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Abstract 

 

Increasingly, engineers are pushing the boundaries of aerospace vehicles to fly at 

hypersonic speeds of Mach 10. However, flying at these speeds introduces 

aerothermoelastic problems, since the skin of the hypersonic vehicle is subjected to 

friction with the hypersonic airstream. As a result, the skin demonstrates deformation 

as well as melting of the leading edges of the vehicle. 

 A significant amount of research has been conducted to control this deformation 

by employing an actuator that is bonded on, or within, the structure. The actuator 

usually consists of a smart material that is able to change one or more of its 

properties under the influence of an external stimulus, e.g. electric field, stress or 

temperature. One of the challenges that arises, is that, under the influence of high 

temperature, the performance and properties of the smart materials change. 

Furthermore, the actuator must typically be able to generate sufficient force and 

displacement in order to compensate for the thermally induced deformation. The 

generated force and displacement depends on the amount of external stimulus 

applied to the smart material, as well as the magnitude of actuator authority that the 

smart material can produce. However, when shape control is applied to aerospace 

structures, such as a hypersonic vehicle, the possibility to generate a large amount of 

external stimulus is not always guaranteed. The deformation that occurs when a 

structure is subjected to thermal loading is bidirectional, forcing the structure to 

exhibit a displacement orthogonal to the original shape. The challenge arises that 

most smart materials used for shape control exhibit unidirectional or semi-

bidirectional displacements and, therefore, only compensate for shape distortions in 

one direction. In order to achieve shape compensation of thermally exposed 
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xiv 

structures, there is a need for a bidirectional actuator that is able to generate large 

strains and forces to counteract the thermal stress. In this research, two amplified 

bidirectional actuators are proposed, namely: the Amplified Dual-Stack Actuator 

(ADSA) and the Amplified Bidirectional Actuator (ABA). The actuators can be 

mounted to one side of a structure and are able to compensate for the deformation 

generated by the thermally induced loading. The actuators are self-preloading, which 

eliminates the need of a preload spring to protect the actuators against tensile 

stresses. Moreover, the actuators are able to operate under a relatively small external 

stimulus.  

 Both actuators consist of a bidirectional actuator that employs two piezoelectric 

ring-stack elements. The piezoelectric stacks are operated in opposing fashion, i.e. 

when the first stack contracts, the second extends and vice versa. The displacements 

generated by the bidirectional actuator are amplified using a diamond-shaped 

amplifying compliant structure. To identify the actuation performance and 

thoroughly study the behaviour of the actuators, theoretical calculations and finite 

element simulations are conducted. A benchmark finite element model is built 

containing a beam structure that is subjected to thermal loading by two film heaters 

and is actively compensated using two piezoelectric patches, which are mounted 

either side of the structure. The compensation performance of the proposed amplified 

actuators is then identified by mounting the actuators to an identical beam structure 

as used in the benchmark model.  

 A comparison of the compensation performance of the ADSA and the ABA 

against that of the benchmark model, demonstrates that both actuators are able to 

compensate for shape deformations of the beam structure. The main advantage of the 

proposed actuators is their ability to generate equal bidirectional displacements to 

control the shape of a structure, when mounted to only one side of the structure. 

Furthermore, the actuators are actuated by applying a relatively low electrical field 

and obtain self-preloading capabilities. 

 This study servers as a foundation to examine the potential of using amplified 

bidirectional actuators to control the shape of a hypersonic vehicle, and demonstrates 

that the proposed actuators show promise to be used for control of bidirectional 

shape deformations. 
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