object 

Subtraction (DOS) method which can be applied to obtain BOA (Gautam et al. 2015). This method 

is considered to be a simple and reasonable approach used to correct atmospheric effects (Chavez 

1988) and can provided better results compared with many complex atmospheric correction methods 

(Hadjimitsis, Clayton & Hope 2004). 

Figure 2.12: Spectral radiance at the Earth’s surface 

Source: Modified from Chahine et al (1983) 
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PlanetScope Images 

PlanetScope products have already been orthorectified and the pixel values have been scaled to 

Top-of-Atmosphere (TOA) radiance (Planet 2018). However, atmospheric correction reflectance was 

required to be performed for image data in January 2017 (04 January and 16 January) as they were 

captured at different times and under different atmospheric conditions. Hence, atmospheric 

correction was attempted. To process this correction, Spatial Model Editor from ERDAS Image was 

used to create the spatial model for TOA (Figure 2.13). Digital number (DN) values of each band 

were converted to TOA by multiplying them with reflectance coefficients (Table 2.8) provided by the 

PlanetScope stored in the metadata file .xml. Reflectance output rasters were then multiplied by 

10,000 to obtain final outputs. Reflectance is generally in a floating-point number between 0 and 1, 

whereas image file formats are defined as unsigned integers. A common performance of converting 

floating numbers to unsigned integers is to multiply the reflectance outputs by 10,000 (Planet 2019). 

To obtain BOA reflectance, dark object subtraction was performed by using the dark ground features 

which had no effects from sunglint: the objects that are mostly free from sunglint tend to be the 

optically deep-water pixels as they are likely to highly absorb the reflectance (Wicaksono & Lazuardi 

2018). In this study, surface water which appears dark had been observed, and minimum and 

maximum values of each band were also examine in order to find out the darkest values. Those 

obtained dark pixel values then were subtracted from each band performing in the spatial model 

created in ERDAS Imagine (Figure 2.14).  

Not all images went through this process as the products of PlanetScope have already been 

atmospherically corrected. However, an investigation of image data with BOA and without BOA 

process was performed in order to obtain the highly accurate outputs of water index images.  

Table 2.8: Reflectance coefficient of 04 January and 16 January 2017 

Dates Band 1 - Blue Band 2 - Red Band 3 - Green Band 4 – NIR 

2.60489507083 x 10-5 2.75171253034 x 10-5 3.07292547872 x 10-5 4.64466548288 x 10-5 

04 January 2.60203983282 x 10-5 274869636502 x 10-5 3.06955723033 x 10-5 4.63957444273 x 10-5 

2.59919487701 x 10-5 2.74569106141 x 10-5 3.06620111158 x 10-5 4.63450173626 x 10-5 

2.59635994985 x 10-5 2.74269635168 x 10-5 3.06285682335 x 10-5 4.62944691141 x 10-5 

2.55464525586 x 10-5 2.70393385863 x 10-5 3.01624442414 x 10-5 4.54993037045 x 10-5 

16 January 2.55204736053 x 10-5 2.70118414723 x 10-5 3.01317711477 x 10-5 4.54530340987 x 10-5 

2.5494586734 x 10-5 2.69844418216 x 10-5 3.01012067744 x 10-5 4.54069284949 x 10-5 

2.54687934713 x 10-5 2.69571412498 x 10-5 2.69571412498 x 10-5 4.53609896121 x 10-5 
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Figure 2.13: Spatial model of atmospheric correction to obtain TOA reflectance 

Figure 2.14: Spatial model of dark object subtraction to obtain BOA 

RapidEye Images 

To remove the influence of atmospheric effects, Rapid Atmospheric function provided on ERDAS 

Imagine was adopted and created by the Spatial Model Editor tool (Figure 2.15). Rapid Atmospheric 

function is used to compute the radiometric transform from DN values of satellite images to corrected 

values which truly represent ground reflectance. The process of Rapid Atmospheric correction used 

the information from the metadata .xml file attached with the image products to perform the 

calibration which converts DN to radiance, and TOA.  
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Figure 2.15: Atmospheric correction spatial model used 

to correct atmospheric effect on RapidEye 

2.5.2. Haze Reduction 

The presence of haze and cloud have become the main challenges to optical remote sensing, which 

blocks ground features from remotely sensed detection and creates the uncertainty of spectral 

reflectance from sensors (Kaufman & Sendra 1988). Many algorithms have been developed such 

as dark object subtraction (Kaufman & Sendra 1988), frequency filtering (Du, Guindon & Cihlar 

2002), and transformation approaches (Moro & Halounova 2007). However, a problem of most 

methods is to select haze values independently from each spectral band, but haze values are 

strongly correlated and highly scattered in the visible wavelength of the electromagnetic spectrum. 

Therefore, to reduce haze, multispectral image data is needed for correction depending on spectral 

band (Chavez 1988). The tasselled cap transformation (TCT) approach developed by Kauth and 

Thomas (1976) was found to be the most promising to use for haze reduction. TCT can help visualise 

the three-dimensional surface phenomena and the important variables such as bare soil, view angle, 

and atmospheric haze in the separated spectral band. So, this transformation is able to estimate and 

correct atmospheric haze and moisture effects by using the specific measurable pattern elements of 

the TCT structure.  

This study attempted to reduce haze on image data by adopting the haze reduction function in 

ERDAS Imagine: due to the unviability of index values of PlanetScope used in TC. Raster 

Radiometric function in ERDAS Imagine was adopted. To create a haze reduction spatial model, the 

Spatial Model Editor tool was used. The custom matrix function was applied with the nearest 

neighbour method for raster interpolation with 5 x 5 convolution kernel (Figure 2.16). 
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Figure 2.16: 5 x 5 Convolution Kernel 

Figure 2.17: Haze reduction spatial model 

2.5.3. Cloud Masking 

To obtain the water index result, cloud cover and shadow which block radiance reflected from the 

ground surface needed to be removed. PlanetScope image data in August 2017 was captured during 

the wet season in the study area when one of the main obstacles is the presence of cloud. Automated 

cloud and shadow detection algorithm to mask out the cloud coverage was not available for 

PlanetScope images (Cooley et al. 2017). To mask out cloud, PlanetScope imageries bands to be 

assessed cloud cover are band 2, band 3, and band 4 (Red, Green, and NIR respectively) (Planet 

2016). Band thresholding and unsupervised classification were applied.  

Unsupervised classification, ERDAS Imagine, was assigned as a tool to classify cloud and shadow. 

Three hundred classes were set using Isodata, and 20 maximum iterations. Cloud and shadow were 

classified and recoded as 0 for new values and 1 for non-cloud and shadow by using the Recode 
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function applicable in ERDAS Imagine. To mask out the cloud and shadow from the imagery, a 

spatial model of cloud mask was created from the Spatial Model Editor (Figure 2.18). The mask of 

cloud and shadow was multiplied with the original spectral image in order to retrieve a cloud mask 

image. 

Band 2 (Green) was used for cloud pixel value inspection in order to find the best threshold values 

for masking cloud from the image. The selected pixel value used for thresholding cloud masking was 

10,000 as it can best detect cloud cover in most of the cloud covered areas. Spatial model for cloud 

masking from Spatial Model Editor, ERDAS Imagine was developed (Figure 2.19) for cloud removing 

implementation.  

The performance of cloud masking showed that a lot of areas covered by cloud and shadow were 

poorly detected by unsupervised classification if compared with the thresholding method, regardless 

of its ability to detect shadow. Hence, to improve cloud and shadow masking, cloud mask images 

from the threshold method was multiplied with the cloud mask image generated from unsupervised 

classification using Spatial Model Editor (Figure 2.20). However, the result from this attempt (Figure 

3.5, Chapter 3) shows that by combining these two methods, many water areas were classified as 

shadow due to the overestimation of deep-water bodies. Therefore, in this study, only cloud mask 

by a single band threshold method was performed. 

Figure 2.18: Spatial model for cloud and shadow masking 

multiplied with image data 

Figure 2.19: Spatial model for cloud masking image 

obtained from a single band threshold method 
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Figure 2.20: Combining cloud masked binary image produced 

from classification method with the cloud mask image from a single band threshold method 

2.5.4. Mosaicking 

The mosaic is the process that allow multi-images to be stitched together in order to create one large 

and cohesive image of an area of interest. The output images contain the same number of layers as 

the original image data (Hexagon n.d).  

In this study, the mosaic process was performed after the image correction, tiles (Figure 2.21, Figure 

2.22) for each date were stitched by the Mosaic function in ERDAS Imagine in order to generate new 

images that cover the study site. 

Figure 2.21: PlanetScope image tiles displayed in true-colour composite 

Tile 1 

Tile 2 
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Figure 2.22: RapidEye image tiles displayed in true-colour composite 

2.6. Water Body Extraction 

Water body data can generally be extracted by two methods, firstly, supervised and unsupervised 

classification using single band or multiple bands, and secondly, the water spectral index (Huang, 

Chen & Wu 2014; Sheng, Shah & Smith 2008). It has been noted however that the water index 

algorithm “seems to be an essential approach for rapid performance of water bodies extraction in 

large scale areas” (Du et al. 2014). 

To extract water body features, analysing and observing spectral features in the specific study area 

was needed before applying water extracting algorithms. Spectral Profile in ERDAS Imagine was 

used to visualise the reflectance spectrum of ground features through bands. Observation of spectral 

reflectance from PlanetScope shows that the reflectance of water bodies is higher in the visible part 

of the spectrum, especially in Blue and Green (455 – 515 nm, 500 – 590 nm), with low reflectance 

in Red and NIR where the light is mostly absorbed by surface water, as indicated in Figure 2.23. In 

the RapidEye spectral profile, water reflectance shows high absorption in Red, Red Edge and NIR 

bands and high reflectance in Blue and Green at the visible channel (440 – 501 nm, 520 –590 nm) 

(Figure 2.24). For both satellite imageries, the spectral reflectance illustrates that shallow surface 

water contains a larger amount of pixel values when compared with the river and deep still water 

bodies.  

Tile 1 Tile 2 
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Figure 2.23: PlanetScope spectral profile 

Figure 2.24: RapidEye spectral profile 

2.6.1. Multi-band Spectral Relationship Method 

According to the curve analysis of the spectral reflectance, on the basis of this test, Chen et al. 

(2004) introduced the water extraction model (Green + Red) - (NIR+MIR) > T where T is defined as 

a threshold used to extract water information and non-water information. This study adopted this 

model with the change of band selection. Instead of using Red and MIR due to the limitation of 

sensor wavelength in PlanetScope and RapidEye, an effort to create a water extraction model used 

in this study area was performed in Spatial Model Editor, ERDAS Imagine (Figure 2.25), and the 
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model was defined as (Blue + Green) - (Red + NIR), where threshold values of the water feature is 

greater than zero. This model was created according to the spectral band analysis as it is found that 

Blue and Green bands show higher reflectance, whereas the low reflectance level was in Red and 

NIR. It was thought that this method could identify water areas, however it was falsely detecting large 

built-up areas and roads as surface water areas compared to normalized difference water index 

(NDWI) (McFeeters 1996), and normalized difference moisture index (NDMI) (Gao 1996) (Figure 

3.4, Chapter 3). 

Figure 2.25: Spatial model of 

multi-band spectral relationship method 

2.6.2. Normalized Difference Vegetation Index (NDVI) 

Normalized Difference Vegetation Index (NDVI) proposed by Rouse Jr et al. (1974) was tested to 

determine whether it could help distinguish vegetation areas from water bodies in the study area. 

Many previous studies have applied NDVI as a model to extract water information from high 

resolution spectral remotely sensed imagery (Zhang, Wang & Shinohara 2007), and using NDVI with 

multispectral image data to achieve sufficient resolution to identify surface water (Carrasco-Escobar 

et al. 2019). PlanetScope imagery in February 2017 was used in this investigation carried by Spatial 

Model Editor, ERDAS Imagine (Figure 2.26). NDVI formula is displayed in Equation 2.1, where; 

NDVI =  
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)

Green = reflectance in Green wavelength  

NIR = reflectance in near-infrared wavelength 

The values of this range are from -1 to +1. Positive values are interpreted to be vegetated areas, 

while negative values are non-vegetated areas 

Equation 2.1 



55 

Figure 2.26: NDVI spatial model 

2.6.3. Normalized Difference Water Index (NDWI) 

Normalized difference water index was originally derived from the normalized difference vegetation 

index developed by McFeeters (1996). The typical form of this water index employs Green and NIR 

bands, however, several water indices modified from this originality have been developed, for 

instance, Gao (1996) used NIR and SWIR, and Rogers and Kearney (2004) had developed a water 

index formula by using Red and SWIR bands.  

In this research project, the normalized difference water index was used based on comprehensive 

analysis of each band, the multi-band spectral relationship, for example. The NDWI developed by 

McFeeters (1996) was used due to its ability to improve the accuracy of water information extraction. 

It is suggested that this NDWI enhances water spectral signals by contrasting the highest reflectance 

and lowest reflectance to remove noise in wavelength regions so that NIR is used because water 

has a strong absorption in this range (Gao et al. 2016). To derive water features, NDWI was 

examined for generating surface water from PlanetScope images (January, February, April, May, 

August, October, November and December), and RapidEye image (March).  

This index model is illustrated in Equation 2.2 where; 

Green = reflectance in Green wavelength, 500 – 590 nm for PlanetScope; and 520 – 590 nm for 

RapidEye 

NIR = reflectance in near-infrared wavelength, 780 – 860 nm for PlanetScope, and 760 – 850 nm for 

RapidEye 

NDWI =  
(𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅)

(𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅)

The values of water index results produced from NDWI ranged between -1 to +1 where the pixel 

value which is closer to +1 is water information, while the pixel values toward -1 indicate the areas 

Equation 2.2 
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of non-water. To acquire water index results, a spatial model was built using Spatial Model Editor in 

ERDAS Imagine (Figure 2.27). 

Figure 2.27: NDWI spatial model 

2.6.4. Normalized Difference Moisture Index (NDMI) 

Normalized difference moisture index (NDMI) was adopted from Gao (1996) as defined in Equation 

2.3; where NIR and SWIR, which their wavelength was highly absorbed by that water, were 

exploited. From this development, it is found that the NDMI is likely to perform better in detecting low 

water and other objects which contains moisture (Ogilvie et al. 2018). 

In this study, however, due to the limitations of remote sensing sensors which only contain visible 

bands and NIR band, Red and NIR bands of PlanetScope and RapidEye which show the lowest 

reflectance and high absorption from water were used. Multi-temporal images were applied to extract 

surface water during the time where water surface appeared less. NDMI modified is indicated in 

Equation 2.3. 

NDMI =  
 (𝑅𝑒𝑑 − 𝑁𝐼𝑅)

(𝑅𝑒𝑑 + 𝑁𝐼𝑅)

Where; 

Red = reflectance of Red wavelength (band 3 for PlanetScope, and band 3 for RapidEye) 

NIR = reflectance of NIR wavelength (band 4 for PlanetScope, and band 5 for RapidEye) 

Values of this index range from -1 to +1, where values are close to one is considered as water and 

values are closer to -1 are non-water. 

From this analysis, it is found that NDMI performed well in detecting low surface water during the dry 

season (February and March) and bare areas were less overestimated compared with the NDWI. 

Equation 2.3 
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Therefore, NDMI was used to detect surface water from the image data in February and March. This 

water index model was created using Spatial Model Editor, ERDAS Imagine as represented in Figure 

2.28.  

Figure 2.28: NDMI spatial model 

2.6.5. Threshold Values 

To extract surface water from other land cover types, manual thresholding was applied to select 

specific thresholds in order to classify two classes – water and non-water. In doing so, the identifying 

tool in ArcMap was used to inspect pixel values of water areas, and adjustments to the spectral 

histogram were applied to identify water from non-water (Figure 2.29). To classify surface water from 

other types of land cover, the Raster Calculator under Spatial Analyst Tool, ArcMap facilitated by the 

Condition function was used (Figure 2.30). 

Figure 2.29: Spectral histogram 
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Figure 2.30: Conditional function used to classify 

surface water and non-surface water 

2.7. Post-Image Analysis 

NDWI and NDMI results were reclassified using the Reclassify tool under the Spatial Analyst tool, 

ArcMap to generate new water and non-water values which originally were 0 and 1 respectively. For 

this generation, water and non-water values were set to be 1 for water and 2 for non-water (Figure 

2.31). 

Extract by Mask function, Spatial Analyst Tools in ArcMap was applied to extract all pixel values from 

raster data within areas of interest. This study used this function to generate all water index results 

for all dates corresponding to the AOI (Figure 2.32). To obtain an estimate of the total amount of 

surface water for each date, the number of pixels counted was derived and calculated as a 

percentage. This is because this study used two different imageries which have different spatial 

resolutions (3 m for PlanetScope and 5 m for RapidEye) so that calculating the total water as a 

percentage was the most appropriate way to show the amount of water. 
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Figure 2. 31: Reclassify function 

Figure 2.32: Extract by Mask 

2.8. Accuracy Assessment 

For quantifying the accuracy of the image processing, a statistic mechanism is needed to assess the 

output of surface features after the process of image analysis (Lillesand, Kiefer & Chipman 2015). 

The procedure of accuracy assessment is to apply confusion matrix which consists of a number of 

classes representing classified classes and ground truth. The Kappa statistic is calculated based on 
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the differences between the classified features and ground features to observe the degree of 

agreement and disagreement between the two. From this statistical analysis, overall classification 

accuracy (OA), Kappa coefficient, user’s accuracy (UA) which represents the classified features 

categorised as the actual ground feature, and producer’s accuracy (PA) which represent how well 

ground data are represented classified features, are produced. The Kappa statistic is shown in 

Equation 2.4, where; 

Kappa = 
𝑃𝑜− 𝑃𝑒

1− 𝑃𝑒

Po is the observed agreement 

Pe is the expected agreement 

Table 2.9 explains the Kappa confusion matrix, where, (a) and (d) are representative of the number 

of agreements between the two observations, while (b) and (c) represent the number of 

disagreements between the two. If there is no conflict the observations (b, c) will be 1 or 100%, and 

if there is no agreement the observed agreements (a, d) will be zero. n1, m1 are the total counts of 

agreement, no, mo  are the total counts of disagreement, and n is the total number of the counts (Viera 

& Garrett 2005). 

To calculate Po and Pe, the Equation 2.5 and 2.6 are illustrated. 

 Po = 
𝑎+𝑑

𝑛

Pe = [(
𝑛1

𝑛
)(

𝑚1

𝑛
) ] +  [(

𝑛𝑜

𝑛
)(

𝑚𝑜

𝑛
) ]

Table 2.9: Variation observation 

Observed 1 Results 

Observed 2 Yes No Total 

Results Yes a b m1 

No c d m0 

Total n1 n0 n 

Adopted from Viera and Garrett (2005) 

Equation 2.4 

Equation 2.5 

Equation 2.6 
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The Kappa coefficient ranges from –1 to +1 with six agreement levels – from poor agreement to 

almost perfect agreement as is shown in Table 2.10. 

Table 2.10: Interpretation of Kappa coefficient 

Coefficient Values Level of Agreement 

< 0 Poor Agreement 

0.01 – 0.20 Slight Agreement 

0.21 – 0.40 Fair Agreement 

0.41 – 0.60 Moderate Agreement 

0.61 – 0.80 Substantial Agreement 

0.81 – 0.99 Almost Perfect Agreement 

Adopted from Viera and Garrett (2005) 

For this study, accuracy assessment was performed in ArcMap. 500 ground truths (Appendix 5) were 

created from the Accuracy Assessment Point tool using a stratified sampling strategy. Stratified is 

suggested as the better strategy as it can reduce sampling error with adequate sampling points in 

small scale areas. It can reduce bias of a single sample (Montello & Sutton 2012). Ground truth 

points were checked with the high-resolution aerial imagery in Google Earth Pro. The water index in 

March 2017 was used as the feature input for this assessment due to less cloud cover in the study 

area in the aerial imagery in Google Earth Pro. 

2.9. Association of Surface Water and Dengue Incidence 

2.9.1. Spatial Distribution of Dengue Cases 

Dengue incidence data derived from ECOMORE2, IPL, was used as the main data for determining 

the dengue cases in the study area, and to investigate the potential relationship between dengue 

fever and water bodies. To understand the spread of dengue fever in 2017, easting and northing 

locations were performed in Data Analysis, Microsoft Excel, and the pattern of data distribution was 

conducted by using the Statistic Analysis Average Nearest Neighbour in ArcMap. 

The F-Statistic was applied as an estimator to measure within the population with a provision of 

Mean, Variance, F and F critical values at confidence interval which can avoid bias (Goudet 1995). 

The F-Test Two Sample for Variance analysis tool compares two variables in order to compare these 

with the null hypothesis that these two groups of population are equally distributed (Microsoft Office 

2019).  
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In this study, to acquire Mean and Variance values, F-Test two sample for variances with 0.05 

confidence level was performed in Microsoft Excel.  

Nearest Neighbour (NN) was applied to determine the dispersion of the data as it is normally used 

to investigate the quantitative analysis spread of data. This spatial analysis tool has been widely 

used to test the pattern of data distribution to determine whether it is clustered or dispersed. The 

basic principle of this analysis is that the distance between each feature centroid and its nearest 

neighbour’s location is measured in order to find the average distance between them. The ratio index 

used in this determination is provided in Equation 2.7, where; 

𝐴𝑁𝑁 =  
𝐷𝑂

𝐷𝐸

ANN = Average Nearest Neighbour ratio 

𝐷𝑂 = Observed Distance between the given features and their nearest neighbour

𝐷𝐸 = Expected distance of the given features random pattern

The index of ANN is defined as 1. If the resulting index is less than 1, the pattern of data distribution 

is clustering, while if the value is greater than 1 the spread of data is in a dispersed way. Figure 2.33 

illustrates the pattern of dispersion and clustering data spread.  

Figure 2.33: An illustration of data distribution pattern 

Source: Adopted from Arc Toolbox, Average Nearest Neighbour 

To examine the pattern of data spread, the Nearest Neighbour Analysis tool in ArcMap was used 

(Figure 2.34). The input used was georeferenced dengue incidence (354 points) data with a method 

of Euclidean Distance within the given study area size of approximately 3,640,256,266 square 

metres calculated from the spatial data. 

Dispersed Clustered 

Equation 2.7 
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Figure 2.34: Average Nearest Neighbour analysis 

2.9.2. Analysis of Dengue Incidence Associated with Water Bodies 

The Aedes mosquito has four life stages; egg, larva, pupae and adults (Figure 2.35). It takes around 

seven to ten days to develop. Water is an essential breeding habitat for female mosquitoes to lay 

eggs. This can be anywhere where it is wet, including the wet walls of containers, and also small 

water areas (CSIR 2011). Eggs can survive being dried for up to eight months and have been shown 

to live throughout winter time in the southern United States, and they will then hatch once they are 

exposed to water (EPA 2017). Various external components affect the time taken for them to fully 

develop into adult flying mosquitoes. These include air temperature, water and relative humidity, 

which are the key factors that support development(Nasir et al. 2017; Shang et al. 2010). Reducing 

the vector breeding sites is a necessary component in the process of preventive disease occurrence 

to control the disease (Jayawardene et al. 2011).   

In this study, of dengue cases in 2017, surface water extracted from satellites imageries, and rainfall 

data were used to analyse the relationship between dengue vectors and water. To explore the 

emergence of dengue fever, the onset date was used to determine the expected date of when a 

person was bitten by an infected mosquito. The egg development into an adult, based on the 

incubation period after the bite from an infected mosquito, and its life cycle, were also considered. 

According to World Health Organization (2019), the disease symptoms will appear in 4 to 10 days, 

and it will last for 2 to 7 days after a bite from an infected vector. Therefore, to estimate exposure 

date, a 10-day period was subtracted from the onset date. This was defined as Lag2. The estimated 

time of mosquito developing into an adult was defined as Lag1, derived by subtracting 8 days for the 

mosquito development time (see Figure 2.36). Data of mosquito populations collected in 2017 was 

also used to determine the adult development time (see Table 2.10). 
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Figure 2.35: Aedes mosquito life cycle 

Source: CSIR 2017 (http://iictenvis.nic.in/KidsCentre/Mosquito_1501.aspx) 

Figure 2.36: The estimated time of patients contracting the disease (Lg2), 

and the estimated time of mosquitoes developing into adults (Lg1) based on the onset time 

Correlation coefficient and regression statistics in SPSS were used in this study to examine the 

relationship between dengue incidence and surface water. Exploring whether the data was 

parametric and non-parametric can help the operator decide on a suitable tool. Parametric data are 

assumed to be normally distributed and consist of independent observations, and a large sample 

size which is normally greater than 30. On the other hand, non-parametric data are assumed to be 

Onset Date

Lag 1Lag 2

8 days 

Image removed due to copyright restriction.

http://iictenvis.nic.in/KidsCentre/Mosquito_1501.aspx
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not normally distributed, with a smaller sample size. This is not based on the numbers of samples 

but on ranking order (Gibbons & Fielden 1993). 

Spearman rank order correlation and Linear Regression Model in IBM SPSS Statistics version 25 

were applied in this study due to the small sample size (less than 30) used in this study (see Table 

2.11). The Spearman’s correlation is a non-parametric analysis which does not require normally 

distributed data, and is suitable for small datasets (Artusi, Verderio & Marubini 2002). It measures 

the relationship between two variables determined on ordinal scale (Gravetter & Wallnau 2013). 

Spearman’s correlation values range from -1.00 to +1.00 used to determine the strength of the 

association of one variable to another variable. A value of 0.00 shows no relationship between two 

variables, whereas +1.00 indicates a strong relationship between the two variables which positively 

influence each other. The -1.00 indicates a perfect correlation of the two variables, but in a negative 

way – the decrease of one variable will cause the other to increase (Rafieyan 2016). R2 is the squared 

values acquired from the correlation coefficient. To interpret this Cohen (1988) defined the range of 

values for the interpretation ranged from 0.00 to 1.00 (Table 2.12). 

Table 2.11: Sample datasets 

Month 

Dengue Cases 

Surface 
Water (%) 

Rainfall 
(mm) 

Number of 
Aedes 

Mosquitoes 

Onset 
Date (N) 

Lag1 Lag2 

December 2016 - 8 5 - - - 

January 18 14 13 6.9 143 143 

February 5 5 6 5.49 89 89 

March 4 1 4 7.16 42 42 

April 3 9 7 6.87 22 22 

May 11 15 17 8.34 41 41 

June 25 46 33 - 103 103 

July 63 78 64 - 157 157 

August 71 72 81 9.54 93 93 

September 77 58 62 - 83 83 

October 40 26 34 9.53 72 72 

November 28 21 25 7.33 84 84 

December 9 1 3 8.45 82 82 
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Table 2.12: Range of strength relationship and squared correlation 

Correlation Values Squared Correlation Values Interpretation 

0.10 – 0.29 0.01 Small Correlation 

0.30 – 0.49 0.09 Medium Correlation 

0.50 – 1.00 0.25 Large Correlation 

The Linear Regression Model is used to determine the best predictor of the dependent variables by 

involving one or more independent variables. The outputs provided by this model consist of 

regression coefficient, correlation matrix, multiple R and R2, and adjust R2 standard error of the 

estimate, the predicted values as well as 95% confidence intervals or each regression coefficient.  

In this current study, a 95% level of confidence interval was applied. Surface water and rainfall data 

were used as the independent variables to test the dependent variables – lag1, lag2, Aedes mosquito 

population – in order to examine their relationship. Lag 1 was used as an independent variable to 

test the association with number of Aedes mosquitoes.  

In conclusion, this chapter outlined the selection process of satellite image data used to detect 

surface water in this study, and the experiment of approaches used enhance image quality in 

extracting water bodies. Indices methods used to extract surface water from image data were also 

examined. Statistical analysis of correlation and regression used to investigate the relationship 

between surface water and dengue incidence. In the next chapter, findings derived from these 

methodologies will be presented, and then some points of indices method selection will also be 

briefly discussed. 
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CHAPTER THREE: RESULTS 

This chapter presents the results including the pre-processing of images analysis of PlanetScope 

and RapidEye images, water indices methods used to extract surface water and the post-image 

analyses. The section assessing the suitable satellite imageries used in this study is not included in 

this chapter as they were already presented and discussed in the chapter 2. 

3.1. Pre-processing of Image Analysis 

3.1.1. Atmospheric Correction 

Top of Atmosphere (TOA) 

Image data from 04 and 16 January 2017 were atmospherically corrected by conversion of TOA 

reflectance. The histograms (Figure 3.1, Figure 3.2) show the results illustrating a range of pixel 

values data from band 2 and band 4 (Blue and NIR) from the darkest to the brightest on the X axis, 

and frequency ranges of the data value on the Y axis. Atmospheric correction images show a higher 

range of value frequency in band 1 (Blue) compared with the non-atmospheric correction images, 

while the range of frequency values derived from the atmospheric correction in band 4 (NIR) shows 

a lower frequency than that of the image with no correction for atmosphere effects.  

An improvement in the high frequency of pixel values in band 1 (Blue) indicates that spectral 

reflectance of pixels in this band channel is significantly affected by atmosphere on electromagnetic 

radiance (Hadjimitsis et al. 2010), and typically was able to be enhanced by applying the TOA. 

Nevertheless, when applying the results obtained from TOA in the NDWI model, it was found that 

several areas of water surfaces appear as false negatives (Table 3.1), (normally water pixel values 

would be higher than zero) (McFeeters 1996). A consequence of this was the overestimation of 

surface water containing negative values as roads and built-up areas. Because of this result, the 

conversion of TOA reflectance in the January images was not applied in this study.  
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Figure 3.1: Histogram showing data values for January images in band 1 (Blue) 

with non-atmospheric correction (left) and with atmospheric correction (right) 

Figure 3. 2: Histogram showing data values for January images in band 4 (NIR) 

with non-atmospheric correction (left) and with atmospheric correction (right) 

Table 3.1: Statistical values of NDWI and water values obtained from TOA and non-TOA 

NDWI Images 

Water Pixel values 
Min Max Mean 

Non-TOA -0.52 0.7 -0.029 > 0.19

TOA -0.68 0.6 -0.27 > -0.071



69 

Bottom of Atmosphere (BOA) 

Dark Object Subtraction (DOS) was applied to investigate the quality of images for extracting surface 

water. October image data was used in the process and dark pixel values were derived from deep 

water bodies in the study area, and the minimum values of each band (Table 3.2). Table 3.3 presents 

the values from statistical analyses derived from DOS compared with the values before the DOS 

process. The dark pixel object used the darkest pixel value from deep water shows that the minimum 

values of each band contain negative values. The mean values are substantially different from the 

non-DOS image values. The results of the darkest pixel values used minimum values of each band, 

the mean values were smaller than those of the non-DOS. Only the minimum values of Green, Red, 

and NIR bands were smaller than those of the non-DOS. 

Table 3.2: Dark pixel values used for dark object subtraction 

Band Dark Pixel values from Deep Water Minimum values 

Band 1 – Blue 4,928 1,031 

Band 2 – Green 4,202 2,891 

Band 3 – Red 3,252 1,082 

Band 4 – Near-Infrared 2,766 1,831 

Table 3.3: Statistical information of PlanetScope satellite image derived from DOS 

Band 

Non-DOS With DOS (deep water pixel) With DOS (band min values) 

Min Max Mean Min Max Mean Min Max Mean 

Blue 1,031 34,365 5,433.707 -1,001.3 25,903 505.666 2,895.8 29,800 4,402.666 

Green 2,891 25,549 4,981.321 -682.38 19,042 779.272 628.63 20,353 2,090.272 

Red 1,082 32,507 3,924.416 -1,215.5 25,400 672.364 954.69 27,570 2,842.364 

NIR 1,831 28,451 6,606.832 -863.19 23,457 3,840.815 71.813 24,392 4,775.815

To examine the effectiveness of the DOS method in extracting surface water, images generated 

from DOS were assessed using the normalized difference water index (NDWI). Table 3.4 presents 

the values from statistical analyses obtained from NDWI. The range of values of the water index of 

the non-DOS method were between -0.46 to 0.62, while that of NDWI generated from DOS using 

the deep-water pixels was beyond the range of NDWI (-1 to +1). The NDWI values acquired from 

DOS using the minimum values of each band ranged from -0.77 to 0.89. Only NDWI values derived 

from non-DOS and DOS that used the minimum values of bands were compared. Comparison of 

water pixel values of these two images shows that many areas of surface water appear similar 
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(Figure 3.3). Hence, in this study, as the non-DOS and DOS images generated similar water index 

results, bottom of atmosphere correction using DOS was not applied. 

Table 3.4: Statistical values of NDWI with non-DOS and with DOS and water pixel values 

NDWI Images 

Pixel Values 

Min Max Mean Point 1 Point 2 Point 3 Point 4 

Non-DOS -0.46814 0.6228 -0.134 0.22 0.23 0.52 0.55 

DOS (deep 
water pixel 
values) 

-402.83 381.13 -0.65 - - - - 

DOS (min and 
max values) 

-0.77406 0.89039 -0.380 0.21 0.23 0.54 0.57 

Figure 3.3: Water areas spots for pixel values inspection 

The RapidEye Image was atmospherically corrected by applying the Rapid Atmospheric Correction 

applicable in ERDAS Imagine 2018. The raw digital number (DN) values of the image were internally 

converted to ground reflectance. Figure 3.4 shows the minimum and maximum values of the image 

before and after the process of Rapid Atmospheric Correction. The frequency of values and DN 

values were extended and larger than those of the image before the correction. The outputs yielded 

from NDWI and NDMI show more spread of DN values with greater standard deviation values of 

0.311 and 0.295 for NDWI and NDMI respectively (Table 3.5). 

1 

4 

2 

3 
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Figure 3.4: Histograms shwoing the minimum and maximum values of Blue band, before the 

correction (a), and after the correction (b); and NIR band, before the correction (c), and after 

the correction (d) 

Table 3.5: Satatistical values of NDWI before and after Rapid atmospheric correction 

Min Max Mean Std. Dev 

Before Correction -0.43 0.59 0.018 0.125 

After Correction NDWI -0.99 0.52 -0.49 0.311 

After Correction NDMI -0.99 0.40 -0.42 0.295 

3.1.2. Haze Reduction 

Haze reduction is another method that is used to correct atmospheric effects. It can improve the 

spectral reflectance by using the haze reduction model created in Spatial Model Editor, ERDAS 

Imagine. All images were processed in this process. The image in February was used in this 

experiment. It is noticed that visually the image undergoing the process shows clearer ground 

features compared with the original image (Figure 3.5).  

a b 

c d 
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Figure 3.5: PlanetScope image in February before haze reduction (a) and after haze 

reduction (b) displayed in false-colour composite (RGB: band 4, band 3, band 2) 

Statistically, the minimum and maximum values of the image after the haze reduction process were 

also improved with the improvement of standard deviation values (Table 3.6). The performance of 

this haze reduction method generating NDWI and NDMI outputs was assessed. Table 3.7 presents 

the minimum, maximum, mean, and standard deviation values of non-haze reduction and haze 

reduction values generated from NDWI and NDMI. The range of values of NDWI and NDMI were 

increased with a greater standard deviation. However, the mean values of the NDWI with non-haze 

reduction and the reduction of haze NDWI were similar (-0.003), and the standard deviation value of 

the haze reduction NDWI image shows only a minor difference from that of non-haze reduction 

NDWI.  

Table 3.6: Statistical information for February image data 

Band 

Image with non-haze reduction Image with haze reduction 

Min Max Mean Std. Dev Min Max Mean Std. Dev 

1 – Blue 2,925 29,395 5,255.971 771.013 6 48,518 5,257.499 898.036 

2 – Green 3,330 24,590 4,920.263 845.517 22 35,613 4,921.627 925.024 

3 – Red 2,284 27,075 4,351.070 1,134.514 1 40,336 4,352.247 1,220.525 

4 – NIR 1,394 17,176 5,024.227 1,082.307 3 26,586 5,025.663 1,161.951 

a b 
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Table 3.7: NDWI statistical values of non-haze and haze reduction images in February 

Min Max Mean Std. Dev 

Non-Haze reduction -0.405 0.649 -0.003 0.120 

With Haze reduction NDWI -1 1 -0.003 0.123 

With Haze reduction NDMI -1 1 -0.071 0.142 

Table 3.8 presents the statistical values generated from NDWI and NDMI of RapidEye (March image 

data). Both NDWI and NDMI yielded values of indices with minimum values of -1 and maximum 

values of +1, while the non-haze reduction was -0.405 and 0.64 for minimum and maximum values, 

respectively. When these values are compared with the NDWI and NDMI values generated from the 

Rapid Atmospheric Correction (Table 3.5), the range of values of NDWI and NDMI after using haze 

reduction outperformed those of NDWI and NDMI images using Rapid Atmospheric Correction. 

Thus, haze reduction was used to improve the spectral reflectance of the March data to extract water 

information. 

Table 3.8: NDWI, NDMI Statistical information before and after de-haze of RapidEye image 

Min Max Mean Std. Dev 

Non-Haze reduction -0.43 0.59 0.018 0.125 

With Haze reduction NDWI -0.89 1 0.020 0.134 

With Haze reduction NDMI -1 1 -0.082 0.163 

3.1.3 Cloud Masking 

Cloud masked images were produced by two different methods – unsupervised classification and a 

single band threshold method. Table 3.9 presents pixel values of cloud reflectance from band 2 

(Green) and shadow reflectance values detected from band 4 (NIR). With an attempt at masking 

cloud and shadow from the PlanetScope (August image data), cloud and shadow derived from 

unsupervised classification method showed accurate result of cloud and shadow masking at 

moderate level. However, when comparing this with a single band threshold method, it was found 

that cloud cover was able to be masked out with less overestimation of the surface water than the 

classification method (see Figure 3.6).  
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Table 3.9: Threshold values used to detect cloud and shadow 

Attribute Pixel Vales 

Clouds 

Shadow 

Ranged from 12,084 to 18,624 

Range from 3,882 to 5,083 

Figure 3.6: Cloud masking image from unsupervised classification (a), a single band 

threshold (b) and the combination of classification and a single band threshold methods (c) 

displayed in true-colour composite 

3.2. Surface Water Extraction 

The normalized difference water index (NDWI), and the normalized difference moisture index (NDMI) 

were deployed to discriminate water bodies. The use of the normalized difference vegetation index 

(NDVI) was also explored and compared with the NDWI and NDMI. From this comparison, it was 

found that NDWI and NDMI appeared to be the most suitable methods used to extract water 

information with less disturbance from other non-water areas (see 3.2.2). 

3.2.1. Multi-band Spectral Relationship Method 

Figure 3.7 shows the comparison output from the multi-spectral band method (a), and the result 

derived from NDWI (b). Generally, the multi-spectral band approach was able to delineate surface 

water in a similar way to the NDWI method. Some small water bodies were able to be detected as 

shown in Figure 3.6 (c) compared with the original image (d) (see the rectangle area). However, the 

multi-band spectral method was likely to largely interpret built-up features and bare areas as water 

features with a considerable amount of noise disturbance. As the area of this current research 

contains both urban and rural regions, lots of non-water pixels counted as water could decrease the 

accuracy of water extraction. With respect to this, Gao et al. (2016) pointed out in the investigation 

of multi-band spectral method that although this water detection algorithm could extract more water 

information, it mistakenly overestimated small shadow and built-up features as water bodies. Thus, 

this algorithm was not used in this study to extract surface water.   

a b c 
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Figure 3.7: Multi-band spectral relationship method compared with NDWI and NDMI 

3.2.2. Normalized Difference Vegetation Index (NDVI) 

PlanetScope imagery data from February was used as an experiment of the normalized vegetation 

index (NDVI) model to generate water bodies. A binary image which distinguishes vegetation from 

other features including water features was produced. Threshold values of this vegetation index 

range from -1 to +1, where the values above zero indicate vegetated areas, while the values below 

zero indicate non-vegetated areas. Table 3.10 presents the minimum, maximum, and mean values 

of NDVI compared with those of NDWI and NDMI. Optimum threshold values were defined by 

manually adjusting the histogram to categorise water and non-water features.  

Table 3.10: Statistical information for NDVI, NDWI, NDMI, and optimal threshold values 

February Min Max Mean Threshold Non-Water Water 

NDVI -1 1 0.071 -0.15 > - 0.15 -1 to -0.15

NDMI -1 1 -0.071 0.165 < 0.16 0.16 to 1 

c d 

a b 
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February Min Max Mean Threshold Non-Water Water 

NDWI -1 1 -0.002 0.18 < 0.18 0.18 to 1 

Figure 3.8 shows the results produced from the NDVI, NDMI and NDWI. The vegetation index and 

moisture index outputs show almost identical results separating water from non-water areas, while 

the results of NDWI could also distinguish some surface water, but not shallow water. It has been 

said that NDVI might not be suitable to use in identifying surface water in this study area as NDVI is 

likely to differentiate land vegetation rather than the aquatic vegetation that mixes with small surface 

water (Kulinkina et al. 2018; Rokni et al. 2014). In this study, however, the results generated from 

NDVI appeared to do well in determining surface water in the dry season (February, March). 

Figure 3.8: PlanetScope image (a) displayed in false-colour (RGB: 4,3,2), and indices of 

vegetation (b), moisture (c), and water (d) images displayed in the same colour ramp 

a b 

c d 
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Despite the ability of NDVI to differentiate water from vegetation, when thresholding the NDVI and 

MDMI images; NDMI seemed to effectively generate water regions with less disturbance of noise 

from other ground features compared with the NDVI, within the red rectangles in Figure 3.9 showing 

the areas where NDVI was interrupted by non-water features. Thus, NDMI produced the output 

image with less interference and was selected to use in this study with the image data in February 

and March.  

Figure 3.9: Comparison of NDVI (a) and NDMI (b) used to extract water features 

3.2.3. Normalized Difference Water Index (NDWI) and Normalized Moisture Index (NDMI) 

Normalized difference water index (NDWI) was applied to extract water bodies from satellite images 

of PlanetScope (January, April, May, August, October, November, and December 2017). For the 

images from February and March 2017, surface water was derived using the normalized difference 

moisture index (NDMI). With the use of these indices, the optimum threshold was applied to separate 

water from non-water features. The optimum threshold of NDWI and NDMI was determined by visual 

observation and the adjustment of the histogram. The values of the optimum threshold used to 

delineate surface water and non-water derived from NDWI and NDMI are presented in Table 3.11.  

Table 3.11: Threshold values used to extract surface water from water index images 

Dates 

Threshold Statistics Information Water 

Non-

Water 

NDWI NDMI Min Max Mean Deep 

water 

Mixture of Water 

and others 

January 0.22 -1 1 -0.027 > 0.22 -0.07 – 0.22 < -0.07

February 0.41 -1 1 -0.071 > 0.41 -0.16 – 0.14 < -0.16

March 0.15 -1 1 -0.265 > 0.15 -0.19 – 0.155 < -0.19

a b 
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Dates 

Threshold Statistics Information Water 

Non-

Water 

NDWI NDMI Min Max Mean Deep 

water 

Mixture of Water 

and others 

April 0.14 -1 1 -0.098 > 0.14 -0.04 – 0.14 < -0.04

May 0.125 -1 1 -0.034 > 0.125 -0.07 – 0.12 < -0.07

August 0.11 -0.68 0.51 -0.117 > 0.11 -0.15 – 0.11 < -0.15

October 0.11 -1 1 -0.130 > 0.11 -0.16 – 0.11 < -0.16

November 0.16 -1 1 -0.089 > 0.16 -0.12 – 0.16 < -0.12

December 0.155 -1 1 -0.046 > 0.155 -0.08 – 0.155 < -0.08

The outputs of water features were divided into three levels – high, medium and low. The range of 

high values was considered to be the area which NDWI and NDMI mostly interpreted as water areas, 

while the ranges of middle and low values include non-water features such as built-up areas and 

others with mixed water and vegetation (Figure 3.10). 

From the results of NDWI and NDMI as shown in Figure 3.11, it can be seen that areas that contained 

less water in 2017 occurred in February, March, April and May, while in January, August, October, 

November and December a large number of water areas was clearly detected. Some spots of water 

index image for August appeared as No Data due to the result of cloud masking. When performing 

NDWI modelling, pixels presenting No Data values were not computed.  

Figure 3.12 shows the amount of water in percentage extracted from NDWI and NDMI. August and 

October had more water areas compared with the other times, and the low surface water areas were 

in February, March, and April. Visually, although August appeared to contain surface water, as a 

result of cloud masking, the amount of surface water at this time was not very different from October. 
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Figure 3.10: Surface water extraction from NDWI and NDMI 
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Figure 3.11: NDWI and NDMI results displayed in stretched colour ramp 
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Figure 3.12: Surface water extraction in percentage 

3.3. Accuracy Assessment 

Accuracy assessment was implemented in order to evaluate the performance of water delineation 

results. Table 3.12 shows the results derived from Kappa statistical analysis used to measure the 

accuracy of the water index products. Overall, features that were interpreted as water were accurate 

at 0.69 from the User Accuracy (UA), while it was 0.42 from Producer Accuracy (PA). For features 

considered as non-water accuracy was at 0.93 of UA assessment and at 0.97 of PA assessment. 

Overall accuracy was 0.91 or around 91%, and the Kappa coefficient showed that the result of this 

water index was at 0.48, which was at a moderate level of agreement.  

Table 3.12: Confusion matrix derived from Kappa statistics 

Class Value Water Non-Water Total User Accuracy Kappa 

Water 23 10 33 0.69697 0 

Non-Water 32 435 467 0.933476 0 

Total 55 445 500 0 0 

Producer Accuracy 0.425926 0.977528 0 0.917836 0 

Kappa 0 0 0 0 0.486587 
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3.4. Association between Surface Water and Dengue Incidence 

3.4.1. The Spatial Distribution of Dengue Cases 

The incidence data geocodes were determine in order to explore the spatial distribution of the 

disease in the study site. From the initial analysis, the distribution of dengue cases showed a normal 

distribution as illustrated in Figure 3.13 and Figure 3.14. Examination of dispersion and self-

clustering were performed to statically measure the distribution pattern of this incidence.  

Figure 3.13: Frequency of dengue incidence spread in Easting 

Figure 3.14: Frequency of dengue incidence spread in Northing 
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Table 3.13 presents the mean, variance, F values and F critical values derived from F-test. X 

(Easting) and Y (Northing) coordinates were defined as Variable 1 and Variable 2 respectively. 

Variance is considered to be an important aspect to measure the pattern of data distribution as well 

as their variability (Schumacker & Tomek 2013). The results from this analysis show that the variance 

values of X and Y were not very different, which indicates that the distribution in the eastern and 

northern direction in this study area were normally distributed. When observing the output values of 

F-test, the F-critical value was greater than the F value, which confirms that the distribution of the

data in the east and the north were almost identical. 

Table 3.13: F-Test two-sample for variances 

Variable 1 Variable 2 

Mean 102.651425827684 18.0003793841808 

Variance 0.0045042801900127 0.00566465799218626 

Observation 354 354 

df 353 353 

F 0.79515483480659 

P(F<=f) one-tail 0.0157997545693054 

F Critical one-tail 0.839180457013118 

Average Nearest Neighbour (ANN) was performed based on the average distance between given 

features and their nearest neighbour features. From the analysis, the Nearest Neighbour index was 

0.35611 with the mean values of expected distance and observed distance of 1603.37, and 570.97 

respectively, and a P value of zero and -23.176 of Z Score (Table 3.14). The result shows that the 

NN ratio was smaller than 1 which indicates that the pattern of data distribution is clustered (see 

Appendix 6: Average Nearest Neighbour Summary Report).  

Table 3.14: Average Nearest Neighbour analysis information 

Index Values 

Nearest Neighbour Ratio 0.35611 

Nearest Neighbour Expected 1603.37221 

Nearest Neighbour Observed 570.976251 

P Value 0 

Nearest Neighbour Z Score -23.176319
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3.4.2. Analysis of Dengue Incidence Associated with Surface Water 

To explore the emergence of dengue incidence throughout the wet and dry seasons, the number of 

dengue cases, lag2, lag1 and Aedes mosquito numbers were analysed graphically by comparing 

these with the surface water results extracted from satellite image data.  

The trend of dengue incidence was initially compared with rainfall. Figure 3.15 shows that the highest 

number of dengue fever cases was found at the beginning of January and dropped in late January 

until April before it started to increase again in May and reached the peak point in September. It was 

found that the increase of disease incidence occurred after rainfall events. 

Figure 3.15: Dengue incidence compared with rainfall 

Figure 3.16 shows the amount of surface water compared with disease incidence. Due to the 

unavailability of image data to generate surface water in June, July and September, only the first five 

months showed a continuous trend in the amount of water on the ground surface. Overall, the 

increase of the amount of water was not related to the increase of dengue although the large amount 

of surface water in August was consistent with the highest time of dengue cases found.  

Surface water was compared with lag2 and lag1. Figure 3.17 presents the estimated counts of 

people contracting the disease (lg2). It was found that the infected people were detected from 

January and started to increase considerably in April and peaked in August with a large number of 

infected people. This high number of cases was at the time that surface water was at its peak 

(August), however, the number of infected people decreased in October and December when 

surface water was also high.  
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Figure 3.16: Dengue incidence compared with surface water 

Figure 3.17: Surface water compared with Lag2 counts 

Figure 3.18 illustrates the estimated time of a vector mosquito developing into an adult (lg1). 

Significant numbers of Aedes mosquitoes were found from the beginning of the year, and a high rate 

of adult mosquitoes was detected in July towards the end of the rainy season. This estimation was 

consistent with the data of the Aedes mosquito populations (A. aegypti and A. albopictus) collected 

in 2017, derived from IPL data (Figure 3.19). When comparing surface water data with the number 

of vector mosquitoes, it can be seen that at the beginning of the year adult mosquitoes were found 
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with the increase of surface water in January, and there were small numbers of mosquito populations 

during the low level of surface water only in February. 

Figure 3.18: Surface water compared with Lag1 counts 

Figure 3.19: Surface water compared with Aedes mosquito population 

Correlation Analysis 

The analysis of the relationship between surface water and dengue incidence was performed by 

using Spearman’s correlation coefficient. Table 3.15 shows the values of the correlation coefficient 

derived from Spearman’s rho, with a value of p < 0.05 applied as the level of statistical significance. 

Surface water shows a positive correlation with dengue fever cases (r = 0.7, p = 0.025) with a 
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significant p value of less than 0.05. Similarly, the association of surface water with lag1 and lag2 

shows a positive correlation (r = 0.56, p = 0.1; r = 0.53, p = 0.1 respectively), but these are not 

significant. The association of Aedes mosquito counts, and surface water shows no correlation with 

a very small coefficient value (r = 0.067, p = 0.8). 

Rainfall shows a positive correlation with dengue incidence but not at a significant level (r = 0.53, p 

= 0.071), whereas with lag2 and lag1, rainfall appears positively correlated at a level of significance 

(r = 0.72, p = 0.007; r = 0.75, p = 0.005). There is a small correlation between rainfall and Aedes 

mosquito counts with no significance (r = 0.18, p = 0.5). Lag2 counts, which were cases of individuals 

contracting the disease, shows a positive correlation with Aedes mosquito numbers but that was not 

at a statistically significant level (r = 0.4, p = 0.1).  

Table 3.15: Spearman’ s correlation coefficient analysis 

Correlation Surface 
Water 

(n = 9) 

Rainfall 

(n = 12) 

N 
Counts 

(n = 12) 

Lag2 
Counts 

(n = 13) 

Lag1 
Counts 

(n = 13) 

Aedes 
Mosquito 

(n = 12) 

Spearman’s 
rho 

Surface 
Water 

(n = 9) 

Correlation 
Coefficient 

1.00 

Rainfall 
(n = 12) 

Correlation 
Coefficient 

.667 * 1.000 

N Counts 
(n = 12) 

Correlation 
Coefficient 

.733* .538 1.000 

Lag2 
Counts 
(n = 13) 

Correlation 
Coefficient 

.533 .727 ** .0902** 1.000 

Lag1 
Counts 
(n = 13) 

Correlation 
Coefficient 

.561 .753 ** .890** .982 ** 1.000 

Aedes 
Mosquito 
(n = 12) 

Correlation 
Coefficient 

.067 .182 .510 .448 .518 1.000 

* Correlation is significant at the 0.05 level (2-tailed)

** Correlation is significant at the 0.01 level (2-tailed) 

Linear Regression Model Analysis 

Tables 3.16 to 3.18 illustrate the regression coefficient values derived from the Linear Regression 

Model. Surface water shows no significant association with lag1 counts with a p value of 0.072 

despite the medium level regression coefficient value of 0.62. However, with an association between 

surface water and lag2 counts, there is a positive correlation with a significant level of 0.049, and a 

regression coefficient value of 0.66. For the relationship between Aedes mosquito counts and 
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surface water, the regression coefficient value shows no correlation with a negative value of 0.04 

and p value is greater than 0.05. 

Rainfall showed a strong relationship with lag1 counts of 0.84 with a significant value at 0.001, and 

with lag2 counts of 0.78 regression coefficient, and 0.003 significant value. Regression analysis of 

rainfall and Aedes mosquito counts, however, show a small value of coefficient of 0.21 at a no-

significant level of 0.5.  

The Aedes mosquito count was included in the analysis to examine its association with the lag1 

counts. It was found that there is a positive correlation between these two, but that is not at significant 

level. 

Table 3.16: Association between lag1 counts and surface water and rainfall from Multivariate 

Linear Regression  

Model Standardized 
Coefficients 

Beta 

Sig. 95 % Confidence Interval 

Lower Bound Upper Bound R 
Square 

R 

Surface Water .625 .072 -1.183 21.652 .391 .625 

Rainfall .847 .001 .108 .280 .717 .65 

Table 3.17: Association between lag2 counts and surface water and rainfall from Multivariate 

Linear Regression  

Model Standardized 
Coefficients 

Beta 

Sig. 95 % Confidence Interval 

Lower Bound Upper Bound R 
Square 

R 

Surface water .668 .049 .045 24.641 .446 .668 

Rainfall .785 .003 .077 .269 .616 .785 

Table 3.18: Association between Aedes mosquito counts and surface water, rainfall, and lag1 

counts from Multivariate Linear Regression  

Model Standardized 
Coefficients 

Beta 

Sig. 95 % Confidence Interval 

Lower Bound Upper Bound R 
Square 

R 

Surface Water -.040 .918 -25.053 22.891 .002 .040 

Rainfall .213 .507 -.154 .292 .045 .213 
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Model Standardized 
Coefficients 

Beta 

Sig. 95 % Confidence Interval 

Lower Bound Upper Bound R 
Square 

R 

Lag1 Counts .534 .074 -.088 1.600 .285 .534 

To conclude, the image analysis results showed that haze reduction helped improve the range 

values of indices methods. NDWI, and NDMI presented more accurate results with less disturbance 

of non-water information. Correlation and regression results showed that there was a correlation 

between surface water and dengue incidence, but that had no relationship with vector population. 

Rainfall also appeared to be positively correlated with dengue incidence. These findings will be 

discussed further in chapter4 in which relevant literature will be used where it necessary in the 

discussion.  
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CHAPTER FOUR: DISCUSSION AND CONCLUSION 

This chapter will begin with the discussion of spatial distribution of dengue incidence over the study 

area, and it will then discuss the findings of relationships between dengue fever cases and surface 

water, and rainfall; and compare these with the literature reviewed in chapter 1. Approaches used to 

extract surface water including pre-processing, post-processing of image analysis, and the factors 

that are likely to be the main influences on the results of water extraction will be outlined. Some of 

the methods used in the experiment to acquire more accurate results of surface water are not 

discussed in this section. Finally, aspects that should be considered when applying remote sensing 

and GIS in epidemiology are discussed. Limitations found in this study will be outlined, as well as 

further areas to be examined are also provided. This chapter will end with the conclusion section 

which highlights the key findings from this study, as well as the recommendations. 

4.1. Analysis of Dengue Fever Occurrence 

4.1.1. Spatial Distribution of Dengue Incidence 

Dengue cases data from 2017 was spatially analysed in order to examine the frequency of the cases 

and its pattern of spatial distribution. Analysis showed cases were frequently found in the northern 

to northeast and expanded into the western part of the study area, with a frequency found in the 

east. The distribution of the incidence was normally distributed when simply plotted and analysed in 

the Data Analysis tool provided in Microsoft Excel. However, the result from dispersion data analysis 

showed that the data was in a clustered pattern according to the result derived from the Average 

Nearest Neighbour ratio (NN Ratio < 1). This clustering is assumed to be due to the influence of a 

higher density of population and urbanisation in the area. Figure 4.1 shows the areas where large 

numbers of dengue cases were found in the centre of the study site with a high population of more 

than 90,000. The disease incidence was found clustering within the densely populated areas as 

shown in Figure 4.2. Bohra and Andrianasolo (2001) investigated the risk factors causing dengue 

disease in India and found that in crowded areas where there is a high density of population, dengue 

transmission is more likely to happen. This illustrates that humans are the main source of blood for 

dengue vectors, therefore, where there is a denser population, the vectors are likely to be found. In 

this study, it is noted that the regions that appear to be attractive sites for dengue vectors are the 

core urbanisation areas in the study site with more than 90% development (see Figure 1.4, Chapter 

1). Coker et al. (2011) stated that the emergence of vector-born disease is associated with the rapid 

development of urbanisation, especially in areas where there is a mixture of urban and peri-urban 

areas in which storing water is implemented due to insufficient water supply and unreliable sanitation 

systems. However, although the density of population and urban development are the driving forces 

behind the disease, it is essential to investigate the distances between breeding sites and dengue 

cases. It has been pointed out that virus transmission is connected with the flight distance of vector 
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mosquitoes which is likely to be more than 50 metres for Aedes aegypti (Morlan & Hayes 1958; 

Reiter et al. 1995). So, in further analysis, in order to develop a risk or predictive model of dengue 

disease; approximate flight distance of the vectors, breeding sites and human settlement should be 

considered. 

In this research, from the initial exploration of the spatial distribution of dengue over the study area, 

it appeared that the trend of dengue occurrence was influenced by the spatial distribution of 

population. However, there was a lack of data at the village level, which is necessary for the spatial 

evaluation to analyse whether the clustering pattern of dengue distribution is significantly correlated 

to population and urban development. Importantly, this is beyond the scope of this study, but it is 

critical that this should be considered in a further study.  

Figure 4.1: Study area by number of populations 
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Figure 4.2: Population density per square kilometre 

4.1.2. Analysis of the Association of Dengue Incidence and Water Bodies 

Water bodies serve as the breeding sites for dengue mosquitoes, and play an important role in the 

spread of dengue fever (Hsueh, Lee & Beltz 2012). However, biologically, the cycle of virus 

transformation is complicated, so it is important to understand the delay time of virus transmission 

and its development. In this study, the number of dengue cases (N), lag1 – an estimation of an adult 

mosquito development time, lag2 – an estimated date of people who contracted the virus, as well as 

the Aedes mosquito population, were analysed against surface water and rainfall.  

The correlation between surface water and dengue cases was positive at significant level, however, 

this study did not include the distance from the disease cases to water bodies in the analysis, so it 

cannot be definitively stated that the changes of water bodies throughout the year influenced the 

occurrence of dengue fever. Chadee, Williams and Kitron (2005) and Chowell and Sanchez (2006) 

highlighted that water bodies are found to be correlated with the occurrence of dengue fever in the 

areas where there is a high population density. However, it is important to note that Hsueh, Lee and 

Beltz (2012) emphasized the range of flight distance of mosquito vectors from the breeding sites to 

food sources as an important aspect that should be considered as it could affect the dengue disease 

cases. Thus, to effectively evaluate the significance of surface water associated with dengue cases, 

population density – a main food source for dengue vectors – and the proximity between water 

bodies and dengue cases should be focused on in a further study.  
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Surface water was found to have a positive correlation with lag1 and lag2, but not at a statistically 

significant level, and showed no correlation with Aedes mosquito population numbers. Regression 

analysis showed no significance between surface water and lag1 and the vector population, but with 

lag2 with a positive correlation at a significant level. Nevertheless, there was a relatively low 

correlation between the two with an R square value of 0.45 which means that surface water is only 

a moderate predictor of the numbers of mosquitoes. From a review of the literature, and the findings 

in this study, a suggestion for further studies is that investigating other aspects which could influence 

the number of dengue vector mosquitoes, not just only the amount of surface water, is encouraged. 

It is known that water bodies serve as the breeding habitats for mosquitoes, and many studies found 

that there is a significant correlation between dengue fever and water bodies (Nakhapakorn & 

Tripathi 2005; Raju & Sokhi 2008; Tian et al. 2016), and dengue prevalence was found in the areas 

located closest to water regions (Halstead et al. 1965; Li et al. 2017; Zheng et al. 2019). However, 

the biology of dengue mosquitoes is too complicated to just simply treat all water bodies as equal. 

Types and sizes of water bodies are significant components in a study of breeding habitats for 

dengue mosquitoes – Aedes aegypti and Aedes albopictus – since they have different breeding 

behaviour. Water body type and size affect the size of dengue vector population causing the density 

of the mosquito populations to vary (Tian et al. 2016). In this study, many of the water body areas 

were big rivers, flowing streams and deep standing water bodies. These types of water might not be 

appropriate sites of breeding for dengue mosquitoes as Tiong et al. (2015) found that large water 

bodies were not an influence for dengue prevalence because they limit oxygen and light from the 

sun, which support the growth of dengue vectors. It was assumed that, however, there is a likelihood 

that water bodies like lakes link to dengue cases (Li et al. 2017), as they could provide breeding sites 

for Aedes albopictus mosquitoes which could lead to a higher numbers of disease carrying 

mosquitoes (Tian et al. 2016). This study did not classify types of surface water favourable for 

dengue vectors, therefore, to effectively evaluate the relationship between surface water and the 

occurrence of dengue fever, the characteristics of water including size of water bodies (Tiong et al. 

2015), types of water (Nasir et al. 2017) (turbid, standing water, flow water), depth of water, 

cleanliness of water (Phuanukoonnon, Brough & Bryan 2006), organic matters to feed mosquito 

vectors, as well as water temperature (Tun‐Lin, Burkot & Kay 2000), should be taken into 

consideration. 

Surface water was found to be correlated with rainfall data with strong correlation being statistically 

significant, which indicates the interconnection between the two. Several factors were found to 

influence the quantity of surface water, such as the amount and intensity of rainfall, temperature, 

and topographical features (World Health Organization n.d-b). In this study, as surface water was 

positively correlated to rainfall, surface water is not suggested to be used as an independent factor 

to predict dengue incidence occurrence. 



94 

4.1.3. Analysis of the Association between Dengue Incidence and Rainfall 

From the primary assessment, it was noticed that the trends in dengue cases and rainfall events 

showed some hidden relationships between them (Figure 3.13, Chapter 3). Correlation and 

regression analysis were performed. Rainfall showed a positive correlation with dengue prevalence, 

at non statistical significance, but with lag1 and lag2, while there was no relationship with the adult 

vector population. Regarding the association between rainfall and dengue incidence, it is important 

to note that precipitation is found to be highly correlated with the disease incidence only when there 

is a low level of precipitation and with less inundation (Angel & Joshi 2009; Bi et al. 1998) because 

heavy rain can wash away the eggs and larvae, while a decrease of rainfall creates flooded areas 

for mosquitoes. Several studies showed similar findings, for instance, Sirisena et al. (2017), Bi et al. 

(1998) and Zheng et al. (2019) explored how dengue incidence was associated with rainfall and the 

results were reported that precipitation was associated with dengue fever occurrence when there 

was an increase in average rainfall under favourable conditions. This research project found that 

there was less significance between rainfall and dengue incidence, and only included total amount 

of rainfall in the analysis. However, this finding suggested that a further exploring the different level 

of precipitation is suggested in order to clearly see how significantly dengue incidence and rainfall 

are related. Another aspect should be attentively looked at when examining the correlation between 

these two is that rainfall acts as an indirect factor that provides appropriate conditions for mosquitoes 

to breed in and to proliferate. Precipitation creates a condition of high relative humidity with the 

support of temperature for vector mosquitoes (Nasir et al. 2017). With these suitable conditions, the 

number of vector mosquitoes can be increased at any time throughout the year, even in the dry 

season. This is supported by the findings by Angel and Joshi (2009) who showed that mosquito 

infectivity was high in desert areas where there is rare precipitation. Additionally, Sirisena et al. 

(2017) also found that high vector populations were reported in dry zones not just in wet areas. It 

was also evident that in this study, dengue cases were reported following the dry season and 

increased in the rainy season. Thus, it is important to prepare action plans before the rainy season 

starts in order to effectively deal with the situation that frequently happens prior to and during the 

rainy season.  

4.2. Image Correction 

4.2.1. Atmospheric Correction 

It is acknowledged that correcting the interference of atmosphere on sensors especially in visible 

and NIR radiance is necessary, so this study attempted to perform this correction by applying top of 

atmosphere (TOA) and bottom of atmosphere (BOA) corrections.  
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Top of Atmosphere Correction (TOA) 

Image data (04 and 16 January 2017) were selected for the test of TOA: although this appeared to 

improve spectral reflectance of PlanetScope, when performed in normalized difference water index 

(NDWI) to generate water features, it was found that some water areas contain negative values 

which typically are considered to be non-water areas (NDWI ≥ 0). As a result of this, many areas 

which had negative values, such as built-up areas and bare areas, were overestimated as water 

features. It was suspected that this problem occurred because the process of converting radiance to 

TOA reflectance was operated by multiplying the DN values of each band with the reflectance 

coefficient values provided by the Planet. According to Avnir and Cartosat (2018) in the process of 

indices calculation of vegetation for instance, reflectance data is required for extracting ground 

features, but if the input data is in digital number (DN) values, they will be internally converted to 

TOA for the calculation. On this basis, it is assumed that in this study, this issue happened due to 

the process of converting TOA reflectance that might be calculated twice; 1). From the conversion 

of radiance to TOA reflectance, and 2). The calculation of TOA reflectance through NDWI. 

Wicaksono and Lazuardi (2018) applied this method of converting radiance to obtain TOA 

reflectance data of two different dates in their study of mapping benthic habitat and seagrass 

species. Satellite image data used in the study was PlanetScope images but their study was not 

focusing on applying indices methods. Baloloy et al. (2018) also used PlanetScope images to 

examine the biomass of mangrove forest above ground by applying vegetation indices. The process 

of TOA reflectance acquisition was performed according to a guide provided in the Planet Labs 

python (www.planet. com/docs /guides /quick- startndvi). In this current study, TOA reflectance was 

implemented based on the guidance provided from the tutorial of converting PlanetScope imageries 

from radiance to reflectance (Planet 2019). In doing so, instead of using Python 2.7 or 3+ as 

recommended by the Planet developer, Spatial Model Editor in EDAS Imagine 2018 was built 

according to the Python scrips and formula provided in the guide. In order to justify this, a further 

experiment on the use of Python and simple spatial model from ERDAS Imagine generating TOA 

reflectance data based on the provided formula is suggested.  

Bottom of Atmosphere Correction (BOA) 

In this study, normalized difference water index (NDWI) values were obtained from the atmospheric 

correction of bottom of atmosphere (BOA) performed by applying the dark object subtraction (DOS) 

method. Hadjimitsis, Clayton and Retalis (2003) explained the principle process of dark object that 

“pixels from dark targets are indicators of the amount of upwelling path radiance in the affected 

bands”. By using this method, surface radiance of the dark objects is added by the radiance 

atmospheric values, therefore resulting in zero surface radiance or reflectance.   

The results of NDWI values obtained using the DOS method showed a varied range. Pixel values 

extracted from deep and clear water areas were the darkest values in the process in the DOS 
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method. The results showed a huge range of values of NDWI (402.83 to 381.13). Mather (1987) and 

Switzer, Kowalik and Lyon (1981) investigated the digital number (DN) values of water features on 

Landsat TM 5 and TM 7. Those authors found that areas in the short-wave infrared band were 

significantly affected by the additive effect of haze, and the darkest pixel in the Landsat TM band 4 

(760 nm – 900 nm) was presumably influenced by atmospheric effect. In this study, there is a 

likelihood that band 4 (780 nm – 860 nm) of PlanetScope image might be affected by the presence 

of atmospheric noise. Hadjimitsis, Clayton and Toulios (2010) mentioned that water bodies are 

objects that highly absorb atmospheric effects, so in order to find the suitable dark pixel values; 

applying different methods and comparing them together to generate dark pixels is recommended.  

Apart from selecting dark pixels from water areas, histogram minimum values of each band were 

applied in this study to extract dark pixel values. The result of NDWI showed more moderate values 

in the range -0.77 to 0.89 compared with those of the dark pixels from water areas. Hadjimitsis, 

Clayton and Toulios (2010) pointed out that although histogram minimum values for acquiring dark 

pixel is used, it is not always straightforward to obtain suitable values for dark pixels because the 

values are automatically generated. To acquire suitable minimum values in each band, when plotting 

a histogram of DN values of dark areas on image, the outliners, which are assumed to be influenced 

by noise and data error, should be ignored (Hadjimitsis, Clayton & Toulios 2010).  

This study simply extracted dark pixel values by examining digital number values from each band 

and used them in the DOS method without applying various approaches. As a result of this it could 

be assumed that the effect of selecting pixels from the dark object might be disturbed by other factors 

such as the atmospheric contribution.   

Song et al. (2001) suggested that, nevertheless, simple atmospheric corrections, such as the dark 

pixel method, might not be suitable for the applications needed to acquire surface reflectance, but it 

seems to be applicable in classification and change detection tasks to derive the best overall result. 

In contrast, Hadjimitsis, Clayton and Toulios (2010) compared numbers of atmospheric corrections 

for the needs of surface reflectance applications by applying them to the Landsat TM image and it 

was found that the darkest pixel or object subtraction correction outperformed the others with a 

reasonable correction provided in bands 1, 2, and 3. Nevertheless, from the operator point of view, 

the effectiveness of the atmospheric correction method might need further work to test it with different 

satellite image data, at a different area of interest in order to obtain consistency.   

4.2.2. Haze Reduction 

Haze reduction was designed based on the sensor-specific calculation of the Tasselled Cap (TC) 

transformation used only on Landsat 4 TM, Landsat 5 TM, and Landsat 7 TM imageries. However, 

in this study, after exploring the method used to correct atmospheric effects (TOA, BOA), haze 

reduction was used as another method for correcting the disturbance of atmosphere. Images with 
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haze reduction were improved both statistically and visually. Importantly, the range values of the 

normalized difference water index (NDWI), and the normalized difference moisture index (NDMI) in 

February and March were also improved up to -1 to +1. The image data derived in August was 

applied before the masking cloud process. It was found that the NDWI range values was also 

improved from -0.47 to -0.68 for minimum values, and from 0.505 to 0.517 with an improvement of 

0.124 to 0.127 of standard deviation values. With this improvement, Ahmad et al. (2014) assume 

that in the nature of haze reduction process, the pixels that contain haze will be replaced with the 

mean values from the clear regions, and spectral reflectance of ground features is also enhanced.  

However, due to the unviability of coefficient values of PlanetScope used for proceeding in the model 

of haze reduction, further experiments should be undertaken by exploring satellite sensors 

containing 4 spectral bands with a similar wavelength, such as SPOT, that the coefficient values are 

available. Coefficient values used to perform TC can be found at the index database 

(https://www.indexdatabase.de/). This would help operators decide which atmospheric correction 

models should be at best applying in improving the accuracy of image analysis results.  

4.2.3. Cloud Removal 

Cloud cover seems to be the main constraint to multispectral sensors to detect the surface 

reflectance in tropical areas. The study site was in a tropical region so this issue cannot be ignored. 

The images obtained from PlanetScope were also covered by haze and cloud, but the huge amount 

of cloud presented in the image was in August. Due to the unavailability of an automated cloud 

masking method, cloud and shadow were classified by using Unsupervised Classification, and a 

single band threshold method. These two methods were performed and compared in order to find 

the better result. It was found that although the classification approach was able to detect cloud cover 

and shadow, many ground features, especially water information, were classified as cloud and 

shadow. In contrast, the threshold method showed better results in detecting cloud and less 

overestimation of water surface. Sun et al. (2016) stated that the threshold method is the most widely 

applied method with high accuracy and stable results but finding the suitable threshold values from 

any wavelength is not straightforward especially if the cloud cover is in the complex land surface 

composition. The threshold used to detect cloud typically detects clear pixel values which are 

normally related to other features that contain similar pixel values as it is presented in Figure 4.3. 

This is evident that not only cloud was removed but also other objects, such as buildings and roads 

were also removed. Nevertheless, as this study only focuses on water features these losses have 

no impact on this study.   

To enhance the quality of cloud detection, applying different cloud detection algorithms with a 

concerned remote sensor in a specific study area is recommended, otherwise information about the 

ground surface derived from pixels values that has inaccurately undergone the process of cloud and 

shadow removal, will decrease the accuracy of land cover classification (Wang, Xie & Liang 2008). 

https://www.indexdatabase.de/
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Figure 4.3: The effects of cloud and shadow removal on other ground surface features, 

PlanetScope displayed in true-colour composite 

4.3. Surface Water Extraction 

The classification method was initially considered as the method to be used in generating surface 

water data, however due to the large number of satellite images, a method, such as indices 

algorithms, which performs with less time with overall accuracy at an accepted level, was considered. 

4.3.1. Normalized Difference Water Index (NDWI) 

The normalized difference water index (NDWI) was suitable for water body mapping in the study site 

over the dates where there were relatively large amounts of surface water. Most of the area covered 

by water bodies such as small ponds, rivers and streams were detected. When applied in the dry 

season, especially at the time that there was less water, the water index was poor in discriminating 

surface water and was interrupted by other non-water features such as bare areas. Despite the ability 

to detect the surface water of NDWI, the main challenge in applying this method, especially in urban 

areas, is that it often shows significant numbers of false positives in built-up areas such as buildings, 

roads, and bare areas due to their similarity of spectral reflectance in the Green and NIR bands 

(Rokni et al. 2014; Zhou et al. 2017). As some parts of the study site cover urban zones the issue of 

overestimating surface water was found to be a main challenge. Xu (2006) suggested a modified 

normalized difference water index (MNDWI) which deploys SWIR instead of Green band as this can 

remove the disturbance from built-up signals. However, this study only used free of charge image 

datasets – PlanetScope and RapidEye – which only consist of 4 bands (Visible and NIR bands). To 

decrease numbers of false positives that occurred in the results, this study focussed on seeking 

suitable optimal threshold values to generate water information. Thresholding was implemented to 

obtain the most suitable values to detect water bodies with less interference from the non-water 
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features. Thus, this study divided water extraction results into three classes – high level refers to 

pure water, medium level refers to water mixed with grass, small vegetation, and low refers to non-

water. By applying threshold values to generate water information from others, Zhou et al. (2017) 

pointed out that the threshold used to delineate water features might not guarantee that NDWI could 

completely remove unwanted features from the results. With the limit of sensors, combining NDWI 

with Principal Component (PC) might be another option. Rokni et al. (2014) suggested an integration 

of NDWI and the Principal Component Analysis (PCA) – a technique of transforming the composite 

image into a new PCA space to produce uncorrelated output bands. This proposed method, 

however, was only applied to examine the changes of surface water at two or three different times 

in open surface water such as lakes and rivers in their study. Using different methods and integrating 

them together would help improve the accuracy of water body extractions. For instance, Acharya, 

Subedi and Lee (2018) examined the methods used to best detect surface water in Nepal and found 

that using different water indices, such as the normalized difference water index (NDWI), modified 

NDWI, and automated water extraction index (AWEI), they could obtain high accuracy results of 

water delineation. By combining these approaches, surface water can be extracted with better 

accuracy up to 0.96 of overall accuracy and 0.89 of Kappa coefficient.  

4.3.2. Normalized Difference Moisture Index (NDMI) 

The Normalized difference moisture index used in this study was modified from the NDMI originally 

developed by Gao (1996) which typically deploys near-infrared (NIR), and short-wave infrared 

(SWIR). Due to the limitations of remote sensors used in this study, the Red and NIR bands were 

used instead. This modified index was selected to use only with the image that presented a small 

amount of surface water (February and March). Results from this modified index showed less 

disturbance from non-water feature signals such as bare areas when compared with NDWI and 

NDVI. With the use of NDMI, Ogilvie et al. (2018) compared different method of indices to extract 

water bodies from SPOT data, and found the NDMI moisture index performs better in detecting low 

surface water and small water bodies. However, it showed low user accuracy due to its inability to 

separate vegetated pixels from water features. In addition to this, Rokni et al. (2014) extracted 

surface water from Landsat data by deploying NDWI and NDMI and found that NDMI was not able 

to generate surface water if compared with NDWI. Regardless of these poor performances of NDMI, 

this study used this modified normalized moisture index, and it appeared that the NDMI was able to 

extract surface water with a small number of false positives with overall accuracy of 0.91, and user 

accuracy of 0.69 at medium agreement level of Kappa coefficient (0.48). However, the NDMI used 

in this study was modified from the original model due to the limitations of sensor wavelength. Further 

experiments that apply this with other sensors where SWIR is not provided are recommended.  

To sum up the use of indices methods, in order to produce highly accurate water body detection, an 

operator might need to comprehend that different types of water bodies have different spectral 
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reflectance in different remote sensors (Fisher, Flood & Danaher 2016). For instance, in this study, 

PlanetScope image, deep and large water bodies showed high reflectance in Green and dropped in 

the Red and NIR bands, while shallow water showed slightly different reflectance between Green 

and Red bands. RapidEye image, deep water bodies and shallows show the peak point of 

reflectance was in Green band and low reflectance in the Red band. It is suggested that to optimise 

the progress of mapping water bodies in urban areas, exploring surface reflectance of ground 

feature, as well as the combining water indices methods with other object extraction techniques 

would be another option to consider (Jiang et al. 2014).  

4.3.3. Optimum Thresholds for Indices Methods 

Threshold selection is an integral to achieving detecting water pixels from water index images (Chen 

et al. 2018). The fix threshold was defined by McFeeters (1996) who firstly developed the NDWI, 

and Gao (1996) who developed NDWI which was later defined as NDMI by Xu (2006). The threshold 

of these indices is set at zero where the water feature is greater than zero (NDWI > 0) and non-water 

is smaller or equal to zero (NDWI ≤ 0). In this study, however, the threshold was manually adjusted 

according to the study site. Xu (2006) stated that despite the values fixed from the NDWI and NDMI, 

a manual adjustment of threshold performs better and more accurately in identifying water. This 

study provided the threshold values used to delineate water features with the consideration of 1). 

Detecting surface water as much as possible in the study area, and 2). Fewer false positives were 

contained in the outputs. The threshold used in this study was between 0.11 and 0.22 where the 

values greater than these were considered to be water features. With this low threshold, Ogilvie et 

al. (2016) reported that a threshold which is close to zero is mostly found in wetlands. In this study, 

the study area is a lowland surrounded by wetlands with water accumulation during the rainy season 

and water storage for agricultural activities (Comte 2009). So, it might be assumed that threshold 

values were at this range as a consequence of the study site’s characteristics. 

Regarding the issue of applying threshold values, Ji, Zhang and Wylie (2009) commented that due 

to the mixture of large numbers of water and non-water pixels, when applying threshold values, water 

pixels can be reduced. To improve this water delineation output, it is required to evaluate the water 

indices in order to determine a suitable threshold for extracting water features, and defining a suitable 

threshold can also reduce the interferences of clouds and shadow (Ji, Zhang & Wylie 2009; Ogilvie 

et al. 2018). Importantly, field data is necessary to enhance the accuracy of water mapping (Ogilvie 

et al. 2018). 
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4.4. Accuracy Assessment 

The Confusion matrix (Figure 3.12, Chapter 3) illustrated that the overall accuracy derived from this 

assessment was up to 0.917 or 91.7 %. The accurate interpretation of water from User and Producer 

was 0.69 or 69 %, and 0.42 or 42 %, respectively, whereas, the accuracy of non-water interpretation 

was 0.93 or 93 % for User, and 0.97 or 97 % for Producer. However, the Kappa coefficient showed 

only at a medium level of agreement between the reference data (ground truths) and interpreted 

data. Regarding the accuracy produced by User and Producer, Congalton (1991) explained that to 

interpret the result produced from accuracy assessment, each clarified field is interpreted according 

to the results generated by User Accuracy (UA) and Producer Accuracy (PA). As the focus of this 

study was surface water, the correct pixels considered to be water were only 69 % correctly identified 

from User, while only 42 % of water areas were correctly identified as water from Producer. 

Congalton (2007) highlighted factors affecting the results of accuracy assessment which can happen 

during the process of image analysis. The errors include sensor issues, geometric correction, image 

analysis processes, as well as the assumptions made during the process of assessment.  

During the process of assessment in this study, although 500 points were generated to represent 

ground references on the study site, many areas show unclear features which made it difficult for 

the operator to determine whether it was surface water of not, as is shown in Figure 4.4 (a) image, 

within a red rectangle a ground truth point was classified as water but it was bare areas on the ground 

surface: (b) image, area in red rectangle with point was classified as non-water but it was actually a 

wet area covered by green algae. Regarding this, the observer used local knowledge, but the unclear 

aerial image was the main challenge to accurate interpretation. In this case, local knowledge alone 

was not enough but the field survey needed to be planned beforehand. Due to the time constraints 

and large size of the study area, the ground reference data was not collected properly, and this study 

mainly relied on the operator’s knowledge and some ground data collected during field observation. 

Apart from a lack of local knowledge and field data, the methods of NDWI and NDMI are considered 

to be simple with achievement of an accuracy at an accepted level when using it in the areas with 

less interruption from environmental noise with standard threshold values (Acharya, Subedi & Lee 

2018; Jiang et al. 2014). However, in this study, noise from non-water, especially in the areas where 

there were artificial ponds in the urban zones, could lead to misclassifying, and resulting low 

accuracy of User and Producer. Another factor that was assumed to affect the image analysis 

accuracy in this study was the threshold values used for identifying surface water. This study applied 

threshold values to generate water bodies and at the same time the issues of signal disturbance 

from non-water features such as built-up areas, and shadow were considered. As a result of this, a 

lot of water pixels mixed with non-water pixels were misclassified. To address this problem, the 

combination of methods and selection of a suitable threshold based on study site’s characteristics 
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and remotely sensed sensors with the assistance of field survey data are essential to improving the 

accuracy of water extraction.  

Figure 4.4: Ground reference on aerial imagery, Google Earth Pro, 

displayed in true- colour composite 

4.5. Factors affecting Surface Water Results 

The main challenges to waterbody delineation from multispectral satellites images in this study were 

the limitations of sensor wavelength and spatial resolution, the presence of clouds, and the date of 

image data acquisition. Firstly, it was acknowledged that the normalized difference water index 

(NDWI) and normalized difference moisture index (NDMI), although they are widely used for 

generating water bodies with high overall accuracy, under urban conditions they fail to differentiate 

water information from built-up signals and small shadows. Hence this study put significant effort into 

investigating different methods for water delineation. Nevertheless, a large number of false positives 

were still found and lots of water pixels were lost. In order to reduce this issue, Yang et al. (2017) 

recommended using high resolution image data as this could help reduce the missed pixels and 

improve the accuracy of urban surface water allocation. Despite the use of high spatial resolution 

images, NDWI and NDMI methods were not able to identify the water areas where they were covered 

by green vegetation as is shown in Figure 4.5. Hardy et al. (2019) suggested that with the issue of 

vegetated water bodies, applying machine learning classification such as Extremely Random 

Forests to obtain water body data can help improve water mapping up to 92% of mean overall 

accuracy. Yang et al. (2015) deployed the advantages of normalized difference water index (NDWI), 

and modified NDWI to obtain water features for implementation in the machine learning method – 

Deep learning. It was found that the water delineation was successfully generated, however, 

shadow, buildings and clouds were still constraints (Nath & Deb 2010; Yang et al. 2015), so that to 

a b 
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detect water bodies in urban areas and vegetated water bodies with actual water information, 

requires performance by several algorithms to develop a method that can be accepted universally. 

Figure 4.5: PlanetScope displayed in false-colour (RGB: 4,3,2), (a) shows water channel 

blocked by vegetation, and (b) small stream mixed with vegetation 

Secondly, obtaining cloud-free images during the wet season in tropical regions from the optical 

satellite sensors is a considerable limitation. This research found that Radar image data such as 

Sentinel-1 Synthetic Aperture Radar (SAR) could penetrate cloud cover, however, due to the size of 

water bodies, less than ten metres, and the selection of free of charge image data which was a main 

focus, optical images data which contain less cloud coverage were selected. In this study, all dates 

of image data were obtained, only three dates image data – June, July, September – were 

unsuccessfully derived. The issue of cloud still remained on the image in August 2017. Surface water 

features were lost due to cloud masking. As a result of this, water pixels were reduced when 

compared with the rainfall data (Figure 4.6) in August which was supposed to be the highest time of 

surface water accumulation, the amount of water was almost the same amount as in October.  

a b 



104 

Figure 4.6: Rainfall data in 2017 

Finally, the amount of surface water was compared with the rainfall data in order to visually examine 

the differences between the two data. Although surface water was affected by the method and the 

presence of cloud, time of image data acquisition also plays an important role in surface water 

results. Only in May, August and October image data was acquired close to rainfall events that 

continuously occurred for more than three days, while others were acquired at the time that there 

was a small amount of rain throughout the months (January, February, March, April, December) (see 

Appendix 7). However, in the dry season, in which there was less rainfall, artificial surface water was 

still found. According to the Lao Census of Agriculture 2014, Vientiane was ranked as the highest 

out of eight provinces that contributed to fish products across the country (19% of total 75%), and 

43% of the area was covered by farm households with less than one hectare. Thus, during the dry 

season (December, January, March) surface water was still shown as being as high as in the rainy 

season (May, November). Other aspects that should be considered include the fact that the surface 

water can be affected from run-off, organic matter, climate, vegetation and soil types, as well as 

geographical characteristics (World Health Organization n.d-b). These aspects should be included 

to effectively examine the changing of surface level.  

4.6. Aspects to be Considered When Applying RS and GIS in Dengue 

Epidemic 

With respect to missing satellite image data, acquiring images for June, July and September was 

not possible, which is likely to be the peak rainy season. It might be thought that this could affect the 

extraction of surface water data used in the process of correlation and regression analysis. However, 

it was found that there was no trend in the correlation between surface water and disease 
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transmission, so that those missing dates of image data had no impact on the findings. In addition 

to this, it is suggested that to anticipate the occurrence of dengue incidence data, events of surface 

water and rainfalls before the rainy season should be a considered (M Grandadam 2019, online 

communication, 18 October). Figure 4.7 presents the five years of occurrence of dengue incidence 

(2014 to 2018) retrieved from Institut Pasteur du Laos (IPL). A higher prevalence was found not just 

during the rainy season but also at the beginning of each year in the dry season. This was consistent 

with the expected time for individuals contracting disease shown in this study. The pattern of dengue 

occurrence indicated that there is a need to work on the early rainy season or the late dry season in 

order to actively prevent the disease cases that will emerge during rainy season.  

Figure 4.7: Dengue incidence in 2014 to 2018 

Source: ECOMORE 2, IPL 

The relationship between surface water and the epidemiology of dengue fever is complex compared 

with other mosquito borne illnesses such as malaria. Malaria is a vector-borne disease carried by 

Anopheles mosquitoes which are found in wetlands and has an association with vegetation, 

favourable conditions of water and distance to human populations (Sánchez-Ribas et al. 2015; Vittor 

et al. 2006). However, the malaria vector requires more stable water conditions and water movement 

which generally are not found in small water bodies. The breeding sites of this type of vector are 

likely to be in large, deep and clear water bodies such as swamps, lakes or large rivers (Rozendaal 

1992) and the accumulation of water caused from rainfall (M Grandadam 2019, personal 

communication, 14 June). In contrast, dengue vectors like the Aedes mosquitoes behave differently 

from the malaria vector in terms of breeding behaviour. The breeding habitats are found in indoor 

areas such as water tanks and water containers for Aedes aegypti, and outdoors such as small sized 
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water bodies for Aedes albopictus. This biological diversity of dengue disease leads to limitations of 

the use of advanced technology such as remote sensing (hereafter RS) and Geographical 

Information Systems (hereafter GIS).  

A significant constraint found in this study was the ability of satellite images to detect small water 

bodies accurately, and the inability to detect small scale surface water in construction sites. As this 

study used freely available image data with a relatively high spatial resolution, high spatial resolution 

image data facilitated by land use types, which will distinguish water types, land use types; and types 

soils, which will help examine the soil saturation with certain amount of water, might help to detect 

more accurate water information. Importantly, methods used to detect water features like indices 

approaches, still needed to be investigated more in order to produce better water-associated disease 

breeding sites (Kulinkina et al. 2018). GIS, on the other hand, showed the spatial distribution of the 

disease at the study site which allows the operator to further seek the factors influencing this 

clustering pattern. However, due to the lack of sufficient data necessary for analysis, this study could 

not provide results related to spatial analysis. To add to these points, Kitron (2002) stated that some 

critical issues should be considered when applying remote sensing and GIS in epidemiology, 

especially in applying it to vector-borne disease. These issues include lack of training data, quality 

and quantity data of epidemiologic and parasitological data, and tools for gathering data, as well as 

the limitations of understanding and knowledge on the complexity of epidemiology.  

It has been suggested that when applying spatial information in epidemiology, specific use of 

analytical tools and methods should be focused in order to precisely detect factors that influence the 

occurrence of disease. Similarly, epidemiological studies should also include spatial locations in 

survey implementation in order to allow complete analysis of a disease outbreak phenomenon 

(Graham, Atkinson & Danson 2004). With the adequate integration of specific tools and laboratory 

and field observation tasks, more accurate models to predict the occurrence of disease can be 

developed, and preventive surveillance systems for disease control could be enhanced (M 

Grandadam 2019, online communication, 18 October). 

4.7. Limitations 

The challenges found to be the main constraints to this study included 1). The issue of spatial 

resolution to detect small water bodies for vector mosquitoes to breed in; 2). The limitation of 

wavelengths in satellite images for which only visible and near-infrared channels are available. A 

consequence of this leads to a limitation of applying different indices methods which can achieve 

high accuracy; 3). The issue of cloud coverage, especially in the wet season. Three dates for image 

data were not able to be obtained, and water features were lost due to the cloud masking process; 

4). Spatial data of dengue incidence is too small to use for spatial analysis at the village level to 

determine spatial correlation within the area of study; 5). The limited time frame for this investigation 
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meant that an important aspect such as proximity of water bodies to dengue incidence was not 

included; and 6). Knowledge of applying remote sensing and GIS in the field of epidemiology was 

new to the operator, meaning that time constraints meant it was not possible to fully discover the 

biological phenomenon of dengue fever and vector mosquitoes. 

4.8. Areas of Further Investigation 

The areas of research that this study has determined should be investigated in the future include: 

1) Different approaches used to extract surface water should be examined in a further study in order

to optimise the result of accuracy.

2) The study area is in a tropical region where the presence of cloud is a significant challenge to

extracting ground feature information, therefore integrating SAR images which can penetrate

cloud cover with optical images should be examined.

3) Although surface water was found highly correlated with dengue incidence, it cannot be

completely concluded that there is a strong relationship between them. So, if surface water was

considered as one of the other important factors influencing dengue fever, further study might

need to include the distance between the dengue incidence and the location of water. Exploring

the average flight distance of dengue vectors will help define approximate distance between

water bodies and the disease incidence.

4) In terms of health policy intervention, despite the lack of correlation between the surface water

and dengue incidence, controlling factors and activities including small scale water bodies and

accumulation of water on surfaces that support the growth of vector mosquitoes, should be

implemented not only in the rainy season, but also in the dry season as how rainfall correlates

with the disease incidence was clearly identified.

4.9. Conclusion 

This study was conducted according to the findings from the review of the literature with the main 

aim of investigating whether there is a relationship between water bodies and dengue incidence. To 

achieve this objective, techniques of remote sensing (RS) and Geographical Information Systems 

(GIS), as well as statistical analysis were applied. Some key findings identified during this 

investigation are presented, as well as recommendations provided. 

4.9.1. Key Findings 

Surface water was found not to be a suitable independent factor to predict the occurrence of dengue 

prevalence as it acts as a marker of rainfall. 
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Rainfall was found to have a strong correlation with dengue cases, and lag1 (estimated time of 

dengue vector developing into an adult) and was correlated with the Aedes mosquito population. It 

is important to note that precipitation is not a direct factor that drives the emergence of dengue fever. 

Food supply vectors, water temperature, relative humidity, quality of surface water, and surrounding 

environment such as structure of urbanisation associated with size of population, are considered to 

be the main support of dengue prevalence.  

The main findings from the literature review highlighted that water bodies have an association with 

dengue incidence as they provide sites of breeding for vector mosquitoes. Specifically, types of water 

such as standing water, level of water, size of water, temperature and nutrition within the water play 

an important part in the growth of dengue vectors. Several previous studies found dengue fever 

prevalence near surface water. Rainfall is one of the variables used to find the risk factors that affect 

dengue incidence and sizes of vector populations. A few studies compared the dengue incidence 

and density rate of vector mosquito in dry and wet areas and found that these two different zones 

have high rates of dengue incidence and mosquito populations.  

Methods used for surface water extraction show accuracy at accepted level in detecting water 

features. Normalized difference moisture index (NDMI) was suitable for detecting water information 

in the dry season, while normalized difference water index (NDWI) was appropriate for detecting a 

high level of surface water. Threshold values used to differentiate water features from non-water 

features were found close to zero in the study area. Choice of selecting optimum threshold values 

affected the level of accuracy, so testing values with different methods before applying in indices 

images is recommended.  

Haze reduction provided in ERDAS Imagine 2018 was found to spectrally and statistically enhance 

the results derived from NDWI and NDMI, while Top of atmosphere (TOA) reflectance derived from 

the conversion of TOA radiance showed false negatives in surface water areas. Bottom of 

atmosphere (BOA) images show less difference when compared with the non-BOA image in the 

results acquired from NDWI.  

Cloud masking from a single band threshold method presented fewer overestimates in water surface 

and other features which have a similar spectral range as water, whereas unsupervised classification 

showed large areas of water information classified as cloud, regardless its ability in detecting 

shadow.  

4.9.2. Recommendation 

Analysis based on the perspectives of the biological phenomenon of dengue carrying mosquitoes 

must be taken into account. This would help define variables and suitable technical tools and 

materials to identify the factors that actually cause the emergence of the disease, not just to 

investigate their correlation. 
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The applications of remote sensing and GIS are useful in developing a reliable and accurate 

predictive model to help prevent disease outbreaks. Epidemiologists should acknowledge how 

important accurate spatial data is. Spatial data of disease incidence needs to be as accurate as 

possible because this can affect the accuracy and efficiency of spatial analysis. Similarly, RS and 

GIS specialists need to comprehend the dynamics of vector mosquitoes as they change and adapt 

according to the changes in surrounding environments. 

Satellite image data which are able to detect small water bodies on construction sites, and areas 

which are susceptible to an expansion of vector populations, such as flat roofs and types of trees 

which are potentially holding small amounts of water are needed. This will allow visible generation 

and therefore detection of possible breeding sites for mosquitoes.   

This study attempted to apply RS and GIS techniques in a field of epidemiology, examining the 

relationship between surface water and dengue incidence. Integration of these advanced 

technologies should be considered to be included as important aspects in national strategic plans to 

help control and prevent the debilitating and devastating dengue disease epidemic.  

As urbanisation continues worldwide particularly in developing countries in Southeast Asia, and there 

is continuing pressure on resources within the newly developing areas, it is vital to find ways of 

predicting where diseases such as dengue fever are likely to emerge. This study has published that 

a combination of practical techniques can be applied as a major tool in future diseases prevention 

nationally and internationally.  
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APPENDICES 

Appendix 1: Field Survey Collection Data 

 

Object 
ID Creation Date Edit Date 

Date and Time of 
Collecting Data X Y 

1 18/07/2019 7:47 18/07/2019 7:52 18/07/2019 7:37 102.6705 17.9902 

2 18/07/2019 8:18 18/07/2019 8:18 18/07/2019 8:12 102.6284 17.94953 

3 22/07/2019 7:24 22/07/2019 7:24 22/07/2019 7:20 102.6682 17.98991 

4 22/07/2019 7:35 22/07/2019 7:35 22/07/2019 7:31 102.6658 17.98862 

5 22/07/2019 7:40 22/07/2019 7:40 22/07/2019 7:38 102.665 17.98896 

6 22/07/2019 8:36 22/07/2019 8:36 22/07/2019 8:34 102.6563 17.98473 

7 22/07/2019 8:40 22/07/2019 8:40 22/07/2019 8:37 102.6557 17.98486 

8 22/07/2019 9:06 22/07/2019 9:15 22/07/2019 9:00 102.6483 17.97597 

9 24/07/2019 7:35 24/07/2019 7:35 24/07/2019 7:31 102.6333 18.01025 

10 24/07/2019 7:54 24/07/2019 7:54 24/07/2019 7:50 102.6705 17.9901 

11 24/07/2019 8:28 24/07/2019 8:28 24/07/2019 8:21 102.652 17.94079 

12 28/07/2019 2:17 28/07/2019 2:17 28/07/2019 2:15 102.6521 17.9259 

13 28/07/2019 2:21 28/07/2019 2:21 28/07/2019 2:17 102.6528 17.92594 

14 28/07/2019 2:36 28/07/2019 2:36 28/07/2019 2:31 102.6471 17.93859 

15 28/07/2019 2:39 28/07/2019 2:39 28/07/2019 2:36 102.6477 17.93775 

16 28/07/2019 5:39 28/07/2019 5:39 28/07/2019 5:35 102.6307 18.01853 

17 28/07/2019 6:02 28/07/2019 6:02 28/07/2019 6:00 102.629 18.01545 

18 8/08/2019 2:34 8/08/2019 2:34 8/08/2019 2:32 102.6716 17.98851 

19 8/08/2019 2:34 8/08/2019 2:34 8/08/2019 2:30 102.6713 17.98843 

20 8/08/2019 2:36 8/08/2019 2:36 8/08/2019 2:34 102.6717 17.98846 

21 8/08/2019 2:41 8/08/2019 2:41 8/08/2019 2:37 102.6717 17.98846 

22 8/08/2019 2:50 8/08/2019 2:50 8/08/2019 2:48 102.6724 17.98858 

23 8/08/2019 3:25 8/08/2019 3:25 8/08/2019 3:23 102.6714 17.98772 

24 8/08/2019 4:03 8/08/2019 4:03 8/08/2019 4:00 102.6697 17.98853 

25 8/08/2019 4:09 8/08/2019 4:09 8/08/2019 4:06 102.6696 17.98865 

26 8/08/2019 7:29 8/08/2019 7:29 8/08/2019 7:26 102.6696 17.99006 

27 8/08/2019 7:47 8/08/2019 7:48 8/08/2019 7:43 102.6699 17.98904 

28 8/08/2019 8:40 8/08/2019 8:40 8/08/2019 8:38 102.6684 17.99054 

29 10/08/2019 3:28 10/08/2019 3:33 10/08/2019 3:26 102.64 18.03737 

30 10/08/2019 3:43 10/08/2019 3:43 10/08/2019 3:40 102.6426 18.03863 

31 10/08/2019 3:47 10/08/2019 3:47 10/08/2019 3:44 102.6428 18.03848 

32 10/08/2019 3:49 10/08/2019 3:49 10/08/2019 3:47 102.6429 18.03873 

33 10/08/2019 3:53 10/08/2019 3:53 10/08/2019 3:50 102.643 18.03901 
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Appendix 2: Survey 123 ArcGIS Form used for field surveying 
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Appendix 3: Surveillance System, Institut Pasteur du Laos 

IPL Surveillance System Network 

Central Hospitals and 

Institutes 

• 103 Hospital

• Setthathirath Hospital

• 05 April Hospital

• Mittaphap Hospital

• Lao-ASEAN Hospital

• Children Hospital

• Institute Army

Prevention

• Centre Medical de

L'Ambassade de

France (CMAF)

• Maternal and

Newborn Hospital

• Saravane Provincial
Hospital

• Attapeu Provincial

Hospital

Vientiane Capital Provincial Level 

District Level 

• Sikhottabong District

Hospital

• Sisattanak District

Hospital

• Xaythany District

Hospital

• Hadxaifong District

Hospital
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Appendix 4: Georeferenced Points of Dengue Incidence 

No 
Patient 
Code X Y Onset date 

NS1 
antigen NS1 ELISA Screening 

1 5153 18.00313 102.6087 3/01/2017 Not tested Not tested Positive 

2 5157 17.97033 102.6528 1/01/2017 Not tested Not tested Positive 

3 5170 18.16423 102.7513 9/01/2017 Not tested Not tested Positive 

4 5176 17.98011 102.5995 9/01/2017 Not tested Not tested Positive 

5 5181 18.01262 102.6416 5/01/2017 Not tested Not tested Positive 

6 5192 17.98676 102.6397 12/01/2017 Positive Not tested Negative 

7 5195 17.99668 102.6309 15/01/2017 Not tested Not tested Positive 

8 5196 17.97527 102.641 17/01/2017 Not tested Not tested Positive 

9 5206 18.03167 102.6348 19/01/2017 Not tested Not tested Positive 

10 5207 18.00229 102.6454 20/01/2017 Not tested Not tested Positive 

11 5208 18.03427 102.6407 19/01/2017 Not tested Not tested Positive 

12 5210 18.1126 102.6479 22/01/2017 Not tested Not tested Positive 

13 5211 18.0437 102.6331 19/01/2017 Positive Not tested Positive 

14 5215 17.90735 102.6185 25/01/2017 Not tested Not tested Positive 

15 5217 18.1129 102.6501 19/01/2017 Not tested Not tested Positive 

16 5218 18.00432 102.6301 19/01/2017 Not tested Not tested Positive 

17 5219 17.97262 102.6412 26/01/2017 Not tested Not tested Positive 

18 5220 17.87193 102.6451 26/01/2017 Not tested Not tested Positive 

19 5221 17.89975 102.6641 30/06/2017 Not tested Not tested Positive 

20 5234 17.9794 102.6555 30/06/2017 Not tested Not tested Positive 

21 5250 17.98327 102.4489 12/02/2017 Not tested Not tested Positive 

22 5251 17.98457 102.5558 13/02/2017 Not tested Not tested Positive 

23 5252 17.96011 102.6252 10/02/2017 Positive Not tested Negative 

24 5254 17.94226 102.624 13/02/2017 Not tested Not tested Positive 

25 5272 17.98297 102.4469 26/02/2017 Not tested Not tested Positive 

26 5279 17.88536 102.7161 1/03/2017 Not tested Not tested Positive 

27 5287 17.98579 102.4473 12/03/2017 Not tested Not tested Positive 

28 5288 17.98302 102.4476 14/03/2017 Not tested Not tested Positive 

29 5314 17.98108 102.6852 18/03/2017 Not tested Not tested Positive 

30 5371 18.11089 102.6459 24/04/2017 Not tested Not tested Positive 

31 5372 18.11057 102.8638 10/04/2017 Not tested Not tested Positive 

32 5373 17.95015 102.6343 19/04/2017 Not tested Not tested Positive 

33 5379 17.92828 102.6225 6/05/2017 Not tested Not tested Positive 

34 5388 18.10782 102.8612 7/05/2017 Not tested Not tested Positive 

35 5390 17.98523 102.5887 9/05/2017 Not tested Not tested Positive 

36 5400 18.12992 102.6161 10/05/2017 Not tested Not tested Positive 

37 5426 18.00617 102.6689 12/05/2017 Not tested Not tested Positive 

38 5428 17.9843 102.4489 18/05/2017 Not tested Not tested Positive 

39 5544 17.94591 102.6665 4/06/2017 Not tested Not tested Positive 

40 5546 17.84615 102.626 4/06/2017 Not tested not finished Positive 

41 5548 17.90201 102.6481 2/06/2017 Not tested Not tested Positive 

42 5550 18.23598 102.6993 2/06/2017 Not tested Not tested Positive 

43 5551 18.12565 102.6651 4/05/2017 Not tested Not tested Positive 

44 5554 18.12579 102.6652 24/05/2017 Not tested not finished Positive 
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No 
Patient 
Code X Y Onset date 

NS1 
antigen NS1 ELISA Screening 

45 5556 18.26497 102.7568 31/05/2017 Not tested Not tested Positive 

46 5557 18.11178 102.6461 31/05/2017 Not tested Not tested Positive 

47 5558 18.26419 102.7564 4/06/2017 Not tested Not tested Positive 

48 5560 18.25687 102.6811 30/05/2017 Not tested Not tested Positive 

49 5573 18.0156 102.629 10/06/2017 Not tested Not tested Positive 

50 5582 18.25407 102.6886 6/06/2017 Not tested Not tested Positive 

51 5585 18.25003 102.6871 5/06/2017 Not tested Not tested Positive 

52 5588 17.9457 102.6667 10/06/2017 Not tested Not tested Positive 

53 5589 18.10973 102.6452 6/06/2017 Not tested Not tested Positive 

54 5596 17.94547 102.6671 5/06/2017 Not tested Not tested Positive 

55 5833 17.95469 102.7031 26/06/2017 Not tested Not tested Positive 

56 5837 17.9545 102.6433 25/06/2017 Not tested Not tested Positive 

57 5838 18.05023 102.735 28/06/2017 Not tested Not tested Positive 

58 5839 17.95409 102.7029 28/06/2017 Not tested Not tested Positive 

59 5840 18.26436 102.7567 24/06/2017 Not tested Not tested Positive 

60 5842 18.23276 102.694 1/07/2017 Not tested Not tested Positive 

61 5849 18.11369 102.8515 26/06/2017 Not tested Not tested Positive 

62 5867 17.97658 102.6605 30/06/2017 Not tested Not tested Positive 

63 5870 17.96204 102.7023 29/06/2017 Not tested Not tested Positive 

64 5873 17.83768 102.6369 1/07/2017 Not tested Not tested Positive 

65 5887 17.85657 102.6021 4/07/2017 Not tested Not tested Positive 

66 5889 18.04616 102.6383 1/07/2017 Not tested Not tested Positive 

67 5894 18.14462 102.7806 1/07/2017 Not tested Not tested Positive 

68 5895 18.02021 102.6257 29/06/2017 Not tested Not tested Positive 

69 5897 18.11328 102.8521 30-Jun-17 Not tested Not tested Positive 

70 5898 17.99047 102.6647 30/06/2017 Not tested Not tested Positive 

71 5900 18.11342 102.8519 30-Jun-17 Not tested Not tested Positive 

72 5902 17.9734 102.673 4/07/2017 Not tested Not tested Positive 

73 5907 17.96791 102.8407 1/07/2017 Not tested Not tested Positive 

74 5926 17.93829 102.6872 10/07/2017 Not tested Not tested Positive 

75 5941 17.92034 102.6511 3/07/2017 Not tested Not tested Positive 

76 5954 18.01083 102.6314 8/07/2017 Not tested Not tested Positive 

77 5957 17.9687 102.8435 8/07/2017 Not tested Not tested Positive 

78 5968 18.18307 102.5796 7/07/2017 Not tested Not tested Positive 

79 5976 17.94282 102.6665 2/07/2017 Not tested Not tested Positive 

80 5983 17.93224 102.622 6/07/2017 Not tested Not tested Positive 

81 5984 17.92342 102.6169 12/07/2017 Not tested Not tested Positive 

82 5985 17.93645 102.7844 5/07/2017 Not tested Not tested Positive 

83 5986 17.93749 102.7842 3/07/2017 Not tested Not tested Positive 

84 5989 17.99674 102.5939 8/07/2017 Not tested Not tested Positive 

85 6005 17.84648 102.6262 8/07/2017 Not tested Not tested Positive 

86 6015 17.98201 102.6765 13-Jul-17 Not tested Not tested Positive 

87 6022 17.97387 102.6897 10/07/2017 Not tested Not tested Positive 

88 6030 18.00472 102.6894 11/07/2017 Not tested Not tested Positive 

89 6031 17.95043 102.619 13/07/2017 Not tested Not tested Positive 

90 6052 17.95562 102.6261 14-Jul-17 Not tested Not tested Positive 
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No 
Patient 
Code X Y Onset date 

NS1 
antigen NS1 ELISA Screening 

91 6056 17.93995 102.6673 13/07/2017 Not tested Not tested Positive 

92 6075 17.98533 102.5865 21/07/2017 Not tested Not tested Positive 

93 6076 17.8575 102.6587 17/07/2017 Not tested Not tested Positive 

94 6077 17.84754 102.6249 14/07/2017 Not tested Not tested Positive 

95 6081 17.95562 102.7018 17/07/2017 Not tested Not tested Positive 

96 6085 18.06155 102.5727 20/07/2017 Not tested Not tested Positive 

97 6086 18.12215 102.6269 21/07/2017 Not tested Not tested Positive 

98 6088 18.09117 102.547 14/07/2017 Not tested Not tested Positive 

99 6089 18.02073 102.6255 15/07/2017 Not tested Not tested Positive 

100 6093 18.01177 102.6327 13/07/2017 Not tested Not tested Positive 

101 6097 18.04603 102.6389 19/07/2017 Not tested Not tested Positive 

102 6098 18.01402 102.6279 18/07/2017 Not tested Not tested Positive 

103 6118 18.00401 102.673 21-Jul-17 Not tested Not tested Positive 

104 6119 18.01204 102.6175 21/07/2017 Not tested Not tested Positive 

105 6125 17.95313 102.6675 22/07/2017 Not tested Not tested Positive 

106 6132 17.90925 102.621 30/07/2017 Not tested Not tested Positive 

107 6136 17.98685 102.5271 29/07/2017 Not tested Not tested Positive 

108 6140 18.02824 102.5832 26/07/2017 Not tested Not tested Positive 

109 6142 18.06433 102.6303 26/07/2017 Not tested Not tested Positive 

110 6143 17.98551 102.6345 27/07/2017 Not tested Not tested Positive 

111 6150 17.98892 102.6597 26/07/2017 Not tested Not tested Positive 

112 6151 17.99264 102.6147 25/07/2017 Not tested Not tested Positive 

113 6157 17.91844 102.6274 29/07/2017 Not tested Not tested Positive 

114 6158 17.8905 102.6271 26/07/2017 Not tested Not tested Positive 

115 6159 17.96785 102.5891 29/07/2017 Not tested Not tested Positive 

116 6161 17.97553 102.6632 21/07/2017 Not tested Not tested Positive 

117 6167 18.01942 102.6361 26/07/2017 Not tested Not tested Positive 

118 6169 18.04518 102.708 26/07/2017 Not tested Not tested Positive 

119 6170 17.98671 102.6285 29/07/2017 Not tested Not tested Positive 

120 6171 18.02994 102.6518 29/07/2017 Not tested Not tested Positive 

121 6175 17.9843 102.5869 29/07/2017 Not tested Not tested Positive 

122 6180 17.96206 102.6225 27/07/2017 Not tested Not tested Positive 

123 6183 17.89109 102.7163 25/07/2017 Not tested Not tested Positive 

124 6185 17.89399 102.716 28/07/2017 Not tested Not tested Positive 

125 6188 17.88763 102.6109 30/07/2017 Positive Not tested Negative 

126 6189 17.99593 102.5417 30/07/2017 Not tested Not tested Positive 

127 6190 18.12697 102.6658 1-Aug-17 Not tested Not tested Positive 

128 6193 17.89312 102.715 1/08/2017 Positive Not tested Positive 

129 6194 17.96747 102.8422 2/08/2017 Not tested Not tested Positive 

130 6199 17.96668 102.6242 1/08/2017 Not tested Not tested Positive 

131 6202 17.94458 102.6305 31/07/2017 Not tested Not tested Positive 

132 6208 17.94304 102.6676 2/08/2017 Not tested Not tested Positive 

133 6211 18.04905 102.6417 30/07/2017 Not tested Not tested Positive 

134 6212 17.99086 102.6146 1/08/2017 Not tested Not tested Positive 

135 6216 18.04594 102.6397 1/08/2017 Not tested Not tested Positive 

136 6217 18.08088 102.7178 4/08/2017 Not tested Not tested Positive 
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No 
Patient 
Code X Y Onset date 

NS1 
antigen NS1 ELISA Screening 

137 6219 18.03168 102.6357 30/07/2017 Not tested Not tested Positive 

138 6239 17.9452 102.7025 4/08/2017 Not tested Not tested Positive 

139 6241 17.98232 102.6343 4/08/2017 Not tested Not tested Positive 

140 6244 17.94475 102.6379 6/08/2017 Not tested Not tested Positive 

141 6245 17.89196 102.7458 4/08/2017 Not tested Not tested Positive 

142 6246 17.96817 102.7462 6/08/2017 Not tested Not tested Positive 

143 6256 17.95371 102.6851 3/08/2017 Not tested Not tested Positive 

144 6274 17.99385 102.6081 4/08/2017 Not tested Not tested Positive 

145 6275 17.98935 102.6603 7/08/2017 Not tested Not tested Positive 

146 6277 17.96493 102.6689 8/08/2017 Not tested Not tested Positive 

147 6321 17.98458 102.6563 13/08/2017 Not tested Not tested Positive 

148 6322 17.93464 102.7807 12/08/2017 Not tested Positive Negative 

149 6323 17.99835 102.6573 11/08/2017 Not tested Not tested Positive 

150 6325 17.99371 102.6325 12/08/2017 Not tested Not tested Positive 

151 6326 17.94639 102.6294 12/08/2017 Not tested Not tested Positive 

152 6330 17.9456 102.6385 11/08/2017 Not tested Not tested Positive 

153 6333 17.88745 102.7302 12/08/2017 Not tested Not tested Positive 

154 6336 18.05516 102.7554 13/08/2017 Not tested Not tested Positive 

155 6346 17.96593 102.6044 11/08/2017 Not tested Not tested Positive 

156 6350 18.0737 102.7465 10/08/2017 Not tested Not tested Positive 

157 6352 18.03034 102.627 10/08/2017 Not tested Not tested Positive 

158 6354 17.99084 102.6082 10/08/2017 Not tested Not tested Positive 

159 6356 17.9777 102.6531 12/08/2017 Not tested Not tested Positive 

160 6358 17.96095 102.6137 13/08/2017 Not tested Not tested Positive 

161 6359 17.97595 102.6651 15/08/2017 Not tested Not tested Positive 

162 6368 18.00832 102.688 14/08/2017 Not tested Not tested Positive 

163 6373 18.05462 102.7561 14/08/2017 Not tested Not tested Positive 

164 6376 17.98602 102.5865 14/08/2017 Not tested Not tested Positive 

165 6377 17.96571 102.6706 14/08/2017 Not tested Not tested Positive 

166 6382 18.06202 102.8067 16/08/2017 Not tested Not tested Positive 

167 6386 18.07204 102.6455 14/08/2017 Not tested Not tested Positive 

168 6389 18.05016 102.6634 16/08/2017 Not tested Not tested Positive 

169 6390 18.02503 102.6274 14/08/2017 Not tested Not tested Positive 

170 6394 18.05256 102.6119 19/08/2017 Not tested Not tested Positive 

171 6403 17.89619 102.6452 11/08/2017 Not tested Not tested Positive 

172 6426 18.05413 102.7557 18/08/2017 Not tested Not tested Positive 

173 6427 18.01461 102.4886 17/08/2017 Not tested Not tested Positive 

174 6430 18.10842 102.6524 18/08/2017 Not tested Not tested Positive 

175 6432 18.04607 102.6399 19/08/2017 Not tested Not tested Positive 

176 6434 18.14537 102.7814 18/08/2017 Not tested Not tested Positive 

177 6435 17.90922 102.7213 18/08/2017 Not tested Not tested Positive 

178 6448 17.9709 102.6144 25/08/2017 Not tested Not tested Positive 

179 6450 17.88405 102.7058 26/08/2017 Not tested Not tested Positive 

180 6453 17.94681 102.6244 26/08/2017 Not tested Not tested Positive 

181 6454 18.10825 102.6532 18-Aug-17 Not tested Not tested Positive 

182 6457 17.97685 102.6017 24/08/2017 Not tested Not tested Positive 
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No 
Patient 
Code X Y Onset date 

NS1 
antigen NS1 ELISA Screening 

183 6458 18.06625 102.6303 23/08/2017 Not tested Not tested Positive 

184 6459 18.00125 102.6514 21/08/2017 Not tested Not tested Positive 

185 6460 17.99601 102.6168 21/08/2017 Not tested Not tested Positive 

186 6461 18.0871 102.6304 21/08/2017 Not tested Not tested Positive 

187 6464 18.03729 102.6324 22/08/2017 Not tested Not tested Positive 

188 6470 17.89977 102.6382 23/08/2017 Not tested Not tested Positive 

189 6477 17.89016 102.6402 22/08/2017 Not tested Not tested Positive 

190 6478 17.9137 102.6469 23/08/2017 Not tested Not tested Positive 

191 6480 17.96789 102.5838 25/08/2017 Not tested Not tested Positive 

192 6484 17.94028 102.6675 20/08/2017 Not tested Not tested Positive 

193 6491 18.02555 102.6266 23/08/2017 Not tested Not tested Positive 

194 6499 17.91478 102.6234 27/08/2017 Not tested Not tested Positive 

195 6507 18.04515 102.6366 28/09/2017 Not tested Not tested Positive 

196 6509 18.08466 102.6626 29/09/2017 Not tested Not tested Positive 

197 6511 18.04495 102.6354 22/09/2017 Not tested Not tested Positive 

198 6512 18.10596 102.5057 23/09/2017 Not tested Not tested Positive 

199 6513 18.07748 102.6704 28/09/2017 Not tested Not tested Positive 

200 6515 18.05922 102.6655 26/09/2017 Not tested Not tested Positive 

201 6516 18.00886 102.6391 17/09/2017 Not tested Not tested Positive 

202 6518 18.07948 102.6665 24/09/2017 Not tested Not tested Positive 

203 6521 18.05493 102.7562 24/09/2017 Not tested Not tested Positive 

204 6525 17.94947 102.6402 26/09/2017 Not tested Negative Positive 

205 6557 17.97566 102.5779 1/09/2017 Not tested Not tested Positive 

206 6562 18.00062 102.6241 29/08/2017 Not tested Not tested Positive 

207 6572 18.07704 102.6685 29/08/2017 Not tested Not tested Positive 

208 6597 18.01971 102.6387 1/09/2017 Not tested Not tested Positive 

209 6598 17.97242 102.6283 1/09/2017 Not tested Not tested Positive 

210 6603 17.99309 102.5253 3/09/2017 Not tested Not tested Positive 

211 6615 17.94971 102.7031 31/08/2017 Not tested Not tested Positive 

212 6618 18.07618 102.6687 2/09/2017 Not tested Not tested Positive 

213 6619 17.98668 102.6259 1/09/2017 Not tested Not tested Positive 

214 6621 17.99852 102.6137 1/09/2017 Not tested Not tested Positive 

215 6622 18.00863 102.6388 30/08/2017 Not tested Negative Positive 

216 6628 18.01871 102.654 1/09/2017 Not tested Not tested Positive 

217 6630 17.9813 102.6109 30/08/2017 Not tested Not tested Positive 

218 6637 17.99869 102.617 2/09/2017 Not tested Negative Positive 

219 6644 18.02192 102.5216 8/09/2017 Not tested Not tested Positive 

220 6653 18.02552 102.6267 6/09/2017 Not tested Not tested Positive 

221 6657 18.02857 102.6302 5/09/2017 Not tested Not tested Positive 

222 6659 17.88716 102.7279 2/09/2017 Not tested Not tested Positive 

223 6660 17.92975 102.6507 5/09/2017 Not tested Not tested Positive 

224 6661 17.91994 102.618 8/09/2017 Not tested Not tested Positive 

225 6676 18.08214 102.501 6/09/2017 Not tested Not tested Positive 

226 6695 17.99013 102.6612 6/09/2017 Not tested Not tested Positive 

227 6696 17.91577 102.6494 10/09/2017 Not tested Not tested Positive 

228 6697 17.98672 102.6544 10/09/2017 Not tested Not tested Positive 
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229 6701 17.94229 102.6247 10/09/2017 Not tested Not tested Positive 

230 6704 17.97621 102.6311 9-Sep-17 Not tested Not tested Positive 

231 6705 17.97145 102.6202 8/09/2017 Not tested Not tested Positive 

232 6706 17.90338 102.6294 7/09/2017 Not tested Not tested Positive 

233 6713 18.06443 102.7873 8/09/2017 Not tested Not tested Positive 

234 6715 17.95142 102.7031 7/09/2017 Not tested Not tested Positive 

235 6727 18.02907 102.5496 8/09/2017 Not tested Not tested Positive 

236 6728 18.04702 102.6419 5/09/2017 Not tested Not tested Positive 

237 6735 17.98415 102.6669 9/09/2017 Not tested Not tested Positive 

238 6737 18.04301 102.6362 7/09/2017 Not tested Not tested Positive 

239 6739 17.97785 102.6558 11/09/2017 Not tested Not tested Positive 

240 6753 17.91292 102.7226 13/09/2017 Not tested Not tested Positive 

241 6761 17.98005 102.5858 14/09/2017 Not tested Not tested Positive 

242 6768 17.90454 102.6636 12/09/2017 Not tested Not tested Positive 

243 6769 18.00468 102.5975 12/09/2017 Not tested Not tested Positive 

244 6770 17.98341 102.7033 10/09/2017 Not tested Not tested Positive 

245 6777 17.98498 102.6347 12/09/2017 Not tested Not tested Positive 

246 6778 17.98701 102.6271 13/09/2017 Not tested Not tested Positive 

247 6793 18.04227 102.6351 14/09/2017 Not tested Not tested Positive 

248 6794 18.04877 102.627 13/09/2017 Not tested Not tested Positive 

249 6796 18.06417 102.7912 15/09/2017 Not tested Not tested Positive 

250 6810 17.88893 102.7388 13/09/2017 Not tested Not tested Positive 

251 6818 17.93251 102.6471 15/09/2017 Not tested Not tested Positive 

252 6826 18.07303 102.7488 17/09/2017 Not tested Not tested Positive 

253 6828 17.97585 102.5806 17/09/2017 Not tested Not tested Positive 

254 6829 17.98814 102.5835 16/09/2017 Not tested Not tested Positive 

255 6849 17.97222 102.6147 24/09/2017 Not tested Not tested Positive 

256 6857 17.997 102.6591 19/09/2017 Not tested Not tested Positive 

257 6858 18.02925 102.6518 19/09/2017 Not tested Not tested Positive 

258 6859 17.96677 102.6358 17/09/2017 Not tested Not tested Positive 

259 6860 18.00059 102.6554 17/09/2017 Not tested Not tested Positive 

260 6861 17.96929 102.6544 21/09/2017 Not tested Not tested Positive 

261 6862 18.01453 102.6037 21/09/2017 Not tested Not tested Positive 

262 6886 17.96918 102.5718 23/09/2017 Not tested Not tested Positive 

263 6889 18.00201 102.5945 23/09/2017 Not tested Not tested Positive 

264 6892 17.99016 102.633 24/09/2017 Not tested Not tested Positive 

265 6894 18.02548 102.6269 22/09/2017 Not tested Not tested Positive 

266 6902 17.91509 102.7653 28/09/2017 Not tested Not tested Positive 

267 6906 18.06891 102.6658 27/09/2017 Not tested Not tested Positive 

268 6909 17.97457 102.6535 29/09/2017 Not tested Not tested Positive 

269 6919 17.98972 102.6331 26/09/2017 Not tested Not tested Positive 

270 6927 18.05858 102.7409 27/09/2017 Not tested Not tested Positive 

271 6949 17.97825 102.6095 29/09/2017 Not tested Not tested Positive 

272 6951 18.03132 102.6268 30/09/2017 Not tested Not tested Positive 

273 6955 17.88333 102.7063 28/09/2017 Not tested Not tested Positive 

274 6959 17.93696 102.6522 29/09/2017 Not tested Not tested Positive 
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275 6962 17.97291 102.5569 26/09/2017 Not tested Not tested Positive 

276 6969 17.91977 102.619 1/10/2017 Negative Not tested Positive 

277 6985 17.98811 102.5865 2/10/2017 Not tested Not tested Positive 

278 6987 18.045 102.7086 2/10/2017 Not tested Not tested Positive 

279 6990 18.00739 102.631 30/09/2017 Not tested Not tested Positive 

280 6999 17.90136 102.6699 7/10/2017 Not tested Not tested Positive 

281 7002 17.91196 102.7226 8/10/2017 Not tested Not tested Positive 

282 7003 17.91192 102.7226 9/10/2017 Not tested Not tested Positive 

283 7015 18.01561 102.6233 3/10/2017 Not tested Not tested Positive 

284 7020 18.03578 102.6409 5/10/2017 Not tested Not tested Positive 

285 7022 17.98964 102.6064 9/10/2017 Not tested Not tested Positive 

286 7035 17.95466 102.6203 7/10/2017 Not tested Not tested Positive 

287 7041 17.96863 102.6577 14/10/2017 Not tested Not tested Positive 

288 7042 17.93337 102.6695 10/10/2017 Not tested Not tested Positive 

289 7044 18.04263 102.573 13/10/2017 Not tested Not tested Positive 

290 7045 17.96882 102.6643 8/10/2017 Not tested Not tested Positive 

291 7047 17.91366 102.6467 14-Oct-17 Not tested Not tested Positive 

292 7050 18.00101 102.6521 7/10/2017 Not tested Not tested Positive 

293 7052 18.04171 102.5446 13/10/2017 Not tested Not tested Positive 

294 7055 18.03458 102.6426 9/10/2017 Not tested Not tested Positive 

295 7058 17.98556 102.5051 16/10/2017 Not tested Not tested Positive 

296 7070 17.98791 102.6573 16/10/2017 Not tested Not tested Positive 

297 7076 18.0277 102.6447 14/10/2017 Not tested Not tested Positive 

298 7081 18.07098 102.6862 12/10/2017 Not tested Not tested Positive 

299 7087 17.98498 102.608 13/10/2017 Not tested Not tested Positive 

300 7090 18.00053 102.6564 9/10/2017 Not tested Not tested Positive 

301 7097 18.01935 102.6177 17/10/2017 Negative Not tested Positive 

302 7108 17.88192 102.645 15/10/2017 Not tested Not tested Positive 

303 7112 17.97889 102.6271 18/10/2017 Not tested Not tested Positive 

304 7117 18.02656 102.6161 16/10/2017 Not tested Not tested Positive 

305 7121 18.02788 102.6317 20/10/2017 Not tested Not tested Positive 

306 7130 17.89993 102.755 23/10/2017 Not tested Not tested Positive 

307 7135 18.04541 102.6112 18/10/2017 Not tested Not tested Positive 

308 7137 17.99715 102.6951 20/10/2017 Not tested Not tested Positive 

309 7144 17.92704 102.6171 22/10/2017 Negative Not tested Positive 

310 7170 17.89681 102.7288 30/10/2017 Not tested Not tested Positive 

311 7173 18.02208 102.6448 26/10/2017 Not tested Not tested Positive 

312 7177 18.17502 102.6551 25/10/2017 Not tested Not tested Positive 

313 7178 18.00602 102.6463 26/10/2017 Not tested Not tested Positive 

314 7181 18.01725 102.9589 28/10/2017 Not tested Not tested Positive 

315 7189 18.01417 102.6644 31/10/2017 Not tested Not tested Positive 

316 7190 17.98213 102.5866 30/10/2017 Not tested Not tested Positive 

317 7204 17.89776 102.6616 3/11/2017 Not tested Not tested Positive 

318 7208 17.97691 102.6059 5/11/2017 Negative Not tested Positive 

319 7210 18.00253 102.618 3/11/2017 Not tested Not tested Positive 

320 7214 18.04945 102.6426 5/11/2017 Not tested Not tested Positive 
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Patient 
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321 7215 18.03972 102.6333 3/11/2017 Not tested Not tested Positive 

322 7216 17.98588 102.622 1/11/2017 Not tested Not tested Positive 

323 7241 17.92563 102.7687 12/11/2017 Not tested Not tested Positive 

324 7245 18.02228 102.5261 9/11/2017 Not tested Not tested Positive 

325 7247 18.02836 102.6318 12/11/2017 Not tested Not tested Positive 

326 7250 18.00229 102.6245 10/11/2017 Not tested Not tested Positive 

327 7251 18.03788 102.6043 8/11/2017 Not tested Not tested Positive 

328 7263 18.00887 102.6354 14/11/2017 Not tested Not tested Positive 

329 7265 18.00748 102.5943 13/11/2017 Not tested Not tested Positive 

330 7276 18.00705 102.6427 16/11/2017 Not tested Not tested Positive 

331 7282 18.03065 102.5734 17/11/2017 Not tested Not tested Positive 

332 7288 18.24879 102.689 20/11/2017 Not tested Not tested Positive 

333 7295 17.89527 102.6477 23/11/2017 Not tested Not tested Positive 

334 7302 18.03281 102.6406 21/08/2017 Not tested Not tested Positive 

335 7303 18.02564 102.6266 25/11/2017 Not tested Not tested Positive 

336 7306 18.07723 102.6677 24/11/2017 Not tested Not tested Positive 

337 7309 18.06282 102.5576 25/11/2017 Not tested Not tested Positive 

338 7312 17.91506 102.7648 20/11/2017 Not tested Not tested Positive 

339 7313 17.94007 102.7531 20/11/2017 Not tested Not tested Positive 

340 7316 17.92596 102.7683 26/11/2017 Not tested Not tested Positive 

341 7322 18.02225 102.6306 26/11/2017 Not tested Not tested Positive 

342 7323 18.01687 102.6309 22/11/2017 Not tested Not tested Positive 

343 7324 18.0607 102.6833 26/11/2017 Not tested Not tested Positive 

344 7325 17.96546 102.6162 30/11/2017 Not tested Not tested Positive 

345 7327 17.94855 102.6247 25/11/2017 Not tested Not tested Positive 

346 7329 17.933 102.7442 4/12/2017 Not tested Not tested Positive 

347 7330 18.05627 102.6327 3/12/2017 Not tested Not tested Positive 

348 7334 18.15798 102.7656 1/12/2017 Not tested Not tested Positive 

349 7339 17.9974 102.6943 6/12/2017 Not tested Not tested Positive 

350 7347 18.01445 102.6646 8/12/2017 Not tested Not tested Positive 

351 7348 18.06472 102.6293 7/12/2017 Not tested Not tested Positive 

352 7362 17.88442 102.6391 13/12/2017 Not tested Not tested Positive 

353 7376 17.97783 102.638 17/12/2017 Not tested Not tested Positive 

354 7380 18.17114 102.5011 22/12/2017 Not tested Not tested Positive 
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Appendix 5: Ground Reference 

FID Shape Classified Ground Truth Easting Northing 

0 Point 2 2 249548.807 1999138.159 

1 Point 2 2 249248.807 1998643.159 

2 Point 2 2 249133.807 1997433.159 

3 Point 2 2 248603.807 1997088.159 

4 Point 2 1 249548.807 1997023.159 

5 Point 2 2 248843.807 1996538.159 

6 Point 2 2 249223.807 1995963.159 

7 Point 2 2 249893.807 1995653.159 

8 Point 2 2 249773.807 1995178.159 

9 Point 2 2 249463.807 1994858.159 

10 Point 2 2 250643.807 1998903.159 

11 Point 1 1 251193.807 1998858.159 

12 Point 2 2 250518.807 1998423.159 

13 Point 2 2 252423.807 1998378.159 

14 Point 2 2 252033.807 1998188.159 

15 Point 2 2 250658.807 1997868.159 

16 Point 2 2 254888.807 1997643.159 

17 Point 2 2 253223.807 1997523.159 

18 Point 2 2 255388.807 1997363.159 

19 Point 2 2 253708.807 1997338.159 

20 Point 2 2 251018.807 1997243.159 

21 Point 2 2 252548.807 1997073.159 

22 Point 2 2 250468.807 1996873.159 

23 Point 2 2 252733.807 1996768.159 

24 Point 2 2 251543.807 1996543.159 

25 Point 2 2 252733.807 1996398.159 

26 Point 2 2 253263.807 1996248.159 

27 Point 1 1 252583.807 1996073.159 

28 Point 2 2 251188.807 1995998.159 

29 Point 2 2 252578.807 1995893.159 

30 Point 2 2 253823.807 1995778.159 

31 Point 2 2 251938.807 1995293.159 

32 Point 2 2 254438.807 1995228.159 

33 Point 2 2 250578.807 1995218.159 

34 Point 2 2 255273.807 1995033.159 

35 Point 2 2 252743.807 1994843.159 

36 Point 2 2 252413.807 1994783.159 

37 Point 2 2 254633.807 1994503.159 

38 Point 2 2 256658.807 1997653.159 

39 Point 2 2 258788.807 1997238.159 

40 Point 2 2 257968.807 1997223.159 

41 Point 2 2 256078.807 1997133.159 

42 Point 2 2 259533.807 1996693.159 

43 Point 2 2 257858.807 1996668.159 

44 Point 2 2 256893.807 1996638.159 
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45 Point 2 2 255673.807 1996458.159 

46 Point 2 2 257728.807 1996308.159 

47 Point 2 1 257948.807 1996118.159 

48 Point 2 2 257763.807 1995988.159 

49 Point 1 1 257003.807 1995958.159 

50 Point 2 2 257663.807 1995758.159 

51 Point 2 2 258973.807 1995463.159 

52 Point 2 2 257628.807 1995358.159 

53 Point 2 2 258628.807 1995223.159 

54 Point 2 2 256093.807 1995153.159 

55 Point 2 2 258358.807 1994913.159 

56 Point 2 2 259358.807 1994688.159 

57 Point 2 2 257018.807 1994663.159 

58 Point 2 2 256958.807 1994408.159 

59 Point 2 2 261403.807 1996613.159 

60 Point 2 2 263683.807 1996158.159 

61 Point 2 2 263108.807 1995948.159 

62 Point 2 2 260703.807 1995373.159 

63 Point 2 2 261143.807 1995368.159 

64 Point 2 2 263563.807 1995368.159 

65 Point 2 2 261453.807 1995318.159 

66 Point 2 2 263758.807 1995048.159 

67 Point 2 2 262918.807 1994898.159 

68 Point 2 2 264733.807 1994848.159 

69 Point 2 2 261878.807 1994623.159 

70 Point 2 2 264028.807 1994538.159 

71 Point 2 2 266243.807 1995293.159 

72 Point 2 2 266558.807 1995088.159 

73 Point 2 2 269528.807 1994778.159 

74 Point 2 2 267218.807 1994648.159 

75 Point 2 2 266808.807 1994418.159 

76 Point 2 2 249518.807 1994318.159 

77 Point 2 2 248578.807 1994043.159 

78 Point 2 1 247933.807 1993403.159 

79 Point 2 2 248508.807 1993318.159 

80 Point 2 2 247943.807 1993008.159 

81 Point 2 2 247968.807 1992673.159 

82 Point 1 1 247703.807 1992498.159 

83 Point 2 2 248213.807 1992108.159 

84 Point 2 2 249893.807 1992058.159 

85 Point 2 2 248463.807 1991413.159 

86 Point 2 2 247518.807 1991408.159 

87 Point 2 2 247603.807 1990858.159 

88 Point 2 2 250078.807 1990563.159 

89 Point 2 2 249278.807 1990193.159 

90 Point 1 2 249518.807 1989998.159 

91 Point 2 2 250163.807 1989913.159 
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FID Shape Classified Ground Truth Easting Northing 

92 Point 2 2 250223.807 1989898.159 

93 Point 2 2 249363.807 1989743.159 

94 Point 2 2 254843.807 1994203.159 

95 Point 2 2 254078.807 1994198.159 

96 Point 2 2 252903.807 1993863.159 

97 Point 2 1 251443.807 1993813.159 

98 Point 2 2 255308.807 1993803.159 

99 Point 2 2 251463.807 1993643.159 

100 Point 2 2 251323.807 1993508.159 

101 Point 2 2 253883.807 1993083.159 

102 Point 2 2 250513.807 1992883.159 

103 Point 2 2 254108.807 1992838.159 

104 Point 2 2 253863.807 1992578.159 

105 Point 2 2 254968.807 1992343.159 

106 Point 2 2 252813.807 1992308.159 

107 Point 2 2 250418.807 1992213.159 

108 Point 2 2 252858.807 1992078.159 

109 Point 2 2 253653.807 1991853.159 

110 Point 2 2 252923.807 1991738.159 

111 Point 2 2 253658.807 1991633.159 

112 Point 2 2 255373.807 1991623.159 

113 Point 2 2 251138.807 1991393.159 

114 Point 2 2 251963.807 1991253.159 

115 Point 2 2 254593.807 1991113.159 

116 Point 2 2 254028.807 1990863.159 

117 Point 2 2 251228.807 1990763.159 

118 Point 2 2 254323.807 1990423.159 

119 Point 2 2 254153.807 1990368.159 

120 Point 2 2 252178.807 1990338.159 

121 Point 2 2 254778.807 1990008.159 

122 Point 2 2 252903.807 1989408.159 

123 Point 2 2 251268.807 1989353.159 

124 Point 2 2 260488.807 1994273.159 

125 Point 2 2 259848.807 1994268.159 

126 Point 2 2 255458.807 1994238.159 

127 Point 2 2 257288.807 1994193.159 

128 Point 2 2 259243.807 1994063.159 

129 Point 2 2 259658.807 1993888.159 

130 Point 2 2 255568.807 1993818.159 

131 Point 1 2 259898.807 1993678.159 

132 Point 2 2 259538.807 1993643.159 

133 Point 2 2 256543.807 1993493.159 

134 Point 2 1 260323.807 1993228.159 

135 Point 2 2 256413.807 1993168.159 

136 Point 2 2 256398.807 1992993.159 

137 Point 2 2 256078.807 1992813.159 

138 Point 1 2 259178.807 1992778.159 
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139 Point 2 2 257158.807 1992638.159 

140 Point 2 2 256258.807 1992523.159 

141 Point 2 2 259828.807 1992348.159 

142 Point 2 2 255528.807 1992183.159 

143 Point 2 2 257783.807 1991958.159 

144 Point 2 2 257943.807 1991753.159 

145 Point 2 2 257848.807 1991663.159 

146 Point 2 2 260078.807 1991558.159 

147 Point 2 2 256878.807 1991218.159 

148 Point 2 2 257513.807 1991188.159 

149 Point 2 2 259408.807 1991028.159 

150 Point 2 2 259078.807 1990748.159 

151 Point 2 2 260383.807 1990673.159 

152 Point 2 2 256718.807 1990493.159 

153 Point 2 2 258243.807 1990418.159 

154 Point 2 2 258548.807 1990273.159 

155 Point 2 2 259238.807 1990103.159 

156 Point 2 2 256003.807 1989948.159 

157 Point 2 2 255548.807 1989718.159 

158 Point 2 2 256978.807 1989623.159 

159 Point 2 2 257613.807 1989433.159 

160 Point 2 2 255988.807 1989263.159 

161 Point 2 2 264603.807 1994263.159 

162 Point 2 2 264683.807 1994103.159 

163 Point 2 2 261708.807 1993923.159 

164 Point 2 2 261393.807 1993813.159 

165 Point 1 2 261313.807 1993778.159 

166 Point 2 2 264413.807 1993553.159 

167 Point 2 2 260533.807 1993488.159 

168 Point 2 2 265083.807 1993173.159 

169 Point 2 2 264653.807 1992973.159 

170 Point 2 2 261593.807 1992883.159 

171 Point 2 2 263578.807 1992878.159 

172 Point 2 2 264523.807 1992693.159 

173 Point 2 2 260518.807 1992518.159 

174 Point 2 2 261533.807 1992353.159 

175 Point 2 2 265058.807 1992213.159 

176 Point 2 2 264953.807 1991638.159 

177 Point 2 2 264588.807 1991463.159 

178 Point 2 2 262013.807 1991343.159 

179 Point 2 2 260623.807 1991273.159 

180 Point 2 2 263978.807 1991233.159 

181 Point 2 2 260723.807 1991118.159 

182 Point 2 2 264273.807 1990968.159 

183 Point 2 2 262883.807 1990908.159 

184 Point 2 2 264733.807 1990713.159 

185 Point 2 2 262888.807 1990693.159 
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186 Point 2 2 261893.807 1990478.159 

187 Point 2 1 264753.807 1990378.159 

188 Point 2 2 261298.807 1990218.159 

189 Point 2 2 265478.807 1990013.159 

190 Point 2 2 262988.807 1989738.159 

191 Point 2 2 263933.807 1989723.159 

192 Point 2 2 260688.807 1989558.159 

193 Point 2 2 261153.807 1989373.159 

194 Point 2 2 265688.807 1994313.159 

195 Point 2 2 268233.807 1994188.159 

196 Point 2 2 266763.807 1993948.159 

197 Point 2 2 270458.807 1993903.159 

198 Point 2 2 265838.807 1993758.159 

199 Point 2 2 269068.807 1993598.159 

200 Point 2 2 266508.807 1993448.159 

201 Point 2 2 269948.807 1993078.159 

202 Point 2 2 266763.807 1992948.159 

203 Point 2 2 270088.807 1992868.159 

204 Point 2 2 266093.807 1992783.159 

205 Point 2 2 267813.807 1992528.159 

206 Point 2 2 266478.807 1992458.159 

207 Point 2 2 269938.807 1992248.159 

208 Point 2 2 266683.807 1991993.159 

209 Point 2 2 266098.807 1991853.159 

210 Point 2 2 267908.807 1991558.159 

211 Point 2 2 267133.807 1991303.159 

212 Point 2 2 267218.807 1991183.159 

213 Point 2 2 266043.807 1991098.159 

214 Point 2 2 268083.807 1990943.159 

215 Point 2 2 268883.807 1990868.159 

216 Point 2 2 267268.807 1990623.159 

217 Point 2 2 267213.807 1990428.159 

218 Point 2 2 269213.807 1990288.159 

219 Point 2 2 267413.807 1990053.159 

220 Point 2 2 266393.807 1989918.159 

221 Point 2 2 267308.807 1989723.159 

222 Point 1 2 248618.807 1989153.159 

223 Point 2 2 249488.807 1989088.159 

224 Point 2 2 247653.807 1988953.159 

225 Point 2 2 249963.807 1988933.159 

226 Point 2 2 249358.807 1988853.159 

227 Point 2 2 249433.807 1988648.159 

228 Point 2 2 250183.807 1988103.159 

229 Point 2 2 248068.807 1987778.159 

230 Point 2 2 247453.807 1987568.159 

231 Point 2 2 249308.807 1987498.159 

232 Point 2 2 247348.807 1987378.159 
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233 Point 2 2 248048.807 1987178.159 

234 Point 1 2 247163.807 1986908.159 

235 Point 2 2 249753.807 1986893.159 

236 Point 2 2 248853.807 1986728.159 

237 Point 2 2 248588.807 1986458.159 

238 Point 2 2 246423.807 1986113.159 

239 Point 2 2 246228.807 1985678.159 

240 Point 2 2 248028.807 1985533.159 

241 Point 2 1 247678.807 1985473.159 

242 Point 1 1 246108.807 1985233.159 

243 Point 2 2 249003.807 1985143.159 

244 Point 1 1 247223.807 1985078.159 

245 Point 2 2 247603.807 1984848.159 

246 Point 2 1 249893.807 1984723.159 

247 Point 2 2 249043.807 1984538.159 

248 Point 2 2 250368.807 1989213.159 

249 Point 2 2 253738.807 1989148.159 

250 Point 2 2 253028.807 1989078.159 

251 Point 2 2 252298.807 1988898.159 

252 Point 2 2 253453.807 1988738.159 

253 Point 2 2 251488.807 1988583.159 

254 Point 2 2 254738.807 1988438.159 

255 Point 2 2 251138.807 1988253.159 

256 Point 2 2 253868.807 1988023.159 

257 Point 2 2 251733.807 1987953.159 

258 Point 2 2 250573.807 1987788.159 

259 Point 2 1 251488.807 1987608.159 

260 Point 2 2 253373.807 1987433.159 

261 Point 2 2 253698.807 1987188.159 

262 Point 2 2 253058.807 1987098.159 

263 Point 2 1 251423.807 1986933.159 

264 Point 2 2 252528.807 1986748.159 

265 Point 2 2 255168.807 1986543.159 

266 Point 2 2 253273.807 1986378.159 

267 Point 2 2 250393.807 1986268.159 

268 Point 2 2 252798.807 1986093.159 

269 Point 2 2 253073.807 1985958.159 

270 Point 2 2 251733.807 1985738.159 

271 Point 2 2 254793.807 1985513.159 

272 Point 2 2 253973.807 1985468.159 

273 Point 2 2 252558.807 1985123.159 

274 Point 2 1 253528.807 1985083.159 

275 Point 2 2 251383.807 1984998.159 

276 Point 1 1 251798.807 1984718.159 

277 Point 2 1 255313.807 1984718.159 

278 Point 2 2 253898.807 1984648.159 

279 Point 2 2 252448.807 1984508.159 
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280 Point 2 2 251213.807 1984268.159 

281 Point 2 2 255003.807 1984148.159 

282 Point 2 2 260368.807 1989083.159 

283 Point 2 2 259653.807 1989023.159 

284 Point 2 2 256078.807 1988763.159 

285 Point 2 2 260123.807 1988703.159 

286 Point 2 2 258768.807 1988498.159 

287 Point 2 2 257708.807 1988283.159 

288 Point 1 2 259703.807 1988283.159 

289 Point 2 2 256608.807 1987963.159 

290 Point 2 2 259273.807 1987833.159 

291 Point 2 2 258843.807 1987813.159 

292 Point 2 1 257298.807 1987713.159 

293 Point 1 1 259258.807 1987573.159 

294 Point 2 2 258298.807 1987433.159 

295 Point 2 2 255418.807 1987343.159 

296 Point 2 2 259923.807 1987218.159 

297 Point 2 2 257763.807 1987008.159 

298 Point 2 2 260128.807 1986908.159 

299 Point 2 2 259568.807 1986673.159 

300 Point 2 1 257438.807 1986628.159 

301 Point 2 2 258988.807 1986393.159 

302 Point 2 2 258678.807 1986153.159 

303 Point 2 2 255668.807 1986048.159 

304 Point 2 2 258598.807 1985718.159 

305 Point 2 2 259908.807 1985663.159 

306 Point 2 2 257678.807 1985483.159 

307 Point 2 2 259748.807 1985478.159 

308 Point 2 2 255848.807 1985368.159 

309 Point 2 2 256978.807 1985188.159 

310 Point 2 2 258648.807 1984863.159 

311 Point 2 2 260448.807 1984763.159 

312 Point 2 2 257923.807 1984658.159 

313 Point 2 1 257453.807 1984553.159 

314 Point 2 2 262688.807 1989233.159 

315 Point 2 2 260558.807 1989158.159 

316 Point 2 2 262133.807 1989113.159 

317 Point 2 2 263338.807 1989043.159 

318 Point 2 2 263603.807 1988848.159 

319 Point 2 2 265063.807 1988633.159 

320 Point 2 2 264433.807 1988258.159 

321 Point 2 2 265043.807 1988243.159 

322 Point 2 2 264158.807 1988148.159 

323 Point 2 1 265338.807 1988118.159 

324 Point 2 2 261283.807 1987668.159 

325 Point 2 2 265503.807 1987638.159 

326 Point 2 2 260943.807 1987438.159 
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327 Point 2 2 264848.807 1987428.159 

328 Point 2 2 261978.807 1987358.159 

329 Point 2 2 260953.807 1987148.159 

330 Point 2 1 264968.807 1987023.159 

331 Point 2 2 262333.807 1986798.159 

332 Point 2 2 263848.807 1986658.159 

333 Point 2 2 261238.807 1986428.159 

334 Point 2 2 262723.807 1986293.159 

335 Point 2 2 260923.807 1986193.159 

336 Point 2 1 265308.807 1986098.159 

337 Point 2 2 263583.807 1985963.159 

338 Point 2 1 264743.807 1985758.159 

339 Point 2 2 261073.807 1985648.159 

340 Point 2 2 262438.807 1985498.159 

341 Point 2 2 265583.807 1985283.159 

342 Point 2 2 261733.807 1985178.159 

343 Point 2 2 262113.807 1984993.159 

344 Point 2 2 260828.807 1984588.159 

345 Point 2 2 263938.807 1984523.159 

346 Point 2 2 263163.807 1984383.159 

347 Point 1 1 261563.807 1984258.159 

348 Point 2 1 264323.807 1984178.159 

349 Point 2 2 269658.807 1989063.159 

350 Point 2 2 266243.807 1988893.159 

351 Point 2 2 268728.807 1988873.159 

352 Point 2 2 266808.807 1988718.159 

353 Point 2 2 269288.807 1988508.159 

354 Point 2 2 267508.807 1988253.159 

355 Point 2 2 267193.807 1988023.159 

356 Point 2 2 266833.807 1987753.159 

357 Point 2 2 267048.807 1987438.159 

358 Point 2 2 266833.807 1987383.159 

359 Point 2 2 267028.807 1987228.159 

360 Point 2 1 268898.807 1986993.159 

361 Point 2 2 266273.807 1986823.159 

362 Point 2 1 269108.807 1986218.159 

363 Point 2 1 268088.807 1986203.159 

364 Point 2 2 268238.807 1986133.159 

365 Point 2 2 267413.807 1985733.159 

366 Point 2 1 266483.807 1985618.159 

367 Point 2 2 266103.807 1985323.159 

368 Point 1 1 268743.807 1984943.159 

369 Point 2 2 268583.807 1984593.159 

370 Point 1 1 266713.807 1984503.159 

371 Point 2 2 268178.807 1984233.159 

372 Point 2 2 246323.807 1984098.159 

373 Point 2 2 249458.807 1983788.159 
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374 Point 2 2 248783.807 1983688.159 

375 Point 1 1 247188.807 1983538.159 

376 Point 2 2 246393.807 1983348.159 

377 Point 2 2 246743.807 1983263.159 

378 Point 2 2 250163.807 1983098.159 

379 Point 2 1 245643.807 1982913.159 

380 Point 2 2 248918.807 1982708.159 

381 Point 2 2 246733.807 1982348.159 

382 Point 1 1 247043.807 1982313.159 

383 Point 2 2 246203.807 1982238.159 

384 Point 2 2 245828.807 1981998.159 

385 Point 2 2 249348.807 1981853.159 

386 Point 2 1 248558.807 1981638.159 

387 Point 2 2 246633.807 1981418.159 

388 Point 1 1 246958.807 1981238.159 

389 Point 2 2 247688.807 1980948.159 

390 Point 2 2 247433.807 1980773.159 

391 Point 2 2 247923.807 1980488.159 

392 Point 2 1 248023.807 1980228.159 

393 Point 2 2 248188.807 1980223.159 

394 Point 1 1 248148.807 1980198.159 

395 Point 2 2 248728.807 1980123.159 

396 Point 2 2 251238.807 1984028.159 

397 Point 2 2 254998.807 1983883.159 

398 Point 2 2 255373.807 1983583.159 

399 Point 2 2 253238.807 1983573.159 

400 Point 2 2 255098.807 1983378.159 

401 Point 2 2 253003.807 1983133.159 

402 Point 2 2 253878.807 1983113.159 

403 Point 2 2 254823.807 1982858.159 

404 Point 2 2 254998.807 1982783.159 

405 Point 2 2 255228.807 1982498.159 

406 Point 2 2 253643.807 1982468.159 

407 Point 2 2 253563.807 1982193.159 

408 Point 2 2 252643.807 1981848.159 

409 Point 2 2 250943.807 1981798.159 

410 Point 2 2 252318.807 1981753.159 

411 Point 2 2 252138.807 1981618.159 

412 Point 2 2 251528.807 1981408.159 

413 Point 2 2 253513.807 1981308.159 

414 Point 2 2 254718.807 1980998.159 

415 Point 2 2 250643.807 1980788.159 

416 Point 2 2 255298.807 1980758.159 

417 Point 2 2 253923.807 1980628.159 

418 Point 1 1 255278.807 1980508.159 

419 Point 2 2 253478.807 1980408.159 

420 Point 2 2 253998.807 1980363.159 
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FID Shape Classified Ground Truth Easting Northing 

421 Point 2 2 253708.807 1980188.159 

422 Point 2 2 253358.807 1980018.159 

423 Point 2 2 250773.807 1979798.159 

424 Point 2 2 251678.807 1979448.159 

425 Point 2 2 252158.807 1979423.159 

426 Point 2 2 253138.807 1979178.159 

427 Point 2 2 259443.807 1984063.159 

428 Point 2 2 259208.807 1983918.159 

429 Point 2 2 256978.807 1983773.159 

430 Point 2 1 256068.807 1983593.159 

431 Point 2 2 255883.807 1983428.159 

432 Point 2 2 257918.807 1983233.159 

433 Point 2 2 260303.807 1983143.159 

434 Point 2 2 258788.807 1982878.159 

435 Point 2 2 260498.807 1982828.159 

436 Point 2 2 257243.807 1982643.159 

437 Point 2 2 259618.807 1982513.159 

438 Point 1 2 256198.807 1982253.159 

439 Point 2 2 256588.807 1982188.159 

440 Point 2 2 260058.807 1982173.159 

441 Point 2 2 258268.807 1982033.159 

442 Point 2 2 256638.807 1981518.159 

443 Point 2 2 256378.807 1981353.159 

444 Point 2 2 256003.807 1981348.159 

445 Point 2 2 258498.807 1981098.159 

446 Point 2 2 260203.807 1981068.159 

447 Point 2 2 260488.807 1980968.159 

448 Point 2 2 256618.807 1980803.159 

449 Point 2 2 257733.807 1980773.159 

450 Point 2 2 257908.807 1980578.159 

451 Point 2 2 258743.807 1980423.159 

452 Point 2 2 256948.807 1980288.159 

453 Point 2 1 260338.807 1980123.159 

454 Point 2 2 256128.807 1979948.159 

455 Point 2 2 255583.807 1979768.159 

456 Point 2 1 257353.807 1979588.159 

457 Point 2 2 257028.807 1979398.159 

458 Point 2 2 259608.807 1979238.159 

459 Point 2 2 256283.807 1979168.159 

460 Point 2 2 262088.807 1984043.159 

461 Point 2 1 263783.807 1983898.159 

462 Point 2 2 261303.807 1983728.159 

463 Point 1 1 264753.807 1983728.159 

464 Point 2 2 265268.807 1983513.159 

465 Point 2 2 260918.807 1983328.159 

466 Point 2 2 262938.807 1983093.159 

467 Point 2 2 263023.807 1982958.159 
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468 Point 1 1 264423.807 1982718.159 

469 Point 2 2 265553.807 1982718.159 

470 Point 2 2 261988.807 1982678.159 

471 Point 2 2 260953.807 1982493.159 

472 Point 2 2 262673.807 1982223.159 

473 Point 2 2 262523.807 1982028.159 

474 Point 2 2 264633.807 1981878.159 

475 Point 2 2 265568.807 1981773.159 

476 Point 2 2 262328.807 1981498.159 

477 Point 2 2 262028.807 1981343.159 

478 Point 2 2 260698.807 1981133.159 

479 Point 1 1 263338.807 1981088.159 

480 Point 2 2 263798.807 1980668.159 

481 Point 1 1 260773.807 1980578.159 

482 Point 2 1 260788.807 1980468.159 

483 Point 2 2 262233.807 1980313.159 

484 Point 1 1 262103.807 1980073.159 

485 Point 2 2 261443.807 1979743.159 

486 Point 2 2 262793.807 1979368.159 

487 Point 1 1 261273.807 1979238.159 

488 Point 1 2 266888.807 1983998.159 

489 Point 2 2 267663.807 1983818.159 

490 Point 2 2 267873.807 1983618.159 

491 Point 2 2 265898.807 1983033.159 

492 Point 2 2 265733.807 1982133.159 

493 Point 2 2 255323.807 1978683.159 

494 Point 1 1 258318.807 1978608.159 

495 Point 2 2 259328.807 1978288.159 

496 Point 2 2 259278.807 1977863.159 

497 Point 2 2 260073.807 1977828.159 

498 Point 2 2 261613.807 1978568.159 

499 Point 1 2 261363.807 1978148.159 
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Appendix 6: Average Nearest Neighbour Summary 
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Appendix 7: Rainfall Data 2017 

Date Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0.0 0.0 0.0 0.0 0.0 0.0 3.6 0.0 6.4 23.6 0.0 0.0 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 1.3 0.0 0.0 

3 0.0 0.0 0.0 0.0 1.7 0.0 22.4 0.0 2.7 3.0 0.0 0.0 

4 0.0 0.0 0.0 0.0 1.0 0.0 13.1 0.5 3.4 46.4 0.0 0.0 

5 0.0 0.0 0.0 0.0 0.0 0.7 0.0 80.6 0.5 7.6 0.0 0.0 

6 0.0 0.0 0.0 0.0 15.5 4.5 2.2 1.0 4.6 13.0 0.2 0.0 

7 0.0 0.0 0.0 0.0 0.0 79.7 13.8 1.2 6.8 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 0.6 2.9 11.1 0.0 0.0 0.0 0.0 

9 0.3 0.0 0.0 0.0 0.0 9.7 0.0 3.8 4.7 0.0 0.0 0.0 

10 0.4 0.0 0.0 0.0 0.0 30.4 2.1 0.0 0.0 10.0 0.0 0.0 

11 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.0 0.0 0.0 0.0 0.0 

12 0.6 0.0 0.0 15.4 0.0 0.4 5.5 0.0 0.0 9.9 0.0 0.0 

13 0.0 0.0 0.0 0.0 3.0 3.9 0.0 0.0 2.4 0.0 0.0 0.0 

14 0.0 0.0 0.0 0.0 49.1 1.1 36.2 0.0 0.8 5.0 0.0 0.0 

15 0.0 0.0 0.0 82.5 0.0 1.3 2.5 3.0 41.7 10.3 0.0 0.0 

16 0.0 0.0 1.0 0.0 22.2 0.0 9.3 54.8 47.1 5.7 0.0 0.0 

17 0.0 0.0 20.0 0.0 15.9 0.0 18.7 17.8 7.0 4.9 0.0 0.0 

18 0.0 0.0 0.4 0.0 45.2 4.9 2.5 4.0 0.0 0.0 0.0 0.0 

19 0.0 0.0 0.0 0.0 0.0 18.3 6.6 26.4 0.0 0.0 0.0 0.0 

20 0.0 0.0 0.0 0.0 0.0 0.2 68.0 17.1 0.0 0.0 0.0 0.0 

21 0.0 0.0 0.0 0.0 0.0 0.0 17.0 0.0 25.7 0.4 0.0 0.0 

22 0.0 0.0 0.0 0.0 30.6 0.0 0.8 0.0 2.6 0.0 0.0 0.0 

23 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 

24 0.0 0.0 0.0 7.5 2.1 0.0 0.0 10.3 0.0 0.0 0.0 0.0 

25 0.0 0.0 0.0 0.0 0.0 5.8 13.3 9.3 3.3 0.0 0.0 0.0 

26 0.0 0.0 35.2 0.0 0.0 19.5 1.8 2.3 0.0 0.0 0.0 13.7 

27 0.0 0.0 0.0 0.0 0.0 2.4 15.6 0.0 0.0 0.0 0.0 7.9 

28 0.0 0.0 0.0 0.0 0.0 61.0 32.7 26.5 20.6 0.0 0.0 0.0 

29 0.0 0.0 0.0 0.0 38.0 17.5 24.2 0.0 0.0 0.0 0.0 

30 0.0 14.9 0.0 0.0 0.2 1.2 0.0 0.8 0.0 0.0 0.0 

31 0.0 0.0 0.0 0.0 15.7 0.0 0.0 

Total     1.3 0.0 71.5 105.4 186.3 284.1 310.5 309.9 181.1 141.1 0.2 21.6 

Max 0.6 0.0 35.2 82.5 49.1 79.7 68.0 80.6 47.1 46.4 0.2 13.7 

Note: The yellow highlights are the dates of satellite image data acquired in each month 




