

FEM Analysis of an Amplified Bidirectional Piezoelectric Actuator for Shape Control of Thermally Distorted Structures

by

Christian van der Horst, *B.Eng. (Electrical)*, School of Computer Science, Engineering and Mathematics, Faculty of Science and Engineering

July 2011

A thesis presented to the Flinders University of South Australia in total fulfilment of the requirements for the degree of Masters of Engineering (research)

Adelaide, South Australia, 2011 © (Christian van der Horst, 2011)

Contents

Abstract	xiii
List of Abbreviations	XV
Certification	xvi
Acknowledgements	xvii
1 Introduction	1
1.1 Motivation	1
1.2 Research Methodology	3
1.3 Smart Structures and Materials	4
1.3.1 Piezoelectric Ceramics	6
1.3.2 Shape Memory Alloys	10
1.3.3 Magnetostrictive Materials	13
1.3.4 Piezoelectric Polymers	14
1.3.5 Smart Material Applied in this Research	16
1.4 Shape Control Using Piezoelectric Actuators	17
1.5 Compliant Mechanisms	20

CONTENTS

	1.5.	1 Bidirectional Compliant Mechanisms	21
	1.5.	2 Amplification Compliant Mechanisms	22
	1.6	Aim of the Thesis	24
	1.7	Outline of the Thesis	24
	1.8	Original Contributions to the Thesis	26
2	Fin	te Element Modelling of a Piezoelectric Stack Actuator	28
	2.1	Electromechanical Coupling in Piezoelectric Actuators	28
	2.1.	1 Fundamental Equations for Piezoelectric Material	29
	2.1.	2 Characterisation of a Piezoelectric Actuator	31
	2.1.	3 Piezoelectric Stack Actuator	35
	2.2	Finite Element Analysis of Piezoelectric Material	41
	2.2.	1 Coupled-Field Analysis	41
	2.2.	2 Piezoelectric Material Data	44
	2.2.	3 Contact Algorithms	47
	2.2.	4 Applied Method to Simulate and Obtain the Free Displacement	48
	2.2.	5 Applied Method to Simulate and Obtain the Blocked Force	48
3	Am	plified Bidirectional Structures	50
	3.1	Analysis of a Diamond-shaped Compliant Mechanism	50
	3.2	FEM Analysis of a Triple-Stack Bidirectional Actuator	55
4	FEN	A Analysis of an Amplified Dual-Stack Actuator	62
	4.1	Dual-Stack Actuator Construction and Operation	63
	4.2	Analytical Analysis of the Dual-Stack Actuator	66
	4.3	FEM Analysis of the Dual-Stack Actuator	69
	4.3.	1 Validation of a Piezoelectric Stack	69

CONTENTS

	4.3	3.2	Finite Element Model of the Dual-Stack Actuator	73
	4.3	3.3	Free Displacement Results of the Dual-Stack Actuator	75
	4.3	3.4	Blocked Force Results of the Dual-Stack Actuator	78
	4.4	Ana	alysis of the Amplified Dual-Stack Actuator	81
	4.4	4.1	Geometry and Finite Element Model of the ADSA	82
	4.4	4.2	Free Displacement Results of the ADSA	85
	4.4	4.3	Blocked Force Results of the ADSA	88
	4.5	The	ermal Deformation Compensation Benchmark Model	90
	4.5	5.1	Geometry and Finite Element Model of the Benchmark Structure	90
	4.5	5.2	Post-Processing the Solution Results of the Benchmark Structure	95
	4.6	The	ermal Deformation Compensation Performance of the ADSA	98
	4.6	5.1	Post-Processing the Solution Results of the ADSA Structure	102
				105
	4.7	Cha	apter Summary	105
5	4.7 De	Cha esign a	and FEM Analysis of the ABA	105 109
5	4.7 De 5.1	Cha e sign a Cor	and FEM Analysis of the ABA	105 109
5	4.7 De 5.1 5.2	Cha e sign a Cor FEI	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator	109 110 110
5	4.7 De 5.1 5.2 5.2	Cha esign : Cor FEI 2.1	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator	109 110 112 112
5	4.7 De 5.1 5.2 5.2 5.2	Cha esign a Cor FEI 2.1 2.2	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator	109 110 112 112 112 112 112
5	4.7 De 5.1 5.2 5.2 5.2 5.2	Cha esign : Cor FEI 2.1 2.2 2.3	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator Blocked Force Results of the Bidirectional Actuator	109 110 112 112 112 112 112 112 113
5	4.7 De 5.1 5.2 5.2 5.2 5.2 5.2	Cha esign a Cor FEI 2.1 2.2 2.3 Ana	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator Blocked Force Results of the Bidirectional Actuator	109 110 112 112 116 118 120
5	4.7 De 5.1 5.2 5.2 5.2 5.2 5.3 5.3	Cha esign : Cor FEI 2.1 2.2 2.3 Ana 3.1	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator Blocked Force Results of the Bidirectional Actuator alysis of the Amplified Bidirectional Actuator Geometry and Finite Element Model of the ABA	109 110 112 112 112 120 120 120
5	4.7 De 5.1 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.3	Cha esign a Cor FEI 2.1 2.2 2.3 Ana 3.1 3.2	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator Blocked Force Results of the Bidirectional Actuator alysis of the Amplified Bidirectional Actuator Geometry and Finite Element Model of the ABA Free Displacement Results of the ABA	109 110 112 112 116 118 120 120 124
5	4.7 De 5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	Cha esign a Cor FEN 2.1 2.2 2.3 Ana 3.1 3.2 3.3	and FEM Analysis of the ABA astruction and Operation of the Bidirectional Actuator M Analysis of the Bidirectional Actuator Finite Element Model of the Bidirectional Actuator Free Displacement Results of the Bidirectional Actuator Blocked Force Results of the Bidirectional Actuator alysis of the Amplified Bidirectional Actuator Geometry and Finite Element Model of the ABA Free Displacement Results of the ABA	109 110 110 112 112 116 118 120 120 124 127
5	4.7 De 5.1 5.2 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.3 5.3	Cha esign a Cor FEI 2.1 2.2 2.3 Ana 3.1 3.2 3.3 The	and FEM Analysis of the ABA instruction and Operation of the Bidirectional Actuator	109 110 112 112 116 118 120 120 124 127 129

CONTENTS

5.5	Chapter Summary	
6 Su	mmary, Conclusion and Future Work	140
6.1	Summary	140
6.2	Conclusion	146
6.3	Recommendations for Future Work	147
Appen	dix A Material Properties	150
Bibliog	graphy	165

List of Figures

1.1	X-43a hypersonic vehicle from NASA [2]2
1.2	SMA-actuated bending device [23]12
1.3	Diamond frame actuator employing four piezoelectric stacks [40]22
2.1	Orthogonal coordinate system of piezoelectric material [58]32
2.2	Stress vs. strain relationship of piezoelectric material
2.3	Schematic diagram of a piezoelectric stack actuator driving an elastic load37
2.4	Behaviour of a piezoelectric stack actuator driving an elastic load, where
	$u/\delta 0$ represents the normalised displacement with respect to the free
	displacement, f/fbl represents the normalised force with respect to the
	blocked force and $fu/fbl\delta 0$ represents the output work normalised to the
	maximum work
2.5	ANSYS element type PLANE223 [61]43
2.6	ANSYS element type SOLID226 [61]44
2.7	Piezoelectric elements in stack configuration [65]47
3.1	Schematic diagram of diamond-shaped compliant structure
3.2	Quarter geometry of compliant structure
3.3	Relationship between amplification ratio r and geometry of the compliant
	structure
3.4	Initial bidirectional actuator configuration of Model 156
3.5	Initial bidirectional actuator configuration of Model 256

LIST OF FIGURES

3.6	Y-component of displacement [m] of Model 1, where an electrical field of
	120 V is applied to the middle stack and -20 V is applied to both outside
	stacks
3.7	Y-component of displacement [m] of Model 2, where an electrical field of
	120 V is applied to the horizontal stack and -20 V is applied to both
	vertical stacks
4.1	Cross-sectional view of the dual-stack actuator
4.2	(a) Extended position of the dual-stack actuator; (b) initial or neutral
	position of the dual-stack actuator; (c) contracted position of the
	dual-stack actuator
4.3	Schematic diagram of the dual-stack actuator67
4.4	Y-component of displacement [m] generated by the piezoelectric stack
	at 150 V71
4.5	Top view of the Y-component of stress [Pa] generated by the piezoelectric
	stack at 150 V71
4.6	Geometry and parameters of the dual-stack actuator74
4.7	Generated 2-D axisymmetric finite element model of the dual-stack
	actuator75
4.8	Y-component of displacement [m] generated by the dual-stack actuator in
	the contracted position77
4.9	Y-component of displacement [m] generated by the dual-stack actuator in
	the neutral position77
4.10	Y-component of displacement [m] generated by the dual-stack actuator in
	the extended position77
4.11	Force vs. displacement chart of the dual-stack actuator79
4.12	Generated von Mises stress [Pa] when the dual-stack actuator extends81
4.13	Generated von Mises stress [Pa] when the dual-stack actuator contracts81
4.14	Geometry of the ADSA
4.15	Generated finite element model of the ADSA
4.16	Y-component of displacement [m] generated by the ADSA in the
	contracted position

LIST OF FIGURES

4.17	Y-component of displacement [m] generated by the ADSA in the neutral
	position
4.18	Y-component of displacement [m] generated by the ADSA in the
	expanded position
4.19	Force vs. displacement chart of the ADSA
4.20	Geometry of the benchmark model91
4.21	Partial view of the generated finite element benchmark model92
4.22	Y-component of displacement exhibited by the benchmark structure for
	the solution Phases 1, 2 and 3, described in Table 4.1496
4.23	Y-component of displacement exhibited by the benchmark structure for
	the solution Phases 4, 5 and 6, described in Table 4.1496
4.24	Geometry of the beam structure and ADSA
4.25	Partial view of the generated finite element model of the beam structure
	and ADSA
4.26	X-component of displacement exhibited by the ADSA structure for the
	solution Phases 1, 2 and 3, described in Table 4.18103
4.27	X-component of displacement exhibited by the ADSA structure for the
	solution Phases 4, 5 and 6, described in Table 4.18
4.28	X-component of displacement exhibited by the beam structure subjected
	to ADSA actuation
5.1	Schematic diagram of the bidirectional actuator110
5.2	(a) Cross-sectional view of the bidirectional actuator; (b) Top view of the
	bidirectional actuator
5.3	Geometry and parameters of the bidirectional actuator
5.4	Generated finite element model of the bidirectional actuator
5.5	X-component of displacement [m] generated by the bidirectional actuator
	in the contracted position
5.6	X-component of displacement [m] generated by the bidirectional actuator
	in the neutral position
5.7	X-component of displacement [m] generated by the bidirectional actuator
	in the extended position
	in the extended position

LIST OF FIGURES

5.8	Force vs. displacement graph of the bidirectional actuator	118
5.9	X-component of stress [Pa] of the piston when the bidirectional actuator	
	contracts	120
5.10	Geometry of the compliant structure and the unaltered bidirectional	
	actuator	121
5.11	Geometry of the ABA	122
5.12	Generated finite element model of the ABA	124
5.13	Y-component of displacement [m] generated by the ABA in the contracted	
	position	125
5.14	Y-component of displacement [m] generated by the ABA in the neutral	
	position	125
5.15	Y-component of displacement [m] generated by the ABA in the expanded	
	position	125
5.16	Force vs. displacement graph of the ABA	128
5.17	Geometry of the beam structure and the ABA	131
5.18	Partial view of the generated finite element model of the beam structure	
	and the ABA	133
5.19	X-component of displacement exhibited by the ABA structure for the	
	solution Phases 1, 2, and 3, described in Table 5.11	134
5.20	X-component of displacement exhibited by the ABA structure for the	
	solution Phases 4, 5, and 6, described in Table 5.11	135
5.21	X-component of displacement exhibited by the beam structure subjected	
	to ABA actuation	136

List of Tables

1.1	Example of physical domains and associated state variables [9]5
1.2	Overview of the smart materials discussed in the previous sections16
2.1	PLANE223 and SOLID226 KEYOPT(1) options
2.2	Comparison of piezoelectric material data between ANSYS and literature45
3.1	Total dimensions [m] and the number of nodes of Model 1 and Model 256
3.2	FEM-computed displacements [m] of Model 1 and Model 259
4.1	Applied electrical fields to the dual-stack actuator to achieve bidirectional actuation
4.2	Finite element model information of the piezoelectric stack actuator
4.3	Comparison of the FEM-computed and theoretically calculated free
	displacement values [m] generated by the piezoelectric stack72
4.4	Comparison of the the FEM-computed and theoretically calculated
	blocked force values [N] generated by the piezoelectric stack72
4.5	Parameters and dimensions of the dual-stack actuator74
4.6	Finite element model information of the dual-stack actuator75
4.7	FEM-computed free displacements [m] generated by the dual-stack
	actuator76
4.8	FEM-computed blocked force values [N] generated by the dual-stack
	actuator

4.9	Parameters and dimensions of the ADSA
4.10	Finite element model information of the ADSA
4.11	FEM-computed free displacements [m] generated by the ADSA
4.12	FEM-computed blocked force values [N] generated by the ADSA
4.13	Parameters and dimensions of the benchmark model
4.14	Applied loads and solution process of the benchmark model
4.15	Finite element information of the benchmark model95
4.16	(a) Compensation results where structure deflects upward [m];
	(b) Compensation results where structure deflects downward [m]97
4.17	Parameters and dimensions of the beam structure and ADSA
4.18	Applied loads and solution process of the beam structure and ADSA100
4.19	Finite element model information of the beam structure and ADSA101
4.20	(a) Compensation results of the ADSA where the structure deflects
	upward [m]; (b) Compensation results of the ADSA where the structure
	deflects downward [m]104
5.1	Parameters and dimensions of the bidirectional actuator
5.1 5.2	Parameters and dimensions of the bidirectional actuator
5.1 5.2 5.3	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 	Parameters and dimensions of the bidirectional actuator
5.15.25.35.45.5	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 	Parameters and dimensions of the bidirectional actuator
 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 	Parameters and dimensions of the bidirectional actuator

5.13	(a) Compensation results of the ABA where the structure deflects upward
	[m]; (b) Compensation results of the ABA where the structure deflects
	downward [m]136
5.14	Comparison between the compensation performances of the ADSA and
	ABA in Phase 3 and 6, described in Table 5.11, and the displacement
	generated in the neutral position
A.1	Material properties of PZT-5H, X-polarised, defined as Material 1, used to
	model the horizontal piezoelectric stacks in Figure 3.4 and Figure 3.5
A.2	Material properties of PZT-5H, X-polarised, defined as Material 2 with
	inverted piezoelectic matrix, used to model the horizontal piezoelectric
	stacks in Figure 3.4 and Figure 3.5
A.3	Material properties of PZT-5H, Y-polarised, defined as Material 4, used to
	model the vertical piezoelectric stacks in Figure 3.5
A.4	Material properties of PZT-5H, Y-polarised, defined as Material 5 with
	inverted piezoelectric matrix, used to model the horizontal piezoelectric
	stacks in Figure 3.5154
A.5	stacks in Figure 3.5
A.5	stacks in Figure 3.5
A.5	stacks in Figure 3.5
A.5 A.6	stacks in Figure 3.5
A.5 A.6	stacks in Figure 3.5
A.5 A.6	stacks in Figure 3.5
A.5 A.6 A.7	stacks in Figure 3.5
A.5 A.6 A.7 A.8	stacks in Figure 3.5
A.5 A.6 A.7 A.8	stacks in Figure 3.5
A.5 A.6 A.7 A.8	stacks in Figure 3.5
A.5 A.6 A.7 A.8 A.9	stacks in Figure 3.5

A.10 N	Material properties of HPst 150, Z-polarised, defined as Material 2 with	
i	nverted piezoelectric matrix, used to model the ADSA and the ADSA and	
A	ABA in the benchmark model, illustrated in Figure 4.15, Figure 4.25 and	
F	Figure 5.18, respectively16	1
A.11 H	HPSt 150/14-10/25 piezoelectric stack specifications [71]16	2
A.12 N	Material properties of stainless steel 304, defined as Material 3 [67]16	3
A.13 N	Material properties of aluminium alloy 6061 T6, defined as	
Ν	Material 4 [72]16	3
A.14 N	Material properties of the film heaters, defined as Material 5 [7]16	4

Abstract

Increasingly, engineers are pushing the boundaries of aerospace vehicles to fly at hypersonic speeds of Mach 10. However, flying at these speeds introduces aerothermoelastic problems, since the skin of the hypersonic vehicle is subjected to friction with the hypersonic airstream. As a result, the skin demonstrates deformation as well as melting of the leading edges of the vehicle.

A significant amount of research has been conducted to control this deformation by employing an actuator that is bonded on, or within, the structure. The actuator usually consists of a smart material that is able to change one or more of its properties under the influence of an external stimulus, e.g. electric field, stress or temperature. One of the challenges that arises, is that, under the influence of high temperature, the performance and properties of the smart materials change. Furthermore, the actuator must typically be able to generate sufficient force and displacement in order to compensate for the thermally induced deformation. The generated force and displacement depends on the amount of external stimulus applied to the smart material, as well as the magnitude of actuator authority that the smart material can produce. However, when shape control is applied to aerospace structures, such as a hypersonic vehicle, the possibility to generate a large amount of external stimulus is not always guaranteed. The deformation that occurs when a structure is subjected to thermal loading is bidirectional, forcing the structure to exhibit a displacement orthogonal to the original shape. The challenge arises that most smart materials used for shape control exhibit unidirectional or semibidirectional displacements and, therefore, only compensate for shape distortions in one direction. In order to achieve shape compensation of thermally exposed

ABSTRACT

structures, there is a need for a bidirectional actuator that is able to generate large strains and forces to counteract the thermal stress. In this research, two amplified bidirectional actuators are proposed, namely: the Amplified Dual-Stack Actuator (ADSA) and the Amplified Bidirectional Actuator (ABA). The actuators can be mounted to one side of a structure and are able to compensate for the deformation generated by the thermally induced loading. The actuators are self-preloading, which eliminates the need of a preload spring to protect the actuators against tensile stresses. Moreover, the actuators are able to operate under a relatively small external stimulus.

Both actuators consist of a bidirectional actuator that employs two piezoelectric ring-stack elements. The piezoelectric stacks are operated in opposing fashion, i.e. when the first stack contracts, the second extends and vice versa. The displacements generated by the bidirectional actuator are amplified using a diamond-shaped amplifying compliant structure. To identify the actuation performance and thoroughly study the behaviour of the actuators, theoretical calculations and finite element simulations are conducted. A benchmark finite element model is built containing a beam structure that is subjected to thermal loading by two film heaters and is actively compensated using two piezoelectric patches, which are mounted either side of the structure. The compensation performance of the proposed amplified actuators is then identified by mounting the actuators to an identical beam structure as used in the benchmark model.

A comparison of the compensation performance of the ADSA and the ABA against that of the benchmark model, demonstrates that both actuators are able to compensate for shape deformations of the beam structure. The main advantage of the proposed actuators is their ability to generate equal bidirectional displacements to control the shape of a structure, when mounted to only one side of the structure. Furthermore, the actuators are actuated by applying a relatively low electrical field and obtain self-preloading capabilities.

This study servers as a foundation to examine the potential of using amplified bidirectional actuators to control the shape of a hypersonic vehicle, and demonstrates that the proposed actuators show promise to be used for control of bidirectional shape deformations.

List of Abbreviations

1-D	One-Dimensional
2-D	Two-Dimensional
3-D	Three-Dimensional
ABA	Amplified Bidirectional Actuator
AC	Alternating Current
ADSA	Amplified Dual-Stack Actuator
APC	American Piezo Ceramics
APDL	ANSYS Parametric Design Language
BMT	Barium Magnesium Tantalate
BST	Barium Strontium Titanate
BT	Bismuth Titanate
DC	Direct Current
DOF	Degrees Of Freedom
FEM	Finite Element Method
FSDT	First-order Shear Deformation Theory
LiNbO3	Lithium Niobate
MFC	Macro-Fibre Composite
MIMO	Multiple Input Multiple Output
MPC	Multi Point Constraint
NiTiCu	Nickel-Titanium-Copper
Nitinol	Nickel-Titanium Naval Ordnance Laboratory
PID	Proportional Integral Derivative
PVDF	Polyvinylidene Fluoride
PZT	Lead Zirconate Titanate
SMA	Shape Memory Alloy
UX	Displacement in X-direction
UY	Displacement in Y-direction
UZ	Displacement in Z-direction

Certification

I certify that this thesis does not incorporate, without acknowledgement, any material previously submitted for a degree or diploma in any university; and that, to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference is made in the text.

Adelaide, 19 July 2011

Christian van der Horst

Acknowledgements

I would like to thank my supervisors Assoc. Prof. Karl Sammut and Assoc. Prof. Fangpo He for their support and guidance throughout this journey. Their patience, time, knowledge and constructive criticism kept me inspired and motivated. Karl, thank you for giving me the opportunity that allowed me to come back and do my research. To Fangpo, thank you for your valuable input and discussions in the meetings and the long-distance phone conversations we have had.

I want to give thanks to the staff of the School of Computer Science, Engineering and Mathematics for helping me deal with paperwork, computer problems and the casual chats over lunch. Thanks to Sharon who always provided the so important coffee, and giving me the opportunity to go and watch AFL games.

Writing this thesis in a second language was a challenge but it turned out in a good shape and a great accomplishment thanks to the proofreading of June Persico and Kate Deller-Evans.

To my family who has supported me throughout my life and especially these two years of my research, my heartfelt thanks go to Dad, Mum, Hans and Yvonne. Thanks for your love, the advice during our weekly Skype conversations, and the financial support, which made this journey possible.

I would like to say thank you to Katrina for her love, understanding, support, and encouragement during the preparation of this thesis. You were a very important person to me the last couple of months of my research. The research was quite demanding on my time and our relationship, but we have prevailed.

Finally, I want to thank Dino, June, Chris and Holly, for their support,

ABSTRACT

encouragement and good times during the family night dinners. It really made me relax and wind down after a busy and stressful week of work and study.

Christian van der Horst July 2011 Adelaide I dedicate this thesis in honour of my beloved grandfather

Leonardus Hubertus Oijen