
 
 

 

Image segmentation with prior 
guidance: application to cervical 

cytology images 
by 

Ratna Saha 

Thesis 
Submitted to Flinders University 

for the degree of 

Doctor of Philosophy 
College of Science and Engineering 

March 2020 



Contents

List of abbreviations xiv

Abstract xv

Declaration xvii

Publications xviii

Dedication xx

Acknowledgements xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cervical cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Automated screening systems . . . . . . . . . . . . . . . . . . . . 9

1.5 Nuclei segmentation in automated screening . . . . . . . . . . . . 13

1.6 Prior knowledge in segmentation . . . . . . . . . . . . . . . . . . . 16

1.7 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Literature review 19

2.1 Computer-aided cervical cytology screening . . . . . . . . . . . . . 19

2.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Image segmentation . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Feature generation . . . . . . . . . . . . . . . . . . . . . . 33

ii



CONTENTS iii

2.1.4 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.5 Classification . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Prior guided image segmentation . . . . . . . . . . . . . . . . . . 40

2.2.1 User interaction . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Shape and appearance prior . . . . . . . . . . . . . . . . . 41

2.2.3 Statistical shape model . . . . . . . . . . . . . . . . . . . . 43

2.2.4 Spatial prior . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2.5 Boundary information . . . . . . . . . . . . . . . . . . . . 48

2.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Thresholding and morphological analysis based approaches 49

2.3.2 Deformable model, contour and shape based approaches . 51

2.3.3 Watershed based segmentation approaches . . . . . . . . . 53

2.3.4 Region and clustering based approaches . . . . . . . . . . 54

2.3.5 Machine learning based segmentation . . . . . . . . . . . . 55

3 Shape prior in fuzzy c-means clustering 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Circular shape constrained fuzzy clustering (CiscFC) . . . . . . . 59

3.2.1 An overview . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 The proposed circular shape function (CSF) . . . . . . . . 60

3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 Background subtraction . . . . . . . . . . . . . . . . . . . 64

3.4.2 Implementation of CiscFC . . . . . . . . . . . . . . . . . . 67

3.4.3 False positive reduction . . . . . . . . . . . . . . . . . . . . 68

3.4.4 Nucleus shape regularization . . . . . . . . . . . . . . . . . 69

3.5 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Background subtraction technique selection . . . . . . . . . . . . . 72

3.8 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.8.1 Thresholds for area and shape features . . . . . . . . . . . 73

3.8.2 Thresholds for CSF . . . . . . . . . . . . . . . . . . . . . . 74



CONTENTS iv

3.8.3 Optimal number of clusters . . . . . . . . . . . . . . . . . 77

3.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Shape prior in graph based segmentation 88

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Circular shape prior in efficient graph based segmentation (CircEGS) 90

4.2.1 An overview of EGS method . . . . . . . . . . . . . . . . . 90

4.2.2 The proposed circular shape prior . . . . . . . . . . . . . . 91

4.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7.1 Quantitative evaluation . . . . . . . . . . . . . . . . . . . . 97

4.7.2 Border precision evaluation . . . . . . . . . . . . . . . . . 100

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5 Superpixel merging with gradient guidance 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.1 Nuclei marker detection . . . . . . . . . . . . . . . . . . . 109

5.3.2 Superpixel merging criteria . . . . . . . . . . . . . . . . . . 112

5.3.3 Superpixel generation . . . . . . . . . . . . . . . . . . . . . 112

5.3.4 A novel superpixel merging technique with pairwise re-

gional contrast and gradient boundary . . . . . . . . . . . 113

5.3.5 Shape regularization . . . . . . . . . . . . . . . . . . . . . 114

5.4 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 115



CONTENTS v

5.6 Finding thresholds for parameters . . . . . . . . . . . . . . . . . . 116

5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8.1 SRM superpixels . . . . . . . . . . . . . . . . . . . . . . . 122

5.9 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . 129

6 Abnormality detection in cervical cells 131

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3.1 Nucleus segmentation . . . . . . . . . . . . . . . . . . . . . 134

6.3.2 Feature extraction and normalization . . . . . . . . . . . . 135

6.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . 136

6.3.4 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 Experimental results and discussion . . . . . . . . . . . . . . . . . 139

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Conclusion 149

7.1 Thesis summary and contribution . . . . . . . . . . . . . . . . . . 149

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151



List of figures

1.1 Pie charts representing the estimated number of (a) new cases and

(b) deaths for the most common cancers in women worldwide, in

2018. Data source: GLOBOCAN 2018. Graph production: Global

cancer observatory (https://gco.iarc.fr/). . . . . . . . . . . . 2

1.2 Cervical cancer incidence in Australia from 1991 to 2017. Data

source: Australian Institute of Health and Welfare (AIHW), Aus-

tralian Cancer Database. . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Annual rates of new cervical cancer incidence in United States from

1999 to 2016. Data source: US Department of Health and Human

Services, Centers for Disease Control and Prevention and National

Cancer Institute (www.cdc.gov/cancer/dataviz). . . . . . . . . . 4

1.4 Bar chart representing the estimated age-standardized incidence

and death rates due to cervical cancer in women, based on in-

come levels. Data source: GLOBOCAN 2018. Graph production:

Global cancer observatory (https://gco.iarc.fr/). . . . . . . . 5

1.5 Anatomical illustration of female reproductive system. Adapted

from (Malm 2013, Bengtsson & Malm 2014). . . . . . . . . . . . . 6

1.6 Development of squamous cells through different layers. Adapted

from (Sellors & Sankaranarayanan 2003). . . . . . . . . . . . . . . 7

1.7 Illustration of endocervical columnar epithelium. Adapted from (Sel-

lors & Sankaranarayanan 2003). . . . . . . . . . . . . . . . . . . . 7

1.8 Examples of Pap smear images. Data source: Overlapping Cer-

vical Cytology Image Segmentation Challenge - ISBI 2014 (see

Chapter 3 for details). . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 An example of star shape object. . . . . . . . . . . . . . . . . . . 42

3.1 Four examples of overlapping synthetic cervical smear images from

ISBI 2014 challenge dataset (in light background) (a), (c), (e),

and (g), followed by corresponding nuclei ground truths (in dark

background) (b), (d), (f), and (h). . . . . . . . . . . . . . . . . . . 63

vi

https://gco.iarc.fr/
www.cdc.gov/cancer/dataviz
https://gco.iarc.fr/


LIST OF FIGURES vii

3.2 The flowchart of the proposed cervical nuclei segmentation frame-

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Cervical cell image background subtraction using thresholding based

technique, (a) original image, (b) complemented image, (c) plot of

the complemented image histogram with dominant peaks (marked

with red ∗), and, (d) binarized image using the second highest peak. 65

3.4 Normalized histograms of: (a) an original image from the training

dataset, (b) same image after applying morphological opening-by-

reconstruction and closing-by-reconstruction. . . . . . . . . . . . . 66

3.5 Background extraction and finding cell clump, (a) original image,

(b) morphologically processed image, (c) foreground cell clump,

and (d) complement image of the cell clump. . . . . . . . . . . . . 67

3.6 An example of false positive reduction. (a) Complemented fore-

ground image used for clustering (nuclei with high graylevel val-

ues), (b) detected nucleus candidates from clustering output, and

(c) nucleus cluster after false positive reduction process using area

and shape features. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7 An example of nucleus shape regularization. (a) Complemented

foreground image, (b) nucleus candidates after false positive re-

duction, and (c) nucleus candidates after shape regularization. . . 70

3.8 Examples of two background removal techniques: top row repre-

sents results for thresholding based and bottom row presents mor-

phological reconstruction based, (a), (d) complemented foreground

images, (b), (e) brightest clusters as nucleus, and (c), (f) nucleus

clusters after false positive reduction. Differences are highlighted

with yellow rectangles. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Comparison of background subtraction techniques with two ex-

ample images. Top row presents image foregrounds found with

threshold based method and final nucleus clusters, and bottom

row shows foregrounds found using morphological reconstruction

based technique and corresponding nuclei clusters. . . . . . . . . . 74

3.10 Determination of t1 and t2 using Otsu multiple thresholding. (a),

(d) Complemented foreground images, (b), (e) candidates in nu-

cleus class after thresholding, and (c), (f) filtered candidates. . . . 75

3.11 MSER technique used to determine t1 and t2. (a), (d) Com-

plemented foreground images, (b), (e) candidates after applying

MSER algorithm, and (c), (f) area and shape filtered candidates. 76

3.12 Plot of segmentation accuracy measures of the proposed framework

for ISBI test dataset: (a) Dice similarity coefficient, (b) pixel based

precision and (c) pixel based recall. . . . . . . . . . . . . . . . . . 82



LIST OF FIGURES viii

3.13 Histograms of circularity values of all ground truth nuclei, from

ISBI (a) training and (b) test datasets. . . . . . . . . . . . . . . . 83

3.14 Circularity value histograms of segmented nucleus using the pro-

posed framework with: (a) standard FCM and (b) CiscFC tech-

niques, from ISBI test dataset. . . . . . . . . . . . . . . . . . . . . 84

3.15 Nucleus segmentation examples from the test dataset: first column

represents the original images marked with nuclei ground truth,

second column presents nuclei segmented using the standard FCM

clustering, and the last column shows nuclei segmented using the

proposed CiscFC technique. Differences between CiscFC and the

standard FCM are marked with green rectangles. . . . . . . . . . 85

3.16 An example of missed nucleus detection, (a) nucleus in question

(circled in red), (b) detected target nucleus (circled in red) after

applying the proposed method and (c) target nucleus removed after

false positive reduction. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.17 Examples of missed nucleus detection and segmentation due to

uneven staining and poor contrast. . . . . . . . . . . . . . . . . . 86

4.1 Schematic illustration of circularity definition. . . . . . . . . . . . 92

4.2 Plots of evaluation measures for k in the range [50, 650] using ISBI

training set using, (a) EGS and (b) CircEGS techniques. . . . . . 96

4.3 Plot of Ht metric for EGS and CircEGS techniques. . . . . . . . . 100

4.4 Circularity histograms of: (a) ground truth, and nuclei segmented

using (b) standard EGS and (c) CircEGS techniques. . . . . . . . 102

4.5 Nucleus segmentation examples. First column presents original im-

ages marked with nucleus ground truth, second column shows the

segmented boundaries using the EGS method, and third column

contains the segmentation boundaries using CircEGS technique.

Differences between CircEGS and EGS techniques are marked with

green rectangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Examples of nucleus segmentation failures: top row shows nucleus

ground truth boundaries, and bottom row presents corresponding

CircEGS technique segmented nucleus boundaries. Failed segmen-

tation cases and nucleus in ground truth, are indicated with red

arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1 The flowchart of the proposed nucleus segmentation framework. . 109



LIST OF FIGURES ix

5.2 Visual representation of (a) a 8 bit Pap smear image, and its 8 bit

planes as: (b) bit 1 plane, (c) bit 2 plane, (d) bit 3 plane, (e) bit

4 plane, (f) bit 5 plane, (g) bit 6 plane, (h) bit 7 plane, and (i) bit

8 plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 An example of nucleus marker detection process: (a) original im-

age, (b) MSB plane with marker candidates, (c) MSB plane after

applying morphological operation and filtering, (d) MSER output

with nuclei marker candidates, (e) MSER output after applying

morphological operation and filtering, (f) centroids of final nuclei

candidates - found by combining outputs in (c) and (e), are marked

with red stars and used as nuclei markers in the proposed framework.111

5.4 An example of gradient boundary generation, where blue square in

the center indicates nucleus marker, green lines represent intensity

profiles, and red stars stand for gradient boundary points. . . . . 113

5.5 Test cases for a neighbor superpixel during the proposed merging

process. The centroid of a neighbor superpixel (in green) is: (a)

inside, (b) on and (c) outside, the gradient boundary (in white). . 114

5.6 Superpixel merging process illustration. (a) Parent superpixel (in

blue) containing nucleus marker, (b) - (e) show neighbor superpix-

els (in green) tested for merging with the parent, and (f) is the

final merged superpixel as segmented nucleus. . . . . . . . . . . . 116

5.7 Plot of Dice similarity coefficient for pairwise regional contrast

threshold in the range [256, 2306] with step of 50, using the pro-

posed superpixel merging framework on ISBI training set. . . . . . 118

5.8 Plot of Dice similarity coefficient for Euclidean distance in the

range [1, 20], using the proposed superpixel merging framework on

ISBI training set. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.9 Estimation of Q values for SRM segmentation. (a) Finding Qs for

coarse SRM segmentation, and finding Qb from (b) average and

(c) maximum region size analysis for finer SRM segmentation. . . 124

5.10 Plot of (a) Dice similarity coefficient (DSC), (b) pixel-based pre-

cision (PRpix) and (c) pixel-based recall (RCpix) - for the proposed

framework using SRM and SLIC methods. . . . . . . . . . . . . . 127

5.11 Visual comparison of ground truth (in black, left column), and

segmented boundaries found by the proposed superpixel merging

framework with SLIC (in yellow, middle column) and SRM (in

blue, right column) superpixels. Differences in segmented bound-

aries found with SLIC and SRM superpixel generation techniques

are highlighted with green rectangles. . . . . . . . . . . . . . . . . 128



LIST OF FIGURES x

5.12 Examples of failure cases with proposed framework with SRM su-

perpixels. Top row presents failures due to missed marker detec-

tion, and bottom row shows failed cases for superpixel generation.

Ground truth boundaries are in black, segmented boundaries are

in blue, and differences are indicated with red arrows. . . . . . . . 129

6.1 Example of cervical cell images from Herlev dataset: (a)-(c) normal

and (d)-(g) abnormal. . . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Block diagram of the proposed cervical cell classification framework.134

6.3 Comparison of ground truth (in black, first column), and seg-

mented nuclei boundaries found using: CircEGS (in white, second

column), CiscFC (in cyan, third column), and SPmerg (in yellow,

last column) techniques. . . . . . . . . . . . . . . . . . . . . . . . 140

6.4 Plot of AUC over number of ranked features with LDA, KNN,

SVM-linear, Ensemble-Bag, and SVM-RBF classifiers, for Herlev

dataset segmented with: (a) CircEGS, (b) CiscFC and (c) SPmerg

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.5 ROC curves illustrating the best and lowest AUC scores found in

two folds of classification in a run, with CircEGS segmented nuclei

and SVM linear classifier. . . . . . . . . . . . . . . . . . . . . . . 146



List of tables

3.1 Parameter values for area and shape features of a candidate nucleus. 74

3.2 Finding the optimal number of clusters. . . . . . . . . . . . . . . . 77

3.3 Quantitative object based evaluation of the proposed CiscFC tech-

nique in comparison with the standard FCM and recent state-of-

the-art methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Quantitative comparison of segmentation accuracy of the proposed

CiscFC methodology, with the standard FCM and recent state-of-

the-art techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Evaluation of shape regularization impact on performance measures. 80

3.6 Identifying stability of the proposed CiscFC framework with re-

spect to different initial partition matrices. Last row shows the

mean and standard deviation over 5 runs. . . . . . . . . . . . . . 81

4.1 Empirical values for parameter k and weight parameter λ. . . . . 97

4.2 Object level evaluation of the proposed CircEGS technique, in

comparison with the standard EGS and recent state-of-the-art

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Pixel level evaluation of the proposed CircEGS technique. . . . . 99

4.4 Hausdorff distance evaluation. . . . . . . . . . . . . . . . . . . . . 100

4.5 Ht metric with tolerance threshold t set to 1, 2, . . . , 5 (pixels). . . 101

4.6 Influence of circularity on nucleus segmentation measures, in terms

of DSC, pixel based precision (PRpix) and recall (RCpix), and

Hausdorff distance (H). . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Threshold values to detect candidate nuclei markers. . . . . . . . 117

5.2 Object based evaluation of the proposed superpixel merging frame-

work and comparison with the state-of-the-art methods. . . . . . . 120

5.3 Evaluation of segmentation accuracy measures for the proposed

superpixel merging framework, in comparison to the state-of-the-

art techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xi



LIST OF TABLES xii

5.4 Comparison of nucleus segmentation and detection evaluation for

the proposed superpixel merging framework with SLIC and SRM

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1 An example of confusion matrix for a two class problem. . . . . . 138

6.2 Evaluation of nucleus segmentation and detection for Herlev dataset.141

6.3 Comparison of nucleus segmentation performance of the proposed

framework, with the state-of-the-art methods using Herlev dataset. 142

6.4 Fuzzy entropy based hierarchical ordering/ranking of 13 features

of 5-folds in a run. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Two-class classification performance of Herlev dataset - segmented

with CircEGS, CiscFC and SPmerg methods, with 10 independent

runs of 5-fold cross validation and 10 nuclei features. . . . . . . . 145

6.6 Confusion matrices for the best classifiers in 2 class classification

problem of Herlev dataset with 10 features, accumulated over 5-

folds in a run. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.7 Classification results of 5-folds in a run, found for CircEGS seg-

mentation and SVM linear classification with 10 nuclei features. . 145

6.8 Comparison of Herlev dataset classification performance of the pro-

posed approach with state-of-the-art techniques. . . . . . . . . . . 147



List of algorithms

1 Efficient graph based segmentation algorithm . . . . . . . . . . . 92

2 Superpixel merging algorithm . . . . . . . . . . . . . . . . . . . . 115

xiii



List of abbreviations

AUC Area under ROC curve

CAD Computer-aided diagnosis

CLAHE Contrast limited adaptive histogram equalization

EGS Efficient graph based segmentation

FCM Fuzzy c-means

HPV Human papilloma virus

KNN K-nearest neighbor

LDA Linear discriminant analysis

MSER Maximally stable extremal region

MST Minimum spanning tree

ROC Receiver operator characteristics

ROI Region of interest

SLIC Simple linear iterative clustering

SRM Statistical region merging

SVM Support vector machine

xiv



Abstract

Cervical cancer is one of the most common type of gynecological cancer. In

cervix tissues, pre-cancerous changes in cell morphology and structure develop

over a span of 8 to 10 years. Pap smear is the most effective and popular screen-

ing worldwide for early detection of invasive cervical cancer. However, manual

screening task of cytotechnologist is complex, time-intensive, tedious, and re-

quires high level of expertise. Computer-aided screening of cervical smear images

has the potential to assist the cytotechnologists and improve Pap test outcome,

in a turn decrease cervical cancer morbidity and mortality rate. Nucleus fea-

tures are crucial for characterization of cervical cytology images and diagnostic

decisions. Hence, accurate segmentation of nuclei is the essential primary step

towards computer-assisted cervical cell analysis. This study aims to improve cer-

vical nuclei segmentation performance, and subsequently develop an abnormality

detection or cervical cell classification framework exclusively based on nuclei fea-

tures.

The main contributions of this thesis are the development of three novel nu-

cleus segmentation techniques and a nuclei feature based classification framework.

The first two segmentation frameworks are developed on pixel grid level and the

last one on superpixel based image representation. Incorporation of prior knowl-

edge in image segmentation techniques is useful in partitioning images with noise

and low contrast. The proposed segmentation algorithms are designed to utilize

prior guidance, for precise segmentation of cervical nuclei from overlapping Pap

smear images.

Particularly, in the first contribution, a circular shape function is proposed at

pixel level, utilizing spatial location of pixels. This shape function was integrated

into fuzzy clustering technique. In the second contribution, circular shape guid-

ance is included in efficient graph based segmentation algorithm. The adaptive

shape guidance is designed at pixel level to include circularity measure of regions,

in addition to image intensity information. In the third contribution, a gradi-

ent guided superpixel level merging framework is proposed. The novel merging

criterion consists of pairwise regional contrast and gradient boundary guidance.

Superpixels produced by SLIC and SRM segmentation techniques are employed

in this merging framework. Lastly, a nuclei feature based classification framework
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is proposed for abnormality detection in cervical cells, where nuclei are segmented

using all three proposed segmentation techniques.

The effectiveness of the proposed segmentation approaches is validated on

ISBI 2014 and Herlev datasets, using Dice similarity coefficient, pixel and object

based precision and recall as performance measures. The experimental results

indicate that the proposed segmentation techniques can precisely segment nuclei

from overlapping cervical cytology images, while keeping high level of precision

and recall. Performance of the proposed classification framework is validated

on Herlev dataset, and evaluated using accuracy, sensitivity, specificity, AUC

score, and Spearman rank order coefficient. Promising classification results of

the proposed framework indicate that, in the presence of precisely segmented

nuclei boundaries, it is possible to characterize cervical cells using only nuclei

features.
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Chapter 1

Introduction

This introductory chapter provides the motivation for computer-aided screening

system or abnormality detection from cervical cytology images. Section 1.2 and

Section 1.3 present brief introduction to cervical cancer and screening systems.

Computerized techniques to detect abnormality in cervical cells are presented

in Section 1.4. Section 1.5 briefly describes nucleus segmentation techniques in

computer-aided screening, and incorporation of prior knowledge in segmentation

technique is presented in Section 1.6. Research objectives are described in Sec-

tion 1.7. Finally, Section 1.8 provides an outline of this thesis.

1.1 Motivation

Cervical cancer is the fourth principal cause of female cancer death worldwide (Cer-

vical cancer statistics 2019, Bray et al. 2018). World Health Organization (WHO

— Cervical cancer 2019) and GLOBOCAN 2018 (Bray et al. 2018) estimated

570, 000 (6.6%) new cervical cancer incidences and 311, 000 (7.5%) deaths in

2018. The estimated number of incidence and mortality rates due to common

cancers in women in the year 2018 are presented in Figure 1.1, where ‘cervix

uteri’ indicates the instances of cervical cancer (2019 data was not available at

the time of writing this thesis).

Cervix tissues go through pre-cancerous or dysplastic changes for long pe-

riod of time (generally 8 - 10 years) before true development or progression to

cancer (Li et al. 2012, Australian Institute of Health and Welfare & Cancer Aus-

tralia 2012). If abnormality in cervical cells can be detected or diagnosed at early

stages, it can be cured and the treatment can be relatively simple, non-invasive

1



(a)

(b)

Figure 1.1: Pie charts representing the estimated number of (a) new cases and (b)
deaths for the most common cancers in women worldwide, in 2018. Data source:
GLOBOCAN 2018. Graph production: Global cancer observatory (https://
gco.iarc.fr/).

and inexpensive. Therefore, early detection of pre-cancerous changes in cervix

tissues is important and can help to reduce mortality and morbidity rates due

to cervical cancer. However, cervix tissues rarely exhibit any physical symptoms

until late stages. Therefore, timely detection of cervical cancer is possible only

by performing regular screening.

The Pap smear test (or Papanicolaou test) is the most effective and stan-

dard screening test for cervical cancer (Australian Institute of Health and Wel-

fare & Cancer Australia 2012, American Cancer Society 2019). Greek doctor
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Georges N. Papanicolaou (Papanicolaou 1942) introduced this test, to detect ab-

normal changes in cervix. For the test, sample is collected from the cervix, then

smeared and fixed on a glass slide, and stained following the standard proce-

dure guideline. The stained microscopic slides are then visually examined by

cytotechnologists for evidence of abnormalities in cell morphology and structure.

Over the past few decades, population-based regular screening programs have

helped to reduce the rate of cervical cancer incidence and deaths in many countries

worldwide (Bray et al. 2018). In Australia, national Pap test screening program

from 1991 to 2017 helped to decrease the incidence of new cases from 13.3 to

7.1 per 100, 000 women (see Figure 1.2). Infection with human papilloma virus

Figure 1.2: Cervical cancer incidence in Australia from 1991 to 2017. Data source:
Australian Institute of Health and Welfare (AIHW), Australian Cancer Database.

(HPV) is the primary cause in most of the cervical cancer cases (Australian

Institute of Health and Welfare 2019). In light of that and from the success

rate of Pap test screening for around 2 decades, Australia’s 2-yearly Pap smear

test screening has been replaced with a 5-yearly Cervical Screening Test, from 01

December, 2017. The new test is composed of HPV testing and Pap smear test,

to get more accurate results with less frequent screening. First through HPV

testing, cytologists will search for any presence of HPV in the sample of cells

collected from the cervix. By doing this, it will be possible to detect traces of
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HPV earlier, before it infects cervical cells and causes cancer. If any trace of HPV

is found, then Pap smear test will be performed to detect the cellular changes.

In United States (US), cervical cancer incidence rate has also declined signif-

icantly, as a result of regular Pap test (from 9.7 to 7.7 new cases per 100, 000

women). Figure 1.3 shows this trend of change in cervical cancer incidence over

years in United States. While Australia, New Zealand, North America and many

Figure 1.3: Annual rates of new cervical cancer incidence in United States from
1999 to 2016. Data source: US Department of Health and Human Services,
Centers for Disease Control and Prevention and National Cancer Institute (www.
cdc.gov/cancer/dataviz).

European countries benefited from population-wide cervical cancer screening pro-

grams, cervical cancer still remains one of the most common cancers in women

in the countries without nationwide screening (Bray et al. 2018, Australian In-

stitute of Health and Welfare 2019). Specifically, cancer rates are high - in low

and middle income countries (Bray et al. 2018) (see Figure 1.4) or where human

development index (HDI) is low or middle (American Cancer Society 2018).

The success of screening programs highly depends on resources and exper-

tise (Bray et al. 2018). Visual inspection of cervical cytology microscopic slides is

time-intensive, which requires expertise and close attention from a cytotechnol-

ogist to localize an abnormal cell among thousands of cells (Malm et al. 2013).
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Figure 1.4: Bar chart representing the estimated age-standardized incidence and
death rates due to cervical cancer in women, based on income levels. Data source:
GLOBOCAN 2018. Graph production: Global cancer observatory (https://
gco.iarc.fr/).

Correct interpretation of manual cervical screening faces major challenges from

smearing (presence of other elements with cervical cells, such as: blood, mucus

and other debris), quality of sampling (number of cells in the slide and cell over-

lapping), poor contrast, and uneven staining (Gençtav et al. 2012). Many low

and middle income countries cannot benefit from cervical cancer screening due

to: insufficient number of trained and skilled cytotechnologists, lack of organized

Pap test teams (Catarino et al. 2015), lack of access to health care services and

screening, and insufficient financial resources, which contribute to high mortal-

ity rate (above 85%) of cervical cancer (Tareef et al. 2018). Visual analysis of

cervical cytology slides is prone to intra observer variability, misdiagnosis and

missed-diagnosis. Hence, computer-aided screening and diagnosis system can be

beneficial in assisting the cytotechnologists and pathologists. Such systems can

help to localize the regions of interest and improve Pap test outcome, and conse-

quently decrease the incidence and death rates due to cervical cancer.

1.2 Cervical cancer

Cervical cancer or cancer of cervix uteri, is the malignant disease that develops in

the tissues of cervix. Cervix is an important part of female reproductive system

and it is located at the lower part of uterus. Figure 1.5 presents the location

5
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and epithelial distribution in cervix. The cervix is covered with epithelium or

Figure 1.5: Anatomical illustration of female reproductive system. Adapted
from (Malm 2013, Bengtsson & Malm 2014).

sheet of cells, which consists of squamous and columnar cells. The outer layer

of cervix or ectocervix is covered with flat and thin squamous cells. Columnar

or glandular cells are found in endocervix or cervical canal area. The meeting

point of squamous and columnar epithelium is called squamo-columnar junction

or transformation zone. Around 80% of cervical cancer cases starts in squamous

cells of the cervix (Cervical cancer 2019) and is called squamous cell carcinoma.

Adenocarcinoma is a less common type of cervical cancer that arises in columnar

cells.

The squamous epithelium layer of ectocervix consists of four layers: basal,

parabasal, intermediate, and superficial. The basal layer is a single layer of round

cells and is attached to the basement membrane. Cells in this layer are small and

contain large nucleus and small cytoplasm. When basal cells get mature, they

divide and form the parabasal cell layer. Continuous division and maturation of

these cells move through intermediate layer and finally form the superficial layer.

Cells in superficial layer are large and flat with small nuclei and transparent

cytoplasm. As the cells move through the layers, size, shape and characteristics

of cells change, with reduction in size of nucleus and increase in cytoplasm size.

Different layers of squamous cell are illustrated in Figure 1.6.

The endocervical lining contains columnar cells. Columnar cells are composed

of a single basal layer. These cells have column-like tall shape, with nuclei located

closer to the basement membrane. Figure 1.7 presents the illustration of columnar

cells.

Usually, long phase of untreated precancerous condition of cervix is followed

by an invasive cervical cancer. The progression of abnormality in squamous cells
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Figure 1.6: Development of squamous cells through different layers. Adapted
from (Sellors & Sankaranarayanan 2003).

Figure 1.7: Illustration of endocervical columnar epithelium. Adapted from (Sel-
lors & Sankaranarayanan 2003).

is characterized through grades of dysplasia or cervical intra-epithelial neoplasia

(CIN). Dysplasia or CIN indicates the intermediate changes that appear between

normal cells and invasive carcinoma (Reagan et al. 1953). Dysplasia can be cate-

gorized into three types: mild, moderate and severe. According to CIN terminol-

ogy, CIN1 correspond to mild, CIN2 to moderate, and CIN3 to severe dysplasia

and carcinoma-in-situ (CIS) (Richart 1967). Different grades of dysplasia are fea-

tured by nucleus enlargement, increased nucleus-cytoplasmic ratio, and change

in shape and size of the cell (Sellors & Sankaranarayanan 2003). Mild dysplastic

cells contain slightly enlarged nucleus than normal cells, with low nuclear staining

intensity. In moderate dysplasia, irregular chromatin distribution or granulation

is visible along with dark enlarged nuclei. Nuclei become darker, larger and often

deformed for severe dysplastic cells. More granulation and diminishing cytoplasm

can be seen in case of severe dysplasia. CIS included in CIN3 grade - is the very

early stage of cancer, where abnormal cells have not yet affected the surrounding

tissues. From the above characterization of abnormality, it can be summarized

that the higher the CIN grade, the higher the risk of developing invasive cervical

cancer.

The CIN is the widely used system for reporting Pap test results. How-
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ever, The Bethesda System (TBS) (Nayar & Wilbur 2015) has also been used in

many laboratories (particularly in the United States). The term squamous intra-

epithelial lesion (SIL), is the main feature of TBS reporting. In TBS terminology,

mild dysplasia or CIN1 is designated as low-grade squamous intra-epithelial lesion

(LSIL), and CIN2 and CIN3 are termed as high-grade squamous intra-epithelial

lesion (HSIL).

1.3 Screening

Screening refers to the regular interval specialized disease test of a person, who

does not have any physical symptoms. According to GLOBOCAN 2018 (Bray

et al. 2018), the lowest cervical cancer incidence rates are in Australia and New

Zealand, Western Asia, Northern America, and Western Europe, and the highest

rates are in sub-Saharan Africa, Melanesia, Micronesia, and South-Eastern Asia.

Population wide availability of cervical cancer screening is the main reason for

this variation across geographic regions of the world (American Cancer Society

2018). Regular screening can reduce cancer mortality rate through early detec-

tion of any abnormal changes and identifying precancerous lesions at treatable

stages (Smith et al. 2019). Over the past five decades, existence of nation-wide

screening programs using Papanicolaou or Pap test in many countries - helped to

decrease the incidence rate by 50% or more.

Pap test is the primary tool of cervical cancer screening worldwide. In mid-

1990’s, liquid-based cytology (LBC) was introduced to improve the performance

of conventional cervical cytology slide preparation procedure (Smith 2011). In

LBC based Pap test, sample is collected by medical practitioner from cervical ep-

ithelium using a specialized brush, spatula or swab. The specimen is immediately

inserted in preservative liquid, labeled and transported to cytology laboratory.

The sample is smeared on a microscopic glass slide and fixed using an alcohol-

based fixative solution. This process is done to stop drying out and distortion

of cervical cells. Then the slide is stained and visually examined under light

microscope to detect signs of malignancy or cancer precursors. In LBC system,

SurePath and ThinPrep are the most widely used techniques worldwide nowa-

days, for cervical cytology slide preparation (Bengtsson & Malm 2014). Some

typical examples of Pap smear images are presented in Figure 1.8.

In laboratory, the screening is performed by cytotechnologists. The Pap test

screening result is designated as ‘normal’, in absence of any cervical epithelial
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Figure 1.8: Examples of Pap smear images. Data source: Overlapping Cervical
Cytology Image Segmentation Challenge - ISBI 2014 (see Chapter 3 for details).

abnormality. If cytotechnologist finds any ‘abnormal’ or suspicious cells, it is

reported. In many laboratories, suspicious findings are further reviewed and

confirmed by cytopathologists, along with the stages of the lesions (Bengtsson &

Malm 2014).

1.4 Automated screening systems

Generally, visual analysis or manual screening is done at a low optical resolution

using 10× lens first. When something abnormal is detected, typically 40× lens

is used to take more closer look of the suspicious cell. On average, it takes
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about 5 − 10 minutes for a cytotechnologist, to analyze one sample (Bengtsson

& Malm 2014). Full concentration of cytotechnologists is always required to

find local precancerous changes in a cell from few hundred thousand cells on a

specimen (Malm et al. 2013). According to the recommendation from (Elsheikh

et al. 2013), cytotechnologists’ workload for Pap test screening should not be

more than 70 slides analysis (or 7 hour) in a 24-hour period, to avoid the adverse

effect of mental fatigue and discomfort on Pap test outcome.

A large number of attempts have been taken place over the past few decades -

to automate the cervical cancer screening system. The first attempt of automated

screening for Pap smear was the Cytoanalyzer, in 1950’s (Tolles & Bostrom 1956).

Nucleus size and optical density were the basis for designing this system. Nucleus

density was plotted against nucleus diameter for each cell in a sample, and the

graph was analyzed to detect abnormality in the specimen. However, fixed logic

circuit was not robust enough to detect abnormality and produced a large number

of false alarms, and this was the serious limitation of Cytoanalyzer (Spencer &

Bostrom 1962). In addition, inadequacies in cytological preparation and presence

of a large proportion of leukocytes in specimens, were also responsible for the

failure of this system.

Another early attempt for automated prescreening was CYBEST (Cyto Bi-

ological Electronic Screener by Toshiba) (Watanabe 1974) during 1970’s. This

system was based on the morphological features such as: nucleus area, nucleus

density and nucleus/cytoplasmic ratio. The scanning was through two different

modes: coarse scan to detect suspicious cells and fine scan of suspicious cells to

confirm malignancy. In coarse scanning, each 1mm × 1mm area of a slide was

examined at 4µm resolution. Then 3 features were extracted and malignancy

was found using linear discriminant analysis. Fine scanning was carried at 1µm

resolution for a suspicious cell using more precise measurements. However, this

project was not successful, since automatic focusing used in CYBEST system

could not produce reliable good images with sufficiently good focus for all cell

nuclei (Bengtsson & Malm 2014).

During 1980’s, quite a few automated screening systems were developed like:

BioPEPR (Zahniser et al. 1979), FAZYTAN (Erhardt et al. 1980), Cerviscan

(Tucker 1976, Tucker & Husain 1981), LEYTAS (van Driel-Kulker & Ploem-

Zaaijer 1989). In BioPEPR system (Zahniser et al. 1979), cervical cell analysis

was performed using basic morphological features: nucleus area, nucleus opti-

cal density, nucleus texture, and nucleus/cytoplasmic ratio. A hierarchical tree

strategy was used to prioritize the features for abnormality detection. This sys-
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tem could analyze and produce output for 120 to 180 smears per hour, with 10%

false positive and 1% false negative rates. However, fixed cut-off percentages

for different features to detect abnormality - was the main drawback of this sys-

tem, and the efficiency of this system was highly dependent on sample’s quality.

For Cerviscan (Tucker 1976, Tucker & Husain 1981), specimens needed to be

prepared with a different technique, namely suspension-polylysine-hematoxylin

method. The system produced 4% false negatives and 18% false positives, how-

ever performance of Cerviscan for hematoxylin stained slides was poor (Tucker &

Husain 1981). FAZYTAN (Erhardt et al. 1980) and LEYTAS (van Driel-Kulker

& Ploem-Zaaijer 1989) were both TV based imaging instruments. FAZYTAN

system was developed in 1980, with the aim of fast pre-screening. It was based

on a host minicomputer with array processors and digital image storage, and

an optimized TV microscope. The system was efficient, however it lacked cost

effectiveness. When LEYden Television Analysis System (LEYTAS) was devel-

oped in 1989, both hardware and software fields improved. LEYTAS was a fully

automated screening system that resulted in 0.3% false negative rate, 13% false

positive rate and 2.7% rejection rate. However, specimen preparation was time-

consuming and required a considerable amount of human intervention. Most of

these 1980’s systems were unsuccessful because of the complexity of the task,

limited computing capacity available and lack of cost effectiveness. Hence, those

projects ended up as being only operational prototype, rather than getting into

the commercial market (Bengtsson 2003).

During 1990’s, computing power has improved a lot compared to 80’s and an

interest for cytology automation was also increased (Bengtsson & Malm 2014).

A semi-automatic system for slide preparation and screening has been reported

in (Carothers et al. 1994). CYTOPRESS was used to prepare mono-layered slides

and CERVIFIP was used to scan and locate suspicious objects in the specimen.

Around 85% of all the samples were found positive or containing suspicious ob-

jects, and were further reviewed by a human operator. This system was built to

reduce human workload and decrease screening time, however it still required a

considerable amount of human intervention.

Despite of long research history over the decades to automate cytological

screening, the US Food and Drug Administration (FDA) did not approve any

commercial screening system until mid 90’s. In 1995, FDA approved two com-

mercial re-screening systems, namely PAPNET testing system (Neuromedical

Systems, Inc., Suffern, NY) and the Neopath Auto Pap 300 QC system (NeoPath,

Inc., Redmont, WA). These systems were approved to re-screen the smears that
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were found as negative or normal through manual screening by cytotechnolo-

gists (Russell et al. 2005).

PAPNET was a neural network based automated screening system to analyze

conventional Pap smear images (Koss et al. 1994). The system scanned slides

and selected suspicious cells to be reviewed by trained cytotechnologists. The

cell selection process was composed of an algorithmic classifier and neural net-

work classifier. Output of the classifiers was an abnormality based ranking, and

64 most abnormal samples (or sample regions) were stored on a magnetic tape for

re-screening (Bengtsson 2003). The Auto Pap 300 QC system (Patten Jr. et al.

1996) was developed for automatic analysis and classification of Pap smear spec-

imens. It was developed as a quality control re-screener to review the specimens

classified as normal during manual screening. This system consisted of: field-of-

view computing, high speed video microscopy, and image interpretation software.

The samples were classified considering morphological features associated with

epithelial abnormalities.

Tripath imaging was the first company whose cervical screening product re-

ceived FDA approval in 1998. This company was the merger of NeoPath, Neu-

romedical and AutoCyte. Tripath was acquired by BD (Becton, Dickinson and

Company, Franklin Lakes, NJ) in 2006. Their product SlideProfiler is now named

as BD FocalPoint (BD FocalPoint GS imaging system 2019). The FocalPoint sys-

tem automatically classifies and ranks specimens for manual review.

Another aspect of automation of cytology was to develop new techniques for

sample preparation. ThinPrep (Hutchinson et al. 1991, Zahniser & Hurley 1996)

was a liquid-based technique for thin layer cervical slide preparation, which re-

ceived FDA approval in 1996. While using ThinPrep technique, samples were

collected in a preservative solution (PreservCyt), which can preserve cell mor-

phology during transportation to a laboratory. At the laboratory, the cells were

transferred to a glass slide and processed using ThinPrep processor. ThinPrep

Imaging System (TIS) (ThinPrep Imaging System 2019) was developed to screen

ThinPrep cervical cytology sample slides and highlight suspicious areas for man-

ual review by cytotechnologist. CytoProcessor (DATEXIM, Caen, France) (Cy-

toProcessor 2019) is a recent fully automated system for virtual diagnosis, which

works on ThinPrep slides. While compared to TIS, CytoProcessor has shown

better performance to detect abnormality in cervical cell images (Crowell et al.

2019).

In 1999 another technique, named AutoCyte-Prep (Bishop J et al. 1998, How-
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ell et al. 1998) system also got FDA approval. In AutoCyte-Prep technique, the

sample was collected in a container with AytoCyte transportation fluid. The

samples were centrifuged in a laboratory and slides were prepared automati-

cally using PrepStain machine. AutoCyte-Prep system is currently known as BD

SurePath (BD SurePath 2019) and PrepStain machine for slide preparation as

BD PrepStain Slide Processor (BD PrepStain Slide Processor 2019).

The most important factor of automated cervical cancer screening is recog-

nizing the malignant cells correctly, so that it can be treated before turning into

invasive cancer. In case of visual screening, cytotechnologists classify around 96%

samples as normal, thus a small percentage of samples is further reviewed by cy-

topathologists (Bengtsson & Malm 2014). In automated screening, an expert

needs to review the slide, even if a few malignant cells are present. Therefore,

these systems should be designed to to keep the false positive rate as low as

possible, in addition to maintaining the lowest possible false negative rate. For

example, false positive rate of 0.1% would contribute to 20 or 100 false alarms for

LBC based or conventional Pap smear slides, respectively (a liquid-based cytolog-

ical slides hold around 20,000 and conventional Pap smear slide contains around

100,000 cervical cells). This phenomenon may yield the automated screening

system relatively impractical and this was the case with some early systems like

Cytoanalyzer, BioPEPR, Cerviscan, CYTOPRESS, and LEYTAS.

Computational performance is a great challenge when developing a practical

automated screening system. If a framework requires on average 3 seconds per

cell for screening, then it will need around 17 hours for a LBC based and 4 days

for a conventionally prepared cervical smear slide. However, the output of a

functional screening system is expected to be one slide per few minutes. Thus,

such a framework would require improvement of the processing performance by

100 to 1000 times to be used for practical purpose. Therefore, when devising

a new computer-aided cervical screening system, proper consideration should be

given to the areas of speed optimization and computational complexity.

1.5 Nuclei segmentation in automated screen-

ing

Morphological and textural features of nucleus are crucial while determining ab-

normality in cervical cells (Holmquist, Bengtsson, Olsen, Stenkvist & Noguchi
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1976, Plissiti et al. 2011b). Automated screening systems (discussed in Sec-

tion 1.4) also used nuclei based features to detect suspicious cells. Therefore,

precise segmentation of nucleus is the most important step in automated screen-

ing and computer-aided diagnosis (CAD) systems. Many methods have been

proposed over the years to segment nucleus from single and overlapping cytology

images. Nucleus segmentation methods used in different computer assisted sys-

tems can be roughly divided into five categories: thresholding and morphological

analysis, deformable model and shape-based approaches, watershed segmenta-

tion, region and clustering based segmentation approaches, and machine learning

based segmentation techniques. A brief description of these categories is pre-

sented in this section.

1. Thresholding and morphological analysis based approaches: Thresh-

olding and morphological analysis based approaches (Cahn et al. 1977,

Borst et al. 1979, Bengtsson et al. 1979, Yang-Mao et al. 2008, Plissiti

et al. 2011a,b, Pai et al. 2012, Ushizima et al. 2015, Plissiti et al. 2015,

Guan et al. 2015, Tareef et al. 2015, Riana et al. 2015, Lee & Kim 2016,

Phoulady, Goldgof, Hall & Mouton 2016, Phoulady et al. 2017) are widely

used traditional approaches to segment nuclei from cytology images. These

techniques use intensity histogram characteristics, intensity based or adap-

tive thresholding, and different morphological operations to segment nu-

clei. Generally, these techniques are faster compared to other approaches,

however segmentation accuracy may be compromised. These type of seg-

mentation approaches may fail for images, in the presence of cell overlap -

where overlapping parts of cytoplasm appear with similar average intensity

as nuclei.

2. Deformable model, contour and shape based approaches: In medi-

cal image segmentation, parametric deformable models: snake, active con-

tour and active shape models, geometric deformable models: level set tech-

nique, contour, and shape - based segmentation methods (Bengtsson et al.

1981, Bamford & Lovell 1998, Plissiti et al. 2006, Tsai et al. 2008, Harandi

et al. 2010, Plissiti & Nikou 2012b, Bergmeir et al. 2012, Li et al. 2012,

Lu et al. 2013, Nosrati & Hamarneh 2015a, Husham et al. 2016, Phoulady,

Zhou, Goldgof, Hall & Mouton 2016, Zhang, Kong, Liu, Wang, Chen &

Sonka 2017, Dong et al. 2019, Kostrykin et al. 2019) have been widely used.

Deformable models are based on curves or contours that can move/deform

towards an object boundary, because of internal forces and external/image
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constrains. Usually, deformable models are designed as solutions to en-

ergy minimization problems. Level set based geometric deformable mod-

els are particularly popular, since they do not require explicit parameters

or depend on topological constraints. Level set and active contour based

techniques can produce precise segmentation boundaries, if provided with

initial boundaries close enough to the actual/true object boundaries. There-

fore, these techniques are often used as a final step to regularize segmented

boundaries. In shape-based techniques, an object shape derived from the

image is used as a constraint for generating segmentation output.

3. Watershed based segmentation approaches: Watershed is a long-

standing, yet powerful classic technique in image segmentation paradigm.

Marker controlled watershed segmentation of nucleus has been proven suc-

cessful in several studies (Malpica et al. 1997, Cheng & Rajapakse 2009,

Bai et al. 2009, Cloppet & Boucher 2010, Jung & Kim 2010, Béliz-Osorio

et al. 2011, Gençtav et al. 2012, Moshavegh et al. 2012, Tareef et al. 2018).

In most of these studies, touching or overlapping nuclei from fluorescence

microscopy images were split using watershed segmentation, however were

not well-explored for cervical cell nuclei segmentation. Accurate marker ex-

traction is the main challenge for marker controlled watershed segmentation

techniques.

4. Region and clustering based approaches: Region and clustering based

segmentation approaches (Wu et al. 1998, Isa 2005, Kale & Aksoy 2010, Lu

et al. 2013, Chankong et al. 2014, Zhang, Kong, Chin, Liu, Chen, Wang &

Chen 2014, Nosrati & Hamarneh 2015b, Lu et al. 2015, Oprisescu et al.

2015, Gautam et al. 2017, Bora et al. 2017, Roy et al. 2020), are also

popular for segmenting nuclei. These techniques are designed to segment

an image either by merging or splitting image pixels/regions based on some

predefined criteria. Most of the region-growing based techniques require

some seed or starting point, hence these techniques are dependent on some

nucleus detection methods. These techniques also suffer from high rate of

false positives and false negatives.

5. Machine learning based segmentation: In the paradigm of nucleus

segmentation, machine learning based methods become popular in recent

years (Jung et al. 2010, Song et al. 2015, Zhang, Sonka, Lu, Summers & Yao

2017, Tareef, Song, Huang, Wang, Feng, Chen & Cai 2017, Liu et al. 2018,

Jith et al. 2018, Lin et al. 2019, Araújo et al. 2019). In these techniques,
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image pixels are classified into different classes based on some features.

Traditional classification techniques, Support Vector Machine (SVM) clas-

sifiers, convolutional neural networks, and deep learning frameworks, are

used in these machine learning based segmentation approaches. Usually,

these techniques produce rough segmentation boundaries, and require an-

other shape regularization step to achieve finer segmentation results.

1.6 Prior knowledge in segmentation

Performance of CAD systems largely depends on the quality of segmentation of

the target object. Presence of noise, clutter, poor contrast, occlusion, and il-

lumination conditions in an image, make the cell and nuclei segmentation task

more challenging. In particular, segmentation techniques exclusively depending

on image information, are affected by image characteristics. Inclusion of prior

knowledge available about the target object into segmentation techniques, helps

to obtain more precise and plausible segmentation outcome (Leung et al. 2004,

Slabaugh & Unal 2005, Veksler 2008, Hamarneh & Li 2009, Lu et al. 2013, Gros-

george et al. 2016).

Various features that can distinguish between the target object and the back-

ground, can be used as prior knowledge. Therefore, the nature of prior infor-

mation varies from one application to other. Usually, user interaction, bound-

ary/contour information, shape of target object (geometric, statistical, or phys-

ical), appearance, and spatial distance/location, are used as prior information.

Prior information have been incorporated into: graph based, watershed, cluster-

ing based, deformable models, and edge-based segmentation techniques. Mathe-

matical modeling of prior information and incorporation of that prior guidance

in a segmentation framework, are active fields of research, and popular among

variety of applications (Cootes et al. 1995, Noordam et al. 2000, Boykov & Jolly

2000, Cootes et al. 2001, Boykov & Jolly 2001, Stegmann & Gomez 2002, Ahmed

et al. 2002, Paragios 2003, Tsai et al. 2003, Leung et al. 2004, Rother et al. 2004,

Freedman & Zhang 2005, Slabaugh & Unal 2005, Chuang et al. 2006, Cremers

et al. 2007, Cai et al. 2007, Zhu-Jacquot & Zabih 2007, Wang et al. 2008, Veksler

2008, Das et al. 2009, Bai et al. 2009, Lempitsky et al. 2009, Hamarneh & Li

2009, Li et al. 2011, Lu et al. 2013, Wang, Song, Soh & Sim 2013, Wang, Zhang

& Ray 2013, Grosgeorge et al. 2013, Bai et al. 2014, Adhikari et al. 2015, Nosrati

& Hamarneh 2015a, Grosgeorge et al. 2016).
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1.7 Research objectives

Precise nuclei segmentation is the most important step in computer assisted ab-

normality detection in cervical cells. Though many CAD systems have been de-

veloped over the decades for identifying abnormal cells from Pap smear images,

and researchers developed a range of segmentation techniques to detect/segment

cervical nuclei, there is still possibility to explore alternative approaches and

improve the segmentation accuracy. It is evident from the literature that seg-

mentation accuracy can be improved with the aid of prior influence. Therefore,

the main objectives of this thesis are:

1. to model prior information and incorporate the prior guidance in segmen-

tation techniques,

2. to apply prior guided segmentation techniques for cervical nuclei segmen-

tation to improve segmentation accuracy and plausibility,

3. to develop a cervical cell abnormality detection framework based on the

developed segmentation techniques with prior information, and primarily

based on nuclei features only.

1.8 Thesis outline

This thesis consists of seven chapters, where the first two chapters (including

this introductory Chapter 1), describe the general context and methodological

background of this thesis. The next four chapters present the contribution of this

thesis, while the last chapter contains concluding remarks. More specifically, this

thesis is organized as follows:

Chapter 2 provides a review of key stages of automated cervical screening

system, along with popular techniques involved in each stage. It also presents an

overview of prior guided segmentation techniques for different applications and

related work on cervical nuclei segmentation.

Chapter 3 presents a novel technique where a circular shape function is defined

and incorporated into Fuzzy c-means (FCM) clustering technique. This technique

is used to segment nuclei from overlapping Pap smear images.

In Chapter 4, a novel circular shape prior guided graph-based segmentation

is presented. The shape prior was modeled using circularity definition of a region
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and incorporated in the merging predicate of efficient graph based segmentation

technique. The technique was evaluated by segmenting cervical cell nuclei.

Chapter 5 contains a superpixel based merging framework to segment nuclei

from cervical smear images. A novel pairwise regional contrast and gradient

boundary based merging criteria, is presented in this chapter.

In Chapter 6, a cervical cell classification framework is presented based on

prior guided segmentation techniques developed in Chapters 3, 4 and 5. Intensity,

shape and texture features extracted exclusively from segmented nuclei were used

for this abnormality detection framework.

Chapter 7 provides the conclusion, and outlines future work and contributions

of this thesis.
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Chapter 2

Literature review

In this chapter, the main steps involved in computer-aided screening systems are

reviewed. Prior guided image segmentation techniques and an overview of cur-

rently available techniques for cervical nuclei segmentation, are also presented.

In Section 2.1, an overview of the key stages in automated cervical cytological

screening and the major techniques used in this thesis, are presented. Section 2.2

describes different priors and how those priors were incorporated in image seg-

mentation techniques. A brief review of cervical nuclei segmentation techniques

in literature, is outlined in Section 2.3.

2.1 Computer-aided cervical cytology screening

In automated or computer assisted cervical cytological image analysis, the compu-

tational system should be intelligent enough to at least match the performance of

an expert cytotechnologist. The key stages involved in a typical computer-aided

cervical screening system are: preprocessing, segmentation, feature generation,

feature selection, and classification. The popular methods used in literature and

the major techniques used in this thesis for these stages, are reviewed in this

section.

2.1.1 Preprocessing

A staining procedure is performed on cervical cell specimens, for better visual-

ization of different tissue features under the microscope. This procedure stains

nuclei and cytoplasm in different shades of colors (dark-blue, pink to orange,
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blue-green, light-green). However, automated analysis of these specimens is not

straightforward, due to presence of variability in the specimens for concentration

of stain or uneven staining and the image acquisition process (Hayakawa et al.

2019). Cell overlapping in Pap smear images also affects the image contrast.

Therefore, preprocessing is often used as the first step in computer-aided cyto-

logical analysis to reduce the noise and variability in specimen image. Different

preprocessing techniques and their combinations are used in literature. A brief

review of these techniques is presented here.

2.1.1.1 Noise removal

Denoising process is generally carried using different filter techniques and mor-

phological operations on the given image. Depending on the application, it is

possible to enhance ROI by defining different neighborhood size for the corre-

sponding operation.

Bilateral (Tomasi & Manduchi 1998) and non-local means (NL-means) (Buades

et al. 2005) filters, are effective tools for edge preserving smoothing of images.

Bilateral filter (BF) considers both intensity/photometric and spatial/geometric

similarity of a pixel in it’s spatial neighborhood. In NL-means filtering process,

the new/estimated value for a pixel is calculated as a weighted mean of all image

pixels. The weight for each pixel is determined systematically by using the simi-

larity between - the pixels and the square neighborhoods of those pixels. BF and

NL-means filter were adapted in (Ushizima et al. 2015) and (Li et al. 2012, Guan

et al. 2015, Zhao et al. 2016), respectively, for denoising cervical smear images.

Wiener filter (Pratt 1972) is an image restoration technique to recover the

image from noise. It removes the additive noise and deblurs the image, based on

a statistical approach. This filter considers local image variance while smoothing

the image; less smoothing for large variance and more smoothing for small vari-

ance. This adaptive Wiener filter is used in Chapter 5 of this thesis to denoise

the image, while finding image gradient boundaries.

Median filter (Sun & Neuvo 1994) is very effective in reducing noise and pre-

serving object edges in an image. This is a non-linear spatial filter that replaces

the value of a pixel by the median of the graylevels in the neighborhood of that

pixel. The result of preprocessing by using median filter can be varied by chang-

ing the size of neighborhood/filter kernel. This filter is particularly effective for

impulsive or salt-and-pepper noise. Median filter was used to denoise images

in (Tsai et al. 2008, Chankong et al. 2014, Zhang, Kong, Chin, Liu, Chen, Wang
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& Chen 2014, Husham et al. 2016, Gautam et al. 2017, Bora et al. 2017). In

Chapter 6 of this thesis, median filter is used to remove noise from cervical smear

images.

2.1.1.2 Contrast enhancement

Contrast enhancement or illumination correction, plays an important role in dig-

ital image analysis. It is used to improve the perception of the target object in

an image. Some of the common contrast enhancement techniques are: contrast

stretching, histogram equalization (HE), morphological operations, and contrast

limited adaptive histogram equalization (CLAHE).

Contrast stretching and HE are the simplest techniques for contrast enhance-

ment. In low-contrast images, contrast stretching increases the dynamic range

of image intensity levels to span the full range of intensity values (Gonzalez &

Woods 2008). In this technique, a linear mapping function is used to map input

image pixels to output. Contrast stretching technique was used in (Zhang, Kong,

Chin, Liu, Chen, Wang & Chen 2014, Win et al. 2018) to improve contrast in

cervical cytology images. HE is a non-linear mapping - used to distribute the

image intensity level over the whole intensity levels (Shih 2010). This technique

aims to transform the density distribution in image histogram to a uniform one.

This process enhances the contrast for intensity values near to histogram max-

ima, and decreases the contrast near histogram minima. However, HE may not

enhance the local details in a ROI, and there is also a possibility to enhance the

noise, since this is a global approach.

Some morphological operations are also popular to enhance the image con-

trast. Black top hat/top hat closing operation is computed as the difference

between the closing of the image and the image itself (Gonzalez & Woods 2008).

In (Gençtav et al. 2012), this operation was performed with a disk structuring

element for illumination correction. In (Kaur & Sahambi 2016), black top hat was

combined with white top hat transform to enhance the contrast between white

and black regions in cell images.

CLAHE (Pizer et al. 1987) is a modified version of adaptive histogram equal-

ization technique. This technique subdivides the image into small non-overlapping

tiles/regions, and histogram equalization process is performed on each tile. Con-

trast enhancement on noise is controlled by clipping the histogram with a user

specified clip limit. This technique is popular for image contrast enhancement

in literature, for example it was used in (Plissiti et al. 2011a,b, 2006, Ushizima
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et al. 2015, Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng & Chen 2017,

Win et al. 2018) while segmenting cervical cell images. CLAHE technique is used

in Chapter 6 of this thesis, to enhance contrast in cervical cytology images after

removing noise with median filter.

2.1.1.3 Color processing

In computer-aided image analysis systems, color plays an important role. By

changing the color space of a given image, it is possible to ease and improve

the task of ROI detection and image segmentation in certain applications. In

literature, RGB images have been converted into different color systems, and

often a single channel from the image color system is used for subsequent stages

of analysis, to avoid the interference of colors in image processing.

Extracting a single channel from RGB images may be useful in some applica-

tions. In case of Pap smear images, the single color channel should be selected in

such a way that there is reliable color difference between nucleus/cytoplasm and

cytoplasm/background. An investigation on selecting the optimal color channel

was reported in (Holmquist, Imasoto, Bengtsson, Olsen & Stenkvist 1976), for Pa-

panicolaou stained cervical smear images. It was found in (Holmquist, Imasoto,

Bengtsson, Olsen & Stenkvist 1976) that green channel (specifically the yellowish

green around 570 nm wavelength) from RGB color space provides the optimal

contrast between nucleus and cytoplasm. Thus, cell nuclei is more identifiable

in this channel. In (Win et al. 2018, Silva et al. 2019), the green channel from

RGB color images was extracted for further processing of cervical smear images.

In (Bergmeir et al. 2012, Riana et al. 2015), weighted sum of each channel of an

RGB image was used to generate the grayscale image, with the same luminance

as the original RGB images remain in transformed images.

HSV transform is also used in image analysis with a target of image segmenta-

tion. This transform consists of three components: hue (H), saturation (S) and

value (V ). The H channel represents the color using an angle from 0◦ to 360◦.

The S channel indicates the amount of gray (0 to 100%) in a particular color,

and channel V describes the brightness of the color (ranges from 0 to 100%).

For cervical smear images, this transformation is used while identifying abnormal

cells from specimens - prepared using liquid based cytology technique. The con-

trast between abnormal cells and non-cellular artifacts present on the smear is

an important aspect in case of abnormality detection. In V channel of HSV color

space, the contrast is enhanced between nucleus/leukocyte and cytoplasm. RGB
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image was converted to HSV color space in (Zhang et al. 2011, Zhang, Kong,

Liu, Wang, Chen & Sonka 2017), then V channel was used for further stages of

segmentation frameworks.

CIELAB or CIE L ∗ a ∗ b∗ color space - defined by the International Com-

mission on Illumination (CIE) in 1976, is the most exact color representation to

approximate human vision. Color is expressed using three values: L∗ for lightness

(values range from black (0) to white (100)), a∗ from green (−) to red (+), and

b∗ from blue (−) to yellow (+). This color processing is widely used in literature

for cervical cell image processing, where smears are prepared using conventional

Papanicolaou or H&E staining technique. In these staining processes, cell regions

are colored with shades of red and blue, whereas the background region remains

colorless (Gençtav et al. 2012, Zhang, Kong, Chin, Liu, Chen, Wang & Chen

2014). Thus, lightness can be used to differentiate the cell regions in this color

space. In (Gençtav et al. 2012, Li et al. 2012, Guan et al. 2015, Zhang, Kong,

Liu, Wang, Chen & Sonka 2017), RGB cervical smear images were converted to

CIELAB color space, and L∗ dimension was extracted for subsequent processing.

This technique is used in Chapter 6 of this thesis, for the conversion of RGB cer-

vical cell images to grayscale. In (Zhang, Kong, Chin, Liu, Chen, Wang & Chen

2014, Zhang, Kong, Ting Chin, Liu, Fan, Wang & Chen 2014), a∗ channel from

CIELAB color space was used, followed by a contrast enhancement procedure.

2.1.1.4 Background removal

The background removal process aims to divide a Pap smear image into fore-

ground (containing cervical cells or cell clumps) and background (remaining area)

regions. In subsequent stages of computer-aided image analysis systems, this ap-

proach can help to focus on the foreground images (ignoring the background).

Thresholding, different morphological filtering and clustering based techniques

are mostly used for background removal process in literature.

Thresholding based background removal was used in (Gençtav et al. 2012,

Plissiti et al. 2011b, 2006). Otsu thresholding (Otsu 1979) is the most widely

used thresholding technique. This thresholding was used in (Bergmeir et al.

2012), and Otsu thresholding with morphological dilation was used in (Plissiti

et al. 2011a), to detect the ROI from a given image. In this thesis, an Otsu

multi-thresholding is utilized for background subtraction, in Chapter 3.

In many applications, background is removed using a combination of super-

pixel level representation of image (instead of pixel grid level) and clustering.
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Simple linear iterative clustering (SLIC) (Achanta et al. 2010, 2012) superpixel

generation algorithm, is used widely to segment image into local smooth re-

gions/superpixels. In (Oliveira et al. 2017), SLIC technique was used to generate

superpixels, and density-based spatial clustering of applications with noise (DB-

SCAN) technique was used to group similar superpixels, with the aim to separate

background and foreground. Thresholding techniques on SLIC superpixels were

used in (Plissiti et al. 2015, Lee & Kim 2016), to remove background and detect

the cell mass. In (Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng &

Chen 2017, Tareef, Song, Huang, Wang, Feng, Chen & Cai 2017, Tareef et al.

2018), SLIC superpixel representation of images was used for cell cluster seg-

mentation and ROI localization. Quick shift (Vedaldi & Soatto 2008) is another

superpixel generation technique. In (Lu et al. 2013, Lu et al. 2015), cell clumps

were found using quick shift algorithm with subsequent edge detection technique.

In (Silva et al. 2019), mean shift clustering superpixel generation, followed by

k-means clustering and morphological opening was used. Morphological filtering

based k-means clustering was used in (Guan et al. 2015) to find the foreground

image. In (Phoulady, Goldgof, Hall & Mouton 2016, Phoulady et al. 2017), Gaus-

sian mixture model with Expectation Maximization (EM) algorithm was used for

finding cell clump/foreground.

Grayscale morphological reconstruction can be used to smooth the extreme

value regions, without affecting the shape or size of an object in the image. Mor-

phological opening by reconstruction and closing by reconstruction can be used

subsequently, to clean up the image by minimizing intra class and maximizing in-

ter class variance in image histogram (Gonzalez & Woods 2008). In (Tareef et al.

2015), morphological reconstruction (opening and closing) and regional maxima

based background removal process was used. This technique is used in Chapter 3

to remove background from cervical smear images.

2.1.2 Image segmentation

Image segmentation is the technique of partitioning or pixel classification, which

aims to segment objects or regions from the background. Image segmentation

involves assigning a class or label to pixels in the image in such a way that pixels

in the same class share some common characteristics, for example: similar mean

intensity, texture, or color (Gonzalez & Woods 2008). In computer-aided systems

for image analysis, image segmentation can help to delineate the ROIs. Numer-

ous image segmentation techniques have been proposed and implemented in past
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decades, to tackle a wide variety of problems. Traditional and commonly used

techniques include: thresholding, region-based segmentation, clustering-based

segmentation, and graph-based segmentation. Beside these, many combinatorial

image segmentation techniques also exist to overcome the limitations associated

with the basic ones.

2.1.2.1 Thresholding

Thresholding is the most simple and convenient technique for image segmentation

and is still widely used. The basic idea of this technique is the assumption that

objects in an image are identifiable using image intensity values (Sonka et al.

1993). With simple thresholding, an input image f can be transformed to an

output (segmented) binary image g as:

g(i, j) =

0, f(i, j) < τ,

1, f(i, j) ≥ τ,
(2.1)

where, τ is a threshold for segmentation. In the transformed image, pixels labeled

with 1 correspond to objects/foreground and pixels labeled with 0 indicate the

background.

Based on the threshold selection technique, thresholding can be categorized

as: global and local/adaptive thresholding. Global thresholding can use single

or multiple thresholds - calculated from the image histogram. Local threshold

is location specific and its value depends on local image characteristics, that

may vary over the entire image. Choosing a correct/optimal threshold value is

a critical task for a successful threshold based image segmentation. Since, the

global threshold is determined from the whole image, the likelihood of success of

this method is usually low (Sonka et al. 1993). Most common reasons of failure

for global threshold based segmentation are: intensity variation in objects and

background due to noise, non-uniform illumination, or a number of other artifacts.

Local/adaptive threshold can complement global thresholding in these situations.

An adaptive iterative threshold selection method was proposed in (Ridler &

Calvard 1978), and this technique works as follows.

1. Assume 4 corner points of the image f as background pixels, and set µ0

to the mean graylevel value of these 4 pixels. Assume others as foreground

pixels. Set µ1 to their mean graylevel value
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2. Set the threshold, τ = µ0+µ1
2

, and segment the image f using Equation (2.1)

3. Recompute µ0 and µ1

4. Go to step 2 and iterate until τ converges or no longer changes significantly

Otsu thresholding (Otsu 1979) is the most popular method of thresholding

based segmentation. In this technique, the optimal threshold is determined by

maximizing a criterion function, where inter-class variance is considered to define

the function. Consider f as an image of size N and graylevels i ∈ [1, 2, · · · , L].

For two class image segmentation, C0 and C1 presents the background and fore-

ground regions separated with a threshold t (1 ≤ t ≤ L). The probability p(i)

of occurrence of graylevel i is expressed as: p(i) = ni

N
, where ni is the number of

occurrences of graylevel i in image f . Then, the class probabilities are defined as:

ω0 = ω(t) =
t∑

i=1

p(i) and ω1 = 1− ω(t) =
L∑

i= t+1

p(i),

and means of the classes are:

µ0 =
t∑

i=1

i · p(i)
ω0

and µ1 =
L∑

i= t+1

i · p(i)
ω1

. (2.2)

The total mean of the graylevel image can be written as:

µT =
L∑
i=1

i · p(i). (2.3)

Using Equation (2.2), Equation (2.3) can be presented as:

µT = ω0 µ0 + ω1 µ1.

The inter-class variance of the classes C0 and C1 is as:

σ2
b = ω0 (µ0 − µT )2 + ω1 (µ1 − µT )2.

The optimal threshold can be found by searching the full range of t values [1, L],

and selecting the value that maximizes σ2
b . In Chapter 3 of this thesis, Otsu

thresholding is used to separate cervical cell/clump from background.
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2.1.2.2 Region-based Segmentation

Image regions are defined as connected homogenous subsets of an image, with

respect to some similarity criterion (Sonka et al. 1993, Gonzalez & Woods 2008).

Region-based segmentation of an image f is the partition of f into homogeneous

regions Ri, where i ∈ [1, 2, · · · ,m]. The homogeneity criteria can be based on

graylevel, color, shape, or texture in a region. Region merging and region splitting

are two basic approaches of region-based segmentation.

In region merging based segmentation process, the initial segmentation starts

with a single pixel p in an image. Consider a pixel q adjacent to pixel p. A

similarity measure S(p, q) is defined such that it produces a high value if pixels p

and q are similar, and low value, otherwise. Pixel q can be added to the region of

pixel p, if S(p, q) > T , where T is a threshold. This merging technique proceeds

to the other neighbors of p and the process iterates, till no regions are left to be

merged. A similarity measure can be defined by considering, for example: edge

strength of the boundary, texture of the regions, or intensity difference within

a region. Major steps involved in region merging based segmentation can be

summarized as follows:

• take an initial (over) segmented image, where each pixel constitutes a region,

• merge the neighboring regions that are similar based on some criteria, and

• repeat this process until no regions remain to be merged.

Region splitting based image segmentation process starts from a single region

(usually the entire image). The criteria for splitting can be found considering,

for example: the variance of its graylevel values or texture, the occurrence of

strong internal edges, standard deviation within a region, or distance between

mean values of the regions. This type of segmentation process works as follows:

• take an (under) segmented image,

• split each region that is not homogeneous according to certain criterion,

• repeat the process until all regions are homogeneous.

Region based methods are robust, because: regions consist of many pixels

and it is easy to avail more information to characterize a region, texture features

can be used to detect a region, and region based techniques perform better in
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noisy images. However, region based segmentation techniques have some draw-

backs too. Decisions about region membership or defining similarity measure for

segmentation, and object segmentation from multiple disconnected regions, are

often difficult. Finding seed points for region growing is crucial, and the order in

which regions are treated also influence the segmentation outcome and must be

carefully determined.

Statistical Region Merging (SRM) proposed in (Nock & Nielsen 2004), is

a probability theory based segmentation technique that follows region merging

approach. Image segmentation is considered as an inference problem by this tech-

nique, and the key idea of SRM is to reconstruct the regions of an observed image,

based on the theoretical (true) statistical regions. Two essential components of

this algorithm are the merging predicate (a statistical test) and the ordering of

regions followed to merge. The merging predicate for a couple of regions (R1, R2)

is defined as:

P (R1, R2) =

true, if
∣∣R2 −R1

∣∣ ≤√b2(R1) + b2(R2),

false, otherwise,

where

b(R) = g

√
1

2Q|R|
ln

2

δ
,

R1, R2 are the mean intensities across regions R1 and R2, respectively, g is the

number of image intensity levels. Q is the parameter that controls statistical

complexity of the segmented image and the coarseness or scale of segmentation, |.|
stands for cardinality, and δ denotes the probability error. The merging predicate

solely depends on the merging threshold, and the merging threshold inversely

depends on the value of Q (higher value of Q produces lower threshold). Thus,

SRM produces smaller regions with higher value of Q, and vice versa. The order of

merging follows a simple invariant: if two parts of the true regions are inspected,

that means all tests inside those regions have previously being done. The simplest

choice for the merging order O(p, q), is to use pixel color channel (or intensity)

values as:

O(p, q) = |Ip − Iq|,

where, Ip and Iq are the intensities for image pixels p and q, respectively. SRM
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approach can cope with a significant noise corruption, handles occlusions and per-

forms scale sensitive segmentation, but it suffers from over-merging error. Regions

produced from SRM are accurate enough to be used as seeds for region refine-

ment, merging methods or object detection. In Chapter 5 of this thesis, SRM

segmentation is used to generate superpixels and used in a superpixel merging

framework to segment cervical nuclei.

2.1.2.3 Clustering-based segmentation

In clustering-based segmentation techniques, an image is represented in terms of

clusters of pixels or disjoint groups, based on some specific similarity criterion.

The objective function for partitioning is designed to encourage intra-cluster sim-

ilarity and inter-cluster dissimilarity. Intensity values, texture measures defined

on a local neighborhood, or distance between two data points/pixels, are some

examples of measures that can be used to define the similarity criterion. K-means

clustering, Simple Linear Iterative Clustering (SLIC), and Fuzzy c-means (FCM)

clustering, are some commonly used clustering-based segmentation techniques.

K-means clustering (MacQueen 1967) is one of the simplest and popular clus-

tering techniques used for image segmentation. This technique employs squared

error criterion as the objective function for partitioning an image into k number

of clusters. This criterion is defined as:

J =
k∑
j=1

nj∑
i=1

∥∥∥x(j)i − cj∥∥∥2 ,
where nj is the number of pixels in jth cluster, x

(j)
i is the ith pixel belonging to

jth cluster, cj is the centroid of jth cluster, and ‖.‖ is the similarity measure.

Usually, Euclidean distance is used to calculate the similarity between a data

point and a cluster center. K-means clustering is an iterative approach that starts

with random initial partitions as clusters. Then, the data points are reassigned

to clusters by minimizing the sum of distances from each data point to cluster

centers, until convergence. The algorithm can be summarized as follows:

1. Initialize number of cluster k and randomly define k cluster centers

2. Assign each data point to the closest cluster center

3. Recalculate the cluster centers using current cluster memberships
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4. Repeat the process until convergence or squared error criterion satisfies a

minimum threshold value

The quality of final clustering highly depends on the random selection of initial

cluster centers, is the major limitation of k-means clustering.

SLIC (Achanta et al. 2012) technique is an adaptation of popular k-means

clustering, to generate image superpixels (group of pixels with similar character-

istics). Desired number of superpixel k, is the only parameter required for this

method and this technique produces approximately equal sized superpixels. If

an image contains N pixels, each superpixel will be of approximately N/k pixels.

In initialization step, k initial centers are sampled on a regular grid interval of

S =
√
N/k. Since, the approximate size of superpixel is S×S, search for similar

pixels is done in a 2S×2S region around the cluster center (Achanta et al. 2012).

Each image pixel is associated with the closest cluster center whose search area

overlaps that pixel. Color similarity and spatial proximity are considered while

calculating the distance measure, to determine the closest cluster for each pixel.

The distance measure for clustering is defined as:

D =

√
dc

2 +

(
ds
S

)2

m,

where dc =
√

(Ij − Ii)2 is the intensity similarity, and ds =
√

(xj − xi)2 − (yj − yi)2

is the spatial proximity of cluster center j ∈ [1, 2, · · · , k] and an image pixel i.

The positive constant m controls the relative importance of color and spatial

proximity. Once all pixels are assigned to the closest clusters, cluster centers are

recomputed from the mean of all pixels in the corresponding cluster. This process

is repeated iteratively until convergence. Finally, if any disjoint pixels exist at

the end of the clustering process, those are assigned to the closest neighboring

cluster. In Chapter 5 of this thesis, image superpixels are generated using SLIC

technique and cervical nuclei are found by merging SLIC superpixels based on

some merging criterion.

FCM clustering algorithm was proposed in (Dunn 1973) and further improved

in (Bezdek 1981). In fuzzy clustering, each of the data points belongs to all

the clusters with varying degrees of membership in range [0, 1]. This method is

based on an iterative optimization algorithm and the minimization of a quadratic

objective function. Let x = [x1, x2, ..., xN ] denote an image with N pixels. FCM

clustering algorithm divides the image into C clusters, by calculating the cluster
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centers, the fuzzy partition matrix, and by minimizing the objective function J :

J =
N∑
i=1

C∑
j=1

Um
ij ‖xi − cj‖

2 ,

where C is the number of clusters, N is the number of pixels, m is the fuzziness

weighting factor (1 ≤ m < ∞) which controls the degree of fuzzy overlap,

Uij is the fuzzy partition matrix, and it defines the membership degree of pixel

xi in the cluster cj, and ‖.‖ is any criteria to measure the similarity (typically

the Euclidean distance is used). When the pixels close to the cluster centers are

assigned high membership values, and low membership values are assigned to the

pixels far from the cluster centers, the objective function is minimized. An initial

guess of the fuzzy partition matrix U is made to start the clustering process, and

U converges by iterating and updating the partition matrix and cluster centers

as follows:

Uij =

(
C∑
k=1

(
‖xi − cj‖
‖xi − ck‖

) 2
(m−1)

)−1
,

and

cj =

∑N
i=1 Uijxi∑N
i=1 Uij

.

Convergence is checked by comparing the cluster centers or the partition matrix,

at successive iterations. Image segmentation is obtained by assigning a pixel to

the class with the highest membership degree. In Chapter 3 of this thesis, FCM

clustering is modified by incorporating a circular shape function and used for

cervical nuclei segmentation.

2.1.2.4 Graph-based segmentation

A graph G is composed of a pair (V,E), where V is the set of vertices/nodes of

G. The set E contains the edges of G, where edges are represented as the pairs of

elements in V . The graph G is called a directed graph, if the edges in set E have

directions, otherwise the graph is called undirected graph. Graph based image

segmentation methods are based on graphs, where image pixels stands for the

vertices and edges are defined by an adjacency relationship of the image pixels.
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2.1.2.5 Graph cut

In graph cut segmentation, the graph G = (V,E) is considered as a directed

weighted graph. In this algorithm, nodes and edges are divided in two types:

neighborhood and terminal (in other words, source s and sink t). Node p is con-

nected with node q, if q is in the set of neighborhood nodes of p and neighborhood

nodes are connected by neighborhood edges. Edges connecting node p with ter-

minal nodes s or t are called terminal edges. A subset of edges C ∈ E is called a

cut, if the terminal nodes are completely separated by inducing G = (V,E −C).

If all the edges in the cut are removed, there will be no path from terminal s to

t. Thus, the cut partitions all the nodes into two disjoint subsets S and T , where

s ∈ S, t ∈ T and the graph cut cost |C| is the sum of weights w of all the edges

in the cut, defined as:

|C| =
∑

i∈S, j∈T

w(i, j).

Graph cut segmentation (Boykov et al. 1999, 2001) is defined as an energy min-

imization problem. An image I is considered as a graph with a set of pixels P ,

p ∈ P and a set of labels L. A labeling function f : I 3 p 7→ fp ∈ L needs to be

set to minimize some energy function E(f). The function E(f) can be expressed

as:

E(f) =
∑
p∈P

Rp(fp) +
∑

p∈P, q∈Np

Bpq(fp, fq),

where Np is the set of neighboring pixels of p, the cost of labeling fp ∈ L to pixel p

is Rp(fp), and the cost of assigning different labels fp, fq ∈ L on the neighborhood

pixel pair p and q is Bpq(fp, fq). Thus, for graph cut cost energy function, Rp(fp)

and Bpq(fp, fq) can also be termed as regional and boundary terms, respectively.

For the disjoint subsets S and T of the graph G, binary label is assigned to

pixels: p is assigned fp = 1 (object) if p ∈ S, otherwise fp = 0 (background) if

p ∈ T . The goal of segmentation methods using graph cut is to assign graph edge

weights in such a way that the minimum cut cost |C| and minimum energy E(f)

are equal.

In (Felzenszwalb & Huttenlocher 2004), an efficient graph based segmentation

algorithm is proposed - based on pairwise region comparison. Image is considered

as a graph and edge weight is the measure of dissimilarity between neighboring

nodes. The segmentation process starts by considering each pixel being a single
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component/region and the algorithm produces minimum spanning tree (MST)

by comparing the inter component difference to the intra/within component dif-

ferences for merging as:

D(C1, C2) =

true, if Dif(C1, C2) > MInt(C1, C2),

false, otherwise,

where

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)),

and

τ(C) =
k

|C|
.

Here, C1, C2 ⊆ V are two components, Dif(C1, C2) is the difference between two

components and MInt(C1, C2) is the minimum internal difference. Parameter

k controls the scale of segmentation outcome; large value of k yields large seg-

ment. The segmentation algorithm is closely related to Kruskal’s algorithm for

constructing MST. In Chapter 4 of this thesis, a weighted circular shape guidance

is incorporated in efficient graph based segmentation technique, and the modified

algorithm is used to segment cervical cell nucleus.

2.1.3 Feature generation

In the area of digital image analysis, a feature is a characteristic or measur-

able quantity of an object/ROI in an image, that can help to distinguish that

object from other objects or background in the image. Choosing features with

informative and enough discriminatory properties, is the crucial step for effective

recognition and classification performance of an application. Prediction models

use feature vector or set of features for prediction/object classification. Intensity,

morphological/shape, and texture features are commonly used for classification

tasks (Theodoridis & Koutroumbas 2008).

2.1.3.1 Intensity features

Intensity features - calculated from image graylevel/intensity values in ROI, are

the simplest and widely used features for pattern recognition. In cervical cell
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classification, intensity features are widely used, since cell nucleus and cytoplasm

have different contrasts than surrounding background (Jantzen & Dounias 2006).

For example, mean/average intensity, standard deviation, variance, skewness,

contrast, local minima and maxima, kurtosis of ROI, are some intensity based

features used in literature for cervical cell analysis (Jantzen & Dounias 2006,

Plissiti et al. 2011b, Gençtav et al. 2012, Win et al. 2018). Algorithms exclusively

based on intensity features may fail in the presence of intensity inhomogeneity

and poor contrast. However, intensity inhomogeneity resulting from chromatin

distribution can be useful for abnormality detection using texture features.

2.1.3.2 Morphological features

Morphological/shape features are calculated from detected/segmented bound-

aries of objects. In cervical cell analysis, change in cell morphology often re-

flects tissue specific condition or state of abnormality. Area, major and minor

axis length, circularity/roundness, compactness, perimeter, elongation, solidity,

eccentricity, equivalent circular diameter, and actual diameter, are the most com-

mon morphological features used for cervical cell classification task (Jantzen &

Dounias 2006, Plissiti et al. 2011b, Gençtav et al. 2012, Chankong et al. 2014,

Mariarputham & Stephen 2015, Win et al. 2018). Though morphological/shape

features can assist in detecting the presence of abnormality, these features are

highly dependent on segmentation accuracy, which is often not precise enough.

To improve the accuracy of segmentation, three novel segmentation techniques

with prior guidance are presented in Chapters 3, 4 and 5 of this thesis. Mor-

phological features extracted from precisely segmented cervical nuclei using the

proposed techniques, are used to detect abnormality in cervical cells in Chapter 6.

2.1.3.3 Textural features

Texture analysis of an image region is based on graylevel/intensity distribution of

pixels in ROI (Theodoridis & Koutroumbas 2008). Textural features are useful

to identify different classes/stages, in pattern recognition or image classification

based applications. In cervical cell image analysis, texture features have been

widely used to identify/characterize abnormality in cervical cells and different

stages of abnormality.

First order statistic based textural features depend on the statistical proper-

ties of the intensity histogram of ROI and are calculated from central moments.
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Variance, skewness, and kurtosis are the most frequently used first-order mea-

sures (Theodoridis & Koutroumbas 2008). Some first order measures were used

for cervical cell analysis in (Tareef, Song, Cai, Huang, Chang, Wang, Fulham,

Feng & Chen 2017, Bora et al. 2017).

Second order textural features are extracted from second order histograms -

that contain spatial information about the ROI. Gray level co-occurrence matrix

(GLCM) or gray-tone spatial-dependence matrix (Haralick et al. 1973) is com-

monly used to extract second order textural features from an image. Angular

second moment/energy/uniformity, homogeneity, contrast, entropy, inverse dif-

ferent moment, correlation, are some commonly used measures calculated from

GLCM (Haralick et al. 1973, Theodoridis & Koutroumbas 2008). Some of these

textural features were used in (Plissiti et al. 2011b, Chankong et al. 2014, Mari-

arputham & Stephen 2015, Tareef, Song, Cai, Huang, Chang, Wang, Fulham,

Feng & Chen 2017, Bora et al. 2017, Win et al. 2018) for cervical cell classifica-

tion.

Graylevel run length matrix (GLRM) (Galloway 1975) is popular for ex-

tracting radial features. Short run emphasis, long run emphasis, graylevel non-

uniformity, run length non-uniformity, and run percentage, are some textural

features extracted from GLRM (Theodoridis & Koutroumbas 2008, Silva et al.

2019). These features can be calculated from different directions (0◦, 45◦, 90◦,

135◦). Histogram of oriented gradients (HOG) features (Dalal & Triggs 2005) and

local binary pattern (LBP) features (Ojala et al. 2002), are two other popular local

texture descriptors, and also used in cervical cell classification applications (Plis-

siti et al. 2011b, Mariarputham & Stephen 2015, Phoulady, Zhou, Goldgof, Hall

& Mouton 2016).

2.1.4 Feature selection

Feature selection or reduction - is the process of selecting a subset of features

from a given number of features, in order to reduce feature space dimension

and mutual correlation, while retaining most discriminatory information in a

context (Theodoridis & Koutroumbas 2008). The aim for feature selection is

to maximize inter-class difference and minimize intra-class difference in feature

vector space. A classifier’s error rate first decreases and then increases with the

increment of feature dimension or number of features - for a finite sample size, and

this is called “peaking” phenomenon (Raudys & Jain 1991). Optimal number of

features is the point, where probability of misclassification or classification error
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is minimal and then starts to increase. Finding the optimal number of features is

most critical for small sample size (Hua et al. 2004). There is a possibility that

the designed classifier could be overfitted to the sample data, if the used feature

set is too big. Therefore, feature subset selection or determining the optimal

number of feature, is crucial for the performance and generalization properties of

classifiers.

In scalar feature selection, any class separability criterion such as: diver-

gence, receiver operator characteristics (ROC) curve, or Fishers discriminant ra-

tio (FDR), is computed individually for each of the generated features. Features

are then ranked/ sorted with respect to this criterion. Finally, the best scoring

features are selected to form the feature vector.

Feature vector selection is the process to find the best combination of fea-

tures - obtained through scalar feature selection process. Search-based feature

set selection techniques involve a search strategy, to select feature subsets, and an

objective function to determine class separability power of that feature subset.

Exhaustive search, sequential backward or backward selection, floating search

selection, are the common feature vector selection techniques.

In exhaustive search strategy, all combinations of n features out of m given

features (n ≤ m) are considered. The total number of possible feature vectors is

2n − 1, and this can be very large even for small n (Theodoridis & Koutroum-

bas 2008). Therefore, the use of exhaustive search in practical applications is

computationally expensive and often not feasible.

To overcome the issue with exhaustive search, sub-optimal search techniques

(for example sequential backward selection, sequential forward selection, or float-

ing search methods) can be used. These techniques do not examine all possible

combinations of feature sets. Sequential backward selection technique starts with

the whole features set, eliminate one feature at a time from possible combina-

tions. The combination with the best value is selected as the sub-optimal feature

set, based on some criterion function. Sequential forward selection starts from

the single best feature, adds one feature at a time, and select the best combina-

tion. However, both of these techniques suffer from “nesting effect” (Theodoridis

& Koutroumbas 2008); once a feature is discarded or added, there is no way to

reconsider it. Floating search methods (backward and forward) provide flexibility

to reconsider a feature that was previously considered. These methods improve

the performance compared to the sequential feature selection techniques, however

complexity is increased substantially.
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A fuzzy entropy and similarity classifier based feature selection technique was

proposed in (Luukka 2011). This technique is based on the measure of degree of

fuzziness defined in (Luca & Termini 1972), and the definition of this corresponds

to the Shannon’s probabilistic entropy measure (Shannon 1948). Fuzzy entropy

measure for a fuzzy set A can be defined as in (Luukka 2011):

H(A) = −
n∑

i=1

(PA(xi) ln PA(xi) + (1− PA(xi)) ln (1− PA(xi))),

where n is the number of elements in A. Similarity values PA(xi) ∈ [0, 1] are

calculated by comparing ideal and sample vectors. In other words, PA(xi) denotes

the probability/membership degree of xi in A. Features with high similarity value

will have low fuzzy entropy value. That means, when the uncertainty is high,

high entropy value is expected. Using this process, features can be ranked based

on fuzzy entropy values, with the assumption that the feature with the lowest

entropy is the most informative. Since, this technique ranks features in a feature

set, computation cost is considerably low compared to the aforementioned feature

selection techniques. In Chapter 6 of this thesis, fuzzy entropy and similarity

classifier based feature selection technique is used to rank features (intensity,

shape and texture) - extracted from segmented cervical nuclei, and generate a

feature subset with top ranking features. Subsequently, this feature subset is

used for abnormality detection in cervical cells.

2.1.5 Classification

Once the feature selection process is completed, the feature set can be used with a

classifier to detect or grade an abnormality in cervical cells. Based on the learning

process used, classification techniques can be divided into supervised and unsu-

pervised. In supervised machine learning, the classifier learns about the context

from a training set. Unsupervised machine learning is based on some underlying

structure or distribution in the data, and it does not require any training data.

Bayesian classifier, Fisher linear discriminant analysis (LDA), k-nearest neighbor

(KNN), support vector machine (SVM), artificial neural network (ANN), deci-

sion tree, random forest, and Ensemble are some popular examples of supervised

machine learning techniques. Clustering (k-means, spectral, hierarchical) based

techniques are popular examples of unsupervised techniques for classification. In

this thesis, LDA, KNN, SVM, and Ensemble classifiers are used in Chapter 6, to

classify cervical cytology cells.
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Fisher linear discriminant analysis: LDA (Fisher 1936) is a type of linear

classifier that considers the classification problem as linearly separable. The linear

discriminant function, or decision hyperplane, for a d dimensional feature set x

can be defined as:

y = wTx,

where w is the weight vector. LDA technique aims to find the value of w maximiz-

ing the distance between the mean of the two classes and minimizing the variation

within each class, which guarantees maximum class separability. Training data is

used to find the value of w, then test data or new observation is classified based

on the training model.

K-nearest neighbor classifier: KNN (Fukunaga & Narendra 1975) is one of

the simplest supervised machine learning algorithm. This technique classifies an

object using majority vote of its neighbors, where neighbors are from a set of

known/correct classification or training set. The new object is allocated to the

most common class among its k nearest neighbors (if k = 1, then the new case is

allocated to the class of its single neighbor). Various distance metrics (including

Euclidean or Mahalanobis distance), can be used to find k nearest neighbors of

the test instance in the training set (Theodoridis & Koutroumbas 2008). With

a large number of training samples, this classifier exhibits good performance. In

addition, overall effect of noise can be reduced by choosing a large k value, and

a suitable value for k can be found using cross validation, grid search or other

techniques.

Ensemble classifier: The aim of ensemble methodology is to construct a pre-

dictive model from a set of classifiers, and classify a new instance using voting

of classifiers predictions (Rokach 2005). Both weighted and unweighted voting

can be used. Performance of an ensemble classifier depends on the accuracy and

diversity of the classifiers in the set. Ensembles classifiers can be constructed

using various methods as: Bayesian voting, bagging, boosting, feature selection

ensembles, error-correcting output coding, random forest, and randomness injec-

tion (Dietterich 2000).

Bootstrap aggregating (bagging) (Breiman 1996) is the most well known

method for ensemble methodology. In this technique, multiple versions of a pre-

dictor are generated and aggregated, at each split of decision tree. This technique
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can reduce the variance of a decision tree and improve accuracy of classification

task using different classifiers.

Support vector machine: SVM is a popular classification technique than can

be applied to both linearly and non-linearly separable classes. This algorithm was

originally proposed in (Vapnik & Lerner 1963). The goal of SVM algorithm is to

design a hyperplane (or set of hyperplanes) that correctly classifies the training

data. The hyperplane can be described analytically by equation:

f(x) = wTx+ w0 = 0,

where x = [x1, x2, · · · , xN ] is the feature vector of the training set and w0 is a

threshold. Consider, two linearly separable classes ω1 and ω2. All hyperplanes

are characterized by its direction (determined from w) and exact position in space

(determined from w0). The hyperplane that separates the classes with maximal

possible margin from both classes, is the optimal hyperplane. The distance of a

point from a hyperplane can be found as:

z =
|f(x)|
‖w‖

.

To maximize the distance z, w needs to be scaled in a way that:

wTx+ w0 ≥ 1, ∀x ∈ ω1,

wTx+ w0 ≤ −1, ∀x ∈ ω2.

This is a non-linear optimization task. The Karush-Kuhn-Tucker (KKT) condi-

tion can be used to solve this problem with Lagrange multipliers λi, as:

w =
N∑
i=1

λi yi xi,
N∑
i=1

λi yi = 0.

In order to design non-linear SVM classifiers, different kernel functions (polyno-

mial, hyperbolic tangent, Gaussian or radial basis function) can be used to map

the input data into a higher dimensional space.
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2.2 Prior guided image segmentation

Accurate image segmentation is still a challenging task in many medical image

analysis applications (that deal with for example: cytology images, CT and MRI

images of human organs, glands, blood vessels, or lymph nodes, mammograms,

or histopathology images), despite of great advances in segmentation techniques

over past decades. Traditional image segmentation methods based on the notion

of homogeneity or only image information, have great chance to fail in cases of

images with noise, intensity inhomogeneity, poor contrast, or presence of com-

plex objects. Prior information about the target object can be helpful in the

aforementioned cases. If any particular object or ROI needs to be segmented

from an image, prior information of that ROI can guide the segmentation process

and make it more robust and accurate (Tsai et al. 2003, Vu & Manjunath 2008,

Ibragimov et al. 2014, Nosrati & Hamarneh 2016). Many attempts have already

been taken in the direction of incorporating prior guidance into segmentation

tasks. Some commonly used priors are: user interaction, shape prior, boundary

information, appearance prior, statistical and physical model, spatial prior, and

topological prior.

2.2.1 User interaction

The simplest way to characterize the target object for the segmentation process,

is through user interaction. Input from the user can be provided by: specifying

seed points, object boundaries, or bounding boxes for the target object. Seed

points can be specified by labeling some image pixels as being part of the object

of interest and some outside of the targeted object. In case of bounding box prior,

the user can specify a sub-region by drawing a box around the target object.

User input was incorporated into graph cut energy function in (Boykov & Jolly

2000, 2001). In this interactive graph cut segmentation, user selects some pixels

as part of object or background - named hard constraints. Soft constraints are

determined from the likelihood of a pixel being a part of the object or background.

User defined segmentation constraints were incorporated in level set technique

in (Paragios 2003, Cremers et al. 2007, Ben-Zadok et al. 2009).

In case of boundary specification, user can provide input for the initial seeds

along the target object boundary. In (Freedman & Zhang 2005), user needs

to draw circles around the foreground and squares in the background. These

inputs were treated as landmark data, and Procrustes method was used to match
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template curve to the data. Live-wire (LW) (Barrett & Mortensen 1997), is an

interactive boundary extraction tool that requires minimal user provided seeds

on the target object boundary. Segmentation using LW involves user interaction

by positioning the cursor on the boundary of the object to select a point. For

the next cursor position, LW shows real time optimal path from the first point

to the current cursor position. In Live-lane (LL) approach (Falcão et al. 1998),

user needs to select only one initial point. Then, steer the cursor within a certain

width lane around the boundary, where the lane width varies adaptively with the

speed of cursor movement. During user’s action, successive points are selected

automatically in an intermittent way. LW segments are calculated and displayed

in real time for each pair of successive points, thus making LW less dynamic than

LL.

GrabCut (Rother et al. 2004) is one of the most popular techniques in the

direction of bounding box prior. In this method, users can drag a rectangle

around the target object to indicate the background region. Similar rectangular

bounding box was used in (Lempitsky et al. 2009) to impose a strong topological

prior. This prior prevents the segmentation from shrinking and splitting, thus

ensures that the segmented object is sufficiently close to the edges of the bounding

box.

2.2.2 Shape and appearance prior

Shape is the geometric information that remains after location, scale and rota-

tional effects are filtered out from an object (Stegmann & Gomez 2002). Hence,

shape is a powerful prior to segment ROI from an image. Desirable properties for

shape representations are: invariance for geometric transformations (as scaling,

rotation, or translation), robustness in terms of initialization, ability to generate

prior model from training data even with small training set (Litvin & Karl 2005).

Appearance is an important visual prior while distinguishing a target object from

the background. Distribution of features derived from intensity, color, or texture

can be incorporated as appearance cues into segmentation methods.

In (Slabaugh & Unal 2005), an elliptical shape prior was incorporated in graph

cut based segmentation, through an iterative refinement process of an initial

ellipse - found through user interaction. The initial ellipse was used to form a

binary shape mask M . Both data and boundary terms of the proposed technique

had two instances; one from the image data and another from the shape prior.

Image data term was calculated from the average of pixels’ intensities inside and
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Figure 2.1: An example of star shape object.

outside the mask M . Shape prior based data term was calculated using the shape

mask M as:

Sellipse =
∑
i∈P

|Mi − fi| ,

where P is the set of pixels and fi is the assigned label to pixel i. The value of Mi

is 0, if the pixel i is inside the mask and 1 if the pixel i is outside. A graph was

computed over the set of pixels in the narrow band around the shape mask. After

the minimum cut was found from the graph, the current shape mask was updated

by finding the best fitting ellipse to the graph cut points. Then, a new band was

formed around the updated mask, and this process iterated until convergence.

In (Leung et al. 2004), an elliptic shape function was incorporated in fuzzy c-

means clustering. The shape function was comprised of both color information

and spatial distance. The dissimilarity measure of fuzzy c-means clustering was

redefined to include the shape function.

A generic star shape prior was proposed in (Veksler 2008) and incorporated

into graph cut based segmentation. This prior can be applied to diverse classes

of convex objects with an assumption of the object’s center position. An object

has a star shape, if for any point p inside the object, all the points on the straight

line connecting center c and p are also inside the object (see Figure 2.1). The

shape constraint was incorporated in the energy function as:

E(f) =
∑
p∈P

Rp(fp) + λ
∑

(p,q)∈N

Bpq (fp, fq) +
∑

(p,q)∈N

Sstar
pq (fp, fq),

where Rp is the region term, Bpq is the boundary term, and Sstar
pq is the shape

prior. P is the set of all image pixels, (p, q) is the ordered pixel pairs, N is the
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neighborhood (4 or 8 connected), fp and fq are the labels (0 or 1) assigned to

pixels p and q, and parameter λ is the weight to balance the relative importance.

Shape prior term Sstar
pq was defined as:

Sstar
pq (fp, fq) =


0, if fp = fq,

∞, if fp = 1 and fq = 0,

β, if fp = 0 and fq = 1.

Star shape prior tries to remove the shrinking bias of graph cut segmentation to-

wards shorter boundary segments, using the value of parameter β, in the absence

of strong data term.

Prior shape and appearance knowledge was considered for watershed based

segmentation in (Hamarneh & Li 2009). Shape histogram and statistical analysis

of image intensities, were used to design the prior knowledge about the shape and

appearance. Aligned binary shape images were used to generate shape histogram.

Appearance knowledge was captured as mean and variance from the intensity

patches of the target object.

Usually, shape based methods impose a constant weight on shape prior, though

all the pixels in an image do not require support from the shape prior. An adap-

tive way to determine the importance of shape prior at pixel level was presented

in (Wang, Zhang & Ray 2013). The shape weight term was computed from image

intensity based probability map as:

Spq = e−(αp−αq)
2

,

where α denotes the likelihood of a pixel (in the range [0, 1]) to be in foreground.

Probability map α was obtained from the smoothed images by applying Gaussian

filter to the original images. This adaptive shape prior was incorporated with two

existing graph based segmentation energy functions (Freedman & Zhang 2005,

Veksler 2008), and demonstrated superior performance compared to the baseline

method.

2.2.3 Statistical shape model

Statistical analysis of shapes and building models for image segmentation, are

important and active fields of research. In statistical shape analysis, geometrical

features measured from set of shapes are analyzed using statistical methods. From
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this analysis, statistical shape models can be built. Usually, intra-class shape

variation is the basis for developing a shape model. Shapes can be represented

either explicitly or implicitly depending on the segmentation method used, and

this is the foremost decision for designing statistical shape models.

2.2.3.1 Shape representations

The simplest and generic method for shape representation is the use of a set of

landmarks to represent shapes explicitly (Heimann & Meinzer 2009). Landmark

points correspond to the position of an object feature. Location/coordinate of all

landmark points are concatenated as a vector to describe the shape (Stegmann

& Gomez 2002). For n landmark points, the shape can be presented as: S =

[x1, y1, x2, y2, · · · , xn, yn]T .

Medial or skeleton is another form of explicit shape representation using center

lines and corresponding radii as medial primitives. This medial representation

was modeled using a coarse to fine representation of figural shapes in (Pizer et al.

1999). This approach was extended to 3D in (Pizer et al. 2003) and named m-rep,

where a single figural shape was used to segment objects. In this model, an object

was represented by a hierarchy of single figure m-rep models.

Zero-level set is an implicit shape representation technique, which originated

from level set approach introduced in (Osher & Sethian 1988). In this approach,

pixels are represented by their Euclidean distance to the boundary and zero-level

set is considered as the contour or shape. Commonly, signed distance function

(SDF) is used as the level set function, while describing shapes (Leventon et al.

2000, Paragios et al. 2002). Assume, a level set function is φ : Ω → R+ refers

to the shape S, that defines a region R in the image plane Ω, and φ = 0 is the

zero-level set. To represent shape S, function φ can be defined as follows:

φS(x, y) =


0, (x, y) ∈ S,

D((x, y), S), (x, y) ∈ RS,

-D((x, y), S), (x, y) ∈ [Ω − RS].

where, D((x, y), S) is the minimum Euclidean distance between point (x, y) and

shape S.
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2.2.3.2 Shape model construction

Statistical shape model can be constructed by finding the mean shape and modes

of variation from a training set (Heimann & Meinzer 2009). Point Distribution

Model (PDM) was introduced in (Cootes et al. 1992), where landmark points

from training images were used to build statistical shape model. PDM was further

explored in (Cootes et al. 1995) and termed Active Shape Model (ASM). This

model can deform iteratively to find the best match of an example in a new image.

Objects are represented by a set of landmark points on the boundary. The main

modes of variation are found by applying Principal Component Analysis (PCA)

on the training shapes. A training shape can be approximated as:

S = S +
k∑

i=1

Piwi,

where S is the mean shape. Pi are the principal components and wi are their cor-

responding weights. Given an initial estimate of the object’s position, the model

iterates to deform towards the shape and try to optimize an energy function.

In (Tsai et al. 2003, Zhu-Jacquot & Zabih 2007, Grosgeorge et al. 2013), shapes

were represented using level sets. In (Tsai et al. 2003), training shapes were

aligned using similarity transformation, and a parametric shape model was gen-

erated from the training shapes using SDF. The model was used in a region-based

curve evolution framework for medical image segmentation. In (Zhu-Jacquot &

Zabih 2007, Grosgeorge et al. 2013), shape model of the target object was con-

structed using mean shape and Eigen shapes (found by PCA analysis of the

aligned training shapes). In (Zhu-Jacquot & Zabih 2007), statistical shape model

was added in graph cut based energy function. Shape fitting and segmentation

problem was solved using expectation maximization (EM) approach. In (Gros-

george et al. 2013), shape model was registered to the image via minimal user

interaction with identifiable landmarks by experts (only 2 landmarks are required

in this case), and incorporated in the boundary term of graph cut energy function.

2.2.4 Spatial prior

Spatial prior or spatial information of target object, is popular for prior knowledge

representation. Many attempts have already been taken to incorporate spatial

prior in image segmentation, specially in clustering based techniques.
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In (Noordam et al. 2000), geometrical information was included in FCM clus-

tering, with an aim to develop a semi-supervised segmentation technique. Geo-

metrical guidance was determined from the local neighborhood of each pixel and

incorporated in the objective function for clustering. In (Ahmed et al. 2002),

a new bias term was introduced to control/regulate the clustering process to

compensate the effect of intensity inhomogeneity, and included in the objective

function of FCM clustering. The new term allows the clustering of a pixel being

influenced by the clusters of its immediate neighborhood (k × k window around

the target pixel). This neighborhood effect works as a regularizer and enforces the

clustering to be homogenous. The new bias term for pixel {xk}Nk=1 was defined

in (Ahmed et al. 2002) as:

B =
α

NR

C∑
i=1

N∑
k=1

upik

( ∑
xr∈Nk

‖xr − vi‖2
)
,

where α is the parameter to control neighborhood effect, Nk is the set of neigh-

bors in a window around xk, NR is the cardinality of Nk, C is the number of

clusters, N is the total number of pixels, upik is the fuzzy partition matrix with

weighting exponent p, and vi is the ith cluster center. However, lack of robustness

to noise and outliers, optimal selection of parameter α to balance the effective-

ness of segmentation and robustness to noise, and computation cost for finding

neighborhood of a pixel, are some limitation of this technique.

Two variants of the method presented in (Ahmed et al. 2002) were intro-

duced in (Chen & Zhang 2004), to reduce the computation cost by simplifying

the neighborhood term. Neighborhood term was replaced by mean and median

filtered image. This filtration process can be done in advance, thus execution

time of the clustering process is reduced.

Another approach to alleviate the limitations in (Ahmed et al. 2002), was

proposed in (Cai et al. 2007). A novel similarity measure Sij containing both

local spatial and graylevel information from neighborhood was defined to replace

α. Consider, ith pixel is the centroid/central pixel in a local window and jth pixel

is in the set of neighbors centering at ith pixel. The local spatial relationship was

given by

Ssij = exp

(
−max(|xj − xi| , |yj − yi|)

λs

)
,

where (xi, yi) is the spatial location of ith pixel and λs is the scaling factor. Local
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graylevel similarity measure was found as:

Sgij = exp

(
−‖li − lj‖2

λg × σ2
gi

)
,

where li and lj are the graylevels of ith and jth pixels, respectively. λg is the scale

factor, and σ2
gi

is the local density function of ith pixel. The density function σ2
gi

was calculated as:

σ2
gi

=

√∑
j∈Ni
‖lj − li‖2

NR

,

where NR is the cardinality of neighborhood. The similarity measure Sij to

replace α, was defined as:

Sij =

Ssij Sgij , if j 6= i.

0, otherwise.

In (Chuang et al. 2006), a spatial function was incorporated into the fuzzy

partition matrix of FCM clustering. The summation of membership function

values in a square window - centered at the target pixel, was used to compute

this function. In (Wang et al. 2008), the usual distance metric was replaced with

a novel dissimilarity measure. Both local and non-local information were taken

into account while devising this measure. The weighted summation of Euclidean

distance in a local neighborhood was used as the local information. The weighted

average of all pixels’ Euclidean distances in the image was treated as non-local

information. A weighting factor was used to balance the contribution of local and

non-local information.

In (Wang, Song, Soh & Sim 2013), the objective function of FCM clustering

was modified. Noise and outliers were identified from a measure of input data

distribution. Local neighborhood information of a pixel was considered, while de-

veloping the improved adaptive similarity measure. Both of these were included

in the modified objective function. In (Adhikari et al. 2015), local spatial in-

formation from adjacent neighborhood was incorporated into fuzzy membership

function. Conditional spatial membership variable was introduced to define the

affinity of a pixel xk in ith cluster vi as:

fik =

∑
j∈N(xk)

Uij

M
,
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where N(xk) is the square neighborhood with xk as the center, Uij is the global

membership value, and M is the number of pixels in the neighborhood. This

conditional variable fik was used to define a local spatial membership function.

A weighted membership of both global and local functions, was considered in the

modified clustering technique.

2.2.5 Boundary information

Knowledge about the boundary/edges of a target object is a powerful cue, while

delineating object of interest from the background. Usually boundaries are the lo-

cations, where an abrupt change in intensity or large contrast is observed. Change

of labels (foreground/background) are expected in these areas. Traditional vari-

ational methods of segmentation (Malladi et al. 1995, Caselles et al. 1995) are

based on this idea. Directional change in intensity in an image is expressed with

image gradient, where gradient magnitude expresses the variation in local con-

trast.

In (Malladi et al. 1995, Caselles et al. 1995), boundary information was used

with level set and active contour based techniques. In both methods, energy

functionals were minimized by aligning objects boundaries with high intensity

gradients. A graph-based image segmentation technique - “random walks”, was

proposed in (Grady 2006). Gradient magnitude was used in this technique, while

formulating the segmentation problem.

In (Singaraju et al. 2008), a modification of “random walks” (Grady 2006) was

proposed. Gradient magnitude and the direction of transition were considered for

detecting object boundary using the graph based framework. In this technique,

edge weights were calculated considering the direction of edges. For a pair of

neighboring nodes vi and vj with intensity values xi and xj (where xi > xj),

weight of the directed edges eij and eji were given by:

wij = e−β1(xi−xj)
2

and wji = e−β2(xi−xj)
2

,

for some β1 ≥ β2 ≥ 0 as asymmetric penalty for gradient directionality. In this

approach, edge weight for transition from dark to bright is more than the edge

weight for bright to dark transition.

In some segmentation techniques, boundary or edge information was not di-

rectly encoded in the segmentation algorithm. In (Wählby et al. 2004), marker

controlled watershed segmentation was applied on gradient magnitude image -
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calculated from first derivative based Sobel operator. After initial segmenta-

tion, results were further refined considering gradient magnitude edge strength.

In (Schindler & Suter 2008), an edge map with closed edge chain or contour was

generated, and used as a cue for object detection. The edge map was obtained

from superpixel image found using SRM segmentation technique. In (Li et al.

2011), a new fuzzy level set algorithm was presented, where results from spatial

fuzzy clustering were used as the initial contour for the level set technique. Final

segmentation boundaries were found by locally regularized evolution.

2.3 Related works

Researchers are working for several decades to automate the screening process

of cervical smear cells. In (Sarwar et al. 2019), cervical cell segmentation tech-

niques, from the year 1977 to present (more than four decades) are reviewed.

Precise or shape preserving nucleus segmentation, is the most important factor

in cellular morphology calculation and computer-aided approach of cytological

image analysis. Comprehensive reviews of nucleus detection and segmentation

techniques for digital pathology images can be found in (Irshad et al. 2014, Xing

& Yang 2016, Hayakawa et al. 2019)

In Chapter 1 of this thesis, nucleus segmentation techniques for automated

systems, were roughly divided in five categories. Overview of some segmentation

techniques from those categories, is presented in this section.

2.3.1 Thresholding and morphological analysis based ap-

proaches

In (Cahn et al. 1977), a segmentation threshold was determined considering the

stability of the cell perimeter. For this, an initial threshold was found from

a sparse histogram. This threshold value was modified using a cell perimeter

information based iterative testing, and used to detect the target object in an

image, ignoring the background.

In (Borst et al. 1979), three histograms from: extinction value distribution,

gradient and circumference, were found from filtered Pap smear images. A single

combination histogram was generated from three histograms. Then, two thresh-

olds were computed from the combination histogram, to separate nucleus from

cytoplasm and cytoplasm from background.

49



In (Bengtsson et al. 1979), two different techniques were used to find thresh-

olds for nucleus and cytoplasm. An adaptive graylevel thresholding from im-

age histogram was used to find the threshold for nucleus segmentation. Cyto-

plasm was segmented using 2-dimensional thresholding in the bivariate histogram.

In (Yang-Mao et al. 2008), an adaptive optimal threshold was defined to detect

nucleus and cytoplasm edge pixels. Gradient histogram of image was used to

determine this threshold.

Morphological reconstruction in combination with the detection of regional

minima was used in (Plissiti et al. 2011a,b), to find initial nuclei centroids.

In (Plissiti et al. 2011a), candidate nuclei boundaries were found using 8-radial

profiles in equal arc length intervals, and this process started from initial can-

didate nuclei centroids. In (Plissiti et al. 2011b), nuclei centroids were used as

markers for watershed transform. This marker controlled watershed transform

was used to find nuclei boundaries from morphological gradient image. In (Pai

et al. 2012), a framework for nucleus and cytoplasm contour detection was pre-

sented. An adaptive thresholding - based on graylevel histogram, was used for

initial contour detection. Final nuclei contours were detected using a maximal

graylevel gradient difference based technique.

Cell clumps were extracted by applying triangle global search on image su-

perpixels in (Ushizima et al. 2015). Image superpixels were generated using SRM

segmentation technique. Nuclei were segmented from image superpixels - using

a local thresholding technique presented in (Phansalkar et al. 2011). In (Plissiti

et al. 2015), nuclei boundaries were obtained by thresholding the difference be-

tween nucleus centroid’s intensity and the average intensity of superpixels in the

circumference of that centroid. SLIC segmentation was used to generate image

superpixels.

In (Guan et al. 2015), nucleus was segmented using a morphological filter

based k-means clustering technique. Morphological filter was composed of mor-

phological dilation and erosion with a disk shaped structuring element. This filter

was used to remove small dark contamination in the image. Then, the cell image

was segmented into nucleus, cytoplasm and background regions, using spatial k-

means clustering. In (Tareef et al. 2015), Otsu thresholding was used to detect

nuclei from cervical cell images. Before thresholding, images were enhanced using

anisotropic diffusion filtering and CLAHE, and filtered by H-maxima transforma-

tion. In (Riana et al. 2015), a combination of graylevel thresholding and distance

rule definition based segmentation technique was proposed. Graylevel thresh-

olding was used for initial segmentation. Final nuclei boundaries were obtained
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using shortest distance analysis.

In (Lee & Kim 2016), first cell mass was segmented using triangle threshold-

ing method from SLIC technique generated superpixels. Then, nuclei candidates

were extracted from the cell mass using a local thresholding technique - consid-

ering mean and standard deviation of intensities in local window. In (Phoulady,

Goldgof, Hall & Mouton 2016, Phoulady et al. 2017), an iterative thresholding

based binarization technique was proposed to detect nuclei candidates. Binariza-

tion process was performed considering area, intensity and shape features of the

segmented regions (Phoulady, Goldgof, Hall & Mouton 2016). In (Phoulady et al.

2017), mean intensity of the segmented region was also considered in addition to

the aforementioned features.

2.3.2 Deformable model, contour and shape based ap-

proaches

In (Bengtsson et al. 1981), an algorithm was presented to detect overlapping cer-

vical cell nuclei, using information from boundary and density profile of nucleus.

Nucleus boundary/contour information was analyzed with smoothed difference

chain code to find any significant concavity. The presence of concavity was used

detect the nucleus as overlapped nuclei. Otherwise, density profile was analyzed

to find any overlap situation. In (Bamford & Lovell 1998), a Viterbi search based

dual active contour model was used to segment cervical nuclei. In cell images,

image domain/search space was defined by considering the darkest point as cen-

troid. Then, forward dynamic programming was used to find the least cost paths

of the search spaces.

In (Plissiti et al. 2006), radial profiles in equal arc length intervals were used

to estimate initial nuclei boundaries. The final boundaries were determined by

applying active contour based deformable model on the initial estimation. A cy-

toplasm and nucleus contour detector was proposed in (Tsai et al. 2008). This

technique was based on the idea of edge detection and consisted of three ap-

proaches. The aim of the first approach/bigroup enhancer was to suppress the

noise and emphasize edge pixels. Nucleus contour was detected using maxi-

mum color difference (MCD) technique and cytoplasm contour was found using

k-means clustering. A geometric active contour based segmentation technique

was presented in (Harandi et al. 2010). A rectangle around the image was used

as the initial curve for active contour model, and produced individual cells/cell

51



clumps from the image. After localization, nucleus contour was detected using a

thresholding operation on locally histogram equalization process.

A spatially adaptive active shape model was presented in (Plissiti & Nikou

2012b), to segment two overlapping nuclei from cervical cell images. Physical

shape model and its modal distributions, were used for representing the prior

knowledge of the expected shapes. In (Bergmeir et al. 2012), relevant edges in

an image was found by utilizing Canny edge detector. Then, cell nuclei were lo-

calized using a prior knowledge and voting strategy. Finally, randomized Hough

transform for ellipses was used to find candidate nuclei and post-processed using

level set technique. A radiating gradient vector flow (RGVF) snake based seg-

mentation technique was proposed in (Li et al. 2012). RGVF snake was modified

by introducing a new edge map computation method and stack-based refinement

technique. Initial contours were found using spatial k-means clustering, and then

modified RGVF snake was used for segmentation.

In (Nosrati & Hamarneh 2015a), shape prior information was incorporated in

segmentation technique for precise segmentation of overlapping cervical cytology

images. A novel continuous variational segmentation framework was proposed,

where directional derivatives were used to enforce star shape prior. In (Husham

et al. 2016), cervical nuclei were segmented using level set technique. To find

the seed points for nuclei, morphological opening and closing operations were

applied on binarized image - found using Otsu thresholding. Then, centroid

transform was applied to remove unwanted candidates. Nuclei were segmented

using level set evolution on the seed points. In (Phoulady, Zhou, Goldgof, Hall &

Mouton 2016), a framework was presented to classify cervical tissue as normal or

cancerous, using solely nucleus features. Nucleus was quantified using an adaptive

nucleus segmentation algorithm - composed of adaptive multi level thresholding

and ellipse fitting based shape approximation.

In (Zhang, Kong, Liu, Wang, Chen & Sonka 2017), an image unfolding based

nucleus segmentation approach was presented. Image unfolding was done by

transforming Cartesian image coordinates to polar coordinates with the center

of ROI. Edge direction analysis on the unfolded image and region information

from the image, were used to find nuclei contours. An adaptive gradient vec-

tor flow (AGVF) snake based framework was proposed in (Dong et al. 2019),

for cervical cell image segmentation. Cell was localized in the image using an

improved Canny edge detection algorithm. Then, accurate cell edges were gen-

erated using adaptive initial contour model and adaptive gradient vector fields.

Final cell boundaries (nucleus and cytoplasm) were found using particle swarm
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optimization (PSO) based SVM classifier. An implicitly parameterized elliptical

shape model and global energy minimization based nuclei segmentation technique

was presented in (Kostrykin et al. 2019). The technique utilized both shape and

intensity information for segmenting cell nuclei.

2.3.3 Watershed based segmentation approaches

A morphological watershed based clustered nuclei segmentation algorithm was

presented in (Malpica et al. 1997). Image background was removed by applying

ISODATA thresholding on preprocessed image. Nuclei markers were found using

morphological gradient based transformation on background subtracted image.

These nuclei markers were used with watershed transform, to segment nuclei.

In (Cheng & Rajapakse 2009), shape marker aided watershed transform was

used to segment clustered nuclei. Initial segmentation - to separate nuclei from

background, was performed using geometric active contour model. Then, shape

markers were found using adaptive H-minima transform. The marking function

for the proposed watershed transform, was generated based on Euclidean outer

distance transform on initial segmentation. In (Bai et al. 2009), marker based

watershed transform was used to find contours of touching cells. Cell markers

were found using morphological and thresholding operations. Touching cells were

split, using ellipse processing of these contours.

In (Cloppet & Boucher 2010), overlapped and clustered nuclei were segmented

using a marker based watershed segmentation. Prior information from the geo-

metric properties and graylevels of nuclei, were employed to generate the markers.

In (Jung & Kim 2010), watershed transform with H-minima based marker extrac-

tion was used for cell nuclei segmentation. While finding nuclei markers, prior

information about shape, size, texture, and concavity were analyzed, along with

graylevel criteria. In (Béliz-Osorio et al. 2011), a locally constrained watershed

transform was used to segment cervical cells.

In (Gençtav et al. 2012), multi-scale watershed segmentation was applied for

segmenting cervical nuclei. Cell clumps were found using automatic thresholding.

Then, hierarchical tree (based on scale) was found using multi-scale hierarchical

watershed segmentation, which partitions the cell clump into smaller regions.

Each node in the tree is a candidate for final segmentation. Tree nodes were then

separated as nucleus and cytoplasm from the segmented regions, using a binary

classifier considering homogeneity and circularity. In (Moshavegh et al. 2012),
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marker-controlled watershed segmentation was used for precise nuclei boundary

delineation. Nuclei markers were found with grayscale annular closing operation.

In (Tareef et al. 2018), a multi-pass fast watershed based segmentation technique

was introduced. Nucleus was segmented with barrier-based watershed transform,

using intensity gradient information from pre-processed image.

2.3.4 Region and clustering based approaches

An iterative optimal parametric segmentation algorithm was presented in (Wu

et al. 1998). A parametric image was first constructed iteratively by minimizing

a cost function/approximation error. Then the segmentation of cell region was

found by thresholding the parametric image. In (Isa 2005), a combination of

moving k-means clustering and a modified seed based region growing (MSBRG)

technique was used, to detect edges in Pap smear images. Moving k-means clus-

tering was used to find a threshold value for detecting the seeds, then MSBRG

technique was used to find edges of ROI. In (Kale & Aksoy 2010), initial seg-

mentation was performed with a non-parametric hierarchical region extraction

technique, using spectral, shape and gradient information. Then, nucleus and

cytoplasm regions were classified using SVM with RBF kernel, to get the final

segmentation outcome. In (Lu et al. 2013), connected components were found us-

ing maximally stable extremal region (MSER) algorithm. Candidate nuclei were

detected from these connected components using some morphological features.

A patch based fuzzy clustering technique was used in (Chankong et al. 2014),

to segment cervical cells. FCM clustering was applied on preprocessed image.

Then, clustering outputs were labeled as nucleus, cytoplasm, and background

considering thresholds for the graylevels of the patches. In (Zhang, Kong, Chin,

Liu, Chen, Wang & Chen 2014), adaptive local graph cut method was used for

cervical nucleus segmentation. Combination of texture, intensity, boundary, and

region information, were used with graph cut technique.

In (Nosrati & Hamarneh 2015b), cervical nuclei were detected using a com-

bined approach of MSER algorithm and random decision forest classifier. MSER

algorithm was also applied in (Lu et al. 2015) or baseline method in (Lu et al.

2017) on the foreground image to detect nuclei. Region level features (eccen-

tricity, area, mean intensity, and area ratio of detected output and cell clump),

were used to find nucleus from MSER outputs. In (Oprisescu et al. 2015), region

growing segmentation was applied on the edges to segment nuclei. Edges were
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detected using Sobel operator and non-nuclei objects were eliminated based on

region size and eccentricity.

An adaptive clustering technique was proposed in (Gautam et al. 2017). First,

image superpixel was estimated using mean-shift clustering and SLIC technique.

Then, an intensity weighted adaptive thresholding was applied on the superpixels,

to segment nuclei from cytoplasm and background. In (Bora et al. 2017), MSER

technique was integrated with discrete wavelet transform (DWT) and morpholog-

ical operations, to segment nuclei. Input image was preprocessed with DWT and

median filters. Then, MSER was applied on the preprocessed image to find the

connected components/regions. Finally, morphological operation was applied,

and area, perimeter and circularity based filtering was performed to eliminate

unwanted regions. In (Roy et al. 2020), MSER algorithm was used to extract

nuclei candidates from cervical cell mass found with a Chan-Vese model based

multiphase level set algorithm. A circularity check based post processing was

applied to remove non-nuclei candidates.

2.3.5 Machine learning based segmentation

In (Jung et al. 2010), unsupervised Bayesian classifier based segmentation tech-

nique was proposed to separate overlapped nuclei. Distance transform was used

to generate a topographic surface - viewed as a mixture of Gaussian. Paramet-

ric expectation-maximization (EM) algorithm was employed to learn Gaussian

mixture model (GMM). Unsupervised Bayesian classifier was used to investigate

the clusters, and the number of overlapped nuclei was found by cluster valida-

tion. Geometric property and nuclei shape based prior information was used to

improve the segmentation performance. Multi-scale convolutional network was

used in (Song et al. 2015), for coarse segmentation of cervical cell images. Then,

a superpixel-wise graph partitioning was used on top of coarse segmentation, to

achieve finer segmentation results.

In (Zhang, Sonka, Lu, Summers & Yao 2017), fully convolutional network

(FCN) was used generate nucleus label mask and probabilistic map. Then graph

based approach was exploited using the mask, for finer segmentation of nucleus.

Dynamic programming was used to find the optimal path in the graph. Finally,

nucleus contour was found by mapping the optimal path in Cartesian coordinate

system. In (Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng & Chen

2017), shape, texture and boundary features were extracted from SLIC superpix-

els to form the feature vector. This feature vector was used with SVM classifier to
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classify image superpixels as nuclei, cytoplasm and background. In (Tareef, Song,

Huang, Wang, Feng, Chen & Cai 2017), convolutional neural network (CNN)

based feature learning and classification was used on superpixel image, for seg-

menting nucleus.

In (Liu et al. 2018), a cervical nuclei segmentation framework was proposed

based on mask regional convolutional neural network (mask-RCNN). Coarse seg-

mentation of nuclei was obtained with forward propagation of mask-RCNN. Then,

a local fully connected conditional random field (LFCCRF) was used to get finer

segmentation results. A deep learning based algorithm was presented in (Jith

et al. 2018), to classify cervical cell images. The network consisted of: initial 3

layers of AlexNet, batch normalization layer, and a fully connected layer. This

framework directly worked with RGB image patches from single cell images.

In (Zhang et al. 2019), a binary tree like deep CNN was presented to work for

small datasets. The proposed network aggregated the features captured by the

basic network, and two path fusion attention was used to weigh and indicate the

importance of the features. In (Lin et al. 2019), a CNN based method was pre-

sented, which was guided by cell image appearance and cell morphology. Appear-

ance and morphological information were extracted from the image patches/cell

masks, centered at nuclei centroid. In (Araújo et al. 2019), a deep learning based

abnormal cell segmentation framework was proposed. In the framework, a inten-

sity variation based preprocessing step was employed to discard poorly sampled

Pap smear images. Then, a patch based CNN or CNN model with sliding window,

was used for segmentation.
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Chapter 3

Shape prior in fuzzy c-means

clustering

The main focus of this thesis is to incorporate prior or guidance in segmenta-

tion methods, in order to achieve more precise segmentation outcome. In this

chapter, a novel circular shape function is proposed and incorporated in fuzzy

c-means (FCM) clustering, with the aim to segment nuclei more precisely from

overlapping cervical smear images. Section 3.1 provides a brief overview of FCM

clustering and its spatial variant techniques in literature, used as a tool for image

segmentation. The standard FCM clustering, the novel circular shape function

and how this function is incorporated in fuzzy clustering, are described in Sec-

tion 3.2. Section 3.3 provides a description of the dataset used for conducting

experiments in this chapter. Section 3.4 presents the step-wise implementation

details of the proposed framework. Evaluation metrics, experimental set-up, se-

lection of background subtraction method, and tuning of required parameters, are

presented in Section 3.5, Section 3.6, Section 3.7, and Section 3.8, respectively.

Section 3.9 provides results for the proposed framework and direct comparison

with recent state-of-the-art cervical nucleus segmentation techniques. A formal

discussion about the framework and conclusion of this chapter is provided in

Section 3.10 and Section 3.11, respectively.

3.1 Introduction

Among the fuzzy clustering techniques, Fuzzy c-means (FCM) is the commonly

used clustering for image segmentation, medical image analysis, and pattern

recognition applications (Noordam et al. 2000, Ahmed et al. 2002, Chuang et al.
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2006, Cai et al. 2007, Wang et al. 2008, Wang, Song, Soh & Sim 2013, Adhikari

et al. 2015, Verma et al. 2016, Haddad et al. 2018). However, intensity infor-

mation is the only criteria to consider in standard FCM clustering, thus it lacks

the spatial information of the data. Segmentation outcome from standard FCM

clustering is influenced by intensity inhomogeneity, noise, and other imaging ar-

tifacts.

For image segmentation, many researchers attempted to consider spatial in-

formation in FCM clustering. Geometrical information was included with FCM

clustering in (Noordam et al. 2000), where geometrical guidance was determined

from the local neighborhood of each pixel. FCM objective function was mod-

ified in (Ahmed et al. 2002), so that the clustering of a pixel is influenced by

its immediate neighborhood pixels’ clusters. In (Leung et al. 2004), an ellipti-

cal shape function was included in FCM clustering to precisely segment lip from

human face images. The dissimilarity criteria, which measures graylevel similar-

ity and spatial distance, was modified to incorporate the elliptic shape function.

In (Chuang et al. 2006), a spatial function was incorporated into the fuzzy parti-

tion/membership matrix, in order to segment MRI images of brain. In (Cai et al.

2007), a new similarity criteria was proposed, which considered both graylevel and

spatial knowledge from local neighborhood. A linearly-weighted summed image

was computed from this measure, and used for the clustering process. In (Wang

et al. 2008), a new dissimilarity measure was introduced that considered both

local and non-local information. A weight was used to balance the contribution

of information from local and non-local parts. FCM objective function was mod-

ified in (Wang, Song, Soh & Sim 2013), to include an adaptive spatial weighting

factor. In (Adhikari et al. 2015), pixel membership values were weighted and

joint cluster was proposed. Global membership value in standard FCM and local

square neighborhood spatial membership values, were combined to compute the

weighted membership. An improved intuitionistic fuzzy c-means clustering was

proposed in (Verma et al. 2016), where local graylevel and spatial information

were incorporated in the objective function through a novel intuitionistic fuzzy

factor.

Spatial information from neighborhood was considered in most of the pub-

lished research, and included in the definition of similarity measure, membership

degree, or objective function. Neighboring pixels always has the tendency to in-

fluence the centroid, regardless of its location (in a homogenous region or in an

edge). Therefore, region’s boundary or edges may smooth out, when neighboring

pixels spatial information is considered. This type of spatial influence also may
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result in poor segmented boundaries (Wang et al. 2008). Some other limitations

of these methods are choosing a constant value for the size of neighborhood and

parameters to control the neighborhood effect.

FCM clustering and it’s spatial variants from literature (Ahmed et al. 2002,

Chuang et al. 2006, Cai et al. 2007, Wang et al. 2008, Wang, Song, Soh & Sim

2013, Adhikari et al. 2015, Verma et al. 2016), mostly considered the segmen-

tation task of brain MRI images. Microscopic cell image (nucleus/cytoplasm)

segmentation has not been well-explored in literature. For a reliable cell image

segmentation, spatial information of each pixel also requires attention along with

graylevel intensity. Cell overlapping in cytology images results in poor contrast

and intensity inhomogeneity. Hence, standard FCM clustering or its existing spa-

tial variants considering local neighborhood information, may smooth out nuclei

boundaries or fail to detect nucleus correctly, in the presence of similar mean

intensities in nuclei and cytoplasm parts.

Shape information helped to separate overlapping or touching objects, while

segmenting images in (Cheng & Rajapakse 2009, Bai et al. 2009, Cloppet &

Boucher 2010, Molnar et al. 2015). Spatial neighborhood information has been

used in existing literature (Chuang et al. 2006, Cai et al. 2007, Li et al. 2011,

Adhikari et al. 2015) for precise segmentation using FCM clustering, however

the partitioning process was never been explored to be guided by spatial shape

information. In this chapter, a novel spatial shape constrained fuzzy clustering

based segmentation framework is proposed and applied to segment nuclei from

overlapping Pap smear images.

3.2 Circular shape constrained fuzzy clustering

(CiscFC)

3.2.1 An overview

Standard FCM clustering (Dunn 1973, Bezdek 1981) associates a data point with

multiple clusters using varying degree of membership in the range [0,1]. A set of

data points is partitioned through iterations of a clustering process, by minimizing

an objective function J , with respect to the values in the membership or fuzzy
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partition matrix U , and the set of cluster centers c = {cj} as:

J =
D∑
i=1

C∑
j=1

Um
ij ‖xi − cj‖

2 . (3.1)

Here, C is the number of clusters, xi is the ith data point in a D dimensional data-

space, ‖.‖ is the Euclidean distance between a data point and a cluster center,

and m is the fuzziness weighting exponent. An overview of the standard FCM

clustering algorithm is also available in Section 2.1.2.3.

The standard FCM algorithm is optimized by assigning high membership

values to the data points close to their cluster center and low membership values

to the distant or dissimilar data points. Convergence is achieved by comparing

the objective function at successive iterations. FCM algorithm can be used for

image segmentation, by assigning image pixels to the clusters with the highest

membership values.

In this chapter, spatial information is incorporated into FCM clustering by

defining a circular shape function (CSF). CSF allows the influence from a pixel’s

spatial location during the clustering of that pixel. This information helps the

clustering process for precise segmentation of nuclei boundaries from overlapping

cervical smear images. The shape function is designed to produce small values

for the pixels associated with the target cluster and large value is produced for

the pixels that should be member of other clusters. The cluster with the highest

average intensity is identified as the target cluster from initial fuzzy partition ma-

trix (see Section 3.4.2). Image pixels and target cluster seed points are considered

to define the shape function. Target cluster graph is constructed using intensity

differences and spatial distances, and explored to find the connected components.

The maximum intensity nodes from each connected component are selected as

seed points.

3.2.2 The proposed circular shape function (CSF)

Let X = [x1, x2, . . . , xD] be an image with size D = M × N and mi, ni be the

spatial coordinates of ith pixel xi with intensity value fi. Considering ith pixel,

the circular shape function CSF : D → R+ is defined as:

CSF (xi) = min
p∈P

√
(mi −mp)2 + (ni − np)2, (3.2)
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where (mp, np) are the spatial locations of seed point p and P is the total number

of seed points. For simplicity, CSF (xi) will be denoted as CSF i throughout this

chapter.

Once the CSF’s value is determined, an intensity modifying function δ is used

to enforce the shape constrain, and defined as

δi =


1, if CSF i < t1,

0.8, if t1 ≤ CSF i ≤ t2,

0.7, if CSF i > t2,

(3.3)

for some thresholds t1 and t2. Intensity value fi for ith pixel is then modified to

f ′i using δi as:

f ′i = fi ∗ δi. (3.4)

The thresholds t1 and t2 control the range of intensity modification. This inten-

sity modification process transforms the image X to X ′. New cluster centers,

fuzzy partition matrix and objective function, are calculated in each iteration of

clustering, using the image X ′ as:

c′j =

∑D
i=1 U

′
ijx
′
i∑D

i=1 U
′
ij

, (3.5)

U ′ij =

(
C∑

k=1

(
dij
djk

) 2
(m−1)

)−1
, (3.6)

J ′ =
D∑
i=1

C∑
j=1

U ′ijd
2
ij, (3.7)

where, dij is the Euclidean distance between ith pixel and jth cluster center.

The value of CSF and the intensity modifier δ together enforce circularity of

the spatial shape of the target cluster. Since, intensity values in the target cluster

are modified, it affects further iterations of the clustering process and eventually

influence the target cluster formation. The proposed technique is benefited from

the inclusion of spatial information in CSF, and able to identify the pixels with

similar intensities using spatial distance. Thus, the proposed algorithm tries to
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alleviate the drawback of standard FCM algorithm by introducing the circular

shape constraint, and helps to find nuclei more accurately from Pap smear images.

3.3 Dataset

Training and evaluation of the proposed framework is carried on the dataset from

Overlapping Cervical Cytology Image Segmentation Challenge - ISBI 2014 (Lu

et al. 2015, Lu et al. 2017). This dataset is located at https://cs.adelaide.

edu.au/~carneiro/isbi14_challenge/dataset.html and available for down-

load. The challenge dataset contains 945 synthetic Pap smear images with vary-

ing number of cells from 2 to 10 per image and various degrees of overlap. The

challenge dataset was released over two phases. In the first phase, 45 training

and 90 test synthetic cytology images were released on January 11, 2014. These

45 training images from the first phase of the challenge are used as the training

dataset to determine parameters such as: the number of clusters and threshold

values for area and shape features. The second phase of the challenge released

810 test images on February 5, 2014. These 900 test images (90 from the first

stage and 810 from the second stage) are used as the test dataset to evaluate the

proposed algorithm. All images in the dataset are grayscale images of 512 × 512

pixels. The training set has 270 nuclei and the test set contains 5400 nuclei.

All images in this dataset are accompanied with the ground truths - delineated

by expert cytotechnologists. A brief overview of the data preparation process is

described below for completeness, however detailed description about the ISBI

2014 challenge dataset can be found in (Lu et al. 2015, Lu et al. 2017).

All the cells to generate the synthetic images were extracted from 16 non-

overlapping fields of view (FOV) images. These FOV images were obtained from

4 cervical cytology specimens. Each FOV contains 20 to 60 Pap stained cer-

vical cytology cells, with varying degrees of overlap. AutoCyte PREP technol-

ogy (Bishop J et al. 1998, Howell et al. 1998) was used to prepare the specimens,

hence each specimen was around 20 µm thick in the focal dimension. An ex-

tended depth of field (EDF) image was generated from at least 20 focal plane

images (acquired with a focal depth separation of 1 µm) for each FOV image.

These 16 EDF cervical cytology smear images were used to generate all syn-

thetic images in this dataset. Training dataset was built using 4 EDF images,

and the rest 12 EDF images were used to produce the test dataset. Randomly

chosen annotated isolated cells and background from EDF images were used to
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generate the synthetic images. First, background was formed using annotated

background pixels randomly chosen from the EDF images. Then, random rigid

transformation (rotation, translation and scaling), and random linear brightness

transform were applied on the selected isolated cells. These cells were placed on

the background image using an alpha channel. In case of additional isolated cells,

same transformation was applied and the cells were placed on the image with an

overlap with the existing cells, with the strict criteria that the overlap coefficient

must lie in any of the following ranges as: [0, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4],

[0.4, 0.5]. The process was repeated until the desired number of cells (2 to 10

cells) per image was reached. If A and B are two cells, the overlap coefficient

was calculated as: max
(
|A∩B|
|A| ,

|A∩B|
|B|

)
, where |.| represents the area of the cell.

Figure 3.1 shows four examples of Pap smear images from ISBI 2014 dataset,

with corresponding nuclei ground truths.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Four examples of overlapping synthetic cervical smear images from
ISBI 2014 challenge dataset (in light background) (a), (c), (e), and (g), followed
by corresponding nuclei ground truths (in dark background) (b), (d), (f), and
(h).

3.4 Implementation

The proposed nucleus segmentation framework is composed of three main steps,

namely background subtraction, proposed clustering and false positive reduction.
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Figure 3.2 illustrates the flowchart of the proposed segmentation framework to

segment cervical nuclei. In the background subtraction step, the foreground image

Figure 3.2: The flowchart of the proposed cervical nuclei segmentation framework.

is obtained by removing the background from Pap image. The proposed clustering

is then performed using the complemented foreground image and initial fuzzy

partition matrix. The highest average intensity cluster is subsequently identified

as the nuclei cluster from the clustering output. Finally, in the false positive

reduction step, outliers are removed and final nuclei candidates are obtained.

The framework steps are presented in detail in this section.

3.4.1 Background subtraction

The goal of this step is to divide the input image into background and fore-

ground, where the cell clump or foreground corresponds to cervical cells, and the

background represents the area except the cells. Since the goal is to segment nu-

cleus, the background can be eliminated before the image segmentation process

starts. This background elimination process helps in reducing the search space

for processing, and the estimated cell clump can be used in further stages. Two

techniques based on thresholding and morphological reconstruction, are presented

in this section for background subtraction.

3.4.1.1 Thresholding based background subtraction

A threshold based image binarization process is proposed to remove background

from input images. This background subtraction process was applied on the com-

plemented image. However, defining a global threshold to binarize an image into

foreground and background is challenging. Hence, dominant peaks in comple-

mented image histogram were analyzed to determine a threshold adaptively for

binarization. Dominant peaks were found using the technique proposed in (Silva

et al. 2010) and ranked in ascending order based on dominant peaks intensity

value. The value of second highest peak was chosen as the threshold to binarize

the input image into foreground and background. Fig. 3.3 illustrates the process.

64



(a) (b)

50 100 150 200 250
Intensity

0

0.5

1

1.5

2

F
re

q
u
e
n
cy

104

(c) (d)

Figure 3.3: Cervical cell image background subtraction using thresholding based
technique, (a) original image, (b) complemented image, (c) plot of the comple-
mented image histogram with dominant peaks (marked with red ∗), and, (d)
binarized image using the second highest peak.

3.4.1.2 Morphological reconstruction based background subtraction

In original cervical smear images, background visually appears brighter than nu-

clei and cytoplasm parts. The histogram shown in Figure 3.4a, where background

is represented as the high peaks located in the right-most side of the plot, also

supports this. If the regional maxima can be used to represent the background,

then it can be easily extracted from the image. Morphological reconstruction is

effective for extracting regional minima or maxima from grayscale images (Vin-

cent 1993), without changing objects size or shape. Morphological reconstruction

operation was applied to increase inter-class dissimilarity and intra-class simi-

larity. Then foreground image was found by removing regional maxima of the

morphologically processed image.
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Figure 3.4: Normalized histograms of: (a) an original image from the training
dataset, (b) same image after applying morphological opening-by-reconstruction
and closing-by-reconstruction.

This morphological reconstruction operation was applied on original images.

First, morphological opening-by-reconstruction was utilized to remove bright ob-

jects smaller than a structuring element. For an input image Xin, opened by

reconstruction image Xobr was generated by eroding the image with a structuring

element S and using the eroded image as the marker image for image reconstruc-

tion Rx as follows:

Xobr = Rx(Xin 	 S). (3.8)

Closing by reconstruction was then used to remove dark objects smaller than a

structuring element. This was performed by complementing the image, comput-

ing its opening by reconstruction and again complementing the result. This can

be presented as:

Xobrc = (Xobr)
c,

Xcbr = Rx(Xobrc 	 S),

Xout = (Xcbr)
c,

(3.9)

where (.)c is the complement operation. Inter-class variance is increased and

intra-class variance is reduced, using these morphological operations. This can

be observed clearly from the histogram of Xout in Figure 3.4b. Regional maxima

of the processed image represents the background, and foreground or cell clump

can be found by removing it from the original image (shown in Figure 3.5).

After removal of the background, foreground image was finally complemented

(Figure 3.5d), to use in further stages of the proposed framework.
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(a) (b)

(c) (d)

Figure 3.5: Background extraction and finding cell clump, (a) original image, (b)
morphologically processed image, (c) foreground cell clump, and (d) complement
image of the cell clump.

3.4.2 Implementation of CiscFC

An initial fuzzy partition matrix and complemented foreground image, are re-

quired for the proposed circular shape constrained fuzzy clustering (CiscFC).

Then the clustering process can be started. The initial fuzzy partition matrix

generation process and clustering details of the CiscFC technique, are elaborated

in this section.

In the proposed clustering technique, circular shape constrain is imposed on

the target cluster containing nucleus candidates. Generally, FCM clustering starts

with randomly generated initial fuzzy partition matrix. The partition matrix is

stabilized by iterating and minimizing the objective function. In this proposed

framework, fuzzy partition matrix needs to be initialized in such a way that target

cluster can be identified from the partition matrix and circular shape prior can be
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implemented in the target cluster. Therefore, random initial fuzzy partition is not

sufficient to start with. In literature, standard FCM (Bezdek 1981) clustering is

often chosen to produce desirable initial fuzzy partition matrix for other variants

of FCM (Chuang et al. 2006, Cong et al. 2015). It was found empirically that

fuzzy partition matrix starts to stabilize after five iterations of standard FCM

technique. Hence, the initial fuzzy partition matrix was generated by running

standard FCM algorithm for five iterations.

The target cluster was found from the initial partition matrix as the highest

mean intensity cluster. The circular shape function finds spatial distances be-

tween image pixels and seed points from the target cluster (see Equation (3.2)).

Seed points were found using connected component analysis on the target cluster.

For this, first target cluster was represented as graph, where target cluster pixels

were considered as graph nodes. Graph adjacency was defined with the aid of

intensity difference and spatial distances. Graph nodes with intensity difference

less than or equal to 8, and maximum Euclidean distance 40, were defined as

adjacent. All these thresholds were found with empirical analysis. Strongly con-

nected components were found automatically from the graph using the technique

proposed in (Tarjan 1971) (see Section 3.6 for implementation details). Then,

member nodes of each connected components were ordered based on intensity

values. Finally, top 4% highest intensity member nodes in the connected compo-

nents were selected as seed points. These seeds were used to enforce circularity

in the target cluster using the proposed CiscFC technique.

The proposed clustering (in Section 3.2.2) iterates until convergence. Finally,

image segmentation was obtained by assigning image pixels to the cluster with

the highest membership values. From all clusters, the highest mean intensity

cluster was considered as the segmented nucleus and used for evaluation.

3.4.3 False positive reduction

In this study, nuclei were detected from clustering output using average intensity,

area and shape features. From the clustering result, the highest mean intensity

cluster was detected as the cluster containing nuclei. In overlapping cervical

smear images, some parts of cytoplasm may have similar mean intensity as nucleus

and appear in the nucleus cluster. To overcome this issue, further filtering was

performed based on area and shape to remove non-nucleus candidates/unwanted

regions.
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Very small regions (ineligible to be nucleus) were removed from the set of

candidates. Then, other non-nucleus candidates were eliminated using shape

features as: eccentricity and circularity. Eccentricity was calculated as the ratio

of the distance between the foci and major axis length of an ellipse - that has the

same second-moment as the region. The eccentricity value of a region ranges in

[0, 1]. Circularity of a region is the measure of roundness. It was calculated using

the area (total number of pixels in that region) and perimeter of the region as:

circularity = 4π

(
Area

Perimeter2

)
. (3.10)

Details of selecting the threshold values for the area, circularity and eccen-

tricity are described in Section 3.8 and these values are reported in Table 3.1.

Figure 3.6 shows an example of false positive reduction from the nucleus cluster

found after applying proposed CiscFC method.

(a) (b) (c)

Figure 3.6: An example of false positive reduction. (a) Complemented foreground
image used for clustering (nuclei with high graylevel values), (b) detected nucleus
candidates from clustering output, and (c) nucleus cluster after false positive
reduction process using area and shape features.

3.4.4 Nucleus shape regularization

Distance regularized level set technique (Li et al. 2010) was applied to improve

nucleus boundaries. In this step, nuclei candidates found after false positive re-

duction stage were used as the zero level set or initial contours. The level set

contours are evolved to minimize an energy functional with a distance regulariza-

tion term, and an external energy term to move the zero level set toward target

position. Figure 3.7 provides an example to illustrate the shape regularization

process.
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(a) (b) (c)

Figure 3.7: An example of nucleus shape regularization. (a) Complemented fore-
ground image, (b) nucleus candidates after false positive reduction, and (c) nu-
cleus candidates after shape regularization.

3.5 Evaluation metrics

Quantitative performance of the proposed framework - in terms of detection and

segmentation accuracies, was evaluated using some common measures as: mean

Dice Similarity Coefficient (DSC), precision and recall. A nucleus region A was

considered correctly detected if:

A ∩B
A

> τ and
A ∩B
B

> τ, (3.11)

where B is the ground truth nucleus region and τ is the overlap threshold. Fol-

lowing (Gençtav et al. 2012), the value for τ was set to 0.6.

Nucleus detection performance was assessed by calculating object based pre-

cision (PRobj) and recall (RCobj) as:

PRobj =
No. of correct detections

No. of all detections
, (3.12)

RCobj =
No. of correct detections

No. of all objects in ground truth
. (3.13)

Segmentation accuracy of the proposed framework was assessed using pixel

level precision (PRpix) and recall (RCpix), and Dice Similarity Coefficient (DSC)

for all correctly detected nucleus regions. These measures were calculated for

segmentation output of correctly detected nucleus and the corresponding ground
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truth as:

PRpix =
No. of correctly detected pixels

No. of all detected pixels
=

TP

TP + FP
, (3.14)

RCpix =
No. of correctly detected pixels

No. of all pixels in ground truth
=

TP

TP + FN
, (3.15)

where TP is the number of pixels correctly segmented as nucleus, FP is the

number of pixels falsely segmented as nucleus, and FN is the number of pixels

falsely detected as background. For two regions A and B, DSC (Dice 1945) is

used to measure the similarity between two regions as:

DSC(A,B) =
2 | A ∩B |
|A|+ |B|

, (3.16)

resulting in 0 ≤ DSC ≤ 1. If the regions A and B have no overlap, DSC value

will be 0 and if they are identical, the value of DSC will be 1. This similarity mea-

sure is also known as the Zijdenbos similarity index (ZSI) in literature (Gençtav

et al. 2012, Chankong et al. 2014, Li et al. 2012, Guan et al. 2015). Mean DSC

was calculated across the whole dataset to measure the overall performance of the

segmentation technique. The qualitative performance of the proposed approach

was assessed by visual inspection of the segmented nuclei boundaries.

An analysis is carried in Section 3.10 to determine the impact of the proposed

CSF (detailed in Section 3.2.2) on circularity measure of segmented nuclei. The

circularity measure ψ is defined using the region’s overlapped area with its equiv-

alent circle, and the area of that region (Giger et al. 1988). A detailed description

about this measure is given in Section 4.2. For any segmented region A, the value

of ψ lies in the range [0, 1], where higher value indicates that A is more circular.

3.6 Experimental setup

The training dataset of 45 images was used to select background removal tech-

nique and determine the parameters required for the proposed framework. Nu-

cleus detection and segmentation performance of the proposed technique was

assessed on the test dataset of 900 images. See Section 3.3 for details. The Cis-

cFC algorithm and the proposed framework was implemented in Matlab R2015b

and run on Dell R720 Server with Intel Xeon(R) Processor E5-2470 2.30GHz and
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32GB RAM. In case of standard FCM clustering, fcm() function in Fuzzy logic

toolbox of Matlab 2015b package was used. Matlab function graphconncomp()

was used to generate strongly connected components from target cluster graph

and used during CiscFC implementation (see Section 3.4.2). The proposed frame-

work with CiscFC method required on average 3.2 seconds per cell and 13 seconds

per image. The Matlab code was not speed optimized.

3.7 Background subtraction technique selection

In the proposed framework, clustering was applied using a fixed number of clus-

ters on background subtracted complemented image. From all the clusters, the

brightest cluster was detected as the target cluster containing nucleus. The

threshold-based technique (proposed in Section 3.4.1.1) removed most cytoplasm

parts along with background, in cases with low contrast between background and

cytoplasm (see Figure 3.8a). This affected the final clustering, and in some cases

nucleus (or their parts) were assigned to more than one clusters (Figure 3.8b

depicts this). Finally, those nucleus fragments were either removed from the tar-

get cluster during false positive reduction process (detailed in Section 3.4.3) for

not meeting the criteria to be a nucleus candidate (see the example in the top

row of Figure 3.8), or resulted in lower segmentation accuracies. Morphological

reconstruction based technique (proposed in Section 3.4.1.2) could manage to

remove mostly background parts, while leaving nucleus and cytoplasm parts as

foreground (refer to Figure 3.8d). This helped the clustering process to accom-

modate sufficient nucleus pixels in the target cluster, so that candidate nuclei can

pass the false positive reduction process (see the bottom row of Figure 3.8).

Two examples from the training set are presented in Figure 3.9 for better

visualization of both background subtraction techniques, along with detected final

nucleus clusters. From empirical and visual analysis of the training set results

for background subtraction, the technique based on morphological reconstruction

was found to outperform the thresholding based one. Therefore, morphological

reconstruction based background removal technique was used for the proposed

framework in this chapter.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Examples of two background removal techniques: top row represents
results for thresholding based and bottom row presents morphological reconstruc-
tion based, (a), (d) complemented foreground images, (b), (e) brightest clusters
as nucleus, and (c), (f) nucleus clusters after false positive reduction. Differences
are highlighted with yellow rectangles.

3.8 Parameter tuning

There are some parameters and threshold values required for the proposed frame-

work. Threshold values need to be determined: for area and shape features (Sec-

tion 3.4.3), to control the range of intensity modification using circular shape

shape function (Equation (3.3) in Section 3.2.2), and optimal number of clusters

for partitioning the input image. These values were found empirically using the

images from the training dataset.

3.8.1 Thresholds for area and shape features

As mentioned in Section 3.4.3, threshold values for area, circularity and eccen-

tricity were found using the training images. First, very small regions - whose

area was less than 50 pixels, were discarded from the set of nucleus candidates.

In case of eccentricity, nucleus candidates with eccentricity greater than 0.9 were
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Figure 3.9: Comparison of background subtraction techniques with two example
images. Top row presents image foregrounds found with threshold based method
and final nucleus clusters, and bottom row shows foregrounds found using mor-
phological reconstruction based technique and corresponding nuclei clusters.

filtered out. For circularity, the suitable range was found empirically as [0.5, 1.7].

Nuclei candidates having circularity value outside the range, were not considered

and discarded from the set of candidates. Table 3.1 summarizes the findings.

Table 3.1: Parameter values for area and shape features of a candidate nucleus.

Parameter Value

Area Minimum 50

Circularity Minimum 0.5 and Maximum 1.7

Eccentricity Maximum 0.9

3.8.2 Thresholds for CSF

To select a value of intensity modifier δ in Equation (3.3) and modify inten-

sity values using Equation (3.4), two thresholds t1 and t2 need to be determined

adaptively. Determination of this value is important, as it is related to intensity

modification, therefore clustering outcome. Hence, these thresholds have a di-

rect impact on the segmentation accuracy. Two approaches are proposed in this

section for finding these thresholds.
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3.8.2.1 Otsu multiple thresholding based approach

Initially, the thresholds for implementing CSF were determined adaptively from

each complemented foreground image using Otsu multiple thresholding (Otsu

1979). Three classes: nucleus, cytoplasm and background, were generated using

multiple thresholds found using Otsu technique. Then the area, circularity, and

eccentricity measures were used to discard some false candidates from the target

class. Finally, the minimum and maximum radius of candidates in the filtered

class, were chosen as the values for t1 and t2. Figure 3.10 provides two exam-

ples of finding candidates to determine the threshold values using Otsu multiple

thresholding.

(a) (b) (c)

(d) (e) (f)

Figure 3.10: Determination of t1 and t2 using Otsu multiple thresholding. (a),
(d) Complemented foreground images, (b), (e) candidates in nucleus class after
thresholding, and (c), (f) filtered candidates.

3.8.2.2 Maximally stable extremal region (MSER) based approach

MSER algorithm (Matas et al. 2004) finds maximally stable connected compo-

nents from an image. The technique was applied on complemented foreground

image to determine the threshold values for t1 and t2. Candidates found by the
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MSER algorithm were further filtered using area and shape features. The thresh-

olds t1 and t2 were selected as the minimum and maximum radius of filtered

candidates found by MSER algorithm. For ease of illustration, MSER technique

was applied on the same example images from Figure 3.10 and shown in Fig-

ure 3.11.

(a) (b) (c)

(d) (e) (f)

Figure 3.11: MSER technique used to determine t1 and t2. (a), (d) Complemented
foreground images, (b), (e) candidates after applying MSER algorithm, and (c),
(f) area and shape filtered candidates.

The simple thresholding technique described in Section 3.8.2.1 could find can-

didates successfully to determine the values for t1 and t2, if there was sufficient

contrast between nucleus and cytoplasm. However in the presence of low con-

trast and intensity inhomogeneity, this simple technique could not separate nu-

cleus from the cytoplasm parts (see the candidates marked with red arrows in

Figure 3.10b and 3.10e). These type of candidates can affect the estimation of

t1 and t2, therefore they were filtered out using area and shape criteria. As a

result, information about those nuclei hiding in the discarded candidates, were

not reflected in the values of t1 and t2. However, those candidates were present

in the MSER technique outcome. Those candidates (marked with red arrow) can

be seen in Figure 3.11b and 3.11e.
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To overcome this issue, an empirical analysis was carried out using the train-

ing dataset. It was found that, while using Otsu multiple thresholding based

approach, around 20% candidates were been discarded and has not played any

role in determining the values of t1 and t2. Only 4% candidates were absent, when

calculating the values of thresholds t1 and t2 using MSER technique. Therefore

in this chapter, MSER algorithm was applied on the complemented foreground

image to determine the threshold values required for the intensity modifying func-

tion δ in Equation (3.4).

3.8.3 Optimal number of clusters

Optimal number of cluster is one of the required parameters for the proposed

framework. Training images were used to determine the optimal number of clus-

ters. Number of dominant peaks in the image histogram was used as the initial

cue to find the number of clusters. Using the technique presented in (Silva et al.

2010), dominant peaks were found from complemented foreground training im-

ages. In 83% of training images, the number of dominant peaks were 3, 4, or 5.

Hence, the proposed framework was analyzed by evaluating all the performance

measures with 3, 4 and 5 as number of clusters. In addition, for better under-

standing of the impact of cluster number on the outcome, proposed framework

was further evaluated for 6 and 7 clusters. Table 3.2 shows all the performance

measures with number of clusters 3, 4, 5, 6, and 7.

Table 3.2: Finding the optimal number of clusters.

No. of clusters DSC PRpix RCpix PRobj RCobj

3 0.942 0.916 0.929 0.926 0.700

4 0.928 0.944 0.921 0.974 0.885

5 0.921 0.964 0.844 0.983 0.878

6 0.908 0.973 0.812 0.984 0.922

7 0.891 0.984 0.770 0.952 0.892

Performance of the proposed framework in terms of DSC is decreased with

the increase in number of cluster (see Table 3.2). If the behavior of pixel based

precision (PRpix) and recall (RCpix) is observed carefully in Table 3.2, a trade-off

can be noticed. When the number of cluster is increased, with the improvement

of PRpix, deterioration of RCpix can be seen. Specifically, RCpix shows a sharp

declination (from 0.921 to 0.844) for number of cluster 4 to 5. Since, the focus of
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this chapter is to improve segmentation accuracy with the incorporation of shape,

number of clusters 5, 6, and 7 were not considered further (though the proposed

framework achieved highest PRobj and RCobj for cluster 6, however RCpix was

only 0.812). With 3 clusters the proposed method achieved the best DSC and

RCpix. However RCobj was the lowest (0.700) and 3 clusters were not considered.

Therefore, considering the combination of all the evaluation measures, 4 was

chosen as the optimal number of cluster for the proposed technique.

3.9 Results

The dataset of 900 images was used for assessing nucleus detection and seg-

mentation performance. Results were compared with standard FCM cluster-

ing (Bezdek 1981), baseline and winning techniques (Ushizima et al. 2015, Nosrati

& Hamarneh 2015b) in ISBI 2014 challenge, and other state-of-the-art methods

using the same dataset. To determine the results for the standard FCM clustering,

the clustering step in the proposed framework was replaced with standard FCM

clustering. Nucleus detection and segmentation results for ISBI 2014 test dataset,

were not explicitly reported in short papers for the winning techniques (Ushizima

et al. 2015, Nosrati & Hamarneh 2015b). However, the baseline and two winning

techniques were evaluated and compared, and complete results were reported

in (Lu et al. 2017).

Object level comparison of the proposed framework with recent techniques in

literature is reported in Table 3.3. Nucleus detection performance of the CiscFC

method (in terms of object-based measures) consist of PRobj (0.968) and RCobj

(0.882). The highest PRobj (0.994) in (Tareef, Song, Huang, Wang, Feng, Chen

& Cai 2017) was achieved on a small subset (90 images) of the ISBI 2014 test set,

nevertheless RCobj was low (0.911). Object-based recall RCobj was the highest

(0.971) for (Zhang et al. 2019), which utilized a deep learning based technique

for nucleus segmentation.

In terms of segmentation accuracy, the proposed technique with CiscFC pro-

duced DSC of 0.938, pixel-based precision of 0.927 and pixel-based recall of 0.939.

The highest DSC was achieved in (Phoulady et al. 2017), where a nuclei feature

(size, average intensity and solidity) based iterative thresholding approach was

used. Pixel-based precision was the best for Ushizima et al. technique in (Lu et al.

2017) as 0.968, the best recall (0.954) was achieved for a deep learning based tech-

nique proposed in (Zhang et al. 2019). Pixel-based evaluation measures and DSC
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Table 3.3: Quantitative object based evaluation of the proposed CiscFC technique
in comparison with the standard FCM and recent state-of-the-art methods.

Method train/test PRobj RCobj

Lu et al. (2015) 45/900 0.730 0.850

Ushizima et al. method in Lu et al.
(2017)

45/810 0.959 0.895

Nosrati & Hamarneh method in Lu
et al. (2017)

45/810 0.903 0.893

Baseline method in Lu et al. (2017) 45/810 0.977 0.883

Phoulady et al. (2017) 135/810 0.961 0.933

Tareef, Song, Cai, Huang, Chang,
Wang, Fulham, Feng & Chen (2017)

45/90 0.990 0.940

Tareef, Song, Huang, Wang, Feng,
Chen & Cai (2017)

45/90 0.994 0.911

Tareef et al. (2018) 45/900 0.983 0.959

Zhang et al. (2019) 45/900 0.990 0.971

Proposed framework with FCM 45/900 0.952 0.852

Proposed framework with CiscFC 45/900 0.968 0.882

Bold values represent the best performance per measure.

for the proposed framework and other recent methods in literature, are reported

in Table 3.4.

The influence of shape regularization using level set method (Li et al. 2010) on

the proposed framework (with CiscFC and standard FCM) is shown in Table 3.5,

in terms of all evaluation measures. The results indicate that shape regularization

impact is very limited over the dataset for the proposed framework. While using

shape regularization with CiscFC, little improvement was achieved for DSC,

RCpix and PRobj, and decline in performance can be seen for PRpix and RCobj.

In case of standard FCM, shape regularization has improved only DSC and

PRpix, while deterioratingRCpix, PRobj andRCobj. Therefore, this regularization

process only helped to refine the nucleus boundaries without much impact on the

overall outcome.

The proposed framework with CiscFC was run for 5 consecutive times to

identify the impact of different initial partition matrix and seed points on the

evaluation measures. These results are reported in Table 3.6. Mean and standard

deviation for all performance measures were calculated from the results of all 5

runs and reported in the last row in Table 3.6. The outcome shows that the
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Table 3.4: Quantitative comparison of segmentation accuracy of the proposed
CiscFC methodology, with the standard FCM and recent state-of-the-art tech-
niques.

Method train/test PRpix RCpix DSC

Lu et al. (2015) 45/900 0.960 (0.060) 0.900 (0.080) 0.920 (0.050)

Ushizima et al. method
in Lu et al. (2017)

45/810 0.968 (0.055) 0.871 (0.069) 0.914 (0.039)

Nosrati & Hamarneh
method in Lu et al. (2017)

45/810 0.901 (0.097) 0.916 (0.093) 0.900 (0.053)

Baseline method in Lu
et al. (2017)

45/810 0.942 (0.078) 0.912 (0.081) 0.921 (0.049)

Phoulady et al. (2017) 135/810 - - 0.947 (-)

Tareef, Song, Cai, Huang,
Chang, Wang, Fulham,
Feng & Chen (2017)

45/90 0.950 (0.060) 0.930 (0.070) 0.930 (0.040)

Tareef, Song, Huang,
Wang, Feng, Chen & Cai
(2017)

45/90 0.940 (0.060) 0.950 (0.060) 0.940 (0.040)

Tareef et al. (2018) 45/900 0.906 (0.068) 0.950 (0.051) 0.925 (0.041)

Zhang et al. (2019) 45/900 0.902 (-) 0.954 (-) 0.931 (-)

Proposed framework with
FCM

45/900 0.949 (0.033) 0.875 (0.041) 0.931 (0.040)

Proposed framework with
CiscFC

45/900 0.927 (0.095) 0.939 (0.090) 0.938 (0.040)

Bold values represent the best performance per measure.
All results are reported in mean (std) format.
‘-’ indicates unavailable values.

Table 3.5: Evaluation of shape regularization impact on performance measures.

Proposed framework with CiscFC Proposed framework with FCM

DSC PRpix RCpix PRobj RCobj DSC PRpix RCpix PRobj RCobj

Withouta 0.938 0.927 0.939 0.968 0.882 0.931 0.949 0.875 0.952 0.852

Withb 0.945 0.909 0.942 0.969 0.866 0.936 0.970 0.871 0.939 0.836

↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓

aWithout shape regularization.
bWith shape regularization using level set method (Li et al. 2010).
Last row indicates incline (↑) or decline (↓) of performance with shape regularization.

standard deviations for all evaluation measures over 5 runs are very small, and

positively indicates the stability of the proposed framework.
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Table 3.6: Identifying stability of the proposed CiscFC framework with respect
to different initial partition matrices. Last row shows the mean and standard
deviation over 5 runs.

DSC PRpix RCpix PRobj RCobj

Run 1 0.938 0.927 0.939 0.968 0.882

Run 2 0.938 0.926 0.928 0.969 0.885

Run 3 0.938 0.927 0.928 0.972 0.876

Run 4 0.938 0.927 0.928 0.969 0.886

Run 5 0.938 0.928 0.938 0.971 0.876

0.938 (0.000) 0.927 (0.000) 0.932 (0.005) 0.970 (0.001) 0.881 (0.004)

3.10 Discussion

This chapter presented a novel technique to incorporate a circular shape constrain

in standard FCM clustering. Performance of the proposed method in terms of:

Dice similarity coefficient, pixel based precision and recall, and object based pre-

cision and recall, is comparable to the state-of-the art techniques. The proposed

CSF included in FCM clustering, helped the algorithm to extract nucleus more

precisely, which is noticeable from DSC and higher pixel based recall values. For

the test dataset, DSC of more than 83% of correctly detected nuclei is above 0.90

and DSC of only 1% of the correct detections is below 0.80. Figure 3.12a shows

the bar graph for DSC. In terms of pixel based measures, for more than 80%

of correct detections, the proposed method achieved precision value of at least

0.90. Recall value was at least 0.80 for all and greater than 0.90 for about 95%

of the correctly detected nucleus, using the proposed framework. Bar graphs in

Figure 3.12b and 3.12c illustrate these pixel level measures.

To better understand the influence of circular shape prior on circularity mea-

sure of segmented cervical nuclei, an in depth analysis was performed. Circularity

(ψ) of a segmented nucleus was calculated using Equation (4.4). A threshold was

found by investigating circularity value distribution of all ground truth nuclei

from both training and test images. Circularity distributions are shown in Fig-

ure 3.13. By analyzing the histograms presented in Figure 3.13a and 3.13b, it was

observed that 99% training and 98% test nuclei, have circularity (ψ) of at least

0.8. Therefore, 0.8 was selected as the circularity threshold for further analysis.

For ISBI test set, histograms of circularity values are reported in Figure 3.14.

In case of standard FCM clustering, 93% of correctly detected nuclei have ψ of
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Figure 3.12: Plot of segmentation accuracy measures of the proposed framework
for ISBI test dataset: (a) Dice similarity coefficient, (b) pixel based precision and
(c) pixel based recall.

at least 0.8 (can be seen from Figure 3.14a). Circularity value histogram for the

proposed framework with CiscFC technique is shown in Figure 3.14b. Analysis

of this histogram indicates that of 94% correctly detected nuclei have ψ ≥ 0.8.

Therefore, inclusion of circular shape prior has also improved the measure of

circularity, while precisely segmenting cervical nuclei.

Visual inspection was performed for qualitative evaluation of the nucleus seg-

mentation results summarized in Figure 3.15. The segmented nuclei found using

the proposed CiscFC method and those detected using the standard FCM clus-

tering, can also be visually compared. The proposed framework with the circular

shape function (CSF), produced more precise outcome even in challenging situa-

tions. Visual results also indicate that the proposed nuclei segmentation approach

outperformed the standard FCM algorithm in cases, where proposed approach
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Figure 3.13: Histograms of circularity values of all ground truth nuclei, from ISBI
(a) training and (b) test datasets.

could detect and segment nucleus but FCM could not (see Figure 3.15b, 3.15c,

3.15e, 3.15f, and 3.15h, 3.15i).

Finally, it can be concluded from both quantitative and qualitative evaluations

that the proposed cervical nuclei segmentation technique detected and segmented

nucleus more precisely than the standard FCM clustering. In addition to pre-

cise segmentation of nuclei, the proposed technique also improved the circularity

measure while segmenting the target region. The proposed method is more re-

silient in typical difficult situations such as with small average intensity difference
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Figure 3.14: Circularity value histograms of segmented nucleus using the proposed
framework with: (a) standard FCM and (b) CiscFC techniques, from ISBI test
dataset.

between the nucleus and cytoplasm - caused by cell overlapping, poor contrast or

uneven staining. The outcome of the proposed CiscFC algorithm also matches

the performance of recent state-of-the-art methods.

The proposed framework has some limitations that need to be addressed.

First, to determine the optimal number of clusters, a training dataset is required.

The small training set of 45 images was used to determine the threshold values

for area and shape features (the threshold values are reported in Table 3.1). Some
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.15: Nucleus segmentation examples from the test dataset: first column
represents the original images marked with nuclei ground truth, second column
presents nuclei segmented using the standard FCM clustering, and the last col-
umn shows nuclei segmented using the proposed CiscFC technique. Differences
between CiscFC and the standard FCM are marked with green rectangles.

nuclei were removed along with outliers, during the false positive reduction stage

using those features. As shown in Figure 3.16, the considered nucleus was present

(with eccentricity of 0.92 and circularity of 0.73) in detected nucleus cluster from

the output of the proposed method (marked in Figure 3.16b). However, dur-

ing the outlier removal process that nucleus was removed, since the eccentricity

threshold criterion was not been satisfied. Thus it was absent in the final nuclei

segmentation output (as can be seen from Figure 3.16c). Another limitation of
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(a) (b) (c)

Figure 3.16: An example of missed nucleus detection, (a) nucleus in question
(circled in red), (b) detected target nucleus (circled in red) after applying the
proposed method and (c) target nucleus removed after false positive reduction.

the proposed method is that the highest average intensity cluster from the clus-

tering output, was detected as the cluster containing nuclei. Thus, the nuclei

(with uneven staining and very poor contrast) assigned to other clusters dur-

ing the clustering process, may not be detected using the proposed framework.

Some examples are shown in Figure 3.17, for nucleus detection and segmentation

failures due to poor and uneven staining.

Figure 3.17: Examples of missed nucleus detection and segmentation due to un-
even staining and poor contrast.

3.11 Conclusion

This chapter presented a framework for cervical nuclei segmentation in over-

lapping Pap smear images, and introduced a new circular shape guided fuzzy

clustering algorithm. A circular shape function (CSF) was incorporated in the

proposed technique, to influence the clustering process and to precisely segment

cervical nuclei from foreground images. ISBI 2014 challenge dataset of 900 images

was used to evaluate the performance of the proposed framework, both quanti-

tatively and qualitatively. Pixel based and object based measures were used,

for quantitative evaluation. Qualitative evaluation was performed by visually in-

specting the segmented cervical nuclei. Promising outcome was produced by the
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proposed approach, for detection (object based precision 0.968 and recall 0.882)

and segmentation (DSC 0.938, pixel based precision 0.927, and recall 0.939) of

cervical cell nuclei, compared to the state-of-the-art methods. High segmentation

accuracy with small false positive and false negative detection, indicates that the

proposed framework is effective for segmenting nuclei from overlapping cervical

cytology images.
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Chapter 4

Shape prior in graph based

segmentation

Graph based segmentation is another useful paradigm in computerized image

analysis and machine vision. From graph theoretic segmentation approaches, effi-

cient graph based segmentation (EGS) is well acknowledged and computationally

efficient. The EGS technique is based on the concept of minimum spanning trees

(MST) in graphs. In this chapter, a novel technique is proposed to incorporate

a weighted circular shape prior in efficient graph based segmentation technique.

Section 4.1 provides a brief overview of graph based image segmentation tech-

niques and its variants incorporating shape priors in literature. An overview of

standard efficient graph based segmentation, and how circular shape prior was

defined and incorporated into EGS technique, is described in Section 4.2. Sec-

tion 4.4 presents the evaluation measures used in this chapter. Experimental

set-up and parameter tuning, are described in Section 4.5 and Section 4.6, re-

spectively. Section 4.7 details the experimental results for nucleus detection,

segmentation, evaluation of boundary precision, and comparison with other re-

cent state-of-the-art techniques. Discussion and conclusion of this chapter, are

provided in Section 4.8 and Section 4.9, respectively.

4.1 Introduction

Mathematical structure of graph is good for presenting and formulating image

characteristics. Graph theoretic approaches are widely used for image segmenta-

tion, since both local and global image information can be included in the segmen-

tation process (Ma, Bajger, Slavotinek & Bottema 2007, Das et al. 2009). Various
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graph based segmentation techniques have been proposed over the years (Wu &

Leahy 1993, Boykov & Jolly 2000, Shi & Malik 2000, Boykov & Jolly 2001, Felzen-

szwalb & Huttenlocher 2004, Boykov & Funka-Lea 2006, Grady & Schwartz 2006,

Grady 2006, Veksler 2008, Grosgeorge et al. 2013, Zhang, Kong, Liu, Wang, Chen

& Sonka 2017).

In the field of image segmentation and analysis, graph cut based image seg-

mentation (Boykov & Jolly 2001) is one of the most popular techniques. This

type of segmentation is based on top-down strategy, where initially whole image

is considered as a single segment and then partitioned into sub-segments until a

termination criteria is satisfied (Kalinin & Sirota 2015). In order to handle images

with noise or other imaging artifacts, new variants of graph cut based segmen-

tation techniques have been developed by including shape priors and adopted

to various contexts. A generic star shape prior for convex objects, was defined

in (Veksler 2008). This prior helped to lessen the bias of graph cut segmen-

tation towards shorter segmentation boundaries. The prior was defined based

on geometric properties of the object and its center. An elliptical shape prior

was proposed in (Slabaugh & Unal 2005), and used with graph cut segmenta-

tion. The minimum cut was computed from the graph with narrow-band vertices

around an initial ellipse. Then, the best fitting ellipse was found iteratively from

the minimum cut. Blood vessels and lymph nodes were segmented from pelvic

MR images using this modified graph-cut segmentation technique. In (Vu &

Manjunath 2008), shape prior was integrated in graph cut for multiple object

segmentation. The shape prior was defined in terms of shape distance function.

Then, multiple priors were incorporated in the form of a shape energy and used

with multiphase graph cut framework. An adaptive way for inclusion of shape

prior was proposed in (Wang, Zhang & Ray 2013). Based on the specific needs

of different pixels, shape weight was computed adaptively. Similarity in neigh-

borhood pixels was used to determine the shape influence. In (Grosgeorge et al.

2013), PCA was used to develop a statistical shape model, that guided the graph

cut segmentation. This modified graph cut segmentation was applied on cardiac

MRI images. In (Grosgeorge et al. 2016), a multi-label shape prior guided graph

cut segmentation framework was presented. The shape prior was found from

probabilistic prior map and integrated into graph cost function. Left and right

ventricle, and myocardium, were segmented from cardiac MR images using this

technique.

Minimum spanning tree (MST) based graph theoretic approach, is another

popular technique of segmentation. Bottom-up strategy is adopted in this seg-
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mentation, where initially each image pixel constitutes separate segments, and

then segments satisfying specific criteria are merged. Several techniques based on

MST are available in literature (Zahn 1971, Urquhart 1982, Felzenszwalb & Hut-

tenlocher 1998, Felzenszwalb & Huttenlocher 2004). The efficient graph based

segmentation (EGS) - proposed in (Felzenszwalb & Huttenlocher 2004), is the

widely used variant that uses Kruskal’s algorithm to find MST in graphs. EGS

technique has the ability to extract target object with better segmentation ac-

curacy (Peng et al. 2013). In (Ma, Bajger & Bottema 2007), EGS technique

was used to evaluate/investigate the robustness of mammogram segmentation to

image distortions such as shifting, rotation, and warping in the field of tempo-

ral analysis of screening mammograms. In (Ma, Bajger, Slavotinek & Bottema

2007), pectoral muscle was segmented from mammograms using the EGS algo-

rithm. In (Bajger et al. 2013), standard EGS method was extended to 3D-EGS

for segmentation of multiple human organs (lungs, stomach, liver, heart, kidney,

spleen, bones, and spinal cord) form CT images. In (Huang et al. 2012), EGS

technique was modified by incorporating a new pair-wise region merging predi-

cate, and used to segment breast tumors from ultrasound images. In spite of the

popularity of standard EGS algorithm, the technique is sensitive to weak region

boundaries - where variability between two regions is small (Peng et al. 2013).

In this chapter, a novel circular shape guided graph based image segmentation

technique is proposed. In addition to intensity information, the merging predicate

of standard EGS algorithm was redefined to exploit circular shape information.

The proposed technique was evaluated by segmenting nuclei from overlapping

cervical cytology images.

4.2 Circular shape prior in efficient graph based

segmentation (CircEGS)

4.2.1 An overview of EGS method

Let G = (V,E) be a graph, where V is the set of vertices and E is the set

of edges. In graph based segmentation approach, a graph is segmented into

mutually exclusive components in a way that each component C corresponds to

a connected component in a sub-graph G′ = (V,E ′), where E ′ ⊆ E. Edge weight

can be defined considering properties associated with the vertices it connects. In

EGS technique, segmentation of a graph is performed such that there is enough
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similarity within a component and dissimilarity across different components.

Image pixels represent the vertices for graph based image segmentation meth-

ods. The standard EGS technique implements bottom-up strategy, therefore seg-

mentation process is performed in conjunction with a region merging process of

image pixels. Region merging is performed considering a pairwise region compar-

ison predicate for generating components/regions. This predicate measures and

compares the intra/within and inter/between component dissimilarity, where edge

weight is defined as the absolute image intensity difference of the corresponding

components. Two components are allowed to merge, if the internal difference of

at least one component is larger than the difference between two components.

The formal definition of the merging predicate for any two components C1 and

C2 is:

D(C1, C2) ≤ min (I(C1) + τ(C1), I(C2) + τ(C2)) , (4.1)

where the difference between two components D(·, ·) is calculated as the mini-

mum edge weight connecting the two components. The internal difference for a

component I(·) is found as the maximum edge weight in the MST of the compo-

nent. These differences are adaptively calculated from components’ edge weights

in the image. The threshold function τ is defined as:

τ(C) =
k

|C|
, (4.2)

where | · | denotes the size of a component, and k is a constant. The value of con-

stant k controls the granularity of the segmentation; larger k imposes preference

for larger components. Two components C1 and C2 will be merged, if the merging

criterion in Equation (4.1) is satisfied. Algorithm 1 presents the pseudo-code for

the standard EGS technique (Felzenszwalb & Huttenlocher 2004).

4.2.2 The proposed circular shape prior

The threshold function τ defined in Equation (4.2) is redefined to employ the

circular shape constraint. This redefined new threshold is used in the merging

predicate in Equation (4.1), so that it is possible to prefer components of a target

shape.

The new threshold function is defined as a weighted sum of the original thresh-

old function τ or area term and a new circular shape term ψ. Given a component
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Algorithm 1 Efficient graph based segmentation algorithm

Input: Graph G = (V,E) with n vertices and m edges
Output: Segmented components S = (C1, . . . , Cr)

1: Sort edges E by increasing edge weights and save the ordered edges as O =
(e1, . . . , em).

2: Start with a segmentation S0, where each vertex constitutes a single compo-
nent.

3: Repeat step 4 for q = 1, . . . ,m.
4: Construct Sq from Sq−1. Let vi and vj be two vertices of q-th edge in O. If
vi and vj are in disjoint components Cq−1

i and Cq−1
j of Sq−1, and difference

between these two components is small comparing to the internal difference
of both of these components, then Sq is obtained by merging Cq−1

i and Cq−1
j .

Otherwise, Sq = Sq−1.
5: Return S = Sm.

C, the new threshold function τ̄ is defined as:

τ̄(C) = λ · τ(C) + (1− λ) · ψ(C), (4.3)

where weight parameter 0 ≤ λ ≤ 1 controls the relative importance between the

area and shape terms. Smaller λ makes the shape term more important and vice

versa.

Circular shape term ψ reflects the circularity measure of a component. Fol-

lowing (Giger et al. 1988), an equivalent circle is used to measure the circularity

criterion. The circle with equivalent area of the considered component is called an

equivalent circle. The overlapped area of the component with its equivalent circle

and the total area of that component, is used to define ψ. This is schematically

demonstrated in Figure 4.1.

Figure 4.1: Schematic illustration of circularity definition.
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Circularity measure ψ for a component C is defined as:

ψ(C) =
|C ∩ EQc|
|C|

, (4.4)

where EQc is the equivalent circle, centered at the component centroid with radius

r =
√
|C| /π. Note that, EQc has the equivalent area as C and if C is a circle,

then ψ(C) = 1. Hence, for any component C, the value of circularity measure

ψ lies in the range [0, 1]. Higher value of ψ indicates that the component C is

more circular. Two components C1 and C2 are merged, if the following merging

predicate is satisfied:

D̄(C1, C2) ≤ min (I(C1) + τ̄(C1), I(C2) + τ̄(C2)) . (4.5)

The proposed CircEGS segmentation technique enforces more circular nu-

cleus in the segmentation output. In case of images with weak edges between

regions caused by low contrast, object occlusion, overlapping, noise, the proposed

CircEGS method helps to preclude circular components from merging with other

non-circular components.

4.3 Dataset

The segmentation technique proposed in this chapter was evaluated using the

ISBI 2014 challenge dataset (described in Section 3.3). This dataset contains 945

grayscale synthetic cervical smear images of 512 × 512 pixels, subdivided into

the training set of 45 images - used for parameter tuning, and a test set of 900

images - used for evaluation.

4.4 Evaluation metrics

After the segmentation process is completed, the region with the highest overlap

with the ground truth nucleus (measured by Dice similarity coefficient (DSC)

using Equation (3.16)) - was considered as the segmented nucleus and used for

evaluation of the nucleus segmentation performance. Quantitative evaluation

measures defined in Section 3.5 were used in this study to evaluate the proposed

CircEGS technique. The measures are: object-based precision (PRobj), object-

based recall (RCobj), pixel based precision (PRpix), pixel based recall (RCpix),
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DSC, and circularity (ψ). In addition to these, Hausdorff distance (H) and bor-

der error with tolerance (Ht metric) were also used to evaluate the segmentation

boundaries. Performance evaluation measures were calculated using all correctly

detected nucleus regions that satisfy Equation (3.11).

Hausdorff distance is the maximum distance of a set to the nearest point in

the other set (Huttenlocher et al. 1993). This distance can be used to measure the

proximity of two sets. Let A = {a1, a2, . . . , ap} and B = {b1, b2, . . . , aq} be two

finite sets with p and q number of elements, respectively. The Hausdorff distance

h from set A to B is defined as:

h(A,B) = max
a∈A

(min
b∈B
‖a− b‖), (4.6)

where ‖·‖ is some underlying norm on the points of the sets A and B. Since,

the Hausdorff distance is asymmetric (usually h(A,B) 6= h(B,A)), a general

definition of Hausdorff distance H between two sets A and B is:

H(A,B) = max (h(A,B), h(B,A)). (4.7)

Note that H(A,B) = H(B,A). In this study, H was used as a measure of distance

(in pixels) between the segmented nucleus and its ground truth, to indicate how

close the boundaries are. Lower value for H is preferable. Since, H is computed

using the estimated and ground truth ROI boundaries, it is sensitive to noise

and outliers. In medical image segmentation, usually ground truth boundaries

are delineated by human observer and there exist variability (Bajger et al. 2013).

Hence, solely it may not be the best indication of segmentation accuracy for

techniques that do not aim to minimize this measure.

The border positioning error or Ht metric (Kubassova et al. 2006), considers

the uncertainty in ground truth boundaries by using a tolerance. It is calculated

as the mean deviation of boundary pixels from the ground truth over the entire

border length of the segmented region. The Ht metric is the percentage of pixel-

wise closeness between two region boundaries with tolerance t pixels. For two

boundaries A and B, Ht metric is defined as:

Ht(A,B) =
1

2

(
NAt

NA

+
NBt

NB

)
, (4.8)

where NA and NB are the number of pixels in region boundaries A and B, t

is the tolerance in pixels, and NAt and NBt are the number of pixels correctly

identified with tolerance t for the boundaries A and B. For a given boundary,
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the Ht metric increases monotonically with t and converges to 1. This metric was

used to measure the boundary precision of the segmented nucleus compared to

the ground truth.

4.5 Experimental setup

Parameters required for the EGS and the proposed CircEGS algorithms, were

tuned using 45 training images. Test dataset of 900 images was used to evaluate

detection and segmentation performance of the proposed framework. Both EGS

and CircEGS techniques were implemented in-house using Java programming

language. A PC with Intel Core i7-4770 3.40 GHz processor and 8 GB RAM

was used to run both segmentation techniques. After segmenting cervical smear

images with standard EGS and proposed CircEGS, all performance evaluations

were implemented in Matlab R2017b.

4.6 Parameter tuning

The constant k (see Equation (4.2)) need to be determined empirically, for both

EGS and CircEGS techniques. Parameter k controls the degree of similarity

between components, therefore the final number of components (and their average

size) in the segmented output (Ma, Bajger, Slavotinek & Bottema 2007, Bajger

et al. 2013). Size of nucleus varies from 100 to 600, in 45 images of ISBI training

set. Hence, training images were segmented using EGS and CircEGS techniques

with k values in the range [50, 650] with step of 50.

Detection and segmentation evaluation measures (PRobj, RCobj, DSC, PRpix,

and RCpix) for the training set, were found for EGS and CircEGS segmented

nucleus regions and plotted in graphs (shown in Figure 4.2). DSC is an overlap

index - calculated from correct detections only. It can be observed from the graphs

that DSC is rather stable over the whole range of k values for both EGS and

CircEGS methods. The trade-off between PRpix and RCpix can be clearly seen

from the graphs for EGS and CircEGS techniques, and both plots intersect around

k = 150. The sharp decline of PRpix and incline of RCpix stopped at k = 250, and

both plots relatively stabilized after k = 250. A quick improvement of PRobj and

RCobj is visible in Figure 4.2a and 4.2b, for k = 50 to k = 100, reached maximum

for k = 150, and then started to decline. Since larger k value produces larger

components, the increase in k value impacted object based evaluation measures
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Figure 4.2: Plots of evaluation measures for k in the range [50, 650] using ISBI
training set using, (a) EGS and (b) CircEGS techniques.

calculated from all segmented regions and number correct detections from the

segmentation outcome. It is worth mentioning that, for CircEGS technique both

PRobj and RCobj remained above 0.8 even with large k values, whereas for EGS

technique both object based measure declined below 0.7 for k = 650. It can

be concluded after the analysis of the graphs in Figure 4.2a and 4.2b that both

detection and segmentation performance of EGS and CircEGS are comparable

for k in the range [100, 250]. For ISBI dataset, k = 150 was selected and used for
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both EGS and CircEGS techniques in this study.

Weight parameter λ for CircEGS method in Equation (4.3), controls the rel-

ative importance of area or circular shape constrain. The value of λ was found

empirically as 0.65, using the training images. Table 4.1 summarizes these find-

ings.

Table 4.1: Empirical values for parameter k and weight parameter λ.

Parameter Value

k 150

λ 0.65

4.7 Results

Nucleus detection and segmentation performance of the proposed CircEGS tech-

nique was assessed using 900 images from the test dataset. Before segmenta-

tion process started, first morphological reconstruction based background removal

technique (see Section 3.4.1.2 for details) was applied on the original images, to

produce the foreground images. Then, foreground images were rescaled by 0.5

to reduce processing time. Finally, a Gaussian filter with standard deviation 0.8

was used to slightly smooth the images. These pre-processed foreground images

were used for segmentation using both standard EGS and the proposed CircEGS

techniques.

All results were compared with the standard EGS method (Felzenszwalb &

Huttenlocher 2004), the baseline and winning techniques (Ushizima et al. 2015,

Nosrati & Hamarneh 2015b) in ISBI 2014 challenge, and other state-of-the-art

methods using the same dataset. Nucleus detection and segmentation results for

ISBI 2014 test dataset, were not explicitly reported in short papers for the winning

techniques (Ushizima et al. 2015, Nosrati & Hamarneh 2015b). However, the

baseline and two winning techniques were evaluated and compared, and complete

results were reported in (Lu et al. 2017).

4.7.1 Quantitative evaluation

For the ISBI dataset, DSC, pixel and object-based precision and recall, Hausdorff

distance, circularity, and Ht metric were computed with k = 150, for both EGS
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and CircEGS techniques.

Object level comparison of the proposed algorithm with standard EGS, Cis-

cFC technique proposed in Chapter 3 and recent techniques in literature, is re-

ported in Table 4.2. The proposed CircEGS outperformed standard EGS method

in terms of both object based precision (0.868/0.830) and recall (0.861/0.811),

however these results were lower than the precision and recall values achieved for

CiscFC. In (Tareef, Song, Huang, Wang, Feng, Chen & Cai 2017), the highest

object-based precision (0.994) was achieved on a small subset (90 images) of the

ISBI 2014 test set, nevertheless object based recall was low (0.911). The highest

value for RCobj (0.971) was achieved in (Zhang et al. 2019), where a deep learning

based technique was used.

Table 4.2: Object level evaluation of the proposed CircEGS technique, in com-
parison with the standard EGS and recent state-of-the-art methods.

Method train/test PRobj RCobj

Lu et al. (2015) 45/900 0.730 0.850

Ushizima et al. method in Lu et al.
(2017)

45/810 0.959 0.895

Nosrati & Hamarneh method in Lu
et al. (2017)

45/810 0.903 0.893

Baseline method in Lu et al. (2017) 45/810 0.977 0.883

Phoulady et al. (2017) 135/810 0.961 0.933

Tareef, Song, Cai, Huang, Chang,
Wang, Fulham, Feng & Chen (2017)

45/90 0.990 0.940

Tareef, Song, Huang, Wang, Feng,
Chen & Cai (2017)

45/90 0.994 0.911

Tareef et al. (2018) 45/900 0.983 0.959

Zhang et al. (2019) 45/900 0.990 0.971

CiscFC method in Chapter 3 45/900 0.968 0.882

Standard EGS 45/900 0.830 0.811

Proposed CircEGS 45/900 0.868 0.861

Bold values represent the best performance per measure.

In terms of segmentation accuracy, the proposed CircEGS produced DSC of

0.897, pixel-based precision of 0.782 and pixel-based recall of 0.955. Segmenta-

tion results of standard EGS technique was lower (DSC - 0.839, PRpix - 0.724,

and RCpix - 0.866), compared to the proposed method. Evaluation measures

to determine segmentation accuracies for the proposed CircEGS, standard EGS,
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CiscFC technique proposed in Chapter 3, and other recent methods in literature,

are reported in Table 4.3. CiscFC technique outperformed the proposed CircEGS

algorithm, in terms of all segmentation accuracy evaluation metrics. The highest

PRpix (0.968) was found for the technique proposed by Ushizima et al. in (Lu

et al. 2017). The proposed CircEGS technique achieved the best value for RCpix

(0.954), and the highest DSC (0.947) was achieved in (Phoulady et al. 2017).

Hausdorff distance (H) gives an indication of the largest distance between

the ground truth and segmented nucleus regions (Bajger et al. 2013), therefore

lower value of H is preferable. None of the state-of-the-art methods reported this

measure. However, H is calculated for the proposed technique and reported in

Table 4.4. The CircEGS method achieved better result for H than the standard

EGS technique (1.628/2.019).

Table 4.3: Pixel level evaluation of the proposed CircEGS technique.

Method train/test PRpix RCpix DSC

Lu et al. (2015) 45/900 0.960 (0.060) 0.900 (0.080) 0.920 (0.050)

Ushizima et al. method
in Lu et al. (2017)

45/810 0.968 (0.055) 0.871 (0.069) 0.914 (0.039)

Nosrati & Hamarneh
method in Lu et al. (2017)

45/810 0.901 (0.097) 0.916 (0.093) 0.900 (0.053)

Baseline method in Lu
et al. (2017)

45/810 0.942 (0.078) 0.912 (0.081) 0.921 (0.049)

Phoulady et al. (2017) 135/810 - - 0.947 (-)

Tareef, Song, Cai, Huang,
Chang, Wang, Fulham,
Feng & Chen (2017)

45/90 0.950 (0.060) 0.930 (0.070) 0.930 (0.040)

Tareef, Song, Huang,
Wang, Feng, Chen & Cai
(2017)

45/90 0.940 (0.060) 0.950 (0.060) 0.940 (0.040)

Tareef et al. (2018) 45/900 0.906 (0.068) 0.950 (0.051) 0.925 (0.041)

Zhang et al. (2019) 45/900 0.902 (-) 0.954 (-) 0.931 (-)

CiscFC method in Chap-
ter 3

45/900 0.927 (0.095) 0.939 (0.090) 0.938 (0.040)

Standard EGS 45/900 0.724 (0.116) 0.866 (0.095) 0.839 (0.067)

Proposed CircEGS 45/900 0.782 (0.103) 0.955 (0.091) 0.897 (0.064)

Bold values represent the best performance per measure.
All results are reported in mean (std) format.
‘-’ indicates unavailable values.
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Table 4.4: Hausdorff distance evaluation.

Method H

Standard EGS 2.019 (0.539)

Proposed CircEGS 1.628 (0.458)

Bold values represent the best performance per
measure.
All results are reported in mean (std) format.

4.7.2 Border precision evaluation

Ht metric was employed to evaluate the border precision of the segmented nuclei,

where t is the precision tolerance in pixels. Figure 4.3 shows the plot of Ht mea-

sure with tolerance t in the range [0, 10] pixels for EGS and CircEGS techniques.

It can be observed from Figure 4.3 that for the whole range of t, the Ht metric

0 1 2 3 4 5 6 7 8 9 10
t

0

0.2

0.4

0.6

0.8

1

H
t

EGS
CircEGS

Figure 4.3: Plot of Ht metric for EGS and CircEGS techniques.

for CircEGS is better than standard EGS method. Ht measures for both EGS

and CircEGS techniques are stabilized for t over 4 pixels.

Table 4.5 presents the values of Ht metric for tolerance thresholds 1, 2, . . . ,

5 pixels. With 1 and 2 pixels tolerances, H1 and H2 values using CircEGS and

EGS for the ISBI test set are 0.850/0.706 and 0.951/0.887, respectively. Overall,

the Ht values for CircEGS are higher, particularly for low values of t.
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Table 4.5: Ht metric with tolerance threshold t set to 1, 2, . . . , 5 (pixels).

Method H1 H2 H3 H4 H5

Standard EGS 0.706 0.887 0.936 0.955 0.975

Proposed CircEGS 0.850 0.951 0.972 0.981 0.991

Bold values represent the best performance per measure.

4.8 Discussion

This chapter presented a novel technique to incorporate a circular shape prior

in efficient graph based segmentation. Superior DSC, pixel-based precision and

recall, and object-based precision and recall, indicate that the proposed technique

with circular shape prior, can segment nucleus more accurately than the stan-

dard one. The Hausdorff distance for CircEGS was lower (which is preferable)

and Ht metric analysis also indicates that the proposed CircEGS produced better

nucleus boundaries. Overall nucleus segmentation performance of the proposed

CircEGS technique has improved compared to the standard EGS method. Per-

formance of the proposed new technique is also comparable with the state-of-the

art techniques.

An in-depth analysis of circularity (ψ) was performed, to better understand

the influence of shape constrain on the nuclei segmentation outcome. By analyz-

ing circularity distribution of ground truth nuclei from ISBI train and test images

(see Section 3.10 and Figure 3.13 for details), circularity threshold was selected

as 0.8 for further analysis.

Figure 4.4 represents the circularity distribution of segmented nuclei using

standard EGS and proposed CircEGS techniques. In case of EGS segmentation,

80.98% segmentation outputs were correctly detected, and among these, 82.8%

(3620 out of 4373) detections had ψ ≥ 0.8. For CircEGS segmentation, 86% of

nucleus were correctly detected, where circularity of 96.8% (4496 out of 4644)

were at least 0.8. From the histograms of Figure 4.4 one can see that the his-

togram for CircEGS outcome (Figure 4.4c) resembles the ground truth histogram

(Figure 4.4a) better, than that for EGS method (Figure 4.4b).

The influence of circularity on nucleus segmentation evaluation measures (DSC,

PRpix, RCpix, and H) can be observed from Table 4.6, where comparison is pre-

sented between EGS and the proposed CircEGS techniques, on the basis of ψ

below and above 0.8. When the circularity is above 0.8, elevated results can be

observed for all segmentation measures, for both EGS and CircEGS techniques.
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Figure 4.4: Circularity histograms of: (a) ground truth, and nuclei segmented
using (b) standard EGS and (c) CircEGS techniques.
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Table 4.6: Influence of circularity on nucleus segmentation measures, in terms of
DSC, pixel based precision (PRpix) and recall (RCpix), and Hausdorff distance
(H).

EGS CircEGS

Measures ψ < 0.8 ψ ≥ 0.8 ψ < 0.8 ψ ≥ 0.8

DSC 0.796 0.848 0.797 0.900

PRpix 0.668 0.774 0.592 0.811

RCpix 0.854 0.886 0.960 0.962

H 2.471 1.924 2.827 1.589

Bold values represent the best performance per measure.

Therefore, circularity measure and segmentation performance for cervical nucleus

are related. Overall, the inclusion of circular shape prior in EGS method has im-

proved both segmentation and detection performance.

Examples of nuclei boundaries segmented by the standard EGS (Felzenszwalb

& Huttenlocher 2004) and the proposed CircEGS method, are presented in Fig-

ure 4.5 for qualitative evaluation and visual comparison. Visual inspection indi-

cates that the proposed CircEGS approach outperforms the standard EGS tech-

nique (see Figure 4.5c, 4.5f, 4.5i). In cases like Figure 4.5l, the proposed algorithm

could detect and segment some nucleus, where the standard EGS technique failed.

Finally, from both quantitative and qualitative evaluations, it can be concluded

that CircEGS detected and segmented nuclei more precisely compared to the

standard EGS method.

The proposed technique has some limitations that need to be addressed. In

this study, the value of parameter λ (see Equation (4.3) in Section 4.2.2), which

controls the relative importance between area term τ and circular shape prior

ψ, and parameter k - controlling the granularity of segmentation (see Equa-

tion (4.2)), were found using a small set of 45 images as 0.65 and 150, respec-

tively. These values of λ and k, were used to evaluate the proposed CircEGS

technique with 900 images from the test set. These values did not perform well,

where nuclei are in close proximity (see Figure 4.6h, 4.6l), in the presence of poor

contrast between nucleus and cytoplasm due to cell overlapping (see Figure 4.6i,

4.6j) and uneven staining (see Figure 4.6g, 4.6k).
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4.9 Conclusion

This chapter presented a novel graph based segmentation method with shape

prior, to segment nuclei from overlapping cervical cytology images. A new weighted

circular shape guidance was incorporated in the merging predicate of the standard

EGS method. The proposed algorithm used both intensity and shape informa-

tion while merging regions; therefore it produced nucleus segmentation bound-

aries with better circularity than the standard technique. Experimentation of

the proposed method was conducted on ISBI 2014 challenge dataset, and perfor-

mance was evaluated qualitatively and quantitatively in terms of: Dice similarity

coefficient, pixel and object-based precision and recall, circularity, Hausdorff dis-

tance, and Ht metric. Experimental results and visual inspection indicate that

the proposed CircEGS can produce better segmentation of cervical nuclei, when

compared with the standard EGS method.
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(j) (k) (l)

Figure 4.5: Nucleus segmentation examples. First column presents original im-
ages marked with nucleus ground truth, second column shows the segmented
boundaries using the EGS method, and third column contains the segmentation
boundaries using CircEGS technique. Differences between CircEGS and EGS
techniques are marked with green rectangles.
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Chapter 5

Superpixel merging with gradient

guidance

Region merging is one of the basic approaches in the field of image segmenta-

tion. In pixel level representation of image, region merging based segmentation

techniques are affected by noise. To overcome this limitation, a superpixel based

region merging technique is proposed to find nucleus accurately from cervical

cell images. In this chapter, a novel region merging criteria with pairwise con-

trast and gradient boundary is introduced and a superpixel merging framework is

presented. Section 5.3 presents step-wise detail of the proposed methodology of

superpixel merging, and also introduces superpixel merging criteria. Section 5.4,

Section 5.5, and Section 5.6, presents evaluation metrics, experimental set-up,

and tuning of required threshold values for parameters, respectively. Experi-

mental results and comparison with the recent state-of-the-art cervical nucleus

segmentation techniques, are reported in Section 5.7. Section 5.8 provides a for-

mal discussion and use of an alternative superpixel generation technique, for the

proposed framework. Summary of this chapter is provided in Section 5.9.

5.1 Introduction

Accurate detection and segmentation of cell nuclei is the most important step to-

wards Malignancy Associated Change (MAC) analysis and computer-aided anal-

ysis of cervical cells. Researchers used a wide range of methods to find nucleus

accurately. While segmenting cell images, many of the methods used cluster

of pixels or superpixels to represent the underlying image instead of pixel-grid
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based presentation, to reduce the effect of noise in segmentation outcome (Ushiz-

ima et al. 2015, Nosrati & Hamarneh 2015b, Lu et al. 2015, Lee & Kim 2016,

Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng & Chen 2017).

SLIC (Achanta et al. 2012) is one of the most popular techniques to generate

regular and compact superpixels, and also been used to segment cervical nuclei

in (Lee & Kim 2016, Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng

& Chen 2017). Preferred average size of superpixels need to be known before

running the SLIC method. However, size of cervical cell nuclei varies over a

wide range. Depending on the grade of abnormality, nucleus enlargement can

be even six times of the normal size of nucleus (Nayar & Wilbur 2015). Cell

overlapping and uneven staining in cervical images cause intensity inhomogene-

ity and poor contrast. Hence, there is strong possibility of over-segmentation or

under-segmentation of nucleus with a fixed preferred size of SLIC superpixel, and

nuclei segmentation task become more challenging in the aforementioned situ-

ations. In (Lee & Kim 2016), a local thresholding technique (Phansalkar et al.

2011) was used to segment nuclei candidates from over-segmented SLIC superpix-

els. However, four fixed weighting variables used in local thresholding technique,

make it difficult to cope with the challenge of varying nucleus size. In (Tareef,

Song, Cai, Huang, Chang, Wang, Fulham, Feng & Chen 2017), the difficulty im-

posed by over-segmentation of SLIC superpixels was mentioned, and they tried

to handle it using several pre-processing techniques and a feature vector com-

posed of shape, texture and boundary clues for superpixel classification, however

under-segmentation problem was not considered.

In this chapter, a superpixel merging framework with a novel region merging

criteria is proposed to segment nuclei from overlapping cervical cytology images.

SLIC technique is used to over-segment images in a way that nucleus is divided

into tiny superpixel regions, thus there is no issue with under-segmentation of nu-

cleus. Then, the region merging process is initiated from detected nuclei markers

and guided by pairwise regional contrast and image gradient boundary analysis.

5.2 Dataset

ISBI 2014 challenge dataset (described in Section 3.3) is used to evaluate the

proposed segmentation framework. There are 945 cervical smear images of 512×
512 pixels, and all are 8 bit grayscale images. The training set of 45 images is used

for tuning parameter values and the test set of 900 images is used for evaluation.
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Training images had 270 and test images contained 5400 nucleus in total.

5.3 Methodology

The proposed nucleus segmentation framework has five key steps: nuclei marker

detection, gradient boundary generation, superpixel generation, superpixel merg-

ing and shape regularization. Figure 5.1 presents a flowchart of the proposed

methodology. In nuclei marker detection step, markers or seed points for nuclei

Figure 5.1: The flowchart of the proposed nucleus segmentation framework.

were obtained from original images. Gradient boundaries were generated using

nuclei markers and gradient magnitude of Pap smear images. Superpixel images

were generated using appropriate superpixel generation technique on foreground

images. Then, superpixels were merged to generate segmented nucleus, using nu-

clei markers, pairwise regional contrast, and gradient guidance. Finally, contours

of the segmented nucleus were regularized or smoothed using a level set technique.

All the key steps of the proposed framework are detailed in this section.

5.3.1 Nuclei marker detection

Detection of nuclei markers from original grayscale images, is the first step of the

proposed superpixel merging framework. Nuclei markers were detected by com-

bining bit plane slicing and maximally stable extremal regions (MSER) (Matas

et al. 2004) techniques.

In n bit per pixel binary representation of images, pixel values ranges in [0, 2n]

and contain n number of 1-bit planes. Plane 1 contains the lowest order bit of all

pixels in the image, similarly plane n contains the highest order bit of all pixels.

Therefore, a 8-bit grayscale image consists of 28 or 256 color levels - from 0 (black)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Visual representation of (a) a 8 bit Pap smear image, and its 8 bit
planes as: (b) bit 1 plane, (c) bit 2 plane, (d) bit 3 plane, (e) bit 4 plane, (f) bit
5 plane, (g) bit 6 plane, (h) bit 7 plane, and (i) bit 8 plane.

to 255 (white), and each pixel can be represented with eight 1-bit planes (Shih

2010). Grayscale images can be sliced from bit 1 plane or Least Significant Bit

(LSB) plane to bit 8 plane or Most Significant Bit (MSB) plane. Most image

information resides in more significant bits, and less significant bits contain noise

and some finer details (Shih 2010). Figure 5.2 presents an example of bit plane

slicing of a cervical cell image. In this study, MSB planes were considered to

contain candidates for nuclei markers. MSER technique finds maximally stable

connected components from image (Matas et al. 2004). Outputs from MSER

algorithm were also considered as marker candidates.

After finding initial marker candidates, three morphological operations: re-
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moving small regions, filling holes and opening, were applied on both outputs of

MSB plane and MSER techniques to remove some of the false findings. Then

initial candidates were filtered using area, circularity, eccentricity, solidity, and

maximum intensity thresholds. These threshold values were found empirically

and are reported in Section 5.6. Finally, primary nucleus markers were found by

combining filtered initial outputs from MSB plane and MSER algorithm.

Primary marker candidates were further filtered to remove false detections

using a technique from (Phoulady et al. 2017). Candidate regions were dilated to

find the outer boundary. Regions were accepted, if the mean intensity difference

between the outer boundary and the region was greater than a threshold d (see

Section 5.6 for the value of d). Centroids of these final candidates were used as

nuclei markers during superpixel region merging process. The whole process of

nucleus marker detection is summarized with an example in Figure 5.3.

Figure 5.3: An example of nucleus marker detection process: (a) original image,
(b) MSB plane with marker candidates, (c) MSB plane after applying morpholog-
ical operation and filtering, (d) MSER output with nuclei marker candidates, (e)
MSER output after applying morphological operation and filtering, (f) centroids
of final nuclei candidates - found by combining outputs in (c) and (e), are marked
with red stars and used as nuclei markers in the proposed framework.
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5.3.2 Superpixel merging criteria

5.3.2.1 Pairwise regional contrast

A measure of pairwise contrast between two regions is introduced in this study,

to control the merging process of the proposed framework. Pairwise regional

contrast considers region size in addition to similarity between candidate regions

intensity levels. Let Ri and Rj be two candidate regions, then pairwise contrast

C is defined as:

C = abs (µ(Ri)− µ(Rj)) · k, (5.1)

where µ(.) refers to the mean intensity of the corresponding region, abs(.) returns

the absolute value, and the contrast coefficient k is defined as:

k =
|Ri| · |Rj|
|Ri|+ |Rj|

, (5.2)

where |.| indicates the number of pixels in the corresponding region. This contrast

criteria can be used to control superpixel merging in the proposed framework, by

finding an appropriate threshold for the pairwise contrast value.

5.3.2.2 Gradient boundary

Image gradient boundaries are found from gradient magnitude of grayscale Wiener

filtered images. Considering θ◦ equal angle interval, N intensity radial profiles

are drawn from nucleus markers on gradient magnitude image. Maximum inten-

sity points (closest to the nucleus markers) on the radial profiles, are selected as

the gradient boundary points. Gradient boundary generation process for a se-

lected nucleus marker is illustrated in Figure 5.4, which shows a nucleus marker,

intensity profiles, and gradient boundary points. Finally, gradient boundary Gb

is found by connecting N gradient boundary points. These boundaries provide

guidance during the proposed superpixel merging process to find nuclei contours.

5.3.3 Superpixel generation

Before superpixel generation process starts, foreground image is generated. Fore-

ground image is found using the morphological reconstruction based technique

- described in Section 3.4.1.2. Then, the foreground image is over-segmented to
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Figure 5.4: An example of gradient boundary generation, where blue square in
the center indicates nucleus marker, green lines represent intensity profiles, and
red stars stand for gradient boundary points.

generate the superpixel image. The regions in the superpixel image will be called

superpixels in this study.

5.3.3.1 Simple linear iterative clustering (SLIC) superpixels

This technique is an adaptation of the popular k -means clustering for superpixel

generation (Achanta et al. 2012), with low computational complexity and some

control over superpixel size and compactness. The desired number of superpixels

is the only parameter required for the SLIC algorithm to generate approximately

equal sized superpixels. Section 2.1.2.3 provides an overview of SLIC technique.

In this chapter, foreground images are over-segmented using SLIC, so that ap-

proximate average superpixel size remains fixed.

5.3.4 A novel superpixel merging technique with pairwise

regional contrast and gradient boundary

Let the parent superpixel be the superpixel that contains the nucleus marker. The

algorithm for nucleus segmentation is an iterative approach. It starts from the

parent superpixel, which is dilated repeatedly to identify neighboring superpixels,

which are then tested for merging condition.

For all mergings of neighboring superpixels with the parent, pairwise regional

contrast criterion need to be satisfied first. Superpixels are considered for merg-

ing, if their pairwise regional contrast C does not exceed a certain threshold value.
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Then, the location of neighbors with respect to the gradient boundary is deter-

mined. The neighboring superpixel will merge with the parent when the neighbor

superpixel centroid is located inside (see Figure 5.5a) or on top (see Figure 5.5b)

of the gradient boundary. If the neighboring superpixel centroid is outside of the

gradient boundary (see Figure 5.5c), the distance between these two is checked.

Maximum Euclidean distance allowed for superpixel merging is 2 pixels (found

empirically from the training set, see Section 5.6 for details). The newly merged

(a) (b) (c)

Figure 5.5: Test cases for a neighbor superpixel during the proposed merging
process. The centroid of a neighbor superpixel (in green) is: (a) inside, (b) on
and (c) outside, the gradient boundary (in white).

superpixel becomes the parent superpixel for the next dilation. This dilation and

merging process of the algorithm iterates until there are no more superpixels left

that satisfy the merging criteria. Note that due to finite number of superpixels,

the algorithm always converges. The pseudo-code for this process is presented in

Algorithm 2.

This merging algorithm is applied for each nucleus marker in an image. When

the merging process is finished for all the detected markers, merged superpixels

are returned as the binary masks for the segmented nucleus candidates. Figure 5.6

illustrates the superpixel merging procedure for an individual nucleus.

5.3.5 Shape regularization

The proposed framework utilizes over-segmented superpixel images. Hence, seg-

mented nucleus boundaries are jagged by nature (example can be seen in Fig-

ure 5.6f). To smooth the boundaries, distance regularized level set (Li et al. 2010)

was applied. Nucleus boundaries found using the proposed technique were used

as the initial level set contours.
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Algorithm 2 Superpixel merging algorithm

Input: Superpixel image, gradient boundary Gb, pairwise contrast threshold Ct,
and a nucleus marker
Output: Binary mask of segmented nucleus

1: Locate the parent superpixel in the input superpixel image that contains the
nucleus marker

2: Dilate the parent superpixel using disk structuring element of size 1 and
identify the neighboring superpixels

3: Test each neighbor superpixel for merging:
a) Draw a line L to connect parent and neighbor superpixel centroids
b) Find intersection point of L and gradient boundary Gb

c) If there is no intersection point and pairwise contrast C ≤ Ct, merge the
neighbor with the parent superpixel
d) If there is an intersection point and C ≤ Ct, then merge with the parent
superpixel if:

i) neighbor superpixel centroid is located on the gradient boundary Gb,
or

ii) neighbor superpixel centroid is not further than 2 pixels (Euclidean
distance), from Gb

4: Repeat steps 2 and 3 until all relevant neighbor superpixels are merged
5: Return merged superpixel as nucleus binary mask

5.4 Evaluation metrics

The proposed framework was evaluated quantitatively using the notations and

definitions in Section 3.5. All segmented nucleus were checked using ground truths

for being correct detections or not. Object based precision (PRobj) and recall

(RCobj), pixel based precision (PRpix) and recall (RCpix), and Dice similarity

coefficient (DSC), were used for evaluation.

5.5 Experimental setup

Parameters and threshold values required for the proposed superpixel merging

framework were found using 45 images from the training set. Detection and

segmentation performance of the proposed framework was evaluated using 900

images from the test dataset. The framework was implemented in Matlab R2017b,

running on a PC with Intel Core i7-4770 3.40 GHz processor and 8 GB RAM.

SLIC superpixel was generated using the Matlab function superpixels() from the

Image Processing toolbox. Average running time for the proposed framework

with SLIC superpixel was approximately 3.3 seconds per cell and 18 seconds per
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Superpixel merging process illustration. (a) Parent superpixel (in
blue) containing nucleus marker, (b) - (e) show neighbor superpixels (in green)
tested for merging with the parent, and (f) is the final merged superpixel as
segmented nucleus.

image. The code used to implement the framework was not optimized.

5.6 Finding thresholds for parameters

In the proposed framework, some parameters require threshold values to be found

empirically. Training images were used to determine these values.

While finding nuclei markers in Section 5.3.1, thresholds values are required to

filter initial candidates using area, circularity, eccentricity, solidity, and maximum

intensity. Very small regions (area less than 65 pixels) were discarded. Candidates

with eccentricity greater than 0.9, solidity greater than 0.88, and mean intensity

of region greater than 160, were also filtered out. To be candidate for nuclei

markers, suitable range of circularity was found as [0.5, 1.7]. Mean intensity

difference d between inner region and outer boundary was found as 15; that is

candidates with d less than 15 were not considered. Table 5.1 summarizes these

findings.
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Table 5.1: Threshold values to detect candidate nuclei markers.

Parameter Value

Area Minimum 65

Circularity Minimum 0.5 and Maximum 1.7

Eccentricity Maximum 0.9

Solidity Maximum 0.88

Mean intensity of region Maximum 160

Mean intensity difference d Minimum 15

Gradient boundary Gb was generated considering θ = 7.5◦ angles and N =

49 intensity radial profiles (see Section 5.3.2.2). Foreground images were over-

segmented using SLIC technique in a way, such that average superpixel size W

is not bigger that 9 pixels.

Threshold for pairwise regional contrast: In the proposed framework, re-

gions are allowed to merge if their pairwise contrast do not exceed a certain

threshold value. Note that setting k = 1 (see Equation (5.2)) would allow merg-

ing of any two regions with sufficiently small average intensity difference regardless

of their size (too generous condition, as confirmed empirically). For n merging

steps, k can be approximated as follows:

k =
|Ri| · |Rj|
|Ri|+ |Rj|

≈ W ·W
W +W

≤ 2W ·W
2W +W

≤ 3W ·W
3W +W

≤ . . . ≤ nW ·W
nW +W

=

nW 2

(n+ 1)W
=

n

n+ 1
W < W.

(5.3)

This gives an upper estimation for the contrast coefficient which depends

only on the segmentation parameter W (average size of superpixels for SLIC

technique). Summarizing, for any segmented image with average superpixel size

W , if k = 1, all superpixels could be merged, provided their intensities are suffi-

ciently similar, and when k = W none of them could be merged despite very small

intensity difference for the two superpixels. The correct/optimal threshold value

for a data set lies between these two extremes and can now be estimated from

Equation (5.1) as follows. Assuming grayscale images, mean intensity difference

abs(µ(Ri)−µ(Rj)) < 256 for any two superpixels Ri and Rj. Then, the maximum

range to search for the threshold is [256,W · 256). In this study, for SLIC super-

pixels W = 9, so the search range for the threshold was between [256, 2304). An
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analysis was performed on the training set by plotting DSC over the threshold

range, and presented in Figure 5.7. The actual value of the threshold for this

study was selected as Ct = 450, by analyzing the graph.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Pairwise contrast threshold
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Figure 5.7: Plot of Dice similarity coefficient for pairwise regional contrast thresh-
old in the range [256, 2306] with step of 50, using the proposed superpixel merging
framework on ISBI training set.

Maximum distance from gradient boundary: In the proposed superpixel

merging algorithm, if the centroid of a neighbor superpixel is located outside the

gradient boundary, then the Euclidean distance between the centroid and the

boundary is checked. For merging purpose, a maximum allowed distance need

to be defined. After finding the threshold value for pairwise regional contrast

Ct = 450, an analysis was carried out to find the impact of Euclidean distance

on nuclei segmentation performance (particularly on DSC), using the training

images. This is presented as a graph in Figure 5.8. By inspecting the graph, it

was found that the maximum Euclidean distance 2 pixels is the best choice for

Ct = 450.
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Figure 5.8: Plot of Dice similarity coefficient for Euclidean distance in the range
[1, 20], using the proposed superpixel merging framework on ISBI training set.

5.7 Results

The test dataset of 900 images was used to evaluate the proposed superpixel

merging framework, in terms of nucleus detection and segmentation performance.

Results were compared with the baseline and winning techniques (Ushizima et al.

2015, Nosrati & Hamarneh 2015b) in ISBI 2014 challenge (complete results, as

reported in (Lu et al. 2017) were used), and other recent state-of-the-art methods

that used the same public dataset.

Performance of the proposed framework for detecting nucleus from cervical

smear images, was evaluated in terms of object based measures. Nucleus de-

tection results, and comparison with CiscFC (presented in Chapter 3), CircEGS

(presented in Chapter 4) and recent techniques are reported in Table 5.2. The

proposed framework’s performance exceeded the one of CiscFC and CircEGS

techniques. Object based precision and recall values for the proposed method,

are also comparable to the state-of-the-art methods. The highest object based

precision PRobj was 0.994 in (Tareef, Song, Huang, Wang, Feng, Chen & Cai

2017) where only a small subset of 90 test images was used, and the proposed

approach achieved PRobj = 0.980 on the whole 900 image set. The proposed
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approach achieved the object based recall value of RCobj = 0.944. While, the

highest RCobj (0.971) was achieved in (Zhang et al. 2019) using a deep learning

based technique.

Table 5.2: Object based evaluation of the proposed superpixel merging framework
and comparison with the state-of-the-art methods.

Method train/test PRobj RCobj

Lu et al. (2015) 45/900 0.730 0.850

Ushizima et al. method in Lu et al.
(2017)

45/810 0.959 0.895

Nosrati & Hamarneh method in Lu
et al. (2017)

45/810 0.903 0.893

Baseline method in Lu et al. (2017) 45/810 0.977 0.883

Phoulady et al. (2017) 135/810 0.961 0.933

Tareef, Song, Cai, Huang, Chang,
Wang, Fulham, Feng & Chen (2017)

45/90 0.990 0.940

Tareef, Song, Huang, Wang, Feng,
Chen & Cai (2017)

45/90 0.994 0.911

Tareef et al. (2018) 45/900 0.983 0.959

Zhang et al. (2019) 45/900 0.990 0.971

CiscFC method in Chapter 3 45/900 0.968 0.882

CircEGS method in Chapter 4 45/900 0.868 0.861

Proposed framework with SLIC 45/900 0.980 0.944

Bold values represent the best performance per measure.

Evaluation measures to determine segmentation accuracies for the proposed

framework and comparison with CiscFC (proposed in Chapter 3), CircEGS (pro-

posed in Chapter 4) and other recent techniques, are reported in Table 5.3.

The proposed technique scored the highest DSC (0.948) and pixel based re-

call (0.966). This indicates that the proposed superpixel merging framework

missed less nucleus pixels and nucleus segmentation is more accurate compared

to CiscFC, CircEGS and other state-of-the-art techniques. Pixel-based precision

of the proposed framework is lower than CiscFC technique (0.908/0.927), never-

theless this measure has significantly improved compared to CircEGS technique

(0.908/0.782). The highest pixel-based precision value (0.968) was achieved for

the technique proposed by Ushizima et al. reported in (Lu et al. 2017), however

their RCpix (0.871) was the lowest of all the methods in comparison.
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Table 5.3: Evaluation of segmentation accuracy measures for the proposed su-
perpixel merging framework, in comparison to the state-of-the-art techniques.

Method train/test PRpix RCpix DSC

Lu et al. (2015) 45/900 0.960 (0.060) 0.900 (0.080) 0.920 (0.050)

Ushizima et al. method
in Lu et al. (2017)

45/810 0.968 (0.055) 0.871 (0.069) 0.914 (0.039)

Nosrati & Hamarneh
method in Lu et al. (2017)

45/810 0.901 (0.097) 0.916 (0.093) 0.900 (0.053)

Baseline method in Lu
et al. (2017)

45/810 0.942 (0.078) 0.912 (0.081) 0.921 (0.049)

Phoulady et al. (2017) 135/810 - - 0.947 (-)

Tareef, Song, Cai, Huang,
Chang, Wang, Fulham,
Feng & Chen (2017)

45/90 0.950 (0.060) 0.930 (0.070) 0.930 (0.040)

Tareef, Song, Huang,
Wang, Feng, Chen & Cai
(2017)

45/90 0.940 (0.060) 0.950 (0.060) 0.940 (0.040)

Tareef et al. (2018) 45/900 0.906 (0.068) 0.950 (0.051) 0.925 (0.041)

Zhang et al. (2019) 45/900 0.902 (-) 0.954 (-) 0.931 (-)

CiscFC method in Chap-
ter 3

45/900 0.927 (0.095) 0.939 (0.090) 0.938 (0.040)

CircEGS method in Chap-
ter 4

45/900 0.782 (0.103) 0.955 (0.091) 0.897 (0.064)

Proposed framework with
SLIC

45/900 0.908 (0.031) 0.966 (0.026) 0.948 (0.033)

Bold values represent the best performance per measure.
All results are reported in mean (std) format.
‘-’ indicates unavailable values.

5.8 Discussion

This chapter presented a superpixel merging framework to address the challenging

task of cervical cytology nuclei segmentation. A novel superpixel merging criteria

with pairwise regional contrast and gradient boundary was introduced. SLIC

technique was used to generate superpixels in this study. The segmentation and

detection results indicate competitive performance of the proposed method. The

proposed approach helped to overcome the problem of defining an optimal region

size for generating SLIC superpixels, so that nuclei regions over a dataset are

neither over-segmented nor under-segmented.

SLIC is a popular superpixel generation technique due to its speed, memory

efficiency, and segmentation performance. However, approximate equal sized su-
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perpixels criteria and post-processing step to reassign disjoint pixels to nearby

superpixels, may compromise homogeneity of superpixel regions. Consequently,

this may affect the accuracy of nucleus segmentation. To overcome the homo-

geneity issue, other superpixel generation techniques can be used that considers

region homogeneity while segmenting image, for example the Statistical Region

Merging (SRM) segmentation technique (Nock & Nielsen 2004). SRM algorithm

is based on probability and statistical theory, and generates statistically homoge-

nous superpixels. The proposed merging framework utilizing SRM superpixels is

explored in next section.

5.8.1 SRM superpixels

SRM segmentation technique is based on a merging predicate and an order to

perform region merging (see Section 2.1.2.2 for an overview of SRM segmenta-

tion technique). The parameter Q embodied in the merging predicate definition

controls the coarseness of segmentation, with bigger Q value resulting in a finer

segmentation. SRM algorithm does not produce equal sized superpixels and the

number of superpixels can not be controlled. Here the scale of segmentation can

be controlled by tuning the parameter Q. However, finding the best or optimal

Q value for superpixel generation to suit the problem at hand is a challenge (Ba-

jger et al. 2010, Bajger et al. 2013). Pairwise regional contrast threshold Ct was

found by analyzing superpixel size (see Section 5.6 and Equation (5.3)). Since,

size of SRM superpixels can not be approximated beforehand, therefore merging

technique from Section 5.3 is not directly applicable on SRM segmentation.

To overcome this issue, SRM superpixel image partition was generated in

a novel way by fusing two: coarse and fine, SRM outputs. In this strategy,

superpixel merging starts from a big piece of candidate SRM superpixel found

using a small value of parameter Q, call it Qs. Then, the segmentation is updated

iteratively by merging smaller SRM superpixels generated using a bigger value of

Q, call it Qb. The process completes when all relevant superpixels are merged.

Finding Qs value for SRM: The Qs needs to be selected carefully for gen-

erating coarse SRM superpixels, such that small nucleus candidate superpixels

can still be detected. Assuming that the merging predicate of SRM technique is

true for two regions R and R′ from image I, the predicate can be solved for Qs,
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similarly as in (Bajger et al. 2010):

Qs ≤
g2

2T 2
0

(
1

|R|
+

1

|R′|

)
ln

2

δ
, (5.4)

where g is the number of image intensity levels, T0 = |R̄ − R̄′|, with R̄ indicat-

ing the average intensity across the region R. The value for δ is selected small

so that it guarantees high probability of merging relevant regions in the SRM

technique (see Nock & Nielsen (2004) for details). An upper bound for Qs value

can be estimated from Equation (5.4), so that two regions with average intensity

difference T0 or smaller would merge.

In the dataset used in this study (detailed in Section 5.2), the minimum

size of nucleus for training images was 124 pixels, image size |I| = 512× 512 and

g = 256. Following (Nock & Nielsen 2004), δ = 1
6|I|2 was used, and the value of Qs

was selected to limit the superpixel size to 124 or smaller (otherwise some nuclei

could be under-segmented). If |R∪R′| ≈ 124 and T0 = 47 (found empirically from

training images), merging of regions R and R′ can be prevented with Qs ≈ 16

(found by solving Equation (5.4)). Therefore, the size of nucleus candidate 90

pixels is acceptable as the starting point. To illustrate the merging process, once

the size of one region R reaches 90 pixels, a graph was drawn to analyze the

behavior of Qs by plotting Qs as a function of the size of the other region R′ (see

Figure 5.9a). By analyzing the graph, Qs = 15 was found as the optimal value to

generate coarse SRM superpixels, with sizes not exceeding 125(= 90 + 35) pixels.

Finding Qb value for SRM: The next step is to select a value for Qb to pro-

duce finer or over-segmented SRM superpixels. In the proposed framework, this

fine superpixel image was used to refine the segmentation by merging superpix-

els, considering pairwise regional contrast criterion. In Section 5.6, the threshold

value suitable for pairwise regional contrast technique Ct = 450 was found by

analyzing SLIC superpixel size. For SLIC technique, the value for Ct was found

assuming nucleus size to be on average 9 pixels and not bigger than 36 pixels.

However, SRM technique does not guarantee any bound on the size of superpix-

els. Hence, the value of Qb to generate over-segmented image was selected by

analyzing average and maximum SRM superpixel size, so that the previously val-

idated threshold value Ct can still be used. Applying these findings to the current

setting for SRM superpixel generation, and by analyzing Figure 5.9b and 5.9c, it

can be seen that the corresponding Q values for these superpixel sizes fall between

[25000, 35000]. Therefore, Qb = 30000 was selected.
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Figure 5.9: Estimation of Q values for SRM segmentation. (a) Finding Qs for
coarse SRM segmentation, and finding Qb from (b) average and (c) maximum
region size analysis for finer SRM segmentation.

Summarizing, the final fused SRM superpixel image was found in three steps.

First, coarse SRM segmentation of the input image was generated with Qs = 15,

and all superpixels not containing nuclei markers were removed. In second step,

a finer SRM segmentation of the same input image was found using Qb = 30000.

Finally, in the last step, the coarse superpixel partition found in the first step

was fused with the finer partition found in the second step, to get the final

segmentation to be used in superpixel merging process.

Implementation and comparison: A Java in-house implementation of the

original SRM algorithm was used to generate SRM superpixels. Average compu-

tational time for the superpixel merging framework with SRM superpixels was

approximately 4.5 seconds per cell and 25 seconds per image, which is little higher

than with SLIC superpixel generation. The proposed framework was compared

for SLIC and SRM superpixel generation techniques and the results are reported

in Table 5.4.
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Table 5.4: Comparison of nucleus segmentation and detection evaluation for the
proposed superpixel merging framework with SLIC and SRM techniques.

Method DSC PRpix RCpix PRobj RCobj

Proposed frame-
work with SLIC

0.948 (0.033) 0.908 (0.031) 0.966 (0.026) 0.980 0.944

Proposed frame-
work with SRM

0.956 (0.028) 0.930 (0.024) 0.962 (0.017) 0.987 0.944

Bold values represent the best performance per measure.

In terms of nucleus segmentation, the proposed framework with SRM super-

pixels yielded higher DSC than with SLIC superpixels (0.956/0.948). This DSC

value (0.956) is also the highest while compared to other state-of-the-art tech-

niques in Table 5.3. Pixel based precision value PRpix for the proposed framework

with SRM, is higher than in SLIC technique (0.930/0.908), and also comparable

with other methods from literature. RCpix for SRM is slightly less than that of

SLIC (0.962/0.966), and the second highest compared to recent techniques (see

Table 5.3).

From the object level perspective, improvement in true positive detection and

low occurrences of false positive detections can be observed from Table 5.4. The

proposed framework with SRM superpixel segmented 5168 objects, among these

5099 were correctly detected nuclei. The framework with SLIC superpixel found

5077 correctly detected nucleus out of 5163 segmented candidates. More specif-

ically, object level precision PRobj of the proposed framework with SRM was

higher than SLIC technique as (0.987/0.980). In addition to that, higher rate

of true positive detection was coupled with a low false negative rate of detec-

tion 0.056 for SRM superpixels. Object based recall RCobj was same for both

superpixel generation techniques as 0.944. While compared to nuclei detection

performance of the state-of-the-art techniques (in Table 5.2), results achieved for

the proposed framework with SRM technique were comparable.

To better understand the impact of the two different superpixel based seg-

mentation techniques on the accuracy of segmentation, an in-depth analysis was

performed. Figure 5.10 presents the bar graphs for DSC, PRpix and RCpix using

the proposed framework with SRM and SLIC superpixels. For SRM superpixel,

around 84% of correct detections have DSC of 0.95 (see Figure 5.10a), and it

is 73.8% for SLIC superpixel. In case of pixel level measures for SRM super-

pixels, PRpix is above or equal to 0.90 for 92% correctly detected nucleus, and

precision value stands between 0.8 and 0.9 for only 7.7% correct detections (see
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Figure 5.10b). While using SLIC superpixel, 74% of correctly detected nuclei have

PRpix at least 0.9, and 25.4% have 0.8 < PRpix < 0.9. Although proposed frame-

work with SRM superpixel has shown superiority in terms of DSC and PRpix, for

SLIC method RCpix was slightly higher. The pixel based recall is 0.98 or above

for 47.1% nucleus using SLIC, and it is 18.8% for SRM method generated super-

pixels. However, presence of RCpix ≥ 0.95 in 88% cases (see Figure 5.10c) for

SRM superpixels resulted in a very small difference in RCpix for SLIC and SRM

superpixels. While producing superpixels, SRM segmentation algorithm retains

statistical homogeneity. SLIC technique generates superpixels of equal average

size, compromising homogeneity in the superpixel regions itself. This fact helped

the proposed framework with SRM method to improve segmentation accuracies

in terms of DSC and PRpix over SLIC technique.

Nucleus segmentation results can be qualitatively assessed by visual inspec-

tion. Example images from the test dataset, with ground truth and segmented

boundaries using the proposed methodology with SLIC and SRM superpixels,

are displayed in Figure 5.11 for qualitative analysis. It can be seen that the

proposed superpixel merging framework with SRM superpixel produced precise

estimation of nucleus boundaries. The proposed technique with SRM, segmented

nucleus more accurately even in cases where mean intensity of cytoplasm was

very similar to nucleus due to cell overlapping.

Limitation: The proposed framework with SRM superpixels still has some lim-

itations, despite of superior segmentation results. A training dataset is required

to find the threshold value for pairwise regional contrast and parameter Q to

control the scale of segmentation while generating superpixels. Estimation for

the range of pairwise regional contrast threshold is related to approximate su-

perpixel size (see Section 5.6, Equation (5.3)). However, superpixel size can not

be directly approximated for SRM technique. Hence, the merging framework

proposed in Section 5.3 can not be directly implemented with SRM superpixels.

Examples of some failed cases in terms of correctly segmenting nucleus bound-

aries are shown in Figure 5.12. The main reason of failures of the proposed

approach is missing nucleus markers (examples shown in Figure 5.12, where seg-

mented nucleus boundaries are absent). The presence of a marker is critical for

the framework because the merging process starts from the superpixel contain-

ing nucleus maker. This limitation applies for both SLIC and SRM superpixel

generation techniques. Another reason of failure of the proposed approach with

SRM superpixels, is the superpixel generation process. The value of Qs for SRM
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Figure 5.10: Plot of (a) Dice similarity coefficient (DSC), (b) pixel-based pre-
cision (PRpix) and (c) pixel-based recall (RCpix) - for the proposed framework
using SRM and SLIC methods.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.11: Visual comparison of ground truth (in black, left column), and seg-
mented boundaries found by the proposed superpixel merging framework with
SLIC (in yellow, middle column) and SRM (in blue, right column) superpixels.
Differences in segmented boundaries found with SLIC and SRM superpixel gen-
eration techniques are highlighted with green rectangles.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.12: Examples of failure cases with proposed framework with SRM su-
perpixels. Top row presents failures due to missed marker detection, and bottom
row shows failed cases for superpixel generation. Ground truth boundaries are in
black, segmented boundaries are in blue, and differences are indicated with red
arrows.

superpixel generation, estimated from Equation (5.4) and analyzing Figure 5.9a,

could not always separate candidate nucleus superpixel from the surrounding cy-

toplasm because of poor contrast due to cell overlapping. Hence, the final fused

superpixel image was not appropriate for the proposed approach in those cases

and resulted in failure (see bottom row of Figure 5.12).

5.9 Summary and conclusion

This study stands as the first stage for computer-aided analysis of cervical cells.

This chapter proposed a superpixel merging framework to address the challenging

problem of nucleus segmentation from overlapping cervical cytology images. A

novel region merging criteria with pairwise contrast and gradient boundary was

introduced in this chapter. Superpixels were generated using SLIC and SRM

segmentation techniques. Due to the formulation of the algorithm, SLIC tech-

nique may compromise homogeneity in superpixels. Therefore, to alleviate this

limitation, SRM segmentation technique was explored for superpixel generation

and used with the proposed framework. A novel approach to generate SRM su-

perpixel image was also introduced, to compensate the problem of finding the
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optimal value to control the scale of segmentation for SRM.

The performance of the proposed framework was analyzed both qualitatively

and quantitatively, using 900 test images from ISBI 2014 dataset. Segmentation

and detection accuracies of the proposed framework utilizing SRM superpixels

were superior, compared to SLIC technique in terms of DSC, PRpix, PRobj.

Also, similar results obtained for RCpix and RCobj. However, average super-

pixel size can not be approximated for SRM segmentation method, hence similar

analysis used for SLIC technique to find the threshold value range for pairwise

regional contrast is not applicable for SRM algorithm. The threshold value found

for SLIC superpixels was re-used while utilizing SRM approach. Therefore, SLIC

superpixels are more appropriate for the proposed superpixel merging framework,

and will be used later on. The proposed approach helped to overcome the diffi-

culty to define an optimal region size for SLIC method. The highest DSC and

pixel based recall RCpix values indicate that the proposed approach with SLIC

superpixels, can produce more accurate segmentation of nuclei than the recently

published state-of-the-art techniques.
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Chapter 6

Abnormality detection in cervical

cells

In Chapters 3, 4 and 5, three segmentation techniques were presented to precisely

segment cervical nuclei from overlapping Pap smear images. In this chapter, a

framework is proposed to detect abnormality in cervical cells using the tech-

niques developed in previous chapters. Section 6.1 provides an introduction and

Section 6.2 describes the image dataset used for evaluation. The methodology

used in this chapter is described in Section 6.3. Section 6.4 presents the evaluation

metrics used. Experimental results and discussion are presented in Section 6.5,

followed by conclusion in Section 6.6.

6.1 Introduction

Cervix tissues undergo dysplastic changes before true development of cancer and

these changes refer to the abnormalities in cell morphology and structure. Dys-

plastic changes in cell are accompanied with different levels of nucleus and cy-

toplasmic changes and structural disorders. Therefore, morphological features

- extracted from nucleus and cytoplasm, play prominent role in diagnostic de-

cisions, and are crucial for computerized cell image analysis. Due to cell over-

lapping in Pap smear images, cytoplasm boundaries have fuzzy appearance in

cell clusters (Plissiti & Nikou 2012a). Therefore, correct delineation of cytoplasm

boundaries in Pap smear images and extraction of accurate morphological features

from cytoplasm, are still challenging and an active field of research (Chankong

et al. 2014, Dong et al. 2019, Li et al. 2012). However, nucleus is the most dis-

tinguishable region in Pap smear images even with high degree of cell overlap.
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A substantial progress has already been achieved in the direction of precise seg-

mentation of cervical nuclei (Bora et al. 2017, Liu et al. 2018). In addition, three

novel segmentation techniques were proposed in Chapters 3, 4 and 5, to segment

cervical nuclei from overlapping cervical cell images. Based on this scenario, de-

tecting abnormality in Pap smear images - using the features extracted solely

from nucleus, seems quite appropriate.

A new cervical cell classification framework - exclusively based on nuclei fea-

tures, is proposed in this chapter. The proposed framework consists of nucleus

segmentation, feature generation and selection, and classification. The three suc-

cessful segmentation techniques proposed in Chapters 3, 4 and 5, with shape

and prior guidance are used for nucleus segmentation. Features extracted from

segmented nuclei are used in the process of cervical cell classification to detect

abnormality.

6.2 Dataset

The ISBI 2014 dataset used in Chapters 3, 4 and 5 (see Section 3.3 for details) to

evaluate the proposed segmentation techniques, is a synthetic dataset. The chal-

lenge and complexity encountered when processing synthetic data is different from

that of screening real microscopic Pap smear slides. Hence, algorithms developed

and validated on synthetic data should always be verified on real data, to identify

the strength and robustness of the new techniques in real world situation. The

ISBI 2014 dataset contains ground truths for nucleus and cytoplasm, however cell

classification labels are not available for this dataset. Therefore, publicly avail-

able Pap smear benchmark database, or Herlev Pap smear database, presented

in (Jantzen et al. 2005, Jantzen & Dounias 2006), was used in this chapter to ver-

ify the segmentation techniques developed in Chapters 3, 4 and 5 and to evaluate

the proposed abnormality detection or classification framework. This database

is located at http://mde-lab.aegean.gr/index.php/downloads for download.

Pap smear specimens were prepared using conventional Pap staining technique at

Herlev University Hospital, Denmark, and images in this dataset were collected

using digital camera and microscope.

There are 917 labeled images in this dataset, acquired at a magnification of

0.201 µm/pixel. Cervical cells were manually classified as normal and abnormal

by skilled cyto-technicians and doctors. The normal class contains 242 normal

cell images with cell types: superficial squamous (74), intermediate squamous
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(70) and columnar (98). Abnormal class is populated with 675 abnormal cell

images (mild dysplasia - 182, moderate dysplasia - 146, severe dysplasia - 197,

and carcinoma in situ/CIS - 150). Two cyto-technicians examined each cell and

difficult samples were further examined by a doctor, for maximizing the confidence

of classification. In case of disagreement between cyto-technicians and doctors,

the samples were discarded. All images in Herlev database are in RGB format

and associated with ground truths. Figure 6.1 shows examples from normal and

abnormal classes in Herlev dataset.

(a) (b) (c)

(d) (e) (f) (g)

Figure 6.1: Example of cervical cell images from Herlev dataset: (a)-(c) normal
and (d)-(g) abnormal.

6.3 Methodology

In the proposed framework, nuclei were segmented from cervical cell images using

three segmentation techniques: CircEGS (proposed in Chapter 4), CiscFC (pro-

posed in Chapter 3), and superpixel merging framework (proposed in Chapter 5).

The first two techniques are guided by circular shape prior and the last one utilizes

gradient boundary information, while segmenting nucleus. After segmentation,

some morphological, intensity and texture features were calculated solely from

cell nuclei. Then, fuzzy entropy measure was used adaptively to rank features in

the feature set, and top ranking features were selected to form the feature vec-

tor for classification. Several classifiers were employed to discriminate abnormal
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and normal cervical cells. Figure 6.2 shows a block diagram or flowchart of the

proposed methodology.

Figure 6.2: Block diagram of the proposed cervical cell classification framework.

6.3.1 Nucleus segmentation

Images in Herlev dataset are different from the overlapping cervical cell images in

ISBI 2014 challenge dataset (see Section 3.3). The Herlev dataset contains RGB

images, however the segmentation techniques proposed in Chapters 3, 4 and 5, are

designed for grayscale images. These images also contain noise and other imaging

artifacts. Therefore, it is required to convert the RGB images to grayscale and

apply some pre-processing to denoise the images before segmentation.

Preprocessing: Before segmenting nucleus, all images were transformed from

RGB to grayscale images using the same technique as used in (Li et al. 2012,

Zhang, Kong, Liu, Wang, Chen & Sonka 2017). First, original RGB images

were converted to CIELAB color space. CIELAB color space is composed of

L* dimension for luminance or lightness, a* stands for red/green, and b* is for

blue/yellow dimensions. Since, L* dimension separates lightness from color, it

was chosen to generate grayscale images. The L* dimension was extracted from

CIELAB space image and values were normalized to [0, 255] to produce the

grayscale image. Then, a 7× 7 median filter was applied on the grayscale image

to remove noise and smooth the image like in (Chankong et al. 2014, Gautam

et al. 2017). Finally, contrast-limited adaptive histogram equalization (CLAHE)

was applied to improve grayscale image contrast. These pre-processed grayscale

images were used in the segmentation process.

Segmentation: The first nucleus segmentation technique is the circular shape

guided graph based segmentation - CircEGS, proposed in Chapter 4. In addition

to intensity, a weighted shape prior utilizing circularity of nuclei was used in this
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algorithm. Circular shape constrained fuzzy clustering or CiscFC, is the second

method used for segmenting nucleus (presented in Chapter 3). Here, a shape

function was integrated into fuzzy clustering process for precise segmentation of

nuclei boundaries. The third segmentation technique used here, is a gradient

guided superpixel merging based framework (proposed in Chapter 5). This tech-

nique will be abbreviated as SPmerg in this chapter. A novel merging criterion

with pairwise regional contrast and gradient boundary guidance, was used in SP-

merg algorithm to merge SLIC and SRM superpixels. SPmerg technique utilizing

SLIC superpixels will be used in this chapter for Herlev dataset.

Herlev dataset contains single cell images, hence the background part of the

cell is very small, especially in abnormal cell images. Therefore, the background

subtraction steps from the original frameworks proposed in Chapters 3, 4 and

5, were excluded while segmenting nuclei from Herlev dataset. The segmenta-

tion techniques were not retrained for this datset and the default parameter and

threshold values found in Chapters 3, 4 and 5 were used. From segmented re-

gions, the region with the highest overlap with the ground truth nucleus was

considered as the segmented nucleus, as in (Gençtav et al. 2012, Li et al. 2012).

A segmented nucleus region is called correctly detected against ground truth re-

gion, if the criteria in Equation (3.11) is satisfied (see Section 3.5 for details).

Correctly detected nuclei were used in further steps of this proposed framework

for detecting abnormality in cervical cells.

6.3.2 Feature extraction and normalization

Dysplastic changes in cervical cells are visible through morphological changes

(size, shape, texture, and intensity) in cell nuclei (Gençtav et al. 2012, Bora et al.

2017). A set of 13 features grouped as intensity/shape features and texture fea-

tures from gray level co-occurrence matrix, were extracted from correctly detected

nucleus in each image. The 10 intensity/shape related features form a subset of

features used in (Chankong et al. 2014, Jantzen & Dounias 2006). These features

are:

• area

• brightness or mean intensity

• major axis length (length of the major axis of an ellipse that fully encloses

the segmented nucleus)
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• minor axis length (length of the minor axis of an ellipse that fully encloses

the nucleus region)

• elongation (ratio between minor axis length and major axis length of nu-

cleus)

• roundness (ratio between segmented nucleus area and the area of the circle

corresponding to nucleus major axis length)

• perimeter

• compactness (ratio between squared perimeter and area of the segmented

nucleus)

• count of local maxima in 3× 3 windows.

• count of local minima in 3× 3 windows.

The 3 texture features used in this study are: homogeneity, contrast, and en-

ergy. These features were calculated from gray level co-occurrence matrix of the

segmented nucleus using the definitions from (Theodoridis & Koutroumbas 2008).

If feature values vary in different ranges, there is a chance that features

with large values will have a stronger influence on the classifiers (Theodoridis

& Koutroumbas 2008). Therefore, normalization of feature values is an impor-

tant step before using those values for classification. With normalization process,

it is possible to restrict the feature values to stay in a certain range. In this study,

all feature values were normalized to zero mean and unit variance (see (Theodor-

idis & Koutroumbas 2008) for details). If there are N values for a specific feature

x, where x̄ is the mean and σ is the standard deviation of feature x, then values

of feature x were normalized to x̂ as follows:

x̂ =
xi − x̄
σ

,where i = 1, 2, . . . , N. (6.1)

6.3.3 Feature selection

The basic idea of this step is to filter out some features, whose distributions

are relatively random. To determine the importance of features in a feature set,

fuzzy entropy and similarity classifier based feature selection technique - presented

in (Luukka 2011), is used in this study. This technique is based on the concept

of fuzziness measure from (Luca & Termini 1972). Fuzzy entropy values were
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calculated considering a similarity measure between the ideal vectors and sample

vectors for classification. Using this measure, one can rank and order the features

in a feature set. Smaller entropy value of a feature indicates that the feature is

more informative. Therefore, all features were ranked based on the fuzzy entropy

value, and feature vectors were subsequently formed considering this ranking for

classification purpose.

6.3.4 Classifiers

Five popular classifiers from literature named as: Fisher linear discriminant anal-

ysis (LDA), k-nearest neighbor (KNN), support vector machine (SVM) with two

different kernels, and Ensemble, were used in this chapter to evaluate two-class

(normal or abnormal) classification performance. These classifiers are briefly de-

scribed in Section 2.1.5. In case of KNN, 7 nearest neighbors (k = 7) were used,

as in (Chankong et al. 2014). While using SVM classifier, linear and radial basis

function (RBF) kernels were employed. Ensemble method builds predictive mod-

els by combining multiple models, to improve accuracy of decisions. In ensemble

methodology, bagging (bootstrap aggregating) is the most popular method. In

this study, ensemble with bagging technique was used. It is worth to mention that

all the conventional classifiers used in this chapter require inexpensive computa-

tional resources, compared to deep-learning or feature learning based approaches.

In Herlev dataset, no designated training and test sets are available. This

dataset contains only 917 images, and is divided in an imbalanced way into normal

(with 3 cell types) and abnormal (with 4 cell types) classes of cell images. Manual

division of this dataset into train set (for training and validation) and test set (for

evaluation), is not straightforward and may impose bias. Therefore, all classifiers

were used with 10 independent runs of k-fold cross validation (k = 5). In k fold

cross validation (Leisch et al. 1998), the input dataset is randomly partitioned in

k equal sized subsets/folds. The process is repeated for k times and each time -

the classifier is trained with k − 1 subsets and tested with remaining 1 subset of

that fold.

6.4 Evaluation measures

Correctly detected nuclei regions were used to determine segmentation and clas-

sification accuracies. Cervical cell nucleus detection and segmentation were eval-
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uated using the notations and definitions presented in Section 3.5. Nucleus de-

tection performance was assessed using object level precision (PRobj) and recall

(RCobj). Dice similarity coefficient (DSC), pixel level precision (PRpix) and recall

(RCpix), were used to find accuracy of segmented nuclei boundaries.

For ease of comparison with literature, performance of the classifiers were

assessed using five well-known measures from literature that were used to evalu-

ate cervical cell classification. The measures are as: accuracy, sensitivity, speci-

ficity, area under the receiver operating characteristics or ROC curve (AUC), and

Spearman rank-order correlation coefficient (ρ). While evaluating classification

performance in this study, true positive (tp) indicates the number of abnormal

cells classified as abnormal, true negative (tn) stands for number of normal cells

classified as normal, false positive (fp) is the count of normal cells classified as ab-

normal, and false negative (fn) stands for the number of abnormal cells classified

as normal.

Confusion matrix is a popular choice to visualize the performance of a clas-

sifier. It represents the summary of prediction results in a tabular form, for a

specific classification problem (Ting 2017). For the two class classification prob-

lem (abnormal/normal) of this study, the confusion matrix will look like Table 6.1.

Table 6.1: An example of confusion matrix for a two class problem.

Predicted

Normal Abnormal

Actual
Normal tn fp
Abnormal fn tp

Accuracy is calculated as the ratio of correct predictions over the total number

of instances (Chankong et al. 2014). Accuracy for a C class classification can be

defined as:

Accuracy =

∑C
i=1 No. of correct predictions in class i∑C

i=1 No. of instances in class i

=
tp+ tn

tp+ fp+ tn+ fn
.

(6.2)

Sensitivity or true positive rate is found from the ratio of true positive in-

stances (correctly predicted as abnormal cell) and total number of positive in-
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stances (total number abnormal cells) as (Chankong et al. 2014):

Sensitivity =
tp

tp+ fn
. (6.3)

Specificity or true negative rate is defined as the ratio of correctly detected

true negatives and total number of negative instances as (Chankong et al. 2014):

Specificity =
tn

tn+ fp
. (6.4)

AUC is a popular classification performance measure, calculated from ROC

curve (Bradley 1997). ROC curve can be found by plotting classifier’s false posi-

tive rate along x axis and true positive rate or sensitivity along y axis. Note, false

positive rate is equal to (1 − true negative rate) or (1 − specificity). Therefore,

ROC curve is also called sensitivity vs (1− specificity) plot. The area under the

ROC curve provides a measure of predictive power of the classifier.

Spearman rank-order correlation coefficient (ρ) represents the correlation be-

tween ground truth label (X) and predicted label (Y ) of a classifier. This is

defined as in (Gençtav et al. 2012):

ρ =

∑N
i=1(Xi − X̄)(Yi − Ȳ ){∑N

i=1(Xi − X̄)2
∑N

i=1(Yi − Ȳ )2
}1/2

, (6.5)

where N is the total number of instances, and X̄ and Ȳ are the mean values of

ground truth and predicated labels, respectively. Values for ρ range in [−1,+1],

where −1 indicates perfect negative correlation, +1 indicates perfect positive

correlation, and 0 indicates no correlation between the labels. If both labels are

highly correlated, the value of ρ will be close to +1 (Gençtav et al. 2012, Chankong

et al. 2014). In summary, higher values (close or equal to 1) are preferable for all

evaluation measures used for nucleus detection, segmentation and classification.

6.5 Experimental results and discussion

In this chapter, the proposed framework to detect abnormality from nuclei fea-

tures was evaluated using the Herlev dataset. Evaluation of nuclei segmentation

and cell classification results, and comparison of these results with the state-of-

the-art methods are presented in this section.
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Nuclei segmentation: Shape and gradient boundary guided segmentation

techniques were used to segment nuclei, to overcome the difficulties associated

with poor contrast and intensity inhomogeneity. Table 6.2 presents the results

of nucleus segmentation (calculated from correctly detected nuclei) and detection

evaluations. The values for nucleus segmentation and detection measures for all

three segmentation techniques were close to or above 0.9. This performance is

very satisfactory, since the parameters for the segmentation techniques proposed

in Chapters 3, 4 and 5 were not re-tuned for Herlev dataset, and previously es-

tablished on a different dataset. This indicates that the segmentation techniques

developed in Chapters 3, 4 and 5 are robust and applicable directly to other

datasets.

The best segmentation performance, in terms of average DSC, PRpix and

RCpix, was achieved for CiscFC technique as 0.94, 0.94 and 0.92, respectively.

Average nuclei detection performance with CircEGS was the best with PRobj

(0.91) and RCobj (0.94). From 917 cervical cell nuclei, CircEGS, CiscFC and SP-

merg (using SLIC superpixels) segmentation techniques could correctly segment

859, 814 and 799 nuclei, respectively. Examples are presented in Figure 6.3 to

compare ground truth nuclei boundaries with boundaries found using all three

segmentation techniques. The segmentation using SPmerg technique with SLIC

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3: Comparison of ground truth (in black, first column), and segmented
nuclei boundaries found using: CircEGS (in white, second column), CiscFC (in
cyan, third column), and SPmerg (in yellow, last column) techniques.

superpixels and guided by gradient boundaries, did not perform well for abnormal

cells compared to other two methods, because approximating gradient boundary
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was very challenging for Herlev dataset.

Table 6.2: Evaluation of nucleus segmentation and detection for Herlev dataset.

Performance measures

Segmentation Detection

Method Class Cell type DSC PRpix RCpix PRobj RCobj

Super. 0.94 (0.05) 0.87 (0.13) 0.98 (0.04) 0.97 0.99
Normal Inter. 0.93 (0.07) 0.94 (0.07) 0.92 (0.12) 0.93 0.97

Column. 0.90 (0.08) 0.91 (0.09) 0.85 (0.15) 0.90 0.93

CircEGS Mild dys. 0.90 (0.08) 0.95 (0.08) 0.83 (0.15) 0.86 0.90
Abormal Mod. dys. 0.91 (0.07) 0.93 (0.09) 0.87 (0.13) 0.89 0.92

Sev. dys. 0.92 (0.07) 0.92 (0.12) 0.91 (0.12) 0.92 0.93
CIS 0.91 (0.07) 0.91 (0.12) 0.90 (0.11) 0.95 0.97

Average with CircEGS 0.91 (0.07) 0.92 (0.11) 0.88 (0.13) 0.91 0.94

Super. 0.95 (0.05) 0.93 (0.11) 0.96 (0.06) 0.91 0.91
Normal Inter. 0.96 (0.03) 0.96 (0.07) 0.95 (0.06) 0.91 0.91

Column. 0.93 (0.06) 0.94 (0.09) 0.89 (0.12) 0.92 0.92

CiscFC Mild dys. 0.96 (0.05) 0.93 (0.11) 0.96 (0.05) 0.92 0.92
Abormal Mod. dys. 0.95 (0.05) 0.93 (0.11) 0.95 (0.08) 0.95 0.95

Sev. dys. 0.93 (0.06) 0.96 (0.08) 0.87 (0.13) 0.81 0.81
CIS 0.93 (0.05) 0.95 (0.09) 0.90 (0.10) 0.85 0.85

Average with CiscFC 0.94 (0.05) 0.94 (0.10) 0.92 (0.10) 0.89 0.89

Super. 0.90 (0.05) 0.83 (0.08) 1.00 (0.00) 0.88 0.85
Normal Inter. 0.92 (0.04) 0.85 (0.07) 0.99 (0.02) 0.93 0.90

Column. 0.87 (0.09) 0.81 (0.13) 0.95 (0.09) 0.79 0.80

SPmerg Mild dys. 0.86 (0.10) 0.93 (0.08) 0.83 (0.17) 0.79 0.81
Abormal Mod. dys. 0.87 (0.10) 0.92 (0.08) 0.85 (0.16) 0.83 0.83

Sev. dys. 0.89 (0.08) 0.91 (0.09) 0.89 (0.14) 0.90 0.92
CIS 0.88 (0.09) 0.90 (0.10) 0.87 (0.14) 0.91 0.92

Average with SPmerg 0.88 (0.09) 0.89 (0.10) 0.89 (0.14) 0.86 0.86

Bold values represent the best average performance of segmentation techniques.
Segmentation results are reported in mean (std) format.
Detection results are reported as mean values.

CiscFC was the best performing method in terms of segmentation accuracy

and was compared with the recent state-of-the-art techniques in literature that

also used the Herlev dataset for evaluation. The comparison is presented in Ta-

ble 6.3. The best values for DSC, PRpix and RCpix were obtained in (Liu et al.

2018), where nuclei were segmented using mask regional convolutional neural

network (Mask-RCNN) and local fully connected conditional random field (LFC-

CRF) techniques. However, this result differs by only around 1% (DSC) from the

proposed techniques outcome. The highest DSC (0.95) was also found in (Dong

et al. 2019) using adaptive gradient vector flow (AGVF) snake method. Nu-
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cleus segmentation results found using CiscFC algorithm were higher than that

achieved using graph-based fully convolutional network (FCN-G) (Zhang, Sonka,

Lu, Summers & Yao 2017). Overall, nucleus segmentation performance achieved

from this study is comparable with the recent state-of-the-art methods.

Table 6.3: Comparison of nucleus segmentation performance of the proposed
framework, with the state-of-the-art methods using Herlev dataset.

Method DSC PRpix RCpix

Gençtav et al. (2012) 0.89 0.88 0.93

Li et al. (2012) 0.94 - -

Chankong et al. (2014) 0.80 0.85 0.83

Zhang, Sonka, Lu, Summers & Yao (2017) 0.92 - -

Gautam et al. (2017) 0.86 0.85 0.89

Zhang, Kong, Liu, Wang, Chen & Sonka
(2017)

- 0.90 0.95

Liu et al. (2018) 0.95 0.96 0.96

Dong et al. (2019) 0.95 - -

Proposed with CiscFC 0.94 0.94 0.92

Bold values represent the best performance per measure.
‘-’ represents values not available.

Cell classification: Fuzzy entropy based hierarchical order/ranking was found

adaptively from the training set in each fold of a run. This ordering was used

to select the top ranking features for the test set, and form the feature vector

for classification task in that fold. Rankings of 13 features in 5-folds of a run

are presented in Table 6.4. Following this adaptive way, thirteen sets of feature

vectors were generated, based on the ranking; with top 1, 2, 3, . . ., 13 features, re-

spectively. The effectiveness of these 13 feature vectors was evaluated using LDA,

KNN, SVM-linear, Ensemble-bag, and SVM-RBF classifiers, and all classification

evaluation metrics were computed.

AUC score is widely used to assess the predictive power of classifiers. In

Figure 6.4, AUC scores found for all classifiers are plotted against the aforemen-

tioned thirteen sets of features. By analyzing AUC scores over number of ranked

features/feature sets, it was found that the classification performance stabilizes

for the feature set with 10 best features, for all classifiers and nuclei segmentation

142



Table 6.4: Fuzzy entropy based hierarchical ordering/ranking of 13 features of
5-folds in a run.

Rank Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

1 compactness compactness compactness local minima compactness

2 local minima local minima local maxima compactness local minima

3 local maxima local maxima local minima local maxima local maxima

4 perimeter perimeter perimeter perimeter perimeter

5 area area area area major axis

6 brightness major axis major axis major axis area

7 major axis brightness brightness brightness brightness

8 minor axis minor axis contrast minor axis contrast

9 contrast contrast minor axis contrast minor axis

10 roundness roundness homogeneity roundness roundness

11 elongation elongation roundness homogeneity elongation

12 homogeneity homogeneity elongation elongation homogeneity

13 energy energy energy energy energy

Rankings are presented in descending order, where rank 1 indicates the top and rank 13
is the lowest rank.

techniques. Thus, classification performance outcome of the proposed framework

with the 10 best features were reported in this study.

Table 6.5 presents two class (normal and abnormal cells) classification results

with 10 features. Classification performance for CircEGS, CiscFC and SPmerg

nucleus segmentation techniques, was the best with SVM-linear, Ensemble-bag

and LDA, respectively. A direct relation between segmentation/detection and

classification performance can be observed from Table 6.2 and Table 6.5. Seg-

mentation accuracy was the best for CiscFC technique, however nuclei detection

accuracy of CircEGS technique was the highest with second best segmentation

accuracy. It can be seen from Table 6.5 that cell classification performance was

the best for CircEGS algorithm.

Confusion matrices of the best classification performance for three nuclei seg-

mentation techniques, are presented in Table 6.6. These matrices were generated

as the summation of the confusion matrices found for each fold in a run. It can

be summarized from the confusion matrices that, CircEGS segmented nuclei with

SVM-linear classifier outperformed others. A snapshot of classification measures
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Figure 6.4: Plot of AUC over number of ranked features with LDA, KNN, SVM-
linear, Ensemble-Bag, and SVM-RBF classifiers, for Herlev dataset segmented
with: (a) CircEGS, (b) CiscFC and (c) SPmerg techniques.
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Table 6.5: Two-class classification performance of Herlev dataset - segmented
with CircEGS, CiscFC and SPmerg methods, with 10 independent runs of 5-fold
cross validation and 10 nuclei features.

Classifiers

Method Measures LDA KNN
SVM-

lin.
Ensemble-

Bag
SVM-
RBF

Accuracy 0.96 0.95 0.96 0.96 0.94
AUC 0.99 0.97 0.99 0.98 0.97
Sensitivity 0.99 0.99 0.98 0.98 0.99

CircEGS Specificity 0.88 0.84 0.91 0.91 0.81
ρ 0.89 0.87 0.91 0.90 0.85

Accuracy 0.92 0.92 0.92 0.93 0.92
AUC 0.96 0.95 0.96 0.96 0.94
Sensitivity 0.97 0.97 0.96 0.97 0.98

CiscFC Specificity 0.80 0.80 0.82 0.82 0.77
ρ 0.80 0.80 0.80 0.81 0.80

Accuracy 0.91 0.91 0.91 0.91 0.91
AUC 0.93 0.92 0.92 0.93 0.90
Sensitivity 0.97 0.97 0.97 0.96 0.99

SPmerg Specificity 0.75 0.73 0.74 0.75 0.69
ρ 0.77 0.75 0.76 0.76 0.76

Bold values represent the best performance for each measure per segmentation technique.

Table 6.6: Confusion matrices for the best classifiers in 2 class classification
problem of Herlev dataset with 10 features, accumulated over 5-folds in a run.

Predicted

CircEGS +
SVM-linear

CiscFC +
Ensemble-bag

SPmerg + LDA

Normal Abnormal Normal Abnormal Normal Abnormal

Actual
Normal 213 8 178 19 153 16
Abnormal 19 619 43 574 50 580

found in 5 folds of an iteration using CircEGS segmentation and SVM-linear clas-

sification, is presented in Table 6.7. From these results, the highest AUC score

Table 6.7: Classification results of 5-folds in a run, found for CircEGS segmenta-
tion and SVM linear classification with 10 nuclei features.

Measures Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Accuracy 0.97 0.97 0.95 0.97 0.97
AUC 0.99 0.99 0.98 0.99 0.99
Sensitivity 0.98 0.99 0.98 0.99 0.98
Specificity 0.94 0.89 0.87 0.89 0.94
ρ 0.93 0.91 0.88 0.93 0.93
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was in fold 1 (0.994382. . . ) and the lowest for fold 3 (0.979304. . . ) (the values

are without rounding up to two digits after decimal point). ROC curves for these

two folds are represented in Figure 6.5
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Figure 6.5: ROC curves illustrating the best and lowest AUC scores found in two
folds of classification in a run, with CircEGS segmented nuclei and SVM linear
classifier.

A comparison of the results found for CircEGS + SVM-linear (average of 10

iterations/runs of 5 folds) with the state-of-the art methods classification per-

formance on Herlev dataset, is presented in Table 6.8. The best classification

performance (in terms of accuracy, sensitivity, specificity, and ρ) was found with

artificial neural network (ANN) classifier in (Chankong et al. 2014). Same accu-

racy level (0.99) was also achieved in (Jith et al. 2018) using deep neural network

based on AlexNet. Though, many of the studies did not report AUC, however the

proposed technique achieved higher AUC score (0.99) than GoogLeNet-5C (Lin

et al. 2019). In addition, accuracy, sensitivity, specificity values for the proposed

methodology were also higher than the deep learning based technique GoogLeNet-

5C in (Lin et al. 2019).

The outcome of the proposed methodology is very promising for both cervical

nuclei segmentation and abnormality detection, in comparison with recent litera-

ture using the Herlev dataset for evaluation. Classification performance indicates
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Table 6.8: Comparison of Herlev dataset classification performance of the pro-
posed approach with state-of-the-art techniques.

Method Accuracy Sensitivity Specificity ρ AUC

ANN (Chankong et al.
2014)

0.99 0.99 0.96 0.97 -

Ensemble (Bora et al.
2017)

0.96 0.98 0.89 - -

DeepCerv (Jith et al.
2018)

0.99 - - - -

GoogLeNet-5C (Lin
et al. 2019)

0.94 0.97 0.90 - 0.98

Proposed (CircEGS +
SVM-lin.)

0.96 0.98 0.91 0.91 0.99

‘-’ represents values not available.

that features extracted only from nucleus, are adequate enough to identify abnor-

mality in cervical cells. This finding is important, since precise segmentation of

nucleus is more convenient and meaningful, than finding accurately overlapping

and fuzzy cytoplasm boundaries. The framework was implemented in Matlab

R2018b, running on a PC with Intel Core i7-4770 3.40 GHz processor and 8 GB

RAM. Matlab function crossvalind from Bioinformatics Toolbox was used for k

fold cross validation. The code was not optimized.

6.6 Conclusion

A novel nuclei feature based cervical cell classification framework is proposed in

this chapter. Nucleus segmentation plays the vital role in computer-aided screen-

ing and diagnostic decision for cervical cytology images, therefore nucleus de-

tection and boundary delineation accuracies are important. Three segmentation

techniques with circular shape prior (CiscFC, CircEGS) and gradient boundary

guidance (SPmerg) proposed in Chapters 3, 4 and 5, were exploited for segment-

ing nucleus. Thirteen morphological features were extracted from segmented

nucleus and a fuzzy entropy based features selection/ranking process was applied

to reduce the dimensionality of the feature vector. From AUC score analysis, the

feature set with the 10 most discriminative features was found to achieve optimal

performance for detecting abnormality in cervical cytology images using KNN,

LDA, SVM-linear, SVM-RBF, and Ensemble-bag classifiers. The experimental
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results on the Herlev dataset demonstrate that the proposed framework achieved

promising results for nucleus segmentation and cervical cell classification, while

compared to the state-of-the-art methods. This indicates that it is possible to

characterize cervical cells as normal or abnormal using only nuclei features. The

proposed abnormality detection system can help to improve efficiency and reduce

observer bias, and decrease the rate of cervical cancer by assisting the cytotech-

nologists to identify abnormal cells in Pap smear images.
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Chapter 7

Conclusion

Image segmentation is the crucial step in the field of computer-aided image anal-

ysis. The quality of ROI segmentation has a great influence on the performance

of the whole application. In medical images, precise segmentation is precluded by

noise, intensity inhomogeneity, poor contrast, object occlusion, and other imaging

artifacts. Incorporation of prior knowledge about the desired object into segmen-

tation frameworks has proven useful to improve the accuracy and plausibility of

segmentation outcome. Prior guidance can reduce ambiguity in segmentation by

ruling out inconsistent regions.

In this thesis, three prior guided novel segmentation frameworks were proposed

to bridge the gap between experts’ knowledge and computer vision techniques.

Two circular shape constrained pixel grid level and one gradient guided superpixel

level segmentation approaches were presented for precise segmentation of cervical

nuclei. Finally, a cervical cell abnormality detection framework was proposed

exclusively based on features extracted from nuclei.

7.1 Thesis summary and contribution

This thesis started with the motivation, a brief review of cervical cancer, Pap

smear screening, and automated screening systems. Major approaches of nuclei

segmentation in computer-aided screening and usefulness of prior knowledge in

segmentation techniques were reviewed. Research objectives and outline of this

thesis were also discussed in Chapter 1.

In Chapter 2, a literature review and technical background of this thesis was

presented. The major steps involved in computer-aided cervical cytology screen-
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ing and some popular techniques for those steps, were outlined. In addition, some

commonly used priors and their incorporation in segmentation frameworks, and

cervical nuclei segmentation techniques or related works from literature, were

presented in this chapter.

In Chapter 3, a pixel level circular shape constrained clustering based seg-

mentation framework (CiscFC) was presented, to segment cervical nuclei from

overlapping Pap smear images. This is the first contribution of this thesis. A

novel circular shape function (CSF) was proposed and incorporated into Fuzzy c-

means (FCM) clustering technique. The CSF imposed a circular shape constrain

on the target cluster and influenced the cluster formation process. Spatial location

of a pixel was considered during the computation of CSF, thus the proposed algo-

rithm could differentiate the pixels with similar intensity values using their spatial

distance. The proposed CiscFC approach was evaluated using ISBI 2014 chal-

lenge dataset. The accuracy of nuclei boundary delineation was improved for the

proposed algorithm, while compared to the standard FCM technique. Cervical

nuclei segmentation performance of the CiscFC framework was also comparable

with recent state-of-the-art techniques.

In Chapter 4, the second contribution of this thesis, a circular shape guided

graph based segmentation (CircEGS) technique was presented on pixel grid level.

A novel adaptive circular shape prior was proposed and incorporated in the merg-

ing predicate of efficient graph based segmentation (EGS) technique, to consider

the circularity measure of regions during the merging process. Specifically, the

threshold function of the merging predicate was redefined to employ the shape

prior. The redefined threshold function was designed to balance the relative im-

portance between area and shape term. ISBI 2014 challenge dataset was employed

to evaluate cervical nuclei segmentation performance of the proposed CircEGS

technique. The proposed algorithm outperformed the standard EGS technique, in

terms of segmentation accuracy, quality of segmented boundary and border pre-

cision. In addition, circularity of segmented nuclei also improved for CircEGS.

While compared to the state-of-the-art techniques, CircEGS performed favorably

with others.

The proposed pixel level segmentation frameworks delineated cervical nuclei

boundaries very precisely, and in some aspects exceeded the performance of other

existing algorithms. However, effect of noise is more on the segmentation out-

come for the frameworks - designed on pixel grid level representation of an im-

age. Superpixels are the group of pixels with similar characteristics, thus they

are less sensitive to noise and also have the ability to capture textural informa-
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tion from regions. In literature, many ROI segmentation frameworks exist that

are composed of superpixel tessellation and clustering/grouping of superpixels.

In Chapter 5, the third contribution of this thesis, a novel superpixel merging

framework (SPmerg) with a novel region merging criterion was proposed. The

region merging criterion was composed of pairwise regional contrast and gradient

boundary information. The value of pairwise regional contrast was thresholded

to control the superpixel merging process, along with gradient guidance. SLIC

and SRM segmentation techniques were employed to generate image superpixels.

The proposed SPmerg framework was evaluated on ISBI 2014 challenge dataset,

and achieved the best segmentation results compared to the techniques proposed

in Chapter 3 and 4. The accuracy of nuclei boundary delineation using SPmerg

framework also outperformed the state-of-the-art techniques found in literature.

Finally in Chapter 6, a new cervical cell classification framework was pro-

posed to detect abnormality in cervical cells exclusively based on nuclei features.

Cervical nuclei were segmented using the prior guided segmentation techniques

developed in Chapters 3, 4 and 5. Herlev Pap smear database was used to eval-

uate this classification framework, since classification labels are not available for

ISBI 2014 dataset. Parameter and threshold values found for ISBI 2014 dataset in

Chapters 3, 4 and 5 were reused for Herlev dataset; the segmentation techniques

were not retrained for the new dataset. Nucleus segmentation results for Herlev

dataset were compared with related publications in literature. Thirteen intensity,

shape and texture features were extracted from segmented nuclei, and ranked us-

ing a Fuzzy entropy and similarity classifier based feature selection technique.

Results demonstrated that the classification performance of the proposed frame-

work with only 10 nuclei features were very promising and comparable with the

state-of-the-art methods. This is a positive indication towards the development

of solely nuclei feature based characterization/classification systems for cervical

cytological image analysis, in case of accurate segmentation of nuclei.

7.2 Future work

Despite of the high potential of the frameworks proposed in this thesis, in terms

of detection, segmentation and classification of cervical nuclei, there are still some

observations that lead towards future directions. These observations are discussed

below.

• In Chapter 3, the highest mean intensity cluster was selected as the target
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cluster and CSF was employed on this cluster. As a result, nuclei assigned

to other clusters during the clustering process could not be detected using

the proposed CiscFC framework, due to the presence of uneven staining,

cell overlapping or poor contrast in the image. In future, the proposed

framework may benefit from appropriate local enhancement process, which

would improve the contrast between nucleus and cytoplasm and compensate

the effect of uneven staining. Future work may also investigate the behavior

of the proposed CiscFC method on detection of elliptical and other varied

shaped nuclei.

• In Chapter 4, weight parameter to control the relative importance between

area and shape term, and the parameter to control the scale of segmentation,

were found from a small training set and kept fixed for evaluation using

ISBI 2014 test set and Herlev database. Instead of fixed values, adaptive

calculation of these values may show further improvement in segmentation

accuracy of CircEGS technique.

• In Chapter 5, detection of nuclei markers are crucial for SPmerg algorithm,

but the marker detection technique used in this chapter was not perfect.

In the proposed framework, failure in nuclei marker detection directly im-

pacted the detection and segmentation performance. Nucleus segmentation

and detection accuracies can be potentially improved by replacing, the MSB

and MSER based nuclei marker detection technique with a more efficient

marker detector. In addition, other superpixel generation algorithms can

be explored to determine their applicability with SPmerg framework, other

than SLIC and SRM techniques.

• In Chapter 6, a set of 13 features (10 morphological and intensity, and 3

basic texture features) were used for classification. Capability of some other

features, such as local binary pattern or radial features, could be explored in

future. Ten most discriminatory features were selected as optimal subset, by

analyzing the AUC scores. However, a classifier could be over-fitted to the

experimental dataset in presence of more features for the small sized dataset

used in this study. In such scenario, there is a chance that performance of

classifier may worsen for a new independent dataset. Classification or ab-

normality detection performance could be explored and analyzed for less

features, to decrease the risk of over-fitting. Five conventional classifiers

(LDA, KNN, SVM with linear and RBF kernels, and Ensemble-bagging)

were used, since they require inexpensive computational resources. In fu-
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ture, deep learning based techniques could be employed for the classification

task. Additionally, the classification task can also be extended to identify

different stages of abnormality.

• The two datasets used in this thesis were generated using well preserved

cervical cells, thus the developed frameworks has not faced the challenges

of real world slides which may contain red-blood cells, degenerated cells, or

some other non-cellular artifacts. To incorporate the proposed segmentation

and classification frameworks in computerized cervical screening system, it

would have to be tested on real world cervical whole slide images.

• The computational performance of the techniques developed in this thesis

would have to be improved to be applicable in real-time screening systems.

For example, SLIC superpixel merging based technique (presented in Chap-

ter 5) takes 3.3 seconds to process one cell. Processing of one cervical smear

sample with 20,000 cells would require around 24 hours. Therefore, the de-

veloped techniques would require speed optimization.

• Finally, the proposed frameworks could be adapted and applied to different

modalities of medical image analysis applications such as: histopathology,

fluorescence microscopy or other cytology images.
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