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ABSTRACT 

Ecklonia radiata is the dominant macroalgae, the defining feature of the Great Southern Reef (GSR) 

and the only laminarian kelp in most of its distribution. Hence its services are environmentally, 

ecologically and socioeconomically important. Despite E. radiata’s resilience to some temperature 

increase, it is reported that climate change related shifts can affect the early development of the 

species and had led to its loss. Therefore, there is a need to explore easy-to-use and rapid methods 

to monitor E. radiata. This research explores the use of Unmanned Aerial Vehicle (UAV) images to 

estimate the percentage of E. radiata in Aldinga Reef, South Australia, using a simple empirical 

classification model and explores optimal observational conditions to detect E. radiata from UAV 

images. The optimum observational conditions were explored by flying UAV at varying conditions. 

Images were captured over shallow intertidal (Zone I) and deeper subtidal (Zone S) environments at 

a UAV flying altitude of 20 m. Supervised Support Vector Machine (SVM) was used in ArcGIS Pro 

to classify them. SVM classification results were compared with in-situ validation and an accuracy 

assessment was carried out. The results show that it is recommended to collect UAV images at low 

tide and bright sunlight without cloud cover. This is because water attenuation with depth (i.e high 

tide) and lower light intensity (cloud cover) reduces the red spectral reflectance of E. radiata making 

it spectrally similar to other aquatic vegetation. UAV oblique images can capture E. radiata when 

UAV heading is aligned to sun azimuth with the sensor facing away from the sun and when UAV tilt 

is aligned to sun elevation above horizon angles. In intertidal zones, UAV nadir and oblique images 

can capture E. radiata at higher sun altitude angles (41◦) and with higher windspeeds (30km/hr) than 

recommended. In subtidal zones, images can be captured with higher sun altitudes and windspeeds 

than recommended to a certain degree of success, when overlapping UAV images are captured. 

The SVM classification model proposed can be used to classify and estimate E. radiata cover 

accurately in intertidal and shallow subtidal areas. However, in deeper subtidal zones the accuracy 

of this method was low. This method can be improved with the use of high spatial resolution 

bathymetry data to carry out water column correction. The use of sensors with higher radiometric 

resolution and exposure control can help better correct for illumination change in oblique images.   
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1  INTRODUCTION 

This research explores the use of UAV (Unmanned Aerial Vehicle) images to estimate the 

percentage of Ecklonia radiata in Aldinga reef using a simple empirical classification model and the 

optimal environmental conditions to detect Ecklonia radiata from UAV images captured over water. 

1.1 Rationale 

Ecklonia radiata (E.radiata) is a subtidal brown macroalgae that can be found globally. It is a common 

kelp found in the temperate reefs of Australasia and southern Africa (Wernberg et al. 2019b). In 

Australia, E. radiata is commonly known as the Golden Kelp (ALA 2021) possibly due to its unique 

golden colour as seen in Figure 1:1.  It is the most dominant macroalgae in the temperate reefs of 

Australia (Wernberg et al. 2019b). The presence of E. radiata is described as a significant feature of 

shallow temperate reefs of Australia, and its continuous span across 8000 kilometres of the southern 

coastline from Western Australia to New South Wales makes it a defining feature of the Great 

Southern Reef (GSR) (Bennett et al. 2016a) (see  Figure 1:2). It is also considered the only 

laminarian kelp throughout its range that provides habitats, biodiversity and environmental services 

and hence is ecologically and socioeconomically very important (Wernberg et al. 2019b) 

Figure 1:1 Ecklonia radiata (Golden Kelp) in rockpools of Aldinga Reef (photo credit to Hussain 

(2021)) 

Image removed due to copyright restriction.
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Figure 1:2 Ecklonia radiata distribution in the Great Southern Reef (GSR) (adapted image from 

(Bennett et al. 2016a) using data from (ALA 2021)) 

Climate change has been a major threat to kelp forests throughout the world (Mabin et al. 2013). 

Despite the characteristic resilience of E. radiata to some temperature increase (Bennett et al. 

2016a), it is reported that climate change related shifts such as the strengthening of the East 

Australian Current (EAC) and ocean warming, can affect the early development of the species 

(Mabin et al. 2013). Furthermore, there have been observed incidents of E. radiata loss to climate 

change resulting in turfing algae taking over those areas previously inhabited by E. radiata 

(Wernberg et al. 2019b). Therefore, studying the distribution patterns and understanding the factors 

that describe the distribution patterns of E. radiata is important for better understanding the species 

for climate change adaptation and mitigation.   

South Australian Coastlines make up 50% of the GSR and there have only been a few large-scale 

surveys and studies (Brook et al. 2020; Cheshire & Westphalen 2000; EPA 1998; Turner, Kildea & 

Westphalen 2007) on the distribution of macroalgae in South Australia in recent decades. The aim 

of most of these studies such as Brook et al. (2020); Cheshire and Westphalen (2000); EPA (1998); 

Turner, Kildea and Westphalen (2007) was to assess the overall health of these rocky reefs and 

some of the recent studies used the presence of the broader macroalgae cover as an indicator of 

Image removed due to copyright restriction.
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reef health. However, there is a key research gap in terms of a focus on mapping kelp and specifically 

E. radiata in the South Australian context. Furthermore, most of the aforementioned studies that

assessed reef health, except for EPA (1998), were based on data collection using field methods 

such as line transects by SCUBA divers which utilized a lot of human effort and time in collecting 

data. Yet, there are studies like EPA (1998) which has employed some aerial images to collect data. 

Aside from that early study, there are no other studies that have used mapping of E. radiata with 

optical remote sensing methods in South Australia.  

The existing studies reported a lower cover of macroalgae in Adelaide Metropolitan Coastlines 

linking the decline with impacts from development of the coastline and lack of suitable benthic 

structure for settlement of spores (Brook et al. 2020; Turner, Kildea & Westphalen 2007). Turner., 

Kildea and Westphalen (2007) reported an abundance of larger brown macroalgae in Aldinga Reef 

between 1996 and 1999, and a significant increase in cover, between 30-40% from1996 to 1999 in 

the area. However, the report by Brook et al (2020) observed a decline in brown macroalgae between 

2017 and 2018. This observation of declines of macroalgae at Aldinga Reef is alarming especially 

because of its history of conservation since 1971 to date.   

The gap in research on E. radiata in a South Australian context and from an aerial optical remote 

sensing perspective, makes this a significant area of interest for research. With the increasing impact 

of climate change on kelp populations, despite the high resilience of E. radiata to environmental 

change compared to other kelp species, there is an urgent need to map and observe changes more 

frequently. The potential of the species to adapt and mitigate the impacts of climate change, its 

ecological and socioeconomic significance, and its role in defining the GSR make it invaluable for 

future preservation of southern temperate rocky reefs. Aldinga reef has a reported high macroalgae 

cover, with E. radiata forming a large proportion of it, yet with the recent decline in canopy forming 

macroalgae is concerning considering the reef’s conservation status as a Marine Park. Therefore, 

research with a purpose of using geospatial science to map the distribution of Ecklonia radiata 

(Golden Kelp) at Aldinga Reef, South Australia will be important for establishing easy-to-use, rapid 

monitoring (e.g using remote sensing) in future, which is the proposed aim of this study.  

1.1.1 Research Objectives 

The research objectives for the study are as follows. 

1. To what extent does previous literature explain the optimum environmental conditions

needed for benthic remote sensing using UAV imagery and the environmental conditions that

contribute to variation in the distribution of Ecklonia radiata.

2. To what extent can E. radiata (Golden Kelp) be mapped using multispectral imagery;

3. What are the optimum observational conditions for mapping Ecklonia radiata using UAV

imagery over Aldinga Reef? and;



4 

4. What is the potential to estimate the percentage cover of Ecklonia radiata in Aldinga Reef

using UAV multispectral imagery?

1.2 Study Area: Aldinga Reef 

Aldinga Reef is a temperate limestone rocky reef at Aldinga in the Gulf of St. Vincent, South Australia 

(DENR 2010; Wegener 1995). The intertidal zone of Aldinga reef is of Tertiary age (Wegener 1995). 

Aldinga reef was declared an Aquatic Reserve in 1971 (Wegener 1995). With an area of 505 

hectares, it was the largest Aquatic Reserve in South Australia when reported by Wegener in 1995. 

and it remains a large Marine Park Sanctuary Zone in Fleurieu Peninsula. Aldinga Aquatic Reserve 

falls under Encounter Marine Park (DENR 2010) due to the reef being an important nursery for a 

variety of organisms (Wegener 1995). Figure 1:3 shows the spatial extent of Aldinga Aquatic 

Reserve. 

Figure 1:3 Aldinga Reef Encounter Marine Park Sanctuary Zone (data from NPSA (2016)) 

Aldinga Reef is divided into three distinct sections (Wegener 1995). The first section is the large and 

shallow intertidal platform which gets exposed during low tide (Wegener 1995) (see Figure 1:4). This 

area also has sandy rock pools (Wegener 1995) mostly located at the edges of the intertidal zone. 
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The second section is the subtidal zone extending out from the edge of the intertidal zone to the reef 

edge commonly known as “the drop off” (Wegener 1995). This reef edge is located around 500 

meters out from the low tide range of the intertidal zone (Wegener 1995). The last section is the 

deep reef further out to sea (Wegener 1995).  

Figure 1:4 An image of Aldinga Reef at a low tide with its dune system on the foreground and the 

intertidal zone between the beach system and the sea (photo credit to Hussain, 2021) 

The information on the depth variation of Aldinga reef is not very comprehensive. According to 

Wegener (1995), the depth at which “the drop off” is located is 10 m. Clarke, et al. (2019) gave a 

general range of depth for Aldinga Reef between 10 m to 18 m and Cheshire and Westphalen (2000) 

divided the reef into Aldinga shallow (5-6 m depth) and Aldinga deep (12-12.5 m depth) based on 

where sampling was carried out in their studies. The reef platform is described as gently sloping with 

occasional outcrops (Cheshire & Westphalen 2000). A NatureMaps profile line that runs across 

Aldinga Reef (Figure 1:5) shows a depth profile along the line and the variation in depth over time. 

This profile may have been used to describe the depth variation by Wegener (1995) and Cheshire 

and Westphalen (2000). However, high spatial resolution bathymetry data that can show detailed 

depth variation in the reef is not available.    

Image removed due to copyright restriction.
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Figure 1:5 Coastal Monitoring Profile Line 200054 over Aldinga Reef showing profiles from 1976 to 

2018. It also shows highest and lowest astronomical tides (HAT and LAT) in AHD. The subtidal zone 

and intertidal zone are marked on the map along with the Zone I and Zone S used in this research 

(adapted from a figure developed by Michael Hillman (2021) using data acquired from NatureMaps 

(2021)) 

The Gulf of St Vincent in which Aldinga reef is located is protected from swells from the Southern 

Ocean due to the location of Kangaroo Island at the mouth of the gulf (Short 2020). Its orientation 

blocks the entrance of swells except through the larger 40km Investigator Strait and through the 

narrower 14km Backstairs Passage (Short 2020). Therefore, the highest energy swells enter the gulf 

from a south westerly direction (250˚) (Short 2020; Western et al 2021a). However, the energy from 

these swells is dissipated through wave refraction, diffraction, and bottom friction (Western et al 

2021a) to generate low energy waves as it reaches Aldinga Reef (Western et al 2021b). In addition 

to the swells, the south-eastern coastline of the gulf is affected by wind generated waves that change 

direction seasonally from north-west in winter to south-west in summer (Short 2020). The 

contribution of sediment from rivers and creeks to the gulf is minimal (Western et al 2021a;b). The 

sediment drift direction along the eastern coastline is northwards (Short 2020; Western et al 2021a) 

with sediment deposited at three barrier systems where Sellicks-Aldinga is one of the smaller barriers 

systems (Short 2020). However, this sediment flow is predicted to decline in the future (Western et 
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al 2021b). As a result the net littoral drift of sediment is in the northerly direction along the coastline 

(McDowell, Green & Griffante 2009). Northward moving sediment plumes have been observed by 

Kinhill Engineers (1978; cited in Wegener 1995). Both Kinhill Engineers (1978) and Wegener (1995) 

state that the sediment from southern catchments, especially Sellicks Creek Catchment, impacts 

Aldinga Reef. Wegener (1995) identified stormwater drains as the main source of nutrients in Aldinga 

Reef waters but concluded that its impact was negligible. Furthermore, erosion of Aldinga soft 

sediment dunes is an issue highlighted in the Coastal Adaptation Study for the area (Western et al. 

2020) Stormwater drains located in Aldinga can be seen in Figure 1:6 

Figure 1:6: Storm water drains that end along the coastline adjacent to Aldinga Reef (data from 

DEW (2019)) 

Aldinga Reef is predominantly composed of brown macroalgae from the orders Laminariales and 

Fucales (Cheshire & Westphalen 2000). The most common brown macroalgae species present 

includes Sargassum spp, Hormosira banksia (seagrape) and Ecklonia radiata (Wegener 1995). 

Kinhill Engineers (1978; cited in Wegener 1995) observed that the subtidal zone of Aldinga Reef is 

dominated by E. radiata and Edyvane (2008) describe E. radiata as one of the dominant species 

along with others such as Cystophora spp. and Sargassum spp.. There are no studies that describe 

the detailed distribution pattern of E. radiata in Aldinga reef. 
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1.3 An Outline of the Thesis 

The thesis with be structured into six chapters 

Chapter 1:  Introduction 

This chapter introduces the research topic, explain the rationale and objectives of the research, 

introduces the study area, and include a brief outline of the thesis structure. 

Chapter 2: Literature Review 

This chapter is divided into three sections. The first section discuss literature on remote sensing 

methods that can be used to detect Ecklonia radiata. This section begins with the basic concepts of 

optical aerial remote sensing for benthic habitat mapping. This is followed by discussing the 

confounding issue of light attenuation and sun glint and the common methods used to overcome 

these issues. Finally, it focuses on the use of Unmanned Aerial Vehicles (UAV) for benthic mapping 

and the best practices and optimal environmental conditions for its successful use in benthic habitat 

mapping. The second section discuss image classification methods. It begins with an introduction of 

main classification methods and its uses and focus on machine learning algorithm Support Vector 

Machine (SVM). The third section is on E. radiata. This section deals with its classification, 

reproduction, factors that contribute to its distribution and its future threats. It also includes literature 

on the reflectance spectra of E. radiata.  

Chapter 2: METHODS  

Methods section explains the methods and the rationale behind selecting them. This section is 

divided into seven stages. Stage one is preplanning for fieldwork, followed by stage two; the 

preliminary survey to test out environmental conditions suitable for mapping E. radiata in Aldinga 

Reef. The third stage is the collection of UAV imagery over validation sites and in Zone I and Zone 

S of Aldinga Reef to estimate E. radiata percent cover. The fourth and fifth stages are pre-processing 

of imagery followed by image classification using supervised object-oriented Support Vector 

Machine (SVM) method. The sixed stage is in-situ data validation and the seventh is Accuracy 

Assessment.  

Chapter 4 RESULTS 

This section reports the results of the research from preliminary data collection, from classification 

outputs and from insitu validation and accuracy assessment. It reports the optimum environmental 

conditions for the mapping of E. radiata using UAV imagery in Aldinga Reef, the differences in the 

distribution of E. radiata observed in validation sites and the percentage cover of E. radiata in Zone 

I and Zone S of Aldinga Reef.  
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Chapter 5 DISCUSSION 

In this chapter the results from the research will be discussed with the use of previous literature. The 

discussion will be used to establish the optimum environmental conditions required to map E. radiata, 

to explore the extent to which UAV RGB imagery can be used to map E. radiata, to link the variation 

in E. radiata distribution in validation site with possible factors that contribute to variation in its 

distribution, and discuss the accuracy at which E. radiata in Zone I and Zone S can be used to 

estimate the percent cover of E radiata in Aldinga Reef.  

Chapter 6 CONCLUSION AND RECOMMENDATION 

This chapter summaries key findings in terms of the research objectives. It summaries the discussion 

of the optimum environmental conditions for E. radiata mapping using UAV imagery, the extent to 

which UAV imagery can be used to map E. radiata and the accuracy at which E. radiata can be 

estimated in Zone I and Zone S of Aldinga Reef along with the estimated values.   
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2 LITERATURE REVIEW 

2.1 Remote Sensing of Ecklonia radiata 

The traditional method of biodiversity monitoring involves sampling a small area of a reef using 

quadrat or transect samples (Underwood 2000).  Although this method is accurate to estimate an 

overall species cover, it does not provide information on smaller scale variations in the reef structure 

that may contribute to variation in the distribution of species (Murfitt et al. 2017). Furthermore, 

replicating the data collected over intertidal zones with variable wave and tide conditions, can be 

labour intensive, time consuming, and therefore expensive (Murfitt et al. 2017). Optical remote 

sensing is a proposed rapid method solution to this problem. 

2.1.1 Remote Sensing and Types of Resolution 

Remote sensing data are collected using passive or active remote sensing methods. Passive remote 

sensing is when a sensor records electromagnetic radiation emitted from the target to observe and 

study it (Jensen 2015). On the other hand active remote sensing involves the use of an active sensor 

which is one that emits energy such as radio waves (in RADAR), light (in LiDAR) or sound (in 

SONAR) and then the time taken for radiative flux to get scattered back to the sensor is measured 

(Jensen 2015). This study focuses on the use of passive optical sensors for collecting data.  

Spectral resolution is the size of wavelength intervals (also known as bands or channels in the 

electromagnetic spectrum that the remote sensing instrument is sensitive to (Jensen 2015).  The 

term hyperspectral is used to refer to a sensor that usually has more than 100 bands (Hedley, J et 

al. 2016). While multispectral sensors are those that record multiple bands and multiple bands, which 

are typically 4 to 5 bands including the visible and infrared bands (Jensen 2015).   

Spatial resolution refers to the measurement of the smallest angular or linear separation between 

two objects that can be resolved with remote sensing (Jensen 2015). This smallest unit is usually 

observed in digital imagery as rectangular pixels and the measurement of their dimensions (for 

example 1m x 1m) on ground is used to describe the spatial resolution of an image (Jensen 2015). 

Spatial resolution of imagery can be divided based on pixel sizes into very high (<1m), high (1-10m) 

moderate (10-100m) and low (100-1000m) (Hedley et al. 2016). Higher spatial resolution imagery 

usually covers smaller areas in space (less than 100km²) in comparison to moderate and low spatial 

resolution imagery (10,000s km²) (Hedley et al. 2016).  

Radiometric resolution describes the sensitivity of a sensor to detect differences in signal strength 

when recording radiant flux and is quantified in digital image outputs as number of bits (Jensen 

2015). Temporal resolution describes the frequency of resampling on a specific location by a sensor 

(Jensen 2015). This review will focus more heavily on spectral and spatial resolution.   
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2.1.2 Benthic Habitat Mapping using optical remote sensing 

Benthic habitat maps record the spatial location of areas that are associated with certain species, 

their communities and its assemblages (Harris & Baker 2012). It is useful for applications such as 

marine environmental management and identifying areas for conservation which is useful 

information for decision makers (Harris & Baker 2012) Benthic habit mapping using passive optical 

remote seeing methods use the visible wavelengths of the electromagnetic spectrum (i.e. 

wavelengths approximately between 400-740nm), because it is the wavelengths within the visible 

spectrum that penetrates water (Hedley et al. 2016). Therefore, optical remote sensing methods for 

benthic mapping are restricted to shallow water environments that can be penetrated by visible light 

(Brown et al. 2011) 

2.1.3 Light attenuation in water 

Figure 2:1: Water absorption curve of the visible spectrum in water (Figure 12 in Pope and Fry (1997) 

Light attenuation is the process of the exponential loss of light intensity as it enters water (Green et 

al. 2000). Loss of light intensity is quantified by a coefficient c, that is measured in unit per meter 

(Davies-Colley et al. 2014). The cause of this loss of light energy is absorption and scattering of light 

(Green et al. 2000). Absorption of a wavelength removes it altogether whereas scattering changes 

the direction and propagation of the light beam increasing its chances of getting absorbed (Gallegos 

& Moore 2000). Figure 2:1 shows the absorption of visible spectrum in pure water. Absorption is 

mostly caused by the water column itself, suspended and dissolved material in the water and the 

underlying substrate and benthos (Green et al. 2000). Scattering is caused by inorganic or organic 

Image removed due to copyright restriction.
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particulate matter, and suspended load such as sediment in the water (Green et al. 2000). The rate 

of energy loss from light attenuation varies for different wavelengths (Green et al. 2000). For 

example, the red band of the visible spectrum attenuates faster than the shorter waved blue band 

(Green et al. 2000). As a result of this process, the separability of substrates and benthos based on 

spectra declines with increasing depth of water and consequently the spectral signature of the same 

substrate is different in shallower water verses deeper water (Green et al. 2000).  

Light attenuation from pure water alone can vary for different wavelengths and with depth (Gallegos 

and Moore 2000). Gallegos and Moore (2000) states that light attenuation due to water alone was 

recorded as 0.038m-1 by Lorenzen’s (1972). Gallegos (1994) shows how light attenuation changes 

from 0.16-0.13m-1 when water depth is varied from 1 to 3 meters.  

Fine mineral sediments, organic matter, and particles, especially in eutrophic water attenuates lights 

strongly by scattering of light (Davies-Colley et al. 2014). The scattering is stronger with the presence 

of fine particles and this peaks at around 1.2μm in diameter for near spherical mineral sediments, 

and his value is different in organic matter because of changes in density and reflective index 

(Davies-Colley et al. 2014). The light scattering peaks at around 5 μm in organic particles such as 

phytoplankton cells and detritus (Davies-Colley et al. 2014).  

Turbidity of water can increase the sediment load in water and in turn increase the scattering of light 

(Green et al. 2000). Turbidity in many coastal areas generally increases in a seaward direction with 

increase in depth of water, however it cannot be generalised as many other factors contribute to 

variability in turbidity of coastal areas (Green et al. 2000) 

Therefore, the spectral radiance captured by a sensor depends on both the reflectance measured 

and the water depth at which it is located, light attenuation from suspended and dissolved particles 

and light absorption by various benthic components underneath (Green et al. 2000). As a result, 

attenuation of light in water is a challenge when using a remote sensor over water to map the 

substrate and benthos underneath due to the confounding effect of changes in spectral signature 

with increasing depth (Green et al. 2000).  

2.1.4 Water Column Correction 

The impact of light attenuation on the reflectance spectra because of increasing water depth, can be 

removed if depth and water attenuation characteristics of the waterbody can be acquired (Green et 

al. 2000; Mumby et al. 1998). Usually, depth information is required for each pixel of the image 

collected and therefore bathymetry data or a good digital elevation model that corresponds to pixel 

level detail of the image is required (Green et al. 2000; Mumby et al. 1998). However, acquiring 

accurate field bathymetry data is a challenging process in shallow water coastal environments 

(Kutser et al. 2020). Acquiring field survey data, such as echosounder data using a sea vessel, is 
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challenging because of the difficulty to access shallow water with the danger from reef structures 

and rocks (Kutser et al. 2020). Bathymetry data from satellite and aerial imagery may cover a larger 

extent in area (Agrafiotis et al. 2019) but they are not very useful to correct light attenuation in water 

of very high spatial resolution images due to mismatch of bathymetry and image pixels (Green et al. 

2000) (i.e.  with the large pixel sizes in satellite and aerial image derived bathymetry). UAV derived 

bathymetry is a time consuming and a costly process (Agrafiotis et al. 2019). Yet it is being 

considered a more efficient method of bathymetry data collection in shallow waters of less than 10 

metres, even though image-based bathymetry is heavily influenced by wave action and water clarity 

(Agrafiotis et al. 2019)   

2.1.5 Atmospheric effects 

Figure 2:2 A simplified schematic of atmospheric interference and the passage of electromagnetic 

radiation from the Sun to the satellite sensor (Figure 7.1 in Green et al. (2020)) 

Image removed due to copyright restriction.
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Scattering and absorption of light is not only an issue in the water column but also initially occurs in 

the atmospheric column even before reaching the water (Green et al. 2000) (see Figure 2:2). 

Absorption of light occurs by gas particles such as carbon dioxide, ozone and water vapour 

molecules and other aerosols (Green et al. 2000). The aerial and satellite remote sensing methods 

try to use wavelengths with minimum absorption, which are known as transmission windows (Green 

et al. 2000). This includes visible to near infrared (300-1300nm), middle infrared (1500-1800 nm, 

2000-2500 nm and 3500-4100 nm) and thermal infrared (7000–15000 nm) (Green et al. 2000). 

Scattering of light in the atmosphere occurs as a result of its interaction with atmospheric gasses 

and water vapour (less than 100μm), most other airborne particles or aerosols (usually greater than 

1μm) and rain droplets and ice (greater than 10μm) (Green et al. 2000). Atmospheric absorption and 

scattering causes haziness in imagery as pixels in the image incorporate the scattered reflectance 

from the neighbouring pixels or adjacency effect (Green et al. 2000).  

2.1.6 Atmospheric Correction or Radiometric Correction 

Atmospheric correction can be used to address some of the problems with scattering and absorption 

of light and is usually carried out through three approaches; removal of path radiance, direct 

calibration using field-derived reflectance and atmospheric modelling (Green et al. 2000) such as 

the radiative transfer model (Schläpfer, Popp & Richter 2020). Removal of path radiance involves 

the removal of scattering effects by establishing the path radiance with the use of prior to band 

ratioing to cancel out atmospheric transmittance and topographic effects (Green et al. 2000). Field 

derived reflectance methods measure reflectance of two or more regions of the area with the use of 

a spectral radiometer on field and convert the image acquired to reflectance using a linear 

extrapolation method (Green et al. 2000). Atmospheric modelling is a complex method that uses 

existing knowledge of the amount of atmospheric absorption and scattering to develop a model that 

can predict the result of electromagnetic radiation acquired by the sensor and then uses this to 

correct the issue on the image (Green et al. 2000).  

The atmospheric issues presented by different sensors capturing imagery at varying altitude have 

many similarities such as absorption and scattering by aerosols, water vapour and other gases but 

there are differences to some extent (Schläpfer, Popp & Richter 2020). For instance, satellite 

imagery are affected by factors such as cloud cover along with scattering from aerosols and its 

related adjacency effect which is stronger because of the low spatial resolution of images (Green et 

al. 2000; Tait et al. 2019). In contrast, due to the low flying altitude of UAVs, the adjacency effect is 

reduced. Furthermore, due to the low spatial extent of images captured from UAVs, the aerosol and 

water vaper effect may be considered constant (Schläpfer, Popp & Richter 2020). Such differences 

lead the development of separate atmospheric models such as the DROACOR model by Schläpfer, 

Popp and Richter (2020), which is a very new area of research.  



15 

2.1.7 Confounding Effect of Sun-glint 

Other than the complex issue of light attenuation and water depth the most confounding issue when 

collecting images over water is sun glint. Sun glint is defined by Kay, Hedley and Lavender (2009) 

as the mirror like reflection generated over water by the direct reflectance of sunlight from the surface 

of water. It is captured as bands of bright white reflectance over water when the sun is bright but the 

water is not flat due to wave movement (Hedley, Harborne & Mumby 2005; Mustard, Staid & Fripp 

2001). Any information underneath these white bands is lost (Hedley, Harborne & Mumby 2005) 

limiting the amount of data captured and its accuracy (Kay, Hedley & Lavender 2009). Therefore, 

sun glint is a major issue that affects the image classification process and its accuracy (Hedley, 

Harborne & Mumby 2005). Sun glint is formed on the windward side of waves (Hedley, Harborne & 

Mumby 2005) and is influenced by  wind speed, the length and height of the waves, swell conditions 

and should coincide with favourable sun angle or viewing geometry (Mustard, Staid & Fripp 2001; 

Tait, Orchard & Schiel 2021)   

2.1.8 Sun-glint removal 

There are various methods used to remove sun glint from images captured over water. These 

methods were divided into two broad classes by Kay, Hedley and Lavender (2009). The first set of 

methods uses radiative transfer models along with statistical models of the state of the sea to predict 

the amount of light reflected from the water surface. The statistical models predict the probability of 

sea surface roughness causing sun glint using the speed and direction of the wind (Kay, Hedley & 

Lavender 2009). The speed of the wind is assumed to be related to roughness of the sea surface 

(Cox & Munk 1954). This method is usually used for imagery with larger pixel sizes (Kay, Hedley & 

Lavender 2009).   

The second method is applicable for images with pixel sizes smaller than 10m (Kay, Hedley & 

Lavender 2009). It uses reflectance from (Near Infra-Red) NIR which is rapidly absorbed by water 

and therefore is used as a proxy of the amount of sun glint in a pixel (Kay, Hedley & Lavender 2009). 

This method assumes NIR is rapidly absorbed by water (Kay, Hedley & Lavender 2009). However, 

in shallow waters with aquatic vegetation such as seagrasses and macroalgae, NIR and parts of 

SWIR of the spectrum is reflected as all types of vegetation have a high reflectance in this spectrum 

(Kutser, Vahtmäe & Praks 2009). This is especially true if the vegetation reaches the water surface 

or is separated by a thin layer of water in shallow water environments. (Kutser, Vahtmäe & Praks 

2009). Some methods such as the de-glinting algorithm by Hochberg, Andrefouet and Tyler (2003) 

uses Near Infra-Red (NIR) to remove sun glint. When NIR is not available sun glint can be removed 

from hyperspectral images by using the depth of the oxygen absorption feature at 760 nm which is 

assumed to be proportional to the amount of glint in the pixel (Kutser, Vahtmäe & Praks 2009). 
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Sun glint can also be removed by a much simpler method by flying the sensor towards or away from 

the sun as explained by Mustard, Staid and Fripp (2001). It is recommended to carefully plan the 

flight to ensure the implementation of sun glint reduction considerations such as setting the flight 

path to head towards or away from the sun when the sun altitude is 30-60˚ (Mustard, Staid & Fripp 

2001). However, Mount (2005) explains that the recommended time frame for capturing nadir images 

(pointing vertically straight down) is very limited because of the effects created by the water surface 

due to sun angle, reflection and refraction. The time frame recommended by  Mount (2005) is a very 

short duration in the morning when the sun angle is high enough to illuminate the water but before it 

is too high to cause sun glint and before the sea breeze starts for the day. Mount (2005) disagree 

with Mustard, Staid and Fripp (2001) regarding images captured above sun altitudes higher than 30-

35˚. Mount (2005) explains that nadir images that are captured when the sun angle is greater than 

30-35˚ are likely to capture sun glint in the direction of the sun azimuth. Furthermore, images

captured with wind speed greater than 9 to 18 km/hr will contain sun glint because of glitter diameters 

and increased multiple scattering (Mount 2005). However, when sun angle is lower than 20-25˚ 

sunlight penetrating the water is limited (Mount 2005). Therefore Mount (2005) establishes that a 

sun altitude between 20-30˚is the ideal time for nadir image capture and this agrees with 

recommendations from (Joyce et al. 2019).  

2.1.9 UAV Image Capture Over Shallow Water 

Several factors such as need of the user, scale of the study area, availability of funds and resources 

and the skill of the user influence the selection of the remote sensing method for data collection (Lu 

& Weng 2007). However, the most important factor is the spatial extent and image resolution at 

which the user needs information (Lu & Weng 2007). Despite advancements in satellite imagery, 

easily accessible satellite imagery does not provide the high spatial resolution that is suitable for 

benthic mapping of reefs (Roelfsema et al. 2018a). Consequently, to map reef habitats there is a 

need to acquire expensive commercial satellite imagery for larger spatial extent or UAV imagery for 

smaller spatial extent (Joyce et al. 2019; Roelfsema et al. 2018a). Furthermore, satellite imagery 

over shallow water environments are affected by factors such as cloud cover, aerosols in air and 

poor synchronisation with ideal tidal conditions (Tait et al. 2019). UAVs (Unmanned Aerial Vehicles), 

are known as Remotely Piloted Aircrafts (RPAs) or drones, have the high spatial resolution which 

can be adjusted to the users need by varying the flying altitude to very fine accuracies (eg mm to cm 

accuracy) (Flynn & Chapra 2014; Riniatsih et al. 2021). High spatial resolution reduces the issue of 

misclassification (Lu & Weng 2007). It provides control and flexibility for the user to deploy it at the 

exact time and place of interest and at every frequency needed (Joyce et al. 2019). This control by 

the user solves some traditional issues such as poor synchronisation with desired tides and weather 

conditions that satellite images commonly present (Tait et al. 2019). However, some advantages 

such as the ability to capture more detail from low flying altitudes presents other issues like shadow 
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(Lu & Weng 2007). Furthermore, the need for textual and contextual information becomes more 

significant in the image classification process (Lu & Weng 2007).  

2.1.10 Environmental Conditions for Image Collection Over Shallow Water 

Image capture over shallow water for benthic habitat mapping is challenged by issues such as light 

attenuation in water, which is primarily based on depth of water and complicated by factors such 

water turbidity, sedimentation, and nutrient load (Davies-Colley et al. 2014; Gallegos & Moore 2000; 

Green et al. 2000). Therefore, it is no surprise that it is recommended to collect images at the lowest 

tide possible over shallow water (Tait, Orchard & Schiel 2021) and to avoid capturing images when 

water is turbid to improve visibility (Tait et al. 2019). It is recommended to fly the sensor when wind 

speeds are lower than 18 km/hr and when the sun altitude is ideally between 25˚ to 35˚ with the 

sensor moving towards or away from the sun azimuth to minimise the effect of sun glint in nadir 

images (Mount 2005; Mustard, Staid & Fripp 2001).  

2.2 Image Classification 

Image classification usually begins by identifying an appropriate classification algorithm, pre-

processing of images, training the algorithm, image processing to extract features, and accuracy 

assessment (Lu & Weng 2007). Some of the major types of digital image processing includes image 

pre-processing (i.e. that includes radiometric and geometric correction), image enhancement, 

photogrammetric image processing of stereoscopic images, and parametric and non-parametric 

information extraction, expert system (eg decision tree) and neutral network image analysis, 

hyperspectral data analysis and change detection (Jensen 2015). This review will touch upon image 

pre-processing and major image classification methods. 

2.2.1 Image pre-processing 

Radiometric correction involves correcting the effects of noise introduced into the system from the 

sensor and from the environment; for example from atmospheric scattering of light which can be 

usually corrected by simple normalisation techniques or more advanced absolute radiometric 

calibration of the data to scaled surface reflectance (Jensen 2015).  

Geometric correction involves positioning imagery into its correct planimetric position in a standard 

map projection (Shepherd et al. 2014) to ensure accurate use of imagery to extract spatial 

information (Jensen 2015) such as area of coverage by a habitat. Two most common geometric 

correction includes, georeferencing and mosaicking. Georeferencing is aligning an image to its 

geographical coordinate system so that what is measured on the image represent measurements 

on ground (Selvaraj 2021). This is most accurately done when targets are captured in imagery with 

that represents ground control points (GCPs) which have known coordinate location values (usually 

measured with RTK equipment of handheld GPS systems with accurate positioning capability 
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(Selvaraj 2021). Mosaicking is the process aligning together multiple such georeferenced images 

into one image (Selvaraj 2021). This is usually done with software such as Pix4D Mapper that can 

automatically perform radiometric calibration, geometric corrections, georeferencing and mosaicking 

(Selvaraj 2021). 

2.2.2 Key Image Classification Approaches 

Image classification methods have been grouped in various ways. Lu and Weng (2007) classify types 

of image classification to supervised or unsupervised approaches, parametric and nonparametric 

classifiers, hard and soft (fuzzy) classification, pixel classification, empirical and knowledge or 

physics based and various combining various approaches. All the various groupings of classification 

will not be discussed here. This review will discuss the relevant classification approaches for my 

study that includs visual interpretation, supervised and unsupervised classification, parametric and 

non-parametric classification, pixel and spectral classification, object-oriented classification and will 

finally focus on machine learning and Support Vector Machine (SVM) classifier.  

Visual Interpretation 

Visual interpretation is an image classification method for benthic mapping began with visual 

interpretation of aerial photography with habitats identified and marked to create habitat maps 

(Kutser et al. 2020). This method, although subjective, is still practiced in shallow water benthic 

mapping because the ability of an expert to visually interpret benthic habitats from images cannot 

be challenged by developments in artificial intelligence technologies such as machine learning or 

deep learning (Kutser et al. 2020). However, machine interpretation and quantification methods of 

digital imagery has the advantage of automation and the reduction of effort from the user increasing 

productivity and repetition (Kutser et al. 2020)   

Supervised and Unsupervised Classification 

Automated image classification in benthic mapping can either be supervised or unsupervised (Kutser 

et al. 2020). Unsupervised classification is when the algorithm delineates classes based on 

mathematical principles of clustering and similarity initially to as many classes possible (Hedley et 

al. 2016; Kutser et al. 2020). These classes are then grouped if needed and named by the operator 

based on fieldwork or experience (Green et al. 2000). Image classification can be supervised when 

the classifier is provided guidance of what is found where (Hedley et al. 2016). This guidance can 

come from fieldwork which may be used to train the classifier to identify classes (Roelfsema et al. 

2018b). For both supervised and unsupervised classification there is a need to collect a large amount 

of field data preferably over the areas where image data was collected (Kutser et al. 2020). These 

empirical classification methods are robust and easy to use but are usually sensor and image 

specific, require a large amount of field data, results cannot be transferable from image to image, or 
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sensor to sensor and water depth and benthic data cannot be collected simultaneously (Kutser et al. 

2020).  

Parametric and Nonparametric Classification 

Parametric classification algorithms assume that observed measurement vectors obtained for each 

class in each spectral band during the training phase of the supervised classification are Gaussian, 

as they are normally distributed (Schowengerdt 2007). However, pixel distribution does not follow a 

normal curve in most natural environments (Lu & Weng 2007). Conversely nonparametric 

classification algorithms make no such assumptions and are therefore more suitable to incorporate 

non-spectral data into its classification process (Lu & Weng 2007). One of the most used non-

parametric classifiers is Support Vector Machine (SVM). Nonparametric classifiers are considered 

to generate better classification outputs than parametric classifiers (Foody 2002).  

Per-pixel and spectral classification 

Per-pixel method classifies each and every pixel of an image based on its spectral characteristics 

(Lu & Weng 2007). These pixels are then sorted into to groups depending on their spectral 

characteristics (Lu & Weng 2007). The assumption made in the categorisation process can make a 

per-pixel classification method either parametric or nonparametric (Lu & Weng 2007). Per-pixel 

classification results in noisy outputs, especially in complex physical landscapes and environments, 

due to the variation in spectral reflectance that exists within a single class (Lu & Weng 2007).  

Object Oriented Classification 

Object oriented classification takes place in two stages, of image segmentation and classification. 

Image segmentation is when pixels of similar spectral attributes are combined into objects called 

segments and these segments are used in the classification process rather than the pixels (Lu & 

Weng 2007). Using segments in the classification results in better outputs especially when working 

with high spatial resolution imagery (Lu & Weng 2007) 

A more recent addition to classification methods is object-based image analysis (OBIA). OBIA 

segments the imagery into smaller objects or polygons with similar spectral, textual and thematic 

properties (Kutser et al. 2020) and classifies them into groups based on membership rules 

(Blaschke, T. 2010). The backbone of OBIA is segmentation of imagery, which has existed for a long 

time (Blaschke, T. 2010). More recent OBIA methods have combined the physics-based method or 

use knowledge of depth, slope and wave climate (Roelfsema et al. 2018a; 2018b) to differentiate 

habitat classes at various levels (Kutser et al. 2020)  

Segments are areas that have been created based on homogeneity of one or more dimensions of 

the dataset (Blaschke, T. 2010). Therefore, segments have an additional layer of spectral information 
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such as mean values per band of the feature, maximum and minimum values, means, variance etc., 

as opposed to single pixel information. This diverse set of spectral information is more importantly 

linked to a spatial object called a segment (Blaschke, Thomas & Strobl 2001).   

Knowledge based or Physics based Classification 

The disadvantages of the empirical methods of classification can be dealt with by using physics-

based methods of image classification (Kutser et al. 2020). These methods model the physical 

properties of the environment and targets for instance uses reflectance spectra of all substrates and 

benthic classes at varying depths and at varying optical types of water (Kutser et al. 2020). The 

classes are then simultaneously separated based on classes of variation and depth using a spectral 

matching method. Because the broad information in the models used about reflectance’s and bottom 

types are relatively consistent throughout the world, there is no need to carry out fieldwork to capture 

the coarse information (Kutser et al. 2020). 

Knowledge based classification (physics-based classification) incorporates ancillary data (i.e.  digital 

elevation models, bathymetry data, water attenuation models and spectral reflectance data) into the 

classification in different ways (Lu & Weng 2007). This extra layer of information that describes the 

complex spatial relationship classes have with the physical environment is used to improve the 

classification outcome (Lu & Weng 2007). Knowledge based approaches are becoming increasingly 

popular due to their ability to incorporate multiple ancillary data, however the selection of such a 

classification method depends on the availability of the ancillary data, software, equipment and 

resources, the analysts experience, and time available for the project (Lu & Weng 2007) 

2.2.3 Machine Learning and SVM 

Machine learning is defined as the capacity of solving a given problem with the use of examples 

provided before (Jo 2021). The building of this problem-solving capacity is called training and the 

process of doing it is called learning (Jo 2021). Support Vector Machine (SVM) is defined as the dual 

hyperplane classifier with the maximum margin in the mapped space that is called feature space (Jo 

2021). The SVM that is derived from a single linear classifier, which is called a Perceptron, is 

intended for solving nonlinear classification problems (Jo 2021).  

A hyperplane is a classification boundary in the simple machine learning algorithms. It is a line in the 

two-dimensional space or a plane in a three-dimensional space that separates two classes (Jo 

2021). It is expressed as a linear combination of products, each of which consists of a variable and 

a coefficient, which becomes a boundary between the positive class and negative class (Jo 2021).  

The learning process of the hyperplane is to manipulate the coefficients for minimising the 

misclassification or the error (Jo 2021). Linear separability is defined as the situation where examples 

are separable category by category by a hyperplane that is expressed as a linear combination (Jo 
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2021). Even if the training examples are classified perfectly there is no guarantee that training 

examples from a novice are classified correctly (Jo 2021). This issue becomes the motivation for 

making the idea of the Support Vector Machine (Jo 2021).  Nonlinear separability is more common 

than linear separability, thus the Perceptron was expanded into the Multiple Layer Perceptron (MLP) 

and Support Vector Machine (Jo 2021) The kernel function is defined as the similarity metric or the 

inner product between two vectors in the mapped space (Jo 2021). When a scale value results from 

applying the inner product or vector in any dimension, the similarity or the inner product of two vectors 

in the feature space through kernel function can be computed without mapping individual vectors in 

the original space into ones in the feature space (Jo 2021). Mapping the original space with its 

nonlinear separability into the feature space with the linear separability is originally the idea of the 

SVM (Jo 2021) 

Support Vector Machine (SVM) is a supervised machine learning model with associated learning 

algorithms that analyse data used for classification and regression analysis (Mahesh 2020). SVM 

can perform linear classification and nonlinear classification using what is called a kernel trick, 

implicitly mapping inputs into high dimensional feature spaces (Mahesh 2020). It basically draws 

margins between the classes (Mahesh 2020). The margins are drawn in such a fashion that the 

distance between the margins and the classes is maximum and hence, minimising the classification 

error (Mahesh 2020) 

2.3 Golden kelp Ecklonia radiata in southern Australia 

Ecklonia radiata is the most commonly found seaweed or kelp in Australia (Wernberg et al. 2019b). 

It is commonly known as Golden Kelp (ALA 2021) because of its distinctive golden colour.  Seaweed 

species, such as E. radiata, that belong to the order Laminariales, are commonly grouped as kelp, 

macroalgae or brown algae (Bolton, 2016).  They can be found across the world and especially in 

temperate and polar coasts where they are ecologically important habitat forming species (Filbee-

Dexter et al. 2019). E. radiata is a dominating feature of temperate reefs thought out Australasia and 

south-eastern Africa (Wernberg et al. 2019b). The rocky temperate Australian coastline forms an 

interconnected temperate rocky reef system known as the Great Southern Reef (GSR) (Layton et 

al. 2020). Kelp forests dominate these rocky reefs and form complex and ecologically important 

habitats with high biodiversity and endemism which provides significant ecological and 

socioeconomic services (Layton et al. 2020). E. radiata is also the main type of kelp in GSR, making 

it a defining feature of the reef (Wernberg et al. 2016a).  Further, E. radiata is the only laminarian 

kelp in most of its distribution and forms large areas of monospecific forests (Wernberg et al. 2019b). 

In Australia, the GSR and the dominant E. radiata forests, contribute $10 billion per year to the GDP 

(Bennett et al. 2016b). Also, Aboriginal Australians use kelp from GSR as a source of food, for 

making utensils including water carriers, and have used the kelps fronds as footwear and as a 
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therapy for sore feet (Akerman 2005; Clarke, PA 2011; Wessen 2009). Furthermore, they have been 

used in Aboriginal cultural events and ceremonies (Wessen 2009). 

2.3.1 Classification and reproduction 

Laminarian kelps emerged in the northern hemisphere around 80 million years ago (Wernberg et al. 

2019b). However, the E. genus emerged in the southern hemisphere more recently around 25 million 

years ago (Silberfeld et al. 2010). It is believed that E. radiata emerged in the shallow waters of 

Australia less than 3 million years ago (Durrant et al. 2015).  

Ecklonia spp has previously been classified into different families such as Laminariaceae, Alariaceae 

and Lessoniaceae, but today its placed in the new family; Arthrothamnaceae (Jackson et al. 2017). 

Recent studies conclude that Ecklonia spp. from the northern and southern hemisphere emerged 

from two separate clades and all southern hemisphere samples except for the South African Ecklonia 

maxima, formed the single species E. radiata (Rothman et al. 2015).  

Figure 2:3 Life cycle of Ecklonia radiata (Figure 5 from Wernberg et al. (2019b)) 

Image removed due to copyright restriction.
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The life cycle (Figure 2:3 and Figure 2:4) of  E. radiata begins with the formation of zoospores within 

the tissue of the main lamina  and at the base of the laterals (Wernberg et al. 2019b). This 

development can be identified as slightly raised and discoloured patches of tissue along the lamina 

(Wernberg et al. 2019b). The seasonal timing of this process seems to vary geographically 

(Wernberg et al. 2019b). In Western Australia this process peaks between January and May and is 

directly related to seawater temperatures (Mohring et al. 2012). However, in Tasmania this process 

occurs throughout the year and peaks in autumn and winter when temperature is lowest (Sanderson 

1990). The released zoospores settle and grow into separate male and female gametophytes 

(Wernberg et al. 2019b). The zoospores have the capability of dispersal in the water column for more 

than 24 hours before settling to the substratum to germinate (Mohring et al. 2014). Gametophyte 

recruitment peaks between 16-20˚C and declines with increasing temperatures (Mohring et al. 2014) 

and in low light intensity that is usually related to high cover of understory algae (Tatsumi & Wright 

2016). Furthermore, sedimentation, scour (Tatsumi & Wright 2016), grazing and pollutants are 

considered factors that negatively affect gametophyte recruitment (Wernberg et al. 2019b). The next 

stage is sperm dispersal and where oogonia or female gametophytes are fertilised and juvenile 

microscopic and macroscopic sporophytes are formed (Wernberg et al. 2019b). Less than 0.6% 

survive this transformation from microscopic to macroscopic sporophytes (Tatsumi & Wright 2016), 

yet the ones that do get through this transformation have a high chance of survival as adults 

(Wernberg et al. 2019b). After settlement, E. radiata, undisturbed, is considered to have a lifespan 

of around seven years (Schiel & Choat 1980).  

Figure 2:4 Morphological stages of E. radiata (Figure 1.1 from Fairhead (2002)) 

Image removed due to copyright restriction.
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2.3.2 Distribution and factors that contribute to distribution of Ecklonia species 

Ecklonia species can be found distributed across various global latitudes within temperatures 

ranging between 8 to 25˚C (Bolton & Anderson 1987). However, its distribution is strongly related to 

temperature and substratum availability (Marzinelli et al. 2015). E. radiata is found in temperate to 

subtropical reefs across Australia (Womersley 1984) including reefs along the open coast and within 

estuaries and can even be found growing on artificial structures such as jetties (Coleman, Melinda 

A. 2013). Further, E. radiata is normally found in subtidal zones although it is occasionally found in

intertidal zones (Wernberg et al. 2019b). This broad distribution of E. radiata gives reason to believe 

that it may be due to the greater tolerance to desiccation compared to other kelp species (Larkum & 

Wood 1993). However, it is argued that, for E. radiata, this is an area that is still not fully investigated 

(Wernberg et al. 2019b). Therefore, the reason for its predominant presence in subtidal zones is 

mostly speculated as reduced competition and grazing, and light inhibition with less UV damage 

which all needs further investigation (Wernberg et al. 2019b). 

Although it is established that E. radiata is a subtidal species, the water depth at which it is found 

varies. They are usually found in a water depth that ranges from the subtidal low tide mark to around 

40 m to 50 m depth (Marzinelli et al. 2015). However, in New Zealand Ecklonia. species have been 

found in depths of up to 80 m (Nelson et al. 2018).  

Ecklonia radiata in shallow water (less than 20 m depth) that is distributed in disjointed patches may 

be affected by winter storm disturbances (Kennelly 1987b). Also, E. radiata patches decrease in size 

with higher temperatures, herbivory (Vergés et al. 2016) and with increasing population of sea 

urchins (e.g. C. rodgersii; Connell & Irving 2008) However, the distribution of the sea urchin (C. 

rodgersii) is restricted to the east coast of Australia (Connell & Irving 2008) and usually sea urchins 

cannot be found in E. radiata forests located in waters deeper than 30 m (Wernberg et al. 2019b). 

A significant decrease in temperature (e.g. less than 20˚C in early summer), is usually associated 

with depth greater than 30-40 m, which appears to be a favourable condition for E. radiata, observed 

by an improvement in its density at low altitudes (Marzinelli et al. 2015). E. radiata is considered to 

have a very high capacity to acclimatise to increasing temperature, which can be observed by how 

it adjusts its photosynthesis, respiration and cellular processes across the temperature gradient over 

latitudes (Staehr & Wernberg 2009). However, the optimal temperature for photosynthesis of E. 

radiata is between 21.2 to 26.5˚C (Wernberg et al. 2016b) and its growth is inversely related to 

temperatures in such a way that the least growth and productivity occurs in seasons with warmer 

water (Fairhead & Cheshire 2004a, 2004b)  

Water action and wave motion also affects the performance of E. radiata (Wernberg et al. 2019b). 

Wave exposure plays a major hydrodynamic force that can influence E. radiata and in comparison, 

the role of tidal forcing is minor (Wernberg et al. 2019b). At low wave exposure environments, E. 

radiata gets slowly replaced by other canopy forming macroalgae (such as Sargassum spp) and turf 



 

25 

forming species (Wernberg & Connell 2008). Overall, E. radiata seems to thrive in clear oligotrophic 

waters with less nutrients and more dissolved oxygen (Wernberg et al. 2010) 

Nitrogen enrichment has been related to the loss of Ecklonia forests (Gorman & Connell 2009). 

Water enriched with nitrogen and nitrates along with eutrophication has been linked to an increase 

in turf and disturbances such as storms have been the cause of sediment input and resuspension 

into coastal waters (Connell et al. 2008). The presence of both turfing algae and sediment load in 

the water column have long been reported to inhibit the recruitment of canopy forming macroalgae 

(Kennelly 1987a). Adult E. radiata are known to withstand varying amounts of sediment loads 

(Wernberg 2005). However, sediment tends to hinder the attachment and cause burial of the younger 

microscopic stages of E. radiata, negatively affecting the gametophyte recruitment process (Connell 

2007). Also, E. radiata is rare or sparsely distributed in locations of high levels of sedimentation 

(Connell 2005), which may arrive from human development such as coastal development, effluent 

discharge and catchment modification (Turner 2004). It is believed that macroalgal communities 

have a mechanism to cope with normal amounts of sedimentation associated with natural events 

but populations collapse under additional loads from these human activities (Turner, David J. 2004) 

Ecklonia radiata needs a hard substratum to attach for successful growth of the kelp holdfast (Figure 

2:4) (Wernberg et al. 2019b). However, E. radiata does have the ability to form monospecific forests 

on a variety of rock types from softer sandstones and limestones to harder granite and basalts 

(Wernberg, Kendrick & Phillips 2003). Harman and Kendrick (2003) reports that E. radiata density is 

higher on limestone reefs in comparison to granite and high relief reefs. Furthermore, E. radiata 

attaches itself to artificial coastal structures including vertical ones such as concrete seawalls 

(Marzinelli et al 2018)  

Overall, there are multiple factors that contribute to the distribution of E. radiata. These factors can 

primarily be divided into two categories; (1) biological and human factors and (2) physical and 

geographical factors (Figure 2:5). Biological factors include herbivory from natural predators (e.g. 

sea urchin) and competition form turfing algae, whereas human disturbances include coastal 

development and effluent discharge that may lead to sediment load and nutrient enrichment. The 

other main category is physical and geographical factors, which are categorised together because 

they contribute to the natural foundation of E. radiata settlement and distribution. The summary in 

the diagram (Figure 2:5) also highlights the complex interconnectivity between factors that was 

highlighted in the literature. Some factors are more interconnected than others and these factors are 

grouped together. For instance, temperature and light availability or light penetration decreasing with 

increasing water depth. However, the key factors identified that affect the distribution of E. radiata 

can be identified as, rock substratum, sediment and nutrient load in water, wave action, water depth 

and biological competition.  
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Figure 2:5: A summary of factors that influence the distribution of Ecklonia species from literature 

2.3.3 Reflectance properties, spectral signature and remote sensing of Ecklonia 
radiata 

It is a challenge to detect accurately macroalgae cover from imagery captured from above the water 

surface (Tait Orchard & Schiel 2021) due to the size variation in macroalgae species, the canopy 

structure (Tait & Schiel 2018), vertical orientation (Harrer et al. 2013) and the inability to detect 

understory canopy (Murfitt et al. 2017). Furthermore, remote-sensing is a challenging task because 

reflectance recorded by remote-sensing is not only from the vegetation but also from the sun glint, 

water column, and atmospheric disturbance. Hence, the variation of reflectance is not only due to 

the variation within the object, (i.e., species, biomass) but also due to the variation of atmospheric 

condition, sun glint, water column condition (Wicaksono & Lazuardi 2018), variation in location, and 

seasonal variation in the environment (Selvaraj, Case & White 2021) 

Optical properties of broad classes of main substrates and biota (e.g. brown macroalgae) are similar 

across climatic zones including in tropical and temperate environments and across fresh water and 

sea water environments (Kutser et al. 2020). The reflectance spectra of many “brown” benthic types 

such as brown macroalgae (e.g.Sargassum spp.), brown corals (e.g. Porites spp., Acropora florida) 

and soft corals (Sarcophyton spp.) are extremely similar (Kutser et al. 2020). This similarity within 

broad classes makes it almost impossible to use reflectance spectra to differentiate species of brown 

macroalgae (Kutser et al. 2020).  

Most of the studies that attempt to distinguish between species using reflectance spectra are carried 

out in very shallow water (1-2 m depth), where the number of species present is very low and growing 
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on brightly distinguished substrate (Kutser et al. 2020). However, when spectral and textual 

information of species is combined in hyperspectral imagery it is possible to distinguish them as 

shown by Roelfsema et al. (2014). Furthermore, physics-based classification methods that model 

environmental characteristics such as atmospheric and water column characteristics combined with 

the spectral library of various bottom substrates at varying depths plus the use of hyperspectral or 

multispectral sensors at varying spatial resolution is becoming more common to improve species 

level separation (Harvey 2009; Selvaraj 2021; Selvaraj, Case & White 2021; Tait, Orchard & Schiel 

2021) with varying levels of success. Other studies have investigated spectral reflectance and 

properties of Ecklonia spp. (Fyfe 2003; Garcia et al. 2015; Rand 2006; Selvaraj, Case & White 2021; 

Tin et al. 2015; Uhl, Oppelt & Bartsch 2013) in various environments and water depths that contribute 

to further development of the physics-based classification methods that usually use high spectral 

resolution imagery. Hyperspectral sensors with their narrow band widths have the ability to classify 

seaweeds at the taxa level, yet they do not yield a high accuracy when attempting to classify 

seaweeds present in heterogeneous patches and when spatial resolution of the images used are 

low (Ashraf, Brabyn & Hicks 2012; Casal et al. 2012).  

The mean reflectance of E. radiata along with other brown macroalgae of similar spectra (Figure 2:6) 

show low reflectance values which rise towards a small peak at both approximately 590 and 650 nm 

and then decrease  until approximately 670 nm and increase rapidly above that level (Chao 

Rodríguez et al. 2017; Harvey 2009). This reflectance spectra aligns with the yellow-to-orange colour 

or the unique golden colour of Ecklonia radiata that is visible to the naked eye. 

Figure 2:6 Reflectance spectra of E. radiata, Sargassum spp. and S. doryocarpa (adapted from 

Harvey (2009)) 

Image removed due to copyright restriction.
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Seasonal and location variations affect the spectral reflectance in macroalgae and affect the 

accuracy of mapping macroalgae when using remote sensing methods (Selvaraj 2021). Spectral 

reflectance of E. radiata varies greatly in summer, and higher rates of photosynthesis is considered 

the cause of it (Selvaraj 2021). Locational variation in spectral reflectance is not very marked for E. 

radiata (Selvaraj, Case & White 2021), however depth and water turbidity are reported to have an 

impact on spectral reflectance (Selvaraj 2021). 

2.3.4 Future environmental threats on Ecklonia radiata 

Ecklonia radiata like other kelp species are under threat from climate change and ocean warming. 

Connell et al. (2008) reported an alarming loss of up to 70 % of canopy forming algae along the 

Adelaide metropolitan coast since major settlement and urbanisation in the area. Wernberg et al. 

(2016a) reported a large-scale loss of kelp forest after the 2010 marine heatwave in GSR forcing a 

transition to turfing seagrass. Kelp forests previously dominated more than 800 km of the west coast 

and covered an area of 2266 km² of rocky reef. Prior to the heatwave it was reported that kelp forests 

covered around 70 % of the rocky reefs in the mid-west of Australia (Wernberg et al 2016a). By 2013 

there was a 43 % loss of kelp forests along the western coast. In 2015, there were s no signs of E. 

radiata recovering from the heatwave. Wernberg et al. (2016a) indicated that E. radiata may have 

reached a tipping point due to the increasing temperature.  
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3  METHODS 

This section describes the methods used to collect data and analyse the data that was collected in 

this study. The flow chart shown in Figure 3:1 below is a summary of the methods used for data 

collection. 

Figure 3:1: An overview of the methods used to collect data and analysis of images and mapping. 

3.1 Planning for Field Data Collection 

Field data collection required planning the field work logistics and acquiring the required permissions 

and permits. UAV flying training was received from Flinders University’s Department of Geospatial 

Information Science (GIS). This was followed by the acquisition of Department and Civil Aviation 

Safety Authority (CASA) RPA operator accreditation. As Aldinga Aquatic Reserve is a protected 

area, a Marine Park Permit to undertake scientific research was acquired from the Department for 

Environment and Water (DEW). Risk Assessments for field outings were prepared and submitted to 

Flinders University. Fieldwork was always carried out with a field partner and CASA regulations were 

followed when collecting data in the field. Dive Validation was carried out by a Flinders University 

Scientific Dive Team. All related documents are attached in Appendix 8.1. 
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3.2 Preliminary Survey 

3.2.1 Identifying sensor and flying altitude of UAV 

Traditional habitat mapping using quadrat and transect sampling can be time consuming 

(Underwood 2000), covers only a small spatial area, and replicating the same quadrats and transects 

are usually challenging (Murfitt et al. 2017). It is challenging to monitor exposed rocky reef 

environments due to factors such as ecological variability and heterogeneity in species over space 

and time, and because of structural, spatial variation of the reef platform (Tait, Orchard & Schiel 

2021). Due to its periodical exposure to swell and tides the accessibility for in-situ data collection is 

challenging (Tait, Orchard & Schiel 2021). The use of remote sensing platforms, such as satellite 

and manned aircrafts, do have the ability to capture data over a large spatial extent (Murfitt et al. 

2017). However, a very high spatial resolution (i.e. cm accuracy) is needed to capture the structure 

of E. radiata and its fronds, thus satellite imagery could not be used in this project. Furthermore, 

satellite imagery has the disadvantage of revisits with undesirable tidal and meteorological 

conditions, which can obstruct the view underwater (Tait, Orchard & Schiel 2021). These issues can 

be resolved using an UAV, because it can capture very high spatial resolution imagery and can be 

deployed when environmental and meteorological conditions are suitable for the study (Murfitt et al. 

2017; Tait, Orchard & Schiel 2021). Furthermore, UAVs have the potential to bring together 

traditional in-situ data collection methods and remote sensing methods (Anderson & Gaston 2013) 

to develop a data collection method as proposed in this study.  

Preliminary data was collected on 28th April 2021 during lowest tide at Aldinga Reef using a DJI 

Mavic 2 Enterprise UAV (SZ DJI Technology Co., Ltd, China) and a Parrot Sequoia multispectral 

sensor. Images were captured in lines across the intertidal and subtidal zone of the reef at varying 

altitudes. RGB and thermal images were taken from a Mavic Enterprise UAV camera. The Parrot 

Sequoia camera have five separate sensors. Four of them that captured images in separate spectral 

bands using individual optics per band. These four sensors captured separate monochrome images 

for each spectral band of green (530-570 nm), red (640-680 nm), red edge (730-740 nm) and near 

infrared (770-810 nm) (Pix4D 2021).  The fifth sensor captured RGB images. The images captured 

by both Mavic Enterprise sensors and Parrot Sequoia sensors were studied to identify the image 

types and sensor that could identify E. radiata over shallow water at Aldinga Reef.  
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Table 3:1: A comparison of Mavic 2 Pro, Mavic 2 Enterprise, and Parrot Sequoia multispectral sensor 

(DJI 2018b, 2021a, 2021b; Pix4D 2018, 2021) 

Mavic 2 
Pro (RGB) 

Mavic 2 
Enterprise 

(RGB) 

Mavic 2 
Enterprise 
(Thermal¹) 

Parrot 
Sequoia 
(RGB) 

Parrot Sequoia 
(Multispectral) 

Sensor width (mm) 13.2 6.17 3.6 3.6 

FOV, HFOV, VFOV 77, 40, 60 84, 40, 60 HFOV:57 

Focal Length (mm) 28 24 4.88 3.98 

Image width (pixels) 5472 4000 480 4608 960 

Image height 
(pixels) 

3648 3000 640 3456 1280 

 
¹ Thermal band width: 8-14µm 

Additional images were captured on 2nd June 2021 using a DJI Mavic 2 Pro (SZ DJI Technology Co., 

Ltd, China) for two purposes. The first purpose was to compare the RGB image quality of three 

available sensors. Table 3:1 shows a comparison of some key attributes of interest of the UAVs and 

their sensors explored for comparison. The second purpose was to find the best flying altitude to 

capture images to identify E. radiata with structural details, that could be used in a supervised object-

oriented classification algorithm. For this purpose, images were captured at varying altitudes. 

Selvaraj (2021) reported that E. radiata can be discriminated from Undaria pinnatifida using five-

band multispectral UAV imagery at its best accuracy at a flying altitude of 30 m. Riniatsih et al. (2021) 

suggested a UAV flying altitude of 20 m above water to capture RGB and IR images to capture the 

details of the thin leaves of seagrasses. Thus, in my study, flying altitudes were varied to observe 

the altitude at which the structural detail of E. radiata fronds can be identified with UAV imagery.  

All RGB images captured from the Mavic 2 Pro, Mavic Enterprise and Parrot Sequoia were inspected 

to find the best sensor form the three that can capture the structure of E. radiata at the highest 

altitude. The Mavic 2 Pro and Mavic 2 Enterprise had similar sensor properties. The Mavic 2 Pro 

was selected because of its slightly larger image dimensions in pixels and larger sensor width (Table 

3:1), and visual inspection of images showed better quality images from it.  

Furthermore, flights were flown to identify rough estimates of the distance out from the edge of the 

intertidal zone, which was unable to detect E. radiata visually to define the outer edge boundary of 

Zone S in the study area (Table 3:3).  

3.2.2 Identifying appropriate environmental conditions for UAV detection of Ecklonia 
radiata 

The quality of images captured over shallow waters in Aldinga Reef was analysed by collecting UAV 

imagery across varying environmental conditions. Environmental data along with imagery is 

considered useful for a better understanding of data captured from imagery (Hedley et al. 2016). 
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Cloud cover is considered to reduce sun glint, yet cloud cover also means reduction in the intensity 

of light and the amount of light that reaches the subsurface (Joyce et al. 2019). Capturing images in 

cloud cover during midday is reported an alternative (Kay, Hedley & Lavender 2009). Low turbidity 

in water, low windspeed, low tide and shallow water are also favourable conditions in aerial imagery 

(Joyce et al. 2019; Mount 2005).  

For this study, images were captured in late autumn and winter.  Environmental factors that were 

recorded include wind speed, temperature, humidity, cloud cover and sun illumination, tides, sun 

angle and azimuth and atmospheric pressure. Weather conditions were measured using the 

SkyWatch® portable weather station. Tide data for Aldinga was collected from WillyWeather®. Sun 

altitude and azimuth were collected from Geoscience Australia (2021). Data were collected between 

11th June 2021 to 26th August 2020 (Table 3:2).   

Table 3:2: Environmental factors recorded and observed to analyse the suitable conditions for 

collecting UAV images 

Date Wind 

(km/hr) 

Temp 

(˚C) 

Humidity 

(%RH) 

Atmospher

ic Pressure 

(hPa) 

Cloud cover 

and sun 

illumination 

(observations) 

Measured 

Tide (m) and 

Observations 

Water Turbidity 

Observations 

Sun altitude and 

azimuth angles at 

low tide (degrees) 

11/06/2021 17 12 - - Completely 

cloudy 

0.7 Calm clear waters Altitude: 25° 32' 29 

Azimuth: 29° 35' 27 

15/06/2021 19 15.9 73.1 1005.6 Completely 

cloudy 

0.8 (observed 

tide is higher: 

around 2m) 

Very turbid and 

cloudy water 

Altitude: 31° 21' 19 

Azimuth: 03° 41' 56 

20/06/2021 7.6 15.7 67.7 1025.2 Mostly Sunny High tide 1.7 to 

1.8m 

Wave action over 

zone I; higher 

turbidity 

Altitude: 22° 52' 20 

Azimuth: 34° 16' 55 

28/06/2021 10-24 14.9 - 

16.1 

72.9 - 67 1027 - 

1025.7 

Very sunny with 

very few clouds 

0.9, 0.8, and 

1m 

Very calm waters Altitude: 25° 36' 32, 

28° 13' 60, 30° 01' 34 

Azimuth: 28° 57' 23 , 

21° 48' 55, 14° 44' 55 

29/06/2021 17 -30 15.5 60.3 1022 Very sunny with 

no clouds at all 

0.9, 0.8 & 1 m Calm waters Altitude: 29° 14' 57, 

31° 13' 15, 31° 32' 02 

Azimuth: 18° 23' 34, 

06° 55' 08, 359° 07' 

33 

26/08/2021 Very sunny with 

very few clouds 

0.6, 0.9, 2 Calm water Altitude: 41° 17' 06, 

41° 10' 32, 18° 52' 11 

Azimuth: 23° 54' 30, 

335° 33' 04, 298° 12' 

15 

3.3 Collection of UAV images 

A main consideration when identifying the sensor for a shallow water remote sensing project is that 

the pixel size of the image should be smaller than the target measured under water as pixel mixing 



33 

is a primary limiting factor of benthic remote sensing (Hedley et al. 2012). The fronds of E. radiata 

were observed to have an average width of around 3-5 cm in the intertidal zone. Images were 

captured using the Mavic 2 Pro at 20 m flying altitude with a ground sampling distance (GSD) of 0.5 

cm/pixel, to ensure a good coverage of pixels on each frond.  An UAV flying altitude of 20 m was 

identified for this research to allow for the capture of more detail of E. radiata (Riniatsih et al. 2021) 

over some areas of the subtidal zones. Different methods of UAV image collection were employed 

depending on the need and type of data required for the research. All images were collected on 28th, 

29th June and 26th August 2021. However, all images were captured at a flying altitude of 20m.  

Images were acquired for the following purposes. 

1. To estimate the cover of Ecklonia radiata across the study area

2. To validate the classification model across the deep subtidal zone

3. To validate the classification model over very shallow subtidal and intertidal zones

3.3.1 Image Collection to Estimate Cover of E. radiata 

To estimate the cover of E. radiata over the study area, UAV Flight missions were planned using a 

DJI Ground Station Pro (DJI GS Pro) Application (DJI 2018a). Multiple Way Points Mission was used 

to collect stratified random individual images over the study area. The stratified random points for 

the centre of the images were generated by creating a buffered zone of intertidal and subtidal areas 

(Zone I and S as described in Table 3:3 and shown in Figure 3:2 and generating random points over 

the zones using ArcGIS Pro (Esri 2021a) Create Random Points Tool. 

Table 3:3: Description of zone created to capture individual images of the study area 

Zone Name Description of the environment Zone Creation Method 

Zone I The edge of intertidal zone of Aldinga Reef 

that includes rock pools and transition 

(abruptly at north and west and more 

gently at south) to a shallow subtidal zone. 

Zone I was created by drawing a line on the 

edge of the intertidal zone and buffering 50 m 

on both sides both of the line.  

Random stratified points of image centres 

were generated from ArcGIS Pro software.  

Zone S This area includes shallow and deep 

subtidal zones of Aldinga Reef 

This area was created by drawing a line on the 

edge of the intertidal zone and creating a 300 

m buffer seawards from the line and cropping 

the Zone I from it.  

Random stratified points of image centres 

were generated from ArcGIS Pro software 
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Figure 3:2 The shallow subtidal and intertidal zone (Zone I) and deeper subtidal zone (Zone S) where 

individual images were captured to estimate percent cover of E. radiata at Aldinga Reef 

As the dataset contained hundreds of images and was spanning a wide area that went beyond the 

line of vision of the UAV pilot it was divided into sections to be flown for safety and practical purposes 

(screen captures of flight plans in Appendix 8.2) 

The optimum conditions to view objects under water is when the sun altitude is less than 35˚ 

according to Mount (2005) and between 35˚and 50˚and with the sensor oriented towards or away 

from the sun as explained by Mustard, Staid and Fripp (2001). Furthermore, ideal orientation of 

images for habitat mapping are nadir images because oblique images distort progressively towards 

the horizon affecting its geometry along with it (Green et al. 2000). However, when taking the above 

explained conditions into consideration, the ideal time to capture nadir images gets limited to a very 

narrow time frame in the morning (Joyce et al. 2019). This is when the sun angle is high enough to 

illuminate the water but not so high to create sun glint. Also, consideration is needed about the sea 

breeze later in the day when it increases and creates larger wave crests, which reflect sun glint 

(Mount 2005). Sticking to a narrow time frame may also mean missing the time window of low tide, 
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which can also limit the data collection to a very specific and narrow period of time (Joyce et al. 

2019). To increase the narrow time frame for UAV, images can be captured with a flight heading that 

aligns with the sun azimuth and with a slight camera tilt (Joyce et al. 2019) that aligns with the sun 

altitude angle.  

For this study, the flight plans were made with the UAV heading aligned to the sun azimuth and its 

gimble pitch angle aligned with the sun altitude to minimise sun glint (Joyce et al. 2019; Mount 2005; 

Mustard, Staid and Frip 2001). Oblique images with a tilt that was the same as the sun altitude angle 

at the time of UAV deployment was captured. The data for sun altitude and sun azimuth data were 

collected from Geoscience Australia (2021) in the field and the pre-planned flight plans were adjusted 

before deploying the UAV. UAV data was collected when the tide was at the lowest point during the 

day (usually between 9am and 3pm) and when the underlying water was properly illuminated by the 

sun. Winter early morning low tides and late afternoon low tides were avoided.  Furthermore, as 

winter brings stormy weather, limiting data collection to an ideal low wind speed less than 18 km/hr 

(Mount 2005) was not considered practical because it would further diminish the available time for 

data collection.  Therefore, data was collected when windspeed was below 30 km/hr which is the 

maximum windspeed for flying a DJI Mavic 2 Pro (DJI 2019).  

3.3.2 Image Collection to Validate Classification Model  

Zone I: Image collection to validate classification model over rockpools in the intertidal zone 

(Zone I) 

Rock pools at the sites in Zone I (i.e., the intertidal and shallow subtidal zone) were used to validate 

the classification model.  The rock pools can be captured in a single image taken at 20 m altitude; 

images were captured by free-flying the UAV to the area of interest. Nadir images were captured 

over the rock pools because it was observed that, even at mid-day, in very shallow waters, bright 

sun glint was not an issue with the camera positioned away from the sun. Water in rock pools and 

the intertidal zone remained quite calm during low tide and did not contribute to the bright sun glint 

in the same way as incoming waves in subtidal areas.    

Rockpools were selected to ensure pool size, depth, and E. radiata cover varied in the rockpools so 

that good representative sample rockpools could be used for validation of the classification model 

(Figure 3:3).  
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Table 3:4: Description of rockpools used as validation areas in the shallow subtidal and intertidal 

zones (Zone I). 

Validation Rockpool Description of the environment Area Creation Method 

West Deep (WD) 
Rockpool 

This is a large rock pool with high E. radiata 
cover from visual assessment, with a depth 
that is similar to shallow areas of subtidal 
zones. 

Rock pools of interest were 
identified and transect lines for 
validation were entered and 
mapped with a 0.25m buffer 
zone. Transect lines were laid 
out in field and images were 
captured and used to position 
on the map. UAV individual 
images were taken over the 
rockpools for classification. 

West Shallow (WS) 
Rockpool 

This is a large but shallow rockpool with 
sparse Ecklonia cover on visual assessment. 

North Shallow (NS) 
Rockpool 

This is a small and shallow rockpool with 
sparse Ecklonia cover on visual 
assessment 

Figure 3:3: Location of rockpools used for validation at Aldinga Reef in 2020. 
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Zone S: Image collection to validate classification model over subtidal zone (Zone S) 

To estimate E. radiata cover over validation areas in subtidal zones 3D Map Area Missions from the 

Ground Station Pro (GSP) App. were used to make flight plans over the areas of interest. Validation 

areas were selected from subtidal zones in the north, west, and south of the study area. These areas 

were selected to ensure that variable environmental characteristics observed in the subtidal zones 

of the study area were represented. Table 3:5 Description of areas for validation in the subtidal zone 

(Zone S) describes the variation in the environment and Figure 3:4 shows the location of the 

validation sites.  

Images were captured with 50% image overlap to generate a mosaic over areas allocated for 

validation. A 50% overlap was used because it was observed, from images captured at the 

preliminary stage, that individual images over the subtidal zone had sun glint on the image which 

sometimes covered almost half of the image depending upon various variables such as wave action, 

wind speed, tide, and camera angle (Joyce et al. 2019; Mount 2005; Mustard, Staid and Frip 2001). 

Therefore, a 50% forward and sideways overlap was used to minimise the impact of sun glint from 

the mosaic created.  

Table 3:5 Description of areas for validation in the subtidal zone (Zone S) 

Validation Area Description of the environment Area Identification Method 

North* Subtidal zone with large patches of 
sediment and no evidence of E. 
radiata present on visual 
assessment 

Area of interest was identified. ArcGIS 
Pro software was used to define 
transects lines for dive validation. Three 
lines of 30 m in length separated by 
approximately 30 m were created in each 
area of interest. These lines were placed 
in parallel, and horizontal to the 
coastline, progressing away from it. The 
area that contained all three validation 
transect lines were defined as a polygon 
and 3D Map Area Missions were flown 
over these areas. 

*Note: Due to the placement of one transect line
over the border between Zone I and S (during
validation) the North Area intersect slightly with
the intertidal zone. However, because a larger
part of the area falls to Zone S and most of the
transect line in question is on the border (NT1 in
Figure 3:9), it is considered a validation area for
Zone S

West Subtidal zone with E. radiata in very 
shallow water and deeper water 
environments. E. radiata growing 
over rock pinnacles or rock outcrops 
elevated E. radiata to very shallow 
water environments during low tide. 
E. radiata also found on the reef
base on the rocky platform. These
large patches of E. radiata were
visible on visual assessment.

South Shallow subtidal zone with large 
patches of E. radiata and large 
patches of other types of 
seagrasses that were visible in 
visual assessments.  
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Figure 3:4: Dive Validation Areas in North, South and West of the study area at Aldinga Reef 

UAV images over each area (North, South and West) were captured from separate flights. The 

heading and gimble angle of the UAV was aligned to the sun’s azimuth and sun’s altitude 

immediately before the flight. Images in these datasets were oblique with a tilt that aligned with the 

sun altitude angle. 

3.4 Pre-processing of UAV Images 

Images were not subjected to complex pre-processing. The two stages of pre-processing involved 

in this study included georeferencing of images and mosaicking of overlapping and non-overlapping 

images. Water attenuation models to alter the reflectance of images was not used was not used due 

to the of the lack detailed bathymetry data. The available bathymetry data was too coarse to be used 

for this research.   
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3.4.1 Georeferencing and Mosaicking 

Figure 3:5: An overview of georeferencing and mosaicking of all input data 

Images captured by remote sensing methods need geometric processing and georeferencing to 

position the image in the correct location and to carry out spatial measurements on it as part of image 

analysis (Joyce et al. 2019). UAV images have IMU and GNSS units that can tag the GPS location 

of the centre of the image to an average of ±5 metres depending on the UAV, number of satellites 

the UAV is locked onto, environmental and atmospheric conditions, and oblique imagery with camera 

centres located beyond GPS location of the drone (Joyce et al. 2019). Therefore, it is important to 

properly georeference images with these possible error considerations. When cm to mm accuracy 

in location of imagery is required, ground control points (GCP) are measured using real time 

kinematic (RTK) differential GPS (Joyce et al. 2019). RTK equipment is expensive and can only be 

used in very shallow water areas such as an intertidal zone (Bryson et al. 2016). Furthermore, when 

capturing images that cover only the water surface it is challenging to collect enough GCPs 
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accurately (Selvaraj 2021). However, due to higher than precedented tides and the challenges of 

deploying targets GPCs and RTK measurements were not used in this study.  

Geometrically corrected, nadir images that have global positioning data and ideally ground control 

points can be easily georeferenced and stitched together to make a mosaic or orthomosaic (Joyce 

et al. 2019). In this study, the data collection method deviated from this ideal by capturing oblique 

imagery. The weather conditions and higher tides observed in the location during winter made laying 

out ground control target points a challenge. Furthermore, the conservation status of the study area 

limited the use of permanent or semi-permanent targets that can withstand tidal movement and 

weather. 

All images captured were manually georeferenced using ArcGIS Pro software (Esri 2021) and used 

a Projective Transformation Model, which is useful for oblique imagery (Esri 2021). Images were 

georeferenced against high resolution aerial imagery from Aerometrics Metromap (2021) with pixel 

sizes of 5cm. Dynamic Range Adjustment (DRA) and Histogram Equalizer were used to enhance 

the aerial image to facilitate the accurate georeferencing of UAV images. 

Once all images were georeferenced, they were used to create mosaics. Prior to mosaicking 

individual images were arranged in the desirable order to eliminate sun glint and mosaiced as shown 

in Figure 3:6. Mosaics were generated using ArcGIS Pro (Esri 2021a) using the New Raster Tool. 

Each mosaic output was created in a tiff format with a cell size of 0.007 m and resampled using a 

cubic convolution method (Figure 3:6).  Cubic convolution method was used because it this method 

used the greatest number of neighbouring cell (16) values to determine the new cell values when 

resampling compared to other resampling methods available in ArcGIS Pro (Esri 2021c). 

Furthermore, it was observed that this method retained the finer variation in the pixel values closest 

to the original image. The mosaics that were created were then projected to GDA 1994 MGA Zone 

54 using both ArcGIS Pro software (Esri 2021a) and ERDAS imagine because reprojection of a large 

mosaic was time consuming in ArcGIS Pro (Esri 2021a).  

The individual image mosaic was created to estimate E. radiata over the study area, which was very 

large, and therefore was compressed using the lossless compression Leperl-Ziv-Welch (LZW) 

algorithm (Esri 2021b).  A detailed flowchart of mosaicking and projection of individual mosaics 

created for validation zones and for the whole study area is shown in Figure 3:6 

Mosaics created area listed below. 

1. Mosaics were created for the validation areas North, South and West and then these mosaics

were mosaiced again to combine them. This combined all validation areas in Zone S.

2. A single mosaic was generated that combined images of rock pools that covered validation

lines in Zone I.
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3. A very large single mosaic was created that combined all 150 individual images that covered

Zone I and Zone S. This mosaic was used to estimate the cover of E. radiata at Aldinga Reef.

Figure 3:6: Detailed flowchart of mosaicking and reprojection process to create mosaics for validation 

and mosaic of individual images that covered the whole study area 

3.5 Image Classification 

An object based supervised (Hedley et al. 2016) nonparametric classifier such as SVM (Lu & Weng 

2007) was identified as the most suitable classification method to classify E. radiata because it has 

the ability to use both spectral and spatial components to train and classify images. A spectral profile 

of main benthic classes seen in Aldinga reef is shown in Figure 3:7. Spectral detail can be used to 

separate main broad classes. However due to the spectral similarity of E. radiata in deeper water 

with the rest of seagrasses, an object-oriented classification method such as SVM was used. 

Ecklonia in deeper water spectrally very similar to other seagrasses as shown in Figure 3:7. 

However, the fronds of E. radiata even in deeper water helps to visually separate it from other 

seagrasses. SVM classifier was selected because with proper training SVM can learn to identify 

(Roelfsema et al. 2018a) E. radiata in deeper water with its structural differences despite its spectral 

similarity with other aquatic vegetation in deeper water.  
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Figure 3:7: Spectral profile of broad benthic classes found in Aldinga Reef 

The mosaics created for image classification (shown in Figure 3:6) were classified in ArcGIS Pro 

software (Esri 2021a) using Image Classification Wizard as shown in Figure 3:8. Supervised Object-

Oriented Classification Method was used along with Support Vector Machine (SVM) Algorithm 

Figure 3:8: Flowchart showing the image classification process using the Image Classification 

Wizard in ArcGIS Pro 

The mosaics generated were brought into the classification wizard as an input. The mosaics were 

segmented with a spectral detail value of 18, spatial detail value of 15 and a minimum segment size 
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of 10. A higher spectral detail value was used because major classes, including shallow E. radiata, 

has the potential of separability using spectra (see Figure 3.7). However, when multiple samples of 

the spectral signature of different classes were taken, an overlap between some classes, such as E. 

radiata and sun glint in shallow water was found. Furthermore, E. radiata in deeper water was 

spectrally similar to other macroalgae. However, all these classes had distinct morphological shapes, 

which can be used to classify them. Therefore, a higher spatial detail value of 15 was set. A minimum 

segment size of 10 pixels was used because an individual E. radiata frond that was visible usually 

had more pixels covering its area, but segments of shallow water sun glint were usually smaller than 

this value. Therefore, this segment size value helped remove shallow water sun glint. The mosaiced 

image was then trained with training samples. Training samples were used to train each major class 

into subclasses based on depth, object type, sun glint and shadow. The schema for different mosaics 

changed depending on the broad classes visible from the mosaic. All the parent and subclasses 

used in schemas are shown in Table 3:6. 

Table 3:6: Classes of categories included in the schema for mosaiced image samples 

Parent Classes Subclasses 

Ecklonia_shallow 
Ecklonia_deep 
Other Other aquatic 

vegetation_deep 
Otheraquatic 
vegetation_shallow 
Sunglint_deep 
Sunglint_shallow 
Shadow 
Sediment_deep 
Sediment_shallow 
Rock 

Training was carried out to include most training samples from E. radiata (at least 40% of the training 

was included from E. radiata). Other classes were also trained to have a training sample number 

that was representative to the percentage found in the images. Training was carried out using 

polygons to train E. radiata and other classes that had spectral variability within the object. However, 

segment picker was used in some instances, especially when the training shadow and bright sun 

glint were present, and they were segmented out neatly because of lack of variation in the spectra 

of these classes.  

Once the classification and reclassification of the images were complete, they were masked using 

the Extract by Mask Tool to remove only the area of interest (i.e., transect borders in validation data 

or zone boundaries) and the Zonal Histogram Tool was used to calculate statistics on these areas 

of interest for the classified and reclassified images. 
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3.6 Data Validation 

Data validation was carried out at validation sites in both intertidal and subtidal zones highlighted in 

Figure 3:3 and Figure 3:4 

3.6.1 Validation in subtidal zone 

Data Validation in subtidal zones were carried out by a Flinders University’s scientific dive team on 

8th September 2021. The validation was carried out by laying out a 30 m transect line with a 

measuring tape and a diver recorded a video along the transect line using a GoPro Hero 7 camera 

while holding it 0.5 m above the line. A dive watch was used to estimate the average depth of each 

dive transect. Each transect line was separated by 30 m. Three transect lines were recorded for 

each dive area in North, South and East (Figure 3:9 shows the transect lines validated by the dive 

team). The dive team used research vessel ‘Tethys’ equipped with a Garman GPSMAP 720 to 

navigate to the dive transect line. As the accuracy of Garman GPS usually ranges between 5-10 m 

(GARMIN 2021) the transect lines that were used by the divers were positioned on the map and 

buffered by 10 m to account for the accuracy of the Garman GPSMAP 720. The imagery acquired 

over the dive transect was mosaiced, classified and cropped to the 10 m buffer zone.   

The GoPro videos were analysed to identify the percentage cover of E. radiata along each transect 

and collectively for each dive area (North, South and West).  A tape measure was used to calculate 

the total distance along the transect that intersected with E. radiata. This distance was used to 

calculate the percent cover of E. radiata found on each transect and collectively in each dive area.   

An additional validation analysis was carried out on the three validation transects in the West site. 

This was due to the difference in the environment in the area compared to the other two dive 

validation sites (see Table 3:5). Ecklonia radiata growing on top of the rock pinnacles were measured 

separately and a percentage of E. radiata on these rock pinnacles were recorded. This percentage 

was calculated only in the West dive transects because such rock pinnacles were not found in the 

validation transects at North and South dive areas.    
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Figure 3:9: Showing dive transect lines (in red) in each validation area in South, West and North 

subtidal areas 

3.6.2 Validation in rockpools 

Data validations over rock pools were carried out on 26th August 2021. Validation was carried out by 

laying out line transects that were 1 m apart and covered the entire extent of each rockpool. Each 

transect line had knots that marked every 0.5 m distance. A one metre ruler was used to measure 

the depth of water and the presence and absence of E. radiata along each transect. Images were 

taken of the location of the beginning and end of each transect line to mark its position in the rock 

pool. The point measurements of the presence or absence of E. radiata and the depth at each point 

along the transect lines was used to calculate the percentage of E. radiata and the average depth of 

each transect line in each rockpool.  

The transect lines and validation points were plotted over the rockpools using ArcGIS Pro (Esri 

2021a). The transect line was buffered by 0.25 m to give way to the slight movement of the line in 

the water. Since the transect line was fastened at both ends with weights, this movement was 
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considered very slight, hence a buffer of 0.25 m was used. The images captured at both ends of 

each transect line were used to position the transect using ArcGIS Pro (Esri 2021a). The validation 

data that were collected for each transect were used to calculate the average depth and the 

percentage of E. radiata for transects in each rockpool.  

3.7 Accuracy Assessment 

An accuracy assessment is an important part of detecting the accuracy of the remote sensing 

method to detect different parts of a habitat (Green et al. 2000). In UAV, remote sensing accuracy 

assessment is especially important if the target studied is partially or fully submerged in water or 

when taking quantitative measurements of variables (Joyce et al. 2019).  However, accuracy 

assessment of habitat maps is usually subjective to the need of its application and the lack of specific 

guidelines increases this subjectivity (Green et al. 2000). For instance, if the habitat map is used to 

create an inventory of a type of macroalgae for management purposes a thematic accuracy of 60 % 

is also considered useful. However, for an assessment of the impact of a development project on 

the health and distribution of macroalgae in a region, a higher accuracy (usually closer to 90 %) may 

be demanded (Green et al. 2000). Therefore, the level of accuracy required is related to the context 

and the need to which it is being catered for.  

Accuracy is also defined and measured using different methods (Green et al. 2000). For instance, 

the accuracy of a geometrically corrected image may be determined by calculating the root mean 

squared. However, an error in the geometric correction applied in the image can result correctly 

classified pixels of an image, that aligns with in-situ classification, placed in the wrong location 

(Green et al. 2000). Georeferencing was the only geometric correction applied to the images and 

the positioning of dive validation transect lines had an estimated error of 10m and the rockpool 

validation transect lines had an estimated error of 0.25m. Due to these uncertainties a more robust 

accuracy assessment method such as the use of a confusion matrix (Green et al. 2000) was not 

used. Alternatively, a much simpler thematic accuracy assessment was carried out. A thematic 

accuracy assessment does not take into consideration the spatial accuracy of the dataset (Green et 

al. 2000). Instead, it assesses the extent to which the class identified from the classification 

represents the class observed in-situ on site (Green et al. 2000). In this study, accuracy of the dataset 

was assessed by comparing the percentage of E. radiata from validation with the percentage 

generated from the image classification. This was then converted to a percent accuracy 
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4 RESULTS 

4.1 Preliminary Survey 

The preliminary survey generated results on the capacity of different sensors and spectral bands in 

these sensors to detect E. radiata. It also helped to decide from the available sensors which one to 

use for data collection in this research. Furthermore, the survey was also used to identify the UAV 

ideal flying height, to detect E. radiata, and identify the environmental conditions that favoured E. 

radiata detection using UAV images.  

4.1.1 Ability of Different Types of Sensors and Bandwidths to Detect E. radiata 

The images collected from the Parrot Sequoia sensor showed that near infrared was unable to 

penetrate water. Thermal images from the Mavic Enterprise were also unable to detect E. radiata. 

However, RGB images from both the Parrot Sequoia and Mavic Enterprise cameras were able to 

capture E. radiata at low tide in both intertidal and subtidal zones at lower altitudes.  

Table 4:1 Summary of the ability of different sensor and bands to capture E. radiata 

Sensor type Bands Ability to Detect E. radiata 

Parrot Sequoia RGB yes 
NIR no 

DJI Mavic 2 Enterprise RGB yes 
Thermal no 

DJI Mavic 2 Pro RGB yes 

4.1.2 UAV Flying Altitude to Detect E. radiata 

RGB images were able to capture the unique golden colour of E. radiata, growing on large rock 

pinnacles in deeper subtidal zones and in the shallow intertidal zones, in very bright sunlight at very 

low tide (e.g. 0.3 m tide level).  More distinction between E. radiata and the rest of macroalgae begin 

to emerge in images captured at an altitude of 60 m and below. However, at this altitude the shape 

of fronds, even in shallow water, gets pixelated, as in many instances less than 20 pixels fell on an 

E. radiata frond at this altitude. The shape of E. radiata fronds begin to show their morphological

form and structure in detail with images taken at an altitude below 30m.Table 4:2 summaries the 

changes in spectral and spatial detail with image altitude from UAV when captured in bright sunlight. 
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Table 4:2: A summary of how spectral and spatial detail changes with changes in image altitude. 

Flying 

Altitude (m) 

Spectral Detail Spatial Detail 

100 Faintly visible details in very shallow 

areas 

No details 

70 Shallow E. radiata distinguishable by 

colour in shallow areas 

Faint details visible in very shallow E. 

radiata 

60 Good spectral contrast between E. 

radiata and other aquatic vegetation 

begin to emerge in shallow waters 

Details visible but blurred in shallow 

water 

50 Good* Details visible but blurred in shallow 

water 

40 Good* Details of E. radiata fronds begins to 

emerge more clearly in very shallow 

water 

30 Very good* Good details visible in shallow waters 

20 Excellent* Excellent details in intertidal and good 

details in subtidal areas 

10 Excellent* Excellent details of E. radiata in 

subtidal waters and can identify details 

of E. radiata fronds even in the shadow 

of some rock pools  

*E. radiata in deeper waters are spectrally different to E. radiata in shallow water. Its unique

golden tint is visible in shallow water. In deeper water, even at lower altitudes images with more 

spatial detail are visible, spectrally E. radiata was closer to other macroalgae.  

4.1.3 Environmental Conditions for UAV Image Collection 

The environmental factors measured and observed are shown Table 3:2 and Table 4:3.  It was 

observed that low tides helped to detect E. radiata by lowering the amount of water above the 

benthos. When tides were lowest, the tips of E. radiata were exposed for a brief amount of time in 

some parts of Aldinga reef (especially in the South) in the shallow subtidal zone and the intertidal 

zones. However, E. radiata can be easily detected from UAV images in a low tide between 0.8 to 1 

m tidal height at Aldinga Reef.  
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Low tide alone, without bright sunlight, did not capture the unique golden yellow spectra of E. radiata 

in shallow water. In images captured with low tide and high cloud cover, E. radiata in shallow water 

was easily identified. However, E. radiata in deeper waters were not very easy to visually identify. In 

these conditions, E. radiata found in shallow water was spectrally similar to E. radiata in deeper 

waters.  In contrast, on days of bright sun illumination with little or no cloud cover, E. radiata was 

visible in the intertidal zone on rock platforms and in shallow subtidal areas and on rock pinnacles 

over deep subtidal zones. E. radiata in shallow water in bright sunlight was easily identified by their 

golden colour and visibly distinguishable from E radiata in deeper water. Wave action increased 

turbidity in areas with soft-sediments, thus E. radiata could only be captured successfully in the 

shallow subtidal zone and intertidal zone over areas with rocky substrates (rather than soft-

sediments). High tide resulted in waves breaking over the intertidal platform and the form of those 

waves for UAV imagery was similar to bright sun glint obscuring what was underneath. Ecklonia 

radiata could be detected at low tide when wind speeds were lower than 30 km/hr. However, at high 

tide, and in strong windspeeds, E. radiata detection would be difficult due to increased water turbidity 

and wave action 

Sun azimuth and angle played a role in the amount of sun light that penetrated the water and how 

UAV images could be captured to avoid sun glint. In the preliminary survey, the higher the sun 

altitude, the better illumination of water was observed. Bright sun glint was minimised by aligning 

UAV tilt according to the sun altitude angle and by setting the flight heading to align with the sun 

azimuth. However, increased wave action still contributed to sun glint problems. Also, low sun 

altitudes created shadow especially in rockpools and near rock pinnacles   

Some environmental factors such as tides and illumination had a direct effect on the ability to detect 

E. radiata. Whereas other factors such as atmospheric pressure, temperature and humidity had

indirect effects. Tides for example were affected by both low atmospheric conditions and wind 

direction. Low atmospheric pressure in combination with shoreward wind direction resulted in water 

levels that were much higher than the forecasted tide. Humidity and temperature had no direct effect 

on the ability to detect E. radiata over water. However, higher temperatures were observed along 

with high atmospheric pressure and bright sun illumination and high humidity was observed along 

with high cloud cover and lower atmospheric pressures. Overall, the most important environmental 

conditions for favourable detection of E. radiata were low tide levels and bright illumination from the 

sun. Table 4:3 summaries environmental conditions that favoured E. radiata detection in the 

preliminary surveys.  
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Table 4:3: Summarises the environmental conditions that are favourable for E. radiata detection 

Environmental factors Favourable conditions for UAV data collection 

Tide Lowest possible tides (ideally tides below 0.9m) 

Illumination Bright sun light with minimum or no cloud cover 

Wave action and water 

turbidity 

Calm, low turbidity water 

Wind Wind speeds below 30 km/hr (ideally below 18 km/hr) 

Atmospheric Pressure Higher atmospheric pressure (linked to tides and lowering of 

water column) 

Sun Altitude Higher sun altitudes illuminate water better and minimize shadow 

in rockpools and around larger rocks. 

4.2 Image Classification Outputs for Validation sites 

4.2.1 Classification of images over zone S 

The benthic map outputs generated in the deeper subtidal zone (Zone S) over validation transect 

areas using the SVM classifier are shown in  Figure 4:1 to Figure 4:6. These maps show the results 

from the classification outputs for all classes and the E. radiata class alone. In maps and tables 

labels are: E. radiata in shallow water “Ecklonia_shallow”; E. radiata in deep water, “Ecklonia_deep” 

and; the combined class of all E. radiata, both in shallow and deep water, “Ecklonia_combined”. 
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Figure 4:1: Classified validation transects in the West of the study area showing all classes within 

the area covered by the 10m buffered transect lines (WT1, WT2, WT3) of 30m in length each. 
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Figure 4:2: Classified validation transects in the West of the study area highlighting E. radiata within 

the area covered by the 10m buffered transect lines (WT1, WT2, WT3) of 30m in length each. 
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Figure 4:3: Classified validation transects in the South of the study area showing all classes within 

the area covered by the 10m buffered transect lines (ST1, ST2, ST3) of 30m in length each. 



54 

Figure 4:4: Classified validation transects in the South of the study area highlighting E. radiata within 

the area covered by the 10m buffered transect lines (ST1, ST2, ST3) of 30m in length each. 
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Figure 4:5: Classified validation transects in the North of the study area showing all classes within 

the area covered by the 10m buffered transect lines (NT1, NT2, NT3) of 30m in length each. 
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Figure 4:6: Classified validation transects in the North of the study area highlighting E. radiata within 

the area covered by the 10m buffered transect lines (NT1, NT2, NT3) of 30m in length each. 

Table 4:4: Percentage of E. radiata from SVM classifier for individual transects lines of each 

validation area (north, south, west) in the Deep Subtidal Zone (Zone S) and percentage of E. radiata 

for each validation area separately. 

West Dive Transects North Dive Transects South Dive Transects 

WT1 WT2 WT3 NT1 NT2 NT3 ST1 ST2 ST3 

SVM Classifier 

% Ecklonia_Shallow 3 2 8.1 1 1.9 3.9 42.2 42.7 23.9 

% Ecklonia_Deep 4.4 3.5 14 0 0.4 10.9 0.4 0.3 0.7 

% Ecklonia_Combined 7.4 5.4 22.2 1.1 2.3 14.8 42.5 43.1 24.6 

Combined transects 

West North South 

SVM Classifier 

% Ecklonia_Shallow 4.3 2.3 36.3 

% Ecklonia_Deep 7.2 3.9 0.5 

% Ecklonia_Combined 11.5 6.2 36.8 
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The percentage of E. radiata classified in Zone S, varied across different validation areas. The overall 

percentage of E. radiata detected in the West, South and North dive areas from the SVM method 

was 11.5% in the West, 36.8% in the South and 6.2% in the North (Table 4:4). When comparing 

these values with the overall validation values for the same area (W:37.5%, S:21% and N:0%) the 

lowest level of accuracy in classification was in the West area. The accuracy of in the individual 

transect lines (WT1, WT2 and WT3) in the West for shallow E. radiata or E. radiata on the rock 

pinnacles, was very high (97.4%, 87.5% and 98.2% respectively) along with the overall accuracy at 

97%. In comparison, accuracy for the individual transects without the distinction of shallow and deep 

E. radiata were less for individual transects (83.4%, 72.8% and 66.6%) as well as the average for all

three transects at 74%. 

4.2.2 Classification of Images over zone I 

Figure 4:7 to Figure 4:9 shows classified benthic habitat maps over transect lines in rockpools. The 

maps show broad classes used for classification and simplified maps that also show E. radiata 

across the transects surveyed 
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Figure 4:7: Classified validation transects in the North Shallow (NS) Rockpool 
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Figure 4:8: Classified validation transects in the West Shallow (WS) Rockpool 



60 

Figure 4:9: Classified validation transects in the West Deep (WD) Rockpool 
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Table 4:5: Percentage of E. radiata from SVM classifier for individual transects lines of all rockpools 

in shallow subtidal and intertidal zone (Zone I) and percentage of E. radiata for each rockpool 

separately. 

Rockpool Name Individual Transects Percent E. 
radiata 

North Shallow (NS) NS_T1 13.87 

NS_T2 24.39 

NS_T3 34.13 

NS_T4 24.36 

NS_T5 24.13 

NS_T6 23.39 

NS_T7 20.79 

West Shallow 
(WS) 

WS_T1 36.47 

WS_T2 30.63 

WS_T3 15.95 

WS_T4 19.98 

West Deep (WD) WD_T1 2.49 

WD_T2 11.01 

WD_T3 29.85 

WD_T4 50.07 

WD_T5 44.42 

WD_T6 29.11 

WD_T7 19.06 

Rockpool Name Combined transects for 
each rockpool 

Percent E. radiata 

North Shallow (NS) NS 23.52 

West Shallow 
(WS) 

WS 25.93 

West Deep (WD) WD 24.63 

The percentage cover of E. radiata identified for individual transect lines and for the whole image 

can be seen in Table 4:5. It shows that the overall percent of classification of E. radiata in all these 

rock pools are very similar with the highest cover of 25.93% in WS. 24.63 in WD and the least cover 

of 23.52% in NS. The transect line with the lowest percent of E. radiata 2.4% is located over DS and 

a quick look at the unclassified UAV image on top of Figure 4:9 shows that this is the line with the 

highest amount of shadow.  
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4.3 Image Classification Outputs for Individual Images Over Study Area 

Figure 4:10 and Figure 4:11 shows the result of image classification of the individual image mosaic 

over the whole study area, with broad classes (Figure 4:10) and the E. radiata class alone (Figure 

4:11). The image also shows Zone S in light green, which is the deeper subtidal zone and in the 

shallow subtidal and intertidal zone, Zone I, in cream colour.   

Figure 4:10: Classified individual images over the study area 

Figure 4:11: Reclassified individual images over the study area 
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Table 4:6: The percentage and area covered in E. radiata in the study area of Aldinga Reef 

Zone I Zone S Study Area 

E. radiata in shallow water (%) 4.26 0.48 1.83 

E. radiata in deep water (%) 5.09 1.50 2.78 

E. radiata (%) 9.35 1.98 4.60 

Total Area covered in the study (m²) 28733.04 52075.48 80808.53 

Area covered in shallow E. radiata (m²) 1224.72 250.78 1475.50 

Area covered in deep E. radiata (m²) 1462.68 780.98 2243.66 

Area covered in E. radiata (m²) 2687.40 1031.76 3719.16 

Area covered in the study (ha) 2.87 5.21 8.08 

Area covered in shallow E. radiata (ha) 0.12 0.03 0.15 

Area covered in deep E. radiata (ha) 0.15 0.08 0.22 

Area covered in E. radiata (ha) 0.27 0.10 0.37 

Table 4:6 shows the quantitative results from SVM classification of individual image mosaic over the 

whole study area. Zone I covered an area of 2.87 ha of land calculated from images and Zone S 

covered 5.21 ha. Across this area 9.4% in Zone I was covered by E. radiata (e.g. 2687 m²) and only 

2 % was covered by E. radiata. Ecklonia radiata cover percentage for the whole study area was 

calculated at 4.6 %, which is 3719 m².   
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Figure 4:12: This figure shows classified individual images in the West of the study area at the top, 

and unclassified RGB mosaic of the same area at the bottom. 

Figure 4:12 shows a section of the mosaic of individual images captured over the study area. It can 

be seen that the classification model was able to classify E. radiata in shallow water in the intertidal 

and shallow subtidal environments. It managed to classify the broad classes of rock, sediment, bright 

sun glint and shadow. Because of the spectral similarity of foam (from breaking water) and sunglint, 

foam it was classified into the bright sun glint class. Boundaries between images as a result of 

changes in illumination in across an oblique image, was also a problem in the individual image 

datasets and is obvious where images overlapped (Figure 4:12). 
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Figure 4:13: Classified individual image in Northwest of the study area showing good classification 

of Ecklonia in shallow water and boxes showing good removal of sun glint.   

Shallow water sunglint was initially a problem identified in shallow water (Zone I) which resulted in it 

being misclassified as shallow water E. radiata. This issue was resolved by increasing segment size 

in the classification wizard from 5 pixels to 10 pixels. As seen in Figure 4:13, there is very little 

misclassification (highlighted by boxes) of shallow water sun glint as E. radiata in the intertidal zone 

of the image. However, in the subtidal area, bright sun glint appeared in the most spectrally distorted 

part of the image to the left where even bright sun glint was over classified and visibility underneath 

it was obstructed.   
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Figure 4:14: Sediment in shallow water misclassified as various classes 

The issue of shallow water sun glint misclassification was resolved over rock substrate as seen in 

Figure 4:13. However, when shallow water sun glint was present over sediment, it gets misclassified 

into various classes. Sometimes sediment was correctly classified as seen in box A of Figure 4:14. 

But it gets misclassified as E. radiata in shallow water (box B), as E. radiata in deep water (box D), 

as other aquatic vegetation (box E) and when next to bright sun glint, as bright sun glint (box C). 

More sediment is present in very shallow water in the North and South side of zone I, which means 

this issue may lead to sediment getting classified as E. radiata in these environments.  

4.4 Validation and Accuracy Assessment 

Validation data collected from the field observations of rockpools and from dive transects were 

compared to the results from SVM classification on UAV images to identify the accuracy this method. 
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4.4.1 Validation and accuracy assessment in Zone S 

Table 4:7 Percent accuracy of the SVM classifier to detect E. radiata in the deep subtidal zone (Zone 

S) 

West Dive Transects North Dive Transects South Dive Transects 

WT1 WT2 WT3 NT1 NT2 NT3 ST1 ST2 ST3 

SVM Classifier 

% Ecklonia_Shallow 3 2 8.1 1 1.9 3.9 42.2 42.7 23.9 

% Ecklonia_Deep 4.4 3.5 14 0 0.4 10.9 0.4 0.3 0.7 

% Ecklonia_Combined 7.4 5.4 22.2 1.1 2.3 14.8 42.5 43.1 24.6 

Validation 

% Ecklonia_Shallow 11.9 17.9 24.6  - - - - - - 

% Ecklonia_Combined 24.2 32.6 55.7 0 0 0 9.4 10 44 

Percent Accuracy 

Ecklonia_Shallow 97.4 87.5 98.2 - - - - - - 

Ecklonia_Combined 83.4 72.8 66.6 98.9 97.7 85.2 66.9 66.9 80.6 

Combined Transects 

West North South 

SVM Classifier 

% Ecklonia_Shallow 4.3 2.3 36.3 

% Ecklonia_Deep 7.2 3.9 0.5 

% Ecklonia_Combined 11.5 6.2 36.8 

Validation 

% Ecklonia_Shallow 18.2 - - 

% Ecklonia_Combined 37.5 0 21 

Depth estimate (m) 2.7 1.9 1.5 

Percent Accuracy 

Ecklonia_Shallow 94  - - 

Ecklonia_Combined 74 93.8 84.2 

Table 4:7 shows the percentage of E. radiata identified from SVM classifier, from validation and the 

percent accuracy of SVM classifier. This is given for each individual transect line and the combined 

value from all transects for each dive validation area (north, south, and west) is given. In the West 

dive transects the percentage of E. radiata on rock pinnacles were calculated and labelled as 

“Validation % Ecklonia_Shallow”. This information is absent in other areas (North and South) due to 

the lack of such large rock pinnacles.  

The dive validation data from Zone S showed that the highest percentage of E. radiata was found in 

the West with an overall percent cover of 37.5 % and the transect with the highest percent E radiata 

was WT3 at 55 %. In contrast, validation data from Northern transects yielded no records of E. 

radiata. Validation data showed that there was a percent cover of 21% E. radiata in the South 

transects. The validation videos showed that larger homogenous patches of E. radiata were found 
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in the transects in the West area. In comparison, E. radiata found in South transects were patchy 

and more mixed with other types of vegetation.  

The percentage of E. radiata classified in Zone S varied across different validation areas as seen 

from Table 4:7 The overall percentage of E. radiata detected for each validation area, was identified 

by combining the three transects in each area. It showed that the SVM method under-classified the 

percent cover of E. radiata in the West (SVM: 11.5%, Validation: 37.5%, % Accuracy 74%), and 

North validation area (SVM: 6.2%, Validation: 1.9%, % Accuracy 93.8%), and overclassified E. 

radiata in the South validation area (SVM: 36.8%, Validation: 21%, % Accuracy 84.2%).  However, 

E. radiata over rock pinnacles (e.g. shallow Ecklonia) in the West transects had a higher accuracy

(SVM: 11.5%, Validation: 18.2%, % Accuracy 94%) compared to the same transects when distinction 

of pinnacles was not made.  

4.4.2 Validation and accuracy assessment in Zone I 

Table 4:8: Percent Accuracy of SVM classifier to detect E. radiata in shallow subtidal and intertidal 

zone (Zone I) 

Transect Label* 
Av Depth 

(cm) 
SVM Validation % Accuracy 

NS_T1 35.78 13.87 20.00 93.87 

NS_T2 38.50 24.39 20.00 95.61 

NS_T3 34.00 34.13 27.27 93.14 

NS_T4 45.00 24.36 20.00 95.64 

NS_T5 36.85 24.13 37.50 86.63 

NS_T6 35.00 23.39 50.00 73.39 

NS_T7 33.40 20.79 0.00 79.21 

WS_T1 53.91 36.47 78.79 57.68 

WS_T2 55.32 30.63 45.71 84.92 

WS_T3 48.88 15.95 12.12 96.17 

WS_T4 44.29 19.98 21.88 98.10 

WD_T1 78.80 2.49 73.07 29.42 

WD_T2 98.60 11.01 90.48 20.53 

WD_T3 98.80 29.85 56.52 73.33 

WD_T4 108.40 50.07 58.82 91.25 

WD_T5 99.20 44.42 33.33 88.91 

WD_T6 78.1 29.11 35.71 93.40 

WD_T7 89.3 19.06 75.00 44.06 
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Rockpool Label* 
Av Depth 

(cm) 
SVM Validation % Accuracy 

NS 37.3 23.52 22.54 99.02 

WS 49.9 25.93 38.41 87.52 

WD 89.3 24.63 63.11 61.52 

*NS: North Shallow Rockpool, WS: West Shallow Rockpool, WD: West Deep Rockpool, and T:
Transect

The overall validation values and the classification values for the rockpools are much closer as seen 

in Table 4:8. Based on validation values the highest percentage of E. radiata is found in West Deep 

(WD) rockpool 63.1%, followed by West Shallow (WS) rockpool (38.4%) and North Shallow (NS) 

rockpool (22.5%). However, the accuracy is the lowest in WD with SVM classifying much lower 

(24.6%) than the validation value. It shows that an overall classification accuracy is highest in both 

the shallow rock pools (NS: 99% and WS: 87.5%). Accuracy is much lower in the deeper rockpool 

(WD:61.5%). To observe this trend, the average depth and percent accuracy of E. radiata detection 

of all transects were plotted against each other as shown in Figure 4:15. This identified that percent 

accuracy of E. radiata detection declined with increasing water depth. Accuracy of classification of 

E. radiata in rock pools declined from 80% at a depth of around 55 cm to an accuracy of 70% at 81

cm.
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Figure 4:15: Exploring the relationship between accuracy and E. radiata detection using SVM 

changes with depth in rockpools (validation sites in zone I) 

The extent of shadow formation in the deeper rockpool (WD) can be seen in Figure 4:9. Both Figure 

4:9 and Table 4:5 shows the effect that shadow had on the classification of transect line WD-T1. 

WD-T1 has a validation value of 73% E. radiata but SVM classifies only 29% E. radiata in this 

transect line.  



71 

5 DISCUSSION 

5.1 Optimum observational requirements and conditions for mapping E. 
radiata using UAV imagery at Aldinga Reef 

5.1.1 Sensors and multispectral bands 

As literature suggests the best bands to use for optical benthic mapping is within the visible spectrum 

due to its ability to penetrate water (Hedley et al. 2016). The RGB bands of all the sensors tested 

were able to capture E. radiata underwater. The NIR band from the Parrot Sequoia sensor was 

tested to check if it could be used as a proxy for sun glint removal with the assumption that NIR 

would be totally absorbed by water (Kay, Hedley & Lavender 2009). However, the data collected 

was not useful as reflectance was not measured over water in this study.  

The chlorophyll content in aquatic vegetation reflects Near Infrared (NIR) and Short Wave Infrared 

(SWIR) wavelengths and can be easily detected if it emerges over water at low tide, or if it is present 

in very shallow water (< 2 m) (Kutser, Vahtmäe & Praks 2009). Therefore, it was considered that the 

NIR sensor could be useful to detect E. radiata in this study. However, in the subtidal zones where 

the Parrot Sequoia was tested, there were no reflectance identified in the NIR band and it was 

deduced that the water was not physically or optically shallow enough to reflect NIR from E. radiata. 

Due to the lack of measured IR reflectance over water for vegetation detection or for NIR based sun 

glint correction methods, it was concluded that the spectral resolution of the Parrot Sequoia sensor 

was not sensitive enough to be useful in this research.  Furthermore, RGB images captured structural 

detail of E. radiata in both shallow and deep water. Therefore, RGB images were considered more 

useful and practical for this research.  

5.1.2 Operational Conditions and UAV flying requirements 

Depending on the need of the research, E. radiata maybe detected at higher UAV flying altitudes as 

identified in this study (shown in Table 4:2). Recommendation of a 30 m flying altitude by Selvaraj 

(2021) for UAV multispectral imagery when tested out on RGB images for this study was adequate 

to detect E. radiata. However, in order to compensate for the lack of multiple 4 or 5 bands, it was 

decided to improve on spatial detail as suggested by Riniatsih et al. (2021) for RGB images. Flying 

at varying altitudes showed that flying and hovering the UAV at 20 m altitude to capture images 

provided more details on fronds despite its movement under water with wave action in subtidal 

zones. Higher flying altitudes could be used in more complex classification models because E. 

radiata was visible to the naked eye at 60-50 m. Flying at such an altitude may work out when using 

a physics-based classification with atmospheric and water column correction and spectral library 

incorporation into the classification model to detect E. radiata, rather than when using a simple 

empirical classification model as the one used in this study. However, the flying altitude of 20 m 
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combined with the simple empirical classification model proposed was able to distinguish between 

E. radiata in shallow water and E. radiata in deeper water. Furthermore, this flying altitude may vary 

depending on the sensor specifications such as sensor width, FOV and image dimensions of the 

sensor. 

The decision to collect low altitude images meant that the spatial extent of imagery collected was 

compromised for higher spatial detail. Flying at such an altitude, was carried out with the awareness 

that generating an image mosaic of the whole study area cannot be practically achieved for a 

research project of this scale and time frame. This was especially true considering the logistics of 

fieldwork and the stormy weather conditions that are typical of a South Australian winter. Also, the 

restrictions in conditions that heighten the sensitivity of E. radiata detection to tide and illumination 

and the restriction of UAV flight to weather conditions (Davies-Colley et al. 2014; Gallegos & Moore 

2000; Green et al. 2000; Mount 2005; Mustard, Staid & Fripp 2001; Tait et al. 2019; Tait, Orchard & 

Schiel 2021) 

Light attenuation with increasing water depth as identified in this study and by Gallegos and Moore 

(2000) showed that even a slight depth variation can lead to exponential loss of image clarity. As a 

result of this rapid change images captured at low tide is recommended when using RGB without 

water column correction for classification of E. radiata in shallow water (Tait, Orchard & Schiel 2021). 

However, careful consideration must be given to wind direction and atmospheric pressure when 

considering tidal levels, as onshore winds and low atmospheric pressure push up the water level on 

to the intertidal and shallow subtidal zones, increasing the depth of predicted tides (Shan, Hannah 

& Wu 2020). Consequently, low tide levels in combination with high atmospheric pressure are 

important considerations to reduce water column depth in order to detect E. radiata using UAV.  

In the visible spectrum, the light absorption is much faster in the red band than in the blue band 

(Gallegos & Moore 2000). Ecklonia radiata in shallow water had a unique golden colour that was 

useful to visually delineate them from the other benthic features. The spectral profile in Figure 3:7 

showed this colour in shallow water which disappears rapidly with red band as a result of water 

attenuation, hence E. radiata in deeper water is spectrally similar to other macroalgae. Therefore, 

the lowest possible tide is recommended (Tait Orchard & Schiel 2021) for collecting images of E. 

radiata in shallow water.  

UAV images were captured when the sun altitude was between 22˚- 41˚. Images captured with sun 

altitudes as low as 22˚ can be used to identify E. radiata if the sun is bright, cloud cover is minimum, 

and the tide is low. UAV image capture with high sun altitude is not recommended by Mount (2005) 

and Joyce at al. (2019). However, high sun altitude had little impact from bright sun glint in images 

captured over the intertidal zone. This observation agrees with the favourable sun altitude range 

suggested by Mustard, Staid & Fripp (2001). Although, in this study higher sun angle generated sun 
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glint in the subtidal zone where wave action was also higher. Capturing imagery at midday in cloud 

cover is considered an alternative when polarising filters are not available to reduce sun glint over 

water (Joyce et al. 2019; Kay, Hedley & Lavender 2009). However, images captured in these 

conditions lose the unique golden spectra of E. radiata. Furthermore, dull, sun glint was observed 

over water which obstructed the view underneath. Therefore, image capture with cloud cover to 

identify E. radiata is not recommended.  

Joyce et al. (2019) recommends tilting the image by a slight angle roughly 15˚ to reduce glint from 

the edges of the images. Images in this study were captured with camera tilt that aligned to the sun 

altitude with tilt angles that ranged from 22˚ - 41˚, which were at a higher tilt range than 

recommended. The increase in tilt had little impact on individual images used to map the study area 

if it was in the intertidal zone. Mosaicking of overlapping oblique imagery over the dive validation 

transects also minimised some issues that emerged with this distortion as suggested by (Flynn & 

Chapra 2014). However, the impact of distortion from oblique imagery with higher tilt angles 

experienced geometric issues as suggested by (Joyce et al. 2019). Oblique images captured had a 

change in illumination across the image with better visibility in the less distorted side of the image 

details. This issue can be corrected with cosine function if the tilt angle is known or can be calculated 

(Li & Guo 2015). It can also be corrected with the use of a polarising filter (Cherian et al 2021). 

However, this correction was not made on the images used in this study due to time and resource 

constraints. The low radiometric resolution of 8-bit imagery from Mavic 2 Pro meant that the change 

in illumination in oblique images and from sun glint contribute to the loss of spectral detail in order to 

discriminate details needed to identify E. radiata in individual oblique images in Zone S. Furthermore, 

the impact of this loss is visible in individual image dataset with poor segmentation (Orych et al 2014) 

in the distorted part of the oblique images over deeper water. This issue was minimum in the mosaics 

of overlapping images over validation transects in Zone S. Yet, even in these overlapping images, 

as a result of mosaicking without correction for the change in illumination, resulted in straight 

boundaries that led to abrupt changes in classification accuracy along these straight lines (Figure 

4:3Figure 4:4Figure 4:5Figure 4:12) 

Ripples and waves over shallow water contributed to reduced quality of images, which are not 

favourable conditions for data collection (Mount 2005). However, in images captured at both low and 

high tide, if the sun angle is in the ideal 20-35˚ range and even a higher angle such as 41˚, ripples 

and waves do not obscure shallow E. radiata despite adding a slight blurring effect from wave motion. 

Ripples and waves over shallow water are less of an issue if the water column is illuminated properly. 

When a wave breaks over the subtidal zone creating form which is spectrally similar to bright sun 

glint, or when the crest of the wave reflects bright sun glint it obscures the features in the water 

beneath it rendering classification difficult. Therefore, bright sun light penetrating the water column 

is a key factor and ripples and wave action from wind speeds less than 30 km/hr is not a severe 
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issue. Further, if the environment has a higher sediment content, like in the North validation 

transects, low wind speeds below 18 km/hr are recommended (Mount 2005) and lower wave action 

can greatly increase visibility. The best quality images captured over the high sediment validation 

area in the North were captured on a day with wind speeds between 10-24km/hr in agreement with 

Mount (2005). However, good quality images of E. radiata for SVM classification in shallow water 

can be captured with wind speeds around 30 km/hr within the desirable sun angle and without cloud 

cover. 

5.2 Extent to which UAV RGB imagery can be used to detect E. radiata 

5.2.1 Deep Subtidal Zone (Zone S) 

The percentage of E. radiata classified in Zone S showed variation in percentage of E. radiata 

present (validation), classified (SVM) and in accuracy of detecting it. It showed that the SVM method 

under-classified in the West and the North validation area and overclassified in the South validation 

area. However, E. radiata over rock pinnacles (shallow Ecklonia) in the West was classified with a 

higher accuracy. The results from the West dive transect lines were of interest because the dive 

validation data generated the highest overall cover of E. radiata (37.5%) in this area along with large 

homogeneous patches of it observed from the validation videos. The accuracy of SVM classification 

of E. radiata over the rock pinnacles was higher (94%) but the accuracy dropped in the SVM 

classification when no such depth related distinction was made (74%) This indicates that the SVM 

method was struggling to classify E. radiata in water that is approximately at a depth of 2.7 m but 

classified E. radiata over the rock pinnacles very accurately. This observation supports the effect the 

water column has on spectral properties of E. radiata (Selvaraj, Case & White 2021; Wicaksono & 

Lazuardi 2018) due to light attenuation (Gallegos & Moore 2000; Green et al. 2000). 

South dive transects were of interest because this area had high heterogeneity due to a complex 

mix of various macroalgae and seagrass communities. Furthermore, this area had the highest 

vegetation cover as observed from dive validation videos and aerial images. Small, segmented 

patches of E. radiata were detected in ST1 (9.4%) and ST2 (10%) in contrast to large homogenous 

patches of E. radiata observed in ST3 (44.4%). The estimated water depth in the South dive 

transects (1.9m) was lower than the West transects (2.7m). Despite the shallower water, In ST3 with 

the largest homogenous E. radiata patches (44%), SVM under classified (24.6%) but displayed the 

highest overall accuracy (80.6%) in comparison to the rest of the transects (both ST1 and ST2 = 

66.9%). It is interesting to note that heterogeneous environments present poor accuracy issues even 

within high spectral resolution in hyperspectral imagery (Ashraf, Brabyn & Hicks 2012). Furthermore, 

it should be reiterated that other macroalgae such as Sargassum spp. are reported to have a very 

similar spectral signature to that of E. radiata (Harvey 2009) and those other species are found in 

abundance at Aldinga reef (Wegener 1995).  Kutser et al. (2020) noted that spectral similarities exist 

in general even between broad classes of seaweeds. Ashraf, Brabyn and Hicks (2012) suggest the 
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use of high spatial resolution imagery to resolve this issue. Considering the issue of spectral 

similarities of E. radiata with other macroalgae species (Kutser et al. 2020; Harvey 2009) both high 

spatial and high spectral resolution is needed to resolve the misclassification in heterogenous 

environments. In contrast to ST1 and ST2 the issue of under classification in ST3 over homogeneous 

patches of E. radiata can be attributed to water attenuation.  

The North transects (NT1, NT2, NT3) did not yield any E. radiata cover from validation. This aligns 

with SVM classification of very low percent cover (NT1:1.1 % and NT2: 2.3 %) in those transects. 

North transects also had the highest amount of sediment and turbidity. The attenuation of light due 

to this turbidity maybe the cause of spectral confusion (Davies-Colley et al. 2014; Gallegos & Moore 

2000; Green et al. 2000) in NT3 misclassifying E. radiata because of turbid conditions. Furthermore, 

despite high accuracy of classification (93.8%) the lack of E. radiata in the validation transects make 

this area a poor location to assess SVM’s accuracy for detecting E. radiata, especially in deeper 

waters.   

5.2.2 Deep Subtidal Zone (Zone I) 

The percentage accuracy at which of E. radiata was very high in the shallow rock pools in Zone I 

with an accuracy of 99% in the shallowest NS rockpool and 87.5% in WS shallow rockpool. However, 

the deepest rockpools accuracy is low to (61.5%). This clear transition from high accuracy to low 

accuracy in SVM classifiers ability to detect E. radiata reinforce the effect of light attenuation in water. 

The percent accuracy of E. radiata in each validation transect was plotted against its average depth 

and a best fit line shows a decline in accuracy at a rapid rate (-0.4 percent by cm of water depth) 

which supports light attenuation even in very shallow water ((Gallegos & Moore 2000; Green et al 

2000). The confounding effect of shadow in high spatial resolution imagery (Lu & Weng 2007) and 

its negative effect on image classification can be seen in transect line WD-T1 in West Deep rockpool. 

WT-T1 had a validation value of 73% E. radiata but SVM classified only 2.5%. Hence, the overall 

and individual transects lines indicate how depth and water attenuation changes the ability of SVM 

to detect E. radiata accurately. 

5.2.3 Individual Images Over the whole study area 

The classification outputs of individual image dataset showed an issue that was not dominant in the 

images over the validation zones. The issue of change in illumination across the oblique image, in 

section 5.1, was more obvious in the individual image dataset. This was because there was less 

overlap of imagery to minimise it. As a consequence of the diminished quality of the most distorted 

part of the image, segmentation was poor (Orych et al 2014) and the classified images showed 

abrupt boundaries in classification. This could have been corrected with a cosine function (Li & Guo 

2015) or with the use of a polarising filter (Cherian et al 2021) as explained in section 5.1 above. 

The dataset also showed that SVM misclassified sediment in shallow water into various classes 
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including deep and shallow Ecklonia classes which was again a source of error which was not 

identified over validation rock pools. This issue may be linked to the loss of spectral quality in oblique 

images captured in the dataset. This issue may not have been identified in validation images 

captured over rock pools because they were nadir images with no oblique illumination.  

5.3 Percentage Cover and Distribution of E. radiata in Aldinga Reef 

5.3.1 Distribution of E. radiata at Zone S 

The validation transects showed that the highest percent cover of E. radiata from validation data was 

in the western transects (37.5%) followed by the southern transects (21%) and lowest in the northern 

transects (0%). Although the differences across these areas may not be accurately aligned with SVM 

classification (highest 36.8% in South, followed by 11.5% in West and 6.2% in North) due to 

misclassification, the validation data is useful to describe possible variation in E. radiata distribution 

across various locations in Aldinga reef with varying environments factors. 

The physical variability in the subtidal zones can be seen from the descriptions in Table 3:5. The 

validation videos showed that there was a high amount of sediment in the North transects, very low 

visibility and visible suspended load. E. radiata is normally rare where sediment content is high 

(Connell, SD 2005) as high sediment content inhibits the recruitment of E. radiata gametophytes 

(Kennelly 1987a; Tatsumi & Wright 2016). This may explain the lack of E. radiata observed in the 

validation transect in the North area. The sediment in the Northern side of the reef may be explained 

by the predominant southerly wind and net northerly movement of beach sediment with longshore 

drift along the Adelaide Metropolitan Coastline (McDowell, Green & Griffante 2009). Wegener (1995) 

identfied Sellicks Creek Catchment as a main source of sediment load in Aldinga Reef. Erosion of 

sediment from the soft dunes at Aldinga beach is highlighted as an issue (Western et al 2020), which 

might be contributing to higher sediment and organic content to the Northern side of the reef. In 

addition to sediment, nitrogen enrichment has been a cause of E. radiata loss elsewhere (Gorman 

& Connell 2009) and it is worth noting the presence of two storm water drains in Aldinga with one 

draining into the dune while the other in the north draining to the beach opposite to where North 

transects were collected (see Figure 1:6). Sediment, organic matter and nutrients accumulating in 

the Northern area may explain the lack of E. radiata found in North validation transects, which are 

representative of the northern area of the beach.  

Unlike the Northern validation area, both South and West validation areas had clearer water with 

less sediment but more rock substrate. The beach profile on the South is more gradual compared to 

the West where there is an abrupt step from the intertidal to subtidal zone allowing waves to break 

on the intertidal platform. Aldinga Reef is exposed to moderate wave energy (Wegener 1995), which 

is considered favourable for E. radiata (Wernberg & Connell 2008) along with clear oligotrophic water 
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with more dissolved oxygen and less sediment (Wernberg et al. 2010). The gradual slope in the 

South section of Aldinga reef may give more time for the waves to dissipate and refract (Hughes 

2016) compared to the Western side of the reef. This may explain the heterogeneity in vegetation 

as lower wave exposure environments lead to E. radiata being replaced by other canopy macroalgae 

(Wernberg, & Connell 2008). In contrast to the Southern area of the reef, the sudden step in the reef 

platform from the intertidal to subtidal zone in the Western area of the reef has waves with higher 

energy. At low tide, waves break on the intertidal zone, and this is where the deepest rockpools, with 

abundant E. radiata, are also located. This continuous movement and circulation of water at the 

Western side could be the reason for the higher percentage of E. radiata observed in the Western 

transects, as water action, and clear oligotrophic water are conditions favoured by E. radiata 

(Wernberg et al. 2019a; Wernberg et al. 2010) 

5.3.2 Percent Cover of E. radiata in the Study Area 

The image classification over Zone S estimated E. radiata percent cover of 1.98 %, which is 1032 

m² (0.1 ha) of area covered. However, this percentage cannot be used as good estimate of E. radiata 

in deeper subtidal zones because of the poor accuracy of SVM to detect E. radiata in deeper waters. 

The accuracy of E. radiata classification in the validation transects in Zone S (deeper subtidal zone) 

was lower than desired. Therefore, the individual image dataset cannot be used with a high 

confidence to estimate the percent cover of E. radiata in Zone S of the study area.   

The percentage of E. radiata cover in the shallow subtidal and intertidal zone (Zone I) was 9.3 % of 

the area covered from the imagery (excluding sun glint and shadow). This accounts to an area of 

2687 m² (0.27 ha), which can be used as an estimate of area covered by E. radiata in Zone I of the 

study area. Thus, the estimated percent cover of E. radiata can be reported with a very high accuracy 

(99-87%) in intertidal zones but with a more variable accuracy in shallow subtidal zones (87-62%), 

depending on water depth and shadow.  

However, it should be noted that the individual images mosaic used to estimate percentage of E. 

radiata cover in Zone I was different from the validation mosaic with overlapping images. The 

individual image mosaic had the confounding effect from image distortion, bright sun glint and depth, 

reducing its accuracy to values lower than estimated from validation sites in Zone I. This is because 

the mosaicked imagery over the transect lines minimised the confounding issues previously 

mentioned.  
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6 CONCLUSION AND RECOMMENDATION 

6.1 Conclusion 

6.1.1 Optimal observational conditions for mapping E. radiata using UAV imagery 
over Aldinga Reef 

Ecklonia radiata can be detected very accurately in shallow subtidal and intertidal zones in Aldinga 

Reef when flying at an altitude of 20 m with broad RGB wavelengths. It is recommended to collect 

imagery when tide height is lowest because of the effect water attenuation has on E. radiata’s red 

spectral reflectance, making it spectrally similar to other aquatic vegetation in deeper water. Bright 

sunlight plays an equally important role when separating E. radiata in shallow water compared to 

deeper waters (e.g. > 2 m depth). It is important to observe wind direction and atmospheric pressure 

when identifying days of low tide for flying, especially in winter. This is because low atmospheric 

pressure and wind towards the coast pushes the water up further into the intertidal zone. When 

collecting imagery over intertidal zones both oblique and nadir images can be captured. Cloud cover, 

even at low tide and during mid-day is not recommended because the golden colour of shallow water 

E. radiata significantly reduce without bright sun light. It is recommended to capture images while

flying direction is aligned to the sun azimuth angle and when capturing oblique images with tilt aligned 

to the sun altitude the UAV and camera should be flying away from the sun with the back of the 

camera facing the sun.  The lack of bathymetry data at the fine scale needed for this study hindered 

its use for water column correction. However, if available it is recommended to use bathymetry data 

in future to modify pixel values for water attenuation (Green et al. 2000; Mumby et al. 1998) 

In the intertidal zone images can be captured at high sun altitudes, while flying the UAV with a tilt 

that is greater than the recommended 15˚ by aligning the tilt to the angle of sun altitude. This captures 

shallow water sun glint which is spectrally similar to E. radiata in shallow water. However, it can be 

minimised by adjusting the minimum segment size to be smaller than the smallest kelp fronds visible 

in imagery. Furthermore, the study identified that images can be captured in wind speeds as high as 

30 km/hr in intertidal zones.  

In subtidal zones bright sun glint over water is an issue and can be reduced by flying at windspeeds 

lower than 18 km/hr (Mount 2005) and capturing nadir or oblique images as recommended by Joyce 

et al. (2019). Images captured with higher tilt angles, and stronger winds can work better when 

mosaiced as identified in validation transects in this study. Therefore, instead of individual images, 

small overlapping image mosaics of transects or quadrat areas could be flown as a sampling method. 
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6.1.2 Ecklonia radiata detection in intertidal and subtidal zones using UAV RGB 
imagery 

Ecklonia radiata can be detected using the simple empirical method of image classification, using 

the Support Vector Machine (SVM) classifier, in shallow water (e.g. < 2 m depth) at Aldinga. 

However, accuracy of classification declines rapidly with increasing depth as observed at the 

validation sites in the rockpools at Zone I and from the dive validation transects, especially Western 

transects in Zone S. In the West transects, SVM struggled to classify E. radiata at 2.7 m water depth 

but managed to accurately classify E. radiata growing on rock pinnacles due to shallower depths. 

This shallow E. radiata found on rock pinnacles in the deeper subtidal zone were classified with 

similar accuracy to E. radiata found in very shallow water in Zone I. The South transects were over 

classified for percent cover of E. radiata where there was heterogenous aquatic vegetation as SVM 

struggled to differentiate between E. radiata and other vegetation with similar spectral properties 

when clustered together. However, the classification had higher accuracy in ST3 where more 

homogenous and larger patches were located. Due to the lack of E. radiata and due to the turbidity 

of water in the northern transects, the North transects were not the best to assess SVM’s accuracy 

for classifying percent cover of E. radiata. However, it is worth noting that the area classified as E. 

radiata was low (in agreement with validation data) except in NT3 where there was possible 

misclassification due to higher turbidity 

The rockpools in Zone I showed that E. radiata can be classified with accuracies ranging from 99-

61% depending on the depth of water. The data from rockpools showed that SVM classification using 

this method over shallow subtidal zones (e.g. < 2m water depth) and intertidal zones will be very 

accurate.  

Therefore, it can be concluded that E. radiata can be classified accurately in intertidal and shallow 

subtidal areas using the method proposed in this study. However, in deeper subtidal zones (i.e. > 2 

m depth) this method is not very successful. However, the method can be tweaked to improve the 

classification outputs by flying UAV away from the sun, with a camera tilt or by capturing nadir 

images. If larger angles and higher windspeeds need to be included in future studies, then testing 

out the impact of a polarising filter is recommended 

6.2 Recommendations 

The design of this study may be enhanced in future by using a direct georeferencing method that 

has been proposed by Selvaraj (2021), which was not applied in this research due to its recent 

publication. However, it has the potential of speeding up the georeferencing process of imagery 

captured without ground control points over water. Furthermore, Increasing the positioning 

technologies and capabilities in drones may help speed-up the image capture and pre-processing 



80 

stage of images. RTK drones such as the Matrice 300 RTK, may help automatic geoprocessing and 

mosaicking of imagery over shallow water without in-situ measurement of ground control points.   

A profound challenge faced when capturing imagery over water is the issue of sun glint. The study 

has shown that cloud cover, although it reduces sun glint (Joyce et al. 2019; Kay, Hedley & Lavender 

2009) due to the lower intensity of light penetrating water (Joyce et al. 2019), it does this at the cost 

of compromising the magnitude of spectral reflectance of shallow water E. radiata. Therefore, when 

using a simple empirical method of image classification as proposed by this study, it is not 

recommended to capture images of E. radiata with cloud cover present. One possible solution could 

be the use of polarising filters to remove sun glint in future (Joyce et al. 2019; Mount 2005). This 

method was not explored, and it is worth investigating the ability of polarising filters to remove sun 

glint without compromising E. radiata’s spectral properties in shallow water. Based on the findings 

from this study it is also recommended to further explore the use of nadir images over intertidal 

zones. This is because nadir images that are captured, even during mid-day in bright sunlight over 

very shallow water, have very little sun glint issues. The shallow water sun glint issues encountered 

in the study was easily resolved at the classification stage by increasing the segment size, for the 

purpose of E. radiata classification. The proposed method of individual image capture in very shallow 

water, can be carried out using both oblique and nadir images. In shallow water environments nadir 

images can be captured at high sun altitude angles. Nadir images over shallow water is usually 

recommended due to geometry issues in oblique imagery (Joyce et al. 2019). Therefore, nadir 

imagery in very shallow water with high sun altitude angles are worth further exploration to increase 

the potential time frame to capture imagery over water.  It is also recommended to use sensors with 

larger bit depth and exposure control to allow for better correction of illumination change in oblique 

imagery.   

A confusion matrix method of data validation could be implemented in the intertidal zone of the study 

area with the improvement of the method used in this research. This improvement could not be made 

due to time constraints in this study. However, it could be done by laying out all the transect lines in 

bright colours, across the water in rockpools, with 0.5m marks on the transect where point data can 

be collected, and then capturing an UAV image of all the transect lines shortly before or after data 

collection.  

At the very early exploratory stages of this research topic, UAV video data was collected at varying 

heights above Aldinga reef. On visual assessment, the videos showed that movement of E. radiata 

fronds with the action of waves, especially in the subtidal zone, distinguishes it from the rest of the 

aquatic vegetation. This area was not further explored due to the long timeframe that it takes to 

incorporate the learning curve required for such a project. However, it is worth further exploring the 

possibility of identifying E. radiata using video analysis and video classification methods with 
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machine learning methods as they are used successfully in some types of benthic mapping 

(Edgington et al, 2006)   

To carry out accurate water column correction, to improve the accuracy of E. radiata mapping using 

UAV images, a high-quality bathymetry dataset is needed. Therefore, such a bathymetry dataset will 

be useful for future research.  

As the research findings showed, the accuracy of E. radiata detection is high in very shallow water 

environments, such as in shallow rock pools, intertidal zones, and shallow subtidal zones below 2 m 

depth.  This provides an opportunity to use the method to estimate the percentage of E. radiata in 

those shallow environments, which are often important areas for monitoring Marine Parks and areas 

of importance such as the Great Southern Reef. Individual images or small patches of overlapping 

images can be used as a sampling strategy that can cover larger spatial extents than field data 

collection in a shorter timeframe. This may be useful for understanding the spatial variation in the 

distribution of E. radiata in shallow reef areas. Thus, the method can allow for the merging of field 

data sampling and remote sensing methods, in a similar way that underwater photography and 

videos are used for diver data collection as validation.  
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8 APPENDICES 

8.1 Permits and certificates 

8.1.1 Marine Parks Permit to Undertake Scientific Research 
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8.1.2 RPA Operator Accreditation Certificate 
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8.2 Screenshots of GSP Missions 

8.2.1 Screenshots of GSP 3D Mission Flight Plans to capture overlapping images 
over the Dive Validation Areas in Zone 

North Validation Area 



100 

South Validation Area 



101 

West Validation Area 
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8.2.2 Screenshots of Way Point Mission Flight Plans to capture  individual images 
over Zone I and Zone S 

Zone I (carried out in one mission) 
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Zone S (Mission 1: Southern Section) 
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Zone S (Mission 2: Northern Section) 
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8.3 Map Outputs 

8.3.1 Ecklonia radiata cover in Validation Sites (Zone S) in Aldinga Reef 

Map 1: Ecklonia radiata classification in the North Validation Transects (Zone S) of Aldinga 

Reef 
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Map 2: Ecklonia radiata classification in the South Validation Transects (Zone S) of Aldinga 

Reef 
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Map 3: Ecklonia radiata classification in the West Validation Transects (Zone S) of Aldinga 

Reef 
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8.3.2 Ecklonia radiata cover in Validation Sites (Zone I) in Aldinga Reef 

 

Map 4: Ecklonia radiata classification in the transects over West Deep (WD) and West 

Shallow (WS) Rockpools (Zone I) of Aldinga Reef 
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Map 5: Ecklonia radiata classification in the transects over North Shallow (NS) Rockpool 

(Zone I) of Aldinga Reef 



112 

8.3.3 Ecklonia radiata cover in Individual Images in (Zone I) in Aldinga Reef 

Map 6: A sample area showing Ecklonia radiata cover in Individual Images in (Zone I) in 

Aldinga Reef 

8.3.4 Ecklonia radiata cover in Individual Images in (Zone S) in Aldinga Reef 

Map 5: A sample area showing Ecklonia radiata cover in Individual Images in (Zone S) in 

Aldinga Reef 




