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Abstract 

Organic Photovoltaics is a promising technology, which can potentially be a cheap source 

of clean and renewable energy in the near future. Despite tremendous research and 

development efforts in this field, organic solar cells still take a back stage in the 

mainstream photovoltaic market. Though the efficiencies have gradually increased to up to 

12 %, device stability still remains a challenge limiting large-scale commercialization of 

this technology. 

This dissertation is devoted primarily to the study of stability and performance-limiting 

electronic properties of device interfaces in both conventional and inverted OPVs. Given 

the importance of electrode workfunction in interfacial charge transport in devices, special 

focus was on better understanding the workfunction measurements on heterogeneous 

surfaces and precise measurement of lateral variations in workfunction on a nanoscale.  

In particular, the interfacial instability of ITO-PEDOT:PSS interface in conventional OPVs 

was investigated and it was shown for the first time that the migration of indium and tin 

into the PEDOT:PSS was strongly driven by the presence of moisture  and is not merely a 

diffusive process, as prior beliefs. It was systematically demonstrated that indium and tin 

contaminants can adversely affect the device performance by increasing the interfacial 

dipole at the ITO-PEDOT:PSS interface. 

For inverted OPVs, a strong correlation between the processing conditions of ZnO and the 

device performance has been established. Changes in the electronic or structural properties 

of ZnO were demonstrated to be the driving force behind the strong dependence of device 

performance on the processing conditions of ZnO. 

ZnO prepared via a range of techniques was studied and for all cases a minimum of 25 nm 

layer thickness was found to be essential to achieve optimum device performance. For sol-

gel prepared ZnO, the workfunction was found to be independent of the layer thickness, 

whereas for ZnO layer casted from a colloidal solution, post annealing temperature was 

found to be critical and a minimum temperature of 200 °C was found to be essential in 

order to achieve desirable workfunction and electron affinity. As in case of pulsed laser 

deposited ZnO, stoichiometric ratio of Zn and O was also found to be dependent on the 

layer thickness and thicker layer (up to 100 nm) were found to get oxygen deficient with 
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increasing thickness. A fully evolved band structure of ZnO was found to be absent for 

layers of thickness 12 nm or less, which explains the poor performance of such devices. 

This work also establishes a clear understanding of workfunction measurements of 

heterogeneous surfaces with UPS. Surfaces with heterogeneity on a nanoscale were 

artificially created with a combination of energetically different materials. It was 

demonstrated that materials having relatively low workfunction have an enhanced 

secondary electron emission, which can be misleading in deriving absolute workfunction 

values from UPS measurements. This behaviour was found to be valid even for 

polycrystalline materials with nanoscale variations in workfunction such as ZnO. While 

nano-domains of different workfunctions across a nano-roughned ZnO surface were clearly 

demonstrated using KPFM, UPS results were found to be more representative of the 

domains corresponding to low workfunction regions. 
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