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ABSTRACT 

Rice is the major agricultural land use in the world which feeds about 50 percent of its population. 

This thesis demonstrated an approach to map the change in the spatial extent of rice cultivation 

using the Remote Sensing (RS) and Geographical Information System (GIS) techniques. The 

temporal and spatial pattern of change in rice fields from 1995 to 2011 in the Paro valley, Bhutan 

was analysed with relevant ancillary data to discover some of its major causes (drivers). The 

conservation of the natural environment is one of the four pillars of Bhutan’s development philosophy 

– Gross National Happiness (GNH); and the 71 percent of the country which is forested provides a 

habitat for some of the world’s endangered species of flora and fauna.  Since early 2000, urbanization 

in Bhutan has expanded rapidly, with this posing a potential threat to both environmental 

conservation and the supply of agricultural land which is the main source of livelihood for almost 60 

percent of the population. 

Because information, especially at a local scale, on the change in rice cultivation is not available in 

Bhutan, this project utilised satellite imagery to derive estimates of rice cultivation in the Paro valley 

over 16 years. The project employed three broad areas of geospatial science; viz. i) satellite image 

pre-processing, ii) Land use land cover (LULC) change mapping and iii) spatial analysis to discover 

some of the causes behind the change in rice fields.  Level-2 processed Landsat-5 Thematic Mapper 

(TM) images of September 1995, August 2005 and August 2011 (summer growing season) were 

used. Other suitable imagery (satellite or airborne) were not available especially in 1995. Pre-

processing and data preparation steps covered verification of geometric registration of images, cloud 

masking, principal component analysis (PCA), normalized difference vegetation index (NDVI), and 

extraction of relative heights from the major rivers using a Digital Elevation Model (DEM) from the 

Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) sensor on board Advanced 

Land Observation Satellite (ALOS). Supervised and unsupervised classifications were performed on 

five data sets: i) PC1-NDVI-DEM, ii) PC1-PC2-NDVI-DEM, iii) PC1-PC2-NDVI-Relative DEM, iv) PC1-

PC2-NDVI-DEM-Relative DEM and v) the original Landsat-5 TM image. Accuracies of ten different 

LULC classification were compared on a pixel-by-pixel basis with the field cadastral survey data of 

2011 which also recorded LU. All geospatial analyses were carried out in ERDAS Imagine 2018 and 

ArcGIS version 10.6. 

Contrary to the findings from the previous literature, none of the composite data of using PCAs, 

NDVI and or DEM yielded better accuracy than classifications from the original image. Supervised 

classification of the original TM image produced the highest accuracy. Hence, the maximum 

likelihood classifier was used for supervised classification of the 1995 and 2005 TM images. 

Classification accuracies for rice and other crops from the 2011 TM image were 81.4% and 66.6% 
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respectively, with very high confidences. After applying the same methodology of image classification 

to earlier dates, a trend of change in LULC from 1995 to 2011 was determined. Despite relatively 

low accuracy (70%) for the post-classification change detection, the rice showed an increase in 

total area of about 500 hectares. This result for the change in rice field was analysed with available 

ancillary data to explain the possible causes of the increase in the Paro valley. It was found that 

substantial increase in rice from 1995 to 2011 correlated to the population increase and economic 

development that occurred during the study period. The coarser spatial resolution of the Landsat 

imagery and small plot size of rice field created mixed spectral and thus degraded the classification 

accuracy. Landsat imagery does not seem be suitable for this type of study in similar terrain.  
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CHAPTER ONE 

1 INTRODUCTION 

1.1 General overview of land use land cover change and drivers 

Significant modification of land surface has taken place over thousands of years since humans 

started domesticating animals and plants for their food and services (Mittermeier et al. 2002). It has 

resulted in the serious alteration in patterns of land use and land cover (LULC).  It is known that the 

ramifications of LULC change exerts negative impacts on the environment and climate (Lambin, Geist 

& Lepers 2003).  However, LULC change benefits are also experienced, especially in the form of 

increased production of food, fibre, and services. Therefore, studies on LULC change are gaining 

continued attention from diverse research communities, especially in order to try to strike a balance 

between environmental degradation and intensification of food production (Foley et al. 2005; 

Kleemann et al. 2017; Lambin, Geist & Lepers 2003; Manakos & Braun 2014). International 

organizations like the International Geosphere Biosphere Programme (IGBP) and International 

Human Dimensions Programme on Global Climate Change (IHDP) play active roles in global LULC 

change mapping, studying the causes and even developing predictive models for LULC change 

(Goldewijk 2001).  

Initially, scientists thought that LULC changes occurred in a progressive, linear and irreversible 

manner caused by the growth in human populations, but recent findings have dispelled this simplistic 

notion and it is now understood that LULC change is driven by more complex and interdependent 

spatio-temporal factors (Lambin, Geist & Lepers 2003). Lambin, Geist and Lepers (2003) classified 

the drivers of LULC change into two broad categories of proximate (direct) and underlying (indirect). 

The proximate drivers are direct human activities that immediately contribute to the change in land 

use decisions locally, whereas underlying drivers are fundamental forces that influence the proximate 

factors; these underlying decisions are often made far away from the site of land use change. 

Underlying drivers can also be biophysical factors, as well as the economic, institutional, 

demographic and cultural factors alluded to above. More recently, it has been realised that many of 

these underlying factors combine into what can be termed the forces of globalization. Depending on 

the different spatial and temporal natures of human-environment interaction, the drivers can be 

reshaped to form a unique pathway for LULC change (Lambin et al. 2001) for a particular area at a 

particular instant in time. 
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1.2 The specifics of land use change related to rice in Bhutan 

Despite the rapid expansion of global agricultural land that has been occurring over the last one and 

a half centuries (Goldewijk 2001), the issue of global food security still remains a critical challenge 

in the wake of ever increasing population (Dong & Xiao 2016). Rice is the staple cereal for more 

than half of the world’s population, although it accounts to only about 12 percentage of global 

agriculture land area (FAO 2013). Rice cultivation has huge environmental effects in the form of 

increased fresh water consumption, more evapotranspiration from the flooded paddy fields which 

causes disturbances in the normal surface temperature and increases methane emissions (Dong & 

Xiao 2016; Shrestha, Chapagain & Babel 2017). Therefore, it is crucial to monitor paddy fields both 

at global and regional scale, in terms of their spatial location, changes and drivers of the changes. 

Asia produces more than 90 percentage of rice in the world (Kuenzer & Knauer 2013), and at the 

same time almost 50 percentage of the global rice produce is consumed by Asian countries 

(Muthayya et al. 2014) as it can be seen from Figure 1. 1. Similar to the rest of Asia , rice is one of 

the major crops cultivated in Bhutan. It is the staple cereal and its per capita consumption is 172 kg 

per person annually (Ghimiray, Pandey & Velasco 2013). 

 

Figure 1. 1 Global map of rice production in million metric tons 

Adapted from Muthayya et al. (2014) 

1.3 Overview of Bhutan 

1.3.1 Location and extent 

Bhutan is a tiny mountainous country, located in the eastern Himalayas between China in the north 

and India in the west, south and east (Figure 1. 2). It has a total area of 38,394 sq. km. It extends 

between longitudes 89o E and 93o E, and latitudes 27o N and 29o N. Its longest east-west dimension 
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is about 300 km and from north-south extent is 170 km. It is heavily forested with  71 percent of 

area under forest cover; only around 3 percent is agricultural land (National Statistics Bureau 2017). 

The total population of Bhutan in 2017 was 727,145 with a population growth rate of 1.5% per 

annum (National Statistics Bureau 2018). 

 

Figure 1. 2 Location of Bhutan in the South East Asia region 

1.3.2 Topography 

The lowest elevations are about 160 m above mean sea level in the Himalayan foothills of southern 

Bhutan, but as much of the country is mountainous it is unsurprising that the highest elevations 

exceed 7500 m in the Greater Himalayas in the north. Such extreme variations in altitude make it 

one the most rugged and mountainous countries in the world. Four major river systems which flow 

southwards through Bhutan, join the Brahmaputra River before it drains into the Bay of Bengal. 

These rivers have immense ecological and economic significance to Bhutan. 

1.3.3 Climate 

Bhutan’s climate is influenced by monsoon winds blowing from the Bay of Bengal and varies with 

elevation. The whole country can be broadly divided into three distinct climatic zones. In the northern 

part of Bhutan, the weather is extremely cold all-round the year and mountains are permanently 

covered with snow.  Temperate central Bhutan experiences moderate temperature and rainfall. 
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Southern Bhutan remains hot and humid throughout the year, with temperatures ranging from 15-

30oC. Figure 1. 3 shows a climate map of Bhutan with further subdivisions of three zones. In fact, 

the temperature invariably depends on the altitudes in Bhutan. Kubiszewski et al. (2013) observed 

that the temperatures decreased by 0.5 oC for every 100 m rise in elevation. Precipitation largely 

depends on latitude. Bhutan experiences four distinct seasons in a year: spring from March to May, 

summer from June to August, autumn from September to November and winter from December to 

February. Most crops are grown between spring to early autumn. 

 

Figure 1. 3 Bhutan: climatic zones 

Source: (National Statistics Bureau 2017) 

1.3.4 Economy and agriculture 

Economically, Bhutan is an agrarian country with limited access to roads, electricity and modern 

infrastructure and has one of the world’s smallest and least-developed economies. However, Bhutan 

has begun its conscious progress towards modernizing its economic structure keeping in mind the 

sustainability of environment and culture for future generations; all under the umbrella of good 

governance. Agriculture is the main source of livelihood for about 62% of Bhutanese population and 

the staple crop is rice (National Statistics Bureau 2018). However, the country depends heavily on 

imported food items. The export of agricultural products is minimal and seasonal which widens the 

trade deficit.  
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The Government of Bhutan is working hard to achieve food self-sufficiency through different 

promotional activities and initiatives like regularizing government land to landless people, subsidies 

on hybrid seeds, farm mechanization, road connectivity and intensifying agricultural research 

(Chhogyel et al. 2015). Consequently, agriculture in Bhutan is making a transition from subsistence, 

small-scale farming to a large-scale farming despite many hindrances posed from the increasing 

wildlife population and construction activities.  

The unbalanced levels of economic development between different districts in Bhutan is a leading 

cause of rural to urban migration. The development of infrastructure and the establishment of 

government institutions are concentrated in the major cities (Yangchen, Thinley & Wallentin 2015), 

of which Paro, the focus of this thesis, is one. Both urbanization and nature conservation are 

hindrances to achieving the national goal of food self-sufficiency. 

In the light of tensions between different sectors, it is important to obtain accurate information on 

land use change related to rice cultivation, and its main causes for proper management of limited 

land resources. Using remote sensing (RS) and geographical information science (GIS) technologies, 

this study is of its first kind to locate and investigate accurate image dataset and methods to map 

LULC change in mountainous terrain and explore the main drivers of change in rice cultivation in 

Bhutan with reference to Paro Valley as the study area. 

Remote sensing is a term used when the information of the object of interest is collected from a 

distance (remotely) and GIS is a set of methods and analytical tools that can store, manipulate, 

analyse and display geo-spatial data. The remotely acquired satellite images are processed to give 

information on LULC change. From LULC change map, numerous studies can be conducted, for 

instance to find out the factors causing the LULC change. 

1.3.5 Environmental laws and policies 

Bhutan’s development approach is based on the principle of Gross National Happiness (GNH).  An 

excerpt from the Centre for GNH (2018) states: 

GNH is a holistic and sustainable approach to development, which balances material and non-material values with the 

conviction that humans want to search for happiness. The objective of GNH is to achieve a balanced development in all 

the facets of life that are essential; for our happiness. 

This can be achieved through the implementation of four pillars of GNH:  

i. Good governance; 

ii. Sustainable socio-economic development;  

iii. Preservation and promotion of culture;   
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iv. Environmental conservation.  

Guided by the principle of GNH, the constitution of Bhutan, 2008 mandates the government to 

maintain a minimum of 60 percent of country under forest cover for all times (Royal Government of 

Bhutan 2008). In line with the constitution, there are other laws, such as the Forest and nature 

conservation Act, 1995, which prohibit illegal cutting of trees and hunting.  

1.4 Study area 

Paro District, located in the north-western part of Bhutan (Figure 1. 4), is one of the fastest growing 

urban areas in Bhutan (Yangchen, Thinley & Wallentin 2015). It stretches from the confluence of 

two major rivers: one from the Thimphu valley and the other from Paro valley in the south to the 

Mount Jomolhari (7326 m) in the north on the border with the Tibetan Autonomous Region of China. 

It is the widest valley in the country with large extents of fertile rice fields located along the Pa Chhu, 

the local name for Paro River (Figure 1.6).  

 

Figure 1. 4 Location of Paro Valley and map of Bhutan with reference to world map. 

 

Paro is famous locally for its red rice (Yue-chhum in Dzongkha1) shown in Figure 1. 5, which is 

exported to developed countries like the USA and Canada. Due to the availability of a good 

communication system (an airport and roads) and the proximity to the capital city, Thimphu; 

                                            
1 Dzongkha is the national language of Bhutan. 
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continuous infrastructural development has been taking place in the area over the last two decades. 

 

Figure 1. 5 Red rice produced from Paro Valley.  

(Source: https://i.pinimg.com/originals/82/85/ea/8285ead97ff578e4708ec1836c97b131.jpg) 

 

Figure 1. 6 Paro valley showing Paro Dzong2 in the front and Paro town in the background and 
rice field on left and right centre in light green/yellow tones.  

(Source: https://upload.wikimedia.org) 

                                            
2 Dzong is a typical type of fortress mainly serves as the district administrative headquarters, besides having 
religious and social purposes. 

https://i.pinimg.com/originals/82/85/ea/8285ead97ff578e4708ec1836c97b131.jpg
https://upload.wikimedia.org/
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1.5 Aims and objectives 

This study aims to answer one major and one minor research question. The major question is:  

Which dataset and image processing methods are most suitable for change detection of rice 

cultivation in Bhutan? 

The minor question is: 

 What are the possible factors that have influenced rice land use change in the study area 

 from 1995 to 2011? 

The research objectives emanating from these two questions are: 

1. Critically review and analyse different technologies used for LULC change detection studies. 

2. Map the changes in rice fields using most appropriate method and analyse different drivers 

for this change in the selected area. 

1.6 Thesis structure 

This thesis is presented in   six chapters. Chapter One is an introductory chapter which gives a brief 

overview of land use and land cover change in the global context. It also provides an overview on 

the importance of rice and rice land use in Bhutan, and a background of Bhutan and the study area. 

The chapter ends with the statement of research questions in the form of aims and objectives. 

Chapter Two delves into the relevant literature and discusses drivers of LULC change and techniques 

to map LULC change in the context of both global research and the study area. Chapter Three 

elaborates the methodology that was adopted in this study to achieve the results. The results are 

presented in form of tables, charts, maps, graphs and descriptions in Chapter Four. The main 

findings of the research are then analysed and discussed in Chapter Five.  Finally, Chapter Six states 

the important conclusions that have been drawn from the study and gives some recommendations 

for future research in similar environments.  
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CHAPTER TWO 

2 LITERATURE REVIEW 

Since, more than 50 percent of global agricultural land use (LU) is under the paddy cultivation, the 

literature review in this chapter begins with a broad context of general land use land cover (LULC) 

change and drivers causing the LULC change both at global and regional scale. Then it reviews 

relevant literatures on the rice cultivation and finally concludes the chapter with brief review on the 

geospatial techniques used for mapping the change in LULC with special focus on mapping of rice.  

2.1 Land use land cover change 

Not so long ago, atlases and existing hard copy maps were the only available sources of information 

for land use land cover (Friedl et al. 2002). They exhibited reasonably good accuracy of land use 

but inherently failed to maintain the currency of data to study change of LULC. By the time a LULC 

map has been produced from the existing data sources, quite a lot of additional changes in the land 

cover would have occurred. Now remote sensing technology and different image processing 

algorithms have become the state-of-art tools for detecting changes in LULC which can be further 

used with other socio-economic data to find the causes of change (Chaplin-Kramer et al. 2015; 

Hamad, Balzter & Kolo 2017; Kumar & Rawat 2015; Vogelmann et al. 2012). Global LULC is an 

intrinsically non-static phenomenon (Hamad, Balzter & Kolo 2017) and requires most appropriate 

datasets in terms of spatial, spectral and temporal resolution to give an accurate information on 

change. This accurate information on the LULC change can be used to help proper management of 

land resources. Land is a scarce resource and many land uses compete for the limited available land 

(Lambin & Meyfroidt 2011). The modern approach to agricultural land use called “green revolution” 

which makes use of chemical fertilizers, improved cultivars, pesticides, mechanization and irrigation 

facilities, has helped immensely to increase the global grain yield with less amount of deforestation. 

But extensive use of fertilizers was found to pollute water and the soil gets more salinized from 

irrigation of rice fields (Foley et al. 2005).  

Once viewed as a serious challenge in maintaining enough agricultural land to feed the increasing 

global population has been now overcome with the breakthrough of technological revolution and 

modern research in the agriculture field. The global food supply is much better with surplus storages 

but the persistence of fundamental issue on hunger is due to the lack of income to buy the food that 

abounds (Hazell & Wood 2008). The increase in global grain production was achieved, not by 

expanding agricultural land but it was due to the agricultural intensification. The new strategy of 

shifting from expansion of agricultural area to intensification has helped to reduce the demand for 
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billions of hectares of land conversion to agriculture (Cassman et al. 2005). However, sometimes, 

such global situation masks the real problem that most of the people face at national and local level. 

For instance, Bhutan’s self-sufficiency for rice (the staple cereal) was lagging at 48% in 2010 and 

the deficit was met from  imports (Japan International Cooperation Agency 2012). 

2.2 General insights on sectoral causes of land use change  

As complex as the land use change is, so are the drivers of that change due to its spatial and 

temporal variation (Lambin, Geist & Lepers 2003). These drivers can exhibit high interdependence 

(Kleemann et al. 2017). Identifying the drivers of land use change involves the understanding of 

various factors influencing the decision on land use at individual, company, organisation and 

governmental levels.  Various studies conducted at the local and regional level can help to 

understand the causes of LU change. 

2.2.1 Natural factors 

The LULC change and climate change are closely interrelated.  Climatic variations increase the 

demand for food and agro-based products from land and it can influence the LULC change either 

directly or through feedback mechanisms. Fluctuations of climate variables like temperature rise and 

erratic precipitation can negatively affect crop growths (Johnson & Hutton 2014; Ostwald, Wibeck & 

Stridbeck 2009). For instance, very little or no rain causes drought and excessive rain leads to soil 

erosion. Such forms of land degradation by variation in the climatic conditions triggers either 

abandonment of agricultural land or people go in search of better land which is achieved mostly 

through deforestation (Bewket & Abebe 2013; Lambin, Geist & Lepers 2003). Studies have shown 

that the temperature rise due to  global warming has a negative impact on the yield of rice since 

the rising water level from snow melts inundates the low lying paddy fields (Kontgis, Schneider & 

Ozdogan 2015; Peng et al. 2004). 

However, Kleemann et al. (2017) argue that it requires long term studies to detect and quantify the 

effects of climate change on  land use. Apart from climate variability affecting  land use, there is a 

range of other biophysical factors that are particularly considered as confounding constraints for 

cropland expansion (Lambin & Meyfroidt 2011) . Conversely, several studies also revealed that the 

change in LULC influences the surface albedo of land (Liu et al. 2016). (Peng et al. 2004)  argue 

that the LULC change is one of the main factors causing the global climate change. The global land 

use by anthropogenic activities alone contributes almost 35% of total CO2 budget in the atmosphere 

(Foley et al. 2005). The climatic factors and change in agricultural land are interdependent and any 

disturbance in one can potentially produce a significant impact on the other. 



11 
 

2.2.2 Economic factors 

Globalization has helped to conduct international trade with different countries. Most developing 

countries face the consequences of economic globalization in the form of deforestation and 

increasing cropland (Lambin & Meyfroidt 2011). Although the import of food and wood products 

helps in conserving the natural environment for that nation,  it displaces the demand for those 

products in other countries which ultimately increases deforestation (Lambin & Meyfroidt 2011). A 

plethora of economic variables like price, tax, irrigation, market, subsidies, transportation cost, 

demand, investment, technology, and manpower influence the land use land cover both at local and 

global scale (Lambin, Geist & Lepers 2003; Liu et al. 2014). For instance, the increasing demand for 

food products leads to expansion of agricultural land at the cost of losing forest. It is claimed that 

in the tropical regions of the world from 1980 to 2000, 55 percent of intact forest and 28 percent of 

disturbed forest were converted to agricultural land (Costa, Botta & Cardille 2003; Gibbs et al. 2010). 

But this can be counteracted through agriculture intensification and growing trees in the fallow land 

for timber (Lambin & Meyfroidt 2011). In their study, Hamad, Balzter and Kolo (2017) found that 

the agricultural land use can be heightened with the introduction of improved infrastructure and 

road connectivity to the farmers. The economic developments do not necessarily lead to the 

expansion of agricultural land area. This scenario is exemplified clearly in the case of Vietnam that 

the economic development forced to increase rice production by more than 25% between 2000 and 

2011, but this was achieved through green revolution technique without having need to spatially 

expand the rice field (Kontgis, Schneider & Ozdogan 2015). But then the other aspect of economic 

development, which is in the form of rapid urbanization taking place almost in every country is a 

threat to the sustainability of cropland (Dong et al. 2015; Hazell & Wood 2008). 

2.2.3 Demographic factors 

The mounting demand for food, fibre and fuel from the increasing population of the world leads to 

the expansion of agricultural and pastoral land at the cost of decreasing forest cover (Chaplin-Kramer 

et al. 2015; Lambin & Meyfroidt 2011).  Research by Peng et al. (2004) has projected that with the 

increase in world population, rice production has to increase by 1% every year. This additional 

demand for rice can be either met from increasing the paddy field or intensifying rice agriculture. In 

fact, the non-static nature of population affects LULC. The out migration of population causes change 

in land use through labour shortage and inflow of remittances. The family members back home use 

this money for non-farm activities or diversify agriculture activities (Lambin & Meyfroidt 2011). Due 

to the increasing rural to urban migration of population, rapid urbanization has been taking place all 

over the world. This results in the growing conflict between the urbanization and the crop-land 

conservation (Liu et al. 2014). Although the urban land use covers only less than 0.5 percent of total 

land,  it is predicted to lose annually 1.6-3.3 million hectare of fertile agricultural land to the growing 
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urban areas worldwide (Lambin & Meyfroidt 2011). The population drift to urban areas in most of 

the countries lead to agricultural land abandonment and the fallow land gradually turns into forest 

(Lambin et al. 2013). 

2.2.4 Institution factors 

Land is becoming a scarce resource and different land use will be competing for available land 

(Lambin & Meyfroidt 2011) , so proper laws, rules and guidelines should be implemented efficiently 

to utilize the limited land resource. In many countries, a balanced approach is adopted to intensify 

agriculture by introducing improved technologies, crop varieties and fertilizers. This enables the 

better use of the so-called wastelands (Lambin & Meyfroidt 2011) and apparently reduces pressure 

on forest cover while at the same time increases the food production. Some strict laws regarding 

conservation of environments helps to reduce the rate of deforestation in the conserved areas, but 

it increases the rate of forest disturbances outside the conservation area. A remarkable improvement 

in the preservation of forest was observed after most of the countries in Southeast Asia banned the 

practice of shifting cultivation (Lambin & Meyfroidt 2011). Most appropriate land use at local level 

improves the efficiency of land use at global level. 

2.3 General causes of land use change in Bhutan 

A  few studies on LULC change in Bhutan show varying results which is attributed to the varying 

spatial and temporal context of studies conducted. For instance, the forest cover in Bhutan has 

shown as decreased from 2000 to 2012 by Hansen et al. (2013) whereas in another study by Gilani 

et al. (2015), it was found to have increased by 3.6% in the period from 1990 to 2010. Similarly, 

Bruggeman, Meyfroidt and Lambin (2016) found a slight increase in the forest cover in Bhutan. 

However, there has not been any formal research carried out to map the change in rice cultivation 

area and understand the drivers of change in rice field in Bhutan. 

2.3.1 Natural factors 

Land cover in Bhutan is influenced by topography and climate (Johnson & Hutton 2014). Precipitation 

and temperature variability in Bhutan largely depends on the elevation, slope and aspect, which 

ultimately influences the type of land cover in a particular area (Dorji et al. 2016). Rice cultivation 

in Bhutan is dependent on monsoon rain and supplemented with irrigation channels. Any anomaly 

in the precipitation will cause either flood or drought which ultimately affects the rice cultivation 

(Ghimiray, Pandey & Velasco 2013).  Bhutan is also known for rich biodiversity and conversation is 

given the priority. In the process of conserving wildlife, the human-wildlife conflict is a major issue 

which poses potential threat to conservation and economic development (Barua, Bhagwat & Jadhav 

2013). In addition, many land covers in Bhutan are influenced by temperature and it is likely that 
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they will shift with climatic warming (Dorji et al. 2016) 

2.3.2 Economic factors 

The construction of the first road from Phuentsholing (Indian border) to Thimphu (capital of Bhutan) 

and establishment of other infrastructure like telecommunication, transportation in 1961 marked the 

beginning of modern economy in Bhutan (Uddin, Taplin & Yu 2007). Since then Bhutan has made a 

rapid progress in the socio-economic development especially in the last two decades. The per capita 

GDP of Bhutan increased from USD 239 in 1980 to USD 2879 in 2016 (National Statistics Bureau 

2017). Owing to the improved transportation facilities in the country, there is an increasing tendency 

to pursue cash crops like apples in the temperate regions; oranges, areca nut and cardamom in the 

subtropical in southern Bhutan. Other cash crops that are exported include ginger, chilies and 

vegetables (National Statistics Bureau 2017). However, Bhutan with a poverty rate of 8.2 percent is 

still one of the highest in the South East Asia.  

2.3.3 Demographic factors 

The rural to urban migration rate of 6 percent in Bhutan is one the highest in South East Asia (Gosai 

& Sulewski 2014). This may be viewed as negative trend, but it contributes in reducing poverty and 

growth of economy. Internal migration occurs due to the uneven geographical distribution of labour 

and opportunities. There are two main reasons for rural to urban migration in Bhutan and they are: 

i) push factor is mainly due to lack of education facilities, lack of opportunities and small land holding 

and ii) pull factor of better employment opportunities in urban areas. The most developed districts 

are Thimphu, Chukha and Paro. Measures like rural electrification, transformation from subsistence 

economy to market economy were put in place to minimize the rural to urban migration but they 

failed to achieve this objective (Gosai & Sulewski 2014). Study by Gosai and Sulewski (2014) found 

that there was high rate of east to west migration of Bhutanese population. Farm mechanization in 

Bhutan is selectively feasible due to the landscape and terraced farming adopted to conserve soil 

degradation. 

2.3.4 Institutional factors 

Bhutan is one of the developing countries which achieved a successful transition of land use 

simultaneously increasing food production and forest conservation this is mainly due to the good 

policies in place (Lambin & Meyfroidt 2011). Bhutan has a unique policy, i.e. i) to achieve self-

reliance in cereals and essential oil; ii) increase rural income and iii) conserve the environment 

(National Statistics Bureau 2017). It is noble in intention but practically implementation is quite 

daunting when agriculture intensification and conservation of environment hardly go hand in hand 

(Lambin & Meyfroidt 2011). One of the major sources of revenue for Bhutan is the hydroelectricity 

which indirectly depends on the forest cover in the upstream to maintain the volume of water flow 
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from the catchment area (Bruggeman, Meyfroidt & Lambin 2016). Any disturbance in the 

hydrological cycle in the Himalayas has a direct impact on the economy (Saxena, Maikhuri & Rao 

2005) of the people living downstream through the change in discharge (Costa, Botta & Cardille 

2003). For this reason, the constitution of Bhutan mandates government to take extra initiative in 

maintaining its minimum forest coverage of 60% at all times (Royal Government of Bhutan 2008). 

A case study by Buffum, Gratzer and Tenzin (2009) suggests that due to better management of 

logging and grazing, the tree sapling densities in Yakpugang was found to be increasing. Slightly 

differing figures on the total forest cover by different researchers have been reported like 74.5% by 

Kubiszewski et al. (2013), 75% by Gilani et al. (2015), but these are well above the minimum 

requirement. This difference is due to the type of data used, methods and level of rigor.  

Farmers have to bear the brunt of conservation in the form of losing their cattle and crops to the  to 

wild animals (Sangay & Vernes 2008). A study carried out by Wang, Curtis and Lassoie (2006) found 

that the incidences of crop damage by wildlife increased drastically with the establishment of 

National parks and enactment of Forest and Nature Conservation act of Bhutan 1995 which 

specifically prohibits hunting and retaliatory killing of wild animals. Although the government with 

the help of external funding has commenced compensation to those owners whose livestock have 

been killed by tigers, leopards and bears (Sangay & Vernes 2008), it does not extend to the owners 

of damaged crops (Wang, Curtis & Lassoie 2006). This compensation scheme poses a serious 

question of sustainability because it depends on the external aids and the incidences of human-

wildlife conflicts that are increasing every year. No formal studies have been carried out to find out 

how far the human-wildlife conflict contributes in land-use change in Bhutan, but obviously it does 

impact indirectly through the migration of population to urban areas in search of better opportunities. 

Stringent conservation legislations and management practices are in place. This has achieved in 

maintaining 51 percent of total land cover as protected areas and biological corridors (Buffum, 

Gratzer & Tenzin 2009) but on the other hand, it has affected most Bhutanese population whose 

livelihood is directly dependent on agricultural and livestock farming which is the highest contributor 

of country’s Gross Domestic Product (Johnson & Hutton 2014). Farmers deploy different means to 

ward off wild animals from damaging crops. One such measures is shown in Figure 2. 1 where a 

scarecrow of human shape is erected in the field of senescing rice in the study area. 
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Figure 2. 1 Photograph of a scarecrow to prevent wild animals from entering the paddy field in 
the Paro valley 

(Photo credit: Kinley Jigyel Dorji, taken in October 2018) 

2.4 Rice production system in Bhutan 

Due to the rugged terrain, rice in Bhutan is grown in terraced fields (Figure 2. 2) ranging from 160 

m elevation in the south to as high as 2700 m (Ghimiray, Pandey & Velasco 2013). These authors 

classify the whole of Bhutan into three distinct rice agro-ecological zones based on the temperature 

and altitude which are described in the subsequent subsections.  

 

Figure 2. 2 Terraced rice farming in Bhutan.  

https://grandcircle.scene7.com/is/image/GrandCircle/P9898/ScoopHero 

https://grandcircle.scene7.com/is/image/GrandCircle/P9898/ScoopHero
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2.4.1 Wet subtropical (low altitude) zone 

The wet subtropical or low altitude zone for rice lies in the southern belt of Bhutan where its 

altitude ranges from 200 - 600 m above the mean sea level. Rice in this zone is cultivated using 

mainly rain fed water due to the lack of poor irrigation facilities. The warm temperature and 

other climatic conditions in this zone favour two cycles of rice plantation. However, due to 

relatively poor soil conditions (low nitrogen and potassium) and pests, the yield is reportedly 

less than other zones. This zone constitutes about 35% of total rice area in Bhutan. 

2.4.2 Humid subtropical (mid altitude) zone 

The next higher altitude zone is the humid subtropical zone where its altitude ranges from 600-

1500 m which is characterized by hilly slopes, lower rainfall, and temperature than the wet 

subtropical zone. The rice field in this zone is irrigated and yields are better due to the higher 

solar radiation and long ripening phase. It forms about 45% of total rice acreage. 

2.4.3 Warm temperate (high altitude) zone 

The high-altitude zone ranges from elevation of 1500-2700 m with the current study area 

located in this zone. Rainfall in this zone is lowest among three zones (650-850mm annual) and 

rice fields are irrigated using canals and gravity feed. Only one cycle of rice is possible in a year 

and often the outbreak of rice blast disease is the main problem. It accounts to about 20% of 

total rice area. 

2.5 Remote sensing data sources 

Due to the relatively recent advent of satellite remote sensing, change detection of LULC is possible 

for last 40-50 years only (Petit & Lambin 2001). Both at global and national levels of change detection 

in LULC, it is a common challenge that confuses many experts in the selection of appropriate satellite 

imagery, classification schema and methods (Gilani et al. 2015). One of the big issues here is the 

appropriateness of the datasets for the type of LULC change being detected. This is often the case 

of scale. For global scale LULC related mapping, different researchers have used satellite data from 

various sensors like Landsat data for Global Land Cover classification (De Fries et al. 1998); AVHRR 

for IGBP-DIS land dataset mapping; and MODIS for global land-use and land-use change (De Rosa 

et al. 2017). At regional level, probably due to its long history of data archival and being freely 

available, Landsat data are predominantly being used for LULC change mapping of different 

countries. For instance, the National Land Cover Database (NLCD-2006) for United States of America 

was developed using  Landsat (Xian, Homer & Fry 2009). However, to spatially analyse the LULC 

change over long period of time requires a combination of more than one data source (Petit & 

Lambin 2001). Other countries and local level studies widely used Landsat images as the primary 
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source of data for LULC change studies (Oetter et al. 2001; Song et al. 2001; Vogelmann et al. 

2012). For example studies carried out by Singh, Singh and Tiwari (2013) in Arunachal Pradesh and 

Garrard et al. (2016) in Nepal testify that Landsat data can be used for LULC studies mountainous 

terrain like Bhutan.  

2.6 Image processing techniques 

The LULC change analysis can be performed in diverse ways depending on the availability of data 

and purposes. There are numerous image classification algorithms developed since the 1980s for  

mapping of land use land cover. Most commonly used are pixel-based classification, sub-pixel-based 

classification and object-based classification (Li et al. 2014). The pixel-based classification treats 

each pixel to be spectrally pure and assumes it to represent a single land cover type (Xu et al. 2005). 

The pixel-based classification is further divided into unsupervised classification and supervised 

classification. In the unsupervised classification method, the computer automatically groups image 

pixels into different classes based on the digital number values of pixels without the need of human 

intervention (Puletti, Perria & Storchi 2014). The most commonly used algorithms of unsupervised 

classification are k-means (Blanzieri & Melgani 2008), Iterative Self-Organizing Data Analysis 

(ISODTA) (Dhodhi et al. 1999), Self-Organizing Map (SOM) and hierarchical clustering method 

(Goncalves et al. 2008). Although, unsupervised classification does not need signature sample and 

prior knowledge, it is computationally intense Vogelmann et al. (2001) but less so in 2018.  

In the supervised classification, analysts train the computer with sample sites from the known 

classes. Then every pixel in the image is compared with the training samples and classified into 

different classes depending on various decision rules. There are number of different classification 

algorithms like Maximum Likelihood Classifier (MLC), Minimum Distance-to-Means Classifier, 

Mahalanobis Distance Classifier and Parallelepiped. The supervised classification is most widely used 

method mainly due to simple in application, easy to understand and interpret (Radoux et al. 2014). 

The third type of classification technique which considers geographical objects as the fundamental 

unit and classifies an image via image segmentation (Pal & Bhandari 1992). This approach is usually 

used in very high spatial resolution (VHR) images and it is proven to give better accuracy (Myint et 

al. 2011) than other types of classification. Due to the heterogeneity of nature, a single pixel from 

coarse resolution satellite images is likely to have a mixture of spectra from different land covers. 

The sub-pixel wise classification takes this fact into account and gives a better accuracy than pixel-

based classification (Lu & Weng 2007). But this method has its own share of disadvantages which 

tends to be computationally intense, overfit data and rules are unknown (Gopal, Woodcock & 

Strahler 1999).  
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Civco et al. (2002) conducted a comparative study of different classification techniques and 

concluded that every method has their merit. Hence more than one approaches may have to be 

applied to achieve the desired results. However, Yangchen, Thinley and Wallentin (2015) did a LULC 

change study in Bhutan using Landsat image and MLC and their classification accuracy was fairly 

good. However, Gilani et al. (2015) used the object based image classification and reportedly 

achieved accuracy of 83% for a decadal study of LULC in Bhutan using Landsat image. 

2.7 Change detection techniques 

 Change detection is a process of quantifying temporal effects on an object by using multi-temporal 

satellite images  (Singh 1989). Hall and Hay (2003) claimed that various change detection methods 

of varying robustness, complexity and refinement have been developed over last three decades. 

Different researchers have categorized the change detection methods into diverse groups based on 

their views. The most commonly used grouping categories as illustrated by El-Hattab (2016) are i) 

pixel-to-pixel approach, ii) post-classification change detection and iii) object-based change 

detection. 

According to Hussain et al. (2013), the pixel-to-pixel change detection has several schemas like 

image differencing, image ratioing, regression analysis, vegetation indexing differencing, change 

vector analysis, principal component analysis (PCA), Tasselled cap transformation (TCT) and texture 

analysis. All the techniques have both advantages and limitations. For instance, the image 

differencing and ratioing are simple and easy to interpret but they do not provide a complete matrix 

of change information (Coppin & Bauer 1996). They are traditionally designed to work with 

quantitative raster than qualitative input data and produce an index or magnitude of change between 

dates, which can only then be recoded into binary change or no change results using specified 

thresholds. This method is criticised for the non-normal distribution of change which it is originally 

based (Singh 1989). A similar problem of a lack of a complete change matrix is associated with PCA 

and TCT. 

Post-classification change detection technique analyses the outputs of independently classified 

images of different dates (El-Hattab 2016). This approach has two stages: digital image processing 

to generate a thematic map of land cover and the change detection analysis using the two thematic 

outputs. The post-classification change detection approach is widely used because when the images 

are independently classified, the atmospheric and sensor effects are reduced and a complete matrix 

of change information is generated (Hussain et al. 2013). However, the final accuracy is a function 

of accuracy of individual classification (Coppin et al. 2004).  

Machine learning can be performed using three approaches: i) Artificial Neural Network (ANN), ii) 
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Support Vector Machine (SVM) and iii) Decision tree. They are non-parametric supervised algorithms 

used to estimate data properties based on training data (Hussain et al. 2013). The main drawback 

for ANN is its functions are not available in most image processing software like ERDAS Imagine. 

Whereas SVM is computationally expensive and difficulty in selecting the best kernel function. 

Decision tree model cannot be replicated to other date images (Hussain et al. 2013). 

The most advanced method is the object-based image comparison. In this approach, the objects 

that are extracted from first image are searched from the second image (Hussain et al. 2013). It is 

relatively easy to implement but difficult to search spatially corresponding objects in the second date 

image. This approach of change detection does not provide ‘from-to’ change. 

2.8 Integration of remote sensing data with other spatial data 

Since, the advent of satellite remote sensing technology in later half of the twentieth century, it has 

proven to be a robust tool for studying the LULC dynamics (Chowdhury 2006). The combination of 

remote sensing data with spatially referenced ancillary data such as bio-physical, economic, 

demography and social data is increasingly used to study the drivers of LULC change (Gilani et al. 

2015; Weng 2002). The outcome of the LULC classification generated by image processing software 

like ERDAS Imagine; IDRISI (Baban & Wan Yusof 2001) and ENVI are used with other secondary 

spatial data in the GIS software for further analysis, update and retrieval (Rawat & Kumar 2015).  
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CHAPTER THREE 

3 METHODS 

The project focussed on the usage of remote sensing (RS) and Geographical Information Science 

(GIS) tools to map the land use land cover (LULC) change and explore some of the major drivers of 

the change in rice land use in the Paro Valley of Bhutan. This chapter outlines the description of 

different processes performed to achieve the result.  

3.1 Data collection 

Hosts of remote sensing satellites are being launched in space, and users have been provided with 

a wide range of choice of imagery from optical to RADAR and LiDAR of different spatial, spectral, 

temporal, and radiometric resolutions depending on the applications. The requirement of historical 

imagery beginning from 1995 for the current study has narrowed the choice to only a few sensors. 

Landsat, Système Pour l’Observation de la Terre (SPOT) and Indian Remote Sensing Satellite (IRS) 

sensors were operational during the study period from 1995 to 2011. SPOT-1 was launched on 22 

February 1986 and IRS-1A was launched on 17 March 1988. Initially, both the SPOT and the IRS 

series had 4 spectral bands and 20 m spatial resolution for SPOT-1 and 36 m for IRS-1. Procuring 

data from them for this study was not feasible due to the monetary cost charged for SPOT and quite 

lengthy procedure associated with IRS imagery download and moreover, the resolution of IRS-1A is 

not better than the Landsat Thematic Mapper imagery that is supplied freely. Hence, due to the 

historical, continuous and free of cost images, the Landsat series is only viable choice and they are 

widely used in change detection study (Abd El-Kawy et al. 2011; Banskota et al. 2014).  

Originally, the study was aimed at mapping rice cultivation for 1995, 2005 and 2015 but due to the 

available   field reference data dating back to 2011, the 2015 date image had to be changed to 

2011.. 

Multiple datasets of both raster and vector formats were used in the study.  The entire data were 

acquired from two sources. They are i) United States Geological Survey (USGS) database and ii) 

government agencies in Bhutan.  

3.1.1 Brief background on the Landsat series 

The open and free access to the Landsat archive since 2008 by USGS has revolutionized the usage 

of Landsat data (White et al. 2014) especially in the change detection from the Landsat Time Series 

(LTS) data (Banskota et al. 2014; El-Kawy et al. 2011). The LTS mission from Landsat-1 to Landsat-

5 acquired data of approximately 80 m spatial resolution in 4 spectral bands using Multispectral 
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Scanner System (MSS) from 1972 to late 1990 and briefly in 2012. The Landsat-3 sensor had a fifth 

band in Thermal Infrared (TIR) region. Apart from the MSS, the Landsat-4 and 5 sensors had a 

Thematic Mapper (TM) sensor which collected data in 7 spectral bands (Table 3. 1). The spatial 

resolution of the four bands in visible and Near Infrared (NIR) and two bands in Short Wave Infrared 

(SWIR) spectrum is 30 m and 120 m for one TIR band. The Landsat-7 was launched on 15 April 

1999 with the Enhanced Thematic Mapper Plus (ETM+) sensor and has comparable properties with 

TM except with the improvement of spatial resolution of TIR to 60 m and an additional panchromatic 

band of 15 m spatial resolution was included. As a part of the Landsat Data Continuity Mission 

(LDCM), the Landsat-8 was launched on 11 February 2013 with Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS). Likewise, Landsat-9 is planned to launch by December 2020 with 

higher imaging capacity than the previous series which will add more valuable data to the Landsat 

image archive. The operational dates for the Landsat series are summarized in Figure 3. 1. 

 

Figure 3. 1 Landsat Time Series. The red lines indicate the year of images used for the current 
study 

Adopted and modified from: https://landsat.usgs.gov/landsat-missions-timeline 

The OLI has higher quantization of 12 bits while the previous Landsat series of MSS have 6 bits and 

TM and ETM+ have 8 bits. The USGS through rigorous calibration has kept a consistency in sensor 

and image characteristic from Landsat-4 to 8. Hence the satellite images from TM, ETM+, and OLI 

are compatible with time series studies (Powell et al. 2010).  

 

https://landsat.usgs.gov/landsat-missions-timeline
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Table 3. 1 Outline of Landsat-5 TM bands and their corresponding spatial resolution 

Bands Wavelength (µm) Spatial resolution (m) 

Band 1 – Visible Blue 0.45-0.52 30 

Band 2 – Visible Green 0.52-0.60 30 

Band 3 – Visible Red 0.63-0.69 30 

Band 4 -  Near Infrared (NIR) 0.76-0.90 30 

Band 5 – Near Infrared (SWIR1) 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120 (30) 

Band 7 – Mid-Infrared (SWIR2) 2.08-2.35 30 

Source: https://eos.com/landsat-5-tm/ 

As it can be seen from the crop calendar attached in Appendix A, the rice growing months in Paro 

valley are from June to September, so this window of timeframe was used to search cloud-free 

images of 1995, 2005 and 2011 in the USGS archive. After selecting the appropriate images for the 

study area, a special order for Level 2 processed imagery was placed through the USGS web portal 

Earth Explorer (https://earthexplorer.usgs.gov/). The specialized software developed by NASA 

called Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) is used to derive 

surface reflectance data products. The software uses Second Simulation of a Satellite Signal in 

the Solar Spectrum (6S) radiative transfer model along with ancillary data to the level-1 

processed Landsat TM images (USGS 2018b).  6S is a computer code which can accurately 

simulate the interaction of electromagnetic radiation with the atmosphere to estimate the digital 

number-to-radiance coefficients by exact atmospheric parameterization calculation (Yeom et al. 

2017). The USGS is a scientific agency of US government whose primary role is to study the natural 

resources and hazards that pose threat to the USA. Table 3. 2 shows the different date images 

downloaded from the website. 

 

 

                                            
 120 m spatial resolution of thermal band resampled to 30 m. 

https://earthexplorer.usgs.gov/
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Table 3. 2  List of Landsat scenes used for the study (Path 138, Row 41) 

Landsat-5 TM Scene ID 

Sun 

Azimuth 

Sun 

Elevation 

Date of 

acquisition 
Time of 

acquisition 

(GMT) 

Local 

Time 

(GMT+6) 

Cloud 

Cover 

LT51380411995268BKT00 123.69o 45.93o 25-09-1995 03:31:15 09:31:15 34% 

LT51380412005215BKT01 105.88o 62.99o 
03-08-2005 

04:17:45 10:17:45 
64% 

LT51380412011232KHC00 115.85o 61.23o 20-08-2011 04:18:36 10:18:36 24% 

3.1.2 Data from Bhutan Government 

The cadastral data with land use information was acquired from the National Land Commission 

Secretariat (NLCS) of Bhutan. A nationwide cadastral survey using high precision Differential Global 

Positioning System (DGPS) and total station instrument was carried out from 2008 to 2013. From 

the meta-data, the field cadastral data in Paro district (study area) was collected during the summer 

of 2011. Besides, plot boundary information, the cadastral survey had collected land use information. 

This cadastral field data was used as ground truth to assess the accuracy of image classification of 

2011 image. Other ancillary data as shown in Table 3. 3 were also obtained from different 

government agencies in Bhutan. 

Table 3. 3 List of ancillary data from the government of Bhutan 

Data Data Type Year 

PRISM-DSM Raster 2014 

Land cover Raster 2010 

Land use Vector 2012 

Temperature and Rainfall Vector 1995 -2011 

Demographic data Numeric 1995-2011 

3.2 Software used 

Among several digital image processing and GIS software, Earth Resources Data Analysis System 

(ERDAS) Imagine 2018 and ArcGIS Version 10.6 were used to process and analyze different data 

used for this study. These software are widely used in the field of geospatial science and are available 

in the Flinders University, where this research was carried out. 
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3.3 Image pre-processing 

In the mountainous terrain like the current study area where the agriculture fields are small and 

heterogeneous, the mapping of land use with 30 m spatial resolution of Landsat image is increasingly 

difficult and less accurate. In such cases, using the combination of derivatives of original data and 

ancillary data like Digital Elevation Model (DEM) has been shown to improve the accuracy of image 

classification (Feng et al. 2018). Particularly, the combination of first principal component (PC1), 

NDVI and DEM data has produced the highest image classification accuracy in the similar study 

conducted by Bahadur K.C. (2009) in Nepal and Eiumnoh and Shrestha (2000) in Thailand. Most of 

the agriculture fields are in the valley floor and extend up to approximately 300 m of relative 

elevation from the valley floor as it can be seen from Figure 3. 2. The author made use of this 

condition by integrating a relative DEM as the fourth band in the image composite which was used 

for further classification.  

 

Figure 3. 2 Cross section profile of Paro valley 

Where 1 is the river bed, 2’s are locations of agriculture in the Paro valley 

3.3.1 Geometric correction 

The combined effects of various geometric distortions which are caused by scan skew, non-linear 

scan, altitude and attitude of sensor, earth’s rotation and curvature make the co-registration of two 

images (either from two different sensors or two different dates from the same sensor) extremely 

difficult (Netanyahu, Le Moigne & Masek 2004). It is essential to have an accurate per-pixel 

registration of multi-temporal satellite data since any registration error can potentially affect the 

accuracy of the change detection study (Dai & Khorram 1998; Shalaby & Tateishi 2007; Singh 1989). 

The Level 2 Precision Terrain corrected (L2PT) product of Landsat data were already geometrically 

and radiometrically corrected and georeferenced to the World Geodetic System 84 (WGS84).  
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However, to verify geometric registration of 2011 image, it was verified against readout coordinates 

from Google Earth of ten well defined features. Then the Landsat images of 1995, 2005 and ancillary 

data were compared against the 2011 image to confirm image-to-image geometric registration. 

Using the swipe tool in the ERDAS Imagine, 1995 and 2005 images were swiped over the 2011 

image and observed for any shift in features like road, river, town etc. 

3.3.2 Projection 

Satellite images that were downloaded from the USGS website were in Geographic Coordinate 

System (GCS) and World Geodetic System 1984 (WGS84) datum. Whereas the ancillary data 

delivered from the government of Bhutan were in Universal Transverse Mercator (UTM) projection 

and Drukref 2003 datum. Drukref 2003 is a National Grid for Bhutan which uses geocentric 

Coordinate Reference System as its base and the Transverse Mercator as its projection. The origin 

of latitude is at 00 and the central meridian is 900E. The false easting is 250,000 m and false northing 

is 0 m with a scale factor of 0.9996 and unit of measurement is in meter. In order to have a common 

system of projection and datum, all the image and ancillary data were transformed and reprojected 

to UTM grid and WGS84 datum using software encoded transformation algorithms. The errors in 

this process were far smaller than the pixels size (30m) being dealt with in this research. . The study 

area falls under the UTM grid zone 45 N. 

3.3.3 Clipping study area 

As the focus of this study was mainly on rice fields and its adjoining land cover and more over the 

rice fields are mostly located in the major river valleys; a buffer of 5 km around the major rivers in 

Paro district was defined to form the bounding limit for my study area. This study area was used to 

subset all the data used in this study. 

3.3.4 Cloud masking 

The summer in the Himalayas are characterized by heavy cloud coverage which is one of the major 

problems with optical remote sensing. It was a big challenge to obtain cloud-free summer images 

in the study area. The spatial distribution of clouds and their thickness were different for different 

date images. The cloud quality assessment (QA) band is a single band image encoded with pixel 

values for different attributes. Table 3. 4 shows the pixel values for different attributes of cloud 

quality assessment band. Landsat Ecosystem Disturbance Adaptive Processing System’s (LEDAPS) 

quality conditions are expressed either as true or false and are stored as binary digit. Different 

attributes of cloud QA band are assigned pixel values which can be used for setting threshold to 

remove certain attributes. 
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Table 3. 4 Surface reflectance values of cloud quality assessment (sr_cloud_qa) band. 

Attribute  Pixel Value 

Dark Dense Vegetation 1, 9 

Cloud 2, 34 

Cloud Shadow 4, 12, 20, 36, 52 

Adjacent to cloud 8, 12, 24, 40, 56 

Snow 16, 20, 24, 48, 52, 56 

Water 32, 34, 36, 40, 48, 52, 56 

  

Adopted from: https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment 

The threshold values of greater than or equal to 2 except 9 were used in the model (Figure 3. 3). 

In fact, it masked out cloud; cloud shadow; adjacent to cloud; snow and water in the image – 

although there was no snow cover in the study area. In order to have same spatial extent of output 

image from the cloud masking model, the combined cloud quality assessment band was used for all 

the three-date images. Obviously, some part of the cloud-free image was lost in some images due 

to the inclusion of cloud areas of the other two images. Similarly, ancillary data like cadastral field 

data, PRISM DEM, and land cover maps were masked using the combined cloud file. 

https://landsat.usgs.gov/landsat-surface-reflectance-quality-assessment
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Figure 3. 3 Cloud masking model 

 

In the Figure 3. 3, 1 is combined cloud QA band; 2 is a function to recode cloud QA pixels into 1 and 

0 based on the threshold value of 2; 3 is recoded cloud mask rasters; 4 are input raster files to be 

masked; 5 is function that multiplies all individual input rasters with the mask raster (4X3). The 

encapsulated postscript for this spatial model is given in Appendix B. 

3.3.5 Topographic normalization 

In addition to the natural variability of reflectance responses from the same land cover class, the 

topographic effect that is introduced by the different slope and aspect in undulating terrain further 

contributes to the spectral variance even within a uniform land cover type. Such artifacts in the 

image can confound the image classification and analysis (Riaño et al. 2003). Hence, it is considered 

as possible pre-processing step in the multispectral and multi-temporal digital image analysis. The 

topographic normalization or topographic correction is a technique to compensate for the difference 

in solar illumination caused by irregular terrains. There are varieties of methods proposed in the 

literature, however, there has not been a standard and universally accepted method so far. The 

topographic normalization in ERDAS initially assumes that the surface is non-Lambertian. The model 

is based on the semi-empirical method used by Minnaert (1941) to measure the roughness of the 

moon’s surface. It uses a set of constants called Minnaert coefficients which depend on the 
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wavelength of electromagnetic radiation and land cover type. It needs a co-registered digital 

elevation model (DEM), elevation and azimuth of the sun on the day of image acquisition. This 

approach according to Civco (1989) was useful in minimizing the spectral variance by almost 69 

percent. However, the Minnaert coefficients for individual band can be determined by performing 

ordinary linear regression on the linearized Minnaert equation (Equation 1) which is beyond the 

scope of this study. 

𝒍𝒏(𝝆
𝑻
) = 𝒍𝒏(𝝆

𝑯
) + 𝑲𝒌 𝒍𝒏 (

𝑰𝑳

𝒄𝒐𝒔𝜽𝒛
)  Equation 1 

Where 𝜌𝑇 is the reflectance of inclined surface, 𝜌𝐻 is the reflectance of horizontal surface, 𝐾𝑘 is the 

Minnaeart constant for band 𝑘, 𝜃𝑧 is the solar zenith angle and 𝐼𝐿 is the illumination condition given 

by: 

𝑰𝑳 = 𝒄𝒐𝒔𝜸𝒊 = 𝒄𝒐𝒔𝜽𝒑 𝒄𝒐𝒔 𝜽𝒛 + 𝒔𝒊𝒏𝜽𝑷 𝒔𝒊𝒏 𝜽𝒛 𝒄𝒐𝒔(𝝓𝒂 − 𝝓𝒐)  Equation 2 

Where 𝛾𝑖 is the incident angle, 𝜃𝑝 is the slope angle, 𝜙𝑎 is the solar azimuth angle and 𝜙𝑜 is the 

aspect angle. 

However, a considerable number of attempts were made to find from literature the Minnaert 

constants for Landsat-5 TM that were calculated for similar conditions of terrain and vegetation. 

Minnaert constants shown in Table 3. 5 which were obtained by Colby (1991) for Rocky Mountain 

National Park in Colorado were used in this study. The Panchromatic Remote-sensing Instrument 

for Stereo Mapping (PRISM) Digital Elevation Model (DEM) of 8.9 m horizontal resolution was used 

for determining slope and aspect angles. The solar angle and sun azimuth were obtained from the 

meta-data of the image. 

Table 3. 5 Minnaert constant 

Landsat-5 TM bands Minnaert constant 

Band 1 0.09 

Band 2 0.19 

Band 3 0.31 

Band 4 0.43 

Band 5 0.96 

Band 7 0.14 

 

3.3.6 Generation of the river network  

Standard tools in the ArcGIS: fill, flow direction, flow accumulation and stream order were used to 
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delineate major stream network from the PRISM DEM. 

3.3.7 Extraction of relative digital elevation model (DEM) 

All pixels of the raster streams that were generated in section 3.3.6 were converted into points and 

assigned elevation values from the PRISM DEM. Simultaneously, masking of DEM by the study area 

and conversion of DEM raster to points were done. The Near tool identified the nearest river point 

from each DEM points. A new field which can store the relative heights above the nearest point on 

the river was added to the DEM point file. The DEM points data and river point data were combined 

into one table through join tool. The difference of heights between the DEM points and the nearest 

stream point were stored into the new field as relative heights of those points from the major rivers. 

Finally, all the points of DEM were converted back to raster based on the relative height data. This 

modified DEM was named as relative DEM. The entire process was executed in a model built using 

the toolbox in the ArcMap (Figure 3. 4).  

 

Figure 3. 4 Model in the ArcTool box to extract relative DEM. The Python script for this model is 
given in the Appendix B. 

 

3.3.8 Principal Component Analysis (PCA) 

The inbuilt PCA tool in ERDAS Imagine was utilised to derive principal components. PC1 and PC2 

were extracted from the Landsat-5 TM image of 2011 which was further used for image classification.  

Principal Component Analysis (PCA) is a mathematical transformation that is used to reduce the 

dimensionality of interrelated variables of a dataset into a smaller number of uncorrelated and 

independent variables called principal components (Jolliffe 2011). The first principal component 
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(PC1) accounts for the maximum variability in the data and each succeeding principal component 

contains as much of the remaining variability as possible. In remote sensing context, individual image 

bands are the variables. The PCA transformation effectively looks for any redundant information in 

the different bands and transforms into a set of uncorrelated principal axes based on equation 3. 

Another application of PCA is by considering the bands with least variance enables to detect subtle 

details which normally consists of regular noise in the image.  

𝑷𝒆 = ∑ 𝒅𝒌𝑬𝒌𝒆
𝒏
𝒌=𝒊    Equation 3 

Where 𝑃𝑒 is the output PC value of PC axis e, 𝑑𝑘 is an input digital number of band k, 𝐸𝑘𝑒 is the 

eigen vector matrix with k rows and e columns. 

Mathematically, it starts by forcing all the principal components to have zero variance/co-variance 

in the eigenmatrix with non-zero eigenvalues such that 𝑣1 > 𝑣2 > 𝑣3 > … >  𝑣𝑛 of PCA to get the 

best transformation function. 

𝑽 = 𝑬𝒌𝒆. 𝑪𝒐𝒗𝑬𝒌𝒆
𝑻 = 𝟎   Equation 4 

Where 𝐶𝑜𝑣𝐸𝑘𝑒
𝑇 is the covariance of transposed eigen matrix𝐸𝑘𝑒 and 𝑉 is the diagonal matrix of 

eigen values represented by: 

𝑽 = 

[
 
 
 
 
 
 
𝒗𝟏 𝟎 𝟎 ⋯ 𝟎

𝟎 𝒗𝟐 𝟎 ⋯ 𝟎

𝟎 𝟎 𝒗𝟑 … 𝟎

⋮ ⋮ ⋮ ⋱ ⋮

𝟎 𝟎 𝟎 ⋯ 𝒗𝒏]
 
 
 
 
 
 

  Equation 5 

 

3.3.9 Normalized Difference Vegetation Index (NDVI) 

The unique characteristics of leaves to absorb red light by chlorophyll and reflect near-infrared (NIR) 

radiation by mesophyll cells have helped scientists to formulate several vegetation indices to study 

the abundance and vigor of vegetation. One such index is the Normalized Difference Vegetation 

Index (NDVI). It is a non-linear ratio of the difference between near-infrared and visible red to the 

sum of visible red and near-infrared as represented by equation 6. According to Jensen (2009), it is 

known to reduce many effects of multiplicative noises, for instance like varying solar illumination 

effects, shadow effects, and topographic variation and atmospheric attenuation. It enables to 

differentiate subtle differences in classes which cannot be seen in original image. NDVI values range 

from -1 to +1. Pixels with higher values of NDVI appear brighter which is an indication of higher 

biomass and healthier vegetation.  
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𝑵𝑫𝑽𝑰 =  
𝝆𝑵𝑰𝑹− 𝝆𝑹𝒆𝒅

𝝆𝑵𝑰𝑹+𝝆𝑹𝒆𝒅
  Equation 6 

Where, 𝜌𝑁𝐼𝑅 corresponds to band 4 and  𝜌𝑅𝑒𝑑  corresponds to band 3 in Landsat-5 TM image.  

There is an inbuilt function in the ERDAS Imagine software to calculate NDVI, but a model was 

developed to multiply the NDVI by a factor of 1000 to make its data range from -1000 to +1000, so 

that it fits with the data range of other layers like PC-1 and DEM. 

3.3.10 Layer Stack 

The layer stack tool in the ERDAS Imagine was used to combine different layers of data to generate 

the following composite datasets: 

i. PC1-NDVI-DEM 

ii. PC1-PC2-NDVI-DEM 

iii. PC1-PC2-NDVI-Relative DEM 

iv. PC1-PC2-NDVI-DEM-Relative DEM 

While doing this, proper care was observed to choose the right number of bits and data type for the 

output data so that it accommodated different data types and range of input layers. For instance, 

PC1, in this case, was unsigned integer, PC2 was signed integer, NDVI was in signed integer, DEM 

was in unsigned and relative DEM was in an unsigned integer.  

3.4 Digital image processing 

Since there was no ground truth data for 1995 and 2005, a detailed exploration of different datasets 

and methods was carried out for the 2011 Landsat data. Supervised and unsupervised classification 

for four  different datasets prepared in section 3.3.10 and the original Landsat-5 TM image were 

performed. Accuracies for each dataset of both supervised and unsupervised classification were 

assessed using the cadastral field survey data of 2011. Classification accuracies from both supervised 

and unsupervised classifications of five datasets were compared. The maximum likelihood classifier 

(MLC) of supervised classification on the original 2011 TM image resulted the highest accuracy. The 

MLC classification algorithm was used to map the LULC from the original 1995 and 2005 TM images 

assuming they give similar classification accuracy. From the thematic LULC map of 1995, 2005 and 

2011, changes in rice land use were mapped and analysed statistically. From the change detection 

data and other socio-economic and metereological data, further analyses were done to find out some 

major drivers that have brought  change in the area of rice cultivation. The flow chart in the Figure 

3. 5 shows the major processes undertaken in this study.  

The main purpose of image classification is to derive different classes of land cover or themes by 
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automatically grouping all pixels of an image based certain spatial, spectral, and temporal patterns. 

The study used both the forms of pixel-based image classification which are described in the 

following sections. 

 

 

Figure 3. 5 Flow diagram of main processes 

3.4.1 Unsupervised classification 

Unsupervised classification is one form of pixel-based image classification which effectively partitions 

multispectral feature space into natural clusters of pixels purely based on their spectral 

characteristics (Lillesand, Kiefer & Chipman 2004). This approach aggregates the pixels into 

spectrally distinct classes and the user has to identify the clusters for real world information with the 

help of priori knowledge or some other forms of references (large scale map or imagery). It needs 

minimal initial input from the analysts like number of classes, maximum iterations and convergence 

threshold. Among several algorithms for unsupervised classification, one of the most popular forms 

of clustering algorithm is the Iterative Self-Organizing Data Analysis Technique (ISODATA) that was 

used for the classification of the image in this study. Based on the user’s specification of number of 

classes, the algorithm arbitrarily allocates seed clusters in the data space. Then each pixel is assigned 

to the nearest cluster.  In the process, clusters are either merged, split or deleted depending on the 

statistics of clusters. If the clusters are closer than the specified minimum distance, they are merged 
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into single class. On the other hand, if the standard deviation of a cluster is larger than the user 

specified value, then that cluster is split into two.  Clusters with the number of pixels fewer than the 

predefined minimum number are deleted. In the subsequent iterations, the mean vectors are 

recomputed and based on the new mean vectors, pixels are reclassified. This process iterates till 

there is no significant change in the cluster statistics or reaches maximum number of iterations. In 

this study, the author specified the maximum clusters of 200, maximum iteration of 30 and 0.95 

convergence threshold. Other options of clustering like minimum size was set to 0.01%, maximum 

standard deviation to 5 and minimum distance as 4. Finally, with the help of high resolution Google 

Earth image of 2012, 200 classes were assigned to one of the four LULC classes; viz. 1. Forest, 2) 

Rice field, 3) Other crops and 4) Built up. The same approach was used to classify five different 

datasets of derived from Landsat-5 TM 2011 image. 

3.4.2 Supervised classification 

Supervised classification is another type of pixel-based image classification where it makes use of 

known classes of pixels to classify unknown pixels in the image and those pixels of known identity 

are called as training samples (Campbell & Wynne 2011).  The supervised classification begins with 

the training stage where the analyst gathers a set of statistics of spectral responses called signatures 

from the samples of known and homogeneous areas in the image to train the classification algorithm. 

To get a better classification result, the training sample must be complete and representative.  

In ERDAS Imagine, training polygons were delineated using a seed pixel. The inquire cursor was 

used to choose a single pixel within the prospective training area. Then with the help of Region 

Growing Properties, spectral Euclidian distance was adjusted such that adequate number of 

spectrally similar pixels and contiguous to the seed pixel were selected by a polygon. Spectral 

signature from these selected pixels was added in the signature editor as a training sample for that 

known class. For a parametric classifier to be used, a least number of pixels in a training sample 

must be theoretically, 𝑛 + 1 where 𝑛 is the number of spectral bands in the image for accurate 

computation of variance and covariance (Lillesand, Kiefer & Chipman 2004). In the case of level 2 

processed Landsat-5 TM image, there are 6 spectral bands and the minimum training sample must 

have at least 7 pixels. Practically, it can range from 10𝑛 to 100𝑛 pixels. This process was repeated 

for all other classes of land use and ensured that the samples represented the entire pixels to be 

classified.  The next step is the training set refinement. By viewing the image alarm of selected 

signatures gives a preview of how well the training samples can classify the other pixels by 

parallelepiped classifier. Accordingly, additional training samples can be collected, or redundant 

samples can be removed. Another crucial step in refining the signature is to evaluate the separability 

of spectral signatures of candidate training classes. There are four different measures of distance in 

ERDAS to check the spectral similarity between the training classes. They are i) Spectral Euclidian 
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Distance (SED), ii) Divergence distance, iii) Transformed Divergence distance and iv) Jefferies-

Matusita (JM) distance. In this study, the measure of JM distance was used to test the separability 

of different signatures. Mathematically, the JM distance is calculated as in Equation 7. 

𝑱𝑴 = √𝟐(𝟏 − 𝒆∝)  Equation 7 

However, the ERDAS Imagine software uses  

 

𝑱𝑴 = 𝟏𝟎𝟎𝟎𝒙√𝟐(𝟏 − 𝒆∝)  Equation 8 

Where 

𝜶 =
𝟏

𝟖
(𝝁𝒊 − 𝝁𝒋)

𝑻
(

𝑪𝒊+𝑪𝒋

𝟐
)

−𝟏

(𝝁𝒊 − 𝝁𝒋) +
𝟏

𝟐
 𝒍𝒏(

|𝑪𝒊+𝑪𝒋|∕𝟐

√|𝑪𝟏|𝒙|𝑪𝒋|
) Equation 9 

Where 𝜇𝑖 and 𝜇𝑗 are the mean vectors of samples 𝑖 and 𝑗 respectively. 𝐶𝑖 and 𝐶𝑗 are covariances of 

sample 𝑖 and 𝑗 respectively.  

The JM distance in ERDAS Imagine varies between 0 to 1414; where 0 indicates the two classes are 

exactly same and 1414 means two classes are completely separate (ERDAS Field Guide 2003). The 

signature evaluation ensured that necessary deletion, merging or addition of signatures were done 

before carrying out classification. The Maximum Likelihood Classifier (MLC) which is based on the 

parametric decision rule calculates the variance and covariance of the pixels in the training classes 

and assumes that every pixel has equal probability of being in a certain class. This assumption 

mandates the distribution of training samples to be Gaussian (Jensen 2014). Using a probability 

density function, probabilities of an unknown pixel being in different training classes are calculated 

and the pixel is assigned to the class with highest probability value or it can be classified as unknown 

when the probability is less than the threshold value specified by the analyst. In ERDAS Imagine, 

while using the MLC, there is an option to save the distance file which is a single band continuous 

raster file representing the Chi-squared distance between the mean of the training class and the 

candidate pixel (ERDAS Field Guide 2003). The brighter pixels are spectrally farther from the training 

class and they are possibly misclassified, and darker pixels mean more accurately classified. 

Using the Chi-squared distance file, the threshold in the distance histogram can be set either 

manually dragging or entering the statistical parameters, so that it automatically sets in the 

histogram (Figure 3. 6). This process basically screens out the incorrectly classified pixels and assigns 

the class to unclassified.  
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Figure 3. 6 Histogram of distance file in MLC for rice class; threshold set at 39.972 

3.4.3 Post-classification smoothing processes 

Recode 

The post-classification processes of unsupervised classification become more labour intensive. All 

200 spectral classes discriminated by the ISODATA were assigned meaningful land use classes by 

using the author’s priori knowledge of the study area and the high-resolution Google Earth image of 

2012. Due to the significantly large number of classes, even the slightest spectral variations in the 

objects was accounted by assigning separate class. With the help of the recode function in the 

ERDAS Imagine, all the 200 classes from the unsupervised classification were finally recoded to four 

land cover classes.  

Neighbourhood function 

Due to the spectral variability, it is natural and inevitable that any pixel-based spectral classifier is 

likely to produce an output with mixed classes. This is termed as salt-and-pepper effect (Lillesand, 

Kiefer & Chipman 2004). The classification result does not make much sense if this effect is not 

removed. One of the means to smoothen the thematic output of classification is majority filter. The 

majority filter operates based on the logical operation if the centre pixel in the moving window is 

not the majority class, the centre pixel is changed to the neighbouring majority class and it is major, 

the identity remains unchanged. In this study, a 3x3 majority filter was consistently applied in all 

the output image of classification.  

Clump and Sieve 
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Other forms of smoothing functions like clump, sieve and eliminate tools were used. Clump function 

identifies the contiguous clumps of pixels and groups into single thematic class. The clump tool was 

applied to the output from the majority filter operation. The sieve removes the clumps that are 

smaller than the minimum size and they are recoded as unclassified. After sieve operation, another 

round of recode was carried out.  Eliminate function works similar to sieve except it fills up the 

eliminated pixel by taking mean of neighbour pixels. 

3.4.4 Accuracy assessment 

The outcome of any classification method can produce visually attractive land cover maps but that 

is not complete unless there are some mechanisms to quantify the accuracy of the image 

classification (Lillesand, Kiefer & Chipman 2004). According to Campbell and Wynne (2011), accuracy 

is defined as the measure of agreement between the reference data which is accepted/assumed as 

correct and the classified image. Obviously, it is important to have as accurate reference data as 

possible to minimize the error in the measure of accuracy. The other important aspect of accuracy 

assessment is that both the reference data and image must ideally be of same date. However, it is 

not always possible to get both the data on the same date, so they must be as close as possible in 

terms of date of acquisition. The non-site-specific accuracy assessment and the site-specific accuracy 

assessment are two forms of classification accuracy assessment. In the non-site-specific assessment, 

it does not account for the agreement between the specific sites within the two maps, but it only 

considers the overall agreement. In other words, it ignores the compensating errors occurring in 

various locations within the overall maps (Congalton & Green 2008). The second type of assessment 

is the detailed comparison between the specific locations in both reference data and the classified 

map. This is known as the site-specific accuracy assessment and it is a more reliable form of accuracy 

assessment.  

In this study, site-specific accuracy assessment was performed by comparing each pixel of rice in 

the entire map. For that, a co-registered reference data, which in this case was a rasterized field 

cadastral survey data of 2011 of same cell size (30 m) was used.. A spatial model was developed in 

ERDAS Imagine (Figure 3. 7) to subtract classified rice raster file from the field raster file of rice.  
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Figure 3. 7 Spatial model to subtract two thematic images used for accuracy assessment 

 

The logic that was used in the function C says that if both pixel values in A and B are 0, then the 

output pixel value in D is assigned 3 which was later recoded as no data; if A-B is -1, then the output 

pixel in D is assigned the value 2 which is the error of commission; if A-B is 0, then these pixels are 

accurately classified and if A-B is +1, it is an error of omission. 

The model yielded a thematic map showing the spatial distribution of commission error, omission 

error and accurately classified pixels of rice. The statistical parameters like number of pixels, 

percentage and area were generated by running the Summary function in the ERDAS Imagine. 

3.4.5 Land use land cover mapping 

The best method and dataset that produced highest accuracy in 2011 image was applied to the 

images of other two dates of 1995 and 2005. The high-resolution Google Earth image and the 

author’s knowledge of the area were used to train the signatures. In some occasions, the same AOI 

that was used in 2011 image was used to extract the sample signature. Due to the absence of field 

data, accuracy check could not be done for 1995 and 2005 image classification. 
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3.5 Change detection 

Among the several change detection algorithms available, due to its intuitiveness and simplicity, the 

post-classification change comparison method (also called delta classification) is a most widely used 

quantitative change detection method (Colditz et al. 2012; Jensen 2005). Remotely sensed images 

of different date are rectified and classified separately. Then the two thematic maps are compared 

pixel-by-pixel to extract the change map. This method gives the information on the ‘from-to’ change 

in land classes. However, its accuracy is solely dependent on the accuracies of individual classification 

(Coppin et al. 2004; FAO 2016).   

The same spatial model developed for the accuracy assessment (Figure 3. 7) was used to obtain the 

difference of two thematic images. The output image consists of the spatial information on increase, 

decrease and no change in rice. For more statistical information on the changes, author used Matrix 

Union and Summary function under the Raster GIS in ERDAS Imagine. Changes in rice field from 

1995 to 2005, 2005 to 2011 and 1995 to 2011 were determined using the above approaches. 

3.6 Geospatial analyses for drivers of rice-land 

One of the aims of the study was to discover some major drivers for change in rice cultivation in the 

study area. The causes were investigated by analysing socio-economic, meteorological and 

demographic data and reviewing relevant government policies. Observations of rainfall and 

temperature at a lone meteorological station which is in the study area were analysed by using 

Microsoft Excel for any anomalies that might have contributed to the change in land use. In the 

similar manner, population data and socio-economic data were analysed to establish any correlation 

with the change in rice field in the Paro valley. Some relevant government policies were also analysed 

to find if they have had any impact on the change in the rice field. 
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CHAPTER FOUR 

4 RESULTS 

This chapter presents the results obtained from different steps of image processing performed in 

the preceding chapter. It is structured into six main sections: 1. Image pre-processing; 2. Digital 

image processing; 3. Accuracy assessment; 4. Change detection; 5. Accuracy of post-classification 

change detection; and 6. Drivers of change in rice cultivation. 

4.1 Image pre-processing 

4.1.1 Geometric verification 

The radiometric and geometric corrections for the precision and terrain corrected (L1TP) data were 

carried out by the USGS and their level of accuracy depends on the number of Ground Control Point 

(GCP) available and quality of image. The root mean squared error (RMSE) of geometric correction 

reported by the USGS was compiled from the image metadata file (Table 4. 1). 

Table 4. 1 The Root Mean Square Error (RMSE in pixels) of geo-rectification of three date images 
done by USGS 

TM 

Image 

RMSE (pixels) 

QUAD_UL QUAD_UR QUAD_LL QUAD_LR Overall 

1995 0.301 0.247 0.234 0.230 0.301 

2005 0.384 0.381 0.354 0.692 0.388 

2011 0.407 0.362 0.495 0.340 0.393 

 

QUAL_UL: Upper left corner of the image scene; QUAD_UR: Upper right corner of the image scene; QUAL_LL: 

Lower left corner of the image scene; QUAD_LR: Lower right corner of the image scene. 

Further verification was applied using the Google Earth coordinates for 10 well defined features in 

the study area. The overall error in the distance was observed to be ±5.32 m which is about one-

sixth of a Landsat-5 TM pixel. The result for this verification is shown in the Table 4. 2. 
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Table 4. 2 Results of geo-registration of Landsat-5 TM 2011 image with Google Earth 2012 

Ground 
Point 

Google Earth Landsat 5 (2011) 
Error 
(m) 

Easting (m) Northing (m) Easting (m) Northing (m) 

GP1 752087.65 3023841.57 752092.76 3023844.28 5.78 

GP2 762906.63 3038478.94 762910.49 3038473.11 6.99 

GP3 760804.23 3045391.03 760803.73 3045395.44 4.44 

GP4 739163.88 3034414.55 739166.98 3034420.92 7.08 

GP5 739241.47 3036361.89 739238.92 3036367.69 6.34 

GP6 734667.15 3051932.86 734668.21 3051934.07 1.61 

GP7 734991.65 3081715.9 734990.66 3081721.57 5.76 

GP8 745485.51 3025588.91 745490.85 3025591.17 5.80 

GP9 737752.7 3015398.51 737749.95 3015401.36 3.96 

GP10 771020.65 3040445.08 771017.63 3040449.6 5.44 

    RMSE ±5.32 

 

Visual checking by swiping 1995, 2005 images, PRISM DEM and field cadastral data over 2011 image 

also found that they were all well co-registered.  

4.1.2 Cloud masking 

Cloud quality assessment (QA) band contains the information of different attributes of cloud. Figure 

4. 1 show different patterns and location of clouds and their shadows in three-date Landsat-5 TM 

images. The varying tone of grey colour indicates different attributes of the cloud quality assessment 

band. The model masked cloud shadows, adjacent to cloud which appears too dark to identify any 

object beneath it, snow and water vapour. 
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                    (a)                                       (b)                                        (c)  

Figure 4. 1 Cloud quality bands (subsets) for (a) 1995, (b) 2005 and (c) 2011 Landsat TM 
images 

For the change detection study, multi-temporal images need to have same spatial extents. To obtain 

same cloud free spatial area of interest, the combined cloud quality assessment band masked the 

images of 1995, 2005 and 2011. Same spatial extents for other data like DEM and field data were 

also achieved using the same cloud QA band. As it can be seen from Figure 4.2 (c), about 33% of 

the study area was masked out and these areas were mostly under forest cover. But this has not 

affected much for the rice field. It was found that about 7% of rice field was removed from the 

study area due to cloud masking. 

                         

                   (a)                                       (b)                                         (c)  

Figure 4. 2 Image of (a) combined cloud QA band, (b) 2011 TM image with cloud cover 
(BGR=543) and (c) output of cloud masking (BGR=543) 
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4.1.3 Topographic normalization 

Topographic normalization minimized uneven sun illumination but there were parallel lines generated 

in the topographically normalised output image. Both visually and statistically, the brightness values 

of south facing slopes were reduced in topographically-normalised images, while north facing slopes 

became brighter (Figure 4.3). 

  

(a)                                                                (b)                                         

Figure 4.3 (a) 2011 TM image before topographic normalization and (b) 2011 TM image after 
topographic normalization; band combination 5,4,3 RGB. 

 

The pixel values of two locations (Figure 4.3) with different aspects but the same land cover type 

were compared before and after performing topographic normalization. Statistics for these two 

locations are shown in Table 4. 3 and Figure 4. 4. Reflectance values of band 2 to 6 increased after 

topographic normalization for a pixel sample located on the north facing slope. Reflectance values 

in all six bands for a sample pixel from the south facing slope decreased, thereby making darker. 

Table 4. 3 Comparison of pixel values for two locations for original and topographic 
normalization image 

Bands 

Surface reflectance value 
 at Profile 1.1  

(North Facing Slope) 

Surface reflectance value 
 at Profile 1.2  

(South Facing Slope) 

Original Topo Normalized Original Topo Normalized 

1 349 344 304 294 

2 595 602 600 585 

3 497 506 352 343 

4 2793 2835 3108 3032 

5 1814 1898 1765 1735 

6 907 947 803 789 
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(a)                                                                 (b) 

Figure 4. 4 Spectral profiles of two locations for (a) original 2011 TM image (b) Topo normalized 
image. 

The black line is a spectral profile graph of a south facing pixel which shows higher reflectance for 

the original image than the topographical normalized image. The red line is a spectral profile graph 

of a north facing pixel which indicates the increased in the reflectance values in the topographic 

normalization. This shows that the topographic normalization has made the illumination even.   

4.1.4 Generation of river network 

Application of hydrology tools in ArcGIS produced a network of major rivers in the study area and 

using the rivers as reference, a 5-km buffer was created which was used as the bounding limit of 

the study area. 

4.1.5 Extraction of relative digital elevation model 

The python script of the model described in section 3.3.7 is attached in the Appendix C. This model 

generated a modified DEM whose values were relative heights from the nearest river points. The 

data range of relative DEM is from -44 m to 2011 m. The relative DEM is shown in Figure 4. 5. After 

the cloud masking was applied to the relative DEM, its data range changed from -44 m to 1705 m. 
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Figure 4. 5 Relative DEM with values of relative height from the nearest river points 

 

4.1.6 Principal Component Analysis 

The analysis of eigenvalues from principal component analysis (PCA) showed that the first and the 

second PCs combined contained 95 percent of the image information by variance. The remaining 

four PCs had very small portion of information, which could be attributed to noise. Table 4. 4 and 

Figure 4. 6 show the eigenvalues for the different PCs which are related to the amount of information 

contained in each PC. Based on this, PC1 and PC2 were extracted as separate bands to be used with 

other derivatives for classification. 
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Table 4. 4 Amount of information in different PCs expressed in terms of eigenvalues and 
percentages. 

PC Eigen values Percentage 
Cumulative % 

PC1 607526 73 73 

PC2 184236 22 95 

PC3 31535 4 99 

PC4 3325 0 99 

PC5 1711 0 99 

PC6 952 0 99 

   

 

Figure 4. 6 Percentage of information content in different PCs 

 

4.1.7 Normalized Difference Vegetation Index 

The actual values of NDVI which lie between -1 and +1 were rescaled by a factor of 1000 to create 

a compatible data range with PC1, PC2, DEM and relative DEM values. Ranges of values for each 

image are given in Table 4. 5. The lowest value of all data layers was -2982 for PC2 and the highest 

was 10717 for the PC1. 
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4.1.8 Layer stack 

Different derivatives of data had different ranges of values as shown in the Table 4. 5. 

Table 4. 5 Ranges of values in different datasets 

Datasets Type Minimum Maximum 

PC1 Integer 0 10717 

PC2 Float -1982 3731 

NDVI x1000 Integer 0.05 887 

DEM Integer 1905 4130 

Relative DEM Integer -44 1705 

 

In order to accommodate all the values from different layers into single image, the data type of 

output was suitably selected. For example, in the composite image of PC1-NDVI-DEM, both the 

lowest and the highest data values were from PC1 (0 and 10717 respectively). All the values for 

NDVI and DEM fall within this range. Since all values were positive and the 16 bits data can have 

maximum of 65535 (216-1), so the output data type for this combination was chosen as unsigned 16 

bits (U16) from the available options in ERDAS Imagine. For rest of the composite images, the list 

is given in Table 4. 6. 

Table 4. 6 Different data type selected while combining different layers of datasets 

Composite datasets Bit depth 
Range of values that a cell 

can contain 

PC1-NDVI-DEM Unsigned 16 bit 0 to 65535 

PC1-PC2-NDVI-DEM Signed 16 bits -32768 to 32767 

PC1-PC2_NDVI-Rel DEM Signed 16 bits -32768 to 32767 

PC1-PC2-NDVI-DEM-Rel DEM Signed 16 bits -32768 to 32767 
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4.2 Digital image processing 

4.2.1 Supervised classification 

After evaluating the separability of training signatures of different training classes of the same land 

class, signatures whose Jefferies-Matusita distance was less than 1370 were merged to reduce the 

number of training classes. The 96 training samples collected throughout the image were reduced 

to 43 signatures after separability testing. The MLC classified all the pixels of the image based on 

the posterior probability. It even classified those pixels which did not belong to any particular land 

class. So, the threshold tool in the ERDAS Imagine reassigned those pixels whose Chi-squared 

distance exceeded a threshold value to unclassified class. 

4.2.2 Post-classification processes 

All the outputs from recode function of unsupervised classification and threshold function of 

supervised classification were processed with post-classification smoothing operations like majority 

filtering, clump, sieve and eliminate. This series of processes rendered neat output images as shown 

in the Figure 4. 7 (d) which can be better analysed and interpreted. 

    

(a)                                 (b)                                (c)                             (d) 

Figure 4. 7 Classification output images after (a) MLC, (b) Threshold, (c) Majority filter and (d) 
Clump and Eliminate 

4.2.3 Accuracy assessment 

Accuracy of the classification outputs for rice and other crop was assessed by comparing the 

classified pixels of rice and other crops in of 2011 image with the 2011 cadastral field survey data 

which also had land use information. Due to the absence of ground truth data for forest and built 

up areas in 2011, their accuracies could not be assessed. For the purposes of calculation, it was 

assumed that the accuracy of the other two classification would be similar to the accuracy of 2011 

image (81.4%) because the images were from the same sensor (Landsat-5 TM), their acquisition 

months were close to each other and the same methodology was applied to all the image 

classification.  

4.2.4 Accuracy assessment for unsupervised classification 

The comprehensive accuracy assessments of rice and other crops for five different datasets are 
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tabulated in Table 4. 7. Due to the lack of reference data for forest and built up land cover classes, 

their classification accuracy could not be evaluated and the presentation of accuracy assessment in 

the form of error matrix was not feasible. Of 24743 pixels of rice in the reference data, the 

unsupervised classification of the original Landsat TM image of 2011 classified 19909 pixels correctly, 

which accounts for 80.5% accuracy. The accuracies for other datasets remained very low ranging 

from 55.1% with 44.9% of omission error for PC1-PC2-NDVI-DEM-RelDEM dataset to 60.5% for 

PC1-PC2-NDVI-DEM. 

Table 4. 7 Comparison of classification accuracy of rice (unsupervised) among different datasets 

Datasets 

PC1-NDVI-
DEM 

PC1-PC2-
NDVI-DEM 

PC1-PC2-
NDVI-RelDEM 

PC1-PC2-
NDVI-DEM-

RelDEM 

Original 
Image 

No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 

Commission 
Error 1862 7.5 2063 8.3 2152 8.7 3274 13.2 1420 5.7 

Accurate 
classification 14526 58.7 14965 60.5 13864 56.0 13627 55.1 19909 80.5 

Omission 
Error 10145 41.9 9897 39.5 10887 44.0 11134 44.9 4949 19.5 

 

Similarly, the accuracies of unsupervised classification of other crops were very low in all the 

datasets. The original TM image yielded relatively better accuracy of 64.4 percentage. That is 41862 

pixels out of 65006 other crop pixels were correctly classified. The details of errors are compared in 

the Table 4. 8.  

Table 4. 8 Comparison of classification accuracy of other crop (unsupervised) among different 
datasets 

Datasets 

PC1-NDVI-
DEM 

PC1-PC2-
NDVI-DEM 

PC1-PC2-
NDVI-

RelDEM 

PC1-PC2-
NDVI-DEM-

RelDEM 

Original 
Image 

No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 

Commission 
Error 11051 17.2 9751 14.8 8451 13.3 10401 16.4 4461 6.9 

Accurate 
classification 38354 59.1 37703 57.6 35753 55.3 40304 61.9 41862 64.4 

Omission Error 26652 40.9 27303 42.4 29253 41.8 24702 38.2 23402 35.6 
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4.2.5 Accuracy assessment for supervised classification 

The supervised classification on different composite data yielded no better accuracy than the 

unsupervised classification. However, the accuracy of MLC from the original image was slightly better 

than the unsupervised classification.  81.4 percent of pixels of rice were accurately classified with 

minimal error of commission (5.4%) and 18.6% omission error. Likewise, the accuracy for other 

crops also improved marginally in the supervised classification of original image. Table 4. 9 and 

Table 4. 10 show the details of accuracy assessment for the supervised classification for rice and 

other crops. Hence, dataset and method that produced highest accuracy were adopted for other two 

dates. Consequently, the MLC of supervised classification on the original Landsat-5 TM image was 

performed for 1995 and 2005 images. Since, there was no ground reference data corresponding to 

these dates, there was no basis to test the accuracies of classification of these two images. 

Table 4. 9 Comparison of classification accuracy of rice (supervised) among different datasets 

Datasets 

PC1-NDVI-DEM 
PC1-PC2-NDVI-

DEM 
PC1-PC2-NDVI-

RelDEM 
PC1-PC2-NDVI-
DEM-RelDEM 

Original Image 

No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 

Commission 
Error 2145 8.7 1862 7.5 3208 13.0 4974 20.1 1346 5.4 

Accurate 
classification 14769 60.0 14436 58.3 12864 52.0 13114 52.8 20138 81.4 

Omission 
Error 9897 40.0 10392 41.7 11877 48.1 11629 47.2 4604 18.6 

 

Table 4. 10 Comparison of classification accuracy of other crop (supervised) among different 
datasets 

Datasets 

PC1-NDVI-
DEM 

PC1-PC2-
NDVI-DEM 

PC1-PC2-
NDVI-RelDEM 

PC1-PC2-
NDVI-DEM-

RelDEM 

Original 
Image 

No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 
No. of 
pixels 

% 

Commission 
Error 13001 20.4 11701 18.3 9101 13.7 9751 15.5 

 
 

4203 6.5 

Accurate 
classification 39004 60.8 39654 61.5 37053 57.1 37839 58.1 

 
 

42675 66.6 

Omission 
Error 26002 39.2 25352 38.5 27953 42.9 27167 41.9 

 
 

22331 33.4 
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A raster image was generated from the accuracy assessment model. Accurately classified pixels are 

shown in yellow for rice and orange for other crops. The error of commission, or the pixels which 

were not rice in the reference data but were classified as rice in the image are in red. The omission 

error or the pixels which were excluded from the class in the classification image are in purple. This 

error map gives the visual clue on the spatial distribution of classification errors. As it can be seen 

from the error maps shown in Figure 4. 8 and Figure 4. 9, most of the errors occur at the edges of 

cultivated zone in the valley floor. 
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Figure 4. 8 Error map of rice classification on 2011 TM image using supervised classification. Most 
of the errors were seen to occur along the edges of LU as marked by A and rarely in larger clumps 
as labelled by B. 

 

A 

B 
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Figure 4. 9 Error map of other crops classification on 2011 TM image using supervised 
classification 

4.2.6 Land use land cover mapping 

The supervised classification with MLC yielded three LULC maps (Figure 4. 10, Figure 4. 11 & Figure 

4. 12). For the purpose of clarity, final maps have only four major land classes (Forest, Rice, Other 

crop and Built up). 
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Figure 4. 10 Land use land cover map of Paro Valley, 1995 
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Figure 4. 11 Land use land cover map of Paro Valley, 2005 
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 Figure 4. 12 Land use land cover map Paro Valley, 2011. 
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4.3 Change detection 

The Figure 4. 13 shows the net change in the areas of rice cultivation between the different years. 

There was an overall decrease of 102 hectares in rice from 1995 to 2005 but the area then showed 

a considerable increase of 584 hectares from 2005 to 2011.  

 

Figure 4. 13 Total area of rice in study area for 1995, 2005 and 2011 

 

4.3.1 Change from 1995 to 2005  

By over laying two thematic maps, a change matrix was generated (Table 4. 11). It can be seen 

that the diagonal elements: 17186, 1069, 1792 and 11 are area in hectare of Forest, Rice, Other 

crops and Built up respectively that remained unchanged from 1995 and 2005. 

Table 4. 11 Change matrix of land cover from 1995-2005 
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Forest 17186 203 1461 144 

Rice 42 1070 113 18 
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Built up 0.3 3 3 11 
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There was an overall decrease in rice fields of 275 hectares between 1995 and 2005. About 203 

hectares of the 275 hectares of rice were classified to forest and 69 hectares were converted to 

other crops. A small area consisting of approximately 3 hectares became built up. On the other hand, 

out of the 172 hectares increase in rice fields in the same period, the highest gain was from the 

other crops which amounted to 113 hectares, followed by forest (42 hectares) and built up (18 

hectares). The net decrease of 102 hectares was observed from 1995 to 2005. The geographical 

locations of these changes are shown in Appendix E.  

4.3.2 Change from 2005 to 2011 

From 2005 to 2011, forest and other crops exhibited the largest change. A total of 2587 hectare of 

forest was classified into other land classes. Out of this 1893 hectares became other crops, 478 

hectares became rice and 216 hectares was classified as built up. However, the forest class only 

increased by 307 hectares, with 275 hectares of other crops and 32 hectares of rice becoming forest. 

The rice area in the 2011 image increased by 692 hectares and there was a small overall decrease 

in the rice fields of 107 hectares. The gain (1949 hectares) of other crops was more than the loss 

(512 hectares) from the 2005 to 2011 change detection output. The complete change matrix is 

shown in the Table 4.13 and the spatial distribution of these changes on Appendix F. 

Table 4. 12 Change matrix of land cover from 2005-2011 

 

 
From 2005 

T
o
 2

0
1
1
 

Area in 

hectare  
Forest Rice 

Other 

Crops 
Built up 

Forest 18940 32 275 0 

Rice 478 1221 213 1 

Other 
crops 

1893 56 2140 0 

Built up 217 19 24 16 

  

4.3.3 Change from 1995 to 2011 

On analysing the changes in LULC from 1995 to 2011, it can be seen that 1053 hectares of forest 

was lost to other land cover types but only 442 hectares of other land cover became forest. As a 

result, there was a net loss of about 600 hectares of forest during this 16-year period. However, 
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there was a significant increase of 530 hectare in rice fields against an 86-hectare decrease, giving 

a net increase of rice of 484 hectares. The maximum contribution in the increase of rice field came 

from the other crop class. Similarly, there was an overall loss of 847 hectares of other crop which 

can be set against a 1077-hectare gain which led to a net increase of 230 hectares from 1995 to 

2011. The spatial distribution of changes is presented in Appendix G. 

Table 4. 13 Change matrix of land covers from 1995-2011 

 

 

From 1995 

T
o
 2

0
1
1
 

Area in 
hectare  

Forest Rice 
Other 
Crops 

Built up 

Forest 16752 14 404 30 

Rice 108 1261 383 39 

Other crops 883 61 2560 133 

Built up 62 11 60 53 

 

The spatial distribution of changes in rice cultivation from 1995-2005, 2005-2011 and 1995-2011 

are given in the Figure 4. 14. 
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Figure 4. 14  Maps showing change in rice cultivation between different years 
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4.4 Accuracy of post-classification change detection 

4.4.1 Statistical method 

Since there was no ground reference data to independently assess the classification accuracies of 

1995 and 2005 images, the same methodologies were applied to classify these images and for the 

computational purposes as 2011 image classification. It was assumed that their classification 

accuracies to be similar at 81.4 percentage each. Based on this assumption, two forms of change 

detection accuracies can be calculated: 

i. Product of individual classification accuracies.  

 Change detection accuracy  =  0.814 x 0.814 

                      = 0.662954 ≈ 66% 

ii. If the errors are completely random and assuming classification error can be equated to 

standard deviation. 

 Change detection accuracy  =  1 − √0.192 + 0.192 

     = 1 – 0.2687 ≈ 73% 

If a mean is taken from these two forms of accuracies, then the post-classification change 

detection accuracy comes about 70%. 

4.4.2 Visual assessment of change detection accuracy 

Visual verification of the change detection maps was accomplished with reference to the historical 

images in the Google Earth that were closest to the TM acquisition dates. The green area within a 

light blue border in Figure 4. 15 shows a change in rice cultivation from 1995 to 2005. In other 

words, the land use was not rice in 1995 but it shown as rice in 2005 classified image. On verifying 

with a Google Earth image of 2012, the area was found to be under rice cultivation. This change 

result seems to be correct. However, a 2006 Google Earth image, which was closest to the 2005 TM 

image, seems to have some issues with geometric registration and could not be used for the 

verification.   
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Figure 4. 15 The increment of rice from 1995 – 2005 from change detection analysis 

 

The classification result of 2005 was quite generalized with rice in the polygon marked with a red 

boundary in Figure 4. 16. It was an error in classification that has misrepresented the area as 

increase in the rice but on careful verification with Google Earth imagery, settlement areas and non-

rice fields were also classified as rice in 2005 image.  

 

Figure 4. 16 The red boundary line shows the increase in rice from the classification maps 
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There were other cases, where a decrease in rice was detected in the image classification but it did 

not happen on the ground. That is a clear indication of omission error in the image classification. 

For example, the red area under the dark bold polygon (Figure 4. 17) is shown as decrease in rice 

field in 2005 classified image but from the Google earth image, rice field had not decreased.  

 

Figure 4. 17 The area marked by black polygon is shown as decrease in rice from 1995 to 2005 
due to the error of omission in the 2005 image classification. 

From the above illustrations, it is clear that some of the changes in rice fields are due to the errors 

in image classification. 

4.5 Drivers of LULC change 

The change detection analysis revealed that there was a marginal increase in the area of rice 

cultivation during the study period and the change detection accuracy was relatively low. In spite of 

uncertainties due to the errors in change detection, the author attempted to find out some of the 

major causes that might have led to increase in the rice farming in the Paro valley by analysing 

socio-economic data, meteorological data, demographic data and policies of the country. 

4.5.1 Natural factors 

A supplemental irrigation system is practised in the Paro valley. It is essentially supplementing rain-

fed crops with water from the irrigation channels whenever there is a shortfall of rain during the 

cropping season (Oweis 1997). Such a supplemental approach helps in managing natural resources 

and stabilizes crop yields. The daily rainfall measurements recorded in the study area from 1991 to 

2011 were aggregated to monthly and annual rainfall data. Figure 4. 18 is a bar chart representing 

the annual rainfall data from 1995 to 2011.  
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Figure 4. 18 Annual rainfall from 1995 to 2011 in the study area 

 

A closer analysis of rainfall data during the rice growing season in Paro (June-September) which is 

depicted in Figure 4. 19, shows a similar trend like that of the annual rainfall. The irrigation facilities 

had possibly played an important role in supplementing the shortage of water during the dry days. 

Therefore, the minor fluctuations in the rainfall pattern during the rice season do not seem to have 

had significant effects in the change in the area of rice cultivation during the study period.  

 

Figure 4. 19 Rainfall during the rice growing months (June-September) from 1995 -2011 
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Graphs of monthly mean temperature data of three study years in Paro (Figure 4. 20) show that the 

average temperature from May to December for 1995 was much lower than the other two years.  

 

Figure 4. 20 Mean monthly temperatures for 1995, 2005 and 2011 in the Paro valley 

 

Figure 4. 21 shows the mean temperature graph during the rice growing season. The average 

temperature of 2005 is slightly higher than 2011. According to (Sánchez, Rasmussen and Porter 

(2014), the optimum range of temperature for rice to grow is 13.5 oC to 27.5 oC. From the mean 

temperature data, the temperature in the study area during the period from 1995 to 2016 remained 

within this range. Therefore, temperature does not seem to have affected the rice production in 

Paro valley. 

 

Figure 4. 21 Mean temperatures of rice growing months (June-September) of 1995, 2005 and 
2011 
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4.5.2 Economic factors 

Gross Domestic Product (GDP) is an indicator of the overall economic health of a nation. The 

economy of Bhutan in 1995 was relatively low (6% of GDP growth rate) compared with 2005 (6.7 

% GDP growth rate) (Figure 4. 22). There was a slight rise of 0.7% in the GDP from 1995 to 2005. 

The decline in rice cultivation in the study area during the same period did not seem to have brought 

significant impact in the overall GDP. However, the GDP growth rate increased to 9.7% in 2011. 

Since, agriculture is the main sector that contributes most to the nation’s GDP, the trend of change 

in the area under rice in Paro from 1995 to 2011 correlates with growth in GDP.   

 

 

Figure 4. 22 Growth in GDP for Bhutan, 1990 to 2012 

 

4.5.3 Demographic factors 

Referring to Figure 4. 23, there was an increase in the population of Bhutan of about 53,000 persons 

from 1995 to 2005, or approximately 5,300 persons per year. In the second segment of the period 

studied (2005-2011), the total increase was 73,283 persons or an annual population increment of 

approximately 12,200 persons. During the relatively slower population growth from 1995 to 2005, 

the area of rice cultivation decreased by small margin. However, when the population growth rate 

increased by more than two-fold between 2005 and 2011, there was a substantial increase in the 

area of rice fields. This suggests that the increase in population in Bhutan had led to increase the 

rice cultivation in the Paro valley. 
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Figure 4. 23 Total population of Bhutan in 1995, 2005 and 2011 

 

4.5.4 Policy factors 

Clauses (iii) and (vii) of section 10 (a) of the Forest and Nature Conservation Act of Bhutan 1995, 

prohibit:  

iii. felling, girdling, lopping, tapping, uprooting, or injuring any tree and removing any timber 
or other forest produce (including stones, boulders, and sand) or quarrying 

vii. hunting, fishing, taking, removing, destroying, poisoning or injuring any wildlife, or setting 
traps or snares; 

The impacts of laws would have been gradual in manifesting on the rice cultivation in Paro valley. 

Many other factors are simultaneously responsible to observe the final impact on the change in the 

acreage of rice cultivation. The law on the conservation of forest and nature came into effect from 

1st September 1995. It suggests that a decrease in rice fields from 1995 to 2005 could be possibly 

due to the increase forest coverage indicated in the change detection matrix. It can also be inferred 

from the population data and above policy, that when the population growth was low, the law was 

more effective than when the population growth was higher in the later part of the study period.   

As a part of stepping up the food production, the Land Act, 2007 empowers government to identify 

genuinely landless people and people living in the ecologically risky areas and grant them 

government land for rehabilitation. In order to compile this data, a nationwide high precision 

cadastral survey was held from 2008 to 2013. These programs could have contributed in the steady 

increase in rice cultivation by 585 hectares in the study area from 2005 to 2011. 
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CHAPTER FIVE 

5 ANALYSIS AND DISCUSSION 

5.1 Image pre-processing 

5.1.1 Geometric verification 

The Landsat images acquired from the USGS archive were geometrically already corrected by USGS 

using Ground Control Points (GCP) and a global digital elevation model. The accuracy of a geometric 

correction depends on the quality of image, and the number and distribution of GCPs (USGS 2018a). 

The root mean square error (RMSE) of each scene geometrically corrected by USGS is documented 

in the image metadata files. Depending on the nature of application, the RMSE value can be used 

as a filter to select images with the desired levels of geometric precision. But the choice of images 

in this study was solely decided by the minimum cloud coverage and the cropping season. The 

RMSEs of the images used were 0.301, 0.388 and 0.393 pixel for 1995, 2005 and 2011 respectively. 

Further work on the geometric registration of 2011 image by the author using high resolution Google 

Earth imagery resulted in a root mean square deviation in the position of ±5.32 m or approximately 

one-sixth of a Landsat TM pixel. For the change detection, the conventional requirement is that the 

RMSE must be within 0.5 pixel (Lunetta & Elvidge 1999; Shalaby & Tateishi 2007). The images in 

this study were below this threshold. Co-registration amongst different datasets were checked 

visually with the help of the swipe tool in ERDAS Imagine and all data had good geometric integrity 

which gave the author confidence in subsequent image analyses. 

5.1.2 Generation of river network 

The Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) digital elevation model 

with an 8.9 m cell size when used with hydrology tools in the ArcGIS generated a detail network of 

rivers and streams. Since the study was only interested in major rivers, a threshold of 150000 pixels 

was used in the flow accumulation raster to reject the shorter rivers and streams. The major rivers 

generated from the digital elevation model where overlaid on the Landsat image. Visually these 

showed a good level of agreement with the main rivers in the imagery.  

5.1.3 Extraction of relative Digital Elevation Model 

The major rivers were then used as reference to calculate the relative heights of all DEM cells from 

the nearest river bank; which were then stored as new values for the corresponding cells. It was 

thought that the inclusion of these data with other data layers might help to better discriminate rice 

from other crops because most of the rice cultivation in the study area is found within a relative 

height of approximately zero and 300 m from the closest major river. Due to the high resolution of 
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the DEM, the computation took quite long time of approximately 36-38 hours. The processing time 

would have reduced if the DEM raster was resampled to an equal cell size of a Landsat TM cell. 

There were few pixels in the DEM raster with negative values for relative heights. This happened 

when considering the shortest horizontal distance between the river and the DEM cells. There might 

have been some cells in the DEM raster whose elevation values were less than the elevations of 

nearest river cells. 

5.1.4 Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) is a unit less index whose values range from -

1 to +1.  The higher chlorophyll content in healthy vegetation absorbs more visible red light and 

reflects more near-infrared radiation. This gives rise to high, positive NDVI for healthy vegetation. 

Conversely, lower values of NDVI indicate stressed vegetation (same vegetation type) or a different 

vegetation type with less photosynthetic activity. The NDVI also depends on the leaf area or plant 

cover (Turvey & Mclaurin 2012). The NDVI for the seasonal crops like rice increases from the time 

of planting to the fully mature stage, and then decreases during leaf senescence.  In this study, the 

NDVI values for rice, other crops and forest fall in almost same range from around 0.60 to 0.75. 

This must be the reason for misclassifying rice as forest and vice-versa. 

5.2 Digital image processing 

5.2.1 Unsupervised classification 

The ISODATA algorithm generated 200 clusters of spectrally distinct classes of pixels. Unsupervised 

classification, being relatively computer automated, it is faster than supervised classification and 

requires less human input. However, the interpretation and labelling of clusters with corresponding 

real-world land class description can be quite labour intensive. High resolution Google Earth imagery, 

the author’s knowledge of the area and land use data from the 2011 cadastral survey helped in 

assigning meaningful class names to the clusters. In doing so, several spectrally distinct classes were 

combined to single land class. For instance, the ISODATA algorithm discriminated a rice class into 

more than one spectral classes but they are labelled as rice during the post-classification processes.   

5.2.2 Supervised classification 

With the help of the highest resolution Google Earth images, an exhaustive list of spectral signatures 

from different sample classes was collected before supervised classification was attempted 

(Cingolani et al. 2004). Based on the evaluation of signature separability using the Jeffries-Matusita 

(JM) distance, the threshold distance was set to ≥1390 for a pair signatures to be separable. This 

commonly used threshold value corresponds approximately to 97% of the upper bound (i.e., 2) of 

the JM distance (Adam & Mutanga 2009; Das et al. 2018). The Maximum Likelihood Classifier (MLC) 
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is the most widely used supervised classifier in land use and land cover change research due to its 

simplicity and high efficiency (Eiumnoh & Shrestha 2000; El-Kawy et al. 2011; Gilani et al. 2015; 

Yangchen, Thinley & Wallentin 2015). Moreover, the supervised classification resulted in a better 

accuracy in the 2011 image than the unsupervised classification, so the same method was used in 

the other two images as well. There was an example of same land cover class depicted different 

spectral signature even in the rice class. The Rice2 and other crop showed similarity in the spectral 

signature Figure 5. 1. 

      

Figure 5. 1 Sample spectral signature showing two spectrally different rice class and rice class 
overlapping with other crop. 

5.2.3 Accuracy assessment 

Accuracy assessment in the context of image classification is an integral part of producing a final 

output map. The accuracy label attached to a map informs users about the level of confidence that 

they can place on the map while making decisions.  Besides, it provides a basis to compare, analyse 

and interpret different datasets (Congalton & Green 2008). Accuracy assessment of the 2011 image 

classification was done using cadastral field survey data. The reference field data which was collected 

in 2011 had land use information that was limited to “rice” and “other crops”. Hence, the accuracy 

of image classification was assessed selectively for these two classes of land use. However, the 

accuracy assessment used in this study was comprehensive because the entire population of rice 

and other crop pixels was used to assess the classification accuracy. Each individual pixel of rice or 

other crop from the reference dataset was compared to the corresponding classification outputs for 

rice and other crops. This type of approach for accuracy assessment transcends the issues 

introduced by sampling biases and its associated statistical computations (Clarke 1994; Congalton & 

Green 2008). Another advantage of this method is that the spatial distribution of errors can be 

viewed in the form of map as Figure 4. 8and Figure 4. 9. As indicated in this map, accurately classified 

pixels are coloured yellow, omission errors are in purple and commission errors in red. The spatial 

model given in Figure 3. 7 takes the difference between the two input raster files and generates a 

raster file with three types of pixel values. If both the pixels were rice, the output pixel value was 0, 
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which means that the particular pixel was correctly classified (yellow). If the reference pixel was rice 

(pixel value 1) and the classification pixel is non-rice (pixel value 0), the output pixel value becomes 

1; and thus, that pixel is an error of omission (purple). On the other hand, when the reference pixel 

is 0 and the classified pixel value is 1, the difference is -1, which means that pixel is a commission 

error (red) category. A special condition was specified in the model that when both the pixels were 

0. In this case, their difference will also be 0, which obviously overlaps with accurately classified rice 

pixels. So, when both the pixels were 0, their difference was assigned a unique value (3 in this case) 

and later recoded as an unclassified value. A problem was encountered in ArcGIS of its inability to 

handle negative pixel values. Therefore, pixels with negative values were recoded to +2. 

5.2.4 Accuracy of PC1-NDVI-DEM composite data 

Eiumnoh and Shrestha (2000) and Bahadur (2009) found that the inclusion of DEM data with Landsat 

TM imagery improved the accuracy of image classification in Thailand and Nepal respectively. The 

best accuracies resulted from the band combination of PC1-NDVI-DEM. However, both supervised 

and unsupervised classification of PC1-NDVI-DEM in this study produced poor accuracies of around 

60%. On analysing the Eigenvalues from the PCA, the first principal component contained 73% of 

total image information. It was anticipated that the low accuracy could be because of the rejection 

of the other PCs which constituted 27% of the information. Subsequently, PC2, which had 22% of 

the information, was included as an additional band to form a new composite image: PC1-PC2-NDVI-

DEM. Though the first two principal components accounted to 95% of the image information based 

on variance, overall accuracy dropped further to 58% in both supervised and unsupervised 

classification of this dataset. As an exploratory attempt, a modified DEM band whose values were 

the relative heights above the nearest river bank (referred to as the relative DEM) was used with 

other bands. Two additional datasets were produced, one was a combination of PC1-PC2-Relative 

DEM and the other PC1-PC2-NDVI-DEM-Reative DEM. The accuracy from both the classification 

method of these datasets did not show any improvement on the other datasets discussed above.  

It was realized that some spectral characteristics of the image were being lost after performing PCA 

and calculating NDVI. PC-1 contains maximum of overall scene albedo and PC2 contains the next 

inter band variations (ERDAS Field Guide 2003). The NDVI layer contains information on the vigour 

and greenness of vegetation (Xue & Su 2017). The Relative DEM layer has height information. The 

combination of these different data layers lost the original spectral uniqueness of the image. This 

led to the inability to discriminate between otherwise spectrally different objects. For instance, Figure 

5. 2 shows the data profiles of forest and rice in the PC1-NDVI-DEM composite image. The ISODATA 

unsupervised classification algorithm classified them as the same class, even though they could be 

discriminated spectrally in the original TM image.  
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Figure 5. 2 Mean values of forest and rice classes in the PC1-NDVI-DEM composite image. 

 

 

Figure 5. 3 Spectral signatures of forest and rice in the original Landsat image for the same pixels 
used to calculate mean values in Figure 5. 2. 

 

5.2.5 Accuracy of original TM image 

The original Landsat image was used for image classification due to the poor results from 

classifications of the different composite images. Accuracies for both methods of classification in the 

original Landsat TM images were much better than for datasets discussed above. The MLC 

supervised classification resulted in a slightly better accuracy (81.4%) than unsupervised 

classification (80.5%) but still they were just below the threshold of 85% specified by Anderson, 

Hardy and Roach (1972) for land use and land cover studies. It was observed that most classification 

errors occurred along the edges of rice fields. The area marked A in Figure 4. 8 shows an array of 
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pixels along the edges of rice fields. One of the causes of edge effect was conversion of polygon 

field data into raster yielded patches of more area as shown in the Figure 5. 4. Despite the overall 

accuracy of rice falling below 85%, its confidence level is high because entire population (n=24743) 

was used for accuracy assessment. 

 

Figure 5. 4 Mismatch of edges between the rice raster and the polygon rice 

 

Another pertinent issue was the difficulty in getting a spectrally homogeneous data for the training 

classes. Therefore, sample classes were kept as small as possible to avoid mixed pixels. However, 

spectral heterogeneity was contributed by the nature of size of individual plots of rice fields. Figure 

5. 5 clearly shows that the maximum number of plots in the study area is less than a pixel (30 m x 

30m) and the next highest of number of plots lies in the one-two pixel size class, i.e., 31-60m. 
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Figure 5. 5 Histogram showing number of rice plots of varied sizes 

 

The rice plots either belong to different land owners or are interspersed with different land uses 

(Figure 5. 6). Individual owners have full discretion on decision about cropping. These differences 

in them may simply reflect personal choice on behalf of plot owners, and these can potentially 

contribute to the heterogeneity of the pixels in the images. The problems of mixed pixels when 

classifying medium-resolution satellite images was stressed by Butt et al. (2015) when using 

Landsat-5 TM imagery. In situations where fields are small, like the Paro Valley, Landsat imagery 

with 30 m spatial resolution does not appear suitable for mapping crops because the signature of 

rice us “corrupted” by signatures of other land cover (often bare soil, tracks, paths) between the 

rice plots. 

 

Figure 5. 6 A typical example of rice plots interspersed by other land uses (white areas). The area 
of each plot in m2 is labelled. 
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5.3 Change detection 

5.3.1  Change in rice fields from 1995 – 2005 

According to the classification results, there was a slight decline in the overall rice cultivation in the 

decade up to 2005 of about 100 hectares. The area of rice field losing to other land classes was 

more than the gain in the rice field from other land classes. The conversion of rice into forest was 

the major change in the rice field during this period. From Appendix E, besides the small areas 

showing a decrease in rice cultivation along the edge of the rice fields, there are reasonably large 

clumps of rice pixels in 1995 that became other land cover types in 2005. As reported in the section 

4.4.2, some of the changes in rice land cover were due to the error in the classification. 

5.3.2 Change in rice fields from 2005-2011 

In contrast to the 1995-2005 period, there was a drastic increase in the paddy rice in the 2005-2011 

period: it increased by 585 hectares in these six years. The majority of the rice fields that were lost 

to other land class types in the preceding decade were regained during this period (Appendix F). 

Approximately 25% of the net increase in rice came from the other crops class.  

5.3.3 Change in rice fields from 1995-2011 

Overall, rice cultivation increased by 485 hectares during the entire study period. This is equivalent 

to annual increase in rice of approximately 30 hectares. More than 320 hectares of land which was 

used for other crops in 1995 had become rice fields by 2011. In addition, about 100 hectares of 

‘forest’ had become rice. The change detection map (Appendix G), small losses in rice fields occurred 

mostly along the edges of fields.  

5.3.4 Change detection accuracy 

In computing the accuracies for change detection, the following assumptions were made:  

i. The accuracy of classification for 1995 and 2005 images was assumed to be the same as the 

2011 image, i.e., 81.4%. 

There were no reference data for 1995 and 2005 to assess the classifications independently. 

However, since the images were from same sensor, acquired in the same season of the year and 

the same classification technique was applied, the assumption that a similar level of accuracy to that 

of the 2011 image classification can be applied to 1995 and 2005 images is justifiable. With these 

assumptions, the accuracy of change according to the method of Coppin et al. (2004) is around 

66%. In other words, it is likely that a change in rice (either a loss or a gain) between any two dates 

of being correct is approximately 0.66. 
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ii. Classification errors were treated as random 

Checking for the randomness of classification errors was beyond the scope of this study. So, to 

simplify computation, it was assumed that the errors were numerically random. If this is the case 

and using the assumption that the measured error in 2011 classification can be equated to the 

standard deviation and using propagation of variances, then this method of error estimation leads 

to an accuracy of 73%. Hence, using these two approaches, the accuracy of change lies in the 66-

73% range. The percentage net change from 1995-2005, 2005-2011 and 1995-2011 are seven, 47 

and 36 respectively. These change percentages are smaller than the change detection error range, 

that statement applied particularly to the 1995-2005-time period. 

Another reason for the low accuracy of the post-classification change detection could be due to the 

three images not having the exact anniversary dates of acquisition. The first image was acquired on 

25 September 1995, the second image was acquired on 3 August 2005 and the last image was 

acquired on 20 August 2011. Even if images cannot be acquired on the same day of the year, they 

should be as close as possible to prevent errors due to the phenological changes of vegetation and 

crops. However, even that assumes that phenology is constant from one year to another, which is 

not generally the case for seasonal cropping which is a function of rainfall, temperature and planting 

date. 

5.4 Drivers for change in rice cultivation 

One of the aims of this study was to try and reveal evidence that could be related to some of the 

potential major drivers that could have caused change for rice cultivation in Paro Valley over the 

period of 16 years from 1995. Some of the ancillary data used in this context, showed that variations 

in temperature and rainfall did not produce a noticeable impact on the rice production in this period, 

however, socio-economic factors appear to have the potential to explain some of these changes: 

though more research would be needed to link changes in rice to these factors. 

5.4.1 Socio-economic factors 

The GDP of Bhutan had shown an upward trend during the study period. Furthermore, with increased 

road connectivity and improved market facilities, farmers seemed to have focused more on rice than 

other crops and it considered as a major plank of national agricultural development (Arowolo & Deng 

2018). In addition, since 2005, the government has placed a high priority on intensifying farm road 

construction. The objective of this initiative was to provide easy access to markets in which farmers 

can sell their agricultural produce and also to ease the transport of farm machinery (Wangchuk & 

Siebert 2013). It is almost a universal phenomenon that socio-economic factors have far-reaching 

impacts on the agricultural activities and vice-versa (Lambin, Geist & Lepers 2003). 
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5.4.2 Demographic factors 

Population growth in Bhutan during the study period showed a correlation with the increase in rice 

field area in the Paro Valley. The increase in population in the region could be responsible for increase 

in the rice production in the study area. In their research on the rural-to-urban population migration,  

Gosai and Sulewski (2014) revealed that in 2005 many people were migrating from other parts of 

Bhutan to the western districts of the country, which includes Paro. Obviously, this would have 

increased the population in Paro valley and so raised the demand for more rice production and more 

people to cultivate it. This finding concurs with the trends discovered in some countries like Nepal, 

Ethiopia and Ghana (Arowolo & Deng 2018), where and increase in population leads to increase in 

agriculture land under production.  

5.4.3 Institutional factors 

Prior to 1995, there was no restriction on hunting wild animals or cutting trees in Bhutan. However, 

with the implementation of the Forest and Nature Conservation Act 1995 of Bhutan, there have been 

increasing incidences of human-wildlife conflicts have been noted (Wang, Curtis & Lassoie 2006). 

The increasing wildlife population, which had been an outcome of this act, has led to the destruction 

of crops on the one hand, while on the other hand, the stringent conservation laws hinder agro-

pastoralists (Barua, Bhagwat & Jadhav 2013). In the study area, the rice fields seem to be well 

located in terms of animal encroachment because majority of them are located along the flat valleys 

surrounded by settlements and other croplands. That is substantiated by the increase in rice 

cultivation revealed in this research. The Land Act of 2007 emphasizes the optimal utilization of land 

to achieve grain self-sufficiency, but it is also expected to have encouraged people to intensify 

agriculture as a whole. This effect has been manifested in the form of increased rice cultivation in 

Paro Valley from 1995 to 2011. 

5.5 Limitations of the study 

Despite the best attempts within the reach of the available resources and time, the author argues 

that the following limitations have impacted the research and that future research needs to try and 

overcome these. 

i. The issue of clouds 

Due to cloud masking of individual images by the combined cloud quality assessment bands of three 

images, some areas of rice field had to be masked out. Therefore, the findings of the study are 

restricted to this sub-set of rice field and are thus potentially affected. Almost seven percent of rice 

field was masked out by cloud. 
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ii. The issue of spatial resolution 

Given the relatively small size of rice fields in the Paro Valley, and the heterogeneous cropping 

practices in the study area, 30 m spatial resolution of Landsat-5 TM image resulted many mixed 

pixels during classification. This could possibly be one of the reasons for the classification accuracy 

being quite low. Consequently, this resulted in a low accuracy of change detection, in particular the 

change in rice fields from 1995 to 2005 where it was much smaller than the error range. In such a 

scenario, the reliability of outcomes is undoubtedly going to be too poor to be used in decision 

making. The high-resolution imageries from commercial sensors like Worldview, GeoEye, Ikonos, 

etc are available but they are quite recent and associated with high cost. 

iii. Lack of some ancillary data specific to the study area 

The socio-economic data and the demographic data used were for the entire country. The author 

could not acquire data specific to the current study area. As a result, the drivers that were identified 

were generally derived from the national data. Clearly to understand agricultural land use change in 

the valleys of Bhutan requires more work on the ground in terms of field mapping, household-level 

socio-economic surveys, and oral histories of land uses over a long-time period for as many fields 

as is feasible.  
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CHAPTER SIX 

6 CONCLUSION AND RECOMMENDATION 

This chapter summarizes and draws conclusions from the whole thesis by briefly reviewing the key 

findings from the two research questions raised in the Chapter One: 

• Which dataset and image processing methods are most suitable for change detection 

of rice cultivation in Bhutan? 

• What are the possible factors that have influenced rice land use change in the study 

area from 1995 to 2011? 

Finally, the chapter concludes by highlighting on some of the important recommendations which 

could improve the results of the future researches. 

6.1 Key findings 

6.1.1 Challenge to acquire suitable satellite data 

In a change detection study dating back to the days when not many satellites were available, the 

only choice is to go for the Landsat series. A few contemporary satellites like SPOT and IRS which 

may have been available; are either expensive or restricted for public access. Other aspects like 

spatial, spectral, temporal and radiometric resolutions must be appropriately analysed before 

considering using a particular satellite image (Gilani et al. 2015). Usually, there is a trade-off between 

the spatial and spectral resolutions and the nature of project at hand and the availability of funds 

must influence the choice. The summers in the Himalayas, where the study area is located remain 

mostly cloudy which is the greatest hindrance to optical remote sensing. In trying to get images of 

different years with minimum cloud coverage, temporal variations between two mages dates got 

increased which is not an ideal condition for the change detection study. 

6.1.2 Highest accuracy by supervised classification of original TM image 

Contrary to the findings of Bahadur K.C. (2009) and Eiumnoh and Shrestha (2000) which yielded 

higher accuracy from a PC1-NDVI-DEM data composite, the supervised classification of original 

Landsat-5 TM image produced highest accuracy of 81.4%. It will be worth mentioning here that the 

accuracy assessment was performed by comparing the classified rice raster data against the 

reference raster data for rice. This type of accuracy assessment is considered comprehensive 

approach and its confidence level is high because in this case the sample size is equal to the 

population. 
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However, due to relatively low classification accuracy, the accuracy for the post-classification change 

detection was intrinsically low at about 70%. One of the reasons for the poor accuracy was due to 

the spectral heterogeneity produced by small size of rice plots. These individual plots belong to 

different land owners. It was found that almost 90% of rice plots were smaller than 2-pixel size.  

6.1.3 Overall increase in rice cultivation during the study period 

Although the accuracy of change detection being quite low, and reliability of the result may remain 

low, empirically the study indicated an overall increase of nearly 500 hectares of rice in field from 

1995 to 2011. There was a marginal decline in the rice cultivation during the first decade of the 

study period but a drastic increase in the next six years, not only compensated for the apparent loss 

in the previous period but resulted in an overall increase. This result seems to agree with the findings 

of Gilani et al. (2015) where a slight increase in agricultural land cover was observed from 2000 to 

2010. 

6.1.4 Possible drivers of increase in the rice cultivation 

The analysis of the change detection result for rice with other data suggests that the increase in the 

rice cultivation in Paro valley showed some level of correlation with the rise in Bhutan’s population. 

Whilst there was no exact demographic data for the study area, the similar trend in population 

growth in the Paro district was inferred from the national level population data. This revelation seems 

to resonate with the findings of Ghimiray, Pandey and Velasco (2013) where a slight increase in the 

overall area of rice fields in Bhutan from 2004 to 2009 was observed.  

The other factor for the increase in the rice cultivation was found due to the economic development 

which had taken place during the study period and particularly in Paro being one the fast-developing 

districts in Bhutan, the increasing demand for rice has led to increase in rice production. There were 

some laws and policies which potentially could impact the agricultural activities in Bhutan, but this 

has not shown any significant impact on the area of rice cultivation in the Paro valley. 

6.2 Recommendations 

6.2.1 Higher spatial resolution imagery 

Since the spatial resolution of 30 m Landsat pixel size for the small size fields and heterogeneous 

land use in the study area was seen as the main reason for the substandard accuracy for the change 

detection, finer spatial resolution imagery with little cost attached can potentially produce a better 

result. It will be worth exploring the use of time series Synthetic Aperture Radar (SAR) data with 

optical data, where Park et al. (2018) have reportedly achieved 98.7% accuracy for paddy rice 

mapping. The use of SAR data can also address the problem of cloud contamination in the optical 

sensor. 
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6.2.2 Higher spectral resolution 

While the six bands of the level 2 processed Landsat TM image that was used in this study are better 

than some of the higher spatial resolution imagery like SPOT and GeoEye in terms of spectral 

resolutions, but still there were issues of mixed spectral classes. This can be resolved with the use 

of imagery with higher spectral and spatial resolution which is available at high costs for recent times 

in World View 3. The use of hyperspectral Environmental Mapping and Analysis Programme (EnMAP) 

at 30 m ground sample distance which is planned to launch soon, is expected to solve the current 

issues posed by the lower spectral resolution. 

6.2.3 More specific ancillary data 

To have a better understanding of drivers causing the change in rice cultivation, an exhaustive 

collection of ancillary data is recommended through interviews with local farmers and consultation 

with relevant government agencies. Due to the obvious reason of time and budget constraint, this 

approach of data collection could not be incorporated into the methodology of this study. 

6.2.4 Change trajectory analysis 

Land use land cover trajectory analysis which is a recently developed methodology for change 

detection could be used. This method performs a search for the idealized spectral signature in the 

entire temporal trajectories, rather than looking for single change event between two dates. 

6.2.5 Control illegal cropping 

If remote sensing techniques can map the rice field with reasonable accuracy, it can be used to map 

illegal cropping in government land by overlaying with the cadastral data. The field verification 

survey of such encroachment is both time consuming and labour intensive which ultimately adds to 

the cost. 
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 Crop calendar for Paro district 

 

Source: Ministry of Forest and Agriculture, Royal Government of Bhutan 

 



97 

 

 Encapsulated Postscript for cloud masking 

model 

 

COMMENT "Generated from graphical model: 

v:\sotepostgrad\mill0646\tash0013\data\crop season\l2 landsat image\spatial 

model\combined_cldmasking.gmd"; 

# 1995 TM IMAGE 

# 2005 TM IMAGE 

# 2011 TM IMAGE 

# CLOUD QA (1995, 2005 & 2011) 

# 2011 FIELD DATA (RICE) 

# 2011 FIELD DATA (OTHER CROP) 

# CLOUD MASK 

# PRISM DEM 

# RELATIVE DEM 

# 

# set cell size for the model 

# 

SET CELLSIZE MIN; 

# 

# set window for the model 

# 

SET WINDOW INTERSECTION; 

# 

# set area of interest for the model 

# 

SET AOI NONE; 

# 

# declarations 

# 

Integer RASTER n1_cloud95 FILE OLD PUBINPUT NEAREST NEIGHBOR AOI NONE 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/cloud layers/cloud95-05-11-sub.img"; 

Float RASTER n3_temp; 

Integer RASTER n5_tm FILE DELETE_IF_EXISTING PUBOUT IGNORE 0 ATHEMATIC 16 BIT 

UNSIGNED INTEGER "v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 

landsat image/cloud_masked_raster/tm-1995-cldmsk.img"; 

Integer RASTER n6_tm FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/tm-

1995/datasets/tm-1995-paro-sub.img"; 

Integer RASTER n9_tm FILE DELETE_IF_EXISTING PUBOUT IGNORE 0 ATHEMATIC 16 BIT 

UNSIGNED INTEGER "v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 

landsat image/cloud_masked_raster/tm-2005-cldmsk.img"; 

Integer RASTER n10_tm FILE DELETE_IF_EXISTING PUBOUT IGNORE 0 THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/cloud_masked_raster/tm-2011-cldmsk.img"; 

Integer RASTER n11_tm FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/tm-

2011/datasets/tm-2011-sr-band1-2-3-4-5-7-sub.img"; 

Integer RASTER n12_tm FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 
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"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/tm-

2005/datasets/tm-2005-sr-b1-2-3-4-5-7.img"; 

Integer RASTER n17_cadastral FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/land 

type/cadastral-paro-rice-recode.img"; 

Integer RASTER n18_cadastral FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/land 

type/cadastral-paro-other-crop-recode.img"; 

Integer RASTER n21_ground FILE DELETE_IF_EXISTING PUBOUT USEALL THEMATIC BIN 

DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/cloud_masked_raster/ground-truth-rice-cldmsk.img"; 

Integer RASTER n22_ground FILE DELETE_IF_EXISTING PUBOUT IGNORE 0 THEMATIC 

BIN DIRECT DEFAULT 8 BIT UNSIGNED INTEGER 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/cloud_masked_raster/ground-truth-other crop-cldmsk.img"; 

Integer RASTER n29_prism FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/dem_sub/prism-dem-cldmsk.img"; 

Integer RASTER n30_rel_height FILE OLD PUBINPUT NEAREST NEIGHBOR AOI 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/studyarea/final_aoi_paro.aoi" 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/dem_sub/rel_height-above-river.img"; 

Integer RASTER n31_prism FILE DELETE_IF_EXISTING PUBOUT USEALL ATHEMATIC 16 

BIT UNSIGNED INTEGER "v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 

landsat image/cloud_masked_raster/prism-dem-cldmsk.img"; 

Integer RASTER n32_rel FILE DELETE_IF_EXISTING PUBOUT USEALL ATHEMATIC 16 BIT 

SIGNED INTEGER "v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/cloud_masked_raster/rel-dem-cldmsk.img"; 

# 

# function definitions 

# 

n3_temp = EITHER 0 IF (($n1_cloud95(1) GE 2 AND $n1_cloud95(1) NE 9) OR 

($n1_cloud95(2) GE 2 AND $n1_cloud95(2) NE 9) OR ($n1_cloud95(3) GE 2 AND 

$n1_cloud95(3) NE 9)) OR 1 OTHERWISE ; 

n5_tm = $n3_temp * $n6_tm; 

n32_rel = $n3_temp*$n30_rel_height; 

n31_prism = $n3_temp*$n29_prism; 

n10_tm = $n3_temp * $n11_tm; 

n9_tm = $n3_temp * $n12_tm; 

n22_ground = $n3_temp * $n18_cadastral; 

n21_ground = $n3_temp * $n17_cadastral; 

QUIT; 
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 Python script of the model to extract relative 

DEM 

# -*- coding: utf-8 -*- 

# --------------------------------------------------------------------------

- 

# Extraction_DEM.py 

# Created on: 2018-09-26 12:03:25.00000 

#   (generated by ArcGIS/ModelBuilder) 

# Usage: Extraction_DEM <DEM> <prsm_strmodr> <dem_heightFromRiver> 

<Processing_limit>  

# Description:  

# --------------------------------------------------------------------------

- 

 

# Set the necessary product code 

# import arcinfo 

 

 

# Import arcpy module 

import arcpy 

 

# Script arguments 

DEM = arcpy.GetParameterAsText(0) 

if DEM == '#' or not DEM: 

    DEM = "PRISM_DSM_Sub" # provide a default value if unspecified 

 

prsm_strmodr = arcpy.GetParameterAsText(1) 

if prsm_strmodr == '#' or not prsm_strmodr: 

    prsm_strmodr = "prsm_strmodr" # provide a default value if unspecified 

 

dem_heightFromRiver = arcpy.GetParameterAsText(2) 

if dem_heightFromRiver == '#' or not dem_heightFromRiver: 

    dem_heightFromRiver = 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\dem_heightFromRiver" 

# provide a default value if unspecified 

 

Processing_limit = arcpy.GetParameterAsText(3) 

if Processing_limit == '#' or not Processing_limit: 

    Processing_limit = "Processing_limit" # provide a default value if 

unspecified 

 

# Local variables: 

dem_masked = 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\dem_masked" 

dem_points = 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\dem_points" 

dem_points_with_str_FID = dem_points 

strOrder = "V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\strOrder" 

strOrder_Layer = "strOrder_Layer" 

streamPoints = 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\streamPoints" 

dem_points__2_ = streamPoints 

dem_points_with_Field = dem_points_with_str_FID 

dem_points_calculated = dem_points__2_ 

 

# Set Geoprocessing environments 
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arcpy.env.scratchWorkspace = 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\scratch.gdb" 

 

# Process: Extract by Mask 

arcpy.gp.ExtractByMask_sa(DEM, Processing_limit, dem_masked) 

 

# Process: Raster to Point 

arcpy.RasterToPoint_conversion(dem_masked, dem_points, "VALUE") 

 

# Process: Raster to Point (2) 

arcpy.RasterToPoint_conversion(prsm_strmodr, strOrder, "VALUE") 

 

# Process: Make Feature Layer 

arcpy.MakeFeatureLayer_management(strOrder, strOrder_Layer, "grid_code < 15 

AND grid_code > 1", "", "Shape Shape VISIBLE NONE;OBJECTID OBJECTID VISIBLE 

NONE;POINTID POINTID VISIBLE NONE;GRID_CODE GRID_CODE VISIBLE NONE") 

 

# Process: Extract Values to Points 

arcpy.gp.ExtractValuesToPoints_sa(strOrder_Layer, DEM, streamPoints, "NONE", 

"VALUE_ONLY") 

 

# Process: Near 

arcpy.Near_analysis(dem_points, 

"V:\\SOTEPostGrad\\mill0646\\tash0013\\Data\\Data.gdb\\streamPoints", "", 

"NO_LOCATION", "NO_ANGLE", "PLANAR") 

 

# Process: Add field for height above river 

arcpy.AddField_management(dem_points_with_str_FID, "HeightAboveRiver", 

"DOUBLE", "", "", "", "", "NULLABLE", "NON_REQUIRED", "") 

 

# Process: Join Field 

arcpy.JoinField_management(dem_points_with_Field, "NEAR_FID", streamPoints, 

"OBJECTID", "") 

 

# Process: Calculate Field 

arcpy.CalculateField_management(dem_points__2_, "HeightAboveRiver", 

"[grid_code] - [RASTERVALU]", "VB", "") 

 

# Process: Point to Raster 

arcpy.PointToRaster_conversion(dem_points_calculated, "HeightAboveRiver", 

dem_heightFromRiver, "MOST_FREQUENT", "NONE", DEM) 
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 Encapsulated Postscript for accuracy 

assessment model 

COMMENT "Generated from graphical model: 

v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/spatial 

model/accuracy assessment.gmd"; 

# CLASSIFICATION RESULT 

# FIELD DATA 

# 

# set cell size for the model 

# 

SET CELLSIZE MIN; 

# 

# set window for the model 

# 

SET WINDOW INTERSECTION; 

# 

# set area of interest for the model 

# 

SET AOI NONE; 

# 

# declarations 

# 

Integer RASTER n1_paro FILE OLD PUBINPUT NEAREST NEIGHBOR AOI NONE 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/post-

classification/thematic lu map/field raster/paro-rice-cldmsk-final.img"; 

Integer RASTER n2_tm FILE OLD PUBINPUT NEAREST NEIGHBOR AOI NONE 

"v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat image/post-

classification/thematic lu map/individual lu/individual lu-2011/tm-2011-rice-

sup-mlc-cldmsk-final.img"; 

Integer RASTER n3_rice FILE DELETE_IF_EXISTING PUBOUT USEALL ATHEMATIC 8 BIT 

SIGNED INTEGER "v:/sotepostgrad/mill0646/tash0013/data/crop season/l2 landsat 

image/post-classification/final-accuracy-map/rice-accuracy_positive.img"; 

# 

# function definitions 

# 

n3_rice = EITHER 3 IF ( $n1_paro==0 AND $n2_tm==0 ) OR (EITHER 2 IF ($n1_paro 

- $n2_tm LT 0) OR ($n1_paro - $n2_tm) OTHERWISE)  OTHERWISE ; 

QUIT; 
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 Land use land cover change map from 1995-2005 
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  Land use land cover change map from 2005-2011 
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 Land use land cover change map from 1995-2011 

 


