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ABSTRACT

Statistical language learning is the problem of applying machine learning tech-
nique to extracting useful information from large corpus. It is important in both
statistical natural language processing and information retrieval. In this thesis,
we attempt to build some statistical language learning and modeling algorithms
to solve some problems in both English and Chinese natural language processing.
These problems include context sensitive spelling correction in English, adaptive
language modeling for Chinese Pinyin input, Chinese word segmentation and

classification, and Chinese information retrieval.

Context sensitive spelling correction is a word disambiguation process to iden-
tify the word-choice errors in text. It corrects real-word spelling errors made by
users when another word was intended. We build large scale confused word sets
based on keyboard adjacency. Then we collect the statistics based on the sur-
rounding words using affix information and the most frequent functional words.
We store the contexts significant enough to make a choice among the confused
words and apply this contextual knowledge to detect and correct the real-word
errors. In our experiments we explore the performance of auto-correction under
conditions where significance and probability are set by the user. The technique
we developed in this thesis can be used to resolve lexical ambiguity in the syn-

tactic sense.

Chinese Pinyin-to-character conversion is another task of word disambigua-
tion. Chinese character can’t be entered by keyboard directly. Pinyin is the pho-
netic transcription of Chinese characters using the Roman alphabet. The process
of Pinyin-to-character conversion, similar to speech recognition, is to decode the

sequence of Pinyin syllables into corresponding characters based on statistical
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n-gram language models. The performance of Chinese Pinyin-to-Character con-
version is severely affected when the characteristics of the training and conversion
data differs. As natural language is highly variable and uncertain, it is impossible
to build a complete and general language model to suit all the tasks. The tradi-
tional adaptive maximum a posteriori (MAP) models mix the task independent
model with task dependent model using a mixture coefficient but we never can
predict what style of language users have and what new domain will appear. We
present a statistical error-driven adaptive n-gram language model to Pinyin-to-
character conversion. This n-gram model can be incrementally adapted during
Pinyin-to-Character converting time. We use a conversion error function to select
what kind of data to adapt the model. The adaptive model significantly improves

Pinyin-to-Character conversion rate.

Most Asian languages such as Chinese and Japanese are written without nat-
ural delimiters, so word segmentation is an essential first step in Asian language
processing. Processing at higher levels will be impossible if there is no effec-
tive word segmentation. Chinese word segmentation is a basic research issue on
Chinese language processing tasks such as information extraction, information
retrieval, machine translation, text classification, automatic text summarization,
speech recognition, text-to-speech, natural language understanding, and so on.
This thesis presents a purely statistical approach to segment Chinese sequences
into words based on contextual entropy on both sides of a bi-gram. It is used
to capture the dependency with the left and right contexts in which a bi-gram
occurs. Our approach tries to segment text by finding the word boundaries in-
stead of the words. Although developed for Chinese it is language independent
and easy to adapt to other languages, and it is particularly robust and effective

for Chinese word segmentation.

Traditionally Chinese words are not regarded being inflected with respect to
tense, case, person and number, this information is captured by separate words
that attach as clitics rather than affixes. Telling the part-of-speech of a word
is not straightforward. In this thesis we classify Chinese words according to the

substitutability of linguistic entities from the same class. We merge words/classes
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together based on contextual information and class overlapping.

Traditional information retrieval systems for European languages such as En-
glish use words as indexing units and thus cannot apply directly to Asian lan-
guages such as Chinese and Japanese due to lack of word delimiters. A pre-
processing stage called segmentation has to be performed to determine the bound-
aries of words before traditional IR approaches based on words can be adapted
to Chinese language. Different segmentation approaches, N-grams based or word
based, have their own advantages and disadvantages. No conclusion has been
reached among different researchers as to which segmentation approach is bet-
ter or more appropriate for the purpose of IR even on standard Chinese TREC
corpus. In this thesis we investigate the impact of these two segmentation ap-
proaches on Chinese information retrieval using standard Chinese TREC 5 & 6
corpus. We analyze why some approaches may work effectively in some queries
but work poorly in other queries. This analysis is of theoretical and practical

importance to Chinese information retrieval.
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