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ABSTRACT 

Semi-arid woodlands are important part of terrestrial ecosystems. Woodlands not only provide 

provisioning services (timber, fuel, food), but also regulating services like soil stabilization, air and 

water quality improvement, local microclimate regulation, and carbon sequestration. In the face of 

escalating climate change and human activities, conservation and sustainable management are 

vital for ensuring the long-term resilience of these ecosystems.  

Remote sensing technology enables large-scale, high-frequency monitoring of terrestrial 

ecosystem dynamics. However, widely utilized satellite missions such as MODIS, Landsat, and 

Sentinel offer only low to moderate resolution data, while high-resolution imagery, although 

available, is prohibitively expensive. Additionally, all these satellite systems are prone to cloud 

contamination, leading to data gaps. Those factors constrain our ability to accurately observe 

woodland ecosystems at the tree scale. Moreover, current approaches to remote sensing-based 

ecosystem monitoring often simplify woodlands by treating them as flat surfaces, with a 

predominant focus on canopy-level processes, thereby neglecting the complex physical 

interactions occurring beneath the canopy.  

The overarching aim of this study is to explore the above mentioned challenges and investigate the 

three-dimensional structure and ecohydrological processes of the semi-arid woodlands. 

Understanding woodland 3D structure is crucial for monitoring forest changes, supporting carbon 

emission reduction initiatives, enhancing forest fire management, and providing essential data for 

climate adaptation and sustainable forest management. Besides, forest canopy significantly 

influences the radiation transmission thereby controls the sub-canopy surface energy budget. 

Exploring the overstory vegetation attributes improves our knowledge of understorey 

ecohydrological processes, which enhances our comprehension of the overall ecosystem's energy 

and water balance.  

In the first part of this research, the role of local environments in shaping vegetation attributes 

within semi-arid woodlands is investigated. Topographic factors such as elevation, slope, and 

aspect are crucial in determining the distribution, composition, and structure of vegetation. The 

objective of this study is to quantify how topography influences vegetation attributes and identify 

the key driving factors. Understanding these relationships is important for improving our ability to 

predict vegetation dynamics and inform reforestation and afforestation efforts in semi-arid regions.  

The second part aims to develop a radiation model for simulating the distribution of solar radiation 

within the woodland’s understorey surface. By incorporating local topographic features and canopy 

shading effects, this model provides a detailed representation of how solar radiation is distributed 

beneath the canopy across varying environmental conditions. The accurate simulation of 
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understorey radiation is crucial for understanding microclimate dynamics and the subsequent 

impact on vegetation growth and ecosystem processes.  

The third part of this research is on modelling and mapping understorey evapotranspiration (ET), 

which are fundamental to the water balance and energy flux within woodland ecosystems. The 

study aims to quantify understorey ET and assess its contribution to the overall water flux of semi-

arid woodlands. This detailed mapping of ET processes will enhance our understanding of water 

resource dynamics in these ecosystems and support the development of more effective 

conservation and management strategies.  

In summary, this study offers a comprehensive analysis of the influence of topography on the 

structure of the studied semi-arid woodlands. It also provides valuable insights into the distribution 

patterns of solar radiation and ET within these ecosystems. The research framework and 

methodology developed in this study can be transferred to other regions, enabling broader 

applications. These findings contribute to guiding sustainable management practices, helping to 

ensure the resilience of semi-arid woodlands in the face of environmental challenges.  
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1 INTRODUCTION 

1.1 Significance of semi-arid woodlands 

Semi-arid areas cover around 18% of Earth's land surface, and within these regions, woodlands 

make up a substantial proportion (Rotenberg & Yakir, 2010). Those woodlands significantly 

contribute to preserving soil stability (Sharafatmandrad & Khosravi Mashizi, 2021), maintaining 

biodiversity (Zhang et al., 2023), regulating local microclimate, and contribute to global land carbon 

sink (Anderson-Teixeira et al., 2012). Its conservation and sustainable management are vital to 

maintaining the resilience of these ecosystems, particularly amidst growing environmental 

pressures and climate change (García-Ruiz et al., 2011; Vilà-Cabrera et al., 2018).  

Specifically, semi-arid woodlands support local livelihoods and regional economic development. It 

effectively prevents land degradation by regulating the water cycle and reducing soil erosion. 

Additionally, these ecosystems are crucial for maintaining biodiversity by providing food, thermal 

shelter, and supporting species migration.  

However, semi-arid woodlands are increasingly threatened by both human activities and climate 

change. On one hand, anthropogenic impacts such as deforestation and urbanization lead to 

habitat fragmentation, soil erosion, and a decline in biodiversity, severely degrading these 

ecosystems (Zhao et al., 2005; Villarino et al., 2017; McPhillips et al., 2019; Schoener, 2022). On 

the other hand, climate change induces ecosystem degradation by disrupting precipitation patterns 

and intensifying the occurrence of extreme events, resulting in more severe droughts and 

increased tree mortality (Huang et al., 2016; C. Xu et al., 2017). With the increasing degradation of 

semi-arid woodlands, it is essential to develop and apply effective techniques for measuring, 

mapping, and monitoring forest parameters. This data must be generated at appropriate scales to 

support and enhance conservation and management efforts (David et al., 2022).  

1.2 Threats on semi-arid woodlands 

1.2.1 Deforestation  

Deforestation refers to the transformation of forest/woodland into a permanent non-forested land 

use (Van Kooten & Bulte, 2000). Key anthropogenic drivers include urbanization, agricultural 

expansion, industrial development, timber trading, and mineral exploration (Santos et al., 2020). 

Deforestation changes the global energy exchange through micrometeorological processes and 

increases atmospheric CO2 concentration (Okia, 2012). The consequential global warming leads to 

abnormal weather patterns, resulting in hotter and drier conditions, which escalate the risks of 

drought, desertification, and the displacement of dominant vegetation regimes. (Lawrence & 

Vandecar, 2015). In global scale, Hansen et al. (2013) mapped around 230 million hectares of 
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forest cover loss from 2000 to 2012 but only 80 million hectares of new forest cover gained. The 

extent and driver of deforestation drivers varies across different countries and regions. 

In Australia, deforestation has profoundly impacted the terrestrial environment since European 

colonization (Bradshaw, 2012). Despite various policy reforms intended to control deforestation, 

Australia experienced high deforestation rates at the beginning of the 21st century (Evans, 2016). 

Legislation in Queensland and New South Wales initially reduced large scale clearing, but recent 

policy changes have raised concerns about a potential resurgence in deforestation (Evans, 2016; 

Boer, 2024; Macintosh et al., 2024).  

A critical area of concern is the deforestation of Australia's semi-arid woodlands which 

characterized by sparse tree cover and adaptation to dry conditions. For instance, the woodlands 

of the Riverina and Murray-Darling Basin have suffered significant losses due to agricultural 

expansion and land clearing, impacting ecological communities dominated by species like Buloke, 

Slender Cypress Pine, and Grey Box (Cheal et al., 2011).  

1.2.2 Water stress from climate change 

Global water resources are increasingly under strain, with water scarcity now widespread across 

most arid and semi-arid regions(Vörösmarty et al., 2010; Mekonnen & Hoekstra, 2016). Climate 

change is projected to aggravate existing water scarcity, leading to more frequent and severe 

droughts, and complicating water management efforts (Hosseinizadeh et al., 2015; Kahil et al., 

2015; Wilson et al., 2018). Recent droughts in Australia (2001-2009), the western United States 

(2012), and southern Europe (2012) highlight the substantial impact of such events on regions 

already facing water scarcity (Van Dijk et al., 2013; Diffenbaugh et al., 2015; Crocetti et al., 2020).  

The impacts of water scarcity are particularly pronounced in semi-arid woodlands, where the 

balance between water availability and ecosystem health is delicate (Reynolds et al., 2007; 

Maestre et al., 2016). In these regions, the lack of sufficient water reduces vegetation cover and 

increases vulnerability to desertification (D’Odorico et al., 2013). The interplay between water 

scarcity and land degradation creates a feedback loop where reduced vegetation cover leads to 

greater soil erosion, further diminishing the land's capacity to retain moisture and sustain plant 

growth. Water scarcity also threatens biodiversity in these ecosystems, which are often home to 

species uniquely adapted to survive in dry conditions. Prolonged droughts and changing climate 

patterns can push these species to their limits, causing population reductions or even local 

extinctions (Allen et al., 2015; Maron et al., 2015). The decline in biodiversity can trigger a domino 

effect on ecosystem functionality, impacting everything from soil health to the availability of 

resources for human and animal populations. 

Climate change induced water scarcity has also intensified the frequency and severity of bushfires, 

posing a significant threat to semi-arid woodlands (Duffy et al., 2019; Kirchmeier‐Young et al., 
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2019). Prolonged warmer and drier conditions are expected to reduce fuel moisture and lengthen 

fire seasons, leading to more frequent and extensive bushfires that result in higher tree mortality 

(Goss et al., 2020). Additionally, water stress caused by climate change creates unfavorable post-

fire recovery conditions in arid and semi-arid woodlands, resulting in lower seedling densities and 

increased regeneration failures, ultimately diminishing the resilience of these ecosystems (Enright 

et al., 2015; Stevens‐Rumann et al., 2018). For example, the 2019-2020 ‘Black Summer’ bushfire 

in southeast Australia exemplifies the impact of climate change on bushfire dynamics, as the 

unprecedented scale and intensity of the fires were driven by the hottest and driest year on record, 

with exceptionally dry fuel loads and compounded effects of multiple climate modes, significantly 

escalating fire risk and severity in the region (Abram et al., 2021). 

1.3 Knowledge gaps for improved management of semi-arid woodlands 

In regards of the threats posed by deforestation and the stress from climate change, it is imperative 

that we take actions to better protect and manage semi-arid woodlands. From a research 

perspective, there are currently two critical knowledge gaps:  

1) understanding how vegetation attributes are controlled by topography. 

2) monitoring surface ecohydrological processes.  

Firstly, afforestation and reforestation initiatives can be highly effective in restoring native 

vegetation. The potential of afforestation/reforestation for carbon sequestration has been widely 

studied and acknowledged (Nilsson & Schopfhauser, 1995; Niu & Duiker, 2006; Doelman et al., 

2020). Surprisingly, in arid and semi-arid regions, afforestation/reforestation has shown remarkable 

potential for carbon sequestration (McNicol et al., 2018; Yosef et al., 2018).  

However, their success depends on a nuanced understanding of local environmental constraints 

and strategic decision-making. For instance, poorly designed projects can result in unintended 

consequences, as seen in northwestern China, where afforestation efforts exacerbated 

environmental degradation due to mismatched tree species and local conditions (Cao et al., 2010). 

Similarly, critiques of Australia's native forest regeneration carbon offset projects question their 

limited impact on vegetation cover and carbon sequestration, calling for more robust planning and 

evaluation frameworks (Macintosh et al., 2024). Given these complexities, ecohydrological models 

can serve as critical decision-support tools for designing and implementing afforestation and 

reforestation projects. By integrating spatially variable factors such as topography, soil moisture, 

and climatic conditions, such models can enable the prediction of vegetation growth patterns and 

water dynamics. They can provide insights into the trade-offs between ecological benefits and 

water availability, guiding project planners towards sustainable outcomes. Previous studies have 

shown that forest restoration effects can be significantly influenced by the local environment, and 
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topography plays an important role in producing spatially variable local environmental conditions 

(Sattler et al., 2014; Hong et al., 2020; X. Zhang et al., 2020). Section 1.3.1 reviews the current 

knowledge on topography's influence on vegetation growth and attributes and outlines the existing 

problem. 

Another critical aspect of afforestation and reforestation is the potential competition for water 

between ecosystems and human society (Kahil et al., 2016). While the primary objective of tree 

planting is to enhance community well-being, it can paradoxically become detrimental if the water 

uptake by woodlands diminishes the water resources available to local populations (Hoek van 

Dijke et al., 2022; Zan et al., 2024). Moreover, the reduction in precipitation and the intensification 

of extreme events caused by climate change in semi-arid regions necessitate highly accurate and 

comprehensive monitoring of these fragile ecosystems. Such monitoring is essential for 

implementing proactive strategies to mitigate ecosystem degradation. Addressing these challenges 

requires an advanced understanding of surface ecohydrological processes. Section 1.3.2 reviews 

the literature on surface ecohydrological processes and identifies key research gaps that require 

further investigation.  

1.3.1 Topography controls on vegetation 

Vegetation is an indispensable component of natural ecosystems and can serve as an indicator for 

monitoring ecosystem status (X. Fang et al., 2018). In semi-arid region, vegetation plays a key role 

in ameliorating local climate (Huryna & Pokorný, 2016), preventing desertification (Lee et al., 

2019), and enhancing local biodiversity (Li et al., 2004). The impact of climate factors like 

precipitation and temperature on vegetation growth has been widely researched, but the 

relationship between them is often nonlinear and may vary from region to region (Lamchin et al., 

2018; Li et al., 2018; Lamchin et al., 2020). While in the scale of hectares to km2 where the same 

regional climate condition is shared, topography is the major factor that influence vegetation 

attributes, especially in mountainous areas (Douville et al., 2000; Baudena et al., 2008; Hwang et 

al., 2011). By altering the timing and amount of energy inputs and available water of land surface, 

topography can impact the vegetation growth, soil development, and biogeochemical fluxes.  

Research in Australia has highlighted the critical role of topography in shaping vegetation patterns. 

Kirkpatrick and Bridle (1998) analyzed floristic and environmental data for Australian alpine 

vegetation and found that while climatic factors dominate floristic variation at broader scales, 

topography becomes the key driver at finer scales.  Yadav et al. (2022) investigated the 

relationship between landscape topography, geology, and vegetation attributes in a wet eucalypt 

forest, and the results suggest that topography and geology data can partially predict vegetation 

density. In a native eucalypt woodland catchment, previous studies have revealed distinctive 

patterns of tree water stress, root zone moisture dynamics, leaf nutrient contents, and tree water 
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use, many of which are closely related to topography (X. Xu et al., 2017, 2019; Xu et al., 2022; H. 

Wang et al., 2024).  

In summary, these studies have significantly advanced our understanding of the impact of 

topography on vegetation attributes. However, these studies often rely on analysis of medium-

resolution remote sensing data (e.g. 30 - 500 m), or observation of discrete points, which may not 

adequately capture the detailed topographic variations that significantly influence vegetation 

patterns. Moreover, many of these studies are pixel-based rather than tree-based, which limits 

their ability to account for individual tree characteristics and their responses to micro-topographic 

changes. This represents a key knowledge gap, as tree-based approaches that utilize high-

resolution data could provide more detailed insights into the relationship between vegetation and 

topography, ultimately improving our understanding of regional vegetation patterns. Such detailed 

studies could effectively guide afforestation and reforestation efforts, leading to more economically 

viable and efficient carbon sequestration strategies. By integrating high-resolution geospatial data 

into these studies, we can better inform land management practices.  

1.3.2 Surface ecohydrological processes 

1.3.2.1 Energy and water balance in ecohydrology 

Energy and water balance are two key components in ecohydrology research. The equation for 

land surface energy balance illustrates how net radiation (Rn) partitions among sensible heat flux 

(H), latent heat flux (λE), and soil heat flux (G). During daytime, the land surface receives heat from 

net radiation; a minor fraction of this energy is absorbed by the soil, while the majority is returned 

to the atmosphere as sensible heat (through conduction and convection) and latent heat (related to 

evapotranspiration (ET)). The land surface water balance equation, as shown in equation 1.2, 

describes how precipitation in a catchment turns to different components. It includes variables such 

as precipitation (P), runoff (R), ET, and the change in soil water and groundwater storage (ΔS). ET 

(or the latent heat flux) serves as a key component in the water and energy balance within soil-

plant-atmosphere continuum. It consists of evaporation and transpiration. Evaporation occurs on 

water surfaces, wet canopy, and exposed soil. Transpiration starts with the root water uptake, 

followed by water moving from roots and stems to the leaves and then vaporizing to the 

atmosphere. Accurately quantifying ET is crucial to effective water, agricultural, and ecosystem 

management.  

 

 𝑅𝑛 = 𝐻 + λE + G (1.1) 

 

 𝑃 = 𝑅 + 𝐸𝑇 + 𝛥𝑆 (1.2) 
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High temporal-resolution ET measurements, utilizing equipment like lysimeters, sap flow, and eddy 

covariance, have provided valuable insights into ecohydrological sciences and enhanced our 

comprehension of ET processes. Various techniques are available for quantifying ET. For instance, 

the watershed water balance method, which calculates ET as the difference between precipitation 

inputs and streamflow outputs, is often most applicable for long-term averages, particularly when 

changes in water storage are negligible (Senay et al., 2011). Conversely, sap flow and eddy 

covariance methods, which estimate ET at finer temporal scales, show good agreement with other 

techniques in uniform stands with extensive coverage but tend to be less accurate in complex 

terrain or areas with small or uneven coverage, such as canopy gaps (Wullschleger et al., 1998; 

Ewers et al., 2002; Barker et al., 2009). However, direct measurement of ET at larger scales and in 

heterogenous landscapes remains impractical due to the operational challenges of deploying 

dense networks of such instruments, and point observations are inadequate for fully capturing the 

spatial variability of regional land surfaces (Mueller et al., 2011).  

1.3.2.2 Advances in remote sensing for ET monitoring 

Remote sensing is widely acknowledged as a promising tool for its potential in ET estimation, as it 

enables the collection of spatially and temporally continuous data on key biophysical parameters 

that influence ET (Li et al., 2009). Since the 1980s, numerous methods have been proposed, 

leveraging a range of satellite observations for ET estimation (Zhang et al., 2016). For example, 

the water balance method can be simple to perform for catchments and requires only precipitation 

and runoff data, but it cannot obtain gridded ET values and is sensitive to precipitation data errors 

(Long et al., 2014; Wan et al., 2015). The Penman-Monteith model is a process-based method for 

ET mapping. It requires a large amount of meteorological data input such as radiation, air 

temperature, vapor pressure deficit, and vegetation cover information (Mu et al., 2007; Leuning et 

al., 2008; Zhang et al., 2009). The Priestley-Taylor model is built based on a semi-empirical 

relationship and is a simplification of the Penman-Monteith model (Flint & Childs, 1991). The 

Surface Energy Balance (SEB) model requires less meteorological data input and can estimate ET 

for different surface layers. While the estimation is highly sensitive to surface temperature 

accuracy. The surface temperature and vegetation Index (Ts-VI) space model uses the spatial 

variation of surface temperature, and the internal relationship derived from Ts-VI space to partition 

Rn into sensible and latent heat. Compared to the SEB models, the Ts-VI model is less sensitive to 

Ts error. However, the semi-empirical relationships established within the Ts-VI space may not 

always be reliable or consistent (Zhang et al., 2016). Recent advancements in Unmanned Aerial 

Vehicle (UAV) provides an opportunity to monitor surface ET at sub-meter resolution for local 

hydrological research (Acharya et al., 2021; Mokhtari et al., 2021; Yan et al., 2023). However, 

current approaches to remote sensing-based ET estimation often oversimplify woodlands by 

treating them as flat surfaces, with a predominant focus on canopy-level processes, thereby 

neglecting the complex physical interactions occurring beneath the canopy.  
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1.3.2.3 Understorey contributions to woodland ecosystems ET 

Forests and woodlands generally comprise two unique layers: an overstory consisting primarily of 

tall trees, and an understorey made up of shrubs, grasses, and mosses. These layers are often 

considered separately in ecosystem research because of differences in their photosynthetic 

capacities, carbon turnover rates, and adaptations to changing climate conditions (Marques & 

Oliveira, 2004; Kim et al., 2016; Liu et al., 2017). Much emphasis has been placed on the overstory 

in forest ecosystems, as it significantly influences light availability, microclimate variables, and 

water balance through processes like ET and rainfall interception (Blanken et al., 1998; Messier et 

al., 1998; Aussenac, 2000; Clinton, 2003).  

The understorey layer also plays a significant role in woodland ecosystems. This layer, comprising 

both vascular and nonvascular plants, is crucial for maintaining ecosystem functions, including 

nutrient cycling, water retention, and carbon sequestration (Bartels & Chen, 2013; Deng et al., 

2023). Additionally, the understorey provides essential habitat and food sources for various animal 

species, particularly soil arthropods and large herbivores (Fisher, 2000).  

The interaction between the understorey and overstory is crucial in shaping the structure and 

function of woodland ecosystems (Deng et al., 2023). Some studies have shown that removing 

understorey vegetation can lead to significant increases in photosynthetic rate and nutrient use 

efficiency (including nitrogen and phosphorus) in both coniferous species and broadleaved 

species. However, these changes were often accompanied by a decrease in water use efficiency 

(Hébert et al., 2010). The effects were most pronounced in the upper canopy, while photosynthetic 

rate in the middle and lower canopy leaves remained largely unaffected (Kobayashi et al., 2006). 

Conversely, other studies have found no impact on photosynthetic capacity when understorey 

vegetation is removed (R. Li et al., 2020; Yifan et al., 2020).  

The interdependence between understorey and overstory layers extends significantly to ET 

processes. Although understorey ET is typically lower than that of the overstory, it constitutes a 

significant component of the overall woodland water balance, directly influencing the microclimate 

and soil moisture conditions that sustain overstory trees (Baldocchi & Meyers, 1998; Wilson et al., 

2000). Factors such as plant species composition, density, and the microclimatic conditions 

shaped by the overstory canopy heavily dictate the rate of understorey ET (Simonin et al., 2007).  

Understanding the dynamics of understorey ET is essential for accurate ecosystem modeling and 

effective forest management. In forest and woodland ecosystems, the combined ET from both 

layers can lead to significant water loss, impacting soil moisture availability for both understorey 

and overstory plants (Wilson & Baldocchi, 2000; Goulden & Bales, 2014). Recent studies have 

emphasized the significant contribution of understorey ET to the total forest water flux. For 

example, Yepez et al. (2003) used stable isotope measurements to determine that understorey ET 

accounts for 30% of the total ecosystem ET in a semi-arid savanna woodland environment. Iida et 
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al. (2009) found that mean daily understorey ET represents approximately one third of total 

ecosystem ET in a Siberian boreal forest based on eddy covariance measurements. Similarly, Wolf 

et al. (2024) investigated above- and below-canopy ET in a montane forest using concurrent eddy 

covariance measurements and found that understorey ET accounts for 45% of total ecosystem ET.  

Recent attention to understorey ET has highlighted its critical role in forest/woodland ecosystems, 

yet existing research predominantly relies on localized observations, either at a single point or 

integrated over a limited area. Due to the pronounced spatial heterogeneity of the understorey 

environment, these localized measurements can introduce uncertainties when scaling up estimates 

of understorey ET to larger areas. A major knowledge gap lies in effectively detecting the spatial 

distribution of understorey ET. Addressing this challenge necessitates a comprehensive 

understanding of the spatial distribution of environmental variables within the understorey. 

Improved spatially explicit methods and models that account for these heterogeneous conditions 

are essential for accurate assessments and better management of semi-arid woodland water 

resources.  

1.4 Objectives 

The aim of this study is to advance our understanding of vegetation attributes, understorey solar 

radiation, and understorey ET processes in semi-arid woodlands. To achieve this aim, the study 

focuses on three primary objectives:  

Objective 1: Investigate woodland vegetation attributes in relation to topography in hilly 

areas. 

The first objective is to examine how topography influences vegetation attributes in hilly regions. 

This is achieved by utilizing high-resolution ALS and hyperspectral data to capture detailed spatial 

patterns of vegetation. The study aims to quantify the extent to which topography influences 

vegetation attributes and identify key topographic variables that determine vegetation distribution, 

composition, and structure.  

Objective 2: Develop a solar radiation model for woodland understorey radiation in complex 

terrain. 

The second objective focuses on the development of a solar radiation model to simulate the 

temporal and spatial distribution of incident radiation in the forest/woodland environments. Solar 

radiation is a fundamental driver of ecohydrological processes. Existing models often lack the 

capability to simulate understorey radiation and are limited to clear-sky conditions. To address this, 

the Double-Shading Transposition (DST) model is proposed, which incorporates local topographic 

and canopy shading effects to accurately model understorey radiation. This model is crucial for 

improving the accuracy of understorey ET simulations.  
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Objective 3: Model and map semi-arid woodland understorey ET. 

The third objective is to model and map understorey ET in semi-arid regions. ET is a critical factor 

in understanding the water balance of ecosystems. However, existing studies often focus primarily 

on overstory ET, neglecting the contributions of the understorey surface. This study utilizes the 

Maximum Entropy Production (MEP) model to quantify understorey ET in two semi-arid 

woodlands, thereby enhancing our understanding of the role of understorey layer in overall 

ecosystem water dynamics and informing better water management practices.  

By addressing these objectives, this study aims to provide an improved understanding of the 

distinct influences of topography on vegetation attributes, the dynamics of understorey radiation, 

and the critical contributions of understorey ET to ecosystem water balance.  

1.5 Thesis structure 

The structure of the thesis is shown below: 

Chapters Chapter Title Main Content 

1 Introduction Background, research objectives, and thesis 

structure.  

2 Geospatial modelling 

of vegetation-

topography 

relationships 

This chapter investigates the influence of 

topography on vegetation attributes in complex 

terrains within a representative semi-arid 

environment.  

3 Solar radiation 

modelling 

This chapter focuses on the development of a 

distributed understorey shortwave radiation model.  

4 Understorey 

evapotranspiration 

modelling and 

mapping 

This chapter establishes a robust framework for 

understorey ET mapping and analyses the factors 

that influence ET.  

5 Conclusion Conclusions and future research interests.  

Appendix Spatiotemporal 

delineation of bushfire 

in semi-arid area 

Methodological improvements for bushfire 

detection and post-fire recovery monitoring in semi-

arid areas.  
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Figure 1.1 Graphic abstract of the thesis structure 

 

Figure 1.1 illustrates the connections between the three main chapters of this study. 

Chapter 2 investigates the influence of topography on vegetation attributes within a semi-arid 

catchment. The findings highlight that topographic factors significantly affect vegetation attributes 

such as tree height and NDVI. The analysis reveals that areas with varying sunlight exposure and 

hydrological conditions exhibit distinct patterns of vegetation attributes. These topographic effects 

are crucial for understanding the spatial distribution of vegetation and its response to 

environmental changes, informing targeted conservation and restoration strategies. 

Transitioning from the overstory to the understorey, Chapter 3 introduces the development of the 

DST model, which integrates shading effects from both topographic features and the vegetation 

canopy. This chapter examines a critical variable for understanding understorey surface dynamics.  

Chapter 4 focuses on the distributed modelling of understorey ET using the MEP model. This 

analysis is based on net radiation, surface temperature, and specific humidity. The chapter also 

details the data acquisition methods and the approach for estimating understorey temperature 

using UAV-based thermal imagery. Additionally, it explores the contribution of understorey ET to 

the total ecosystem ET in two representative semi-arid regions and examines the factors 

influencing this contribution. 
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In Appendix A1, we examine traditional remote sensing methods for delineating bushfires and 

monitoring post-fire recovery in semi-arid woodlands. The findings indicate that NDVI is more 

effective than other indices for detecting burned areas in these regions. However, using remote 

sensing indices to monitor post-fire recovery proves to be less reliable due to the complex and 

variable responses of the understorey layer. This highlights the need for a more comprehensive 

understanding of the 3D structure of woodlands. 

1.6 Publications 

Liu, W., Guan, H., Gutiérrez-Jurado, H. A., Banks, E. W., He, X., & Zhang, X. (2022). Modelling 

quasi-three-dimensional distribution of solar irradiance on complex terrain. Environmental 

Modelling & Software, 149, 105293.  

Liu, W., Guan, H., Hesp, P. A., & Batelaan, O. (2023). Remote sensing delineation of wildfire 

spatial extents and post-fire recovery along a semi-arid climate gradient. Ecological Informatics, 

78, 102304.  

Integrating the Maximum Entropy Production model and airborne imagery for understorey 

evapotranspiration mapping (currently under review in Journal of Hydrology).  
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2 GEOSPATIAL MODELLING OF VEGETATION-TOPOGRAPHY 
RELATIONSHIPS 

Abstract 

Woodlands play a vital role in global water and carbon cycles but face significant threats from 

human activities and climate change. Understanding the relationship between topography and 

vegetation attributes is crucial for the effective management and conservation of these 

ecosystems, particularly in semi-arid regions where topography strongly influences water 

availability and microclimate. This study leverages high-resolution airborne remote sensing data, 

including LiDAR and NDVI, to explore vegetation-topography relationships across multiple spatial 

scales. By addressing limitations in previous studies, such as low-resolution imagery and pixel-

based sampling errors, this research provides a detailed understanding of how topographic factors 

shape vegetation structure. The findings offer valuable insights for guiding afforestation and 

reforestation strategies in semi-arid environments, contributing to improved restoration efforts and 

sustainable woodland management. 

2.1 Introduction 

Woodlands play important roles in global water and carbon cycle, and its future management is 

key to international efforts to abate climate change (Coomes et al., 2017). However, they are 

increasingly threatened by human activities such as deforestation and climate change-induced 

droughts (Zhao et al., 2005; Huang et al., 2016; Villarino et al., 2017; McPhillips et al., 2019; 

Khosravi Mashizi & Sharafatmandrad, 2021; Schoener, 2022; Zeratsion et al., 2024; Zhu et al., 

2024). To protect and preserve these ecosystems, it is essential to develop and implement 

effective techniques for measuring, mapping, and monitoring woodland dynamics.  

Understanding woodland vegetation attributes is crucial for effective management and 

conservation efforts. Advanced remote sensing techniques, particularly Light Detection and 

Ranging (LiDAR), have proven to be highly effective in capturing detailed vegetation structure 

(Hawbaker et al., 2009; Guo et al., 2017). LiDAR data can be used to derive precise 

measurements of tree height, crown area, and diameter at breast height (DBH), which are 

essential for estimating above-ground biomass, a key indicator of carbon storage in woodland 

ecosystems (Stone & Haywood, 2006; Clark & Schweitzer, 2016; Valbuena et al., 2016). In 

addition to LiDAR, satellite imagery can provide valuable information on vegetation status through 

vegetation indices. One of the most commonly used indices is the Normalized Difference 

Vegetation Index (NDVI), which is calculated using the red and near-infrared bands of the 

electromagnetic spectrum. NDVI is widely utilized to assess vegetation health, monitor drought 

conditions, and estimate primary productivity (Ji & Peters, 2003; Nayak et al., 2016; Xie & Fan, 

2021; Mehmood et al., 2024). By analysing changes in vegetation attributes over time, researchers 
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can track the impact of environmental stressors on woodland ecosystems, making it a powerful tool 

for long-term vegetation monitoring.  

However, to fully understand the dynamics of woodland ecosystems, it is essential to explore the 

relationship between topography and vegetation attributes. Topography, including factors such as 

elevation, slope, and aspect, significantly influences vegetation distribution, structure, and health 

(Baudena et al., 2008; Hwang et al., 2011). Modelling the relationship between topography and 

vegetation is crucial for understanding how the topography induced soil, moisture, nutrition, and 

microclimate conditions affect vegetation growth. This modelling effort is particularly important in 

semi-arid woodlands, where water availability and microclimatic conditions are closely linked to 

topographical variation (Maestre et al., 2016). Understanding these relationships is also crucial for 

guiding afforestation and reforestation strategies, as topographic factors play a significant role in 

determining the suitability of species and the success of restoration efforts. For example, Sattler et 

al. (2014) highlights the complex relationship between aboveground biomass accumulation and 

topography in South East Brazil. Luo et al. (2021) demonstrates the impact of topography on forest 

indices within afforestation catchments in the Chinese Loess Plateau. These findings emphasize 

the importance of further research to deepen our understanding of topography-vegetation 

interactions, which is vital for improving restoration strategies and ensuring the sustainable 

management of woodland ecosystems. 

Previous studies have explored the relationship between topography and vegetation attributes 

(Hwang et al., 2011; Elliott et al., 2015; Yang et al., 2020). However, there are notable limitations in 

the current research. First, many studies rely on low to medium-resolution satellite imagery, which 

may not capture the fine-scale topographical features that influence vegetation. High-resolution 

remote sensing data, such as those obtained from airborne platforms, are less commonly used but 

are crucial for identifying microscale topographical influences on vegetation. Furthermore, the 

pixel-based sampling method commonly employed in remote sensing can be affected by mixed 

pixels, where multiple vegetation types or land cover classes are represented within a single pixel 

(Ferraz et al., 2016; Coomes et al., 2017). This can introduce errors into models, leading to 

inaccurate predictions of vegetation attributes. 

Another issue for spatial analysis of topography-vegetation relationship is the spatial non-

stationarity. Traditional regression models, such as ordinary linear regression, generate "global" 

estimates under the assumption that both the coefficients and intercepts remain constant across 

the entire study area. However, this assumption can be problematic, as the relationship between 

environmental variables and remote sensing responses often varies with geographic location 

(Foody, 2005; Li et al., 2010; Su et al., 2012). When global methods are applied, the accuracy of 

remote sensing in assessing surface environmental variables can be greatly reduced due to spatial 

non-stationarity. To effectively address this issue, local techniques like geographically weighted 
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regression (GWR) offer a more suitable alternative. GWR allows the relationship between variables 

to vary spatially, providing a more nuanced and precise result.  

In this study, we aim to address these gaps by leveraging high-resolution airborne remote sensing 

data to explore the following key objectives:  

1) Evaluating the explanatory power of topography on vegetation attributes across different spatial 

scales and using both pixel-based and tree-based sampling methods, to identify the scale and 

method for which vegetation attributes are most responsive to topographical variation.  

2) Examining the impact of spatial non-stationarity on the relationships of topography and 

vegetation. 

3) Identifying the main driving factors that control vegetation attributes.  

The findings will provide critical insights into how topographic factors influence vegetation structure 

and offer a foundation for developing targeted afforestation and reforestation strategies in semi-

arid regions. By focusing on the nuanced role of topography, this study contributes to advancing 

vegetation management and restoration efforts tailored to semi-arid environments. 

2.2 Methodology 

2.2.1 Study area 

The study area is a relatively steep vegetated catchment (∼0.15 km2) located at Mount Wilson 

(138.64° E, 35.21° S) in South Australia (Figure 2.1). The Mount Wilson site characterized as 

Mediterranean climate, which experiences cold, wet winters (May–July) and hot, dry summers 

(December–February). The mean annual rainfall and mean annual temperature are around 700 

mm and 14 °C according to Australia's Bureau of Meteorology (http://www.bom.gov.au/). The 

rainfall distribution is highly uneven, with the majority occurring during the winter months and a 

pronounced dry season in summer. This seasonal imbalance results in periods of significant water 

deficit, especially during summer, which aligns with characteristics typical of semi-arid 

environments. The catchment is predominantly covered by native vegetation, with minimal human 

disturbance. The dominant vegetation species include Eucalyptus leucoxylon, Eucalyptus 

fasciculosa, and Eucalyptus viminalis (X. Xu et al., 2019). The catchment is characterized by 

rugged topography, with an average slope of 20 degrees, and features two slopes with contrasting 

aspects. 
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Figure 2.1 Overview of the study areas. Yellow line depicts the study area. The true colour image 
(20/02/2014) is collected from World Imagery dataset in ARCGIS Pro. 

 

2.2.2 Airborne data collection and processing 

2.2.2.1 Data collection 

Airborne surveys were conducted by Airborne Research Australia (ARA). A Diamond HK 36 TTC-

ECO sailplane was used as the flying platform. The LiDAR survey was conducted on June 16, 

2013, using a Riegl Q560 laser scanner. The data were obtained as a discretised point cloud with 

an average point density of 73 point/m2. By using the ARCGIS Pro software 

(https://pro.arcgis.com/), points were classified into ground and non-ground points and the digital 

terrain model (DTM), digital surface model (DSM), and canopy height model (CHM) were 

generated at 1, 5, 10 m resolution. For the non-ground points, a two-stage cut-pursuit clustering 

algorithm was applied to preliminary segment the point cloud into spatial connected clusters (Xi & 

Hopkinson, 2022), and a manual segment was performed in CloudCompare software 

(https://www.cloudcompare.org/) to refine the result into individual tree. There is in total 2702 trees 

been identified in this catchment (Figure 2.2).  
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Figure 2.2 Tree segmentation of the study area. (b), (c), and (d) are three examples of identified individual 
tree. 

 

The hyperspectral data was collected on November 04, 2013, using Specim AISA Eagle 2 VNIR 

hyperspectral line scanner and Hawk SWIR hyperspectral line scanner for 400-999nm and 1000-

2500nm spectral band. The raw data were processed by ARA's specialized team.  

2.2.2.2 Variables derivation 

In this study, we extracted eight topographic variables from DTM to characterize the terrain 

attribute. Elevation values were extracted from the DTM as their original grid values. Slope and 

aspect were calculated using the least squares method (Hengl & Reuter, 2008). Aspect is 

clockwise in degrees from north (0°) and converted to sine and cosine components to represent 

east-west (Eastness) and north-south (Northness) orientations (Deng et al., 2007). Mean curvature 

was calculated to quantify the convexity or concavity of the landscape using the equation given by 

Zevenbergen and Thorne (1987). A positive mean curvature value indicates a convex surface, 

such as the top of a hill, while a negative value signifies a concave surface, like a valley. Mean 
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radiation accounts for the potential solar radiation (kWh/m2) received by the surface during a year 

considering the topographic shading, slope facing, and solar elevation. The Topographic Position 

Index (TPI) used to determine the relative position of each point on the landscape (e.g., ridge or 

valley). For simplicity, the TPI was calculated use a 15×15 cells moving window for neighbouring 

searching across different scales. The Topographic Wetness Index (TWI) was calculated to assess 

soil moisture potential based on slope and upstream contributing area (O'Callaghan & Mark, 1984).  

The correlation matrices of topographic variables are calculated at three different resolutions (1m, 

5m, and 10m) (Table 2.1-2.3). Overall, most variables exhibit low correlations with each other, but 

in some cases, such as northness and radiation, the correlations are relatively high (with 

correlation coefficients of 0.83, 0.84, and 0.86 at different resolutions). Despite the high correlation 

between northness and radiation, both variables were retained because they each represent 

distinct and crucial aspects of the terrain (Deng et al., 2007). Northness directly captures the 

terrain's orientation, which is vital for understanding directional influences on vegetation and 

microclimate. On the other hand, radiation is a key factor in determining surface energy balance 

and microclimate conditions, influencing processes like evapotranspiration and soil moisture 

retention (Ďuračiová & Pružinec, 2022). By including both variables, we ensure a more nuanced 

analysis of how topography affects ecological processes, allowing us to better understand the 

interplay between terrain orientation, solar exposure, and their combined effects on vegetation 

patterns and ecosystem dynamics.  

Table 2.1 Correlation matrix of topography variables (1m) 

 Elevation Slope Eastness Northness Curvature Radiation TWI 

Slope -0.35       

Eastness -0.26 0.21      

Northness -0.02 -0.02 -0.45     

Curvature 0.05 0.00 0.01 0.00    

Radiation 0.21 -0.46 -0.54 0.83 0.02   

TWI 0.01 -0.24 -0.03 -0.03 -0.09 0.08  
TPI 0.25 -0.07 0.00 0.01 0.43 0.09 -0.23 

 

Table 2.2 Correlation matrix of topography variables (5m) 

 Elevation Slope Eastness Northness Curvature Radiation TWI 

Slope -0.36       

Eastness -0.29 0.31      

Northness -0.01 -0.04 -0.48     

Curvature 0.20 0.03 0.00 0.01    

Radiation 0.21 -0.46 -0.56 0.84 0.06   

TWI -0.13 -0.33 -0.14 0.00 -0.51 0.10  
TPI 0.49 -0.18 -0.01 0.02 0.56 0.18 -0.46 
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Table 2.3 Correlation matrix of topography variables (10m) 

 Elevation Slope Eastness Northness Curvature Radiation TWI 

Slope -0.33       

Eastness -0.28 0.33      

Northness -0.01 -0.04 -0.49     

Curvature 0.28 0.05 -0.01 0.01    

Radiation 0.21 -0.43 -0.56 0.86 0.08   

TWI -0.22 -0.41 -0.16 0.00 -0.64 0.10  
TPI 0.41 -0.05 0.00 0.02 0.88 0.15 -0.62 

 

For pixel-based analysis, four vegetation attribute variables were derived: tree height, NDVI, leaf 

area index (LAI), and tree density. Tree height was extracted from the canopy height model (CHM), 

which is the difference between LiDAR derived DTM and DSM. The CHM was smoothed with a low 

pass filter to remove the sharp changes in height within crowns (Coomes et al., 2017). NDVI was 

calculated using Equation 2.1 based on the hyperspectral imagery (Tucker, 1979). LAI is an 

indicator of vegetation canopy density, representing the total one-sided green leaf area per unit 

ground surface area. The LAI was estimated from LiDAR based on the Beer-Lambert law 

(Equation 2.2) (Wang & Fang, 2020). Tree density was calculated using kernel density tool in 

ARCGIS Pro software.  

 

 
𝑁𝐷𝑉𝐼 =

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (2.1) 

 

 
𝐿𝐴𝐼 = −

1

𝑘
ln(𝑁𝑔𝑟𝑜𝑢𝑛𝑑/𝑁𝑡𝑜𝑡𝑎𝑙) (2.2) 

 

where Red and NIR stand for the spectral reflectance measurements acquired in the red (640-670 

nm) and near-infrared (850-880 nm) bands. Nground is the count of LiDAR return points from the 

ground level, Ntotal is the total count of return LiDAR points, and k is the extinction coefficient. 

For tree-based analysis, the tree height was calculated based on the point cloud of each tree 

segment. NDVI and LAI were derived using the geometric centroid of each tree segment and the 

corresponding NDVI and LAI maps at different resolutions. Crown volume of trees was calculated 

using a voxel-based approach applied to point cloud data (Phattaralerphong & Sinoquet, 2005). 

Although the tree trunks were also included in the calculations, their contribution to the overall 

volume is minimal and can be considered negligible for the purpose of this analysis.  
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2.2.3 Regression methods 

To explore the relationships between vegetation attributes and potential topographic variables, 

both linear and non-linear regressions were analysed. For the linear model, stepwise linear 

regression (SLR) was employed (Draper, 1998). A bidirectional method, including forward selection 

and backward elimination, was used to refine the model (Wang et al., 2016). The statistical 

significance of the final regression model was evaluated using an F-test, where variables were 

included at a significance level of 0.05 and excluded at 0.1. The coefficient of determination (R2) 

and adjusted R2 were calculated for model evaluation. R2 indicates the proportion of variance in the 

dependent variable explained by the selected predictors and adjusted R2 accounts for additional 

model complexity, which can be used for model comparison between different sampling methods.  

Multiscale Geographically Weighted Regression (MGWR) model was employed to analyse the 

potential spatial non-stationarity relationship between topography and vegetation attributes. 

MGWR is an improved version of the GWR model. Unlike GWR, which has a single optimal 

bandwidth for all variables, MGWR allows each variable to have its own spatial smoothing level. 

This flexibility overcomes the limitations of GWR by allowing each variable to have its own distinct 

bandwidth. The model formula is as follows: 

 

 
𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) +∑𝛽𝑘(𝑢𝑖 , 𝑣𝑖)

𝐾

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖  (2.3) 

 

Where xi and yi are the independent and dependent variable at location i. (ui,vi) are the coordinates 

of location i, β0 and βk are the intercept and coefficient. K is the number of independent variables 

and εi is the error term. The golden section search algorithm based on Akaike information criterion 

minimization is used for variables bandwidth optimization (Fotheringham et al., 2009).  

Random forest (RF) regression was applied to identify the potential non-linear relationships 

between topography variables and vegetation attributes. RF regression is a machine learning 

technique that uses an ensemble of decision trees to make predictions. Each tree in the forest is 

trained on a random subset of the data, and the final prediction is made by averaging the 

predictions of all the trees. This method helps to reduce overfitting and improves the model's 

accuracy by capturing a wide range of patterns in the data. Random forest regression is 

particularly effective when dealing with complex datasets with many variables. To ensure optimal 

model performance, hyperparameter tuning was conducted on the training set using a 

comprehensive grid search strategy coupled with cross-validation. The hyperparameters targeted 

for optimization included the number of decision trees, the maximum depth of the trees, the 
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minimum number of samples required for a split, and the minimum number of samples required at 

a leaf node.  

Shapley additive explanations (SHAP) was used to interpret RF regression models by quantifying 

the contribution of each feature to the model’s predictions (Lundberg & Lee, 2017). Unlike 

traditional feature importance methods, SHAP values are based on game theory and provide a 

unified measure that fairly attributes the impact of each feature on the model’s output, regardless 

of the feature interactions. By assigning each feature an importance score, SHAP allows for a 

more nuanced understanding of how individual variables influence the model's predictions. Partial 

dependence plot (PDP) was used to visualize the relationship between specific features and the 

model's predicted outcomes, allowing for the interpretation of how changes in these features 

influence predictions while accounting for the effects of other variables (Goldstein et al., 2015).  

2.2.4 Spatial cluster analysis 

Anselin Local Moran’s I (LMI) was employed to identify statistically significant spatial clusters and 

outliers within the study area (Anselin, 1995). For each sample of the input vegetation attributes, 

the LMI value, z-score, and pseudo p-value were calculated. A positive LMI value indicates that the 

sample shares similar high or low attribute values with its neighbouring samples, while a negative 

LMI value indicates that the sample and its neighbouring samples have dissimilar values. The z-

scores and pseudo p-values help determine the statistical significance of these clusters and 

outliers. Four types of spatial patterns can occur: high-high (HH), low-low (LL) clusters, and high-

low (HL), low-high (LH) outliers. The analysis was conducted using the Cluster and Outlier Analysis 

tool in ARCGIS Pro software. The spatial relationships were modelled based on inverse Euclidean 

distance, and spatial weights are standardized to mitigate potential bias from an uneven 

distribution of spatial neighbours.  

To evaluate the differences of topographical variables between clustered variables, we employed 

the Mann-Whitney U test, a non-parametric test suitable for comparing two independent samples 

when the data does not follow a normal distribution (Fay & Proschan, 2010). The 0.01 significance 

level was adopted in this study. The rank-biserial correlation was calculated as a measure of effect 

size. It evaluates the magnitude of the difference between clusters. The effect sizes were 

interpreted according to Cohen's guidelines: Small to moderate differences (0.1 ≤ |effect size| < 

0.5) suggest limited practical significance. Large differences (|effect size| ≥ 0.5) suggest 

substantial practical significance (Cohen, 1988).  
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2.3 Results and Discussion 

2.3.1 Scale and sample method comparison 

Table 2.4 and 2.5 present the regression results for tree height, NDVI, LAI, tree density, and crown 

volume across different scales (1 m, 5 m, and 10 m), with R² and adjusted R² values provided. The 

results indicate that only tree height and NDVI achieve relatively strong linear relationships with 

topographic factors, whereas LAI, tree density, and crown volume show much weaker correlations. 

Besides, the 5-m and 10-m sampling methods show significant improvements over the 1-m scale, 

suggesting that vegetation attributes are more sensitive to terrain data when aggregated over 5-10 

meters. This is likely because larger sampling scales smooth out local variations and noise, 

allowing a more consistent relationships between topography and vegetation attributes.  

Comparing the adjusted R² values, it is evident that the regression performance improves 

significantly with the tree-based sampling method compared to the pixel-based method. Coomes et 

al. (2017) shows that tree-based method is less accurate at estimating aboveground carbon 

density than the best-performing area-based model due to the inaccurate detection of individual 

tree. However, they still consider the tree-based method to be a promising approach. Our result 

here supports Coomes’s idea that the tree-based sampling is similar to well-established field-based 

approaches for vegetation attributes measurement. 

Table 2.4 Accuracy of the SLR models based on pixel samples 

Vegetation attributes 

1 m 5 m 10 m 

R2 Adj R2 R2 Adj R2 R2 Adj R2 

Tree height 0.24 0.24 0.31 0.31 0.31 0.31 

NDVI 0.27 0.27 0.32 0.32 0.40 0.40 

LAI 0.03 0.03 0.04 0.04 0.04 0.04 

Tree density 0.11 0.11 0.15 0.14 0.14 0.13 
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Table 2.5 Accuracy of the SLR models based on tree samples 

Vegetation attributes 

1 m 5 m 10 m 

R2 Adj R2 R2 Adj R2 R2 Adj R2 

Tree height 0.34 0.33 0.42 0.42 0.42 0.42 

NDVI - - 0.47 0.46 0.55 0.55 

LAI 0.05 0.04 0.08 0.07 0.07 0.06 

Crown volume 0.01 0.01 0.02 0.02 0.02 0.02 

 

2.3.2 Linear and non-linear models testing results 

Data derived from tree-based sample at the 5-m scale were used as input as it is proved to have 

better performance in section 2.3.1. Although the 10-m data exhibited enhanced performance in 

the SLR, the limited sample size at this resolution made it suboptimal for the RF regression, which 

is designed to handle larger datasets efficiently. Two data selection methods are applied: for 

random sampling, the whole dataset was randomly divided into training and testing subsets with an 

equal split (1:1 ratio). For spatial block sampling, the input data was spatially divided into training 

and testing sets to assess the model's spatial generalizability.  

Table 2.6 shows the training and testing results of the SLR and RF regression. For the random 

sample test, the RF regression model performed well on the training set for all vegetation 

attributes, with R² values exceeding 0.8. However, the model's performance declined on the testing 

set, which is indicative of overfitting. Overfitting occurs when the model becomes too complex and 

starts to capture noise rather than the underlying data distribution (Meyer et al., 2018). The SLR 

achieves lower R2 on the training set. However, it maintained a more consistent performance 

between the training and testing sets, suggesting that the SLR model was less sensitive to noise. 

This consistency highlights that while the SLR may not capture the complexity of the relationships 

between variables as effectively as the RF model, it avoids the risk of overfitting, leading to more 

stable predictions. Ultimately, the results indicate that both models performed similarly on the 

testing set, despite their differences in complexity.  

For the spatial block test, the testing R² values dropped significantly for the RF regression model, 

suggesting that the model struggled to generalize when it is applied to new spatial areas. This 
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suggests that while the RF model can capture patterns within a specific spatial region, its ability to 

predict vegetation attributes across different spatial areas is limited. Similarly, the spatial block 

sampling has been conducted for the SLR. The testing R2 values also showed a noticeable decline 

compared to the training R2, when compared with the random sample test. The results from the 

spatial block test highlight that the relationship between vegetation attributes and topography in 

this watershed is not stationary and exhibits significant spatial heterogeneity.  

These findings indicate that when using a global model to assess the influence of topography on 

vegetation attributes, both SLR and RF regression effectively explain tree height and NDVI (~34% 

for tree height and ~49% for NDVI in the testing set). However, the significant drop in testing 

accuracy compared to training accuracy for RF regression (a reduction of 56% for tree height and 

39% for NDVI) suggests that the model suffers from overfitting. This implies that the simpler SLR 

model performs comparably to Random Forest in capturing vegetation-topography relationships, 

highlighting the need for caution when applying machine learning methods to spatial analysis.  

When the objective is for spatial prediction, the predictive capabilities of both methods are less 

satisfactory (~20% for tree height and ~30% for NDVI) compared to their strong performance on 

the training set. This disparity underscores the presence of considerable spatial non-stationarity in 

the relationship between topography and vegetation attributes. Further investigation is required to 

incorporate spatial patterns in the data, which could lead to a more nuanced understanding and 

improved modelling of this relationship.  

 

Table 2.6 Model training and testing result of SLR and RF regression (LAI and CV are not shown metrics not 
included due to poor model interpretability) 

 
Vegetation 

attributes 

Randon sample Spatial block sample 

Training R2 Testing R2 Training R2 Testing R2 

SLR 

Tree Height 0.36 0.35 0.40 0.23 

NDVI 0.46 0.45 0.34 0.30 

RF regression 

Tree Height 0.89 0.33 0.89 0.21 

NDVI 0.92 0.53 0.91 0.31 
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2.3.3 Controlling factors analysis results 

2.3.3.1 Linear regression results 

The coefficients for the topographic factors in predicting tree height and NDVI provide insights into 

the relationship between these topographical variables and vegetation attributes (Table 2.7).  

According to the SLR model, the most influential factor for tree height is TPI, with a negative 

coefficient (-0.359, explaining 37.7% of the variance), indicating that higher topographic positions, 

which are more exposed and less able to retain moisture, tend to have shorter trees. Northness 

also plays a significant role, which shows a significant negative correlation (-1.612, explaining 

31.9% of the variance). This suggests that north-facing slopes, which receive more direct and 

intense sunlight throughout the day in the Southern Hemisphere, may experience higher 

evapotranspiration demands and increased water stress, potentially leading to reduced tree height. 

Elevation is also an influential factor, with a negative coefficient (-0.019, explaining 14.3% of the 

variance). Elevation reflects the overall height variation across the catchment, indicating that areas 

with higher elevation within the catchment tend to have shorter trees. Eastness and TWI also 

contribute marginally to the model, with eastness showing a positive correlation (0.545, explaining 

8.7% of the variance) and TWI a positive correlation (0.163, explaining 7.4% of the variance). 

Eastness suggests that east-facing slopes, which receive gentler morning sunlight, create a more 

favourable environment for tree growth, resulting in taller trees. TWI indicates that areas with 

higher water accumulation support taller trees due to the increased availability of water.  

For NDVI, eastness is the most significant variable, with a positive correlation (0.062, explaining 

23.5% of the variance). Slope is the next most influential factor, showing a negative correlation (-

0.005, explaining 21.0% of the variance), suggesting that steeper slopes might experience more 

soil erosion and water runoff, reducing vegetation density. Similar to tree height, NDVI shows 

negative correlation with both TPI (-0.008, explaining 19.7% of the variance) and northness (-

0.042, explaining 19.4% of the variance). The influence of radiation and elevation are relatively 

small. Northness could already explain most of the radiation related variation of NDVI.  

 

Table 2.7 Coefficients and variable contributions of SLR 

Vegetation 
attributes 

Coefficients 

Elevation Slope Eastness Northness Curvature Radiation TWI TPI Constant 

Tree 
Height 

-0.019 
(14.3%) 

- 
0.545 
(8.7%) 

-1.612 
(31.9) 

- - 
0.163 
(7.4%) 

-0.359 
(37.7%) 

17.157 

NDVI 
4.060×10-4 

(7.3%) 
-0.005 

(21.0%) 
0.062 

(23.5%) 
-0.042 

(19.4%) 
- 

-7.730×10-5 

(9.1%) 
- 

-0.008 
(19.7%) 

0.773 
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Table 2.8 shows the results of MGWR model for tree height and NDVI. The significant rate tells the 

percentage of the local models in which the variable is significant. The results suggest that 

accounting for spatial heterogeneity can lead to more accurate models compared to using a global 

SLR model (Table 2.5). For the tree height model, the result consists well with the SLR model, with 

the most significant variables to be TPI and northness. Figure 2.3 (a), (b) show the coefficient 

distribution of TPI and northness. Consistent with the results in Table 2.7, the MGWR model shows 

that TPI and northness are negatively correlated with tree height.  

For explaining NDVI spatial variability, TPI, northness, elevation, and eastness are significant 

variables in the MGWR model, with a significance rate above 40%. Figure 2.6 (c)-(f) show the 

coefficients of topographical variables. The variable importance and the signs of the regression 

coefficients for TPI, northness, and eastness are similar to those in the SLR model. In Figure 2.6 

(e), It is worth noting that the relationship between NDVI and elevation is strongly influenced by 

elevation itself, that in low elevation region, NDVI is negatively correlated with elevation, and in 

high elevation region, it turns to be positive correlation. The spatial non-stationarity observed in the 

relationship between elevation and NDVI helps explain the relatively insignificant contribution of 

elevation in SLR model. This suggests that, at the tree level, the influence of elevation on NDVI 

differs from that of other variables. The contrasting trends indicate that the effect of elevation on 

NDVI is not solely related to controlling water flow direction. Instead, it may also be associated with 

other factors such as wind speed, soil properties, and microclimatic conditions, which vary with 

elevation and impact NDVI across different regions.  

Table 2.8 Statistical description of MGWR model coefficient. Radiation and mean curvature are excluded in 
MGWR model as the model is sensitive to multicollinearity 

 Tree height NDVI 

Variables Mean Min Max Sig. rate (%) Mean Min Max Sig. rate (%) 

Elevation -0.05 -0.63 0.32 5.34 0.17 -0.45 1.04 51.42 

Slope 0.01 -0.22 0.41 9.73 -0.07 -0.42 0.15 16.90 

Eastness 0.05 -0.36 0.88 9.34 0.21 -0.27 0.92 41.63 

Northness -0.25 -0.55 0.08 55.48 -0.27 -0.67 0.19 65.04 

TWI 0.01 0.00 0.02 0 0.02 0.01 0.02 0 

TPI -0.38 -0.59 
-

0.11 
87.16 -0.28 -0.60 

-

0.03 
84.49 

R2 0.52 R2 0.60 
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Figure 2.3 Spatial distribution of scaled coefficients. (a) and (b) show the coefficients of TPI and northness 
for tree height. (c) - (f) show the coefficients of TPI, northness, elevation, and eastness for NDVI (Variables 
with significance rates below 20% are not shown). 

 

2.3.3.2 Spatial clustering and RF regression results 

Figure 2.4 shows spatial clustering of four vegetation attributes. The clusters are identified using 

LMI, which highlights areas with significant spatial aggregation of HH and LL values. The HL and 

LH outlier account for a minimal proportion and were excluded from the analysis. Tree Height and 

NDVI exhibit very similar spatial pattern, with LL clusters predominantly on northwest-facing slopes 

and HH clusters on southeast-facing slopes. The spatial patterns for LAI and Crown Volume are 

less distinct.  

Figure 2.5 presents a detailed comparison of topographic variables between HH and LL clusters. 

Each row corresponds to a different attribute. The effect size from the Mann–Whitney test is 

displayed, which quantify the differences between groups. For tree height and NDVI, all 
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topographic variables show significant differences between the HH and LL clusters (p-value < 

0.01). Tree height, in particular, displays large differences in elevation, northness, eastness, 

radiation, TWI, and TPI. Similarly, NDVI also shows large differences in northness, eastness, and 

radiation, underscoring the importance of slope orientation and sunlight exposure on vegetation 

growth and health. In contrast, for LAI and crown volume, although some topographic variables 

show significant differences between clusters, the effect sizes are generally low to moderate. This 

suggests that topography has a less pronounced influence on these attributes. 

 

Figure 2.4 Spatial distribution of High-High and Low-Low clusters of vegetation attributes based on the LMI 
analysis. 
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Figure 2.5 Boxplots of spatial clustered topographical factors according to different vegetation attributes ((a)-
(d) are tree height, NDVI, LAI, and crown volume). The right side are the corresponding effect size of statistic 
test (no significant variables are not shown). 

 

Spatially clustered significant data were used as inputs for the RF model to reduce potential noise. 

The results indicate that the R2 values for tree height and NDVI on the training set were 0.86 and 

0.87, respectively, while on the testing set, they reached 0.62 and 0.71. This suggests that spatial 

clustering can effectively reduce underlying noise in the variables.  

PDP for the top four most important variables, based on SHAP importance, are shown in Figures 

2.6 and 2.7. The results demonstrate that for tree height, TPI, northness, and eastness have a 

notable influence. TPI emerged as the most significant factor in the model, with a nearly linear 

negative correlation. The PDP for northness and eastness show that tree height is generally lower 
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on north-facing and west-facing slopes. This relationship is not strictly linear, with the most 

significant changes occurring in the mid-range of the gradient. For NDVI, northness and eastness 

exert the strongest influence. The gradient from south to north shows that NDVI remains higher 

within the slope aspect range of 120 to 240 degrees. Regarding east-west slope orientation, NDVI 

tends to stay elevated as long as the slope faces no more than 30 degrees westward.  

 

Figure 2.6 Partial dependence plot between tree height and topographical factors. The plots are ranked 
based on SHAP importance, with the top four variables presented. 
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Figure 2.7 Partial dependence plot between NDVI and topographical factors. The plots are ranked based on 
SHAP importance, with the top four variables presented. 

 

In summary, for tree height, the SLR, MGWR, and RF regression consistently identify the same 

controlling factors: TPI and northness. This indicates that tree height is primarily influenced by local 

water convergence and the amount of direct solar radiation. For NDVI, both SLR and RF highlight 

that northness, eastness, slope, and TPI are the most influential factors. This suggests that, at the 

tree scale, NDVI is more sensitive to soil moisture conditions, which are significantly affected by 

these factors. MGWR also shows a high impact of TPI, northness, and eastness on NDVI but 

reveals the spatial non-stationarity of the relationship between topographical factors and NDVI. 

TWI is not significant in all models, indicating that, at the scale of this study, tree height and NDVI 

are not necessarily related to the water flow path.  

No significant linear or non-linear relationships were found between topographical factors and LAI, 

suggesting that the factors influencing the spatial heterogeneity of LAI vary with species 

composition and forest type. This is consistent with findings from other studies; for instance, 

Bequet et al. (2012) reported that the spatial variability of LAI was linked to the diameter at breast 

height (DBH) of large trees (DBH > 30 cm) across different forest types. These observations 

suggest that plant functional types, such as life-history stages or size classes, are likely connected 

to LAI's spatial heterogeneity. Zhu et al. (2016) indicates that small-scale variability in LAI within 
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Chinese subtropical forests is primarily governed by factors like stem number, crown coverage, 

species composition (proportion of evergreen coniferous and deciduous species), and forest type, 

with these factors changing seasonally. Liu et al. (2018) conducted research in temperate forests, 

demonstrating that LAI is shaped by a combination of biotic and abiotic factors, such as tree 

density, species composition, crown coverage, soil temperature, and soil moisture content.  

For the crown volume, existing literature indicates that tree growth experiments across different 

density and competition levels show that tree height growth remains relatively stable across a wide 

range of stand densities, from solitary trees to dense stands. In contrast, tree crown and stem 

diameter growth are highly sensitive to competition (Pretzsch et al., 2015). Compared to the 

influence of topography, crown volume is more strongly affected by competition among trees.  

2.4 Conclusion 

This study has provided a comprehensive analysis of the relationships between vegetation 

attribute and fine-scale topographical factors in a semi-arid woodland environment. By employing 

both linear and non-linear regression methods, including SLR, MGWR, and RF regression, this 

research has illuminated the critical role of topography in influencing vegetation structure.  

1) The results demonstrate that vegetation attributes are particularly sensitive to topographical 

factors at the 5-10m scale, with tree height and NDVI showing the strongest relationships. 

The tree-based sampling method used in this study proved to be more effective than 

traditional pixel-based methods, capturing the spatial variability of vegetation attributes 

more accurately and leading to more reliable models. 

2) The study also highlighted the significance of spatial non-stationarity in modelling 

vegetation attributes, especially for relationship between topographic factors and NDVI. 

Compared to global models, the MGWR model not only shows a significant improvement in 

explanatory power but also identifies influential variables that may be overlooked due to 

spatial non-stationarity. Our results also indicate that when there is spatial non-stationarity 

in the data, the accuracy of both SLR and RF regression is significantly affected, with RF 

being more prone to overfitting due to noise. Therefore, we recommend using simpler linear 

models or applying noise removal before employing machine learning models to minimize 

model errors.  

3) Key driving factors for vegetation attributes were identified: TPI and northness significantly 

influence tree height, while northness, eastness, slope, and TPI significantly influence 

NDVI. TPI, in particular, was found to have a nearly linear negative correlation with tree 

height, while slope orientation (northness and eastness) was crucial for both tree height 

and NDVI, reflecting the importance of sunlight exposure and microclimatic conditions. For 

LAI, tree density, and crown volume, no direct relationship with topography was evident at 

tree level scales.  
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Beyond the descriptive findings, this research offers a foundation for optimizing afforestation and 

reforestation strategies in semi-arid woodlands by leveraging the relationships between topography 

and vegetation attributes. The strong correlation between tree height and TPI suggests that areas 

with lower TPI values, such as valleys, could be prioritized for planting taller tree species to 

maximize productivity in water-accumulating zones, while areas with higher TPI (hills) may require 

drought-resistant species adapted to lower water availability. Similarly, the importance of northness 

and eastness highlights the role of slope orientation in determining vegetation structure. 

Afforestation on south-facing slopes (in the semi-arid regions of the southern hemisphere) is more 

efficient, as the reduced water stress creates optimal conditions for the growth, while east-facing 

slopes might support tree growth due to morning insolation and cooler microclimates. The study’s 

demonstration of the spatial non-stationarity in NDVI-topography relationships, as captured by the 

MGWR model, suggesting that planting strategies should consider localised conditions rather than 

relying solely on broad-scale patterns.  By integrating these findings, afforestation and reforestation 

efforts can be tailored to enhance vegetation establishment and resilience in semi-arid 

environments. 

The findings of this research have important implications for the management and conservation of 

semi-arid woodlands. By enhancing our understanding of how topography influences vegetation 

attributes, this study contributes to more informed and effective strategies for afforestation, 

reforestation, and the broader goal of maintaining healthy and resilient woodland ecosystems.  
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3 SOLAR RADIATION MODELLING 

Abstract 

Solar radiation, driving land-atmosphere interactions and terrestrial carbon assimilation, varies both 

temporally and spatially due to surface gradient, slope aspect and vegetation shading. Here we 

present a double-shading transposition model (DST) for simulating temporal and spatial distribution 

of downwelling shortwave solar radiation. The DST model considers influences of both topographic 

and canopy structure on radiation transmission. It simulates sub-hourly radiation distribution on 

and beneath vegetation canopy for any weather conditions. The model is tested against 

observations at two opposite-facing slopes. The simulated above-canopy radiation compares well 

with the observed data. The simulated under-canopy daily insolation highly correlates with 

observed radiation with an r of 0.95 and 0.94, at the two slopes, respectively. The model provides 

a convenient and effective tool for simulating spatial and temporal variation of solar radiation on 

mountainous areas with vegetation cover and has great potential in ecohydrological modelling and 

catchment management. 

3.1 Introduction 

Solar radiation on Earth’s surface drives hydrological cycles, powers meteorological systems, and 

sustains ecosystems. As a key variable in hydrological and meteorological models, it largely 

determines the land surface energy balance and governs plenty of surface processes (Sheng et 

al., 2009; Wild, 2009; Antonanzas-Torres et al., 2019). Spatial variation of incident radiation also 

regulates vegetation spatial patterns, especially in water-limited areas (Gutiérrez-Jurado & Vivoni, 

2013; Y. Fan et al., 2019).  

Solar radiation is emitted from the sun, with an average temperature of 6000 ˚K. Over 95% of the 

solar energy is made up of shortwave radiation (wavelength range of 0.29 – 3 μm), which 

constitutes the largest component of the land surface energy balance (Kumar et al., 1997; Duffie & 

Beckman, 2013). For simplicity, the term ‘radiation’ in this paper denotes shortwave radiation. 

When solar radiation penetrates through the atmosphere, part of it that is not direct radiation is 

scattered in various directions and becomes diffuse radiation. On a rugged surface, radiation 

reflected from the surroundings can also contribute to the total radiation at a surface point (Duffie & 

Beckman, 2013).  

The clear sky model is a radiation transfer for estimating solar radiation on Earth's surface. This 

model calculates radiation under clear sky conditions, representing the upper limit of real radiation 

on Earth's surface (Lefèvre et al., 2013; Antonanzas-Torres et al., 2019). In a clear sky model, the 

process begins with calculating extraterrestrial radiation for a specific location, considering latitude 

and time. The model then incorporates atmospheric interactions with solar radiation (McKenney, 
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1999). Clear sky models simulate radiation transfer processes in the atmosphere and interactions 

with various atmospheric components. Atmospheric molecules such as water vapor, oxygen, and 

ozone absorb solar radiation, converting it into heat, while other gases and particulates scatter 

radiation in all directions (Kumar et al., 1997). These effects are integrated into the radiation 

transfer model to estimate the radiation reaching the Earth's surface. 

Clear sky models have several limitations that can restrict their application. For instance, a key 

challenge is the lack of data needed to accurately parameterize radiation transfer simulations 

through the atmosphere (Badescu et al., 2012). More critically, clear sky models do not account for 

cloud effects, which significantly impact radiation transmission. This limitation confines their use to 

areas or times with minimal cloud cover. In some regions, cloudiness can intercept up to 80% of 

down-welling solar radiation (Serrano et al., 2015; Kambezidis et al., 2016). To address this 

shortcoming, efforts have been made to incorporate cloud effects into radiation transfer models by 

quantifying cloud optical depth, thereby extending the clear sky model to account for all conditions 

(Tang et al., 2016). However, monitoring the spatial and temporal variations of cloud distribution 

and properties remains challenging due to the sparse and heterogeneous nature of observation 

stations (Zajaczkowski et al., 2013). 

To address these issues, transposition models, which rely on point radiation measurements, have 

been developed (Liu & Jordan, 1963; Yang, 2016). A transposition model uses observed radiation 

on a horizontal surface to simulate radiation on a tilted surface over a specific area (Gueymard & 

Myers, 2008). This model incorporates the surface geometry and solar zenith angle to perform its 

calculations. One common application of transposition models is in optimizing the placement of 

flat-panel photovoltaic arrays (Khatib et al., 2015; Yang, 2016). These models can generate solar 

radiation distribution maps for any given time period. Additionally, transposition models require 

fewer variables than all-condition models, though they do depend on measured radiation on a 

horizontal plane at a nearby location (referred to as the reference radiation). By using concurrently 

measured radiation, transposition models can be applied under any weather conditions. 

Shading effects can significantly influence surface solar radiation, creating substantial temporal 

and spatial variability, particularly in complex terrain (Zou et al., 2007; Marsh et al., 2012; S. Zhang 

et al., 2020). Most previous studies have focused on the impact of topography on solar radiation, 

constructing models based on landscape components and structures derived from digital elevation 

models (DEM) (Dozier, 1980; Dubayah & Rich, 1995; Kumar et al., 1997). Recently, research has 

expanded to explore the spatial and temporal variation of solar radiation in urban environments. 

For example, Yu et al. (2009) examined the spatiotemporal variability of solar radiation in 

downtown Houston, Texas, and developed a solar flux model for urban vegetation planning and 

management. Liang et al. (2014) introduced a 3D method for computing and visualizing urban 

solar radiation using image-space data representation. Erdélyi et al. (2014) proposed a numerical 
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model to simulate the distribution of direct and diffuse radiation in urban settings. These studies 

have primarily addressed the shading effects from surrounding terrain or artificial structures on 

solar radiation distribution. 

Vegetation can partially intercept solar radiation that would otherwise reach the ground, altering the 

patterns of incident radiation in forested and vegetated areas. Understanding the amount of 

radiation reaching the top of the vegetation and the ground surface beneath the tree canopy is 

crucial for ecohydrological investigations in complex terrains, where small changes in energy 

balance can significantly impact vegetation and water flux dynamics (Metzen et al., 2019). 

Seyednasrollah and Kumar (2014) developed a shortwave radiation model for snowmelt prediction 

that calculates radiation transmission based on the path length of the solar beam as it passes 

through gaps in the forest canopy. However, this model estimates incident radiation only at a single 

point. With the advent of high-resolution topographic data from photogrammetry and light detection 

and ranging (LiDAR) technology, detailed 3D landscape structures are becoming more accessible, 

enhancing the potential for incorporating detailed surfaces into earth system models (Crosby et al., 

2020). For instance, Gutiérrez-Jurado and Vivoni (2013) investigated the effects of topography and 

vegetation on annual and seasonal irradiance on opposing hillslopes in New Mexico by combining 

LiDAR-derived digital surface models with a distributed solar radiation model. Bode et al. (2014) 

estimated sub-canopy radiation transmittance using a light penetration index derived from LiDAR 

data. Peng et al. (2014) introduced a spatiotemporally explicit 3D ray-tracing model to analyse 

spatiotemporal patterns of understorey light density. Nyman et al. (2017) evaluated four sub-

canopy radiation models and found that the model based on path-length simulation performed 

best. 

Although these methods use LiDAR data or the length of solar rays crossing the vegetation canopy 

for canopy transmission calculations. However, characterizing the light attenuation effect based 

only on the path-length attribute is insufficient since the light attenuation along its transmission path 

through the crown is also affected by the non-random distribution of foliage elements (Zeng et al., 

2019). The leaf area index (LAI), which quantifies leaf density within the canopy, could be used to 

parameterize light attenuation effects through the canopy. Despite this, few solar radiation models 

incorporate LAI to enhance radiation estimates in vegetated areas. Additionally, existing distributed 

solar radiation models either operate under clear sky conditions or require local cloudiness data. 

An all-weather distributed 3D solar radiation model remains to be developed.  

This chapter presents the development of a solar radiation model for simulating the temporal and 

spatial distribution of incident radiation on and beneath a vegetated surface for any weather 

conditions based on a reference point shortwave irradiance measurement. Both the topographic 

shading and vegetation canopy shading are considered. In order to simulate the canopy shading, 

the DEMs (including the digital terrain model (DTM), which is the elevation of bare earth and the 
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digital surface model (DSM), which is the elevation of all objects including vegetation) and the LAI 

are used. One-year’s shortwave irradiance data above-canopy and net radiation data below 

canopy on two opposite-facing slopes (polar-facing and equator-facing slopes) of a steep 

vegetated catchment at Mount Wilson, South Australia is used to evaluate the model’s 

performance.  

3.2 Model description 

The model proposed here is a transposition model based on a reference station of unshaded 

radiation that incorporates the local topographic and canopy shading effects. We refer to this 

model as the double-shading transposition (DST) model. The model is developed based on the 

conceptualization shown in Figure 3.1. 

 

 

Figure 3.1 Conceptual diagram of the solar radiation transmission; the red arrows represent direct radiation, 
the blue arrows represent diffuse radiation, the yellow box represents the path depth that solar radiation 
travels through the canopy. The horizon angle based on Digital Elevation Models are terrain horizon angle 
and vegetation horizon angle. 

 

Topographic shading can be caused by the surface itself (self-shading) and the surrounding 

features. The self-shading results from surface orientation and it can be calculated with the solar 

altitude angle, solar azimuth angle, and slope and aspect derived from DTM (Duffie & Beckman, 
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2013). The surrounding terrain shading is complex since it results from multiple features interacting 

with and intercepting light from various directions. To estimate when shading occurs as a result of 

the surrounding terrain, horizon angles are calculated using the DEMs at the solar azimuth and are 

compared with the solar altitude angle. The horizon angle in a direction is defined as the angle 

between the horizontal plane and the upper view edge of elevated terrain in that direction (Ruiz-

Arias et al., 2010). If at the time of interest, the terrain horizon angle at the solar azimuth direction 

is larger than the solar altitude angle, the surface is shaded by the terrain and has no direct 

radiation. If the solar altitude angle is between the terrain and vegetation horizon angles, the 

surface is shaded by vegetation canopy, which will be explained later.  

Different from direct radiation, diffuse radiation comes from all directions from the sky. Usually, the 

sky view factor is adopted to estimate the topography effect on diffuse radiation in solar radiation 

models (Li et al., 2016). However, since the diffuse radiation does not distribute isotropically in the 

hemisphere, it is inaccurate to simply use the sky view factor to calculate the diffuse radiation. 

Moreover, the sky view factor only accounts for diffuse radiation reduction from the topography 

effect and is therefore not suitable for simulating the shading effect that is caused by penetrable 

objects such as vegetation canopy. In the DST model, we calculated the anisotropic diffuse 

radiation, and the attenuation of diffuse radiation is estimated based on the canopy structure. 

The incident solar radiation on the land surface may be partially obstructed by vegetation canopy. 

As can be seen in Figure 3.1, the incident direct radiation on both above- and under-canopy can be 

obstructed by vegetation occurring in the beam direction. To simulate the process of light traveling 

through the canopy, the canopy is considered as a turbid medium (Da Silva et al., 2008). To detect 

the spatial variation of the forest structure, the DSM is employed. Since it can capture the 

morphologies of the vegetation above the land surface, we combined it with LAI to estimate the 

transmittance of solar ray crossing the canopy according to the Beer-Lambert law (Ross, 2012). 

For direct radiation at a certain point in time, the canopy transmittance is calculated for the 

direction in which the solar ray comes in contact with the canopy surface at that moment. The 

canopy transmittance of diffuse radiation is estimated according to the mean canopy transmittance 

value for all directions of the hemisphere.  

A flowchart for the DST model is shown in Figure 3.2. The model requires the following data: (1) 

Time and location information, including the start and end dates, and the latitude and longitude, (2) 

Topography and vegetation data, including DEMs and LAI, and (3) Reference radiation data on a 

horizontal surface, free of the shading effects, which shares the same sky condition with the area 

of interest with solar radiation to be simulated. Given that direct radiation and diffuse radiation 

behave differently in the two shading processes, a decomposition model is adopted to partition the 

observed global radiation at the reference station into direct and diffuse components (Ridley et al., 

2010). 
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The incident solar radiation on a surface at a given point in time is related to the solar geometric 

and the topography factors of the receiving surface at that instance. Similar to other radiation 

models, the DST model starts from calculating the solar geometry and topographic features. For an 

inclined surface, the reflected radiation from surrounding terrain is also considered in the DST 

model.  

 

 

Figure 3.2 Flowchart showing the model process. 

 

3.3 Methodology 

3.3.1 Study area and data collection 

The study area is same with chapter 2. Figure 3.3 show the study area and weather station 

installation location. The maximum irradiance (radiation flux, W/m2) in summer can be up to 1200 

W/m2, but in winter it is about 600 W/m2 (based on a reference station detailed later). In addition to 

this temporal variation, spatial variation of solar irradiation is more complicated due to steep 
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topography relief and slope-induced variation in vegetation cover (X. Xu et al., 2017). This spatial 

variability provides a range of conditions to test the proposed DST model. 

Three radiation stations were installed. One is located in an open area at the top edge of the 

catchment. Hereafter referred to as the reference station. This station measured the unshaded, 

shortwave solar radiation with a CM3 Pyranometer (Kipp & Zonen). The two other sites were 

located on two opposite-facing hill slopes of the small catchment, one with an equator-facing slope 

(EFS) and the other with a polar-facing slope (PFS). For these sites, CNR4 Net Radiometer (Kipp 

& Zonen) was installed at an elevation of 12 meters above the ground and measured both 

upwelling and downwelling shortwave and longwave radiation (i.e. above the tree canopy). In 

addition, a NR Lite2 Net Radiometer (Kipp & Zonen) was installed at 1.7 m above the ground, 

under the tree canopy, to measure understorey net radiation at both sites.  

Radiation data was recorded from April 04, 2013 to April 05, 2014, with a 30-minute sample 

interval. The quality control process includes the following rules: (1) Missing or incomplete data is 

excluded; (2) Recorded radiation exceeding extraterrestrial radiation is excluded; (3) For the 

measured above-canopy radiation, a 3-point (1hour) moving average is adopted. For measured 

under-canopy net radiation, the negative values are eliminated and a 5-point (2 hours) moving 

average is adopted, since a high frequency variation exists in the measured data due to temporal 

variation of canopy shadow casting.  

Radiation data for 361 days is available from the reference station as model input. The data 

recorded at the EFS and PFS sites is used for model validation. At the EFS site, radiation 

measurements above the canopy cover 343 days, while at the PFS site, it covers 208 days. For 

measurements beneath the tree canopy, half-hourly net radiation data is available for 313 days at 

the EFS site and 339 days at the PFS site. 

The DTM, DSM, and LAI data were derived from airborne LiDAR data (detailed in chapter 2) with a 

spatial resolution of 0.5 m.  
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Figure 3.3 The study area and geographical location of weather stations. 

 

3.3.2 Basic equations 

3.3.2.1 Solar geometry 

The sun’s position in the sky needs to be calculated for each time interval, which can be expressed 

by solar altitude angle and solar azimuth angle. Solar altitude angle, 𝛼𝑠 is the angle between a 

horizontal plane and the line to the sun, and solar azimuth angle, 𝛾𝑠 is the angular displacement 

from south of the projection of direct radiation on the horizontal plane (Duffie & Beckman, 2013): 

 

 sin𝛼𝑠 = cos𝜑 cos 𝛿 cos𝜔 + sin𝜑 sin 𝛿 (3.1) 

 

 
𝛾𝑠 = sign(𝜔)(𝜋 − cos−1 (

sin𝛼𝑠 sin𝜑 − sin 𝛿

cos 𝛼𝑠 cos𝜑
))+𝜋 (3.2) 

 

 
𝛿 = 23.45 sin (360

284 + 𝑛

365
) (3.3) 

 

where 𝜑 is the latitude in radians, 𝛿 is the solar declination (Equation 3.3), and 𝜔 is the hour angle, 

which equals zero at the solar noon and varies at the rate of 15° per hour, negative in the morning, 

positive in the afternoon, the sign function equals to +1 if 𝜔 is positive and is equal to −1 if 𝜔 is 



 

51 

negative. n is the day of year. The solar azimuth angle 𝛾𝑠 ranges from 0 to 2π, zero facing south, 

and increasing in a counterclockwise direction.  

3.3.2.2 Radiation partition 

In most cases, only the total radiation is available. Boland et al. (2001) proposed a method to 

estimate the diffuse fraction based on a logistical function. This method establishes correlation 

among diffuse fraction, clearness index, and the solar time. The clearness index is defined as the 

ratio of total radiation on a horizontal surface to extraterrestrial radiation (Reindl et al., 1990). With 

the solar constant, time and location information, the extraterrestrial radiation can be precisely 

calculated for any instantaneous time point (Duffie & Beckman, 2013). Ridley et al. (2010) 

improved the diffusion fraction method with more predictors for better performance, which is 

referred to as the Boland-Ridley-Lauret (BRL) model. The radiation partitioning model is: 

 

 
𝐾𝑑 =

1

1 + exp⁡(𝛽0 + 𝛽1𝑘𝑡 + 𝛽2𝐴𝑆𝑇 + 𝛽3𝛼𝑠 + 𝛽4𝐾𝑡 + 𝛽5𝜓)
 (3.4) 

 

 

where 𝐾𝑑 is the diffuse fraction, 𝑘𝑡 and 𝐾𝑡 are the sub-hourly and daily clearness index (calculated 

based on the reference station data), AST is the apparent solar time, 𝜓 is a persistence factor and 

(𝛽0, 𝛽1,…, 𝛽5) are the coefficients adopted from Ridley et al. (2010).  

3.3.2.3 Topography shading 

Terrain horizon angle is required to determine whether topography shading occurs or not. In this 

instance, for a given point, the horizon angle should be calculated for all possible solar azimuth 

angles, which is computationally expensive. To this end, a rapid calculation algorithm is employed 

in this study after Dozier et al. (1981). The DEMs data is transformed into matrix form such that it 

could be rotated, and the horizon angle calculated in forward and backward directions for each 

pixel. The shading relationship is described using the discrete Heaviside step function f(𝑥)  (Ruiz-

Arias et al., 2010): 

 

 f(𝑥) = {
0, 𝑥 < 0
1, 𝑥 ≥ 0

 (3.5) 
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The variable x in Equation 3.5 is the difference between solar altitude angle and the horizon angle 

in the solar azimuth direction (𝐻𝛾𝑠). Once the solar altitude angle, 𝛼𝑠 and solar azimuth angle, 𝛾𝑠 

are determined, the estimated direct radiation is calculated as: 

 

 �̂�𝑏 = f(𝛼𝑠 −𝐻𝛾𝑠)𝑟𝑏 (3.6) 

 

𝑟𝑏 is the partitioned direct radiation. 

3.3.2.4 Canopy shading 

When the DSM is used in the horizon angle calculation, it results in a threshold for determining 

whether canopy shading may occur. Canopy shading on direct radiation occurs if the solar altitude 

angle falls between the terrain and vegetation horizon angles. When this occurs, the estimated 

direct radiation can be calculated as:   

 

 �̂�𝑏 = 𝜏𝑏𝑟𝑏 (3.7) 

 

 𝜏𝑏 = exp(−𝑘 ∙ 𝐿𝐴𝐷 ∙ 𝐿) (3.8) 

 

where �̂�𝑏 is the estimated direct radiation travelling through the canopy, 𝜏𝑏 is the canopy 

transmittance of beam radiation, k is the extinction coefficient, LAD is the leaf area density (m2/m3), 

and L is the penetrating distance that light crossing the canopy. 

The extinction coefficient, k depends on light direction and leaf inclination distribution. Previous 

studies suggest that it is a function of solar altitude angle assuming a spherical leaf angle 

distribution (Campbell & Norman, 1998; Timlin et al., 2014): 

 

 
𝐺 =

0.5

sin𝛼𝑠
 (3.9) 

 

The LAD is defined as the ratio of leaf area to crown volume (Da Silva et al., 2012). In this study, 

we evenly distribute leaves in a grid. Although canopy leaves tend to distribute at the upper part of 

a tree height at any given pixel, given that a solar beam traveling through the canopy at different 
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heights intercepts several pixels along its path (Figure 3.4), this approximation has potential to 

capture the canopy shading effect on beam radiation. The leaf area density can then be expressed 

by LAI: 

 

 
𝐿𝐴𝐷 =

𝐿𝐴𝐼

𝑐𝑎𝑛𝑜𝑝𝑦⁡ℎ𝑒𝑖𝑔ℎ𝑡
 (3.10) 

 

Since the DEMs data include the height information of the land surface and canopy, the canopy 

height for each grid cell can be estimated from the differential value between the DTM and DSM.  

 

 

Figure 3.4 Diagram of the canopy shading effect (voxels) along a solar beam path towards a target surface, 
with an assumption that leaf area is evenly distributed over the whole canopy height at each pixel. 

 

To calculate the distance that the solar ray penetrates through the canopy, a ray tracing method, 

known as the voxel traverse algorithm, is adopted (Amanatides & Woo, 1987; Musselman et al., 

2013). Firstly, a 3-D domain, consisting of cubic volumes (voxel) is constructed according to the 

size of the study area. In this study, the DEMs data include 730×998 pixels and the maximum 

height is 427 m, such that the 3-D domain has 730×998×854 elements. Having adequate voxel 
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numbers ensured greater accuracy of distance estimation, but it is computationally inefficient for a 

large number of voxels. The resolution of the DEMs data in this study is 0.5 m, so the height of 

each voxel is set to 0.5 m (Figure 3.4). According to the height information in the DEMs data, the 

voxels are defined as three types: above the canopy, between the canopy and land surface, and 

below the land surface. Once the point of interest is identified and light direction defined, the ray 

tracing algorithm determines the positions of all voxels through which the light travels and the total 

distance. 

For each time interval, the solar altitude angle and solar azimuth angle are calculated for each grid 

cell and converted to a direction vector. Then, the horizon angle is calculated based on the DSM 

and compared to the corresponding solar altitude angle to determine whether the grid cell is 

shaded by canopy. Only those shaded pixels are included in the transmittance calculation to 

ensure computational efficiency. The averaged LAD is calculated according to the voxel position 

and LAI data. The canopy transmittance of direct radiation for each shaded grid is calculated using 

Equation 3.8.  

The canopy can also attenuate the diffuse radiation. Unlike the direct radiation, it comes from all 

directions without a certain source. Two factors affect the intensity of the diffuse radiation from the 

sky: 

(1) It has been found that the distribution of diffuse radiation is anisotropic, especially in cloudy day 

(Kondratyev & Manolova, 1960). An anisotropic model proposed by Hay (1993) is employed for its 

simplicity and accuracy. The formulation gives by: 

 

 
𝑑 = (1 − A𝐼) cos

2
𝛽

2
+ A𝐼

cos𝛼

sin 𝛼𝑠
 (3.11) 

 

where d is the diffuse factor (ranging from 0 to 1), A𝐼 is the “anisotropy index” expressed as A𝐼 =

𝐼/𝐼𝑠𝑐, 𝐼 is the normal incident direct radiation and 𝐼𝑠𝑐 is the solar constant, 𝛽 is the surface slope. 

The incident angle 𝛼 between sun light and the normal to that surface can be calculated as (Duffie 

& Beckman, 2013): 

 

 cos𝛼 = sinδsin𝜑cosβ − sinδcos𝜑sinβcosγ 

+cosδcos𝜑cosβcosω + cosδsin𝜑sinβcosγcosω 

+cosδsinβsinγsinω 

(3.12) 
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where γ is the surface aspect, other symbols are explained in Section 3.2.1. 

(2) The surrounding canopy attenuates the diffuse radiation from all directions. In that case, the 

canopy transmittance of diffuse radiation, 𝜏𝑑 is approximated by averaging the canopy 

transmittance over the whole hemisphere (de Castro & Fetcher, 1998). In this research, four 

azimuth (west, east, north, and south) and three altitude angles (30˚, 60˚ and 90˚) are selected for 

calculation. 

The estimated diffuse radiation can be calculated as: 

 �̂�𝑑 = 𝑑𝜏𝑑𝑟𝑑 (3.13) 

where 𝑟𝑑 is the partitioned diffuse radiation. 

3.3.3 Total radiation over and understorey 

The model is designed to estimate the incident solar radiation above and under the canopy. For 

overstory radiation, the reference height is derived from the DSM data and the received surface is 

set to be horizontal. The canopy shading mainly comes from surrounding canopy that is higher 

than itself. 

 

 �̂�𝑎 = �̂�𝑏,𝑎 + �̂�𝑑,𝑎  (3.14) 

 

�̂�𝑏,𝑎 and �̂�𝑑,𝑎 are the estimated direct and diffuse radiation for overstory.  

For the understorey radiation, since the land surface is inclined, the slope and aspect of land 

surface are considered. In this study, the reference radiation data from a weather station is 

received on a horizontal surface, and therefore, the direct radiation is restored to the correct solar 

direction at that point in time. A geometric factor, 𝑅 = cos𝛼 / sin𝛼𝑠 is applied for the direct 

radiation.  

In complex terrain, the radiation reflected from the surrounding terrain should be included in the 

calculation. A common adopted formulation is employed here to describe the reflected radiation 

(Gueymard, 2009): 

 

 𝑟𝑟 = 𝜌𝜇𝑟𝑅  (3.15) 
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𝜇 =

1 − cosβ

2
 (3.16) 

 

where 𝑟𝑟 is the reflected radiation, 𝜌 is the foreground albedo (in a forest area, ρ assumes to be 

0.2), 𝜇 is the reflection factor, and 𝑟𝑅 is the global radiation on a horizontal surface. 

The under-canopy radiation is calculated follows: 

 

 �̂�𝑢 = 𝑅�̂�𝑏,𝑢 + �̂�𝑑,𝑢 + 𝑟𝑟  (3.17) 

�̂�𝑏,𝑢 and �̂�𝑑,𝑢 are the estimated direct and diffuse radiation for under-canopy condition.  

3.3.4 Model validation 

The DST estimate of direct canopy transmittance is evaluated against the calculated transmittance 

based on the EFS and PFS observations. Additionally, we calculated the transmittance based on 

LiDAR point cloud data for comparison (Musselman et al., 2013). The method consists of a voxel-

based canopy structure model and a ray trace model. Firstly, the study area is assigned a certain 

vertical dimension defined by the elevation difference between the highest value of the DSM in the 

domain and the lowest value of the DTM. The airborne scanning LiDAR data points are distributed 

in the voxel space according to the 3D LIDAR laser return geographical coordinates. Each voxel is 

assigned a value corresponding to the number of laser point returns contained within that voxel 

extent. Voxels within which no returns are recorded are set a value of zero. Then, a voxel traversal 

algorithm is applied to calculate the laser point returns along the direct solar ray direction for each 

surface grid. The direct beam canopy transmittance 𝜏𝑖,𝑗(𝑡) is computed as: 

 

 
𝜏𝑖,𝑗(𝑡) = 1 −

min⁡(𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑗(𝑡), 𝑃)

𝑃
 (3.18) 

 

where 𝑟𝑒𝑡𝑢𝑟𝑛𝑖,𝑗(𝑡) represents the accumulated LiDAR laser point returns along the solar ray path 

to surface point (i, j), at time step t. P is the maximum return parameter that represents the upper 

limit of accumulated point returns, above which full canopy attenuation of the incoming solar direct 

beam is assumed. Musselman et al. (2013) calibrates the P parameter using 12 hemispherical 

photographs. A P parameter value of 42 produced a minimum mean absolute difference value. The 

P is set to 105 for the transmittance calculation in our study, according to the ratio of the point 

return density between our data and the data of Musselman et al. (2013). 
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Both the DST model and the point-cloud model estimated canopy transmittance are tested against 

the observed estimation. The direct shortwave canopy transmittance can be calculated as the ratio 

of the under-canopy radiation and the above canopy direct radiation (Milenković et al., 2017):  

 

 𝜏 =
𝑟𝑏,𝑎
𝑟𝑏,𝑢

 (3.19) 

 

Since the understorey shortwave radiation was not measured in this study area, an empirical 

equation considering both the surface temperature and Earth–Sun distance is adopted to convert 

the understorey net radiation to downwelling shortwave radiation (Jiang et al., 2015):  

 𝑅𝑛 = 𝑎1𝑅𝑠 + 𝑎2𝑇 + 𝑎3𝑑𝑟 + 𝑎4 (3.20) 

 

where Rn is the net radiation, Rs is the downwelling shortwave radiation, T is air temperature, dr is 

the inverse relative Earth-Sun distance and a1, a2, a3, and a4 are coefficients. The air temperature 

T was measured at both sites. To minimize the effect of diffuse radiation and topography shading 

in the observation, only data between the daylight hours of 10:00 and 14:00 and has the diffuse 

fraction Kd less than 0.3 is considered. Then the daily average is calculated for evaluating the 

model performance.  

Several indexes are selected for model evaluation. Two metrics are evaluated for the transmittance 

estimate comparison: the mean error (ME) and mean absolute error (MAE). The MAE shows the 

absolute error between the model result and the observation. The ME determines whether the 

model result underestimates or overestimates the transmittance. For the radiation simulation 

evaluation, the correlation coefficient R, between the model simulation and site observation (both 

offset by the observed radiation at the reference station) is calculated. Additionally, the relative 

error of the sub-hourly and daily radiation is evaluated by calculating the mean absolute 

percentage error (MAPE) and mean absolute percent deviation (MAPD) (Jackson et al., 2019): 

 

 
𝑀𝐴𝑃𝐸 =

1

𝑛
∑ |

𝑦𝑖 − 𝑥𝑖
𝑟𝑖

|
𝑛

𝑖=1
 (3.21) 

 

 
𝑀𝐴𝑃𝐷 =

∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1

∑ |𝑟𝑖|
𝑛
𝑖=1

 (3.22) 
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where n is the number of radiation data according to the simulated time interval in one day. 𝑦𝑖 and 

𝑥𝑖 are the simulated data and observed data, 𝑟𝑖 is the radiation data of the reference station. 

3.4 Results and Discussion 

3.4.1 Comparison of the transmittance estimates 

The ME and MAE of the direct radiation transmittance at EFS and PFS sites are calculated to 

evaluate the DST model performance and the point-cloud based model against the observation-

based transmittance according to Equation 3.19 (Table 3.1). The error metrics are calculated for 

four seasons.  

The MAE values of the DST model are smaller than the point-cloud based model. There are two 

improvements on the DST model, which makes the DST estimated transmittance consistent with 

the observations. Firstly, the DST model includes the light penetration distance among canopy for 

estimating the transmittance. For both EFS and PFS sites, a significant difference is observed for 

summer in which the ME of the point-cloud based model is larger than that of the DST model. The 

ME negative values for summer suggest that the point-cloud based model tends to overestimate 

the transmittance while the DST model underestimates the transmittance. The airborne LiDAR only 

scans the forest canopy from above and therefore there is obstruction by higher canopy elements 

that reduces the probability of lower elements to be sampled (Popescu & Zhao, 2008). As a result, 

the point cloud tends to have a larger distribution at the top of the canopy whilst the lower-level 

canopy has less point samples even though it may have a dense leaf cover. This leads to some 

apparent “hollows” in LiDAR point cloud data in the central and lower parts of the canopy.  

The solar altitude angle is higher from late spring to early autumn, which means the solar rays 

penetrate the canopy close to a near vertical direction. Under this circumstance, the DST model 

uses the light penetration distance from the incident point on the canopy to the land surface, while 

the point-cloud based model takes the point-cloud information primarily representing the top of the 

canopy. This could explain why the point-cloud based model tends to overestimate transmittance 

in summer. 

Secondly, the DST model incorporates the information of LAI to estimate the transmittance. As can 

be seen in Table 3.1, the point-cloud based model has a reduced level of performance for the PFS 

site, with a much higher ME and MAE than for the NFS in spring, summer and autumn. However, 

the level of error is not found in the DST model. Chapter 2 demonstrates that NDVI, which 

represents vegetation cover, is elevated in the polar facing slope is higher than the equator facing 

slope. As a result, the direct shortwave canopy transmittance in the SFS is lower than the NFS 

(data are not shown in paper for simplicity). This could amplify the overestimated error created by 

the feature of point-cloud data that tend to accumulate on the upper layer of canopy. In winter, the 

MAE of the point-cloud based model decreases significantly. As the solar altitude angle decreases 
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in winter, the incident solar rays entering the canopy are at a lower angle, minimizing the effect of 

the “hollows” of the point-cloud. The better performance of the DST model in both the NFS and the 

SFS sites indicate that the LAI information can improve the accuracy of transmittance estimation 

for the different facing slopes.  

To further demonstrate the difference of the two models in simulating transmittance for different 

facing slopes, Figure 3.5 shows the direct radiation transmittance estimates of the two models for 

three days (summer: January 12, 2014, spring: April 10, 2013 and winter; July 11, 2013) at 2 pm. 

For the summer day in which the solar altitude angle at 2 pm is 71.48˚, the point-cloud based 

model estimates high transmittance (over 0.8) for almost the entire study area, while the DST 

model estimate shows that the transmittance is lower and there is a distinct difference between the 

equator facing (south-east section) and polar facing (north-west section) slopes (Figure 3.5). Since 

the equator facing slope has less overstory vegetation cover (according to chapter 2), the DST 

estimate captures the real situation, while the point-cloud based model fails. For the spring day, the 

solar altitude angle is 45.58˚ at 2 pm. As the solar altitude angle is smaller, the difference in the 

transmittance for the two opposite slopes is shown in the point-cloud based model, but not as 

much as that from the DST model. In winter, the solar altitude angle is 32.04˚ at 2 pm and there is 

an obvious difference in transmittance for the two opposite facing slopes which could be 

determined in the point-cloud based model. 

In summary, the DST model tends to perform better than the point-cloud based model with a 

smaller MAE from the observation-based estimated transmittance. By using information of LAI and 

the penetration distance, the DST model performance can be used to estimate the canopy 

transmittance. 
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Table 3.1 ME and MAE of the direct canopy transmittance, estimated from the point-cloud based model and 
DST model 

Method   spring summer autumn winter 

Point-cloud based model 

EFS 

ME 0.04 0.12 0.10 0.04 

MAE 0.10 0.14 0.18 0.07 

PFS 

ME 0.35 0.36 0.24 0.01 

MAE 0.35 0.36 0.25 0.08 

DST model 

EFS 

ME -0.06 -0.05 0.01 -0.03 

MAE 0.10 0.09 0.11 0.07 

PFS 

ME -0.04 -0.09 -0.03 -0.04 

MAE 0.09 0.13 0.04 0.04 
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Figure 3.5 Modelled canopy transmittance for direct shortwave radiation on (a) and (b) January 12, 2014, (c) 
and (d) April 10, 2013, (e) and (f) July 11, 2013 estimated from the point-cloud based model (left) and the 
DST model (right). 

 

3.4.2 Overstory radiation 

The 30-minute radiation values of the observed sites (EFS and PFS) are calculated for eight 

representative clear and cloudy days in four seasons. The results are compared to the site 

observations to evaluate the model’s capability in radiation simulation. A 3-point (equivalent to one 

hour) moving average is applied to observations and simulations at both sites to minimize the 

disturbance from temporal variation of sky conditions. In order to remove the apparent effect of the 

daytime radiation cycle, which is irrelevant of the model quality, the offset radiation values are 
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calculated. The offset radiation values are the difference between the site observation/model 

simulation and the reference station radiation (Figure 3.6). The correlation coefficient r between the 

offset values of observation and simulation is calculated for performance evaluation (Table 3.2). 

The MAPE and MAPD are also calculated to examine the relative error.  

At the EFS site, the model simulations (red solid line) do not improve much, as the offset values 

are not consistent with the observed one (red dotted line). From Figure 3.6 (a) (b), we can find 

lower values appear at about 8:00 am for the simulations while the observations close to zero. That 

means it is shaded in the model at the moment, which is not correct for the real situation. The R of 

the offset value in site observation and model simulation of EFS show relative low values for 

almost all the seasons in any weather, suggesting that the shading situation estimates of the EFS 

site do not perform well. Since the altitude of the EFS site is higher in the study area, there is very 

little shade during the daytime. As a result, at the top of the canopy, the NFS site can receive 

almost same radiation as the reference station. Thus, the DST model improvement is not clear.  

At the PFS site, a clear improvement is found in the model simulation. The difference in reference 

station and site observation (blue dotted line) shows significant variation, with extreme low values 

happen in around 3:00-5:00 pm for most of the examined days. Negative offset values indicate 

there are shading occurrences. As can be seen in Figure 3.6, the model simulation highly 

correlated with the observation. The r values of SFS site also maintain high values for most of 

examined days (Table 3.2). The results show that DST model can well capture the shading effects 

on PFS site, especially for the situation with obvious shading occurrence.  

Compared to the EFS site, there are more shading occurrence on the PFS site. The results show 

that the DST model performs better on the PFS site. While for the EFS site, since there are fewer 

shading occurrences, the above-canopy radiation is consistent with the reference station data. The 

model simulated radiation is also close to the real situation as the offset values are close to zero 

for most of the time intervals, with the MAPE and MAPD indexes show low values for all the 

seasons and weather conditions, suggesting that the relative error between the observed and 

simulated radiation is small. In general, the proposed radiation model is able to accurately simulate 

the overstory radiation for both slopes. 
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Figure 3.6 The overstory radiation values of site observation and model simulation offset by the reference 
station radiation. A three-point (equivalent to one hour) moving average is applied and plotted at a 30-minute 
interval for selected clear (left) and cloudy (right) days for four seasons (from top to bottom, spring, summer, 
autumn and winter), the x axis is the hour of the day. 
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Table 3.2 The correlation coefficient R, and two relative error statistics of the offset values between site 
observation and model simulation for overstory radiation 

  Clear day Cloudy day 

  spring summer autumn winter spring summer autumn winter 

EFS 

R 0.34 0.87 0.19 0.39 -0.18 0.47 -0.38 -0.58 

MAPE 0.12 0.12 0.12 0.16 0.16 0.05 0.16 0.10 

MAPD 0.09 0.08 0.16 0.21 0.07 0.07 0.12 0.15 

PFS 

R 0.85 0.95 0.39 0.94 0.98 0.41 0.97 0.96 

MAPE 0.08 0.07 0.09 0.11 0.09 0.03 0.13 0.08 

MAPD 0.08 0.05 0.11 0.10 0.05 0.05 0.10 0.10 

 

3.4.3 Understorey radiation 

The under-canopy radiation values (offset by the reference station global radiation) are calculated 

for the same days as in Section 4.2 and compared with the observed net radiation based 

shortwave radiation data. The R is calculated to evaluate the correlation between model simulation 

and observation, and the MAPE and MAPD are calculated to evaluate the relative error (Table 

3.3).  

The results show that the model simulation is well correlated with observed radiation at both the 

EFS and PFS sites. As can be seen in Figure 3.7, the shading exists for the entire daytime hours 

at both sites since the offset values are negative for all the seasons and weather conditions. For 

the EFS site, the offset values are less negative than the PFS site, suggesting that the shading 

effect in the EFS is weaker than in the PFS. This is likely to be a result of the sparser overstory 

vegetation cover on the EFS. For both the NFS and SFS sites, the R values are above 0.8 for 

almost all the examined days. One exception is the clear day in summer, where the model 

simulation on the EFS largely underestimates the radiation, resulting in a lower R. While the MAPE 

and MAPD is 0.29 and 0.16, respectively, this indicates that the error is relatively small comparing 

to the total incident radiation. The underestimation could also be found in spring, which is 

discussed later in Section 4.4.  

Comparing to the overstory radiation, a large improvement on r for the understorey radiation 

simulation can be found for the EFS site, which demonstrates the capability of the DST model in 

simulating the canopy shading effect. The MAPE and MAPD are larger than the above-canopy 
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radiation simulation, but it is still within an acceptable range (MAPE less than 0.34 and MAPD less 

than 0.18).  

 

Figure 3.7 The understorey radiation values of site observation and model simulation offset by the reference 
station radiation. A five-point (equivalent to two hours) moving average is applied and plotted at a 30-minute 
interval for selected clear (left) and cloudy (right) days for four seasons (from top to bottom, spring, summer, 
autumn and winter), the x axis is the hour of the day. 
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Table 3.3 The correlation coefficient R, and two relative error statistics of the offset values between site 
observation and model simulation for understorey radiation 

  Clear day Cloudy day 

  spring summer autumn winter spring summer autumn winter 

EFS 

R 0.69 0.29 0.94 0.82 0.82 0.87 0.94 0.87 

MAPE 0.19 0.29 0.10 0.30 0.26 0.16 0.13 0.32 

MAPD 0.06 0.16 0.07 0.02 0.09 0.18 0.08 0.12 

PFS 

R 0.98 0.96 0.98 0.99 0.98 0.97 0.99 0.99 

MAPE 0.22 0.34 0.09 0.21 0.26 0.13 0.11 0.24 

MAPD 0.06 0.13 0.08 0.02 0.09 0.18 0.05 0.13 

 

3.4.4 Annual understorey insolation 

Daily insolation (MJ/m2) is the total amount of solar radiation energy received over a given surface 

area during a day. One year of under canopy insolation data is simulated and compared with the 

understorey shortwave radiation data. Figure 3.8 shows the daily insolation simulations of the EFS 

and PFS from April 2013 to April 2014 and the correlation coefficient. A seven-day interval is used 

for the canopy transmittance calculation to reduce the computation cost (i.e. data storage and 

processing time), while still capturing the solar geometry variation.  

The results of daily insolation over one year show a strong consistency between the simulation and 

measured data. Compared to the reference radiation (black line), both simulated results of the EFS 

and PFS sites are much closer to the observation-based estimated radiation at both sites. For the 

four seasons, the simulated radiation is lower than observation from spring (starting from 

September 01, 2013) to the end of summer (ending by February 29, 2014). For the remaining 

days, the simulated radiation is very close to the observation. The most possible reason for this is 

that the LiDAR derived LAI used in the model are obtained in June 2013. If there are more 

representative data corresponding to the different seasons as input, the model performance would 

greatly be improved. In general, the r between observation and the simulation is 0.95 for the EFS 

and 0.94 for the PFS, indicating that the DST model is capable of simulating the understorey daily 

insolation.  
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Figure 3.8 Simulated daily understorey insolation (MJ/m2) in comparison to observed radiation and the 
reference radiation: (a) EFS and (b) PFS sites. 

 

3.4.5 Spatial distribution of over and understorey radiation 

Figure 3.9 shows the simulated daily insolation of the whole study area. In Figure 3.9, we can see 

that the simulated radiation on the top of canopy is similar to that in a flat unshaded surface. The 

difference in simulated insolation between different parts of the catchment is small. For the 

understorey radiation, the amount of radiation in the northwest area of the catchment is 

significantly lower than in the southeast. Two factors may account for the difference. 1) The 

topography effect influences the incident radiation. The northwest area of the catchment is facing 

south-east with a slope ranging from 10-30˚, while the southeast area of the catchment is facing 
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north with a slope ranging from 20-30˚. Since the study area is in South Australia and the latitude is 

about 35°S, the sun rises and moves in the northern sky of the area. Hence, the incident angle of 

the northwest area of the catchment would be much higher than that of the southeast. For 

example, the impact of the incident angle to radiation is shown in Figure 3.9 (b), where the black 

circle area is an exposed area with no shading and faces north with a slope of around 25°. The 

radiation of this area would be the same as in the northeast corner (around 13 MJ/m2) if it is a flat 

surface. However, in Figure 3.9 (a), the simulated insolation is about 15 MJ/m2. As the circled area 

is towards sun’s position, the incident angle would be smaller than that for a horizontal surface, 

which explains why the simulated daily radiation on this surface is larger than a horizontal one. 2) 

Dense overstory vegetation was observed at the northwest area of the catchment (According to 

chapter 2). Therefore, there would be more radiation being obstructed by the tree canopy.  

10,000 sample points for different slope orientations (equator facing and polar facing) are randomly 

selected (Figure 3.10). Since the data do not meet the parametric statistic test assumptions of 

normality and homogeneity of variance, the Kruskal-Wallis test is conducted to compare the effect 

of canopy shading on the incident radiation. There is a significant difference in incident radiation 

between the different facing slopes and positions (p<0.001). The pairwise comparison results 

indicate that the average insolation for the overstory insolation for both EFS and PFS are 

significantly different from that of the understorey insolation. For the overstory insolation, the EFS 

and PFS are significantly different (p<0.001) while with similar mean values (11.14 MJ/m2 for EFS 

and 10.37 MJ/m2 for PFS). For under-canopy insolation, the average insolation for EFS 

(mean=6.28 MJ/m2) is significantly larger than from the PFS (mean=2.35 MJ/m2) with p<0.001. The 

difference in mean value for the under-canopy radiation between the two sites is larger than that of 

the overstory radiation. This large difference in understorey radiation may help explain the 

contrasting understorey vegetation between the two slopes in this dry-summer climate site (Figure 

3.11).  

For the simulated overstory insolation, the maximum and upper quartiles of EFS and PFS are 

close to each other. However, the minimum and lower quartiles for PFS are smaller than EFS, 

indicating that the upper limit of insolation has no difference for the two opposite hill slopes. More 

canopy shading exists on the PFS since it is polar facing, which results in the difference in 

minimum and lower quartiles. The simulated understorey insolation is generally lower than the 

overstory insolation as expected. However, on the EFS, the maximum of the simulated understorey 

insolation is even larger than the simulation of overstory insolation. The slope orientation accounts 

for this discrepancy since the equator facing slope can receive more irradiance than a horizontal 

plane. Here the simulated overstory insolation is meant for a horizontal plane above the canopy. It 

may be different from the insolation the canopy actually receives due to a possible difference in 

solar incident angles to the canopy between the two slopes. The current DST model does not 
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simulate this difference. Altogether these results suggest that the DST model can well simulate the 

spatial variability of solar radiation distribution over and understorey surface on complex terrain. 

 

Figure 3.9 The simulated daily insolation (MJ/m2) of the study area on 14 April 2014 for (a) overstory and (b) 
understorey. The area marked in red has north facing slopes, and the area marked in yellow has south 
facing slopes. The black circle identifies an open area with no shading and faces north with a slope of 
around 25°. 
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Figure 3.10 Statistics of simulated daily insolation (MJ/m2) of randomly selected 10,000 grid cells of the 
study area on 14 April 2014 for over and understorey of the equator facing vs. polar facing slopes of the 
catchment. 

 

 

Figure 3.11 Photos showing the understorey conditions of the (a) EFS and (b) PFS sites, taken on 4 June 
2020. 
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3.5 Conclusion 

This chapter introduces the method development and validation of the DST model. This model is 

proposed to simulate the spatial and temporal distribution of actual shortwave radiation in 

woodlands for both overstory and understorey layers.  The model simulations, in general, agree 

well with the observations. For the understorey surface, a significant difference in daily insolation is 

found for opposite north and south slope orientation. Those finding indicate that the DST model is 

capable to capture the shading effect caused by topographic and vegetation canopy. 

Being able to simulate radiation fields in areas of complex terrain with variable vegetation cover 

opens a diverse set of possibilities for soil scientists, ecologists, hydrologists, geomorphologists, 

and other earth scientists for which accurate estimations of surface energy loads are important. For 

example, our model provides a key variable for hydrologist to examine ET patterns below and 

under the canopy conditions in a distributed way. Other potential uses include insolation simulation 

to help to accurately find thermal shelters (canopies that shelter an animal from microclimatic 

extremes) in the forest, which has been increasingly studied in biological investigations due to 

global warming (Melin et al., 2014).  

In this study, the estimated understorey radiation serves as a critical input for modelling 

understorey ET (see chapter 5). By accurately capturing the radiation dynamics beneath the 

canopy, the DST model enhances our understanding of ecohydrological processes in 

forest/woodland environments and provides an effective tool for ecosystem water resources 

management.  
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4 UNDERSTOREY EVAPOTRANSPIRATION MODELLING AND 
MAPPING 

Abstract 

While extensive research has focused on evapotranspiration (ET) from forest canopies, the spatial 

distributions of ET in the understorey remain poorly understood. This study developed a method to 

estimate spatially distributed understorey ET by integrating the Maximum Entropy Production 

(MEP) model with airborne thermal surveys. Validation against ground-truth data showed good 

model accuracy (R² = 0.93, RMSE = 0.03 mm/h), confirming its efficacy across different land cover 

types, including open and understorey areas. The results revealed significant spatial heterogeneity 

in understorey ET, with distinct responses observed in areas of varying vegetation cover and 

topographic attributes. This method provides a solution for investigating vertical water consumption 

in forests and woodlands, contributing to assessing ecosystem water use efficiency and improving 

water resource and vegetation management strategies. 

4.1 Introduction 

ET is a land-surface process of coupled energy and water fluxes. ET returns water from the soil 

and plants into the atmosphere, which is the major component of the terrestrial water balance 

(Allen et al., 2005; Poon & Kinoshita, 2018). While considerable research effort has been 

dedicated to studying ET at the forest canopy level, the role of the understorey surface has 

received less attention (Iida et al., 2020). This gap is especially notable in understanding the 

spatial distributions of ET across the surface layer of forest/woodland ecosystems. Monitoring 

understorey ET is challenging due to diverse vegetation types, variable light conditions, and 

distinct microclimates from the ambient environment. The conventional methods of ET 

measurement often overlook understorey ET, focusing instead on the more accessible overstory 

canopy levels.  

Numerous methods have been proposed to measure ET or its components. Field-based 

techniques such as gas exchange chamber, sap flow, and soil weighing lysimeter directly measure 

plant transpiration and soil evaporation at the plant scale (Yang et al., 2000; Liu et al., 2002; 

Stannard & Weltz, 2006; Pieters et al., 2022). Bowen ratio systems, eddy covariance (EC) towers, 

and large-aperture scintillometers are the state-of-art techniques for ET measurement at the field 

scale (Wolf et al., 2008; Zhang et al., 2008; Zhang et al., 2014; Anapalli et al., 2018). However, the 

implementation of above-mentioned methods can be costly and challenging, and these methods 

have limitations when the surface is heterogenous and topographically complex.  

With the advancement of remote sensing technology, a variety of models have been developed to 

utilize satellite imagery for estimating and mapping ET across a wide range of spatial and temporal 
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scales (Chen & Liu, 2020; Acharya et al., 2021; Anderson et al., 2024). Among them, the surface 

energy balance (SEB) models are most widely used to simulate actual surface ET combined with 

remote sensing land surface temperature (LST) data (Taheri et al., 2022). The basic assumption of 

an SEB model is that the net surface energy is partitioned into sensible, latent, and soil heat flux. 

LST serves as an important input for estimating latent heat flux. One-layer and two-layer SEB 

models have been widely used to provide ET estimates (Bastiaanssen et al., 1998; Allen et al., 

2007; Sun et al., 2009; Yang et al., 2015). Yet, satellite remote sensing LST data are only reliable 

under clear-sky conditions (Zhang et al., 2016). And the accuracy of the SEB models is strongly 

affected by model parameters such as surface resistance (Ter Steege et al., 2013; Hu et al., 2014; 

D. Xu et al., 2019; Taheri et al., 2022).  

Recently, the development of Unmanned Aerial Vehicle (UAV) provides new opportunities for 

mapping surface heat flux at decimetre scale (Hoffmann et al., 2016). For example, Ramin 

Heidarian et al. (2022) use the ETLook model to monitor farmland ET by fusing UAV and Landsat 

imagery. Mokari et al. (2022) use UAV-based thermal imagery combined with a modified Senay’s 

model to estimate real-time pecan water consumption and actual ET. Feng et al. (2022); Yan et al. 

(2023) use a tri-temperature model together with UAV based thermal imagery to estimate the 

actual ET in unban and wetland environments.  

Although accurate estimates of ecosystem ET are important for water balance studies, the partition 

of ET into its components (over- and understorey vegetation) for gaining a deeper understanding of 

the water use of different vegetation species is challenging. Previous studies have found significant 

but variable contribution of the understorey to the total forest ET (Landuyt et al., 2019). For 

instance, stable isotope measurements indicate that understorey ET accounts for 30% of the total 

ecosystem ET in a semi-arid savanna woodland (Yepez et al., 2003). Eddy covariance 

measurements show that one third (45%) of total ecosystem ET in a Siberian boreal forest 

(montane forest) comes from understorey (Iida et al., 2009; Wolf et al., 2024). Point scale ET 

measurements using EC and stable isotope method do not provide the spatial distribution of ET in 

heterogeneous understorey environments. Meanwhile, the existing remote sensing techniques 

cannot directly measure understorey processes. Consequently, modelling and mapping ET of 

understorey vegetation in forested regions remains challenging. 

The objectives of this chapter are to 1) establish a robust and effective method for estimating 

understorey surface ET using airborne thermal imagery and the Maximum Entropy Production 

(MEP) model with net radiation and surface temperature for the understorey surface; and 2) 

investigate the contribution of understorey ET to the total ecosystem ET for two typical settings and 

understand influence factors. This research will enhance our understanding of hydrological 

dynamics in the understorey layer for improving water management and ecological conservation 

practices. 
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4.2 Methodology 

4.2.1 Study area and stations 

The first study area is located in a floodplain (140.58°E, 34.35°S) located at Bookpurnong and a 

vegetated catchment (138.64° E, 35.21° S) at Mount Wilson in South Australia (Figure 4.1). The 

Bookpurnong floodplain, a subset of the Murray-Darling system. is located within the semi-arid 

inland of Australia with a heterogeneous vegetation cover and long-term average annual rainfall of 

265 mm (Doble et al., 2005). Three representative areas were selected for ET monitoring and 

mapping characterized by distinct vegetation species: (1) Eucalyptus camaldulensis, commonly 

known as River Red Gum (RRG); (2) Muehlenbeckia florulenta (Lignum); and (3) small bushes 

Sclerolaena sp. (Bindyi) and Atriplex sp. (Saltbush). In this study, these areas are referred to as 

the RRG understorey, the Lignum, and the Subshrub site, respectively. The RRG understorey 

comprises woody vegetation, short herbaceous plants, and bare soil. The second study area is the 

Mount Wilson site introduced in Chapter 2. 

Five MEP stations were installed, each equipped with a NR Lite2 Net Radiometer (positioned at 

1.5 meters), an Apogee SI-111SS Infrared Radiometer (at 1.5 meters), and a Vaisala HMP155 

temperature/humidity sensor (at 0.3 meters) to measure net radiation, surface temperature, and 

near-surface air humidity/temperature at 30-minute resolution. Downwelling shortwave radiation 

was recorded for both the Bookpurnong and Mount Wilson sites in an open area. At Bookpurnong, 

data were recorded from October 2021 through October 2023, with an interruption during late 2022 

to early 2023 due to a flooding event. At Mount Wilson, data were collected from April 2013 to July 

2014 on two hillslopes with opposite orientation, referred to as the equator-facing slope (EFS) and 

the polar-facing slope (PFS). 
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Figure 4.1 (a) Overview of the study areas within Australia. (b) and (c) the location of Bookpurnong and 
Mount Wilson sites, with yellow pentagons marking the Maximum Entropy Production station locations and 
white line indicating the drone survey areas. (d), (e), (f), (g) and (h) are the station photos of Lignum, RRG, 
Subshrub, EFS, and PFS, respectively. 

 

4.2.2 Airborne remote sensing data 

Airborne remote sensing data were collected for both study areas. For the Bookpurnong floodplain, 

a DJI Matrice 300RTK drone was used as the flying platform. A TrueView 410 3DIS laser scanner 

(LiDAR) mounted on the drone captured forest structure data on March 3, 2022. The LiDAR data 

was then processed in EVO software to generate 3D point clouds to show the forest structure. Leaf 

area index (LAI) is calculated based on Equation 2.2. Thermal data were collected using a DJI 

Zenmuse H20T camera to capture surface-emitted thermal radiation in a single 8-14 µm band. For 

the Lignum and Subshrub sites, the flight height was 60 m above ground, with a corresponding 

thermal image resolution of approximately 5 cm. For the River Red Gum understorey site, the flight 

height was 40 m for a higher spatial resolution to resolve the overstory canopy (approximately 3 

cm). The temperature measured by the thermal camera reflects the spectral thermal energy 

emitted from the surface target pixel through the air column between the pixel and camera. The 

emissivity of sensed objects was assumed to be 0.95 (Hook et al., 1992). The ambient humidity 

and temperature measured at corresponding stations were applied to correct for atmosphere using 
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the DJI Thermal SDK package (https://www.dji.com/downloads/softwares/dji-thermal-sdk). An 

image mosaic was created using Pix4D mapper software following the standard workflow for 

thermal camera imagery. 

At the Mount Wilson site, airborne surveys were conducted by Airborne Research Australia (ARA). 

A Diamond HK 36 TTC-ECO sailplane was used as the flying platform. The LiDAR survey was 

conducted on June 16, 2013, using a Riegl Q560 laser scanner. Thermal data were collected using 

a FLIR A615 thermal camera at a 750 m height with around 25 cm spatial resolution. The raw data 

were processed by ARA's specialised team. Table 4.1 lists the details of all thermal survey in two 

study areas.  

 

Table 4.1 Thermal imagery acquisition information 

Study 

areas 

Aircraft 

model 

Thermal 

camera 

Survey 

area (m2) 

Flight 

height 

AGL (m) 

Spatial 

resolution 

(cm) 

Acquisition date 

Lignum DJI Matrice 

300 

DJI 

Zenmuse 

H20T 

124×308 60 5 2022/03/04 

2022/05/07 

2023/09/13 

2023/10/18 

Subshrub DJI Matrice 

300 

DJI 

Zenmuse 

H20T 

91×183 60 5 2022/03/04 

2022/04/10 

2022/05/07 

2022/06/25 

2023/09/13 

2023/10/18 

RRG DJI Matrice 

300 

DJI 

Zenmuse 

H20T 

85×130 40 3 2022/03/04 

2022/04/10 

2022/05/07 

2022/06/25 

2023/09/13 

2023/11/17 

Mount 

Wilson 

Diamond 

HK 36 TTC-

ECO 

FLIR A615 500×350 750 25 2013/11/04 

2013/11/18 



 

80 

 

4.2.3 Satellite remote sensing data 

Satellite remote sensing based monthly 30 m ET data was obtained from CSIRO MODIS 

Reflectance-based Scaling Evapotranspiration (CMRSET) (Guerschman et al., 2009; Guerschman 

et al., 2022) using optical remote sensing data from MODIS, VIIRS, Landsat, and Sentinel-2 

combined with ground meteorological data and calibrated against EC data from 30 flux towers 

across Australia covering diverse land covers and climates (Guerschman et al., 2022). 

4.2.4 ET mapping based on the maximum entropy production model 

In this study, surface ET is estimated using the MEP model (Wang & Bras, 2009; Wang & Bras, 

2011), which has been increasingly used for modelling surface energy budget and monitoring ET 

(Wang et al., 2017; Li et al., 2019; D. Xu et al., 2019; Yang et al., 2022; Jia et al., 2023). The MEP 

model partitions net radiation over land surface into sensible (H), latent (E), and ground (G) heat 

flux:  

 

 𝐸 = 𝐵(𝜎)𝐻 (4.1) 

 

 
𝐵(𝜎) = 6(√1 +

11

36
𝜎 − 1) (4.2) 

 

 
𝜎 = (

𝜆2

𝑐𝑝𝑅𝑣

𝑞𝑠
𝑇𝑠2
) (4.3) 

 

 
𝐺 =

𝐵(𝜎)

𝜎

𝐼𝑠
𝐼𝑜
𝐻|𝐻|−

1
6 (4.4) 

 

where B(σ) is the reciprocal of the Bowen ratio as a function of the dimensionless parameter σ in 

terms of specific humidity qs and air temperature Ts close to the evaporating surface, λ is the latent 

heat of vaporisation based on surface temperature, cp is the heat capacity of air, Rv is ideal gas 

constant of water vapour, Is and Io are the thermal inertia associated with ground and sensible heat 

flux, respectively.  

The MEP model uses three input variables: net radiation, surface temperature, and surface-

specific humidity. Mapping the spatial distribution of these variables under woodland/forest 
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canopies to estimate understorey ET is challenging due to the mixture of overstorey and 

understorey pixels in airborne remote sensing imagery. To address this, we developed methods for 

mapping understorey surface temperature, net radiation, and surface-specific humidity. Structural 

data, such as LAI and canopy height, were derived from LiDAR datasets, while thermal data were 

obtained from drone thermal imagery. These datasets were then integrated to estimate 

understorey ET.  

4.2.4.1 Understorey surface temperature 

Drone-based thermal imagery captures the composite temperature signals from both the overstory 

canopy and understorey vegetation, making it challenging to directly extract the signals of 

understorey surface temperature (Cheung et al., 2021). To address this issue, a combined 

approach utilizing thermal imagery from drones and LiDAR data was employed in this study to 

estimate the understorey surface temperature. The conceptual model of the Land Surface 

Temperature (LST) and Vegetation Index (VI) space demonstrates a strong negative correlation 

between LST and VI (Gillies et al., 1997; Holzman et al., 2014). Numerous studies have shown 

that when the data encompasses a wide range of fractional vegetation cover and soil moisture 

conditions, the scatterplot of LST and VI often has a triangular shape (Carlson et al., 1994; Sun, 

2015). This triangular pattern arises because as the VI increases, the soil thermal signal becomes 

increasingly masked by the overlying vegetation, leading to decreasing temperature. Conversely, 

when soil moisture is high, LST decreases, resulting in similar temperature profiles for both bare 

soil and vegetated surfaces (Nemani et al., 1993). 

The understorey surface temperature can be estimated using the VI-Ts space approach when 

vegetation indices are replaced by LAI to effectively capture the spatial distribution of overstory 

vegetation as the LAI-Ts space has a similar triangular pattern to that of the VI-Ts space. 

Assuming the impact of soil moisture on temperature is uniform across the relatively small areas, 

surface temperature is predominantly influenced by the overstory canopy shading. In this triangular 

space (Figure 4.2), the lower edge (blue line) represents the consistent temperature of the canopy 

less affected by LAI variations. The upper edge (red line) reflects bare soil temperature strongly 

influenced by overstory LAI. Given that the actual understorey surface includes various grasses, 

litter, and shrubs and the upper edge temperature results from direct sunlight exposure, mean 

temperature is used for each LAI interval (orange dots) as the representative understorey surface 

temperature. We then obtained a regression equation to link LAI and understorey surface 

temperature. Upon the relationship is built, a LiDAR-derived Canopy Height Model (CHM) was 

utilized to separate over and understorey surface (Gaulton & Malthus, 2010). For pixels with taller 

vegetation cover over 5 m, the understorey surface temperature is estimated based on the 

relationship.  
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Figure 4.2 Violin plots of temperature for pixel groups, categorized by 0.1 LAI intervals, generated from 
drone thermal imagery (March 4, 2022) and LiDAR-derived LAI data (March 3, 2022) at the RRG site. 

 

The estimates of the understorey temperature are validated against radiative transfer model and 

field observations. The temperature distribution of natural forests is simulated using the Large-

scale Environmental Remote Sensing and Image Simulation model (LESS), a sophisticated ray-

tracing 3D radiative transfer model simulating remote sensing spectral and temperature images (Qi 

et al., 2019). Figure 4.3 depicts the virtual scene of a 100 x 100 m area with 180 tree crowns with 

LAI ranging from 0.1 to 3.6. The simulated drone thermal image is created at 14 m wavelength 

from a height of 60 meters with high spatial resolution of 0.1 m, while the surface temperature data 

at 1 m resolution is also simulated. Actual surface temperature data was collected using a Fluke 

TIS55+ Thermal Imaging Camera, and the corresponding LAI was measured with an LP80 LAI 

Ceptometer during a drone survey on November 17, 2023. The temperature measurements and 

the drone survey were carried out simultaneously for direct comparison.  
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Figure 4.3 Virtual forest scene to assess the accuracy of understorey temperature estimation. 

 

4.2.4.2 Net radiation 

The net radiation at the understorey surface was simulated from:  

 

 𝑅𝑛 = (1 − 𝛼𝑠𝑢𝑟𝑓)𝑅𝑠 + 𝜀𝑠𝑢𝑟𝑓𝜀𝑎𝑡𝑚_𝑎𝑑𝑗𝜎𝑇𝑎
4 −⁡𝜀𝑠𝑢𝑟𝑓𝜎𝑇𝑠

4 (4.5) 

 

where surf is the surface albedo (0.25), Rs is the downwelling shortwave radiation, surf is the 

surface emissivity (0.95), atm_adj is the LAI adjusted atmosphere emissivity for the RRG understorey 

area ( atm_adj = (1-LAI) * atm +LAI * surf, where atm is assumed to be 0.85) for the Lignum and 

Subshrub areas, overstory LAI is zero, σ is Stefan-Boltzmann constant (5.67×10−8 Wm-2K-4), and 

Ta and Ts are the air and surface temperature. A double-shading transposition (DST) model is 

employed to estimate the downwelling shortwave radiation under vegetation cover (Liu et al., 2022) 

using the following inputs: (1) Time and location information; (2) Topography and vegetation data, 

including digital terrain model (DTM) data, digital surface model (DSM) data, and LAI data; and (3) 

Reference radiation data on a horizontal surface, free of shading effects under the same sky 

condition over the study area.  

4.2.4.3 Surface specific humidity 

Surface specific humidity is a critical variable for evapotranspiration modelling using the MEP 

method. However, obtaining high-resolution surface specific humidity data is challenging due to its 

dependence on heterogeneous ground features. In this study, a method was developed to predict 

surface-specific humidity based on surface radiative temperature, and ambient 
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micrometeorological variables. Stepwise linear regression was employed to establish predictive 

models, using data from both the Bookpurnong and Mount Wilson sites as inputs. The details of 

the model development and performance evaluation are provided in a separate article (Gou et al., 

with Wenjie as the second author; currently under review). 

4.2.5 ET temporal upscaling 

Since drone-based ET mapping only provides data at the survey times, it is essential to upscale 

the instantaneous ET to monthly ET (Yang et al., 2013). We assume that the ratio of monthly ET to 

instantaneous ET remain unchanged for areas with similar vegetation cover. This assumption 

allows the combination of spatially continuous map of instantaneous ET with temporally continuous 

point-scale ET observations to produce monthly ET maps. For the surfaces without overstory 

vegetation (Lignum and Subshrub areas), the observed ratio of monthly to instantaneous ET from 

the corresponding station is used to upscale the instantaneous ET map to monthly ET map 

(Equation 4.6). For the understorey area, the instantaneous to monthly ET ratio is adjusted in 

terms of LAI (Equation 4.7).  

 

 𝐸𝑇𝑚
(𝑖,𝑗)

𝐸𝑇𝑡(𝑖,𝑗)
=
𝐸𝑇𝑚

(𝑆/𝐿)

𝐸𝑇𝑡(𝑆/𝐿)
 (4.6) 

 

 

 𝐸𝑇𝑚
(𝑖,𝑗)

𝐸𝑇𝑡(𝑖,𝑗)
=
𝐿𝐴𝐼(𝑖,𝑗)

𝐿𝐴𝐼(𝑅)

𝐸𝑇𝑚
(𝑅)

𝐸𝑇𝑡(𝑅)
+ (1 −

𝐿𝐴𝐼(𝑖,𝑗)

𝐿𝐴𝐼(𝑅)
)
𝐸𝑇𝑚

(𝑆)

𝐸𝑇𝑑
(𝑆)

 (4.7) 

 

where 𝐸𝑇𝑚(𝑖,𝑗) and 𝐸𝑇𝑡
(𝑖,𝑗) are the monthly and instantaneous ET at location (𝑖, 𝑗), S, L, and R 

refer to the Subshrub, Lignum, and RRG understorey station measurement respectively. This ET 

upscaling method is specifically applied to the Bookpurnong area to support the analysis of flood 

impacts.  

4.3 Results and Discussion 

4.3.1 MEP derived ET based on the station’s measurement 

Figure 4.4 (a) shows daily MEP ET at the Bookpurnong site from October 2021 to November 2023 

with data missing from October 21, 2022, to May 26, 2023 due to flooding. Daily ET of Lignum site 

varied from below 0.5 mm to around 3 mm with a mean daily ET of 1 mm for the period of October 

2021 to October 2022. ET at the Subshrub and RRG understorey sites was measured from 
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October 2021 to February 2024 with data missing from November 4, 2022, to March 31, 2023 due 

to flooding. The daily ET at these two sites was generally lower than that at the Lignum site with 

mean daily ET values of 0.79 mm and 0.52 mm from October 2021 to October 2022, respectively. 

Figure 4.4 (b) shows daily MEP ET at the Mount Wilson site from May 2013 to July 2024. The 

average daily ET was 0.72 mm at the EFS site and 0.36 mm at the PFS site from May 2013 to May 

2014.  

Generally, ET from all sites have pronounced seasonal cycles characterized by higher daily ET 

during the summer months and lower ET in autumn and winter consistent with the seasonal cycles 

of temperature and solar radiation. Understorey ET is generally lower than the open surface due to 

limited radiation input and lower wind speed. The distinct difference between the EFS and PFS 

sites illustrates the impact of topography on ET through solar radiation, particularly during winter 

when ET at the PFS site decreases to nearly zero due to low solar angles, while ET at the EFS site 

maintains at 0.25 mm.  

 

Figure 4.4 Daily ET at floodplain sites (a) and Mount Wilson sites (b) with the seasonal variations. The gaps 
indicate missing data. 
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4.3.2 Understorey surface temperature mapping and validation 

The virtual scenes were generated with different solar elevation angles to simulate the drone 

thermal images. Table 4.2 shows the accuracy metrics of understorey temperature estimation with 

linear and logarithm regressions. Based on the result, the logarithmic regression was used in this 

analysis as it outperformed linear regression, except when the solar elevation angle was 90°, 

indicated by lower bias, MAE and RMSE. According to visual scene test result, the surface 

temperature estimation is more accurate at high solar elevation angles. Figure 4.5 presents the 

results of logarithmic regression used to estimate understorey temperature over six distinct days in 

the RRG understorey area.  

 

Table 4.2 Mean Bias, MAE, RMSE, and R² of the Linear and Logarithmic Regression Model of understorey 
temperature under different solar elevation angles 

Fitting 

methods 

Solar 

elevation (°) 
Mean bias MAE RMSE R2 

 90 -1.65 1.68 1.87 0.90 

Linear 80 2.73 2.76 3.12 0.76 

 70 2.95 3.01 3.53 0.59 

 90 -1.79 1.90 2.18 0.85 

Logarithm 80 -2.31 2.41 2.76 0.76 

 70 -1.83 2.23 2.65 0.59 
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Figure 4.5 Logarithmic regression of understorey surface temperature and mean LAI (interval = 0.1). The 
thermal images were acquired on (a) March 4, 2022; (b) April 10, 2022; (c) May 7, 2022; (d) June 25, 2022; 
(e) September 13, 2023; and (f) November 17, 2023. 

 

A comparison of the estimated and ground-measured understorey temperatures is presented in 

Figure 6. The surface temperature was estimated using a logarithmic regression model based on 

the thermal imagery (Figure 4.5(f)). The estimated surface temperature is closely correlated with 

the ground measurements, with R² of 0.75 and an RMSE of 2.38°C.  
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Figure 4.6 Estimated understorey surface temperature vs. ground measurements. The red dashed line is the 
fitted line, and the black dashed line is the 1:1 line. 

 

4.3.3 ET mapping 

Instantaneous ET maps are generated using the MEP model using all the available data from 

drone thermal surveys (Table 4.1) validated against measurements (Figure 4.7). The linear 

regression analysis conducted between the ET estimates derived from spatial data and the ET 

measurements obtained from field observations reveals that the data points are closely aligned 

with the 1:1 line, with an R2 of 0.93. The regression slope is 0.90 and the intercept is 0.02. The 

strong correlation between the mapped ET and station observations illustrates the method's 

accuracy in representing ET variation spatially.  
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Figure 4.7 Drone based estimated ET vs. ground measurements. The red dashed line is the fitted line, and 
the black dashed line is the 1:1 line. 

 

Figure 4.8 shows the ET maps for May 7, 2022, and September 13, 2023, of the RRG understorey, 

and the understorey ET maps for November 4, 2013, and November 18, 2013 with the 

corresponding probability density of open and understorey surfaces. The ET exhibits high spatial 

variability for both open and understorey surfaces. Generally, ET over understorey surface is lower 

than that over open surface due to reduced solar radiation. Differences of regional ET are evident 

at the Mt. Wilson site where the contrast between open and understorey surfaces is more 

pronounced than at the floodplain site due to sparse overstory vegetation at the RRG than at the 

Wilson site.  
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Figure 4.8 Spatial distribution of understorey instantaneous ET of RRG and Mount Wilson. (a) RRG, May 7, 
2022; (b) RRG, September 13, 2023; (c) Mount Wilson, November 4, 2013; (d) Mount Wilson, November 18, 
2013. Below is the probability density of open and understorey surfaces. 

 

Figure 4.9 compares the monthly ET from station observations and mapping across various 

regions at Bookpurnong site. Monthly ET of Lignum and Subshrub areas has relatively low spatial 

variability before flooding events. Lignum maintained an average Standard Deviation (SD) of 0.64 

mm/month and a Coefficient of Variation (CV) of 0.03, while Subshrub showed an average SD of 

0.50 mm/month and a CV of 0.04. After the flooding, these areas experienced noticeable increases 

in variability, with mean SD and CV rising to 5.84 mm/month and 0.10 for Lignum, and 3.29 
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mm/month and 0.13 for Subshrub, respectively. The RRG understorey area consistently showed 

higher variability with an average SD of 4.92 mm/month and a CV of 0.29 throughout the study 

periods, suggesting that in open areas with low vegetation, such as Lignum and Subshrub, station 

measurements can generally represent the entire area due to minimal spatial variability in ET. The 

increased variability post-flooding highlights the potential limitations of station measurements in 

capturing the spatial differences of understorey, particularly in heterogeneous environments. This 

finding underlines the crucial role of detailed understorey ET mapping in understanding the spatial 

distribution of ET across different landscapes.  

 

 

Figure 4.9 Scatter plot of station measured and mean monthly ET from the ET map. The error bars show the 
standard deviation of the map area. The red dashed line is the fitted line, and the black dashed line is the 1:1 
line. For RRG site, only the understorey area (based on CHM) is calculated. 

 

4.3.4 The impact of flooding on understorey ET 

The Bookpurnong site was selected to examine the influence of flooding on surface. A severe 

River Murray flood occurred from late 2022 to early 2023. According to the upstream water level 

recorded at Lock 4 of the River Murray (https://riverdata.mdba.gov.au/lock-4-upstream), the 

Lignum site located at the lowest elevation among the stations was inundated from early October 

2022. The Subshrub site was affected by rising water in November followed by the RRG site in 

December 2022. Water levels returned to normal by the end of March. According to the Bureau of 

Meteorology (BOM) records (http://www.bom.gov.au/), the monthly mean solar radiation from April 

to August showed minimal variation between 2022 and 2023 with an increase of less than 5% in 
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2023. In contrast, a notable increase of 20% in solar radiation was recorded in September and 

October of 2023 compared to the same months in 2022. This significant rise in solar radiation 

during these months could potentially lead to higher ET rates. 

Figure 4.10 shows the changes of monthly ET before and after the flooding event (months with 

incomplete data are not shown). At the Lignum site, a significant increase in ET occurred after the 

flooding. The peak difference occurred between Septembers of the two years. About 40% more 

September ET was observed in 2023 (several months after the flood event) than in 2022.  

At the Subshrub site, a distinctive pattern in ET change was observed following the flooding event. 

From April to September, ET increased from the corresponding months of the previous year with a 

peak change in July 2023 when ET increased by 50% from July 2022. Subsequently, this upward 

trend reversed. By October 2023, ET levels was lower than the previous year. Unlike the Lignum 

and Subshrub site, the RRG understorey exhibits very small changes in monthly ET before and 

after the flooding.  

 

 

Figure 4.10 Change in monthly ET before and after the 2022-2023 Murray River flooding and months with 
incomplete data are not shown. 

 

To assess the ET responses to the flood, it is crucial to examine spatial patterns in monthly ET 

maps. Due to the irregular timings of drone surveys before and after the flood event, directly 

comparing monthly ET maps was not feasible. As the map were generated at different month, Z-

score normalization was applied to the monthly ET maps for May 2022 and September 2023 
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(Santana et al., 2018; Swetnam et al., 2021). A difference map was generated (Figure 4.11) to 

highlight the impact of flooding on the spatial variability of ET across different land cover types. 

Positive values on the difference map indicate areas where ET is above to the mean, suggesting 

regions potentially experiencing enhanced water availability or altered vegetation dynamics post-

flooding. Conversely, negative values indicate areas with a decrease in ET, indicating reduced 

water availability or vegetation loss due to the flooding event.  

In Figure 4.11 (a), the east part of Lignum area generally exhibits positive values (colour in red and 

orange) in contrast to the west part. Figure 4.11 (d) and (e) show that the Lignum cover surfaces 

exhibit negative difference values and the bare soil surface exhibit positive value. This spatial 

pattern implies high mortality rate of the Lignum plants, leading to reduced transpiration rates due 

to lower LAI. The high water availability post-flooding coupled with the emergent growth of grasses 

likely compensated the reduction of Lignum shrub transpiration, thereby sustaining higher total ET. 

During our drone survey period after the flooding, the main component of total ET in the Lignum 

area was soil evaporation of residual soil moisture left from the flooding. 

Figure 4.11 (g) and (h) show a reverse pattern with shrub cover surfaces predominantly exhibiting 

positive differences attributing to the significant shrub growth due to increased water availability. 

According to the monthly rainfall data from BOM, the rainfall in June 2022 and June 2023 was 11.9 

and 34.8 mm, respectively. The elevated soil moisture, due to both residual water from the flooding 

and the increased rainfall in 2023, was likely responsible for the MEP estimated ET changes 

between the two years. From August to October 2023, a significant reduction in rainfall was 

observed – only 50%, 5%, and 10% respectively of the previous year's levels. This decrease in 

rainfall led to reduced soil moisture and ET. The negative differences of the bare soil surface 

indicate a reduced water availability compared to pre-flooding stage, suggesting that the residual 

flooding water no longer exists in this area. This pattern suggests that the impact of the flooding on 

the Subshrub site was relatively short and that the ET dynamics at this area are more directly 

influenced by the precipitation input. As the surface soil water evaporated, transpiration from the 

newly grown shrubs became the dominant component of ET over this area. 

For the RRG area, similar to the Subshrub area, the bare soil surface has negative values, 

suggesting that the soil moisture increase caused by the flooding does not affect ET after six 

months of flooding. No evident trend of understorey ET change after the flooding (Figure 4.10) 

implies that understorey ET is not limited by water availability but the solar radiation.  



 

94 

 

Figure 4.11 (a), (b), and (c) difference maps of the normalized post-flooding (September 2023) and pre-
flooding (May 2022) ET for Lignum, Subshrub and RRG understorey area. (e) and (g) enlarged views. (f) and 
(h) RGB images for the enlarged area captured pre-flooding and post-flooding, respectively. (i) RGB image 
for RRG area on 2022/03/04. 

 

As remote sensing imagery and flux towers quantify fluxes from the entire ecosystem (Scott et al., 

2003; Linderman et al., 2004; Pisek et al., 2015; L. Li et al., 2020; Weerasinghe et al., 2020), 

directly comparing understorey ET independently from the rest of the ecosystem is challenging. To 

understand the impact of flooding on different vegetative layers within the woodland ecosystem, it 

is essential to examine the changes in the proportions of understorey ET relative to total 

ecosystem ET due to environmental fluctuations. The fraction of monthly understorey ET to total 

ecosystem ET for pre- and post-flood conditions in RRG site are calculated (Figure 4.12). Prior to 

the flooding event, the understorey ET consists of approximately 10-40% of the total ET. Seasonal 

variation of the understorey ET has low contribution to that of total ET during winter but makes up 

to 40% during early spring and autumn. Notably, the understorey ET fraction was significantly 
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reduced after the flooding event, which did not substantially change understorey ET (Figure 4.10). 

This reduction of the ET fraction can be attributed to an increase in the total ecosystem ET, likely 

driven by enhanced water availability. Different responses of ecosystem ET to flooding highlights 

the complexity of interactions within various components of ecosystem and their individual 

adaptations to environmental changes.  

 

 

Figure 4.12 The understorey ET fraction of ecosystem ET at the RRG site from April to October. 

 

4.3.5 The impact of topography on understorey ET 

The Mount Wilson site was selected to examine the influence of topography on surface ET due to 

its complex topographical feature. Causal inference analysis was conducted to assess the direct 

impact of topographical variables on ET (Akbari et al., 2023). One of the variables of elevation, 

slope, or aspect (converted to sine and cosine components to represent east-west and north-south 

orientations)—was selected as the exposure variable, while the others along with LAI were treated 

as confounding variables to evaluate their causal relationship to ET. Figure 4.13 shows the 

exposure response curves (ERC) for different variables on November 18, 2013 to illustrate how 

understorey ET responds to changes of the exposure variables. 

Elevation is shown to have minimal direct impact on ET, while slope and aspect orientation have 

pronounced effects. Understorey ET generally decreases with slope when orientation shifts 

towards east-facing aspects. This likely results from variations in the slope-controlled soil moisture 

retention capabilities and the sunlight exposure duration. As east-facing slopes receive sunlight 

primarily in the morning when temperatures are cooler, potentially reducing evaporative demand 
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compared to west-facing slopes which are sunlit in the hotter afternoon. The most substantial 

influence was observed in an orientation transition from the fact that ET over north-facing slope is 

approximately 0.1 mm higher than ET over south-facing slope indicates the sensitive response of 

understorey ET to aspect-induced microclimatic changes. 

 

 

Figure 4.13 The Exposure Response Curves of spatially distributed understorey ET responses to different 
topographical factors (data from November 18, 2013; similar patterns observed on November 04, 2013 are 
not shown). The grey areas are the 95% confidence interval. 

 

Figure 4.14 illustrates the fraction of understorey ET to total ecosystem ET similar to that in Figure 

12. The understorey ET fraction is at its lowest during winter, around 30% at the EFS site and less 

than 10% at the PFS site. This fraction increases significantly in summer, exceeding 50% at the 

EFS site and reaching 25% at the PFS site. This finding demonstrates a substantial difference, 

with the EFS understorey contributing more to the total ET than the PFS.  
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Previous study finds that canopy transpiration in this region peaks in spring and drops to its lowest 

in late autumn and winter (H. Wang et al., 2024). It reflects an adaptive response that trees actively 

regulate their transpiration rates to optimize water use with changing environmental conditions, 

thus mitigating water stress. Our findings indicate that understorey ET peaks in summer and 

diminishes in winter, primarily driven by solar radiation. Higher ratio of understorey to total ET 

during the summer months implies higher sensitivity of tree to water stress during this period likely 

due to stomatal closure to reduce water loss (Gharun et al., 2013; Gharun et al., 2014). While H. 

Wang et al. (2024) reported similar annual total transpiration of the overstory canopies on both 

EFS and PFS, our analysis reveals significant differences in ET between these orientations at the 

understorey level. This finding highlights the spatial heterogeneity of understorey ET, emphasizing 

the importance of accurate ET mapping to better understand hydrological dynamics of complex 

terrains. 

 

 

Figure 4.14 The understorey ET fraction of whole ecosystem ET of the Mount Wilson site, July 2013 - June 
2014. 
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4.4 Conclusion 

This study aimed to establish a robust method for estimating understorey surface ET using 

airborne thermal imagery and the Maximum Entropy Production (MEP) model, while investigating 

the contribution of understorey ET to total ecosystem ET in two typical settings and identifying 

influencing factors. By achieving these objectives, the research provides critical insights into the 

hydrological dynamics of woodland ecosystems and their implications for water management and 

ecological conservation. 

The results demonstrate that understorey ET plays a significant role in ecosystem water dynamics, 

particularly during periods of high solar radiation and low precipitation. For the RRG site, the 

analysis revealed that the fraction of understorey ET to total ecosystem ET varies seasonally, 

peaking in summer due to increased evaporative demand and diminishing in winter when 

overstorey transpiration dominates. This highlights the sensitivity of understorey ET to solar 

radiation and its role as a compensatory mechanism when overstorey water use is limited by 

stomatal regulation during periods of water stress. 

Spatial analysis at the Mount Wilson site highlights how topographical factors like slope and aspect 

influence understorey ET. These results demonstrate the variation in understorey ET across 

different terrains. The study also shows how flooding impacts open surface and understorey ET. 

After flooding, for the open surface, residual soil moisture initially boosted soil evaporation and 

shrub transpiration. As soil moisture decreased, ET became more dependent on rainfall. The 

understorey ET remains relatively stable before and after the flooding. These findings underline the 

role of extreme events in shaping woodland water dynamics. 

In conclusion, this research establishes a comprehensive framework for quantifying understorey 

ET using high-resolution airborne thermal imagery and the MEP model. The findings from this 

study enhance our capacity to evaluate ecosystem water use and aid the development of more 

effective strategies of water resources management. This research contributes to improved 

ecohydrological modelling by improving our understanding of water consumption in forest and 

woodland ecosystems. One focus of future research is to achieve broader-scale ET monitoring and 

mapping using high-resolution thermal data from satellites. 
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5 DISSCUSION AND CONCLUSION 

5.1 Summary of findings 

This study focused on two primary aims: understanding the influence of topography on vegetation 

attributes and advancing methods for monitoring surface ecohydrological processes for semi-arid 

woodlands. The findings demonstrate that topographic factors, such as slope, aspect, and TPI, 

significantly affect both overstorey and understorey vegetation dynamics. Moreover, the 

development of robust methods for estimating understorey ET using the MEP model and high-

resolution remote sensing provides novel insights into the spatial and temporal variability of 

ecohydrological processes. The key findings from each chapter are outlined below: 

Chapter 2 presents an analysis of the relationships between vegetation attributes—such as tree 

height and NDVI—and fine-scale topographical factors within a semi-arid woodland environment. A 

primary finding of this research is that vegetation attributes exhibit significant sensitivity to 

topographic factors, particularly at a scale of 5–10 meters. This scale dependency highlights the 

importance of adopting high-resolution data and methods when modelling vegetation in 

heterogeneous landscapes. The research shows that the tree-based sampling method is superior 

to traditional pixel-based approaches, as it captures the spatial variability of vegetation attributes 

more accurately, leading to more reliable modelling results. 

The thesis also emphasizes the significance of spatial non-stationarity in topography-vegetation 

relationships. Spatial non-stationarity refers to the phenomenon in which relationships between 

variables vary across space, rather than being consistent throughout a study area. Accounting for 

this variability is critical for accurately modelling vegetation attributes, as demonstrated by the 

superior performance of the MGWR model compared to traditional global models like SLR and RF. 

Although applying the model to unknown regions is challenging due to the locally fitted coefficients, 

the MGWR model's enhanced explanatory power and its ability to identify key variables that might 

be overlooked in global models highlight the value of adopting spatially adaptive techniques in 

ecohydrological research.  

Key topographic drivers for vegetation attributes identified in this study include TPI and northness, 

both of which exhibit negative correlations with tree height. Similarly, NDVI is negatively correlated 

with TPI, slope, and northness, while eastness shows a positive correlation. These findings point to 

the pivotal role of topography-induced sunlight exposure and hydrological conditions in shaping 

vegetation attributes. For instance, areas with higher TPI (on ridges) and equator-facing slopes 

tend to support shorter trees with lower NDVI values. In contrast, east-facing slopes, which receive 

more morning sunlight, promote higher NDVI values, likely due to more favourable hydrological 

and microclimatic conditions in the morning. 
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Chapter 3 introduces a novel approach, the DST model, for simulating the spatial and temporal 

distribution of shortwave radiation in semi-arid woodlands. The DST model effectively captures the 

complex interactions between topography, canopy structure, and solar radiation, providing insights 

into how these factors influence the distribution of light energy at both the overstory and 

understorey levels. 

One of the key findings from this chapter is the significant spatial variability in understorey 

radiation, which contrasts with the relatively uniform distribution of overstory radiation. This 

variability is largely driven by the interplay between slope aspects, with PFS receiving substantially 

less radiation than EFS. This difference is further exacerbated by the reduced shading effects from 

sparser overstory vegetation on EFS, which allows more sunlight to reach the understorey. 

The implications of these findings are useful for understanding the microclimatic conditions that 

influence vegetation growth and water use in semi-arid woodlands. By quantifying the spatial 

distribution of radiation at multiple canopy levels, this research provides a foundation for more 

accurate ecohydrological modelling and supports the development of targeted reforestation 

strategies that account for the complex interactions between topography, radiation, and vegetation. 

Chapter 4 focuses on the mapping of the spatial distribution of understorey ET and the factors that 

drive variability in water use across different parts of the catchments. By integrating the MEP 

model with airborne survey data, this chapter reveals substantial spatial heterogeneity in 

understorey ET, particularly in response to flood events and variations in topographic position. 

Topographic features, especially slope orientation, were found to significantly influence 

understorey ET. For instance, EFS generally exhibited higher ET rates compared to PFS due to 

increased incident solar radiation and warmer microclimatic conditions. It highlights the variations 

in incident radiation, such as differences in sunlight exposure and shading effects, play a crucial 

role in determining the microclimatic conditions that govern ET rates. Following flood events, 

surface ET responses varied significantly based on vegetation cover. Areas with dense overstory 

vegetation cover show less change of understorey ET than open surface. Moreover, the overstory 

and understorey layers exhibited distinct patterns of water use, indicating a complex interplay 

between different vegetation layers. The study finds that following flood events, the ET of overstory 

vegetation significantly increased, while understorey ET remained largely unchanged. This 

increase in overstory ET is likely due to the enhanced water availability, allowing larger trees with 

extensive root systems to uptake and transpire more water. In contrast, understorey ET did not 

exhibit significant post-flood changes, primarily because it is limited by available radiation. This 

differential response highlights the distinct roles that vegetation layers play in water dynamics 

within the catchment. All these findings help to understand the water use patterns of vegetation in 

semi-arid area. 
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Appendix A1 examines the use of the LandTrendr algorithm and Landsat time-series data for 

wildfire detection and post-fire recovery in semi-arid climates. The findings indicate that NDVI 

outperforms other indices for detecting burned areas in arid to semi-arid regions (290–400 mm 

annual precipitation), while NBR is more effective in humid areas (575 mm). However, monitoring 

post-fire recovery using remote sensing indices proves less reliable due to the variable responses 

of the understorey layer, underscoring the need for a deeper understanding of woodland 3D 

structure. These results provide guidance for optimizing wildfire detection and recovery monitoring 

tailored to specific climate conditions. 

5.2 Discussion 

5.2.1 Topographic effects on vegetation 

The results from Chapter 2 indicate that both tree height and NDVI are significantly influenced by 

topographical factors, specifically TPI, northness, eastness, and slope. TPI and northness 

exhibited significant negative correlations with tree height, suggesting that trees tend to be taller in 

concave areas and on polar-facing slopes. NDVI, a proxy for vegetation health and density, was 

significantly influenced by northness (negative correlation), eastness (positive correlation), slope 

(negative correlation), and TPI (negative correlation). The significant negative correlation between 

TPI and both tree height and NDVI underscores the importance of landscape position in overstory 

development. Concave areas are more likely to accumulate soil moisture due to runoff and higher 

retention capacity, providing favourable conditions for tree growth and higher vegetation density 

(Yang et al., 2012; Sun et al., 2014). While slope orientation influences microclimatic conditions, its 

effect on overstory vegetation is not directly related to the difference of topography induced energy 

distribution. The results from Chapter 3 indicate that the radiation received by overstory canopies 

on equator-facing and polar-facing slopes is similar. This suggests that water availability, as 

influenced by topography, plays a critical role in overstory development on the slopes of different 

aspects.  

Interestingly, at the Mount Wilson catchment, the TPI exhibited a significant correlation with 

overstory attributes, whereas the TWI did not. Previous studies demonstrated that topographic 

position and wetness indices are strongly associated with variations in tree height distribution. 

Specifically, the tallest trees were located in the lowest topographic positions with the highest 

wetness indices, while shorter trees were found in higher positions with lower wetness indices 

(Swetnam et al., 2015; Bałazy et al., 2019). While the representation of soil moisture by TWI may 

no longer be suitable at small scales (e.g. less than 10 m scale). In this scale, TPI can still 

effectively capture the soil moisture variation, which is in accordance with Araya et al. (2021). 

These results highlight the importance of considering the appropriate scale when modelling 

topography-vegetation interactions, addressing a key methodological gap. 
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Topography also significantly influences understorey ET by regulating both energy distribution and 

water availability. At the Mount Wilson site, understorey ET generally decreases with increasing 

slope. Steeper slopes enhance surface runoff and reduce soil moisture retention, thereby limiting 

water availability for understorey vegetation, as observed in similar studies where slope inclination 

affects evaporation dynamics by altering moisture distribution and increasing runoff on steeper 

gradients (Carey & Woo, 2001). Slope orientation exerts the strongest influence on the 

understorey, particularly on north- and south-facing slopes, by regulating the amount of incident 

radiation. These topographically driven variations in energy and water availability contribute to the 

observed spatial heterogeneity in understorey ET, advancing our understanding of how 

ecohydrological processes are influenced by topography.  

Variations in understorey ET not only affect regional water availability but also influence soil 

properties, such as organic matter decomposition and CaCO3 accumulation, particularly in semi-

arid environments(Gutierrez‐Jurado et al., 2006; Sierra et al., 2015), which could directly impact 

plant growth and overall ecosystem functioning.  

5.2.2 Timing and conditions for airborne thermal surveys for ET mapping 

Conducting UAV thermal surveys at midday is considered optimal for several reasons. Firstly, 

image quality obtained during early morning and late afternoon flights is significantly reduced due 

to the low solar elevation angle. The low angle results in shadows cast by trees and topographical 

features in woodland areas, which can obscure details in the thermal imagery. These shadows 

introduce variations in thermal readings that complicating accurate data interpretation and analysis. 

Secondly, midday conditions provide the strongest solar radiation which typically corresponds to 

the highest rates of ET when there is no water shortage, meaning that plants are actively 

transpiring. The increased solar input elevates the surface temperatures of non-vegetated areas 

more than those of vegetated areas due to differences in thermal properties and transpiration 

cooling effects. It could improve the detection of canopy surfaces against bare soil backgrounds 

and facilitates the identification of spatial patterns of vegetation water stress, if any are present.  

Another significant challenge in thermal surveying is the presence of unstable sky conditions. 

Ideally, drone-based thermal imaging should be conducted under stable atmospheric conditions to 

ensure consistent and reliable data (Hoffmann et al., 2016; Elfarkh et al., 2023). However, 

constraints from limited drone availability, long-distance field sites, and unreliable weather 

forecasts can result in flights under less ideal conditions.  

When clouds intermittently obstruct direct sunlight, there is a notable reduction in the energy input 

to the ground, leading to significant changes in the recorded temperatures by the thermal camera. 

This variation introduces abrupt changes in measured radiative temperatures over the imaged 

area, which can complicate the use of thermal imagery. To mitigate these issues, a correction 
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method has been developed and is detailed in Appendix 2, which adjusts for the effects of variable 

sky conditions and enhances the accuracy of thermal data interpretation. 

5.2.3 Prediction of spatial distribution of vegetation attributes in natural catchments 

The prediction of spatial distribution of vegetation attributes in natural catchments is critical for 

effective ecosystem management and conservation. Based on the findings from Chapter 2, several 

key insights emerge regarding the methodologies and factors influencing accurate spatial 

predictions. 

The comparative analysis between SLR, MGWR, and RF models revealed that while machine 

learning approaches like RF can capture complex relationships within specific spatial regions, they 

are prone to overfitting and struggle with spatial generalizability. The SLR model, although simpler, 

demonstrated more consistent performance, particularly under spatial block sampling where spatial 

non-stationarity was prominent. The MGWR model, accounting for spatial non-stationarity, 

significantly improved explanatory power over global models, especially for attributes like NDVI 

that exhibit spatially varying relationships with topographic factors. Although the MGWR model 

excels in exploring and elucidating the intricate relationships between topographic factors and 

vegetation attributes, its applicability for spatial prediction in unknown regions remains limited. This 

limitation arises primarily because MGWR requires localized parameter estimates, which are 

derived from the specific spatial characteristics of the training dataset. To enhance the predictive 

capabilities of MGWR in uncharted areas, integrating it with spatial interpolation techniques such 

as kriging or combining it with machine learning algorithms could be a promising approach (Kumar 

et al., 2012; Yang et al., 2023). Such integration can potentially overcome the constraints of 

MGWR by providing more robust and transferable predictions across unknow regions. 

For spatial prediction, another critical consideration is the 3D structure of vegetation layers, which 

can be altered by bushfires. The findings from Appendix A1 indicate that NDVI is more effective 

than other indices for detecting burned areas in semi-arid regions. However, the study also reveals 

that using remote sensing indices to monitor post-fire recovery is less reliable due to the complex 

and variable responses of the understorey layer. This variability highlights the limitations of 

traditional remote sensing indices, which often fail to capture the intricate vertical stratification and 

interactions within vegetation layers, especially in ecosystems heavily influenced by understorey 

dynamics.  

Accurate spatial predictions of vegetation attributes enable targeted management practices, such 

as afforestation and reforestation efforts (Xie et al., 2008). Understanding the spatial distribution 

patterns facilitated by key topographic drivers allows for the optimization of resource allocation and 

the implementation of strategies that enhance ecosystem resilience (J. Wang et al., 2024). For 

instance, areas identified with favourable topographic conditions for tree growth can be prioritized 
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for planting, while regions prone to water stress can be managed to support drought resistant 

species. 

5.3 Potential applications 

5.3.1 Guidance for reforestation 

Based on the integrated findings of this thesis, we can provide clear guidance for reforestation and 

ecological restoration strategies in semi-arid areas. 

Firstly, assessing tree suitability is crucial for successful reforestation efforts (Chechina & Hamann, 

2015; Chen et al., 2019). In the thesis, the results indicate that EFS have significantly higher 

understorey ET compared to PFS. In the dry season, understorey ET on EFS can account for more 

than 50% of the total ET, leading to reduced water availability in these areas, which further 

exacerbates water stress in the ecosystem. The findings of Chapter 2 reveal that the capacity of 

the landscape to sustain vegetation growth varies significantly and is influenced by topographic 

factors, making it predictable to some extent. PFS tend to support denser vegetation due to lower 

understorey ET and higher water availability, which promotes better tree growth and higher NDVI 

values. This suggests that, for reforestation efforts in semi-arid areas, prioritizing polar-facing 

slopes could be more effective in maintaining vegetation health and density. On the other hand, for 

EFS, where water stress and understorey radiation are higher, selecting drought-tolerant species 

would be essential to ensure successful reforestation. Therefore, in reforestation efforts in semi-

arid areas, special attention should be given to species selection on EFS. 

Secondly, understanding detailed ecosystem water consumption is essential for balancing water 

use between ecosystems and human needs (Azarnivand et al., 2020). A comparison of the annual 

average ET across different experimental sites reveals distinct patterns in water consumption. At 

the floodplain site, where the annual rainfall is approximately 250 mm, understorey ET reaches up 

to 190 mm per year, indicating that woodland ecosystems in this region exhibit high overall water 

consumption. Given this significant water use, reforestation efforts in areas with low rainfall should 

be carefully managed to minimize potential impacts on local hydrology and runoff (Hoek van Dijke 

et al., 2022). In the Mount Wilson region, where the average annual rainfall is approximately 700 

mm, H. Wang et al. (2024) shows that the total overstory ET on the opposite slope is similar. 

Result in this study shows that the understorey ET rates for EFS and PFS are estimated at 260 

mm and 130 mm per year, respectively. These findings suggest that understorey ET is relatively 

stable across different precipitation regimes. However, PFS sites have notably lower water 

consumption compared to EFS. From a water resource management perspective, afforestation in 

areas with higher precipitation appears more advantageous. Moreover, reforestation in PFS areas 

could further improve water use efficiency for its lower understorey water consumption. The study's 

insights align with recent research that afforestation amplifies spatiotemporal inequality in water 
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availability, increasing water availability in wetter regions while decreasing it in drier ones, 

underscoring the need to consider local precipitation conditions when planning reforestation to 

avoid exacerbating water scarcity (Xue et al., 2022; Zan et al., 2024).  

5.3.2 Potential applications of the DST model 

Beyond its primary application in calculating understorey ET in this study, the proposed DST model 

offers a multitude of additional uses that could potentially enhance ecological and environmental 

management practices. 

Accurate mapping of solar radiation is pivotal for estimating photosynthetic activity and, 

consequently, carbon sequestration rates within forest ecosystems (Roxburgh et al., 2006; Ma et 

al., 2021). The DST model could be integrated with remote sensing data and ecosystem models to 

quantify the carbon uptake potential of different forest stands. By providing high-resolution solar 

radiation maps, the DST model enables the assessment of light availability, which directly 

influences photosynthesis and plant growth. This method could enhance the precision of carbon 

sequestration estimates and provides critical insights for effective forest management and climate 

change mitigation strategies. 

In urban environments, the DST model could serve as a useful tool for optimizing the placement 

and selection of tree species within greenery infrastructure projects. By accurately mapping solar 

radiation across city landscapes, urban planners can optimize the locations for tree plantation that 

maximize shade cover to reduce urban heat island effects (Balany et al., 2020; Elbardisy et al., 

2021; Ouyang et al., 2021). Furthermore, the DST model may be useful for the maintenance and 

monitoring of urban green spaces by offering insights into light availability, which is crucial for 

ensuring the health and growth of urban trees. This targeted approach could effectively enhance 

the functionality of urban forests. 

The DST model could be instrumental in identifying thermal shelters for wildlife within forested and 

natural landscapes. By mapping areas with varying levels of solar radiation, the model can pinpoint 

microhabitats that provide cooler environments essential for species sensitive to heat stress. 

These thermal refuges are critical for maintaining wildlife health, particularly in regions 

experiencing increasing temperatures due to climate change (Elmore et al., 2017; Rakowski et al., 

2019). Accurate identification of these region allows ecologists to protect and manage key habitats 

that support biodiversity and enhance ecosystem resilience. Additionally, the DST model can aid in 

the design of wildlife corridors and protected areas by ensuring that the thermal shelter zone is 

strategically located to facilitate species movement. This application is particularly important for 

species with limited mobility or those fragmented landscapes (Heller & Zavaleta, 2009; Krosby et 

al., 2010; Baguette et al., 2013).  
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5.4 Recommendations for future research 

Chapter 2 provided insights into the relationships between a select set of vegetation attributes and 

topographical factors. Future research should aim to incorporate a broader spectrum of vegetation 

attributes, including diverse vegetation indices such as Enhanced Vegetation Index (EVI), Soil-

Adjusted Vegetation Index (SAVI), and Normalized Difference Nitrogen Index (NDNI), which can 

provide a more nuanced understanding of vegetation health, density, and productivity. Structural 

parameters like canopy cover, tree diameter at breast height (DBH), and stem density offer deeper 

insights into forest structure and its relationship with topography. Additionally, studying both 

aboveground and belowground biomass, as well as biomass allocation patterns, can elucidate how 

different species allocate resources in response to topographical gradients. Moreover, 

incorporating seasonal variations into these studies is crucial, as vegetation attributes can exhibit 

significant temporal changes. Seasonal dynamics like vegetation phenology may alter the strength 

of relationships between vegetation and topographical factors. Studies that monitor these attributes 

across different seasons will provide a more comprehensive understanding of temporal influences 

on vegetation-topography interactions. 

Despite the advancements, the study also shows limitations such as the inadequate performance 

of models for certain vegetation attributes like LAI and crown volume, which appear to be 

influenced by factors beyond topography, such as species composition and competition. Future 

research should integrate additional biotic and abiotic variables, including soil properties, species 

diversity, and climatic factors, to refine spatial predictions.  

One significant challenge in forest structure analysis is the accurate detection and separation of 

individual trees from LiDAR data, particularly for species with irregular shapes such as eucalyptus. 

Currently, the manual separation process in this study is highly time-consuming and labour-

intensive, limiting the scalability and efficiency of large-scale forest assessments. Traditional 

Individual Tree Detection (ITD) methods, such as watershed segmentation and region growing, 

often fall short when applied to trees with complex and irregular structure, as these algorithms 

struggle to delineate distinct tree crowns and trunks accurately. This limitation underscores the 

need for the development of automated ITD techniques tailored to handle the morphological 

diversity of different tree species. Future research should focus on leveraging advanced machine 

learning and deep learning algorithms, which have shown promise in enhancing the precision and 

efficiency of tree detection in structurally complex forest environments.  

One of the primary constraints in applying the DST model to large-scale environments is its 

computational efficiency. As the spatial extent of the study area increases, the volume of data and 

the complexity of calculations required to accurately model understorey radiation grow 

substantially, potentially limiting the model’s practicality for extensive applications. To address this 

challenge, future research should focus on integrating satellite-based data to model understorey 
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radiation. Satellite observations offer extensive coverage and high temporal resolution. However, 

leveraging satellite data necessitates the adaptation of the DST model to account for varying 

spatial resolutions and the inherent differences in data sources. As the scale of analysis shifts 

individual trees to pixels of mixed trees and inter-canopy space, the underlying physical processes 

influencing solar radiation distribution must be re-evaluated. Factors such as vegetation types, 

atmospheric conditions, and mixing pixels should be considered, requiring improvement of the 

existing model to maintain accuracy and reliability. Furthermore, optimizing the DST model for 

parallel processing and utilizing cloud-based computational resources could enhance its efficiency, 

enabling more rapid and large-scale application. 

Chapter 4 highlighted the potential of high-resolution thermal data from satellites for large-scale ET 

monitoring. Future research in this domain should focus on several critical advancements. Firstly, 

method development for accurately separate ET contributions from overstory and understorey 

vegetation is essential for enhancing the precision of ET maps and improving our understanding of 

vertical water use dynamics within forest ecosystems. Additionally, increasing the temporal 

frequency of ET measurements by utilizing technology like geostationary satellites can capture 

diurnal and seasonal variations in ET, leading to more dynamic and responsive water resource 

management strategies. Furthermore, the integration of satellite-based thermal data with ground-

based measurements and hydrological models is important for ET estimates. This combination 

ensures higher accuracy and reliability of ET maps by providing comprehensive datasets that 

account for both large-scale patterns and localized conditions, thereby facilitating more effective 

monitoring and sustainable management of water resources. 
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APPENDIX 
A1 SPATIOTEMPORAL DELINEATION OF BUSHFIRE IN SEMI-

ARID AREA 

Abstract 

Understanding the wildfire extent and post-fire vegetation recovery is critical for fire and forest 

management. Remote sensing imagery is widely used in wildfire detection because it provides 

continuous and large-scale surface monitoring capability. In this study, we apply and evaluate the 

performance of the LandTrendr algorithm in wildfire detection across a semi-arid climate region 

with a marked precipitation gradient. The aims are to compare the performance of four spectral 

indices for the burned areas and post-fire recovery detection for different climate conditions and 

investigate the relationship between suitable model parameters and climate conditions. The results 

show that NDVI outperforms other indices, including NBR, in burned area detection for drier areas 

(annual precipitation <400 mm). Disturbance signal-to-noise ratio can serve as an indicator for 

suitable index selection for semi-arid areas. Although the performance in the detection of burned 

pixels varies among different indices, they are all suitable for delineating post-fire recovery except 

for the wet site (annual precipitation of 575 mm) where NBR displays the best performance. 

Parameter optimization results along the climate gradient show that climate conditions have a 

significant impact on suitable parameter selection. These findings provide guidance on vegetation 

wildfire detection in arid and semi-arid climates to support wildfire risk and forestry management. 

A1.1 Introduction 

Wildfires (or bushfires in Australia) are recurring natural disturbances that shape the structure and 

functions of terrestrial ecosystems. They cause vegetation mortality and reduce plant biomass and 

biodiversity within a short period (Seidl et al., 2014). Wildfires also affect the atmospheric chemistry 

and carbon budget by releasing carbon and trace gases such as nitrous oxide, contributing to 

climate warming (Arora & Boer, 2005). Conversely, post-fire recovery tends to sequester 

atmospheric carbon dioxide due to the high primary productivity and low levels of heterotrophic 

respiration of young growing forests (Barford et al., 2001; Masek et al., 2008). Understanding the 

effect of these processes is important for carbon budget modelling, wildfire susceptibility and 

probability mapping, and analysing the wildfire impact on wildlife habitat (McKendry et al., 2019; 

Iban & Sekertekin, 2022; Charizanos & Demirhan, 2023; Martínez-López et al., 2023). To this end, 

methods for accurately tracking wildfire-burned areas and post-fire recovery are needed.  

Remote sensing technology provides time-series of earth observations, i.e. multispectral imagery 

at various spatial resolutions (Chuvieco et al., 2019), which has been extensively employed for 

wildfire disturbance detection. Previous studies found that the most significant changes in 

reflectance after a fire event are noticeable in the near-infrared (NIR) band and the short-wave 
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infrared (SWIR) band (García & Caselles, 1991; Trigg & Flasse, 2001). With a massive reduction 

of green leaves, the NIR reflectance decreases sharply immediately after a fire event, while the 

drying effect of the fire leads to an increase of SWIR reflectance (Chuvieco & Congalton, 1988; 

Ceccato et al., 2001). Some pioneer studies mapped burned areas based on the spectral change 

in the NIR band (Hitchcock & Hoffer, 1974; Hall et al., 1980). In order to utilize multispectral 

information, García and Caselles (1991) proposed a normalized NIR and SWIR reflectance 

difference, referred to as the normalized burn ratio (NBR). The NBR index proved to have the 

capacity to distinguish unburned and burned areas and became the most common remote sensing 

index for detecting burned areas (Key & Benson, 2006; Escuin et al., 2008; Lanorte et al., 2013; 

White et al., 2017).  

Previous methods of wildfire detection were mainly based on comparing a specific spectral band or 

index of pre- and post-fire images, which is referred to as a bi-temporal approach (Epting et al., 

2005). Although it is straightforward to perform, one potential problem with the bi-temporal approach 

is that it does not utilize multitemporal imagery to its full potential. This problem may limit its 

performance in burned area mapping and capacity in detecting surface condition changes with a 

long duration, such as in post-fire recovery processes (Hicke et al., 2006; Kennedy et al., 2010; 

Goodwin & Collett, 2014). In contrast to the bi-temporal approach, a time series approach can 

capture more detail in the dynamic changes of the Earth's surface. This method not only lends itself 

to automated image processing but also offers insights into different aspects of the disturbances, 

such as frequency and duration (Bourbonnais et al., 2017; Hislop et al., 2018; Nguyen et al., 2018). 

Kennedy et al. (2010) proposed the Landsat-based detection of Trends in Disturbance and Recovery 

(LandTrendr, denoted as LTR hereafter) that detects the abrupt change and recovery at a pixel level 

using the Landsat archive. Huang et al. (2010) proposed the Vegetation Change Tracker (VCT) 

algorithm for tracking forest disturbance history using the Landsat image time series. The Breaks for 

Additive Season and Trend (BFAST) algorithm adopts a decomposed image time series into the 

trend, season, and noise components to detect vegetation phenological change (Verbesselt, 

Hyndman, Zeileis, et al., 2010). Zhu et al. (2012) proposed the Continuous Monitoring of Forest 

Disturbance Algorithm (CMFDA) for abrupt forest change detection based on the Landsat archive. 

Based on CFMDA, an improved algorithm named Continuous Change Detection and Classification 

(CCDC) was developed, which extends the detecting object from forest to other land cover types 

and includes a slope component to detect gradual changes (Zhu & Woodcock, 2014). Table A1 lists 

these change-detecting algorithms and wildfire-related research.  

LTR is a change detection algorithm designed for Landsat time series images that is useful for 

detecting long- and short-term disturbances (Kennedy et al. 2010). This method aims to detect the 

stable status and dramatic changes happening in an annual time series of spectral values or indices 

at a pixel level by using a time-segmentation method to fit the spectral trajectory into several 

piecewise functions. It has been widely used in wildfire detection for its capability to identify severe 
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and abrupt disturbances and to provide several important metrics, such as magnitude, change 

duration, and recovery rates, which are useful in characterizing fire events (Quintero et al., 2019; 

Rodman et al., 2021). For example, Kennedy et al. (2012) analysed the spatial and temporal patterns 

of wildfire and harvest disturbance in the Northwest Forest in the USA from the result of LTR. Viana-

Soto et al. (2020) adopted LTR to derive trajectory metrics of two large wildfire events in pine forests 

in Spain from 1994 to 2018 and evaluated the post-fire recovery. Bright et al. (2019) used LTR to 

examine the post-recovery of NBR for wildfire events that occurred in western North America from 

2000 to 2007. Kennedy et al. (2018) made the LTR algorithm available in the Google Earth Engine 

(GEE), a freely available satellite image platform for storage of extensive image data and cloud-

based image processing (Gorelick et al., 2017). Quintero et al. (2019) evaluated the LTR algorithm 

for detecting burned areas in west-central Spain. Bonney et al. (2020) applied the LTR in GEE over 

Kangaroo Island, Australia, to monitor the bushfire history.  
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Table A1 A summary of wildfire detection studies based on time series approaches. Circled numbers are 
marked in Figure A1 

Reference Disturbance type Method Index Vegetation type 

Kennedy et al. (2010)  Wildfire, harvest, and insect-related 
mortality 

LTR NBR, NDVI, Wetness Boreal forest, temperate forest, and shrub 

Verbesselt, Hyndman, Newnham, 
et al. (2010) 

Forest disturbance BFAST NDVI Conifer forest 

Huang et al. (2010) Wildfire, logging, harvest, and 
urbanization 

VCT FZ Temperate forest, mixed forest, shrub, and 
grassland 

Kennedy et al. (2012)  Wildfire, harvest, and insect-related 
mortality 

LTR NBR Conifer forest and dry forest 

Zhu et al. (2012) Forest disturbance CMFDA Spectral bands Deciduous and evergreen forest 

Zhu and Woodcock (2014) Landcover change CCDC Spectral bands Urban, agricultural field, and forest clearing 

Watts and Laffan (2014) Wildfire and flood BFAST EVI Dry forest and shrubland 

Meigs et al. (2016)  Wildfire and insect-related mortality LTR NBR Conifer forest 

X. Q. Fang et al. (2018) Wildfire, harvest, and Insect-related 
mortality 

BFAST NDVI Conifer forest 

Novo-Fernandez et al. (2018) Wildfire and insect-related mortality VCT Tasseled cap index Temperate forest 

Quintero et al. (2019)  Wildfire LTR NBR Mediterranean forest and grassland 

Bright et al. (2019)  Wildfire recovery LTR NBR Conifer forest and mixed forest 

Bonney et al. (2020)  Wildfire LTR NBR Mediterranean forest and agricultural field 

Viana-Soto et al. (2020)  Wildfire recovery LTR NBR Mediterranean forest 

Rodman et al. (2021)  Wildfire and insect-related mortality LTR NBR Subalpine forest 

Deng et al. (2021) Wildfire and extreme events BFAST NDVI and EVI Conifer forest and deciduous forest 

Souza et al. (2021) Wildfire and clearing CCDC EVI, NBR, NDVI, and other VI Savanna and agricultural fields 

Qiu et al. (2021) Wildfire and recovery VCT FZ, EVI, NBR, NDMI, NDVI Cold temperate forest 

Wimberly et al. (2022)  Wildfire, and recovery LTR NDFI Tropical forest 

Zhang et al. (2022) Wildfire, logging, and insect-related 
mortality 

CCDC Spectral bands boreal forest and temperate forest 
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Figure A1.1 LTR-based wildfire-related studies mapped on the mean annual precipitation and temperature 
space. Circled numbers are associated with studies in Table 1. Our study areas are marked with a dash-line 
triangle. Climatic data are retrieved from the WorldClim database (Hijmans et al. 2005) 

 

Accurate detection of the disturbance and recovery is largely dependent on the input time series 

data, which records the history of the land surface dynamic. The NBR index is considered the most 

sensitive spectral index in wildfire disturbance detection by utilizing both NIR and SWIR bands that 

reflect green vegetation and soil moisture. The NBR and dNBR (difference between pre- and post-

fire NBR) have been widely used in burn scar and burn severity detection in the bi-temporal 

approach (Key & Benson, 2006; Veraverbeke et al., 2010; Edwards et al., 2013; Tran et al., 2018). 

For the time series approach, Kennedy et al. (2010) found the NBR is the most sensitive index in 

capturing disturbance for the diverse types of forest cover in the western United States. Cohen et 

al. (2010) performed a comparative test of using NBR and Tasseled Cap Wetness (TCW) for LTR, 

and confirmed that NBR is better than TCW in wildfire disturbance detection based on the forest in 

the States of Oregon and Washington, USA. Hislop et al. (2018) assessed the performance of 

several spectral indices in wildfire disturbance and recovery detection with multitemporal imagery 

in the eastern half of Victoria, Australia and found that NBR outperforms other indices (NDVI, SAVI 

NDMI and Tasseled Cap indices).  

Most LTR-based investigations were conducted in areas with relatively high annual precipitation 

and adopted the NBR for wildfire detection (Table A1 and Figure A1). This raises the question of 

whether the NBR is still the first choice for disturbance detection in arid and semi-arid climates and 

vegetation cover. The distribution of biomes and plant functional types is largely determined by the 

climate conditions, including precipitation and temperature patterns (Guerschman et al., 2020). 



 

119 

From an ecological perspective, regions with lower precipitation tend to have sparse vegetation 

cover, reduced photosynthesis, and low biodiversity. These climate-dependent land cover features 

can be reflected differently in the spectral signals of different bands from remote sensing images. 

As a result, the relative performance of different spectral indices in the time series approaches 

(such as LTR) may vary with climate and vegetation cover conditions. By selecting the most 

appropriate index for a given region, the LTR algorithm can provide more accurate results that are 

meaningful in the context of the specific climate conditions of that region.  

Cohen et al. (2018) proposed the disturbance to noise ratio (DSNR), which measures the signal 

strength of disturbance event relative to background noise in the time series data. Specifically, by 

using the DSNR, the study suggests that SWIR-based indices, such as NBR, outperform other 

indices in detecting forest disturbance across a diverse range of forest types in the USA. Further 

research is required to determine the effectiveness of the DSNR in index selection for semi-arid 

environments. 

Another issue in applications of LTR is the parameterization. A set of default parameters is 

proposed after a test with a large number of disturbance events in western Oregon and 

Washington states (Kennedy et al., 2010; Kennedy et al., 2018). These default parameters are 

generally adopted in the LTR applications (Yang et al., 2018; Xiao et al., 2020; De Marzo et al., 

2021; Gelabert et al., 2021; Rodman et al., 2021). Some studies suggest that the parameter should 

be optimized for better detection accuracy (Lombard et al., 2023). Yang et al. (2018) optimized the 

LTR parameters for mining detection by analyzing the NDVI characteristics. Bonney et al. (2020) 

tested the best index and parameters of LTR for the Kangaroo Island bushfires of 2019-2020. de 

Jong et al. (2021) used LTR for mangrove dynamic analysis and optimized three parameters: Max 

Segment, Recovery Threshold and Best Model Proportion for best fitting. Runge et al. (2022) 

optimized the LTR index and parameters for detecting rapid permafrost thaw disturbance. 

However, the underlying relationship between the parameters and climate conditions is still not 

fully understood. Investigating this relationship through sensitivity analysis can provide valuable 

insight into the factors that are most important for LTR parameterization and potentially improve 

the accuracy and reliability in land cover disturbance (e.g., wildfires) detection. 

In this study, the LTR algorithm is applied to five conservation parks across Eyre Peninsula in 

South Australia to detect wildfires from 1990 to 2020. The objective of this study is to develop 

guidance for determining spectral index and parameters in LTR to delineate burned areas and 

post-fire recovery in semi-arid climates by answering the following questions: 

(1) Is the NBR index, tested and applied mostly in humid and temperate climates, suitable for 

wildfire detection in semi-arid climates?  

(2) If not, what spectral index is more suitable for semi-arid environments?  
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(3) Can we determine a suitable spectral index for LTR to detect wildfires in semi-arid regions 

using DSNR? 

(4) Is there a climate-dependent relationship that is useful for LTR parameterization? 

(5) What is the performance of different indices in detecting post-fire recovery in semi-arid 

climates? 

A1.2 Study area and Method 

A1.2.1 Study area and data 

The study area is the Eyre Peninsula, located in the western part of South Australia (Figure A2). 

The climate over most of the area is characterized as Mediterranean, with hot and dry summers 

and mild and wet winters. A strong precipitation gradient exists from the south (575 mm/y) to the 

north (290 mm/y). The majority of the Eyre Peninsula has been cleared of native vegetation for 

farming wheat, barley, lupins, and canola, as well as for sheep and cattle livestock. Only the 

conservation parks are selected for further study (marked in black in Figure A2) to eliminate areas 

with strong anthropogenic disturbances such as harvesting and irrigation.  

Table A2 presents the seasonality index and aridity index for each conservation park. The 

seasonality index measures the tendency of an area to have more rainfall in certain months or 

seasons (Markham, 1970). Its value ranges from 0 to 1, and a higher value indicates a strong 

seasonal precipitation. The aridity index is defined as the ratio of annual potential 

evapotranspiration to annual precipitation (Greve et al., 2019). It is widely used to characterize the 

aridity of an area and interannual variability of dryness. A higher aridity index value indicates a 

dryer climate condition.  

As can be seen from Figure A2 and Table A2, Lincoln Park has the most typical Mediterranean 

climate among the conservation parks, with precipitation mostly occurring from June to August. 

The seasonality of the study areas gradually decreases towards the north. In Pinkawillinie Park, 

there is no obvious seasonal difference in precipitation. The aridity gradually increases from 

Lincoln Park to Pinkawillinie Park. The dominant vegetation type is Eucalyptus mallee for all 

conservation parks, according to the Forest dataset from the Australian Bureau of Agricultural and 

Resource Economics and Sciences (Committee, 2019) (Figure A3). ‘Mallee’ is a unique Australian 

term for a range of eucalyptus trees that have multiple stems rising from an underground 

lignotuber. 
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Figure A1.2 The geographical location of selected conservation parks in Eyre Peninsular and the monthly 
mean rainfall (2000 to 2020). The precipitation data from the nearest weather station are obtained from The 
Bureau of Meteorology, Australian Government (http://www.bom.gov.au/) 
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Figure A1.3 Forest types from Australian Bureau of Agricultural and Resource Economics and Sciences 
(ABARES) 
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Table A2 Seasonality and aridity indices of the study area. The potential evapotranspiration data used for 
aridity index calculation is derived from MOD16A2 from 2000 to 2014 (Mu et al. 2014) 

 Lincoln  Hincks  Hambidge  Heggaton  Pinkawillinie  

Seasonality 

index 
0.40 0.32 0.27 0.23 0.17 

Aridity 

index 
3.05 5.24 6.06 7.75 7.76 

 

The remote sensing data employed for this research include imagery of the Landsat Thematic 

Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) 

sensors. They provide moderate resolution (30 m) earth imagery with acceptable temporal 

resolution (16 day’s repeat cycle). Images from 1990 to 2020 are selected for the burned area and 

recovery detection. The growing season (1st June – 31st August) images are used to calculate the 

best-pixel composition based on medoid to reduce the seasonal variation. A CFMASK algorithm is 

employed to mask out cloud, shadow, and water bodies within multitemporal imagery (Zhu et al. 

2015). The data preparation and LTR implementation are run in the Google Earth Engine platform 

(Gorelick et al. 2017; Kennedy et al. 2018). 

The reference fire map is collected from the Department for Environment and Water, Government 

of South Australia (https://data.sa.gov.au/data/dataset/fire-history). This data records the fire date 

and burn scar mapping for the last 40 years in South Australia. The data are generated using 

different capture techniques with data sources, including aerial photography, multi-sensor satellite 

images and scientific fire reports. Table A3 shows the selected forest fire events that occurred in 

the conservation parks in Eyre Peninsula from 1990 to 2020.  
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Table A3 Summary of forest fire events from 1990 to 2020. The total areas from Lincoln Park to Pinkawillinie 
Park are 30,548, 67,847, 38,070, 6,504, and 135,784 hectares. Wildfires are naturally occurring fire. 
Prescribed burns are controlled events to reduce fuel loads 

Location Year Fire type Hectares burned 

Lincoln Park 2001 Wildfire 10934 

Lincoln Park 2009 Wildfire 219 

Lincoln Park 2012 Prescribed Burn 434 

Lincoln Park 2016 Prescribed Burn 904 

Hincks Park 1999 Wildfire 3605 

Hincks Park 2006 Prescribed Burn 1284 

Hincks Park 2007 Wildfire 7799 

Hincks Park 2009 Prescribed Burn 1710 

Hincks Park 2011 Prescribed Burn 794 

Hincks Park 2016 Prescribed Burn 353 

Hincks Park 2017 Prescribed Burn 4642 

Hambidge Park 2000 Wildfire 28492 

Hambidge Park 2005 Wildfire 43 

Hambidge Park 2018 Wildfire 31 

Heggaton Park 1997 Wildfire 2642 

Heggaton Park 2001 Wildfire 65 

Heggaton Park 2006 Prescribed Burn 164 

Pinkawillinie Park 1994 Wildfire 123 

Pinkawillinie Park 2001 Wildfire 826 

Pinkawillinie Park 2006 Wildfire 28154 

Pinkawillinie Park 2010 Prescribed Burn 827 

Pinkawillinie Park 2012 Prescribed Burn 2935 

Pinkawillinie Park 2018 Wildfire 559 
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Fractional vegetation cover is an important parameter to express the functional and compositional 

attributes of forests (Chu and Guo 2014). The Digital Earth Australia Fractional Cover data are 

adopted for the purpose of post-fire recovery evaluation 

(https://dev.ecat.ga.gov.au/geonetwork/srv/api/records/145498). Fractional cover data distinguish 

three main fractions: 1) photosynthetic vegetation, including green leaves and grass; 2) non-

photosynthetic vegetation, including branches, dry grass, and litter; 3) bare soil. Natural 

disturbances like wildfires can significantly alter forest structure, manifested by a decrease in the 

fraction of photosynthetic vegetation and an increase in the fraction of soil. With the restoration of 

forest structure, the fraction cover gradually recovers to the pre-fire stage. These data are used to 

verify the response of different indices to post-fire recovery. 

A1.2.2 Methods 

A1.2.2.1 Spectral indices and DSNR 

Four common spectral indices for burned area detection in the literature (Table A1) including NBR, 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), 

and Enhanced Vegetation Index (EVI) are calculated from Landsat TM/ETM+/OLI based on the 

equations shown in Table A4. NBR is designed to distinguish burned and unburned areas by 

amplifying the different spectral responses of the NIR and SWIR2 bands of Landsat. NDVI utilizes 

the Red and NIR bands to assess the photosynthetic intensity of vegetation. EVI is designed to 

minimize the background and atmospheric noise effect on NDVI by adding the Blue band 

information. NDMI has similar spectral components as NBR but uses the Landsat SWIR1 band, 

which is more sensitive to vegetation moisture content.  

The DSNR is the signal-to-noise ratio calculated for disturbance in the whole time series of 

observation. The signal is the amplitude of the disturbance event, and the noise is calculated as 

the root mean square error (RMSE) of the LTR estimates over the whole time series. 𝑅𝑀𝑆𝐸 =

√
∑ (�̂�𝑖−𝑦𝑖)
𝑛
𝑖=1

𝑛
, where �̂� is the LTR fitted index value, y is the observed index value, and n is the 

number of observations of the time series. Cohen et al. (2018) calculated the DSNR for several 

indices and spectral bands and found the result was well related to disturbance detection accuracy. 

The NBR index, which was the most accurate index in disturbance detection, had the highest 

DSNR values. This study aims to assess the effectiveness of DSNR in index selection for semi-arid 

climates. 
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Table A4 Selected spectral indices for time series analysis for LTR (Blue: Spectral reflectance of blue band 
with wavelength ranging from 450-510 nm; Red: Red band (640-670 nm), NIR: Near infrared band (850-880 
nm); SWIR1: Shortwave infrared band 1 (1570-1650 nm); SWIR2: Shortwave infrared band 2 (2110-2290 
nm)) 

Index Formula Related studies 

Normalized Burn 

Ratio 
𝑁𝐵𝑅 =

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
 

Kennedy et al. (2010); 

Kennedy et al. (2012); 

Quintero et al. (2019); 

Qiu et al. (2021) 

Normalized 

Difference 

Vegetation Index 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Verbesselt, Hyndman, 

Newnham, et al. 

(2010); X. Q. Fang et 

al. (2018) 

Normalized 

Difference 

Moisture Index 

𝑁𝐷𝑀𝐼 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 Souza et al. (2021) 

Enhanced 

Vegetation Index 
𝐸𝑉𝐼 = 2.5 ∗

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 6 ∗ 𝑅𝑒𝑑 − 7.5 ∗ 𝐵𝑙𝑢𝑒 + 1
 

Watts and Laffan 

(2014); Deng et al. 

(2021) 

 

A1.2.2.2 LandTrendr  

Figure A4 is an example of the LTR detection process. Black squares are the index values of a 

specified period (e.g., growing season) of each year, and the red line is the fitted spectral 

trajectory. By segmenting this trajectory, disturbance information can be identified at specific 

breakpoints—in this example, a wildfire occurred in 2001 is identified. 
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Figure A1.4 A conceptual graph of the LTR time-segmentation method (data extracted from Lincoln Park) 

 

In the process of the LTR algorithm, the performance can be significantly impacted by the way in 

which the algorithm is tuned to the specific conditions of each region. Parameter calibration is 

needed in LTR applications as it is a parameter-sensitive algorithm (Quintero et al. 2019b). Table 

A5 lists all the parameters of LTR. Preliminary sensitivity tests in our study indicate that two 

parameters—Max Segments (MS) and Recovery Threshold (RT)—are especially critical for the 

algorithm's performance. They are selected for further evaluation.  

MS defines the maximum number of segments used for fitting. RT (unit: yr-1 in this study) defines 

the threshold of the fast recovery event. A simple disturbance-recovery pattern usually consists of 

four phases (stable-decrease-recovery-stable). In that case, an MS value of 4 is appropriate to 

describe the temporal pattern and reduce the impact of noise in the time series. In a complex 

recovery situation, more segments may be required. RT has a value between 0 and 1. A higher 

value makes the model less likely to miss a fast recovery while more likely to cause a false positive 

error.   
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Table A5 LTR parameters, default values and the values to be evaluated 

Parameters Default Evaluated value 

Max Segments 6 4, 6, 8, 10 

Spike Threshold 0.9 - 

Vertex Count Overshoot 3 - 

Prevent One Year Recovery TRUE - 

Recovery Threshold 0.25 0.25, 0.5, 0.75, 1 

Pval Threshold 0.05 - 

Best Model Proportion 0.75 - 

Min Observations Needed 6 - 

 

A1.2.2.3 Accuracy evaluation 

The data analysis is divided into two parts. The first part evaluates the detection accuracy of the 

burned area. According to the reference burned area mapping, the overall burned area is 104,352 

hectares between 1990 and 2020, and the overlapping area is less than three thousand hectares. 

Considering that less than 5% of the burned area in our study area has experienced multiple burn 

events, we ignored this effect when evaluating the accuracy of the burned area. As a result, a pixel 

is classified as burned or unburned without considering temporal information and then compared to 

the reference burned map. Prescribed burns typically have a low to medium impact on forest 

structure (Nguyen et al., 2018). They are considered a form of fire disturbance in this study for the 

purpose of detecting burned areas. The producer’s accuracy and user’s accuracy are calculated to 

evaluate the omission and commission error, respectively. A high producer’s accuracy value 

indicates low omission error (burned areas incorrectly labelled as unburned), and a high user’s 

accuracy value indicates low commission error (unburned areas incorrectly labelled as burned) 

(Congalton 1991). Overall accuracy and Kappa coefficient are adopted to evaluate the detection 

accuracy. Overall accuracy is computed as a ratio between the number of correctly classified 

pixels and the total test samples. The Kappa coefficient is a relative measurement of accuracy that 

tells how much the classification result is better than a random classification (Congalton et al. 

1983). Accuracy matrices are computed for all fire events that occurred within each conservation 
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park. The difference in the performance of overall accuracy and Kappa coefficient in this study is 

discussed in Section 1.3.1. 

The second part of the data analysis is on the post-fire recovery. Five significant wildfire events 

with relatively large burned areas (2,642 – 28,492 hectares) are selected, one for each 

conservation park. Then, the mean fitted index values over the burned area are calculated and 

plotted as time series. A fraction cover map from Digital Earth Australia is used for comparison of 

the estimated recovery time. To remove the seasonal variation of the vegetation fraction, a time 

filter is applied, and only growing season data (June to August) are adopted. Mean values of 

fraction cover for each year are plotted to show the interannual variation of the vegetation status. A 

segmented linear regression is applied for noise suppression. 

A1.3 Results 

A1.3.1 Optimization of selected parameters for LTR 

Four metrics are calculated to assess the sensitivity of different parameters. Among these, the 

kappa coefficient is selected to comprehensively evaluate the detection accuracy for different 

indices and parameter sets. Although overall accuracy can quantify the absolute accuracy of 

detection, it is not well-suited for evaluating the performance of various indices for LTR, which uses 

a binary classification system of 'burned' and 'unburned' values. The user’s accuracy is always 

higher than the producer’s accuracy for any study area and indices with the same parameter 

setting (Data not shown for simplicity). That means LTR tends to have a larger omission error than 

commission error. In other words, unburned pixels are less likely to be mistakenly identified as 

burned. In most cases, although the LTR does not effectively identify the burned pixels, the overall 

accuracy still maintains at a high level because the unburned pixels can be accurately identified. 

Thus, the Kappa coefficient, which measures the relative accuracy compared to random 

classification, is adopted to comprehensively evaluate the detection accuracy for different indices 

and parameter sets. Figure A5 shows that there is no obvious spatial pattern in Kappa for different 

study areas. That means the detection accuracy of LTR does not change with the wetness 

condition of the study areas. However, the selection of parameters is obviously affected by the 

precipitation gradient in the study area. In the wetter areas such as Lincoln and Hincks Park, a 

change in MS does not significantly affect Kappa. While RT affects the detection accuracy, 

especially when the value of RT is low, Kappa decreases significantly. In more arid areas, such as 

from Hambidge to Pinkawillinie Park, for most indices, an RT change does not obviously affect 

detection accuracy. In these regions, small MS values such as 4 are not suitable. 



 

130 

 

Figure A1.5 Kappa coefficient for different vegetation indices with different parameter sets. (Vertical axes 
denote Recovery Threshold and horizontal axes denote Maximum Segments) 

 

A1.3.2 Comparison of selected spectral indices in burned area detection 

In order to compare the effect of different indices on the LTR algorithm's ability to detect burned 

areas, the Kruskal-Wallis test is conducted to evaluate the differences in the Kappa coefficients, 

given that the assumptions of normality and homogeneity of variance are not met in the data. 

Results show that the Kappa does not follow the same distribution for different indices (p<0.001). 

The pairwise comparison results indicate that the distributions of all indices differ from each other 

(p<0.001) except for the group between NDMI and EVI (p=0.06). Figure A6 shows the overall 

accuracy and Kappa coefficient for each index with the optimized parameter set. The results show 

that NBR outperforms other indices at Lincoln Park, while NDVI has better performance than NBR 

at other sites. NDMI performs relatively well in Lincoln Park but not in other study areas, while EVI 

shows poor performance in all study areas. The above results indicate that the ability of the LTR 

algorithm to detect burned areas varies with the climatic conditions of the study area and the index 

used. 
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Figure A1.6 Overall accuracy and Kappa coefficient for different vegetation indices with the optimized 
parameter sets 

 

DSNR is calculated within the burned area and plotted in Figure A7. In Lincoln Park, the DSNR of 

NBR is higher than that of other indices, followed by NDMI. For the rest of the conservation parks, 

DSNR of NDVI is generally larger than those of other indices. This result is closely related to the 

pattern of Kappa coefficients that high DSNR corresponds to high detection accuracy. Therefore, 

for a study area without reference data, suitable indices can be selected according to the 

difference in DSNR values. For some fires in the Hincks and Hambidge Park, high DSNR values of 

NDMI are observed, while the detection accuracy of NDMI in these areas is poor. However, this 

exception only occurs in very few fire events.  

 



 

132 

 

Figure A1.7 Disturbance To Noise Ratio of fire events across each conservation park. (a) Lincoln Park, (b) 
Hincks Park, (c) Hambidge Park, (d) Heggaton Park, and (e) Pinkawillinie Park. Missing values suggest no 
wildfires are detected 

 

A1.3.3 Evaluation of post-fire recovery detection 

Figure A8 shows the LTR fitted results for five significant fire events (Lincoln Park: 2001, Hincks 

Park: 2007, Hambidge Park: 2000, Heggaton Park: 1998, Pinkawillinie Park: 2006). As the EVI 

index is found to have poor performance in detecting burned areas in all conservation parks, it is 

not considered in recovery evaluation. The vegetation fraction cover of each burned area is used to 

validate the recovery period. To quantitatively evaluate the spectral index recovery, we calculate 

the amount of time for each index to restore to the pre-fire stage pixel by pixel (Figure A9). As can 

be seen from the vegetation fraction cover, Lincoln Park has experienced a rapid recovery after the 

2001 fire, and it took six years for photosynthetic vegetation to fully return to the pre-fire stage. 

Figure A9 (a) suggests that only the NBR index correctly captures the recovery time. In Hincks and 
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Pinkawillinie Park, the fire happened in 2007 and 2006, and the post-fire recovery took nine and 

eight years, according to the vegetation fraction cover analysis, which is longer than in Lincoln 

Park. In Hambidge and Heggaton Park, fires happened in 2000 and 1998 and took 11 and 13 

years to recover. This long recovery period is probably caused by the millennium drought from 

1997 to 2009 (Van Dijk et al. 2013). The recovery time of the spectral index is also longer; 

according to Figure A9 (c) and (d), the recovery time estimated from all indices is roughly the same 

as for the vegetation fraction cover.  

 

                                           

Figure A1.8 Time series value of different indices for five significant wildfire events for each conservation 
park and the time series fraction cover ((a) Lincoln Park, (b) Hincks Park, (c) Hambidge Park, (d) Heggaton 
Park, and (e) Pinkawillinie Park. PV, NPV and BS denote photosynthetic vegetation, non-photosynthetic 
vegetation, and bare soil). Vertical bars in the index value chart are the standard deviation. The solid line on 
the fraction cover is the result of piecewise regression for better visually distinguishing pre- and post-fire 
stages. For the photosynthetic vegetation fraction, the time when it first recovered to the pre-fire state is 
indicated by the dashed line 
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Figure A1.9 Statistics of the recovery period in years estimated from the NBR, NDVI and NDMI indices. (a) 
Lincoln Park, (b) Hincks Park, (c) Hambidge Park, (d) Heggaton Park, and (e) Pinkawillinie Park. The dashed 
line is the recovery year of the photosynthetic vegetation fraction 

 

A1.4 Discussion 

A1.4.1 Index suitability 

The results of the index comparison indicate that the index suitability for detecting wildfires differs 

across areas with varying dryness conditions. As the vegetation type is similar across all study 

areas (eucalypt mallee woodland), the NBR index is the best performing index for Lincoln Park, 

with an annual rainfall of 575 mm/y, followed by the NDMI index. This result is consistent with the 

conclusions from Cohen et al. (2018) that the SWIR band has superior performance in disturbance 

detection. They also found that SWIR2 (2110-2290 nm) used in NBR is more sensitive to wildfire 

than the SWIR1(1570-1650 nm) band used in NDMI, which can also be observed from the 

accuracy evaluation. This conclusion is validated by several other research results from different 
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regions. Zhu and Woodcock (2014) demonstrated that NIR and SWIR bands have the biggest 

change when forest changes to other land cover types for a time series model. Quintero et al. 

(2019) applied the LTR algorithm in west-central Spain with a representative Mediterranean 

climate and found that NBR has a greater capacity to detect low-severity wildfires compared to 

NDVI. Souza et al. (2021) applied the CCDC algorithm in the Brazilian savanna for disturbance 

detection and found that SWIR-based indices like NBR perform best.  

NBR does not perform as well for areas with relatively low precipitation. In Hincks to Pinkawillinie 

Park, the detection accuracies show a significant difference, and NDVI proves to have the best 

performance (with Kappa range from 0.41 to 0.79). For the other three indices, relatively high 

user’s accuracy could be found for optimized parameters, but the producer’s accuracy is low for 

most of the areas, indicating that the main error is misidentified burned pixels. One factor that may 

affect the accurate detection of the burned area is the magnitude of the disturbance. Figure A8 

indicates that NBR has the maximum amplitude in wet areas while the amplitude of NDVI is higher 

in arid areas. This is consistent with the research of Epting et al. (2005), which proved that NBR is 

useful in burn severity detection only for forest areas and Tran et al. (2018) that NDVI has better 

performance in burn severity detection than NBR in areas with sparse vegetation density. 

Another factor is the noise in the time series data. Kennedy et al. (2010) noticed that NBR is more 

susceptible to noise even if it is most sensitive in capturing the disturbance event. Compared to 

NDVI, which consists of the spectral reflectance of Red and NIR bands driven by photosynthetic 

pigments (such as chlorophyll and carotenoids) and structural features (leaf thickness, intercellular 

space, and dimensions), NBR is the combination of NIR and SWIR bands, while the latter one 

reflects the moisture content of soil and vegetation. This can be observed from Figure A8 that the 

time series NBR always have higher standard deviations than other indices. Thus, in semi-arid 

regions where vegetation growth is more sensitive to climatic conditions, NBR is more susceptible 

to noise due to precipitation temporal variation, which affects the observation of disturbances. We 

validate the DSNR proposed by Cohen et al. (2018) on its suitability for selecting a spectral index 

for disturbance detection under semi-arid climate conditions.  

NDMI is only effective in wet areas, and EVI is underperforming in all study areas. The reasons for 

the low detection accuracy of these two indices are different. Standard deviation of the NDMI is at 

a low level, indicating that the time series is not affected much by noise. However, at the time of 

the fire, NDMI cannot accurately capture the disturbance signal, which is reflected in the low 

magnitude. The EVI index fluctuated significantly in the fire year, but large fluctuations can also be 

observed in years without a fire event, which affects the disturbance detection. As the blue band is 

more sensitive to atmospheric influences and less sensitive to most of the surface changes, it may 

not be suitable for disturbance detection because it introduces irrelevant noise (Zhu and Woodcock 

2014; Zhu et al. 2020).  
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Following the approach of Afira and Wijayanto (2022), we further evaluated the index suitability 

using machine learning methods. The Random Forest and XGBoost algorithms are used to test the 

wildfire detection accuracy for the NBR and NDVI index based on the five significant fire events. 

We build the classification model using pre- and post-fire NBR and NDVI data (NBRpre, NBRpost, 

NDVIpre, NDVIpost), dNBR and dNDVI as input. The feature importance is used to determine 

index suitability. The feature importance values derived from both Random Forest and XGBoost 

offer a quantitative measure of the influence of each input feature on the model's predictive 

accuracy. Specifically, Random Forest determines feature importance by assessing the reduction 

in the Gini impurity each time the feature is used for splitting across all trees in the ensemble. 

XGBoost computes feature importance based on the gain, which indicates the improvement in 

accuracy brought by a feature to the branches which it is on. 

In each conservation park, both Random Forest and XGBoost consistently achieved high detection 

accuracies (above 0.9). However, a distinct variation in feature importance was observed across 

different regions. Similar to our earlier findings, dNBR is the predominant contributor in Lincoln 

Park. On the other hand, dNDVI is the most influential index for the other parks in both Random 

Forest and XGBoost models. This underlines the superior performance of NDVI over NBR in arid 

conditions, which is not only valid in time-series algorithms like LTR but also in machine-learning 

based bi-temporal burned area detection. 
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Figure A1.10 Feature importance of NBR and NDVI in the Random Forest and XGBoost modelling of 
burned pixels for one selected wildfire event in each of the five conservation parks: (a) Lincoln Park, (b) 
Hincks Park, (c) Hambidge Park, (d) Heggaton Park, and (e) Pinkawillinie Park 

 

A1.4.2 Parameter sensitivity 

Conservation parks are chosen for investigation in this study to avoid anthropogenic impacts on 

land cover changes, so forest fire is the primary disturbance type considered. In such cases, we 

find that the influence of the parameters on detection accuracy can be related to the climatic 

conditions. Parameter optimization results indicate that overall accuracy and Kappa are more 

sensitive to changes in RT in wetter study areas, while MS is more sensitive for drier areas. 

Differences in parameter selection may be explained by differences in post-fire recovery conditions 

affected by precipitation. For areas with high precipitation, good moisture condition leads to rapid 

post-fire recovery, so RT parameter must be set to a high value to avoid misinterpreting fire events 

as noise. In arid regions, recovery takes longer, and the recovery rates can change due to 

interannual precipitation variability. Thus, a higher MS is needed to better capture the index 

response to wildfire. Compared to the default parameters, the overall accuracy and kappa of 

optimized parameters can improve by up to 8.4% and 36.8%.  
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Considering that many previous studies generally used default parameters (De Marzo et al. 2021; 

Gelabert et al. 2021; Rodman et al. 2021; Xiao et al. 2020; Yang et al. 2018), we anticipate that 

this study can provide guidance for LTR algorithms for wildfire detection in semi-arid regions. 

A1.4.3 Post-fire recovery 

From the fraction cover trends of selected fire events in the study area, climatic conditions largely 

affect post-fire recovery, which is consistent with Meng et al. (2015). Extreme events such as the 

millennium drought from 1997 to 2009 also greatly affect recovery. We evaluated the post-fire 

recovery detection capabilities of NBR, NDVI, and NDMI. In relatively wet regions such as Lincoln 

Park, fraction cover returned to near pre-fire levels within a short period (2 years) but did not fully 

return to initial values until six years later. The average spectral index value in this region also 

rapidly recovered. Pixel-by-pixel statistics show that compared with other indices, the NBR takes 

longer to recover (median = 6), which is closer to the actual situation. The underestimation of 

recovery time by NDVI is very likely due to the rapid growth of herbaceous and shrub species in 

the relatively wet condition at the site and the high saturation characteristics of NDVI (Frazier et al. 

2018).  

For other study areas with dryer climates, the post-fire recovery estimated from all three indices 

shows great consistency with that inferred by the fraction cover data. No significant differences are 

found between indices. Noting that even fire events in arid regions are not well detected with NDMI 

due to low amplitudes, NDMI still provides a good estimation of post-fire recovery. This shows that 

even if there are a lot of omissions in the detection of fire areas, for those correctly identified pixels, 

the temporal changes of NDMI can still reflect the post-fire recovery well. In general, according to 

the fraction cover, the detection accuracy of different indices for recovery is consistent with the 

detection results of wildfire areas to a certain extent. That is, NBR is more accurate in the wet end 

of the study areas, while in other areas, the performance between different indices is not obvious. 

Previous post-fire recovery studies found that the applicability of spectral indices is different due to 

the different climatic conditions and vegetation types (Chen et al. 2011; Hao et al. 2022; Hislop et 

al. 2018; Nolè et al. 2022). As in wildfire risk management, post-fire recovery and wildfire area 

information are both required. The results from this study and previous studies suggest that the 

NBR index is suitable for an area of annual precipitation around 575 mm and above, and the NDVI 

index for areas with annual precipitation less than 400 mm. 

A1.5 Conclusion 

In this study, we applied the LTR algorithm and evaluated the capacity of the time series Landsat 

data in detecting wildfire areas and post-fire recovery in semi-arid regions with a significant climate 

gradient. Firstly, our result indicates the effectiveness of an index for burned area detection varies 

with climate conditions. NBR is more accurate in the humid end of the climate gradient examined 
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(575 mm), while NDVI outperforms other indices in arid and semi-arid regions (290 – 400 mm). 

Additionally, these findings are also valid for machine-learning-based bi-temporal burned area 

detection. DSNR is a suitable metric for selecting an appropriate index for wildfire area delineation. 

Secondly, the parameter optimization result suggests that the Max Segments and Recovery 

Threshold should be adjusted according to the climate prevailing in a region. In general, Recovery 

Threshold should be set to a higher value in wet areas, and the Max Segments should be higher 

for arid areas. Thirdly, the post-fire recovery detection with different indices does not significantly 

differ among different indices, except for the humid site where NBR proved to have better 

performance. This study provides guidance for selecting appropriate spectral index and applying 

LandTrendr for wildfire detection to support forestry management in semi-arid climates.  
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A2 THERMAL IMAGE CORRECTION FOR UNSTABLE SKY 
CONDITION 

 
Thermal infrared cameras detect the upward electromagnetic radiation from the Earth's surface in 

the longwave infrared spectrum. However, the radiative temperature measured by these sensors 

can be significantly impacted by variations in atmospheric conditions, particularly cloud cover. 

When clouds intermittently obscure direct solar insolation, there is a notable decrease in the 

incoming shortwave radiation reaching the surface, causing a rapid reduction in surface 

temperatures. This transient shading effect results in abrupt changes in the measured radiative 

temperature over the imaged area. 

To mitigate the impact of this phenomenon, a histogram matching technique was implemented. 

This method adjusts the radiative temperatures in cloud-shaded regions to match the values 

expected under the clear-sky conditions observed in adjacent unshaded sections of the scene. 

First, a pixel-level segmentation technique was employed for initial automatic segmentation, 

followed by manual categorization of high and low-temperature segments based on average 

segment values. Edge-located segments were precisely identified using the lazy snapping method. 

The clear-sky subregions, unaffected by cloud cover and exhibiting consistently higher 

temperatures, were marked as reference zones for histogram matching. Subsequently, a 

histogram matching transformation was applied, ensuring that the temperature distribution in 

shaded areas aligns with that of the clear-sky references.  

Figure 6 (a) and (b) show the influence of clouds on thermal imagery under fluctuating sky 

conditions. There is clear temperature gradient pattern can be found in Figure 6 (a) and (b) that the 

surface temperature suddenly decreases in certain areas. This pattern is attributed to the drone 

capturing some images under cloud cover, leading to anomalously low surface temperature 

readings and consequently, a skewed temperature distribution. Figures 6 (c) and (d) display the 

corrected thermal imagery, and figures 6 (e) and (f) illustrate histograms for reference, cloud-

impacted, and corrected pixels. Compared to the raw images, the corrected images show an 

evenly distributed surface temperature, which could large reduce the uncertainty of ET caused by 

non-ET related temperature variation.  
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Figure A2.1 Thermal images of the Lignum site in Bookpurnong floodplain captured on 07/05/2022 at (a) 
12:00 and (b) 17:00. (c) and (d) display the corrected thermal images corresponding to (a) and (b). (e) and (f) 
the histograms of pixel values before and after the correction. 


