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Summary

Quantification of uncertainty is a fundamental task in groundwater modelling to ensure

reliable predictions of aquifer behaviour, facilitate effective water resource management,

and support robust decision-making. However, misspecification of prior uncertainties in

model parameters, along with model imperfections, can introduce bias in decision-critical

predictions and lead to an underestimation of predictive uncertainty. Consequently, the

reliability of the predictions and their associated uncertainties can be compromised, which

can result in suboptimal management decisions. This research aims to address these chal-

lenges by developing and evaluating methodologies that explicitly account for potential

misspecification in the prior characterization of parameter uncertainties and incorporate

estimates of model structural errors into both history matching and predictive uncer-

tainty quantification processes, ultimately enhancing the reliability and robustness of

groundwater models.

This thesis pursues four primary objectives: (1) to perform a focused review of existing

history matching and uncertainty quantification methods, (2) to develop a methodol-

ogy for addressing prior-data conflict and updating prior uncertainties using empirical

Bayesian inference, (3) to introduce a hierarchical parametrization scheme to represent

nonstationary priors, and (4) to develop techniques for quantifying and integrating model

structural errors into history matching and predictive uncertainty quantification.

The research employs advanced modelling techniques, including empirical Bayesian infer-

ence to update prior uncertainties, a hierarchical two-level parametrization scheme that

integrates spatially variable geostatistical hyperparameters with spatially distributed pa-

rameters, and a structural error model that is incorporated into the history matching

and predictive uncertainty quantification process. These methodologies are tested using

synthetic two-dimensional groundwater models that reflect real-world situations, which

results are evaluated based on their ability to reduce predictive bias and provide more

reliable uncertainty estimates.

Key findings from this research include the following: (1) acknowledging and updating un-

certain priors using empirical Bayesian inference yields conservative and robust predictive

uncertainty estimates, (2) the hierarchical parametrization scheme effectively manages

nonstationary priors, thereby allowing for a more realistic heterogeneity representation

and achieving both reasonable fits to the data and acceptable predictive uncertainty es-

x



timates, and (3) incorporating structural errors into history matching reduces predictive

bias and provides more conservative uncertainty estimates. Based on these findings, it is

demonstrated that the proposed methodologies improve the reliability and robustness of

groundwater modelling for decision support.

This thesis advances both history matching and predictive uncertainty quantification in

groundwater modelling by providing practical frameworks for quantifying and integrating

uncertainties related to prior parameter uncertainties and model structural defects. The

contributions encompass novel methodologies for updating prior uncertainties via empir-

ical Bayesian inference, managing nonstationary priors, and quantifying and integrating

structural errors into the history matching and predictive uncertainty quantification pro-

cess. These findings have substantial practical implications for improving the reliability

of groundwater modelling for decision support, and also lead to new research directions,

some of which are identified and recommended for future research.
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Preface

Groundwater modelling practitioners operate at the intersection of hydrogeology, numer-

ical methods, and decision-making. Knowledge of hydrogeology is essential to understand

the physical processes that govern the flow and transport of water and contaminants in

the subsurface. Although understanding the mathematical proofs behind the numeri-

cal methods used in hydrogeology is not essential, gaining insight into how the prior is

integrated with the model and data for predictions requires familiarity with the underly-

ing concepts and assumptions of existing methods for history matching and uncertainty

quantification Therefore, some level of mathematical knowledge, especially in probability

theory, statistics, and linear algebra, is required to have the ability to use and customize

the numerical methods. Geoscientists with expertise in both hydrogeological and com-

putational approaches are exceptionally rare yet critically needed to adopt a holistic

approach to today’s pressing water resource challenges. With a background in geol-

ogy and hydrogeology, I have developed a strong interest in mathematics and computer

programming to support history matching and uncertainty quantification in groundwater

modelling. While I am not a mathematician or a computer scientist, I hope that my skills

can help bridge the gap created by the shortage of geoscientists capable of integrating

hydrogeology, numerical methods, and decision-making.

Before starting this PhD, I naively believed that studying uncertainty would lead me

down a nebulous path of unknowns and subjectivity, ultimately revealing profound in-

sights into predictive uncertainty in groundwater modelling. I was completely mistaken.

Instead, I discovered that uncertainty quantification is firmly grounded in mathematics,

with subjectivity arising only from the modeller’s assumptions and the methods employed.

Thus, investigating these assumptions not only offers personal perspective but also pro-

vides valuable insights and, hopefully, contributes to advancing the field. This thesis

focuses on critically examining key assumptions: the knowledge of the prior distribution

of model parameters and the implicit belief that the model is a perfect representation of

the real system. By challenging these assumptions, this research aims to enhance under-

standing of their influence on history matching and uncertainty quantification, ultimately

contributing to more robust groundwater modelling approaches.
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Chapter 1

Introduction

1.1 Research Motivation

Decisions on water management actions rely on the uncertain future behaviour of ground-

water systems, which are increasingly affected by human activities and climate change,

often under conditions that differ from historical trends. One or more predictions of inter-

est may be required for a specific management action, where certain outcomes could result

in environmental, social, or economic costs. Decision-makers must assess the risk level

associated with implementing a management action, while accounting for an acceptable

level of risk tolerance.

Risk is quantified by combining the probability of occurrence of identified unwanted events

(or probability of failure), with the associated consequences (Aven, 2010). Forecast mod-

elling, and particularly groundwater modelling, facilitates the evaluation of the likelihood

of the occurrence of certain unwanted events (Freeze et al., 1990). A typical example of

an unwanted event is the potential exceedance of predefined thresholds for groundwater

levels, which may negatively affect water availability to groundwater-dependent ecosys-

tems, under a proposed groundwater extraction strategy. As a key component of the

scientific method, groundwater modelling for decision support is a process of hypothesis

testing. To reject a hypothesis, the probability of failure must be estimated. Therefore,

model predictions must be accompanied by uncertainty estimates (Doherty and Simmons,

2013; Doherty and Moore, 2020). Predictive uncertainty quantification is then a critical

component of the decision-making process, as it provides the basis for assessing the risk

associated with the management action. The estimation of predictive uncertainty is the

result of history matching, the process of data assimilation that allows the use of a nu-

merical model to both represent the historical behaviour of a system and to produce a

feasible range of predictions.

Both history matching and predictive uncertainty quantification are embedded within

a Bayesian framework, whereby the current understanding of a range of possible future
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behaviours of a system is updated as new information becomes available. In this frame-

work, the probabilities of possible outcomes are updated from a prior to a posterior state.

If a physical system is represented by a model, the physical quantities that characterize

the system can be aggregated into model parameters. Then, the possible outcomes for

future system behaviour are generated by applying the model to these parameters and to

external model forcings, resulting in model predictions. This is a mapping process, akin

to the application of a function to a set of inputs to produce a set of outputs. In this

sense, model predictions are derived through a filtering process that maps a set of possible

parameter values and model forcings onto a set of possible predictions. If a subset of these

predictions corresponds to available measurements of the system’s behaviour, the prior

parameter uncertainties represented by probability density functions, can be updated to

new probability distributions by propagating samples through the model, thereby gen-

erating simulated quantities consistent with the measurements. Consequently, the range

of possible outcomes of future system behaviour is refined, based on their linkage to the

measurements via the model, thereby reducing predictive uncertainty. Based on the map-

ping process described, it becomes clear that parameters only make sense in the context

of the model, and the model only makes sense in the context of the data (Gelman et al.,

2017).

With the consolidated usage of history matching and uncertainty quantification tech-

niques in aquifer and reservoir modelling, new challenges have emerged, especially related

to the reliability of model predictions, which is the cornerstone of informed decision-

making (Caers, 2018). For model predictions to be reliable, two main requirements must

be met. First, model uncertainty quantification should provide realistic uncertainty es-

timates. Second, model predictions should exhibit minimal departure from the true,

although unknown, future system behaviour. These two metrics are related to the link-

age between parameters, the model, and data. In other words, they are associated with

the definition of the prior and the likelihood, and the combination of the two, which are

the two components of Bayes’ equation. How these components are defined and combined

lead to a handful of challenges that must be addressed to provide reliable predictions and

uncertainty estimates. Some of these challenges motivate the research presented in this

thesis.

Defining the prior probability distribution of model parameters is the first problem. When

the definition of model parameters is motivated by physical properties, an informative

probability distribution can be elicited to represent the uncertainty in the parameter val-

ues prior to data assimilation. An informative prior merely indicates that the distribution

is not uniform, but it is not necessarily accurate. Given that in this case the probabil-

ity distribution is based on expert knowledge, it is a subjective task that depends on

personal judgement, and is therefore prone to biases and errors (Sprenger, 2018). This

is particularly true for subsurface hydraulic properties, whose heterogeneity, anisotropy,
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and spatial discontinuity make them difficult to characterize. In the subsurface, materials

may be intersected by linear or sinuous features of structural or erosional origin that may

expedite or impede the flow of water and contaminants, with their locations, properties,

and even existence only vaguely known. Therefore, the null hypothesis that the prior

is incorrect cannot be rejected. Instead, it is important to evaluate potential actions

to update the prior if evidence suggests its inaccuracy. Furthermore, in the absence of

certainty regarding the correct prior, the prior must be treated as uncertain. In this way,

a greater potential to represent heterogeneity informed or not by data is achieved, mit-

igating, to the extent possible, the underestimation of predictive uncertainty (Doherty,

2015; White et al., 2014). Embracing uncertainty in the prior requires exploring methods

that integrate this source of uncertainty into the history-matching and predictive un-

certainty quantification process, facilitating the mapping from parameters to predictions

while incorporating data constraints.

Second, even with a perfectly specified prior, the action of the model on its parameters

may yield incorrect predictions. This is because the model inevitably represents a simpli-

fied abstraction of the real system; hence, it is inherently imperfect. Any numerical model

necessarily omits some details of the system that may be critical to linking parameters,

the model, and the data. Thus, mapping perfectly-defined model parameters through an

imperfect model does not necessarily guarantee reliable predictions. Consequently, even

a perfect prior may require modification to be effectively mapped through the model

to generate reliable simulations of future system behaviour (Mathews and Vial, 2017),

resulting in a degree of parameter abstraction that may be challenging to interpret and

communicate. A more honest approach is to acknowledge the model’s imperfections, even

if they cannot be precisely identified, accepting that the data can only be partially assimi-

lated, to a level of noise not necessarily commensurate with the measurement errors in the

data. In other words, the posterior range of possible outcomes for past and future system

behaviour, as derived from the model, may be inadequately linked to the data due to the

model’s inability to represent the system accurately. A better but more complicated task

is to identify and incorporate the model’s structural errors into the history matching and

uncertainty quantification process, to improve the reliability of model predictions. Model

structural error (Beven, 2005) is a broad term that includes all imperfections in the model

that may lead to discrepancies between observed data and model outputs beyond what

can be attributed to measurement error. Measurement errors can be characterized by a

probability distribution, which typically assumes uncorrelated Gaussian noise. Structural

error is more challenging to characterize, as it may be correlated, non-Gaussian, and may

vary spatially and temporally. Some effort has been made to address this issue in the

literature, including the generation of covariance matrix of structural error prior to per-

form model calibration (Cooley, 2004; Cooley and Christensen, 2006) and updating the

initial uncorrelated covariance matrix of measurement noise during the history match-
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ing process (Oliver and Alfonzo, 2018; Alfonzo and Oliver, 2020; Evensen, 2021; Lu and

Chen, 2020). However, additional research is needed to develop more robust methods

for estimating and incorporating model structural error into the history matching and

uncertainty quantification process. This constitutes the second challenge motivating this

work.

This thesis focuses on groundwater modelling to support decision-making. In this con-

text, most—if not all—of the problems presented in this document relate to predictions of

management interest and their associated uncertainties. The research is developed within

a Bayesian framework, where the prior and the likelihood are the main components of the

uncertainty quantification process. The fundamental assumptions underlying these two

Bayesian components are analysed and discussed in the context of predictive uncertainty

quantification. New methodologies are proposed that allow updating the prior when evi-

dence suggests its inaccuracy, and that accommodate uncertain priors and model defects

by explicitly integrating these issues into the uncertainty quantification process. The pro-

posed methods are tested using simple numerical examples to enhance the understanding

of the problem and the efficacy of the proposed solutions. These examples are, how-

ever, inspired by real problems faced by the author during his professional career. Such

problems include the estimation of drawdown in aquifers in locations where groundwater

sustains ecosystems, lithium extraction from brines in salars, and groundwater inflows

to open pit mines. Thus, in addition to the conclusions related to the methods them-

selves, further insights can be gained regarding the utility of groundwater modelling and

uncertainty quantification in supporting decision-making in real-world problems, and the

potential for improvement by integrating new methods—such as the ones proposed in

this thesis—into routine decision-support modelling.

1.2 Research Objectives

The primary objectives of this thesis centre on the prior and the likelihood. They are as

follows:

• To perform a focused review of existing history matching and uncertainty quantifi-

cation methods.

• To assess the importance of critically examining prior and likelihood assumptions

in the uncertainty quantification process of groundwater modelling.

• To identify approaches for evaluating prior-data compatibility, and integrating un-

certain priors in history matching.

• To analyse the impact of model defects and explore methods for incorporating them

into the history matching and uncertainty quantification process.
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Additionally, the following secondary objectives are pursued:

• To investigate the assumptions, benefits, and limitations of the existing history

matching methods.

• To explore strategies for improving existing methods to address challenges posed

by nonlinearities.

• To evaluate the performance of these new strategies in history matching and pre-

dictive uncertainty quantification.

1.3 Research contributions

The main contributions of this thesis are as follows:

• A critical and focused review of existing methods for history matching and uncer-

tainty quantification in groundwater modelling and related fields, presented within

a unified mathematical framework. This unification ensures consistency in the

terminology and formulation, facilitating systematic comparisons. Two numerical

examples are used to illustrate the application of the methods and to compare their

performance. Notably, the subspace ensemble smoother (SEnRML) is applied to

groundwater modelling for the first time, representing an additional contribution of

this thesis.

• The integration and testing of ensemble-based methods with localization and local

updating to address challenges posed by highly nonlinear problems.

• Development of a novel method for updating the prior probability distribution

of parameters using calibration results, introduced as a form of empirical prior

Bayesian inference.

• Extension of the non-centred parameterization method proposed by Oliver (1995)

to accommodate nonstationary priors, thereby expanding its applicability.

• Development a new methodology for estimating model structural error and incorpo-

rating it into the history matching and uncertainty quantification process, thereby

improving the reliability of model predictions.
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1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2 is a review of the literature on the topic of uncertainty quantification in ground-

water modelling and related fields, presenting the state of the art and a comparison of

methods using numerical examples. Chapter 3 introduces a new method for updating the

prior probability distribution of the parameters in a groundwater model using calibration

results, within an empirical Bayesian framework. Chapter 4 presents an extended version

of the non-centred parameterization method proposed by Oliver (1995) to accommodate

nonstationary priors in the history matching process. Chapter 5 presents a new method-

ology for estimating model structural error, and incorporates it into the history matching

and uncertainty quantification process. Finally, Chapter 6 summarizes the main findings

and suggests future research directions.

This thesis is written as a collection of four manuscripts for publication in peer-reviewed

journals. The manuscripts correspond to chapters Chapter 2, Chapter 3, Chapter 4,

and Chapter 5. Consequently, this work is presented concisely and in a focused manner

to provide a clear and coherent narrative, and each of the thesis chapters can be read

independently as a stand-alone piece of research.

The four manuscripts that are intended for submission to peer-reviewed journals are the

following:

• Paper 1: Opazo, T., Doherty, J. Selected Methods for History Matching and Un-

certainty Quantification in Groundwater Modelling: A Focused Review and Com-

parison. To be submitted to Computational Geosciences.

• Paper 2: Opazo, T., Doherty, J. Prior Inference from Groundwater Model Calibra-

tion: Empirical Bayesianism to Improve Predictive Uncertainty. To be submitted

to Journal of Hydrology.

• Paper 3: Opazo, T., Doherty, J. Accommodating Uncertain and Nonstationary

Priors in History Matching and Predictive Uncertainty Quantification for Ground-

water Models. To be submitted to Advances in Water Resources.

• Paper 4: Opazo, T. Quantifying Model Structural Errors in History Matching and

Predictive Uncertainty Quantification in Groundwater Modelling. To be submitted

to Water Resources Research.
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Chapter 2

Selected Methods for History

Matching and Uncertainty

Quantification in Groundwater

Modelling: A Focused Review and

Comparison

Author contributions

T. Opazo: Conceptualization 100%, Realization 100%, Writing 100%.

Manuscript in preparation for submission to Computational Geosciences: Opazo, T. Se-

lected Methods for History Matching and Uncertainty Quantification in Groundwater

Modelling: A Focused Review and Comparison.

Abstract

This work presents a focused review and a unified mathematical framework for selected

methods used in history matching and uncertainty quantification in groundwater mod-

elling. The methods discussed include Markov Chain Monte Carlo (MCMC), Iterative

Ensemble Smoothers (IES), Data Space Inversion (DSI), and regularized inversion. The

review highlights the theoretical foundations, advantages, and limitations of each method,

providing a consistent comparison. Additionally, localization techniques are examined

to address challenges associated with high-dimensional problems in ensemble methods.

Numerical examples, including a simple one-parameter nonlinear problem and a com-

plex one-dimensional unsaturated flow problem, are used to evaluate the performance

of these selected methods. The results confirm that ensemble methods are efficient but
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often exhibit slow convergence in nonlinear problems. Among the ensemble methods,

the Levenberg-Marquardt Ensemble Randomized Maximum Likelihood (LM-EnRML)

method shows the best data fitting performance but is prone to predictive bias. This

work presents the first application of the Subspace Ensemble Randomized Maximum

Likelihood (SEnRML) method to groundwater modelling. The method, without the best

data fit, provides reasonable estimates of predictive uncertainty.

2.1 Introduction

In groundwater modelling for decision support, it is essential to determine the feasi-

ble range of n model parameters x ∈ Rn and the corresponding model predictions—

dependent on these parameters—that lie within the bounds of hydrogeological knowl-

edge and conform to the observed data (i.e., the measured state of the system). Here

the term ‘model parameters’ is used broadly, as a ‘parameter’ can refer to model hy-

draulic properties, initial conditions, boundary conditions, or any other uncertain input

of the model. It is acknowledged that, in classical system theory, parameters are typically

defined as time-invariant quantities. However, in the context of Bayesian inference for

environmental modelling, it is common to adopt a broader definition and treat all uncer-

tain model inputs—including temporally variable quantities such as initial and boundary

conditions—as parameters to be inferred. In this sense, there is no explicit separation

between system state and model parameters (in the classical sense) if both quantities

are uncertain. Fundamentally, this approach constitutes a Bayesian inference problem,

where the prior knowledge of the model parameters is updated as data are assimilated,

represented in a probabilistic way through Bayes’ equation:

f(x|d) = f(d|x)f(x)
f(d)

, (2.1)

where f(x|d) represents the posterior probability density function (pdf) of the model

parameters x given the data d ∈ Rm, f(d|x) the likelihood of the system state given the

model parameters, f(x) the prior pdf of the model parameters, and f(d) the marginal

pdf of the data. This pdf acts as a normalization factor so that the posterior pdf in-

tegrates to one. The immediate goal of history matching is to obtain an approximate

representation of the posterior probability of model parameters given the data f(x|d).
The ultimate objective in groundwater modelling for decision support is to quantify the

posterior uncertainty of one or several predictions of interest, by applying the posterior

probability of the model parameters to a forward model.

As Evensen et al. (2022) points out, Bayes’ equation is a mathematical framework for

updating the prior knowledge of the model parameters (or states) as data are assimilated;

therefore it is a forward problem rather than an inverse problem. Bayes’ equation provides
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an intuitive approach to data assimilation, as it is based on the idea of updating knowledge

as new data become available. In theory, a correct sampling of the posterior pdf of

the model parameters can be obtained by random sampling of the prior and likelihood

distributions followed by applying Bayes’ equation. This can be done albeit inefficiently,

through rejection sampling or sequential realization (Tarantola, 2005). However, these

methods are only feasible for low-dimensional problems. A more efficient strategy to

sample the posterior pdf is to use Markov Chain Monte Carlo (MCMC) methods, such as

the famous random walk Metropolis (RWM) algorithm (Metropolis et al., 1953). However,

MCMC methods are also computationally expensive and are rarely feasible for high-

dimensional problems in real-world applications.

Ensemble methods are data assimilation and history matching techniques, all derived

from Bayes’ equation, that use a finite number of parameter and model realizations to

approximate the posterior pdf by model inversion, making these methods much more

computationally efficient than MCMC methods. Iterative ensemble smoothers (IES) are

a group of methods developed during the last 15 years in the petroleum community, orig-

inating from a series of filtering and smoothing methods developed in the atmospheric

and oceanographic sciences. These include the Kalman filter (KF) (Kalman, 1960), ex-

tended Kalman filter (EKF), ensemble Kalman filter (EnKF) (Evensen, 1994), ensem-

ble smoother (ES) (van Leeuwen and Evensen, 1996), and ensemble Kalman smoother

(EnKS) (Evensen and van Leeuwen, 2000). A review of these methods is outside the

scope of this work, and the reader is referred to Evensen et al. (2022) for a comprehensive

review. All IES methods have their roots in the randomized maximum likelihood (RML)

approach (Kitanidis, 1995; Oliver et al., 1996), in which the posterior pdf of the model

parameters is approximated by an ensemble sampled from the prior pdf and optimized

through an inversion process that minimizes a cost function. The RML method was

introduced in the petroleum community by Gu and Oliver (2007), who developed an iter-

ative form of the ensemble Kalman filter called ensemble randomized maximum likelihood

filter (EnRML) using an average sensitivity matrix estimated from the ensemble when

updating the model parameters in the Gauss-Newton inversion process. A batch and iter-

ative ensemble smoother version of EnRML with Gauss-Newton (GN) formulation (GN-

EnRML) was introduced by Chen and Oliver (2012), and a Levenberg-Marquardt version

called LM-EnRML presented by Chen and Oliver (2013) revolutionized the petroleum and

groundwater community. Raanes et al. (2019) revised the iterative ensemble smoother

formulation of Chen and Oliver (2012, 2013) and proposed a subspace version of the En-

RML (here called SEnRML), further developed by Evensen et al. (2019), where instead

of searching for the solution in the full parameter space, the inversion is carried out in the

ensemble space by solving for weighted combinations of the initial parameter ensemble

members.

Although ensemble methods are computationally efficient, they have limitations, such as
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the potential for parameter and predictive bias, and parameter ensemble collapse. These

issues can theoretically occur even when using a perfect model.

In some cases, it is valuable to look for a minimum error variance solution to the inverse

problem, as is done with regularized inversion methods. Doherty (2015) presented a

comprehensive review of the theory and practice of regularized inversion, predictive error

variance, and linear and nonlinear uncertainty analysis in the context of groundwater

modelling. The algorithms described by Doherty (2015) are implemented in the PEST

suite of software (Doherty, 2023), which is widely used in the groundwater community.

Parameter estimation performed with PEST searches for the minimum error variance

solution to the inverse problem. As such, parameter and predictive uncertainties are

not part of the inversion process but can be calculated after using linear or nonlinear

approaches.

A recently developed method called Data Space Inversion (DSI) (Sun and Durlofsky,

2017; Sun et al., 2017) performs inversion in the data space (model output space), using

a number N of model output realizations. This approach avoids the need to update

the model parameters, and therefore the requirement of estimating a sensitivity matrix,

as in IES methods and regularized inversion. The cost of DSI is only the number of

prior model runs, N . History matching the DSI model incurs a minimum cost, as ‘the

model’ is a linear correlation between the model outputs that pertain to the past and

those that pertain to the future. By constraining model outputs to observed data, the

method can be used to estimate the posterior pdf of model predictions, and therefore

their uncertainties.

In this work a non-exhaustive selection of existing methods of uncertainty quantification

for groundwater modelling, reservoir engineering, hydrology, and geophysics are reviewed.

They range from Markov Chain Monte Carlo (MCMC), passing through ensemble meth-

ods (Iterative Ensemble Smoothers) and regularized inversion, and ending with Data

Space Inversion (DSI). Some of the methods that exist but are not discussed here (at

least not in detail) include the ensemble Kalman filter (EnKF) (Evensen, 1994), en-

semble smoother multiple data assimilation (ES-MDA) (Emerick and Reynolds, 2013),

hybrid iterative ensemble smoother (hybrid IES) (Oliver, 2022), weighted randomized

maximum likelihood (weighted RML) (Ba and Oliver, 2023), and importance weighting

hybrid iterative ensemble smoother (Ba and Oliver, 2024), to name a few. The equations

here presented are general, with a focus on the understanding of the methods rather

than providing detailed mathematical proofs. Therefore, some aspects of the methods

are simplified or omitted for the sake of clarity. In these cases, the reader is referred to

the original papers for further details. Localization methods (Luo et al., 2018; Luo and

Bhakta, 2020; Luo et al., 2023; Silva Neto et al., 2021) and local updating (Zhang et al.,

2018) are also discussed, as they are important for the application of ensemble methods

in high-dimensional problems. To date, there is no groundwater literature that presents
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existing methods in a unified mathematical framework. Therefore, it is hoped that this

chapter provides a clear summary of existing knowledge and will serve as a reference for

future research in the field of uncertainty quantification.

The chapter is organized as follows: First, a description of the methods is presented, in-

cluding their mathematical formulation, advantages, and limitations. The definitions and

equations are presented in a unified mathematical framework, allowing for a consistent

comparison of the methods. Second, some methods are compared using two illustrative

examples. The first example is a simple one-parameter problem with a polynomial equa-

tion used as a model. This example is presented by Chen and Oliver (2013) to illustrate

the behaviour of iterative ensemble smoothers with a highly nonlinear problem. The sec-

ond example is a one-dimensional highly-parameterized and nonlinear unsaturated flow

problem. After presenting the results of these examples, a discussion highlights the advan-

tages and limitations of the methods, and the implications of the results for groundwater

modelling for decision support. The chapter ends with conclusions and a summary of its

main findings.

2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms that gener-

ate samples from the posterior distribution using a Markov chain that randomly moves

through the parameter space, repeatedly visiting solutions with frequencies consistent

with a stationary distribution (Vrugt, 2016). Among all practical methods of posterior

sampling, MCMC methods are deemed as the most reliable in terms of posterior pdf rep-

resentation. However, they are computationally expensive and not commonly used for

applied cases, as they require many samples to obtain convergence to the true posterior

pdf. In this work, whenever possible, MCMC is used as the reference method to sample

the true posterior pdf and compare with other methods.

2.2.1 Random walk Metropolis (RWM) algorithm

The RWM algorithm (Metropolis et al., 1953) is one of the original MCMC methods.

It starts with an initial state of the Markov chain, xt, and generates a new candidate

state, xp,using a proposal distribution (also called the jumping distribution) centred at

the current state xt. A probability of acceptance (PA(xp)) is calculated as the minimum

between one and the ratio of the posterior pdf of the new proposed state p(xp) to the

posterior pdf of the current state p(xt) (assuming the proposal distribution is symmetric),

formulated as follows:

PA(xp) = min(1,
p(xp)

p(xt)
). (2.2)
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The new candidate state is accepted if the acceptance probability PA is greater than a

random number drawn from a uniform distribution between 0 and 1. The process is

repeated until a sufficient number of samples are obtained.

Generally, a burn-in period is used to allow the Markov chain to reach the stationary

distribution before samples are collated. Also, the process can be parallelized using more

than one Markov chain. This can be particularly useful when sampling multimodal and

multidimensional distributions, allowing the use of diagnostics to check the convergence

of the Markov Chain, such as the Gelman-Rubin statistic (Gelman and Rubin, 1992).

The choice of the proposal distribution is crucial for the efficiency of the RWM method.

Generally, a multivariate normal distribution centred at the current state is used as the

proposal distribution, with a unit covariance matrix scaled by the scaling factor sd =

2.382/d (Roberts et al., 1997), where d is the number of dimensions of the problem. As

Vrugt (2016) points out, there are several factors that impact the efficiency of the RWM

method, the most important being the choice of the proposal distribution, specifically its

scale and orientation. If the proposal distribution is too wide, meaning the scale is too

large, the Markov chain will take a long time to explore posterior parameter space, as the

acceptance probability will be low. On the contrary, if the proposal distribution is too

narrow, the Markov chain will evolve through very short steps leading to long convergence

times. Naturally, the RWM method is also limited by the dimensionality of the problem,

as the acceptance probability decreases with the number of dimensions. In these cases,

the orientation of the proposal distribution becomes important, as the Markov Chain will

take longer to explore the parameter space if the proposal distribution is not aligned with

the principal directions of the posterior pdf (which is unknown for obvious reasons).

As a result of the limitations of the RWM method described above, and given that the

optimal shape of the proposal distribution cannot be known a priori, several adaptive

MCMC methods have been developed for single chain (such as adaptive proposal (AP)

from Haario and Saksman (1998), adaptive Metropolis (AM) from Haario et al. (2001),

delayed rejection adaptive metropolis (DRAM) from Haario et al. (2006)) and multiple-

chain (such as the Differential Evolution-Markov Chain (DE-MC) from Ter Braak (2006),

and the Differential Evolution Adaptive Metropolis (DREAM) from Vrugt et al. (2008,

2009)). These methods share the common approach of modifying the scale and orientation

of the proposal distribution during the burn-in period, using information from the sample

history.

2.2.2 Differential Evolution Adaptive Metropolis (DREAM) al-

gorithm

One of the most successful multiple-chain adaptive MCMC methods is the Differential

Evolution Adaptive Metropolis (DREAM) algorithm (Vrugt et al., 2008, 2009). The
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method is originally based on the Differential Evolution Markov Chain (DE-MC) method

developed by Ter Braak (2006). DE-MC uses a population X of N chains from the past

state of the Markov Chain to generate a new proposal state for each chain i, xi
p, by

applying differential evolution:

xp
i = xt

i + γ(Xa −Xb) + e, (2.3)

where Xa and Xb are two different chains randomly selected from the population X−i

(excluding chain i),γ is the jump rate (with an optimal value of 2.38/
√
2d), and e is

a random vector drawn from a normal distribution with zero mean and small variance.

The state update using Equation 2.3 is also known as parallel direction sampling (ter

Braak and Vrugt, 2008). The jump rate is set to one (γ = 1) every 10 generations to

allow jumps between disconnected modes of the posterior pdf. The proposal is accepted

if the probability of acceptance calculated from Equation 2.2 is greater than a random

number drawn from a uniform distribution between 0 and 1. Compared to the RWM

method, DE-MC does not require a proposal distribution, as the proposal is generated

from the population of chains. In practice, DE-MC is not efficient for high-dimensional

problems, as it requires N = 2d chains to properly sample the posterior (Ter Braak,

2006). Vrugt et al. (2008, 2009) extended the DE-MC method to improve convergence

to the target distribution and reduce the number of chains, by incorporating the use of

multiple (more than two) chain pairs, self-adaptive randomized subspace sampling, and

outlier chain detection. Randomized subspace sampling is performed with the help of

a crossover operator (a detailed explanation can be found in Vrugt et al. (2009)) that

constantly includes new directions where the chain can jump outside the current subspace.

Crossover probabilities are tuned adaptively during the burn-in period. This allows the

use of N < d chains to sample the posterior pdf, compared to the N = 2d required when

using DE-MC. A population subset A of size d∗ (reduced parameter dimensionality) is

randomly selected from the population X, and the proposal increment for each chain dxi,

or jump, is calculated as follows:

dxi
A = (1d∗ + λd∗) γ(δ, d

∗)
δ∑

j=1

(
x
aj
A − x

bj
A

)
+ ed∗

dxi
̸=A = 0,

(2.4)

where x
aj
A and x

bj
A are two different chains randomly selected from the matrix A−i, δ is

the maximum number of chain pairs, and λd∗ is a sample from a uniform distribution

bounded by [−b, b] (b being small compared to the target distribution). During each

step and for each chain, the number of chain pairs is randomly selected from the set

[1, 2, . . . , δ]. The jump rate γ is calculated for every subspace sampling, as 2.38/
√
2δd∗
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and is set to one every 5 generations. The new proposal state, xi
p, is calculated as the

sum of the current state xi
t and the proposal increment dxi. Convergence is checked

using the Gelman-Rubin statistic (Gelman and Rubin, 1992), using the last 50% of the

samples.

The DREAM algorithm has been extended since its creation to improve efficiency, in-

cluding DREAM(ZS) and MT-DREAM(ZS) (Laloy and Vrugt, 2012). In DREAM(ZS), the

chain population is replaced by a matrix Z that contains thinned history of past states

of each of the N chains. The proposal increment is calculated as follows:

dxi
A = (1d∗ + λd∗) γ(δ, d

∗)
δ∑

j=1

(
z
aj
A − z

bj
A

)
+ ed∗

dxi
̸=A = 0,

(2.5)

where z
aj
A and z

bj
A are two different chains randomly selected from the matrix A−i. In

this case A−i is a random subspace sample (reduced parameter dimensionality d∗) of the

matrix Z. The recommended initial size of the matrix Z and the thinning rate (saving

frequency of samples to the Z) are 10d, and 10, respectively. Although using past states

violates the Markov property of the chain (this is minimized as Z grows, as shown by

ter Braak and Vrugt (2008)), it has been shown that the method is extremely efficient

only requiring a few chains (typically N = 3 will be sufficient). The “S” in DREAM(ZS)

stands for ”Snooker”, because this algorithm also implements Snooker updates in com-

bination with parallel direction updates to diversity the jumping possibilities (ter Braak

and Vrugt, 2008). For each generation iteration and for each chain, a decision is made

to use the Snooker update, with a probability of 0.1. Laloy and Vrugt (2012) extended

the DREAM(ZS) algorithm to the MT-DREAM(ZS) algorithm, implementing multiple-try

Metropolis sampling to improve efficiency for very high-dimensional problems.

The family of DREAM algorithms has been implemented in MATLAB (Vrugt, 2016) and

Python (pyDREAM) (Shockley et al., 2017), to name a few. In this work, DREAM(ZS)

implemented in pyDREAM is used to sample the posterior pdf of the model parameters

when applying MCMC, unless otherwise stated.

2.3 Iterative Ensemble Smoothers (IES)

2.3.1 Batch Ensemble Randomized Maximum Likelihood (GN-

EnRML)

Many ensemble-based history matching techniques, including the Ensemble Randomized

Maximum Likelihood (EnRML), originate from the field of state estimation, where the

goal is to estimate the time-dependent system state from sequential measurements, while
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parameters are of secondary interest. In contrast, in history matching the focus is on

updating model parameters, here defined by the vector x, to fit observed data, rather than

estimating the system state directly. However, as parameters are defined in a Bayesian

context, the vector x may include initial (system state) and boundary conditions, which

could lead to a joint state–parameter estimation problem.

The Batch Ensemble Randomized Maximum Likelihood (GN-EnRML) method was de-

veloped by Chen and Oliver (2012), and as the name suggests, it is a batch method,

meaning that all data are assimilated at once. This is a different approach from the

sequential methods used in the EnKF, where data are assimilated sequentially.

If model parameters are defined by the vector x, the vector of model outputs y ∈ Rm

associated with measurements d can be mapped through a function g, as follows:

y = g(x) (2.6)

The function y = g(x) is a general function (linear or nonlinear) that includes the forward

model and any other transformation needed to convert model outputs to measurements.

A set of measurements d can then be simulated by y:

d = y + e, (2.7)

where e is a random vector representing measurement noise. From Bayes’ equation

(Equation 2.1), the posterior pdf of the model parameters is proportional to the product

of the likelihood and the prior pdf. Assuming that the prior and the likelihood are

Gaussian, the posterior pdf is given by the following equation:

f(x|d) ∝ exp

(
−1

2
(d− g(x))TCd

−1(d− g(x))− 1

2
(x− x)TCx

−1(x− x)

)
, (2.8)

where Cd is the measurement error covariance matrix, Cx is the prior error covariance

matrix, and x is the prior mean of x. The value that maximizes the likelihood of the pos-

terior pdf, i.e, the maximum a posteriori estimate (MAP), is obtained by maximizing the

exponent of Equation 2.8, which is equivalent to minimizing the following cost function:

J(x) =
1

2
(d− g(x))TCd

−1(d− g(x)) +
1

2
(x− x)TCx

−1(x− x). (2.9)

Equation 2.8 and Equation 2.9 form the basis of variational data assimilation approaches

(e.g., 3D-Var or 4D-Var), where the aim is to find the parameter or state configuration

that minimizes a suitably defined cost function combining data misfit and prior informa-

tion.

It is important to mention that if the function g(x) is not linear, the posterior pdf will not

be Gaussian, and it may have multiple modes. In this case, searching for the maximum
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of the posterior pdf is not trivial, and the solution may depend on the initial guess of the

model parameters used in iterative methods.

The first term in the cost function J(x) is called the data mismatch or data misfit,

and the second term is called the model mismatch or model misfit (Oliver et al., 2008).

The data mismatch term represents the difference between the model outputs and the

measurements, weighted by the measurement error covariance matrix Cd. The model

mismatch term represents the difference between the model parameters and the prior

mean or first guess, weighted by the prior error covariance matrix Cx. This second term

naturally regularizes the inversion process, as it penalizes parameter values that are far

from the prior mean. As pointed out by Chen and Oliver (2012), the model mismatch

term is an important term that if it is omitted in the cost function and therefore in the

parameter upgrade equation that is derived from it, it can lead to parameter ensemble

collapse. Some mitigation measures are needed to avoid this situation, such as the use

of a few iterations or the inclusion of a prior penalization term to the objective function,

or only updating parameters whose total objective function value is reduced between

iterations.

As the function g(x) can be nonlinear, the solution that minimizes the cost function J(x)

can be iteratively obtained using the Gauss-Newton method. Starting from a first guess

xf that is usually equal to the prior mean x, the solution at each iteration l is obtained

by the following equation (Evensen et al., 2022):

xl+1 = xl − γl(Cx
−1 +GlTCd

−1Gl)−1(Cx
−1(xl − xf ) +GlTCd

−1(g(xl)− d)), (2.10)

where γl is the step length at iteration l (it can change during iterations), and Gl is the

sensitivity matrix (linearization of g(x) around xl). The term (Cx
−1 + GlTCd

−1Gl) is

the approximate Hessian (third and higher orders are discarded), equal to the posterior

parameter covariance matrix C′
x (Tarantola, 2005; Doherty, 2015). Given that in highly

parameterized problems the number of model parameters is much larger than the number

of measurements (n >> m), the inversion of this term can be computationally expensive.

For this reason, the Woodbury corollaries (Koch, 1999) can be used to rewrite Equa-

tion 2.10 and solve the update in measurement space (as presented in Chen and Oliver

(2012)):

xl+1 = γlxf +(1− γl)xl − γlCxG
lT (Cd +GlCxG

lT )−1(g(xl)−d+Gl(xl −xf )). (2.11)

Note that due to this matrix manipulation the Hessian approximation is not explicitly

shown in Equation 2.11.

If now an ensemble of vectors xi of size N is sampled from the prior pdf, and an ensemble

of perturbed measurements di is generated by sampling the measurement error pdf (with
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mean d and covariance Cd), an ensemble of cost functions Ji(x) is obtained, where each

cost function is calculated as follows (Kitanidis, 1995; Oliver et al., 1996):

Ji(x) =
1

2
(di − g(xi))

TCd
−1(di − g(xi)) +

1

2
(xi − xi

f )TCx
−1
(xi − xi

f ), (2.12)

where Cx is the ensemble covariance matrix of model parameters, and xi
f is the first

guess for each ensemble member. The iterative solution that minimizes the cost function

Ji(x) of each ensemble member can be obtained by the following equation:

xl+1
i = xl

i − γl(Cx
−1

+G
lT
Cd

−1G
l
)−1(Cx

−1
(xl

i − xf
i ) +G

lT
Cd

−1(g(xl
i)− di)). (2.13)

Equivalently, the solution can be obtained in measurement space as follows:

xl+1
i = γlxf

i +(1−γl)xl
i−γlCxG

lT
(Cd+G

l
CxG

lT
)−1(g(xl

i)−di+G
l
(xl

i−xf
i )). (2.14)

This is the Randomized Maximum Likelihood (RML) method. As discussed by Evensen

et al. (2022), if the function g(x) is linear and the prior and likelihood are Gaussian,

minimizing the cost functions of Equation 2.12 will sample the posterior pdf. However,

if the function g(xi) is nonlinear, this is not necessarily the case.

Although the sensitivity matrix for the Randomized Maximum Likelihood (RML) method

can be calculated for each ensemble, note that G
l
is not subscripted in Equation 2.13, as

it is an average sensitivity matrix calculated from the ensemble and used for all ensemble

members. In Chen and Oliver (2012), the authors showed that the sensitivity matrix G
l

can be calculated from the ensemble anomalies of model outputs and model parameters.

Following the notation of Evensen et al. (2019), if the matrix of model output anomalies

is normalized by
√
N − 1, Yl is defined as:

Yl = g(Xl)

(
IN − 1

N
11⊤

)
/
√
N − 1, (2.15)

where Xl ∈ RnxRN is the ensemble of model parameters, 1 is a vector of ones, and IN is

the identity matrix of size N , and the matrix of model parameter anomalies normalized

by
√
N − 1, Al, is defined as:

Al = Xl

(
IN − 1

N
11⊤

)
/
√
N − 1, (2.16)

then the sensitivity matrix G
l
can be calculated as:

G
l
= YAl+, (2.17)

where Al+ is the Moore-Penrose pseudo-inverse of Al. Chen and Oliver (2012) demon-
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strated with a two-dimensional reservoir model that the average sensitivity matrix G
l

estimated from the ensemble is quite noisy, but the product CxG
lT

is not. Addition-

ally, the authors showed that CxG
lT

can be estimated from the cross-covariance between

model parameters and model outputs, Cxg, as proven in the following equation:

CxG
lT

= E[(x− x)(x− x)T ]G
lT

= E[(x− x)(x− x)TG
lT
]

≈ E[(x− x)(g(x)− g(x))T ]

= Cxg.

(2.18)

Iteration superscripts are omitted for clarity, but note that the approximation in Equa-

tion 2.18 occurs at line 3 when the term (x−x)TG
lT

is approximated by (g(x)−g(x))T .

This is only true at the first iteration when both (x− x)T and (g(x)− g(x))T are calcu-

lated from the prior. In following iterations, the term (x− x)T changes, then it does not

represent the prior. However, it is not clear what the repercussions of this approximation

are in the inversion process.

Looking at Equation 2.14, the average sensitivity matrix is always multiplied byCx except

for the last term G
l
(xl

i − xf
i ). Chen and Oliver (2012) advocated that this term is small

assuming the correction to the model parameters is small. This is a strong assumption, as

it is not necessarily true that optimized model parameters will be close to the prior first

guess, or the prior mean. However, in the GN-EnRML algorithm this term is included

in the update equation (not discarded). It follows that the explicit computation of G
l
,

along with its corresponding noise, cannot be avoided.

2.3.2 Levenberg-Marquardt EnRML (LM-EnRML)

Later on, Chen and Oliver (2013) developed a Levenberg-Marquardt (LM) version of

the EnRML method, called LM-EnRML. There are two main differences between the

GN-EnRML and the LM-EnRML methods. The first difference is that the LM-EnRML

method uses the LM algorithm to damp the update of model parameters. The second

difference is that the LM-EnRML method avoids the explicit calculation of the average

sensitivity matrix G
l
. As it will be shown below, this is done by including additional

approximations in the parameter update equation.

Equation 2.13 can be rewritten as follows:

δx = −(Cx
−1

+GlTCd
−1Gl)−1(Cx

−1
(xl − xf ) +GlTCd

−1(g(xl)− d)), (2.19)

where δx = xl+1 − xl, and γ = 1. Note that from now on, the ensemble superscripts are

omitted for clarity.
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The LM algorithm includes an additional λ scalar to the inverse of the parameter covari-

ance matrix in the Hessian term of Equation 2.19:

δx = −((1 + λl)Cx
−1

+GlTCd
−1Gl)−1(Cx

−1
(xl − xf ) +GlTCd

−1(g(xl)− d)). (2.20)

Equivalently, the solution can be obtained in measurement space as follows (Chen and

Oliver, 2013):

δx = −(xl − xf )

1 + λl
−CxG

lT
(
(1 + λl)Cd +G

l
CxG

lT
)−1

(
g(xl)− d+

G
l
(xl − xf )

1 + λl

)
(2.21)

As the algorithm of Chen and Oliver (2013) performs singular value decomposition on

the matrices of model output anomalies Yl and initial model parameter anomalies A0,

these matrices require additional scaling to properly reflect the variability of each data

and parameter type, for the inversion process to be well-conditioned. The scaling is

performed as follows:

Yl = Sy
−1/2g(Xl)

(
IN − 1

N
11⊤

)
/
√
N − 1, (2.22)

Al = Sx
−1/2Xl

(
IN − 1

N
11⊤

)
/
√
N − 1, (2.23)

where Sy and Sx are diagonal matrices with diagonal elements equal to the variance of

data noise and the prior variance of model variables, respectively.

The estimate of the average sensitivity matrix G
l
can be calculated as:

G
l
= Sy

1/2YlAl+Sx
−1/2. (2.24)

Now to avoid the explicit calculation of the average sensitivity matrix G
l
, Chen and

Oliver (2013) proposed to approximate the ensemble estimate of the prior covariance

matrix of model parameters Cx in the Hessian term of Equation 2.20 by another matrix

P
l

x that is calculated from the updated ensemble (that changes every iteration) as

P
l

x = Sx
1/2AlAlTSx

1/2. (2.25)

Then, Equation 2.20 can be formulated as follows:

δx = −((1 + λl)P
l

x

−1
+GlTCd

−1Gl)−1(Cx
−1
(xl − xf ) +GlTCd

−1(g(xl)− d)). (2.26)

Using the Woodbury corollaries (see equation 1.115 in Koch, 1999), Equation 2.26 can
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be rewritten as

δx =−
(
(1 + λl)P

l

x

−1
+GlTCd

−1Gl

)−1

Cx
−1
(xl − xf )

−P
l

xG
lT
(
(1 + λl)Cd +GlP

l

xG
lT
)−1 (

g(xl)− d
)
.

(2.27)

The terms P
l

xG
lT

andG
l
P

l

xG
lT

can be calculated using Equation 2.24 and Equation 2.25

as

P
l

xG
lT

= Sx
1/2AlYlTSy

1/2, (2.28)

and

G
l
P

l

xG
lT

= Sy
1/2YlYlTSy

1/2, (2.29)

and the term GlTCd
−1Gl can be calculated from Equation 2.24 and approximating the

measurement error covariance matrix Cd by the ensemble model output anomalies Yl:

GlTCd
−1Gl = Sx

−1/2Al+
T
Al+Sx

−1/2. (2.30)

Finally, the parameter prior covariance matrix Cx can be calculated from initial model

parameter anomalies as follows:

Cx = Sx
1/2A0A0TSx

1/2. (2.31)

Inserting the terms of Equation 2.28, Equation 2.29, Equation 2.30,and Equation 2.31,

into Equation 2.27, the parameter update equation for the LM-EnRML method is ob-

tained as follows:

δx =− Sx
−1/2Al

(
(1 + λl)In +YlTYl

)−1

AlTA0−T
A0−1

Sx
−1/2(xl − xf )

− Sx
1/2AlYlT

(
(1 + λl)Im +YlYlT

)−1

Sy
−1/2

(
g(xl)− d

) (2.32)

Equation 2.32 is the update equation for the LM-EnRML method, and is equivalent to

equation (18) of Chen and Oliver (2013). To perform the matrix inversions in Equa-

tion 2.32, the initial model parameter anomalies A0 and the model output anomalies Yl

are subject to truncated singular value decomposition (SVD). A certain level of energy

is defined to calculate the number of singular values to preserve in the inversion process.

Chen and Oliver (2013) included an additional simplification by discarding the model

mismatch term (first term) in the update equation. This method is called the LM-

EnRML(approx) method, and the update equation is simplified as

δx = −Sx
1/2AlYlT

(
(1 + λl)Im +YlYlT

)−1

Sy
−1/2

(
g(xl)− d

)
. (2.33)
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This is equivalent to equation (19) in Chen and Oliver (2013). It is important to note

that the LM-EnRML(approx) method is a maximum likelihood method, as it does not

include the model mismatch term in the update equation. Caution is then needed to

avoid parameter ensemble collapse, as the model mismatch term is an important term

that regularize the inversion process.

The LM-EnRML method of Chen and Oliver (2013) has been extensively used in the

groundwater community after its implementation in the software PESTPP-IES by White

(2018).

2.3.3 Subspace EnRML (SEnRML)

In order to avoid the approximations made in the LM-EnRML method, the SEnRML

method was developed by Raanes et al. (2019) and derived in a clearer manner by Evensen

et al. (2019). In this method, the solution is searched in the ensemble subspace as a linear

combination of the initial ensemble anomalies and the first guess of the model parameters

(Evensen et al., 2019),

xl = xf +Awl, (2.34)

where xf and xl are the first guess and updated model parameters, respectively, A is the

matrix of initial (l = 0) model parameter ensemble anomalies as defined in Equation 2.16,

and wl ∈ RN is the vector of weights (Note that the ensemble subscripts are omitted for

clarity). This equation shows that the optimized parameters, deemed to approximately

sample the posterior pdf, will be a linear combination of the initial parameter realizations.

Solving the problem in this way, the inversion process is naturally regularized.

The cost function presented in Equation 2.12 can be rewritten in terms of wl as follows:

J(wl) =
1

2
(d− g(xf +Awl))TCd

−1(d− g(xf +Awl)) +
1

2
wlTwl. (2.35)

The iterative solution that minimizes the cost function J(wl) can be obtained using

Equation 2.10 as

wl+1 = wl−γl(I+(GlA)TCd
−1(GlA))−1(wl+(GlA)TCd

−1(g(xf +Awl)−d)). (2.36)

This equation can be rewritten in measurement space as

wl+1 = wl − γ
(
wl − (GlA)T (GlA(GlA)T +Cd)

−1(GlAwl + d− g(xf +Awl))
)
.

(2.37)

As the equations show, the SEnRML uses the Gauss-Newton algorithm to iteratively

update the model parameters. Again, instead of calculating the sensitivity matrix for

each weight vector, an average sensitivity matrix G
l
is calculated from the ensemble.
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Using Equation 2.17 it can be shown that

G
l
A = YlAl+A. (2.38)

The matrix of updated anomalies Al can be related to the matrix of initial anomalies A

and the vector of updated weights wl as follows:

Al = Xl

(
IN − 1

N
11⊤

)
/
√
N − 1

=
(
Xf +AWl

)(
IN − 1

N
11⊤

)
/
√
N − 1

= A+AWl

(
IN − 1

N
11⊤

)
/
√
N − 1

= A

(
IN +Wl

(
IN − 1

N
11⊤

)
/
√
N − 1

)
= AΩl,

(2.39)

where Ωl it is defined as:

Ωl =

(
IN +Wl

(
IN − 1

N
11⊤

)
/
√
N − 1

)
. (2.40)

Note that Ωl is always full rank (Evensen et al., 2019). It follows that

G
l
A = YlAl+A

= YlAl+AlΩl−1
.

(2.41)

The projection Al+Al can be discarded when n ≥ N − 1 (this is generally the case

in highly parameterized inversion) or if the model is linear (for further details on the

demonstration the reader is referred to Evensen et al. (2019)), leading to the following

equation:

Sl = G
l
A = YlΩl−1

, (2.42)

where Sl is defined as the matrix of predicted and deconditioned ensemble anomalies

(Evensen et al., 2019). It is important to note that for Equation 2.42 to generally hold,

Yl needs to be multiplied by the term Al+A for the cases when n < N − 1 or the model

is nonlinear. With this definition, Equation 2.37 can be rewritten (in matrix form) as

Wl+1 = Wl − γ
(
Wl − SlT (SlSlT +Cd)

−1Hl
)
, (2.43)

where Hl is the ‘innovation’ term (Evensen et al., 2019) defined as

Hl = SlWl +D− g(Xf +AWl). (2.44)
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Equation 2.43 is the update equation for the SEnRML method, solved in measurement

space. The same equation can be solved in ensemble subspace as follows:

Wl+1 = Wl − γ
(
IN + SlTCd

−1Sl
)−1 (

Wl + SlTCd
−1(g(Xf +AWl)−D)

)
. (2.45)

To solve Equation 2.43, the matrix SlSlT +Cd is the only term that requires inversion.

Evensen et al. (2019) presented four alternatives to solve this inversion: 1. Direct inver-

sion, 2. Exact inversion, 3. Ensemble subspace inversion using full Cd, and 4. Ensemble

subspace inversion using low-rank Cd. For a full description of these matrix inversion

options, the reader is referred to Evensen et al. (2019). The following is the solution for

each of the four inversion options:

1. Direct inversion:

In this case, the matrix C = SlSlT +Cd is directly inverted using SVD as

C−1 = ZΛ+ZT , (2.46)

where Z is the matrix of right singular vectors of C, and Λ+ is the diagonal matrix

of the inverse of the singular values of C.

2. Exact inversion:

In this case, using the Woodbury corollaries, the updated weights can be calculated

as

Wl+1 = Wl − γ
(
Wl − (SlTCd

−1Sl + IN)
−1SlTCd

−1H
)
. (2.47)

In this case it is generally assumed that Cd is equal to the identity matrix, which

is obtained by scaling a diagonal measurement error covariance matrix by the mea-

surement noise variance, and Equation 2.47 can be simplified as

Wl+1 = Wl − γ
(
Wl − (SlTSl + IN)

−1SlTH
)
. (2.48)

The inversion of the matrix SlSl+IN is performed using SVD of Sl. It is important

to note that this approach is not valid if Cd has a more complex structure.

3. Ensemble subspace inversion using full Cd:

This matrix inversion method elegantly identifies that, as the optimized parameters

are the result of linear combinations of the initial parameters, the measurement noise

covariance matrix Cd can be approximated by its projection into the predicted

ensemble anomalies subspace Sl. The matrix inversion is performed as

(SlSlT +Cd)
−1 =

(
UΣ+T

Z
)
(IN +Λ)−1

(
UΣ+T

Z
)T

, (2.49)
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where UΣVT is the SVD of Sl, and Z and Λ are the SVD result of

Σ+UTCdUΣ+T
= ZΛZT . (2.50)

4. Ensemble subspace inversion using low-rank Cd:

This option is equivalent to the previous ensemble subspace inversion but instead

of using full Cd, a low-rank approximation E is used such that Cd ≈ EET . The

inversion is performed as

(SlSlT + EET )−1 =
(
UΣ+T

Z
)
(IN +Λ)−1

(
UΣ+T

Z
)T

, (2.51)

and

Σ+UTEETUΣ+T
= ZΛZT . (2.52)

This approach reduces the computational cost of the inversion process if N <

m, and it does not require to explicitly define the structure of the measurement

noise covariance matrix Cd. This opens the opportunity to include more complex

structures in the measurement noise, especially when it is combined with structural

noise.

It is noted that performing SVD on Equation 2.52 is equivalent to performing SVD

on Σ+UTE and squaring the singular values to obtain Λ. It is also important

to mention that before performing SVD on Sl, this matrix should be scaled to

the variability of the observations. This can be done through simply generating a

diagonal scaling matrix similar as presented in Chen and Oliver (2013), or obtain

the Cholesky decomposition L of the matrix EET , and calculate the scaling matrix

as L−1/2, as presented by Emerick and Reynolds (2012).

2.3.4 Levenberg-Marquardt subspace EnRML (LM-SEnRML)

Although there is no formal literature presenting a Levenberg-Marquardt version of the

SEnRML method, it is easy to derive it. Looking at Equation 2.45, the LM algorithm

can be included by adding a scalar λl to the inverse of the matrix IN + SlTCd
−1Sl as

Wl+1 = Wl −
(
(1 + λl)IN + SlTCd

−1Sl
)−1 (

Wl + SlTCd
−1(g(Xf +AWl)−D)

)
.

(2.53)

Using the Woodbury corollaries, Equation 2.45 with the added λ scalar can be rewritten

similarly to Equation 2.43 as

Wl+1 = Wl −
(

Wl

1 + λl
− SlT (SlSlT + (1 + λl)Cd)

−1Hl

)
, (2.54)
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where Hl is the ‘innovation’ term defined as

Hl =
SlWl

1 + λl
+D− g(Xf +AWl). (2.55)

It should be noted that when using the low-rank Cd, i.e., Cd ≈ EET , the matrix E should

be scaled by the square root of the scalar 1+λl before performing SVD of Equation 2.52.

It is also worth mentioning that to my knowledge this approach has not been widely tested

in the literature, and it is presented here as an alternative to the use of the step-length

parameter γ in the SEnRML method.

2.3.5 Iterative Local Updating Ensemble Smoother (ILUES)

The iterative local updating ensemble smoother (ILUES) was developed by Zhang et al.

(2018) as an improvement to the iterative ensemble smoother method with the purpose

of sampling multi-modal posterior distributions. However, the ILUES method is also

useful to sample unimodal posterior distributions for highly nonlinear problems. The

method, as its name suggests, is an iterative ensemble smoother, that updates a subset of

parameter realizations, with grouping based on a combination of parameter similarities

and their goodness of fit to the observations. The following is a brief description of the

ILUES method. For a more detailed explanation, the reader is referred to Zhang et al.

(2018).

A normalized total mismatch function is divided into a normalized data mismatch and a

normalized model mismatch functions as

Jn = Jd/Jd
max + Jx/Jx

max, (2.56)

where Jd and Jx are the data and model mismatch functions, respectively, and Jd
max and

Jx
max are the maximum values of both functions. This normalization is applied to avoid

the dominance of the data mismatch function over the model mismatch function. Then, a

local ensemble XL of size NL = αN is selected from the full ensemble X based on the best

NL realizations of the normalized total mismatch function Jn. This evaluation is repeated

for each xi ∈ X. Therefore, there will be N local ensembles, one for each ensemble

member. There is no restriction that the ensemble members should belong to a unique

local ensemble, as this process is iterative and independent. Once a local ensemble is

defined, the model parameters can be updated using any of the methods described above,

such as the LM-EnRML, SEnRML, or LM-SEnRML methods. Moreover, localization can

be applied to the local ensemble to avoid spurious correlations and ensemble collapse.

For each xi there will be Nl updated model parameters in the updated local ensemble

XL. Naturally, only one ensemble member XL has to be selected to update the model

parameter vector xi in the full ensemble X. The selection process can be based on several
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criteria. Zhang et al. (2018) proposed to randomly select one realization from the updated

local ensemble XL. Another simpler option is to select the first realization, that in theory

should be the updated realization associated with xi. The reason being that the model

mismatch cost function for this realization is zero.

2.3.6 Localization

When using ensemble methods such as those described above, the use of a reduced ensem-

ble size N compared to the number of model parameters n leads to a low-rank represen-

tation of the parameter covariance matrix. This can generate three main issues (Evensen

et al., 2022):

1. Poor representation of the model parameter covariance matrix Cx that can lead to

spurious correlations and thereby promote parameter ensemble collapse.

2. A solution that is confined to the ensemble subspace defined by the prior realiza-

tions.

3. Projection of measurements into the ensemble subspace, limiting assimilation of

data that cannot be represented by the ensemble of model outputs.

For these reasons, the use of localization techniques is essential. The term ‘localization’

refers to the auxiliary technique used in model inversion that limits the effect of obser-

vations on parameters to a certain local domain. The local domain can have a physical

interpretation, such as time and distance, or it can be based on statistical correlation.

Distance-based localization schemes are localization techniques that use a tapering func-

tion, such as the Gaspari-Cohn function (Gaspari and Cohn, 1999) to penalize the effect

of observations on model parameters as the distance between them increases. The prob-

lem with this approach is that all observations and parameters require a geographical

location, which is not always possible. As a matter of fact, in groundwater modelling, it

is common to have ambiguous locations of observations and model parameters, such as

groundwater inflows to a river or the bulk hydraulic conductivity of an aquifer.

A localization scheme that is not dependent on geographical or temporal locations is

more appealing for groundwater modelling. Luo et al. (2018) and Luo and Bhakta (2020)

proposed a correlation-based adaptive and automatic localization scheme that generates

a tapering function applied to the Kalman gain term in the parameter update equation.

In Luo et al. (2018), the tapering function is an indicator matrix (0 or 1) L ∈ Rn×m that

eliminates the correlations that are below a certain threshold:

L = I(abs(ρ) > θ), (2.57)
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where ρ ∈ Rn×m is the correlation matrix betweenX andY calculated from the ensemble,

θ ∈ Rn×m is the noise correlation threshold, and I is the indicator function that returns

1 if the condition is true and 0 otherwise. The correlation noise ϵ is calculated using a

high-pass filter, and the threshold is estimated as a multiple of the standard deviation of

the noise σϵ, as follows (Donoho and Johnstone, 1994):

θ = σϵ ×
√

2 ln(Nϵ), (2.58)

where Nϵ is the number of noise elements. In turn, the noise standard deviation σϵ is

calculated using the median absolute deviation (MAD) (Donoho and Johnstone, 1995) as

σϵ = 1.4826×MAD(ϵ). (2.59)

Luo and Bhakta (2020) proposed two improvements to the localization scheme of Luo

et al. (2018). First, they proposed the random shuffle approach as a simple method to

estimate the noise ϵ in the correlation matrix estimated from the ensemble. As presented

in their work, assuming that the ensemble members in X are independent and identically

distributed (which is true for the prior ensemble given the ensemble generation process),

and if the predicted ensemble members in Y are shuffled assuring that no member repeats

its original position, in theory the correlation matrix betweenX and the shuffled version of

Y should tend to zero as N → ∞. Given that the ensemble size is limited, the correlation

matrix betweenX and the shuffled version ofY will not be zero, and the correlation values

can be treated as estimates of the noise. The second improvement proposed by Luo and

Bhakta (2020) is the use of the Gaspari-Cohn function as a continuous tapering function

instead of the indicator function:

fGC(z) =


−1

4
z5 + 1

2
z4 + 5

8
z3 − 5

3
z2 + 1 if 0 ≤ z ≤ 1,

1
12
z5 − 1

2
z4 + 5

8
z3 + 5

3
z2 − 5z + 4− 2

3
z−1 if 1 < z ≤ 2,

0 if z > 2,

(2.60)

where z is a dummy variable representing a pseudo distance, defined as

z =
1− abs(ρ)

1− θ
. (2.61)

In this last equation, correlation and threshold indices are omitted for clarity. It is

important to note that the decision on how many and what parameter types are used

to calculate the noise threshold is a subjective choice. In the extreme case one could

estimate the noise threshold for each pair of model parameters and observations, requiring

repetition of the application of the random shuffle method many times (Ranazzi et al.,

2022; Luo et al., 2023). On the contrary, as done by Luo et al. (2018) and Luo and Bhakta
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(2020), one could estimate a single noise threshold for a group of model parameters for

each observation. Luo et al. (2023) added an optional alternative to estimate the noise

threshold for global parameters, such as the bulk hydraulic conductivity of an aquifer,

using the asymptotic estimate c/
√
N , where c is an arbitrary number between 3 and 4

(Luo et al., 2023) and N is the ensemble size.

It is recognized that the correlation noise threshold estimated with the universal rule

leads to aggressive localization. This is particularly true when the noise samples for each

pair of model parameters and observations are generated by repeating the random shuffle

method. In this case, increasing the number of correlation noise samples does not reduce

the standard deviation of correlation noise, and therefore applying the universal rule of

Donoho and Johnstone (1994) will only increase the noise threshold. For this reason, in

this work the noise threshold is estimated as a multiple (1.0 by default) of the standard

deviation of the noise, calculated through the random shuffle method, as done in the

PESTPP-IES software (White, 2018).

As discussed by Silva Neto et al. (2021) and Ranazzi et al. (2022), the pseudo distance

dummy variable z of Luo and Bhakta (2020) generates undesired results. One of the

issues is that the tapering function is suboptimal asymptotically, as it does not approach

one as N → ∞ (Ranazzi et al., 2022). In other words, tapering values equal to one are

only obtained for correlation values that are also one. To address this issue, Silva Neto

et al. (2021) proposed a new dummy z variable to use in the Gaspari-Cohn function,

arbitrarily defined as

z = max(1.67− 0.67|ρ|
θ

, 0). (2.62)

Another recent localization approach was developed by Ranazzi et al. (2022), where

they combine the correlation-based localization method of Luo et al. (2018); Luo and

Bhakta (2020) with the pseudo-optimal localization (POL) method of Furrer and Bengts-

son (2007). In the POL method, a localization matrix is defined as

li,j =
c2i,j

c2i,j + (c2i,j + ci,icj,j)/N
, (2.63)

where li,j is the tapering value of the localization matrix L and ci,j is the true covariance

between the i and j, respectively. It is noted that the tapering value tends to 1 as

N → ∞. Furrer and Bengtsson (2007) proposed to replace the true covariance with

the ensemble estimate, leading to pseudo-optimality of the method. They also suggested

adding sparseness to the localization matrix by replacing small values of li,j with zeros,

using a threshold for the cross-correlation ci,j as

|ci,j| < ϵ
√
ci,icj,j, (2.64)
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where ϵ is a small value, typically between 0.01 and 0.001.

If the ensemble covariance estimates are used in Equation 2.63, it can be argued that

there will be errors in the cross-covariance terms, but not necessarily in the diagonal

terms (Ranazzi et al., 2022). Following this rationale, Ranazzi et al. (2022) proposed a

modification to the POL method, where the tapering values of the localization matrix

are calculated as

li,j =
c2i,j

c2i,j + (ci,icj,j)/N + β2
i,j

, (2.65)

where β2
i,j is the error term, or penalty factor. The authors proposed to use the random

shuffle method of Luo and Bhakta (2020) to estimate a covariance error threshold value

θi,j from which the penalty factor is calculated as

βi,j = Fθi,j, (2.66)

where F is a general function that potentially depends on the covariance values and θ.

Ranazzi et al. (2022) proposed four options for F , and here the two simplest are presented:

F1 = 1.0,

F2(ci,j, ci,i, cj,j) = 1−
c2i,j

ci,icj,j
.

(2.67)

The localization matrix L obtained from any of the aforementioned method, can be used

to perform local analysis (Evensen et al., 2022). In this way, localization can be easily

added to any of the ensemble-based methods, where instead of updating parameters to all

observations in one step, a subset of parameters (or even each parameter) is independently

updated to a significantly correlated subset of observations. In this way, localization is

scheme-independent. Additionally, Silva Neto et al. (2021) stated that, similar to the

approach of Chen and Oliver (2017), the localization matrix can taper the ensemble

anomalies S and the innovation H terms, as follows:

Ŝl = Sl · L1/2,

Ĥl = ŜlWl +
(
D− g(Xf +AWl)

)
· L1/2.

(2.68)

In this way lower correlations are penalized. If this approach is discarded, the localization

matrix will only help to select the subset of observation that will be used to update the

parameters. In this work it has been found that applying the localization matrix to both

ensemble anomalies and innovation terms only works well for the LM-EnRML method.

For the SEnRML and LM-SEnRML methods, the tapering leads to similar convergence

behaviour compared to the non-localized cases only if it is applied to the innovation term.

It is speculated this may be the case because subspace methods project the innovations

into the ensemble anomalies space, and therefore the tapering of the ensemble anomalies
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is redundant.

2.4 Regularized Inversion and Linear Uncertainty Anal-

ysis

2.4.1 Least Squares, SVD and Tikhonov Regularization

Suppose the following nonlinear inverse problem:

d∗ = g(x∗) + ϵ, (2.69)

where d∗ ∈ Rm is the vector of observations, x∗ ∈ Rn is the vector of model parameters,

g(·) is the forward model, and ϵ ∈ Rm is the vector of measurement errors. A linearization

of Equation 2.69 can be written as

d = Gx+ ϵ, (2.70)

where G ∈ Rm×n is the sensitivity matrix of the forward model evaluated at the first

guess xf , or prior estimate, and x and d are departures from the first guess xf and its

model evaluation g(xf ), as follows:

d = d∗ − g(xf ),

x = x∗ − xf .
(2.71)

For an overdetermined problem, the matrix product GTG is positive definite (therefore

it has an inverse), and the solution to the linearized problem discarding noise is given by

x = (GTG)−1GTd. (2.72)

Under the presence of measurement noise, the solution to the linear problem can be solved

by minimizing the following least square problem (Tarantola, 2005):

Jd(x) = (d−Gx)TCd
−1(d−Gx), (2.73)

where Cd is the measurement error covariance matrix. The solution x in this case is an

estimate of the true x solution (Doherty, 2015), and given by

x = (GTCd
−1G)−1GTCd

−1d. (2.74)

For an underdetermined problem, the matrix product GTG or GTCd
−1G is not positive

definite, and therefore Equation 2.72 or Equation 2.74 cannot be directly used to solve
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the linear problem. In this case, as there are infinite solutions to the linear problem, some

regularization is required find a unique solution.

The simplest form of regularization is Singular Value Decomposition (SVD). The SVD of

the expression GTCd
−1G is given by

GTCd
−1G = ZΣZT , (2.75)

where Z is the matrix of eigenvectors, and Σ is the diagonal matrix of the eigenvalues.

The solution to the regularized least squares problem is given by

x = Z1Σ
−1ZT

1G
TCd

−1d, (2.76)

where Z1 is the matrix of the first k < m columns of the right singular vectors, and Σ1 is

the diagonal matrix of the first k singular values. Another common form of regularization

is Tikhonov regularization, which adds a regularization term to the least squares problem.

A typical regularization function is departures from prior values normalized by their prior

uncertainties, as follows:

Jt(x) =
1

2
Jd(x)+

1

2
Jx(x) =

1

2
(d−Gx)TCd

−1(d−Gx)+
µ2

2
(x−xf )

TCx
−1(x−xf ), (2.77)

where Cx is the model parameter covariance matrix, and µ is the regularization weight

factor (Doherty, 2015). If data uncertainty and parameter can be represented by one

single variance σ2
d and σ2

x, respectively, the regularization weight factor can be set as

µ = σd/σx (Oliver et al., 2008).

The solution to the regularized least squares problem is given by (Moore and Doherty,

2006; Doherty, 2015):

x = (GTCd
−1G+ µ2Cx

−1)−1GTCd
−1d, (2.78)

If the regularization parameter µ = 1, the solution to the regularized least squares prob-

lem is the following (Tarantola, 2005):

x = (GTCd
−1G+Cx

−1)−1GTCd
−1d. (2.79)

Using the Woodbury corollaries, Equation 2.79 can be rewritten as

x = CxG
T (GCxG

T +Cd)
−1d. (2.80)

A more general and flexible form of regularization is presented in Doherty (2015), with
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the following estimate of the model parameters:

x = (GTCd
−1G+ µ2GT

r Cx
−1Gr)

−1(GTCd
−1d+GT

r Cx
−1dr), (2.81)

where Gr is the regularization sensitivity matrix, dr is the regularization observation

vector, and in this caseCx
−1 is the regularization weight matrix (it may not be necessarily

derived from inverting a regular parameter covariance matrix). Note that Equation 2.81

is equal to Equation 2.78 when Gr = I and dr = 0. This occurs when each parameter

is regularized by its prior value, and regularization uncertainty is equal to the prior

parameter uncertainty.

PEST (Doherty, 2023) uses Levenberg-Marquardt optimization to solve the regularized

least squares problem. Therefore, Equation 2.81 can be rewritten as

x = (GTCd
−1G+ µ2GT

r Cx
−1Gr + λI)−1(GTCd

−1d+GT
r Cx

−1dr), (2.82)

where λ is the Levenberg-Marquardt parameter.

The iterative solution to the regularized least squares problem implemented in PEST

minimizes the regularization function Jr(x) while achieving a certain predefined level of

data misfit, that is adjusted for each iteration as a percentage of the initial data misfit

Jd(x) (Doherty, 2015). Singular value decomposition adds numerical stability to the

inversion process.

2.4.2 Linear Uncertainty and Error Variance

Linear uncertainty analysis is based on linear and Gaussian assumptions, which are im-

plicit in the equations above by defining the least squares problem and by linearizing

the forward model. As these assumptions are not valid for most cases in groundwater

modelling, the estimation of linear parameter and predictive uncertainty is only an ap-

proximation. However, it is significantly cheaper computationally if the sensitivity matrix

is already available from the inversion process (or from the first inversion iteration), com-

pared to nonlinear methods. Solving the least squares problem of Equation 2.77 with

µ = 1, the posterior covariance matrix of the model parameters is given by (Tarantola,

2005; Doherty, 2015):

C′
x = (GTCd

−1G+Cx
−1)−1. (2.83)

Using the Woodbury corollaries, the posterior covariance matrix can be rewritten as

C′
x = Cx −CxG

T (GCxG
T +Cd)

−1GCx. (2.84)
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Equation 2.83 is more computationally efficient than Equation 2.84 when the number of

model parameters is smaller than the number of observations, and Equation 2.84 is more

efficient when the opposite is true.

A resolution operator R can be defined as follows (Tarantola, 2005):

R = CxG
T (GCxG

T +Cd)
−1G, (2.85)

Assuming perfect data (no noise), the posterior covariance matrix can be rewritten as

C′
x = (I−R)Cx. (2.86)

According to Tarantola (2005), this equation shows that, under the absence of measure-

ment noise, if the resolution operator is close to the identity matrix, the posterior covari-

ance matrix is close to zero, therefore the inverse problem is close to being completely

determined.

Using the Woodbury corollaries, the resolution operation of Equation 2.85 can be rewrit-

ten as

R = (GTCd
−1G+Cx

−1)−1GTCd
−1G. (2.87)

Note that the prior covariance matrix Cx appears in the resolution operator, which means

that the resolution of the parameters is dependent on the prior uncertainty of the model

parameters.

Assuming that a prediction s can be derived from the linearized forward model as

s = gTx, (2.88)

where g is the sensitivity vector of the prediction, the posterior predictive uncertainty σ′
s

is given by:

σ′
s = gTC′

xg. (2.89)

Replacing Equation 2.83 in Equation 2.89, the posterior predictive uncertainty can be

rewritten as (Doherty, 2015):

σ′
s = gT (GTCd

−1G+Cx
−1)−1g (2.90)

A more computationally efficient version of Equation 2.90 when n > m is given by:

σ′
s = gTCxg − gTCxG

T (GCxG
T +Cd)

−1GCxg. (2.91)

Replacing the resolution operator in Equation 2.91, the posterior predictive uncertainty

can be rewritten as:

σ′
s = gT (I−R)Cxg. (2.92)
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Error variance and specifically predictive error variance equations are different from linear

uncertainty analysis. First, error variance is defined as the variance of the difference

between the true value and the predicted value, whereas uncertainty is defined as the

variance of the predicted value. When performing regularized inversion, the objective

is to minimize the parameter error variance, which is to minimize the propensity of the

model parameters to depart from their unknown true values. This is propensity for bias,

and it depends on the regularization strategy and parameter transformation (specifically

Kahunen-Loeve transformation) (Doherty, 2015).

Parameter error can be defined as the difference between the true value and the estimated

value. Using Equation 2.70 and Equation 2.80, parameter error can be derived as follows:

x = CxG
T (GCxG

T +Cd)
−1d

= CxG
T (GCxG

T +Cd)
−1(Gx+ ϵ)

= CxG
T (GCxG

T +Cd)
−1Gx+CxG

T (GCxG
T +Cd)

−1ϵ

x− x = Rx+ Lϵ− x

x− x = −(I−R)x+ Lϵ,

(2.93)

where L is defined as follows:

L = CxG
T (GCxG

T +Cd)
−1

= (GTCd
−1G+Cx

−1)−1GTCd
−1.

(2.94)

The second expression is similar to matrix G defined in Doherty (2015). The covariance

matrix of the parameter error is given by (Doherty, 2015):

Cx−x = (I−R)Cx(I−R)T + LCdL
T . (2.95)

The predictive error variance can be calculated from the difference between the true value

and the predicted value as follows:

s = gTx

s− s = gT (x− x)

σ2
s−s = gTCx−xg

σ2
s−s = gT (I−R)Cx(I−R)Tg + gTLCdL

Tg.

(2.96)

This equation is general. It depends on the regularization strategy through R and L

(Doherty, 2015). The resolution operator R and the matrix operator L as defined in

Equation 2.87 and Equation 2.94 are the result of Tikhonov regularization. A different

definition will be provided for SVD regularization.

At least from a mathematical point of view, from comparing equations Equation 2.86
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and Equation 2.95, it is clear that the posterior covariance matrix is not equal to the

covariance matrix of parameter error. The same can be said about the predictive error

variance and the posterior predictive uncertainty by comparing equations Equation 2.92

and Equation 2.96. Doherty (2015) demonstrated that the predictive error variance

is greater than the posterior predictive uncertainty and that predictive uncertainty is

immune to parameter transformation.

When using SVD as a regularization strategy, parameter and predictive error variance

can be calculated from equations Equation 2.95 and Equation 2.96 but with the resolution

operator R defined as (Moore and Doherty, 2005):

R = Z1Z
T
1 , (2.97)

and the matrix L is defined as

L = Z1Σ
−1
1 ZT

1G
TCd

−1, (2.98)

where Σ1 is the diagonal matrix of the first k singular values. The matrix Z2 contains

the remaining m − k columns of the right singular vectors. Then the expression I − R

can be expressed as

I−R = Z2Z
T
2 . (2.99)

Predictive error variance can then be estimated as:

σ2
s−s = gTZ2Z

T
2CxZ2Z

T
2 g + gTZ1Σ

−1
1 ZT

1 g. (2.100)

Moore and Doherty (2005) showed the significance of the first and second terms in an

equation similar to equations Equation 2.96 and Equation 2.100. The first term is the

null space contribution to predictive error variance, i.e., the remaining uncertainty in

the prediction that cannot be resolved by the data. When no singular values are used

or Tikhonov regularization is maximized, the first term is maximized and equal to the

prior predictive uncertainty. When the maximum number of singular values are used or

Tikhonov regularization is minimized, the first term is minimized (although not necessar-

ily zero). The second term is the solution space contribution to predictive error variance;

this is the cost of measurement noise. As more parameters are adjusted to fit the data or

Tikhonov regularization is dampened, there is greater propensity for increased predictive

error variance, as measurement noise is amplified. As a result, the sum of the first term

and the second term reaches a minimum that defines the optimum number of singular

values or Tikhonov regularization parameter to use in the inversion process.

35



2.5 Data Space Inversion (DSI)

Data Space Inversion (DSI) is a method that, as the name suggests, performs inversion in

the data space (model output space), using a number N of model output realizations. The

simplest version of DSI is to apply the conditional expectation and covariance of model

outputs given the data (see Koch, 1999), assuming Gaussian and linear conditions. This

is the same as minimizing the least squares problem:

JDSI(o) =
1

2
(d−Ho)TCd

−1(d−Ho) +
1

2
(o− of )

TCo
−1(o− of ), (2.101)

where o is the vector of model outputs, H is the mapping of model outputs to measure-

ment space, Co is the model output prior covariance matrix, and of is the prior estimate

of the model outputs, which is generally assumed as the mean. The solution to the DSI

problem can be easily obtained from Equation 2.80 by replacing x by o, G by H, and

Cx by Co, as follows:

o = CoH
T (HCoH

T +Cd)
−1d, (2.102)

Note that d and o are defined as departures from Hof and of , respectively. Using the

Woodbury corollaries, Equation 2.102 can be rewritten as

o = (HTCd
−1H+Co

−1)−1HTCd
−1d. (2.103)

The posterior covariance matrix of the model outputs is given by:

C′
o = (HTCd

−1H+Co
−1)−1. (2.104)

This equation can be written as

C′
o = Co −CoH

T (HCoH
T +Cd)

−1HCo. (2.105)

It is noted that model outputs might also include predictions. With this, posterior

predictive uncertainty can be easily obtained from Equation 2.104, by extracting the

diagonal elements of the matrix. Both the prior mean and covariance matrix of the

model outputs can be obtained from an ensemble of model output realizations.

Sun and Durlofsky (2017) proposed an extended DSI procedure for non-Gaussian cases,

that includes transformation of the model outputs to a space that is approximately Gaus-

sian, and reparametrization of the data space using principal component analysis (PCA).

First the re-parameterization strategy will be presented, and then transformation options

of the model outputs will be discussed.

Let Y be the matrix of N model output anomalies (departures from the mean) including
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matrix scaling, as defined in equation Equation 2.22. The matrix Y can be decomposed

using PCA as follows:

Y = UΣVT = ΦVT . (2.106)

Now model outputs can be modelled as a linear model of the mean model output of plus

linear combination of Φ, the square root of the model output covariance matrix Co, as

follows:

o = of +Φz, (2.107)

where z is the vector of standard normal random variables, i.e., with a mean of zero and

a variance of one. The size of the vector z is equal to the number of principal components

used in the model, which can be defined by an eigenvalue or level of energy threshold.

Now model outputs can be simulated with this simple linear model, and the least squares

problem of Equation 2.101 can be solved by any history matching algorithm. For example,

Lima et al. (2020) used the ensemble smoother with multiple data assimilation (ES-MDA)

algorithm to solve the DSI problem, including localization to remove spurious correlations

and increase degrees of freedom in the inversion process. In particular, as the model of

Equation 2.107 is fast, the posterior of vector z can be fully sampled using a Markov

Chain Monte Carlo (MCMC) algorithm. The posterior of the model outputs can then

be obtained by applying Equation 2.107. Within the model output vector o, one or

more predictions of interest can be included, so posterior predictive uncertainty can be

quantified.

The effectiveness of DSI depends on how proximate the model outputs are to a Gaussian

distribution, and how well the principal components represent the model outputs. For this

reason, Sun and Durlofsky (2017), Sun et al. (2017),and Jiang et al. (2021) have proposed

transformations of the model outputs to a space that is approximately Gaussian. Among

them, the histogram transformation of Sun et al. (2017) is the most straightforward

strategy. This method, performs an inverse Gaussian anamorphosis procedure using the

empirical cumulative distribution function (CDF) of the model outputs compared to prior

realizations of the model outputs obtained from Equation 2.107. In this way, any model

output modelled by Equation 2.107 will only result in outputs within the range of the

prior model outputs. The main limitation of this transformation is that it does not take

into account the correlation between model outputs, as the empirical CDF is calculated

independently for each model output.

2.6 Numerical Examples

Two examples are presented to compare a selection of methods described above, in terms

of convergence and uncertainty quantification capacity. The first example is a simple

one-parameter nonlinear problem presented in Chen and Oliver (2013) and the second

37



example pertains to a one-dimensional unsaturated groundwater flow model.

MCMC was implemented using the Python package pyDREAM (Laloy and Vrugt, 2012),

and regularized inversion, when applied, was implemented using the PEST software suite

(Doherty, 2023). The remaining ensemble and DSI methods were implemented using

Python codes developed by the author. Correlation-based localization as explained in

subsection 2.3.6 was also tested for ensemble methods.

2.6.1 One parameter nonlinear problem

The objective of this example is to compare the performance of some of the ensemble

methods discussed above, and verify equivalence with the results presented by Chen and

Oliver (2013). The latter provides validation of the numerical implementation performed

in this work. PEST was used to verify consistency with the ensemble methods results.

A parameter x has a Gaussian prior distribution with a mean of -2.0 and variance of

1.0. An ensemble of 1000 parameter realizations sampled from the prior was used for all

ensemble methods. The forward model is a one-parameter function defined as follows:

g(x) =
7

12
x3 − 7

2
x2 + 8x. (2.108)

Although this equation does not have a physical meaning, it may be reflective of a ground-

water model with a nonlinear relationship between the parameter and the model output.

A measurement d = 48 has a Gaussian measurement noise with a variance of 16.0.

Although the true posterior distribution of the parameter x can be calculated analytically,

it was obtained using pyDREAM with 50,000 samples and 3 chains with a burn-in of

25,000 samples.

For the ensemble methods that use the GN algorithm (batch-EnRML and SEnRML),

the initial step length was set to 0.7 and the step length factor was set to 2.0. For the

ensemble methods that use the LM algorithm (LM-EnRML and LM-EnRML), the initial

lambda was set to 1.0 and the lambda factor was set to 4.0. A level of energy threshold

of 0.99 was used for all ensemble methods. PEST was configured in regularization mode

for native parameters with a regularization weight factor estimated to achieve 10% of

the data mismatch at each iteration. The option to continue iterations was activated to

minimize the model mismatch while achieving a data mismatch near 1.0.

The maximum number of iterations was set to 25. A data mismatch relative reduction

is used as a stopping criterion if this value falls below 0.01 after 3 consecutive iterations.

For all ensemble methods the data mismatch relative reduction is calculated for the

ensemble mean and standard deviation at each iteration, and both statistics must meet

the criterium. A parameter maximum change of 0.001 during 3 consecutive iterations

was also set as a stopping criterion for all methods.

38



Figure 2.1 shows the data mismatch box plot for four ensemble methods except LM-IES

(approx). It can be observed that all methods converge with a mean data mismatch near

1.0. Generally there is a quick convergence of the data mismatch for methods GN-EnRML

and SEnRML, with a mean data mismatch near 1.0 after 3 iterations. In particular,

convergence for these two methods is equal, suggesting that solving the inverse problem

in the ensemble subspace is equivalent to solving it in parameter space, in this case. The

method LM-SEnRML is also quick to converge, with a mean data mismatch near 1.0 after

5 iterations, approximately. Of all methods, LM-EnRML has the slowest convergence

rate, and it only improves the data mismatch after 9 iterations. This result is consistent

with the results obtained by Chen and Oliver (2013) (see Figure 1 in their paper). This

may be due to the fact that the prior ensemble is replaced by the updated ensemble at

each iteration, whereas the other methods use the prior ensemble in the Hessian term

of the parameter update equations. Also, the LM-EnRML complied with the stopping

criterion only after 23 iterations due to non-stabilization of the data mismatch standard

deviation.

A comparison of the convergence of the data mismatch for the methods LM-EnRML

and LM-EnRML (approx) after 10 iterations is shown in Figure 2.2. It can be observed

that the LM-EnRML (approx) method converges faster than the LM-EnRML method,

with a mean data mismatch near 1.0 after 7 iterations. However, given that the model

term was discarded in the parameter update equation, the data mismatch decreases

monotonically below the target data mismatch, generating overfitting. Interestingly, the

data mismatch is reduced abruptly below the target data mismatch between iterations

7 and 8, suggesting that the approximation of the model term in the parameter update

equation is not adequate. It can be inferred that it would be difficult to judge what

iteration to choose as the best estimate of the parameter.
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Figure 2.1: Data mismatch box plot for the one-parameter nonlinear problem. The boxes
are built using the 25th and 75th percentiles, and the whiskers represent the 5th and 95th
percentiles. The horizontal line inside the box represents the median. The black circles
represent the outliers. The dashed horizontal line represents the target data mismatch of
1.0 (number of observations). Iteration 0 represents the initial data mismatch.
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Figure 2.2: Data mismatch comparison of methods LM-EnRML and LM-EnRML (ap-
prox) for the one-parameter nonlinear problem after 10 iterations. The boxes are built
using the 25th and 75th percentiles, and the whiskers represent the 5th and 95th per-
centiles. The horizontal line inside the box represents the median. The black circles
represent the outliers. The horizontal line represents the target data mismatch of 1.0
(number of observations). Iteration 0 represents the initial data mismatch.

The posterior distribution of the parameter x derived from the ensemble methods (except

LM-EnRML (approx)) is shown in Figure 2.3. It is observed that all methods provide a

posterior distribution that matches the true posterior distribution obtained with MCMC.

The true value of the parameter x is 6.0, and the posterior distribution is centred around

5.85, approximately. The same value was obtained with PEST. The difference, although

minor, is likely due to how the the prior distribution was defined, centred around -2.0

and with a variance of 1.0, with a minimum support of the true value.

A comparison of the posterior distribution of the parameter x derived from the LM-

EnRML and LM-EnRML (approx) methods is shown in Figure 2.4. It is clear that the

posterior distribution of the parameter x derived from the LM-EnRML (approx) method

is centred around the true value, and is not consistent with the true posterior distribution.

This is an outcome of not including the model term in the parameter update equation.

Overall, these results validate the numerical implementation of the ensemble methods, at

least for the one-parameter nonlinear problem presented, as they are consistent with the

results obtained by Chen and Oliver (2013).
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Figure 2.3: Distribution of ensemble of realizations at the end of the inversion process
compared to the true posterior distribution of the parameter x (blue line).

Figure 2.4: Distribution of ensemble of realizations at the end of the inversion process
compared to the true posterior distribution of the parameter x (blue line).
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2.6.2 1D unsaturated flow problem

The objective of this example is to compare the performance of the ensemble methods

in a more complex and high-dimensional problem. The problem complexity originates

from the nonlinearity of the Richards equation, which is used to simulate unsaturated

flow. In particular, the relations between suction and effective saturation, and hydraulic

conductivity and effective saturation, are nonlinear. The additional complexity comes

from the high dimensionality of the problem, which is defined by the number of cells in

the 1D domain and the number of parameters that define the hydraulic properties.

The 1D model represents the advance of a wetting front in a 100 cm long heterogeneous

soil profile, discretized in 1 cm cells, and modelled using MODFLOW-USG transport

(Panday, 2024; Panday et al., 2013). A 3-day precipitation event is simulated, with a

constant rainfall rate of 5.0 cm/day. Free drainage is assumed at the bottom of the

domain, using the specified gradient second-type boundary condition (McCord, 1991).

The initial condition is a dry soil profile, which is the result of a 50-day drying period

starting from a fully saturated soil. After the precipitation event, the soil profile is allowed

to drain for 10 days, and the total cumulative infiltration simulated by the model is the

prediction of interest. A total of 27 measurements of pressure head h are taken at 20.5,

40.5, and 60.5 cm from the bottom of the domain, every 0.3 days, from 0.5 days of the

beginning of the precipitation event until day 3.

The relative permeability of the soil is simulated using the Brooks-Corey model (Brooks

and Corey, 1966), as:

kr = Sbc
e , (2.109)

where kr is the relative permeability, Se is the effective saturation, and bc is the Brooks-

Corey exponent. The effective saturation is calculated as:

Se =
θ(h)− θr
θs − θr

=
S(h)− Sr

1− Sr

, (2.110)

where θ(h) is the volumetric water content at pressure head h, θr is the residual water

content, θs is the saturated water content, S(h) is the total saturation at pressure head

h, and Sr is the residual saturation.

The effective saturation is related to pressure head by the van Genuchten model (van

Genuchten, 1980), as:

Se =

(1 + (αh)n)
−m

h < 0

1 h ≥ 0
, (2.111)

where α (cm−1) is the inverse of the air entry pressure, n is the van Genuchten exponent,

and m = 1 − 1/n is the inverse of the pore size distribution. It is assumed that the

soil is heterogeneous to the cell level for the parameters θr, θs, α, n, and Ks (saturated
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hydraulic conductivity). An exponential variogram model with a range of 15 cells is

used to simulate the spatial correlation of the parameters, for each parameter type. A

covariance matrix was generated using this exponential variogram model.

As discussed by Scharnagl et al. (2011), van Genuchten parameters and saturated hy-

draulic conductivity are a-priori correlated. For conceptual consistency, a correlation

matrix for these parameters was generated using ROSETTA (Zhang and Schaap, 2017),

a neural network-based model that predicts unsaturated soils hydraulic parameters from

soil texture data such as percentage of sand, silt, and clay, and bulk density. A total of

1000 samples of percentages of sand, silt, and clay, were generated using a Dirichlet distri-

bution, from which the van Genuchten parameters and saturated hydraulic conductivity

were sampled using ROSETTA version 3 (Zhang and Schaap, 2017), available through

rosetta-soil python library (Skaggs, 2024). A correlation matrix was then generated using

the Pearson correlation coefficient, and presented in Table 2.1.

Table 2.1: Correlation matrix for van Genuchten parameters and saturated hydraulic
conductivity.

θr θs log10(α) log10(n) log10(Ks)
θr 1.00
θs 0.75 1.00
log10(α) -0.19 -0.18 1.00
log10(n) -0.84 -0.50 -0.25 1.00
log10(Ks) -0.62 -0.18 0.15 0.71 1.00

It is recognized that this approach is simplistic, and that the correlation between param-

eters obtained from random samples of different soil textures is not necessarily correct, as

correlations depend on the soil texture itself. In a real case, one could generate samples

of soil textures from a multivariate distribution centred around the mean soil texture

representative of the site.

A multi-Gaussian prior distribution was defined for each log10-transformed parameter

type, except for the Brooks-Corey exponent bc for which a constant value of 4.0 was

assumed. Each parameter consists of 100 samples, one for each cell in the 1D domain.

To preserve the relation between residual water content θr and saturated water content

θs, residual water content was calculated as a factor of saturated water content fθr , as

follows:

θr = fθrθs. (2.112)

Then, a prior distribution was defined for the log10-transformed factor fθr from which

the residual water content was calculated. The mean and standard deviation of the prior

distribution for each parameter are presented in Table 2.2.

The cross-correlation between parameter types was obtained by applying the Cholesky

decomposition of the correlation matrix to the multi-Gaussian samples. A prior parameter
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Table 2.2: Prior distribution for the parameters of the 1D unsaturated flow problem.

Parameter Mean Standard deviation
log10(fθr) -1.00 0.15
log10(θs) -0.64 0.1
log10(α) -1.0 0.5
log10(n) 0.2 0.1
log10(Ks) 0.2 0.5

ensemble of 300 samples was generated for a total of 500 parameters. One parameter set

was selected as the true parameter set, and the forward model outputs were used as

the measurements to be history-matched. The true parameter set was chosen so that

the simulated suctions at the measurement locations were extreme values, to test the

capacity of the ensemble methods under these difficult conditions.

Figure 2.5 shows pairwise scatter plots of the prior parameter samples and also the true

values. It can be observed that some parameter correlations are evident.

Prior realizations of model outputs were generated using the parameter prior ensemble,

and the suction outputs for the selected measurement locations are presented in Fig-

ure 2.6. It is noted that the suction values go below zero for some observation points.

This adds another level of complexity to the problem, as once the pressure head goes

above zero, van Genuchten parameters are not correlated with heads in saturated condi-

tions, for obvious reasons.

The histogram of predicted cumulative infiltration throughout the simulation time, de-

rived from the prior runs, including the true value resulted from the model run with the

true parameter values, is shown in Figure 2.7. As previously stated, this is the prediction

of interest.

History matching of the 27 observations with Gaussian noise of 1.0 cm was performed

using the ensemble methods LM-EnRML, SEnRML, and LM-SEnRML. In this case,

the prior parameter ensemble size was 200. Increasing the ensemble size to 300 did

not significantly improve the results (not shown here). To later evaluate the effect of

ensemble size on correlation noise, an additional parameter ensemble of size 2000 was

also generated. To facilitate model inversion in this highly nonlinear problem, history

matching parameters where defined as standard deviates of each parameter type, for each

model cell. Spatial correlation between parameters of the same type was generated by

transforming the standard deviates to the original parameter space using the following

equation:

xi = xi + EF1/2z, (2.113)

where xi is the parameter vector of the parameter type i, xi is the mean of the parameter

type i, z is a vector of standard deviates (of size 100), and E and F are the result of SVD

on the covariance matrix of the parameter type i, i.e., Cxi = EFET .
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Figure 2.5: Pairwise scatter plots of the prior samples of the parameters of the 1D
unsaturated flow problem at z = 60.5 cm. The red points represent the true values of the
parameters.

46



Figure 2.6: Suction and pressure head outputs for the selected measurement locations
of the 1D unsaturated flow problem. The red lines with solid circles represent the true
values of the pressure head, the solid black line is the median, the grey-shaded area is the
P25-P75 percentile region, and the external black lines are the P5 and P95 percentiles.
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Figure 2.7: Histogram of cumulative infiltration throughout the simulation time derived
from the prior runs of the 1D unsaturated flow problem.
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At this point parameter types are not correlated. The correlation between parameter

types was then obtained by applying the Cholesky decomposition of the correlation ma-

trix, presented above. The result of this process is a correlated parameter ensemble used

in the numerical model.

For the LM-EnRML and LM-SEnRML method, the initial Levenberg-Marquardt λ was

calculated as (following Chen and Oliver (2013)):

λ = 10Floor(log10(J/2m)), (2.114)

where J is the mean data mismatch, and m is the number of observations. For this

particular problem, the resulting initial lambda is 100. The λ factor is reduced by a

factor of 4.0 at each iteration if the data mismatch mean and standard deviation improve

with respect to the previous iteration. If only the mean data mismatch improves between

iterations, the λ factor is not changed. If the data mismatch mean does not improve, the

λ factor is increased by a factor of 5.0. A maximum lambda value of 5.0x104 was set for

the LM-EnRML and LM-SEnRML methods.

For the SEnRML method, the initial step length was set to 0.5, with minimum and

maximum values of 0.01 and 0.6. If the data mismatch mean and standard deviation

improve with respect to the previous iteration, the step length is increased according to

the following equation:

γ = γ + (γmax − γ) ∗ 2−l/(δ−1), (2.115)

where γmax is the maximum step length, l is the iteration number, and δ is a decay

parameter. It is recognized that this is a simple heuristic to increase the step length,

and that a different approach could be used. As explained by Evensen et al. (2022), the

step length evolution over iterations influences the convergence of the method. Same

as for the EnRML method, the γ damping factor is unchanged if only the mean data

mismatch improves between iterations. If the data mismatch mean does not improve, the

step length is decreased by a factor of 2.0.

The subset of ensemble members that improve the data mismatch and standard deviation

respect to the previous iteration are accepted, even if the data mismatch mean does not

improve, as implemented in PESTPP-IES (White, 2018). Iterations are stopped before

reaching the total of 20 maximum iterations if the relative improvement of the data

mismatch mean is less than 1x10−3, or if the damping factors overcome their maximum

or minimum values (depending on the method).

History matching results for the ensemble methods are compared with results obtained

using DREAM accessed through the python library pyDREAM. In this case, the py-

DREAM algorithm was configured with 20,000 samples and 3 chains, with a burn-in of

10,000 samples. The Gelman-Rubin convergence diagnostic was used to verify the con-

vergence of the chains, and the results were considered valid if the diagnostic was less
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than 1.2.

Table 2.3 presents the data mismatch means and standard deviations, and the number of

iterations of the ensemble methods. As discussed by Chen and Oliver (2013), realizations

are expected to achieve a data mismatch similar to the number of observations, with an

upper bound as follows:

Sd ≤ m+ 5
√
2m, (2.116)

where m is the number of observations. It is important to note that this is just a reference

value given that it is based on Gaussian assumptions and linear models, and assumes

that the model mismatch is negligible compared to the data mismatch. In any case, the

estimated upper bound using Equation 2.116 is 63.7 for this problem. It is then observed

that none of the ensemble methods achieved a data mismatch mean near the expected

value. This is a consequence of the nonlinearity of the problem, the limited ensemble size,

and the fact that the same average sensitivity matrix is used for all ensemble members.

The LM-EnRML method achieved the best data mismatch mean, with a value of 283.8,

and the LM-SEnRML method achieved the worst data mismatch mean, with a value of

1390.6.

Table 2.3: Data mismatch mean, standard deviation, and number of iterations of ensemble
methods, resulted from history matching of the 1D unsaturated flow problem.

Method Mean Standard deviation N Iterations
LM-EnRML 284 261 13
SEnRML 993 1104 12
LM-SEnRML 1391 1184 15

Figure 2.8 shows the data mismatch box plot for the ensemble methods. The slow con-

vergence rate is apparent for all methods, where the data mismatch mean appears to

stabilize after 10 iterations, approximately. The dispersion around the mean data mis-

match is high, showing the issues in the performance of these ensemble methods to achieve

good fits, for all the ensemble members.

Notwithstanding the high data mismatch mean, the posterior uncertainty of suction at

the selected measurement locations is qualitatively consistent with the MCMC bench-

mark posterior, as shown in Figure 2.9. The reasonableness criterion is based on visual

comparison of the posterior distributions obtained from each ensemble method against

those from MCMC, which is used as a reference approximation of the true posterior.

This is especially true when considering the number of forward model runs required to

obtain the posterior distribution using ensemble methods, that vary between 2,400 and

3,000, compared to the MCMC method that required 60,000 runs (20,000 runs per chain)

to achieve a fit commensurate with measurement noise (Figure 2.9). Among the ensem-

ble methods, the LM-EnRML method achieved the best posterior distribution consistent

with the data mismatch analysis, with a median that closely matches the observed val-
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Figure 2.8: Data mismatch box plot evolution from different ensemble methods for the
history matching of the 1D unsaturated flow problem. The horizontal line represents the
target data mismatch of 27.0 (number of observations). Iteration 0 represents the initial
data mismatch.
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ues. On the contrary, the SEnRML and LM-SEnRML methods exhibit a wider posterior

distribution, with a median that is offset from the observed values. This is interpreted

as a consequence of the fact that SEnRML and LM-SEnRML methods perform history

matching in the ensemble subspace, constrained by the prior parameter realizations. In

the case of the LM-EnRML method, the replacement of the prior covariance matrix by

the updated parameter ensemble in the hessian term of the parameter update equation

and the use of the LM damping factor, may lead to at least two interrelated consequences:

1) the ensemble members are updated in a way that they are not totally constrained by

the prior parameter ensemble, as the hessian term is updated with the updated anomaly

matrix Al, that is a function of the residuals between g(X) and d, and 2) exploration of

new directions in the parameter space, may lead to a better fit to the data.

A practical evidence from the discussion above can be gathered using the results derived

from this example. If the updated ensemble anomaly matrix Al is a linear combination

of the prior ensemble anomaly matrix A0, its projection onto the prior span should

be the equal to the original matrix Al, i.e, R = (I − U0U
T
0 )Al ≈ 0, where R is the

parameter residual matrix, and U0 is the result of SVD on the prior parameter ensemble

anomaly matrix A0. Equivalently, the norm of the parameter residual matrix to the total

parameter anomaly matrix Al should be small, i.e., Rr = ∥R∥/∥Al∥ ≈ 0. The calculated

values of Rr for the LM-EnRML and SEnRML yielded 0.04 and 4.52x10−9, respectively.

This suggests that the LM-EnRML method explores new directions in the parameter

space, while the SEnRML method is constrained by the prior parameter ensemble.

Even though the goodness of fit varies greatly between ensemble members, the posterior

predictive uncertainty of cumulative infiltration estimated from the tested ensemble meth-

ods is reasonable, as shown in Figure 2.10, compared to the ‘true’ predictive uncertainty

estimated from MCMC.

Of all the ensemble methods, the SEnRML method achieved the best posterior predic-

tive uncertainty, with a median that closely matches the true value. On the contrary,

the methods LM-EnRML and LM-SEnRML show more bias but still provide reasonable

uncertainty estimates. These results can be initially thought of as counterintuitive. How-

ever, by looking at Figure 2.9, it is clear that the ensemble methods exhibit a good fit to

the lower suction and higher pressure head values, which are most sensitive to cumulative

infiltration.

Localization was tested for the ensemble methods. Before applying localization, a cor-

relation noise analysis is presented. An ensemble of 2000 parameter realizations was

generated, from which a corresponding ensemble of model outputs was obtained using

the forward model. A correlation matrix was calculated using these results, herein re-

ferred as the true correlation matrix. One realization of correlation noise can be obtained

by calculating the difference between the true correlation matrix and the correlation ma-

trix estimated from the ensemble of limited size (N = 200). This is the ideal approach
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Figure 2.9: Posterior distribution of suction at the selected measurement locations of the
1D unsaturated flow problem, obtained with MCMC and ensemble methods. The solid
circles represent the observed values of the pressure head and the red line extends them
into predictive times. The solid black line is the median, the grey-shaded area is the
P25-P75 percentile region, and the external grey lines are the P5 and P95 percentiles.
The period of the precipitation event is represented by the grey-shaded area.
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Figure 2.10: Histograms of posterior predictive uncertainty of total cumulative infiltration
of the 1D unsaturated flow problem, obtained with ensemble methods. The true predictive
uncertainty obtained from MCMC is represented by a blue pdf. The predictive cumulative
infiltration derived from the true parameter set is represented by a red line.

of Luo and Bhakta (2020). Figure 2.11 presents a matrix block of the first 20 elements

(parameters and observations) of the estimated and true correlation matrices, and the

correlation noise (difference between them), for saturated hydraulic conductivity (Ksat),

and alpha and beta Van Genuchten parameter types. The true correlation matrix shows

that the first 3 to 5 parameters present relatively high correlation with the observations,

with a low correlation (mostly near zero) for the remaining parameters. It can be ob-

served that the estimated correlation matrix does capture these high correlations but

with correlation noise.

As discussed by Luo and Bhakta (2020) and others, generating the true correlation matrix

to estimate the noise of the ensemble correlation matrix adds computational burden that

may be prohibitive for large problems. Because of this reason, the statistical properties

of correlation noise should be estimated by other means, such as applying the random

shuffle method of Luo and Bhakta (2020). Figure 2.12 presents realizations of correlation

noise obtained from the ideal approach and the random shuffle method, for the first 20

matrix elements, for saturated hydraulic conductivity (Ksat), and alpha and beta Van

Genuchten parameters.

It can be observed that the realization of correlation noise obtained from the random

shuffle method visually shares the statistical properties of the correlation noise obtained

from the ideal approach, consistent with the results presented by Luo and Bhakta (2020).

As this is just a visual comparison, a more robust statistical verification could be per-

formed by generating multiple samples of correlation noise using both methods. However,

this goes beyond the scope of this work.

Using the random shuffle approach to generate samples of correlation noise, several local-
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Figure 2.11: Comparison of the estimated and true correlation matrices, and the cor-
relation noise for the first 20 elements (parameters and observations) for three selected
parameter types: saturated hydraulic conductivity (Ksat), alpha and n Van Genuchten
parameters.
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Figure 2.12: Comparison of the correlation noise obtained from the ideal approach and
the random shuffle method for the first 20 matrix elements, for saturated hydraulic con-
ductivity (Ksat), and alpha and beta Van Genuchten parameters.
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ization schemes previously described were tested to generate the localization matrix, that

can taper the estimated correlation matrix to reduce the correlation noise. The following

alternatives were tested:

1. Random shuffle approach and GC function using the z dummy variables as in:

(a) Luo and Bhakta (2020)

(b) Silva Neto et al. (2021)

2. Pseudo-optimal localization of Ranazzi et al. (2022) using the following general

function:

(a) constant value of F1 = 1.0 (first function of Equation 2.67)

(b) function F2 of Equation 2.67

100 realizations of correlation noise were generated to estimate the correlation noise

threshold for each pair of parameter and observation. Figure 2.13 shows the correlation

matrices corrected by localization, using the methods listed above, compared to the

ensemble correlation matrix and the true correlation matrix. It can be observed that, in

general all localization methods reduce the correlation noise, and the correlation matrices

corrected by localization look more similar to the true correlation matrix. However, there

appears to be generalized tapering of low correlation values, which may taper correlations

that are not necessarily spurious.

A simple quantification of the difference between the estimated correlation matrices and

the true correlation matrix can be performed using the Frobenius norm, which is pre-

sented in Table 2.4. It is verified from the table that all localization methods reduce the

correlation noise, with the random shuffle and GC function of Silva Neto et al. (2021)

achieving the lowest Frobenius norm value. Caution must be taken when interpreting

these results, as the Frobenius norm is a simple measure of the difference between two

matrices. In the author’s view, for the objectives of the current work, this norm acts as

a metric to verify the ability of the localization methods to reduce correlation noise, but

it is not possible to infer which method is the best. In this respect, it may occur that

a Pearson correlation coefficient obtained from a limited ensemble size is different from

the correlation coefficient obtained from a larger ensemble size, due to the nonlinearity

of the problem and not necessarily due to the correlation noise. Then, by applying adap-

tive localization, real correlations could be treated as noise and be tapered, which is not

desirable.
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Figure 2.13: Comparison of the correlation matrices corrected by localization, obtained
with 1. Random shuffle approach and GC function with Luo and Bhakta (2020) z dummy
variable (1.a) and Silva Neto et al. (2021) z dummy variable (1.b), and 2. Pseudo-optimal
localization with constant value of F1 = 1.0 (2.a) and function F2 of Equation 2.67 (2.b).
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Table 2.4: Frobenius norm of the difference between the estimated correlation matrices
and the true correlation matrix.

Method Frobenius norm
Original ensemble correlation matrix 8.68
1.a Random shuffle and GC function (Luo and Bhakta, 2020) 3.66
1.b Random shuffle and GC function (Silva Neto et al., 2021) 3.44
2.a Pseudo-optimal localization, F1 = 1.0 (Ranazzi et al., 2022) 3.73
2.b Pseudo-optimal localization, function F2 (Ranazzi et al., 2022) 3.75

The data mismatch mean, standard deviation, and number of iterations of the ensemble

methods resulting from the localization tests, are presented in Table 2.5. Comparing these

results with the original cases (see Table 2.3), it is observed that none of the methods

improved the data mismatch mean, except for the LM-SEnRML method with the GC

function approach of Luo and Bhakta (2020). A slight reduction in the data mismatch

standard deviation was observed for the LM-EnRML and LM-SEnRML methods with

the GC function approach of Luo and Bhakta (2020).

Table 2.5: Mean / Standard deviation

Method
1.a 1.b 2.a 2.b

Mean SD Mean SD Mean SD Mean SD

LM-EnRML 375 190 361 174 403 438 461 246
SEnRML 1480 1292 1873 1729 1856 1719 1585 1534
LM-SEnRML 1127 986 5982 4615 2748 2861 2839 2758

Figure 2.14 shows the posterior predictive uncertainty of cumulative infiltration estimated

from the localization tests. It is observed that the localization methods do not improve the

predictive uncertainty estimates, and predictive bias increased compared to the original

cases, except for LM-EnRML which exhibits bias in the original case.

59



Figure 2.14: Histograms of posterior predictive uncertainty of total cumulative infiltration
of the 1D unsaturated flow problem, obtained with ensemble methods and localization
case 1.a. The true predictive uncertainty obtained from MCMC is represented by a
blue pdf. The predictive cumulative infiltration derived from the true parameter set is
represented by a red line.
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2.7 Discussion

When using available methods for history matching, it is important to consider their lim-

itations and assumptions. This is particularly important when history-matched models

are used for predictive purposes that will ultimately support a decision. In this work,

the mathematical framework of some existing methods was unified, allowing a consistent

comparison between them. It is possible to recognize that they share the same or very

similar theoretical foundations, and that the differences are mostly related to implemen-

tation details. By evaluating the performance of some of these methods in simple (but

nonlinear) and complex problems, it is possible to identify strengths and weaknesses of

each method.

It has been amply demonstrated (for example, Chen and Oliver, 2012, 2013; Evensen

et al., 2019), that ensemble methods are a viable and efficient alternative to MCMC

methods for history matching, especially when the computational cost of the forward

model is high. However, it is important to realize that slow convergence may be more the

rule than the exception. In the cases presented, ensemble methods required at least 10

iterations to achieve convergence. This has been previously shown by the rich literature

on the subject (Chen and Oliver, 2012, 2013; Emerick and Reynolds, 2012, 2013). In the

examples presented herein, the methods struggled to achieve a data mismatch close the

expected value, which is a consequence of the nonlinearity of the problems, the limited

ensemble size, and the usage of the same average sensitivity matrix for all ensemble

members (Tarantola, 2005).

Among the ensemble methods, LM-EnRML appears to be the most efficient for history

matching nonlinear cases. This may be due to the fact that this method uses a LM

damping factor and approximates the prior covariance matrix in the hessian term of the

parameter update equation using the updated parameter ensemble, allowing the explo-

ration of directions outside the initial parameter ensemble subspace. This may contribute

to overcome the limitations of the other methods whose solution is constrained to the

initial parameter ensemble space (unless localization is implemented). Although this has

not been theoretically proven in this work, the calculated values of the parameter resid-

ual matrix to the total parameter anomaly matrix Al for the LM-EnRML and SEnRML

methods, suggest that the LM-EnRML method explores new directions in the parameter

space, compared to the SEnRML method. Consequences of this exploration are that the

LM-EnRML method may achieve a better fit to the data, with the risk of generating

bias, underestimation of parameter uncertainty, and therefore underestimation of predic-

tive uncertainty. In fact, from the results of the numerical examples, it was shown that

the LM-EnRML method, although attained the best fit to the data, incurred in more pre-

dictive bias compared to SEnRML. Because it is not possible to know the true posterior

probability distribution of parameters or predictions when applying ensemble methods
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to nonlinear problems (Evensen et al., 2022), interpretations of predictive bias and incor-

rectness of posterior uncertainties can only be speculative, and limited by exploration of

example problems such as those that are presented herein.

The results of the 1D unsaturated flow problem show that the true posterior probability

distribution of the cumulative infiltration is best represented by the SEnRML method,

followed by the LM variant, neither of which achieved a good fit to the data. Overall,

predictive uncertainty calculated by all three methods is reasonable, covering the true

value of the cumulative infiltration. This suggest that it is not necessary to achieve

a perfect fit to the data to obtain a good estimate of predictive uncertainty, but only

to that aspect of the data that host the information that is relevant to the prediction

and therefore has a similar character to it (Doherty and Christensen, 2011). In the

example presented above, the cumulative infiltration is dependent on the sub-saturated

to saturated portions of the soil; hence obtaining a good fit to large soil tension values

may be not as important as getting a good fit to small tension values.

Finally, the localization tests show that all of the tested methods reduce correlation noise

in the estimated correlation matrix. These results are consistent with the findings of Luo

and Bhakta (2020), who showed that the ensemble correlation matrix can be noisy, and

that localization can reduce this noise. However, it is not possible to infer which method

is the best. Furthermore, because of the number of heuristics and assumptions made in

design of the localization methods, they probably perform differently depending on the

problem. In the above example, implementing localization in ensemble methods does

not improve the data mismatch mean and standard deviation significantly, but it does

generate more predictive bias compared to the original cases. This is an interesting out-

come that suggests that by artificially increasing the degrees of freedom of the parameter

ensemble space through localization, more predictive bias, and not necessarily a better fit

to the data, may result. Therefore, in cases where localization is necessary to efficiently

assimilate data, practitioners should be aware of these potential repercussions.

2.8 Conclusions

This chapter presents a unified mathematical framework for discussion of inverse and

ensemble methods that are used for history matching and uncertainty quantification.

This allows a consistent comparison of the methods to be made. It is hoped that this

unification will help others to clarify the theoretical foundations of the methods, and

to identify the strengths and weaknesses of each of them. Some of these methods were

tested in a simple and complex problem.

The results of the numerical examples show that ensemble methods are very efficient,

but slow convergence is more the rule than the exception in nonlinear problems. This

needs to be considered when using these methods in practice. The LM-EnRML method
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is the most efficient in history matching data in nonlinear cases; however it appears to be

prone to predictive bias. It was also found that methods that do not achieve a good fit to

the data, such as the subspace iterative ensemble smoother (SEnRML), can still provide

reasonable estimates of predictive uncertainty. To the author’s knowledge this is the first

time that this method has been tested in a highly nonlinear groundwater problem. This

work has shown that the method is a viable alternative to the LM-EnRML method for

history matching and predictive uncertainty analysis in groundwater modelling, and that

it can provide reasonable predictive uncertainty estimates.

It is hoped that the presented review of inverse and ensemble methods provides a consol-

idated framework of reference, and that the numerical examples expose their strengths

and weaknesses when deployed in everyday modelling circumstances. Practitioners need

to be aware of these strengths and weaknesses when using these methods in practice for

providing predictive uncertainty estimates in support of a decision.
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Abstract

Groundwater model calibration can lead to surprising patterns of parameter heterogene-

ity that challenges the prior probability distribution of model parameters. If predictive

uncertainty estimates are based on an incorrect prior, they may be underestimated or

biased, potentially resulting in poor decision-making. This work presents a methodol-

ogy for addressing prior-data conflict to update the uncertainty in the prior for predic-

tive uncertainty quantification in groundwater modelling. The approach evaluates the

compatibility of the prior with the calibrated parameter field obtained from regularized

inversion and performs empirical Bayesian inference of the prior hyperparameters using

the calibrated parameter field. The methodology is tested on a synthetic 2D groundwater

model simulating drawdown due to pumping, where the prior is treated as uncertain and

updated using the calibrated parameter vector. Results suggest that recognizing uncer-
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tainty in the prior and sequentially performing model calibration followed by predictive

uncertainty may lead to more conservative predictive uncertainty estimates. This ap-

proach helps mitigate the underestimation of predictive uncertainty, which is essential in

groundwater modelling for decision support.

3.1 Introduction

In a seminal and highly commented study, Capen (1976) demonstrated that the less we

know about something the more likely we are to construct a narrow probability interval

that does not contain the truth. For this and other reasons, Robust Bayesian Analysis

(Good, 2018; Berger, 1990) treats the prior as uncertain, in recognition of the fact that the

choice of the prior is open to criticism as any other modelling assumption (Sprenger, 2018).

It is considered that uncertainty in the prior is irrelevant only if the range of posterior

probabilities that results from evaluating different possible priors is small (Berger, 1990),

deeming the analysis robust.

There is a high chance of constructing an erroneous prior when defining a history matching

problem in a Bayesian framework. This seems to apply particularly well to groundwater

systems, where there is an incomplete knowledge of the subsurface, and prior probabilities

are decoded from a set of hydrogeological judgements derived from available information

and expert knowledge. One pragmatic evidence that the prior may be misspecified is

presented to the modeller when, as a result of history matching, surprising patterns of

spatial parameter heterogeneity emerge, or the extreme values that parameters adopt

in order to assimilate data gain little to no support from the prior. Assuming that

the numerical model is adequate, it is said that the data is surprising given the prior, a

situation referred to as prior-data conflict (Evans and Moshonov, 2006). On one hand, by

gathering more data, the prior may become progressively less important or even irrelevant

(Evans and Moshonov, 2006; Gelman et al., 2017). This implicitly solves the problem of

prior-data conflict. On the other hand, as more data are obtained, more complex processes

are often identified and required to be (parametrically) represented in the models if they

are relevant to predictions of interest. As a result, more complex likelihoods are generated

(Gelman et al., 2017) potentially increasing the relevance of the prior in the overall

inference problem. Another option is to make the prior less informative, using methods

such as mixture or e-contaminated priors (Berger, 1990; Egidi et al., 2022), or alternative

prior evaluation (Evans and Jang, 2011), to name a few. Some of these methods are

referred to as being empirical Bayesian, as they use data to modify the prior, therefore

violating the precepts of Bayes’ equation. In any case, the way of solving prior-data

conflict, once it is detected, is not straightforward, especially when working in a high-

dimensional parameter space (Gelman et al., 2017). To make matters worse, prior-data

conflict, or the fact that the prior is misspecified, might not be identified at all when
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performing history matching, but may have an impact on the estimation of predictive

uncertainty.

Although there has been recognition of the importance of including uncertainty in the

prior for environmental modelling (Reichert, 1997; Doherty and Moore, 2020), except for

a few studies (Woodbury and Ulrych, 2000; Rojas et al., 2009; Shen et al., 2014; Hoffmann

et al., 2019) no relevant research has been published in the groundwater literature that

explore ways for checking prior-data conflict, prior updating, and evaluating the impact

of an incorrect prior on predictive uncertainty quantification. Also, while related field

of petroleum reservoir modelling has been active in researching on model diagnostics,

model error and observation bias (Oliver and Alfonzo, 2018; Alfonzo and Oliver, 2019,

2020), it has placed less emphasis to uncertain priors (Oliver, 2022; Mioratina and Oliver,

2023). Given the increasing use of Bayesian techniques in groundwater modelling for both

history matching and uncertainty analysis, this is matter that requires urgent attention.

In this work, a new workflow is proposed that embraces uncertain priors. First, prior-

data conflict is indirectly evaluated by comparing the minimum error variance solution

of a model calibration process with expectations from the prior. Second, the prior is

updated using the calibrated parameters as data, resembling some forms of empirical

Bayes analysis.

Using a synthetic but realistic groundwater model case, the workflow is tested. As an

outcome, it is shown that by recognizing uncertainty in the prior and performing model

calibration first and uncertainty analysis later, predictive uncertainty is not underes-

timated. Avoidance of uncertainty underestimation is a fundamental tenet of robust

decision support modelling (Doherty and Simmons, 2013).

This chapter is organized as follows: the theory behind the proposed workflow is presented

in the next section, followed by a test case description, methodology, and results. The

chapter ends with a discussion and conclusions.

3.2 Theory

This section reiterates key elements of the mathematical framework presented in Chap-

ter 2. While some overlap is unavoidable, the repetition is intended to ensure self-

containment and clarity, particularly given the distinct application focus of this chap-

ter. Readers seeking full mathematical details and theoretical background are referred to

Chapter 2.

Let x denote a random vector that parameterizes a physical system and d the observed

data vector of system state, i.e, a set of measurements. To make the following equations

more tractable, the vector x is characterized using a probability density function (pdf)

with a zero mean and covariance matrix Cx. A linear relationship between model pa-

rameters and observed data can be expressed through the action of a sensitivity matrix
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G, as follows:

d = Gx+ ϵ, (3.1)

where ϵ is a vector of random errors with a zero mean and covariance matrix Cd. As

stated above, for the sake of numerical simplicity x in Equation 3.1 represents departures

from its prior mean values. Let x represent the estimated parameter vector that calibrates

the model, i.e., the minimum error variance solution to Equation 3.1. Using regularized

inversion x can be estimated as:

x = Ld, (3.2)

where L is the generalized inverse that is used to obtain a unique solution to the likely ill-

posed inverse problem. If Tikhonov regularization is used, L is defined as follows (Moore

and Doherty, 2006):

L =
(
GTCd

−1G+ µ2Gr
TCx

−1Gr

)−1
GTCd

−1 (3.3)

where µ is a regularization weight factor, estimated through the model calibration process,

and Gr is the regularization matrix that operates on the parameters to enforce regulariza-

tion constraints. In Equation 3.3 it is also assumed for simplicity that the regularization

observations are equal to zero, reflecting preferred-value regularization (Doherty, 2015). If

Equation 3.1 is substituted into equation Equation 3.2 the following equation is obtained:

x = LGk+ Lϵ. (3.4)

Now if the resolution matrix R is defined as

R = LG, (3.5)

or, equivalently, as

R =
(
GTCd

−1G+ µ2Gr
TCx

−1Gr

)−1
GTCd

−1G, (3.6)

then

x = Rx+ Lϵ. (3.7)

If measurement noise is discarded, Equation 3.7 is simplified to

x= Rx, (3.8)

which defines the relationship between the estimated parameter vector x and the true

parameter vector x through the resolution matrix R. This equation shows that, for an

ill-posed inverse problem, each estimated parameter value of x is a linear combination of
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true parameter values of x (Moore and Doherty, 2006). This only happens over many

realizations of reality.

The covariance matrix of the estimated parameter vector x, i.e., Cx, can be related to

the covariance matrix of the true parameter vector x, i.e., Cx, through the resolution

matrix R as follows (Koch, 1999):

Cx = RCxR
T . (3.9)

Equation 3.9 has important interpretations as discussed by Moore and Doherty (2006).

First, it links the covariance matrix of the estimated parameter vector x, with the covari-

ance matrix of the true parameter vector x, through the action of the resolution matrix

R. If the inverse problem is well-posed, the resolution matrix R is equal to the identity

matrix; under these circumstances the covariance matrix Cx is equal to Cx. Hence, x

is a sample of the true covariance matrix. Therefore, it provides information about the

true spatial variability of the system. If the inverse problem is ill-posed, the resolution

matrix is not the identity matrix. Then Cx is not equal to Cx, and therefore x is only

providing information about Cx, a ‘projection’ of the true covariance matrix onto a lower-

dimensional space. This is the reason why a calibrated parameter field cannot be directly

used to infer the true spatial variability of a system. Nevertheless, the estimated param-

eter vector x does provide information about an altered, regularized (by the resolution

matrix) version of Cx.

The discussion above motivates a methodology for indirectly testing for prior-data con-

flict. This is done by evaluating the compatibility of the estimated parameter vector x

with an estimated covariance matrix Cx that is calculated from the true prior covariance

matrix Cx and the resolution matrix according to Equation 3.9. Additionally, a family

of candidate priors Cx can be conditioned by the necessity for x to be a sample of Cx

calculated using Equation 3.9. This can be done by applying Bayesian inference.

If the true but uncertain prior covariance matrix Cx is characterized by a certain geosta-

tistical structure, this structure can be hyper-parameterized. Let θ define the parameter

vector containing hyperparameters that define this structure. They can be for example,

a variogram sill, range, and anisotropy. A Bayesian inference problem on the posterior

uncertainty of θ given the calibrated parameter vector x, f (θ|x), can be formulated as

f (θ|x) = f (θ) f (x|θ)
f (x)

, (3.10)

where f (θ) is the prior pdf of θ, f (x|θ) is the likelihood function, and f (x) is the pdf of

the estimated parameter vector x among all possible values of θ. It is important to note

that the parameter vector x, the minimum error variance solution of the inverse problem,

is considered to be data for the inference problem presented in Equation 3.10. It is
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recognized that using the minimum error variance solution as data to infer the posterior

of hyperparameters that define the geostatistical structure of the prior is not a purely

Bayesian approach, therefore it is considered a form of empirical Bayesian analysis.

The likelihood function in the hyperparameter inference problem can be represented by a

model of affinity between a ‘projected’ covariance matrix candidate Cx and the calibrated

parameter vector x. The matrix Cx is in turn calculated by applying Equation 3.9 to a

candidate covariance matrix Cx derived from a random realization of the hyperparameter

vector θ. The closer the affinity, the higher the value of the likelihood function must be.

One option of likelihood function for a multidimensional case is the Mahalanobis distance

(Koch, 1999), generally used to identify outliers or to classify if an observation belongs to

a certain population. However, for ill-posed inverse problems this becomes cumbersome

due for two main reasons: first, this calculation would require to invert the covariance

matrix Cx which is not possible as it is rank-deficient after applying Equation 3.5. A

pseudo inverse would need to be calculated. Second, the estimated parameter vector x is

not unique, hence treating it directly as observation data would be misleading.

Both issues presented above can be overcome by working in lower-dimensional space

and define a likelihood function within that space. This is done by calculating a new

parameter vector y from x and Cx, and therefore Cx. Let Cx be the candidate projected

covariance matrix obtained from applying Equation 3.9 to a candidate covariance matrix

Cx. In turn, Cx is derived from a random realization of the hyperparameter vector θ. Let

perform Singular Value Decomposition (SVD) on Cx, the candidate estimated covariance

matrix obtained from applying Equation 3.9:

Cx = EFET , (3.11)

where E is the eigenvector matrix and F is a diagonal matrix of singular values. Now, if

the mean of x is defined as zero according to Equation 3.8, after discarding measurement

noise, the following parameter transformation can be performed:

y = F−1/2ETx. (3.12)

Given that it cannot be guaranteed that Cx is positive definite, SVD is truncated to the

number m < n of non-zero singular values. Note that y is not only a function of x, but

also of Cx, which is in turn a function of Cx and therefore θ. Then, y is a random vector,

contrary to x which is the calibrated parameter vector, i.e., the minimum error variance

solution of the inverse problem. A key aspect of this random vector is that it will be

compatible with a multivariate standard normal distribution if the candidate covariance

matrix Cx is compatible with the calibrated parameter vector x.

Two metrics have been chosen to evaluate the affinity of the vector y to a multivariate
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standard normal distribution, the Kolmogorov-Smirnov test (KS) (Massey, 1951) and the

χ2 test. Both tests are translated into likelihood functions, combined as follows:

L = fKS(D)fχ2
m
(S), (3.13)

where fKS(D) is the Kolmogorov-Smirnov likelihood function, and fχ2
m
(S) is the χ2

m

likelihood function of S =
∑m

i=1 y
2
i . The KS likelihood function fKS(D) is defined as a

half-normal distribution with standard deviation equals to Dα(m):

fKS(D) =
1

Dα(m)

√
2

π
exp

(
− D2

2Dα(m)2

)
, (3.14)

where Dα(m) is the critical distance for a sample of size m and a significance level α.

The scalar D is the maximum absolute distance between the cumulative step-function

distribution generated from each yi in y and the standard normal cumulative distribution,

calculated as

D = max |F0(yi)− Sm(yi)| , (3.15)

where F0(yi) is the population cumulative distribution (standard normal in this case)

and Sm(yi) is the cumulative step-function distribution of the yi, i.e, Sm(yi) = i
m
. In

the standard KS test, if the maximum calculated distance D is greater than the critical

distance Dα(m), the null hypothesis that the y vector is a sample of a multivariate

standard normal distribution is rejected, for a significance level α. In this work, the

critical distance is used as the standard deviation of a half-normal distribution, which

is used as a pseudo-likelihood function, as shown in Equation 3.14. Then, a sample y

that is closer to a standard normal distribution will have a maximum absolute distance

D closer to zero, and therefore a higher likelihood value.

Additionally, if y is a sample of the standard normal distribution, the sum of yi
2 should

follow a χ2 distribution ofm degrees of freedom. Therefore, the second likelihood function

fχ2
m
(S) is directly calculated from the χ2

m distribution.

3.3 Numerical Example

3.3.1 Methodology

The principles discussed in the previous sections are illustrated through a workflow that

tests the theory, quantifying predictive uncertainty with a synthetic 2D groundwater

model that simulates drawdown due to pumping. The correlation structure of the uncer-

tain prior covariance matrix Cx is assumed known and characterized by an exponential

decay with distance. However, the sill and effective range of the variogram are assumed

uncertain, with independent, and uncorrelated parameters grouped in the hyperparam-
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eter vector θ. The prior uncertainty of θ is defined using log-Gaussian probability dis-

tributions, as presented in Table 3.1, with a mode value of 0.25 and 2500 m for the sill

and range, respectively. A sill value of 1.0 and a range value of 5000 m are assigned to

the true covariance matrix Cxtrue. Based on the prior pdf of θ, these values have a low

support in the prior, meaning that the probability of having a large sill and range values

is low, from a prior perspective. Defining the problem in this way adds complexity to

the inference problem. Then, one realization xtrue of the random parameter vector x is

generated from a multi-Gaussian distribution with mean x and covariance matrix Cxtrue.

The parameter vector xtrue corresponds to hydraulic conductivity values that are used

to run the groundwater model, and obtain model outputs used as synthetic observations.

In turn, the hyperparameter vector θmode with values of 0.25 and 2500 m for the sill and

range, respectively, is used to generate a ‘wrong’ prior covariance matrix Cxwrong.

Parameter Transform Pdf Parameters
Sill Log Normal µ = −0.52, σ = 0.2
Range Log Normal µ = 3.42, σ = 0.1

Table 3.1: Details of the sill and range of the prior Gaussian probability density functions.

First, history matching and predictive uncertainty quantification are carried out using the

iterative ensemble smoother method (IES) (Chen and Oliver, 2013) with the ‘wrong’ prior

Cxwrong. Given that the measurement dataset is generated from a parameter realization

xtrue obtained from the true covariance matrix Cxtrue, and that history matching is per-

formed using the ‘wrong’ prior Cxwrong, the estimated predictive uncertainty is expected

to be underestimated.

Having the luxury of knowing the true value of the prediction, the adequacy of the

predictive uncertainty estimation is evaluated using the metric defined by Doherty and

Simmons (2013). It is checked if the true value of the prediction is within the estimated

predictive uncertainty limits; this is done with IES. The model is then subject to regu-

larized inversion to obtain a minimum error variance solution x, using PEST (Doherty,

2023). The calibrated parameter vector x serves first to check its compatibility with

the ‘estimated’ wrong prior Cxwrong (after applying Equation 3.5) and then to perform

hyperparameter inference of the hyperparameter vector θ using the likelihood function

defined in Equation 3.13. This in turn results in estimation of the posterior uncertainty

of the unknown covariance matrix Cx.

Because model calibration yields a covariance matrix, the resolution matrixR is estimated

using Equation 3.5, using the PEST-optimized regularization weight factor µ2. Here,

the covariance matrix Cd of measurement noise is a diagonal matrix with a standard

deviation commensurate with measurement noise. The prior parameter covariance matrix

is Cxwrong, and the ZR is the preferred value regularization matrix, which in this case is

the identity matrix.
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Treating x as an observation and using the resolution matrix R obtained from model

calibration (using Equation 3.5), an inference problem is defined for θ to estimate its

posterior pdf f(θ|x) according to Equation 3.10. The likelihood function is defined based

on Equation 3.13. In this case, the dimensionality of the estimated covariance matrix

Cx once projected by the resolution matrix R is reduced to m = 8. Then, the standard

deviation used in the pseudo-likelihood function fKS(D) is equal to 0.457, which is equal

to the critical difference Dα(8) for a significance level of 0.05 (Massey, 1951).

The hyperparameter inference problem is performed with Markov Chain Monte Carlo

(MCMC) using the (Multiple-Try) Differential Evolution Adaptive Metropolis (MT-

DREAM(ZS)) algorithm implemented in pyDREAM (Laloy and Vrugt, 2012). The work-

flow of the MCMC algorithm is detailed below:

1. Take a random sample from the prior pdf of θ.

2. Build a candidate covariance matrix Cx from a variogram using the sample of θ

and obtain the estimated covariance matrix Cx from Cx and R using Equation 3.9.

3. Perform truncated-SVD on Cx and obtain the transformed parameter vector y

using Equation 3.12. Define the number m of yi scalars to use, based on the

dimensionality of Cx.

4. Estimate the KS-maximum distance D between the empirical cumulative distri-

bution of y for all i ≤ m and the standard normal cumulative distribution, and

calculate the pseudo-likelihood function fKS(D) using Equation 3.14.

5. Obtain the sum S of yi
2 for all i ≤ m, and calculate the likelihood function fχ2

m
(S).

6. Calculate the total likelihood function L = fKS(D)fχ2
m
(S).

Once the posterior pdf of the hyperparameter vector θ has been explored in this manner,

the model is again history-matched with IES using a parameter ensemble sampled from

a family of priors characterized by an exponential variogram, using posterior samples

of the hyperparameter vector, i.e, f(θ|x). It is expected that the estimated predictive

uncertainty is more conservative and robust, as the prior has been updated using the

calibrated parameter vector x. Ideally the true value of the prediction should therefore

lie between the updated predictive uncertainty limits. This is the adopted metric for

evaluating the success of the proposed workflow.

3.3.2 Model Description

A synthetic 2D steady-state groundwater flow model using MODFLOW 6 (Langevin

et al., 2017) was built to simulate pumping from a 100-m thick confined aquifer, where
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the prediction of interest is drawdown at a distant location from the pumping wells. This

numerical setting resembles a typical layout of a water-supply well field or a lithium

extraction mining operation, that may be environmentally constrained by drawdown

thresholds.

The model domain extends to 10,000 m x 10,000 m, discretized into 100 by 100 rows and

columns. Along the top and bottom limits of the model, head-dependent flux boundary

conditions are defined with a reference head of 100 m and a conductance of 25 m2/d.

Along the left and right model boundaries no-flow conditions are applied. Pumping

is simulated using two consecutive steady-state stress periods, representing existing and

future conditions. Two model cells are used to represent pumping at two separated areas,

with a constant-flux boundary condition of 4320 m3/d (50 L/s). One cell represents the

existing extraction location, and the second cell represents the future extraction location.

During the first stress period, only the existing extraction location is active. During the

second stress period, additional pumping is simulated at the future extraction location.

A ‘true’ hydraulic conductivity field was generated using Unconditional Sequential Gaus-

sian Simulation (USGSIM) with a log mean value of zero and an exponential variogram

with a sill of 1.0 and an effective range of 5000 m. These are the hyperparameter values

of the true hyperparameter vector θtrue.

The forward model was run using the true hydraulic conductivity field to obtain synthetic

drawdown values at 9 observation wells located in the vicinity of the existing extraction

location. These observed values vary between 12.6 m and 19.6 m, and a Gaussian noise

with a standard deviation of 0.01 m was added to each observation value before using

them as measurement data for history matching. A prediction of drawdown simulated in

the second stress period is evaluated at an observation point located to the right of the

new extraction location (Figure 3.1). By simulating the future pumping conditions using

the true hydraulic conductivity field, a maximum drawdown of 22.8 m was obtained. This

is the true value of the prediction of interest.

The model is parameterized with one bulk hydraulic conductivity parameter xb represent-

ing the mean of the parameter field, and 400 pilot points multipliers xpp spaced at 500 m

(one each 5 model cells). Kriging interpolation is used to populate all cells of the model

using an exponential variogram with a range of 1000 m (twice the distance between pilot

points).

The model was subject to history matching using IES (Chen and Oliver, 2013) imple-

mented in the PEST++ software (White, 2018). A pilot points parameter ensemble of

size 300 was generated using a log-transformed multi-Gaussian prior with a mean of zero

and a prior covariance matrix. History matching was carried out twice, first using a pa-

rameter ensemble generated from the ‘wrong’ prior covariance matrix Cxwrong, and then

using a second parameter ensemble derived from a family of prior covariance matrices

Cx built from the posterior distribution of the hyperparameter vector θ. A standard
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Figure 3.1: 2D model map view showing the distribution of hydraulic conductivity, bound-
ary conditions, pumping and observation wells: (a) true hydraulic conductivity field with
drawdown contours for the second stress period (b) model domain and discretization,
with locations of pilot points. The thick black line represents the 22.8 m drawdown con-
tour.
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deviation of 0.2 was assumed for the mean of the parameter field xb. For both cases

an observation ensemble was generated assuming an uncorrelated Gaussian noise with a

mean of zero and standard deviation of 0.01 m. For the IES optimization process, the

maximum number of iterations was set to 10. Five randomly-selected parameter realiza-

tions were used for Levenberg-Marquardt lambda testing. Several convergence criteria

were used to terminate the IES optimization process, including a relative mean objective

function reduction of 0.005 for four consecutive iterations, four iterations without a re-

duction in the mean objective function, and four iterations without realizations in which

the smallest objective function is less than 1.05 times its previous value.

A minimum error variance solution x was obtained using regularized inversion with PEST

(Doherty, 2023). Initial log-transformed parameters were assigned a value of zero (log-

transformed from their mean of 1.0). Preferred value (equal to zero) regularization was

implemented with a weighting matrix derived from the inverse of the pilot points’ co-

variance matrix Cxwrong. Nine drawdown observations were used as calibration targets,

setting their individual weights to 100, this being the inverse of the standard deviation

of the measurement noise. A target measurement objective function equal to the number

of observations was defined. The convergence criterion on the measurement objective

function was set to 2% higher than the target measurement objective function. The same

convergence criteria that was used for IES was implemented for PEST calibration, except

for the last criterion. The resolution matrix R was calculated at the end of the calibration

process using Equation 3.5.

According to the workflow described above, the posterior uncertainty of the hyperparam-

eter vector θ was estimated using MCMC with the prior of θ defined in Table 3.1, and

the likelihood function defined in Equation 3.13. The minimum error variance solution

x was used as data, and the resolution matrix R was used to project each covariance

matrix candidate to obtain Cx.

3.3.3 Results

Figure 3.2 shows the prior and posterior predictive uncertainty of drawdown at the obser-

vation well of interest, derived from the IES history matching process using the ‘wrong’

prior. It can be observed that the prior predictive uncertainty covers the true value of the

prediction. However, the true value of the prediction lies outside the posterior predictive

uncertainty range calculated with IES. It could be argued that the model is not ade-

quate to history-match the observed data. However, by examining the prior drawdown

uncertainty range of the 9 observation wells it is verified that the observed drawdowns

are within the prior range except for one well for which the observed value lies at the

edge of the prior range(lower left plot in Figure 3.3). Then there is no clear evidence of

prior-data conflict, based on the comparison between the measurement dataset and the
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prior realizations of counterpart model outputs.

Figure 3.2: Prior (a) and posterior (b) predictive uncertainty of drawdown at the obser-
vation well of interest, derived from the IES history matching process using the ‘wrong’
prior. The true value of the prediction is shown as a black dashed line.

An examination of four random IES history-matched parameter fields (Figure 3.4) reveals

a limited spatial continuity of either low permeability or high permeability zones, and less

variance compared to the true field (Figure 3.1). In particular, this is observed in the area

where the additional pumping well and the observation well of the prediction of interest

are located. This results in a drawdown cone extension that is mostly constrained to the

area of the pumping well, underestimating drawdown at the observation well. This is

consistent with the underestimation of the predictive uncertainty observed in Figure 3.2.

The minimum error variance solution x obtained from PEST calibration is presented in

Figure 3.5. This calibrated parameter field results in a measurement objective function

less than 2% higher than the target measurement objective function. The calibrated bulk

hydraulic conductivity parameter xb is 0.02, which is near zero. Meanwhile, the minimum

and maximum calibrated pilot point values are -1.2 and 1.1 (in log10 scale), respectively.

In general, the calibrated parameter field shows a spatial disposition of variability that

is similar to the parameter fields generated from the posterior samples obtained with

IES. However, it is observed that the calibrated parameter field shows heterogeneity

in the area of the observation wells, and homogeneity outside this area. This is the

result of regularization constraints applied in the inversion process. Regularization is

subdued in the area where there is drawdown data that informs parameters. In contrast,

the calibrated parameter values for pilot points located away from the observation wells

remain approximately the same as their initial preferred values as the observation dataset

is lacking in any information to the contrary. As a result, the simulated maximum
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Figure 3.3: Prior (blue) and posterior (red) simulated drawdown histograms at the 9
observation wells that comprise the history matching dataset.
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drawdown for future extraction at the observation well of interest is 10.77 m, similar to

the mode of posterior predictive uncertainty obtained with IES using the ‘wrong’ prior

(Figure 3.2). Recall that the true value of the prediction is 22.8 m.

Now assuming an uncertain prior, the posterior uncertainty of the hyperparameter vector

θ was estimated using MCMC. The calibrated pilot point parameter vector xpp was

used for the hyperparameter inference. The resolution matrix was calculated using the

regularization weight factor µ2 of 4.25, obtained at the end of the PEST calibration

process. Using the wrong prior, the calculated maximum absolute distanceD between the

empirical cumulative probability distribution and the theoretical cumulative probability

distribution is equal to 0.5821, which is greater than the critical distance of 0.457. Also,

the calculated sum of squares S using the wrong prior is 35.8648 which has a very low

likelihood value according to the χ2
8 pdf. Hence, the hypothesis that the calibrated

parameter vector xpp is a sample of a multi-Gaussian distribution with a mean of zero

and a covariance matrix Cxwrong can be rejected, based on both metrics.

A set of 1000 realizations and 5 chains were used for MCMC, obtaining chain conver-

gence according to the Gelman-Rubin statistic (values of 1.003 and 1.004,for the sill and

the range, respectively). Figure 3.6 shows the prior and posterior probability distribu-

tion of sill and the effective correlation range. The posterior histograms were generated

from samples obtained from MCMC inference. It can be observed that the sill posterior

histogram is shifted towards higher values compared to the prior, with a maximum like-

lihood value of 0.6, approximately. The sill value of 0.25 used to generate the ‘wrong’

prior is outside the sill posterior distribution. On the contrary, the posterior histogram

of the correlation range is similar to the prior, suggesting lack of information regarding

this hyperparameter in the calibration parameter field.

The sill and correlation range joint prior (contours) and posterior (filled contours) prob-

ability density function, smoothed by kernel density estimation (KDE), is presented in

Figure 3.7. The prior mode and true values are also shown in the figure. It can be

observed that the posterior pdf is only shifted towards the true value of the sill. This

suggests there is hyperparameter learning from the data, and the posterior probability

distribution of the hyperparameter vector θ appears more data-compatible than its prior.

The correlation range does not show any apparent change, indicating that this hyper-

parameter is not informed by the data, in this case. Interesting enough is the shape of

probability density distribution around the maximum a posteriori (MAP) value of the

sill and the range, where a certain positive correlation between the two hyperparameters

is observed. This is consistent with the true values of the hyperparameters, where a high

sill value is associated with a high correlation range.

With the posterior uncertainty of the hyperparameter vector θ, the model is again subject

to history matching using IES, starting from a prior parameter ensemble of size 300

sampled from a family of prior covariance matrices Cx. Figure 3.8 shows the prior and
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Figure 3.4: Random IES history-matched parameter fields using the ‘wrong’ prior. The
thick black line represents the 22.8 m drawdown contour.
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Figure 3.5: Calibrated parameter field obtained from PEST calibration using the ‘wrong’
prior. The thick black line represents the 22.8 m drawdown contour.

Figure 3.6: Posterior histograms of the sill (a) and the effective range (b) compared to
their priors.
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Figure 3.7: Sill and correlation range joint prior (contours) and posterior (filled contours)
probability density functions.

posterior predictive uncertainty of drawdown at the observation well of interest, derived

from the IES history matching process using the updated ensemble. It can be observed

that the posterior predictive uncertainty covers the true value of the prediction. Also,

comparing the prior and posterior predictive uncertainty, there is no significant reduction

in predictive uncertainty. This is interpreted as a result of the prior being treated as

uncertain. It is worth clarifying that the posterior predictive uncertainty may cover the

true value of the prediction even with a wrong prior. However, what is demonstrated

here is that, once it is assumed the prior is uncertain, its uncertainty can be made

compatible with the calibrated parameter field, prior to performing predictive uncertainty

quantification.

The examination of random IES history-matched parameter fields (Figure 3.9) using the

posterior parameter ensemble derived from the IES history matching with the uncertain

prior reveals more similarity with the true field (Figure 3.1). Also, the spatial continuity

between both low permeability or high permeability zones is more pronounced compared

to the parameter fields resulting from the previous history matching process. This leads to

a drawdown cone extension that is more consistent with the true value of the prediction.
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Figure 3.8: Prior (a) and posterior (b) predictive uncertainty of drawdown at the ob-
servation well of interest, derived from the IES history matching process with uncertain
prior.
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Figure 3.9: Random IES history-matched parameter fields using the updated ensemble.
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3.4 Discussion

Given the inherent uncertainties of the distribution of hydraulic properties in the sub-

surface, it is likely that the way the prior is defined will be most of the time misspecified

in real world modelling. This is especially the case for groundwater modelling, where

data is limited. It becomes apparent from the test case results that treating the prior as

uncertain helps minimize the underestimation of predictive uncertainty. Moreover, a new

methodology was shown to be effective in updating the prior uncertainty of the hyper-

parameter vector θ using the result of a minimum error variance solution obtained from

regularized inversion. In this way, not only is it assumed that the prior is uncertain, but

assurance is gained that its uncertainty is compatible with the calibrated parameter field.

The predictive uncertainty obtained from history matching using a wrong and fixed prior

is underestimated, as the true value of the prediction is outside the posterior predictive

uncertainty limits. This is an outcome that in real-world groundwater modelling is im-

possible to verify, as the true value of the prediction is unknown. It is also demonstrated

with the test case presented that the calibrated parameter field obtained from regularized

inversion is not compatible with the prior, according to likelihood functions defined in

the hyperparameter inference problem. Assuming the prior is uncertain, it is possible to

update its uncertainty, represented by a hyperparameter vector θ, using the calibrated

parameter field. An updated prior parameter ensemble generated from sampling several

priors used to perform history matching with IES, resulted in an estimated posterior

uncertainty covering the true value of the prediction.

Although regularized inversion is accompanied by an increased computational burden

compared to ensemble methods, the resultant parameter field could surprise the modeller

and lead to questioning the prior. Moreover, the calibrated parameter vector using reg-

ularized inversion is the best solution that minimize the deviation from the prior. The

heterogeneity that appears in the calibrated parameter field is required to fit the data to

the level of measurement noise. This is not the case when using ensemble methods. The

fact that a calibrated parameter field surprises a modeller even when prior-data conflict

is not evident from a comparison of model outputs with field measurements, may inform

a modeller that the resulting parameter field lies in a probability region where the prior

has low support. This is a sign of prior-data conflict, as defined by Evans and Moshonov

(2006). The meaning of the prior in respect to the likelihood (model) can be put into

question, especially if the model is a simplification of the real system (which is always

the case). This lends support to the notion that the prior can only be understood in the

context of the likelihood (Gelman et al., 2017).

Some limitations of the presented methodology are worth mentioning. It is acknowl-

edged that the proposed methodology does not demonstrate the requirement of priors

compatible with the calibrated parameter field for a successful estimation of predictive
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uncertainty. In other words, there may be cases whereby only assuming uncertain priors,

will lead to conservative estimates of predictive uncertainty. Although the application of

the methodology to a synthetic numerical example has shown that the posterior predictive

uncertainty covers the true value of the prediction, this is not a generalized conclusion.

What the proposed methodology provides is an increased level of confidence in the predic-

tive uncertainty estimation, using uncertain priors that are compatible with the calibrated

parameter field, as performed in Empirical Bayesian methods (Robert, 2007).

It is also important to recognize that the selection of the likelihood functions for the

hyperparameter inference problem is a subjective choice. Converting the Kolmogorov-

Smirnov test into a pseudo likelihood function is a crude approximation. However, the

way likelihood functions were defined were effective in sampling the posterior of the

hyperparameter vector θ. Other more sophisticated methods could be used. These are

left for future work.

As demonstrated in this work, there is an added value of identifying prior-data conflict (at

least indirectly) and updating the prior before performing predictive uncertainty quan-

tification. When using ensemble methods, and without the application of the proposed

methodology, history matching and predictive uncertainty quantification are part of the

same task. The history-matched parameter fields will not necessarily show evidence of

conflict with the prior, especially when using ensemble methods whose posterior samples

are linear combinations of the prior ensemble members (Evensen et al., 2019), derived

from an incorrect prior. This suggests that there may be circumstances where performing

regularized inversion first and predictive uncertainty quantification later is a good idea.

3.5 Conclusions

In this work, a methodology is proposed to identify prior-data conflict and update the

uncertainty of the prior, represented by hyperparameters, using a minimum error variance

solution obtained from regularized inversion.

The proposed methodology is tested using a synthetic 2D groundwater model simulating

drawdown due to pumping. The results show that by using an uncertain prior that

is compatible with the calibrated parameter field, the posterior predictive uncertainty

covers the true value of the prediction. Moreover, the predictive uncertainty is more

conservative compared to the case where an incorrect prior is used.

It is concluded that, in certain circumstances, separating history matching from predic-

tive uncertainty quantification may be beneficial. By obtaining a minimum error variance

solution to the regularized inversion, the modeller can assess the compatibility of the prior

with the calibrated parameter field, embrace its uncertain nature, and constraint its un-

certainty using the calibrated parameter vector, before performing predictive uncertainty

quantification. Using the updated uncertain prior, it is hoped that a more conservative
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estimate of predictive uncertainty will encompass the true value of the prediction, leading

to increased confidence in groundwater modelling as a decision-support tool.
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Abstract

Ensemble methods are efficient ways of estimating predictive uncertainty in groundwa-

ter modelling. However, their results are constrained by the prior parameter probability

distribution, or the prior, for short. If the prior is misspecified, predictive uncertainty

estimates can be biased and underestimated. This is expected to be the rule rather than

the exception, as the subsurface hydraulic properties can be highly heterogeneous and

nonstationary. This study presents a novel methodology for accommodating uncertain

and nonstationary priors in history matching and predictive uncertainty quantification

of groundwater models. The approach improves the decision-support utility of ground-

water models by relaxing the assumption of geostatistical stationarity and enhancing
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their ability to generate realistic patterns of heterogeneity. The methodology employs

a hierarchical two-level parameterization scheme that integrates spatially variable geo-

statistical hyperparameters with spatially distributed parameters. Two numerical ex-

amples are used to test the methodology: a 2D aquifer hydraulic conductivity model

and a 2D flow and transport model simulating solute extraction and reinjection. Three

history matching methods are compared: Subspace Ensemble Randomized Maximum

Likelihood (SEnRML), Levenberg-Marquardt Ensemble Randomized Maximum Likeli-

hood (LM-EnRML), and Data Space Inversion (DSI). Results show that the proposed

methodology effectively handles uncertain and nonstationary priors, achieving reasonable

fits to the data and acceptable predictive uncertainty estimates. While ensemble meth-

ods such as SEnRML and LM-EnRML face challenges in highly nonlinear problems, DSI

provides a computationally efficient alternative for predictive uncertainty quantification.

However, DSI lacks the ability to generate physical parameter fields that can be assessed

for geological realism.

4.1 Introduction

When performing maximum a posteriori (MAP) estimation (i.e. history matching and

uncertainty quantification), a prior probability distribution, or prior, must be assigned to

model parameters that represent subsurface hydraulic properties, boundary conditions,

and any other uncertain model inputs. This is an important step, especially in contexts

where the history matching dataset is information-poor, and/or where decision-critical

model predictions are sensitive to parameter components that are relatively unconstrained

by history matching. Often, however, the prior is itself uncertain and therefore possibly

wrong. This is because the prior is a subjective expression of expert knowledge based on

limited and sparse data.

Attainment of MAP or stochastic solutions to groundwater history matching problems

generally requires manipulation of large numbers of parameters. This applies particu-

larly to models whose predictions of interest are sensitive to hydraulic property and/or

hydraulic process detail. Inclusion in a model of parameterization complexity that reflects

(as best extent it can) site hydraulic property complexity reduces the likelihood of history-

match-induced predictive bias and increases the likelihood that predictive uncertainty is

not underestimated (Doherty, 2015; White et al., 2014). Unless a model is equipped

with the capacity to undertake adjoint sensitivity calculations, ensemble methods and

variants thereof provide computationally feasible means of accommodating appropriate

parameterization complexity in the history matching process. Their efficiency relies on

the way they perform history matching and uncertainty analysis, as realizations drawn

from the prior parameter probability distribution are simultaneously optimized until they

approximate the posterior parameter probability distribution. See Evensen et al. (2022)
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for a summary of the extensive literature and numerous variants of highly-parameterised,

ensemble-based Bayesian history matching.

Naturally, the numerical attractiveness of ensemble methods is accompanied by certain

disadvantages. Their computational economy relies on inclusion in any ensemble of only

a moderate number of parameter field realizations, often of the order of a few hundred.

This can hamper their numerical capacity to solve inverse problems that are characterized

by a highly nonlinear relationship between model outputs and parameters. Samples of the

posterior parameter probability distribution that are calculated using ensemble methods

are linear combinations of samples of the prior parameter probability distribution that

are used to initiate the ensemble adjustment process, or nearly so, depending on the

ensemble-based history matching methodology that is employed. Moreover, assimilating

data from a history matching dataset using ensemble methods requires projection of

that data onto a model range space that is limited by the dimensions of the ensemble

(Evensen et al., 2022). Therefore, the success of the history matching process depends on

the ability of the prior ensemble to span the posterior parameter probability distribution,

and whether, or not, observations lie in the model range space. If these conditions are not

met, ensemble-based history matching can induce predictive bias, ensemble collapse and

predictive uncertainty underestimation. Sometimes, these problems can be ameliorated

through adoption of an appropriate localization strategy; see, for example, Furrer and

Bengtsson (2007); Chen and Oliver (2017); Luo et al. (2018); Luo and Bhakta (2020), to

name a few studies. Nevertheless, where the relationship between history-match-pertinent

model outputs and parameters is highly nonlinear, uncertainties that are evaluated using

ensemble methods should be treated as indicative only (Evensen, 2018). However, in

highly parameterized contexts, where model run times are long and adjoint sensitivity

methods are unavailable, there is no other option but to resort to some type of ensemble

method for history matching and uncertainty quantification.

One option to partially mitigate some limitations of ensemble methods in particular, and

Bayesian methods in general, is to assume the prior as uncertain. This can be incor-

porated into the history matching process in different ways. A simple approach is to

generate an initial prior parameter ensemble by sampling several prior probability dis-

tributions and perform history matching using this ensemble. Emerick (2016) presented

a method that, under an assumption of geostatistical stationarity, allows weight-based

deployment of a few different prior probability distributions in propagating a prior en-

semble to a posterior ensemble. He pointed out the challenges that accompany including

multiple priors in history matching highly parameterized problems, and remarked on how

few researchers had, up until that time, attempted to solve these kinds of problems us-

ing ensemble methods. A more complex approach is to include hyperparameters that

describe the uncertainty of the prior in the analysis, and to adjust them during the his-

tory matching process. This is called hierarchical Bayes analysis (Robert, 2007). Oliver
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(2022) formulated the hierarchical inverse problem for ensemble-based reservoir param-

eter and predictive uncertainty analysis using a non-centred parameterization of spatial

stochastic variability; adoption of such a parameterization scheme is key to the success of

hierarchical methods (Chada et al., 2018). Using this methodology, a spatially-correlated

parameter field is constructed through spatial integration, or spatial averaging (Oliver,

1995), over a field of independent standard normal deviates. Oliver (2022) demonstrated

how nonlinearity of the hierarchical inverse problem poses severe difficulties for conven-

tional ensemble approaches because of the approximate nature of the Jacobian matrix

that is used to update all parameter realizations at once. He ameliorated this problem

by analytically calculating realization-specific Jacobian elements whose values are par-

tially dependent on realisation-specific hyperparameter values, while the remainder of the

parameter sensitivities are calculated from the ensemble. His work demonstrated that

the numerical difficulties associated with history matching and predictive uncertainty

quantification increase dramatically when uncertainties in the prior are admitted into the

analysis.

Problems associated with an uncertain prior are exacerbated where the prior parameter

probability distribution is nonstationary. In this case hyperparameters which characterize

hydraulic property variability, as well as hydraulic properties themselves, are spatially

variable. This approach has been explored by Chada et al. (2018), among others. As will

be demonstrated, the nonlinearity of this high-dimensional inverse problem poses severe

difficulties for posterior predictive uncertainty analysis. This is particularly the case for

ensemble methods, on which reliance must be placed where parameter numbers are high

and model run times are long.

Regardless of the numerical difficulties that attend it, solution of this type of inverse

problem is a matter of some urgency. This is because it is typical of many, if not most,

circumstances in which decision-support groundwater modelling is required. Inspired

by the work of Oliver (1995, 2022), Higdon et al. (1999), Fuentes (2001), Paciorek and

Schervish (2006) and Chada et al. (2018), this problem is approached by representing

uncertain subsurface nonstationarity within a two-level hierarchical framework (Robert,

2007) through spatial averaging of uncorrelated random deviates. This aims to enhance

the decision-support utility of groundwater model history matching and uncertainty quan-

tification by relaxing the assumption of geostatistical stationarity, thereby increasing the

capacity to generate patterns of heterogeneity which are realistic enough to reflect the

properties of real geological media while maintaining history-match adjustability of these

patterns. Ideally this flexibility reduces bias incurred by incorrect assumptions pertaining

to the prior, at the same time as it ensures the integrity of posterior predictive proba-

bility distributions attained through Bayesian analysis. The performance of a number

of ensemble and related methods in attempting to solve a problem that is posed in this

way is investigated, by assessing their numerical efficiency, as well as the quality of the
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predictive uncertainty estimates that these methods yield. Although this work builds

on previous work, the methodology presented here is new and has not been previously

applied to groundwater model history matching and uncertainty quantification.

This chapter is organized as follows. First, a brief outline of the theoretical background

for spatial averaging as a mechanism for generation of stochastic fields is discussed. An

extension of the Oliver (1995) methodology for applying spatial averaging in a hierar-

chical way that includes nonstationarity is then presented. Next, three history matching

and predictive uncertainty quantification methods that are used for data assimilation

and uncertainty quantification are described. These are the iterative ensemble smoother

LM-EnRML of Chen and Oliver (2013), subspace iterative ensemble smoother SEnRML

(Raanes et al., 2019; Evensen et al., 2019), and data space inversion (Sun and Durlof-

sky, 2017; Sun et al., 2017). These methods are tested using two numerical examples

where hydraulic conductivity has a nonstationary distribution. After demonstrating and

discussing the performance of these methods, some consequences for decision-support

groundwater modelling are discussed. Of particular interest is whether the evaluation of

predictive uncertainty requires the evaluation of parameter uncertainty. This question is

prompted by the difficulties that are associated with the latter, and the high levels of

model run efficiency that are attainable through methods such as data space inversion.

It is important to acknowledge that all numerical methods have their strengths and

weaknesses. While there is a strong temptation to compare them, this is not the objective

of this work. On the contrary, the aim is to evaluate the suitability of the proposed

methodology in enhancing the history matching and uncertainty quantification capacity

of these methods within a nonstationary framework and to examine and explain the

difficulties that attend respect for the intricate complexity of the unknown subsurface

through which groundwater flows, when undertaking numerical simulation. A discussion

on the variety of alternatives that are available for addressing these difficulties is also

offered.

4.2 Methodology

4.2.1 Spatial Averaging and Nonstationary Fields

Before embarking on history matching and uncertainty quantification, expert knowledge

on model parameters must be expressed using a prior parameter probability density

function, or ‘prior’ for short. Where parameters represent hydraulic properties, their

spatial correlation is often characterized by covariance functions (sometimes encapsulated

in variograms).

Zero-mean stochastic fields of a parameter vector x which exhibit spatial correlation can

be generated by the method of moving averages according to the following convolution
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integral (Oliver, 1995):

x(y) =

∫ ∞

−∞
f(y − s)z(s)ds, (4.1)

where Function f is referred to as the spatial averaging kernel. z represents Brownian

motion, and y and s are locations in space. Where the stochastic field is discretized to

a model grid, Equation 4.1 becomes a summation while z becomes a set of independent

normal standard deviates.

Oliver (1995) derived analytical expressions for the spatial averaging kernel that results

in several well-known covariance functions that characterize the stochastic field x, these

including exponential, spherical, and Gaussian. For example, an isotropic Gaussian co-

variance stochastic model is specified by the following function:

C(r) = σ2 exp

(
−r2

a2

)
, (4.2)

where C(r) is the covariance between two points separated by distance r, σ2 is the

variance of the stochastic field, and a is the correlation length. The corresponding 2D

spatial averaging kernel which yields this covariance function is the following:

f(r) = σ

√
4π

a2
exp

(
−2r2

a2

)
. (4.3)

As is apparent from Equation 4.2 and Equation 4.3, the a value of a Gaussian covariance

model is
√
2 times that used in the spatial averaging kernel. Also, as discussed by

Oliver (1995) and Oliver (2022), the standard deviates over which integration takes place

should be extended beyond the model grid to avoid edge effects. In this work, this is not

considered, as boundary effects are not key for the synthetic models used in this study.

The same assumption was made by Oliver (2022) in his study.

While stationary and isotropic hydraulic property fields may be useful expressions of

prior uncertainty in some geological settings, stochastic subsurface hydraulic property

variability is more likely to be nonstationary, and exhibit spatially-variable anisotropy,

over the large domains that characterize many groundwater models. Higdon et al. (1999)

showed that the spatial averaging kernel must be a function of location in order to gener-

ate nonstationary stochastic parameter fields using the moving average method. Use of a

Gaussian spatial averaging kernel yields nonstationary spatial covariance functions that

remain Gaussian, and that are therefore amenable to characterization using tractable

expressions (Higdon et al., 1999; Paciorek and Schervish, 2006). Alternatively, use of an

arbitrary spatial averaging kernel that is described by spatially varying hyperparameters

yields stochastic fields that are characterized by spatial variability of covariance that is

not amenable to simple analytic description. This is a matter of concern where local geo-

statistical characterization is undertaken in order to support interpolation and estimation
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of interpolation uncertainty between measurement points; see, for example, Paciorek and

Schervish (2006) and Fuentes (2001). However, it matters less where stochastic fields are

generated in order to simulate patterns of hydraulic property heterogeneity in groundwa-

ter model domains.

In this work, an extended version of the spatial averaging method is proposed. The

method consists of the generation of two levels of stochastic fields, in a hierarchical man-

ner, that allows representation of nonstationary spatial variability of hydraulic properties.

The hierarchical model is schematized in Figure 4.1.

In the first level (Level 1), a hyperparameter vector θi is used to represent the spatial

variability of the i-th hyperparameter type, such as variance, correlation range, anisotropy

factor (the ratio of maximum to minimum correlation length), or anisotropy angle, that

pertain to hydraulic properties that populate a model grid. The dimension of vector θi,

is equal to n, the dimension of the model grid. For each spatially-varying hyperparameter

type, a standard deviate parameter vector zθi
∈ Rm is defined, where m can be smaller

than n. The smaller m the smoother the representation of the spatial variability of

the hyperparameter type will be. In most cases, there is no need to have m = n, as

the desired spatial variability of hyperparameters rarely requires the same level of detail

as the hydraulic properties themselves. As shown in Equation 4.3, the hyperparameter

kernel fθi
is defined by a standard deviation σθi

and a hyperparameter correlation range

aθi
, for each i-th hyperparameter type. Although these quantities can be also treated as

uncertain and potentially spatially-variant, in this study, they are assumed known. In the

case of the mean hyperparameter vector θi, it is assumed to be spatially invariant over

the model domain, but uncertain. Then, the vector θi, that holds all hyperparameter

values over the model grid, is the result of the sum of the mean hyperparameter vector θi

and the convolution of an isotropic and stationary ‘Level 1’ Gaussian spatial averaging

kernel fθi
with the standard deviate vector zθi

, as

θi(y) = θi +
∑

fθi
(y∗ − s) · zθi

(s) ·∆s, (4.4)

where y ∈ Rn is the model grid location vector. ∆s is the standard deviates’ grid spacing,

and y∗ is the scaled model grid location vector. As part of this methodology, standard

deviates are homogeneously distributed on an imaginary grid with unitary distance be-

tween them. Then the geometry measure ∆s is equal to 1.0. The way standard deviates

are arranged in the imaginary grid is not relevant, as long as they preserve the unitary

distance between them. The model grid locations vector y is then scaled (and offset if

required) to this imaginary grid, resulting in a new set of coordinates y∗. Consistently

with this transformation, the correlation range aθi
is also scaled.

In the second level (Level 2) of the hierarchical model parameterization scheme, the ob-

jective is to generate model hydraulic properties that populate the model grid. Equivalent
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to the first level, the model parameter vector x(y) is generated by the sum of a mean

vector x and the convolution of a Gaussian kernel fx with a set of standard deviates

zx ∈ Rp as follows:

x(y) = x+
∑

fx(y
∗ − s) · zx(s) ·∆s. (4.5)

Note that the dimension p of the standard deviate vector zx can be different from the

dimension n of the model grid, and also different from the dimension m of the first level

standard deviate vectors zθi
. For this reason, the model grid locations vector y is scaled

to the imaginary grid of standard deviates using a potentially different scale factor than

the one used in Level 1. The added complexity at this level is that the kernel fx is not

isotropic nor stationary. Therefore, the application of Equation 4.3 is not straightforward.

In this case, each parameter xj at location yj is still obtained from Equation 4.5, but an

’effective’ distance r′j in the kernel function fx is calculated for each location j, as follows:

rj =
√

(y∗
j − sj)THj(y∗

j − sj), (4.6)

where Hj is defined as

Hj = RT
j S

T
j SjRj. (4.7)

Matrices Rj and Sj are the rotation and scaling matrices, respectively, constructed as

Rj =

[
cos(αj) sin(αj)

− sin(αj) cos(αj)

]
, (4.8)

and

Sj =

[
1.0 0

0 ηj

]
, (4.9)

where αj is the anisotropy angle, and ηj is the anisotropy factor, at location j of the

model grid. Note that the anisotropy angle is measured with respect to the x-axis, and

is positive in the anticlockwise direction.

Stochastic population of a model grid in this way requires random sampling of zθi
for

each i-th hyperparameter type, and zx. As stated above, this is easily done as elements of

these vectors are samples of independent standard normal distributions. Where a model

is history-matched, zθi
and zx become history matching parameters. As they follow

standard normal distributions, they are well suited to history matching using ensemble

methods (whose Bayesian roots are based on the assumption that model parameters are

Gaussian).

Hierarchical stochasticity of the kind discussed above supports generation of nonstation-

ary parameter fields. At the same time, hierarchical parameterization of this stochasticity

supports adjustment of parameter fields during history matching. Not only, therefore, can

the locations of hydraulic property heterogeneity be estimated through history matching.
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Figure 4.1: Hierarchical model for the generation of nonstationary stochastic fields. Hy-
perparameters assumed as uncertain are filled with an orange colour. The first level
(Level 1) generates hyperparameters θ using a Gaussian kernel fθ and independent stan-
dard normal deviates zθ. The second level (Level 2) generates model hydraulic properties
using a kernel fx and independent standard normal deviates zx.
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Their patterns can also be subject to history matching constraints. This adds a high

level of flexibility, but also complexity, to the history matching process.

4.2.2 History-Matching and Uncertainty Quantification

In this section, three methods for history matching and uncertainty quantification are

summarized. These include two versions of ensemble randomized maximum likelihood

(EnRML) methods (Chen and Oliver, 2013; Raanes et al., 2019; Evensen et al., 2019),

and data space inversion (Sun and Durlofsky, 2017; Sun et al., 2017). For a more detailed

explanation of these methods, the reader is referred to Chapter 2 of this thesis or to the

original papers.

The LM-EnRMLmethod, proposed by Chen and Oliver (2013), implements the Levenberg-

Marquardt (LM) algorithm to damp the update of model parameters, and avoids the ex-

plicit calculation of the average sensitivity matrix, which is noisy when calculated from an

ensemble (Chen and Oliver, 2012). The parameter update equation for the LM-EnRML

method is obtained as follows:

δx =− Sx
−1/2Al

(
(1 + λl)In +YlTYl

)−1

AlTA0−T
A0−1

Sx
−1/2(xl − xf )

− Sx
1/2AlYlT

(
(1 + λl)Im +YlYlT

)−1

Sy
−1/2

(
g(xl)− d

) (4.10)

where Sy and Sx are diagonal scaling matrices with diagonal elements equal to the vari-

ance of data noise and the prior variance of model variables, respectively, A0 and Al are

the initial and updated (at iteration l) scaled model parameter anomalies matrices. Yl

is the scaled model output anomalies matrix, xf is the initial model parameter vector, xl

is the updated model parameter vector at iteration l, g(xl) is the model output vector

at iteration l, and d is the data vector. Finally, λl is the LM damping factor at itera-

tion l. An approximate version of Equation 4.10 called LM-EnRML(approx) discards the

first term of the right-hand side of the equation, which is the term that minimizes the

parameter distance to the prior estimate. This approximation is not used in this study.

One of the key assumptions declared by Chen and Oliver (2013) is that the prior co-

variance matrix of model parameters Cx in the Hessian term of the original parameter

update equation (not shown here for brevity) is replaced by another matrix P
l

x that is

calculated from the updated ensemble (that changes every iteration) as

P
l

x = Sx
1/2AlAlTSx

1/2. (4.11)

The SEnRML method, proposed by Raanes et al. (2019), avoids some approximations

made in the LM-EnRMLmethod, especially the assumption of the prior covariance matrix
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Cx in the Hessian term of the parameter update equation. In this method, the parameter

solution is a linear combination of the initial ensemble anomalies and the first guess

(Evensen et al., 2019),

Xl = Xf +AWl, (4.12)

where Xf and Xl are the first guess and updated model parameter ensemble realizations,

respectively. Matrix A is the matrix of initial (l = 0) model parameter ensemble anoma-

lies, and Wl ∈ RNxN is the matrix of weights. Solving the problem in this way, the

inversion process is naturally regularized. The weights are iteratively updated as follows:

Wl+1 = Wl − γ
(
Wl − SlT (SlSlT +Cd)

−1Hl
)
, (4.13)

where γ is the Gauss-Newton step length, and Hl is the ‘innovation’ term (Evensen et al.,

2019) defined as

Hl = SlWl +D− g(Xf +AWl). (4.14)

The only matrix that requires inversion in Equation 4.13 is SlSlT +Cd, where Cd is the

covariance matrix of the data noise, and Sl is the matrix of predicted and ‘deconditioned’

ensemble anomalies at iteration l. There are several options for inverting this matrix as

presented by Evensen et al. (2019). In this study, the low-rank inversion is used, which

is defined as

(SlSlT + EET )−1 =
(
UΣ+T

Z
)
(IN +Λ)−1

(
UΣ+T

Z
)T

, (4.15)

where E is the ensemble of data noise anomalies, U, Σ+, are the eigenvector matrix and

pseudo-inverse of singular values matrix, derived from SVD decomposition of Sl. Matrices

Z and Λ and are eigenvectors and singular values of the following:

Σ+UTEETUΣ+T
= ZΛZT . (4.16)

The final ensemble parameter update Xl+1 is calculated as

Xl+1 = Xf (I+Wl+1/
√
N − 1). (4.17)

Localization is a key aspect for both LM-EnRML and SEnRML methods, to minimize the

impact of spurious correlations in the parameter update step, and to add degrees of free-

dom to the inversion process. In this study, the adaptive and automatic correlation-based

localization is implemented as local analysis (parameter by parameter) for both ensemble

methods. Among the several localization methods available, in this work localization is

implemented as in Luo and Bhakta (2020) with a modified Gaspari-Cohn function after

Silva Neto et al. (2021). Also, the iterative local updating ensemble smoother (ILUES)
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from Zhang et al. (2018) is applied to both the LM-EnRML and SEnRML methods to

improve the localization process. Some implementation details are worth mentioning.

For the second numerical example, it is necessary to apply local updating of the parame-

ters with the iterative local updating ensemble smoother (ILUES), as none of the methods

are able to converge to an acceptable solution using their standard implementation with

localization. The ILUES method, as its name suggests, is an iterative ensemble smoother

that updates a subset of parameter realizations grouped based on a combination of pa-

rameter similarities and their goodness of fit to the observations. For each parameter

realization, the method finds the best Nl = αN realizations that are most similar to it

and that have the best fit to the observations. This is calculated using a normalized

mismatch measure as follows:

Jn = Jd/Jd
max + Jx/Jx

max, (4.18)

where Jd and Jx are the data and model mismatch functions, respectively, and Jd
max

and Jx
max are the maximum values. Once the realization subset is selected, the problem

is now defined as a local problem, where the subset of realizations is used to update the

parameter realization. As the parameter update of each realization subset will be more

than one parameter realization, a selection mechanism is required to choose one of the

updated parameter realizations from the parameter ensemble subset. Zhang et al. (2018)

proposed to use a random selection; for simplicity, in this work, the first realization

of the subset is chosen. It is important to note that the parameter update method is

independent of ILUES, although Zhang et al. (2018) used the ensemble smoother multiple

data assimilation (ES-MDA) method.

In this work, the ILUES method is used to improve the localization process of the LM-

EnRML method for the second numerical example. In this method, the ILUES implemen-

tation is straightforward, and no further explanation is required. However, incorporating

ILUES into the SEnRML method is not easy, and requires reformulation of the method

if it is to be used. Given the nature of SEnRML, and since ILUES generates a new

ensemble subset for each parameter realization in each iteration, there will be numerical

discontinuity in the weight matrix W, unless a separate weight matrix is calculated for

each parameter realization. This is cumbersome and computationally expensive, which is

the opposite of the purpose of SEnRML. Possibly due to the lack of a clear mathematical

rational for its implementation, the literature is absent in respect to the application of

ILUES to the SEnRML method, and the author is not aware of any such implementation.

Research on this topic is left for future work.

The third method tested is data space inversion (DSI), proposed by Sun and Durlofsky

(2017); Sun et al. (2017), that performs history matching of model outputs to data in

the data space, using a number N of model output realizations, and a statistical linear
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correlation model. The result of the history matching process is a set of model outputs

that are consistent with the data, and not a set of model parameters. Using an initial

ensemble of model output realizations, derived from a prior ensemble of model parameters,

a linear correlation model can be built, as follows:

o = of +ΦzΣY, (4.19)

where o are model outputs simulated by the DSI model, of is the mean model output

vector and z is a vector of standard normal random deviates. Y is the ensemble of

model output anomalies normalized by its standard deviation. The matrix Φ is derived

by truncated singular value decomposition (SVD) of the ensemble of standarized model

output anomalies Y, as

Y = UΣVT = ΦVT , (4.20)

where U, Σ, and V are the left singular vectors, singular values, and right singular

vectors of the ensemble of model output anomalies, respectively. In this work, truncation

of the Φ matrix is based on the energy criterion, as proposed by Sun et al. (2017). An

energy threshold of 99% was used to determine the number of modes to be retained in the

truncated SVD decomposition (this is the same threshold value used for truncated SVD

in ensemble methods). The number of truncated singular values defines the dimension of

the DSI model parameter vector, z.

Sun et al. (2017) pointed out that direct use of Equation 4.19 may lead to unphysical

predictions of model outputs which comprise time series. To overcome this problem, they

proposed histogram transformation of o prior to construction of the DSI model. DSI

model predictions are then back-transformed before use. This was done in implementa-

tion of DSI that is described below. More sophisticated transformations such as those

described by Sun and Durlofsky (2017) and by Jiang et al. (2021) can also be employed.

4.2.3 Metrics

Groundwater modelling for decision support requires that modelling metrics be applied

to predictions of management interest (nevertheless, in the first numerical experiment

that is discussed below the prediction of interest is the permeability field itself). Ideally,

model-quantified predictive uncertainties should span the true values of predictions of

management interest. At the same time, these intervals should be as narrow as available

information allows (Doherty and Simmons, 2013).

Predictive uncertainty is dependent on the model-to-measurement fit to the extent that

the prediction is conditioned by data. This is quantified by the data mismatch or objective

function. Given that, for all numerical examples presented in this chapter, observation

realizations are generated by adding measurement noise, the same noise that was added
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to the true model outputs, the expected value of the objective function is approximately

equal to the number of observations. A metric of model-to-measurement misfit is the

difference between the expected and obtained objective function values. While attainment

of a good fit with field measurements should not be considered as a modelling end in itself,

failure to fit field data reveals data assimilation shortcomings.

Another statistic that is of considerable interest is the number of model runs that is

required to achieve an acceptable level of model-to-measurement fit. While this metric

matters little for the test examples (due to their simplicity), it is of far greater importance

in real-world decision-support modelling contexts where model run times are considerably

longer. Because model run scalability is integral to all the methods discussed herein, their

model run efficiency is likely to be transferrable to contexts where parameter numbers

are considerably larger than for the present examples, and where model run times are

considerably longer.

4.3 Numerical Example 1: 2D-Aquifer Hydraulic Con-

ductivity Model

4.3.1 Model description

In the first numerical example, a 2D aquifer hydraulic conductivity field is history-

matched using observations of hydraulic conductivity at 25 locations in the model grid.

A 50×50 model grid of dimension 1.0×1.0 represents the spatial distribution of hydraulic

conductivity of a 2D aquifer domain, generated by a two-level hierarchical model. The

first hierarchical parameterization level is defined by a spatially varying anisotropy angle

α. This is the only hyperparameter considered spatially-variant. The second hierarchical

level is defined by the hydraulic conductivity field itself. Both parameterization levels

are generated using the proposed methodology, as described in the previous section.

A true hydraulic conductivity field is first generated. At the first parameterization level,

the hyperparameter vector αtrue represents the true spatial variability of α over the

model grid, and is calculated from the sum of a mean value of 0.79 radians (or 45◦) and

the convolution of 100 independent standard normal deviates zα−true that populate a

10× 10 grid with an isotropic Gaussian kernel fα−true. The kernel fα−true has a standard

deviation of 0.52 radians (or 30◦), and a correlation range aα of 0.5 (or 25 grid cells). At

the second parameterization level, the model parameter vector xtrue is generated by the

sum of a mean value of 0.0 (in log10 scale) and the convolution of a set of 100 independent

standard normal deviates zx−true that populate a 50 × 50 grid, with a Gaussian kernel

fx−true with standard deviation of 2.0 and a correlation range ax−true of 0.5. When

performing the convolution, the effective distance r′j for each model grid location yj is
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calculated using Equation 4.6. The anisotropy factor is set to 5.0, and the anisotropy

angle changes spatially from the results of the first hierarchical level. Figure 4.2 shows

the true hydraulic conductivity field generated using this methodology with the specified

settings. It can be seen that as a result of the spatial variability of the anisotropy

angle, the hydraulic conductivity field is nonstationary, changing its spatial correlation

properties (direction and range) as a function of location in the model grid. This field is

treated as the true field for the history matching process. It is noted that more complex

models can be generated by including more hyperparameters in the hierarchical model,

such as the variance of the hydraulic conductivity field, or the anisotropy factor.

Figure 4.2: Stochastic field generated by the moving average method using spatially
varying hyperparameters. Observation locations of hydraulic conductivity measurements
are shown as black crosses.

History matching of this parameter field is performed using an observation dataset com-

prised of measurements of log10 of hydraulic conductivity at 25 evenly-spaced locations

in the model grid, separated by 10 grid cells. Measurement noise of 0.05 is added to

each synthetic measurement extracted from the true field. The forward model is then

the hierarchical model described above. The model output is the simulated hydraulic

conductivity field which is compared with observed data at the observation locations.

This is a straightforward means of testing the methodology, without the intervention

of a groundwater flow model. However, the forward model is still highly nonlinear, as

it involves two levels of convolution of standard normal deviates and Gaussian kernel

functions.

The number and statistical properties for the parameters that are part of the history
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matching process are presented in Table 4.1. Three cases were defined, as shown in the

table. Case 1 is the simplest, where the mean values of the anisotropy factor, anisotropy

angle, and correlation range of the hydraulic conductivity field are fixed to the true values.

Only the standard deviates zx and zα are adjusted during the history matching process.

The latter engenders the nonstationarity of the hydraulic conductivity field. In Case 2, all

mean values of the hyperparameters are adjusted during the history matching process,

but their priors are centred around the true values. In Case 3, the priors are centred

around values that are different from the true values, increasing the complexity of the

history matching process. It is a more realistic representation of the fact that any prior

is likely to be wrong, but hopefully covers the true value.

Figure 4.3 shows the histograms of the prior hyperparameters for Case 2 and Case 3. The

true values are also shown in the figure.

Parameter Description n Mean / Scale
Case 1 Case 2 Case 3

η̄ anisotropy factor 1 5.00 0.00 5.00 1.00 1.00 2.50
ᾱ anisotropy angle (radians) 1 0.79 0.00 0.79 0.52 0.00 0.52
ā log - correlation range of x 1 -0.69 0.00 -0.69 0.30 -0.60 0.30
zα z of α 100 0.00 1.00 0.00 1.00 0.00 1.00
zx z of x 400 0.00 1.00 0.00 1.00 0.00 1.00

Table 4.1: Parameters adjusted during the history matching process for three cases. The
probability distribution of the anisotropy factor in Case 3 is half-normal. All hyperpa-
rameters (first three rows) represent mean values.

The history matching process was performed using the three methods described above,

starting from a prior ensemble of 100 realizations. The LM-EnRML and SEnRML meth-

ods were implemented using python codes developed by the author, the same as used in

the examples of Chapter 2 of this thesis. The DSI method was also implemented using a

python code developed by the author, based on the original algorithm provided by Sun

and Durlofsky (2017). MCMC for posterior analysis of the DSI model was implemented

using the Python package pyDREAM (Shockley et al., 2017).

Some specification settings for the history matching process are required. For the LM-

EnRML method, the initial Levenberg-Marquardt λ was calculated as (following Chen

and Oliver (2013)):

λ = 10Floor(log10(J/2m)), (4.21)

where J is the mean data mismatch, and m is the number of observations. For this

particular problem, the resulted initial lambda is 100. The λ factor is reduced by a factor

of 4.0 at each iteration if the data mismatch mean and standard deviation improve with

respect to the previous iteration. If only the mean data mismatch improves between

iterations, the λ factor is not changed. If the data mismatch mean does not improve,
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Figure 4.3: Hyperparameter priors for (a) Case 2 and (b) Case 3. The dashed vertical
lines represent the true values of the hyperparameters.
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the λ factor is increased by a factor of 5.0, with a maximum value of 5 × 10−4. For the

SEnRML method, the initial step length was set to 0.6, with a minimum and maximum

values of 0.01 and 0.6. If the data mismatch mean and standard deviation improve respect

to the previous iteration, the step length is increased according to the following equation:

γ = γ + (γmax − γ) ∗ 2−l/(δ−1), (4.22)

where γmax is the maximum step length, l is the iteration number, and δ is a decay

parameter. As for the EnRML method, the γ damping factor is unchanged if only the

mean data mismatch improves between iterations. If the data mismatch mean does not

improve, the step length is decreased by a factor of 2.0. The subset of ensemble members

that improve the data mismatch and standard deviation with respect to the previous

iteration are accepted, even if the data mismatch mean does not improve, as implemented

in PESTPP-LM-EnRML (White, 2018). Iterations are stopped if they reach a total of

20 maximum iterations, or if the relative improvement of the data mismatch mean is

less than 1x10−3, or if the damping factors overcome their maximum or minimum values

(depending on the method). Only for the EnRML, limits on the hyperparameter values

were imposed to eliminate divergence issues encountered during the inversion process.

The limits were set to 1.0 and 10.0 for the anisotropy factor, -2.5 and 2.5 for the anisotropy

angle, and -2.0 and 1.0 for the log of the correlation range. This was not necessary for

SEnRML; no limits on the hyperparameter values were imposed for this method.

4.3.2 Results

A summary of model mismatch and the number of model runs required to achieve an

acceptable level of model-to-measurement fit is presented in Table 4.2. It is important to

note that the expected value of the data mismatch is 25. However, it is not uncommon

for ensemble methods to fail to achieve this level of data fit. Case 1 resulted in the best

convergence behaviour, and the LM-EnRML method achieved the best data mismatch

mean and standard deviation. As the problems become more complex (Case 2 and Case

3), the data mismatch mean and standard deviation increase. This is particularly true

for the LM-EnRML method, appearing to struggle more with the nonstationarity of the

hydraulic conductivity field. For Case 3, the LM-EnRML method converged to a data

mismatch mean value that is over 400 times the expected value, compared to the SEnRML

method that achieved a data mismatch mean value that is over 100 times the expected

value. Although the SEnRML also shows a degradation in performance as the complexity

of the problem increases, it is less pronounced than for the LM-EnRML method. That

being said, it is acknowledged that these methods could be further improved by tuning

some of their optimization parameters.

Similar observations can be made about the evolution of data mismatch during the history
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Table 4.2: Data mismatch mean, standard deviation, and number of iterations of ensemble
methods, for the 3 cases analysed.

Method Mean / Std / N model runs
Case 1 Case 2 Case 3

SEnRML 1611 2865 1600 2731 880 1600 3294 1167 1400
LM-EnRML 678 185 2000 8779 2865 700 10776 5137 700

matching process, as shown in Figure 4.4. Overall, all methods show an improvement

in the data mismatch mean, especially for the LM-EnRML method in Case 1. It can

be observed that, when methods show a good convergence behaviour, the number of

iterations required to achieve a stabilization of the data mismatch mean is more than

7. The exception is the LM-EnRML method in Case 2 and Case 3, which achieved a

stabilization of the data mismatch mean in less than approximately 3 iterations, but

with a high data mismatch mean value.

The best realizations of the history-matched hydraulic conductivity fields for each case

and for each method are shown in Figure 4.5. The identification of the best realization

for each method was not based on the data mismatch, but on the squared difference

between the true field and the estimated field. Case 1 is shown in the first row, being the

simplest case where only the standard deviates are adjusted, whereas the mean values of

the hyperparameters are fixed at true values. It can be observed that for this case both

methods, SEnRML and LM-EnRML, are able to reasonably reproduce the true field,

which is expected given the simplicity of the case, but also an important verification as

the history matching process involves the estimation of standard deviates at two hierar-

chical levels, which might be a challenging task. Visually comparing the estimated fields

resultant from Case 2 and Case 3, it is apparent that difficulties arise impeding the meth-

ods from reproducing the true field. This is also an expected result as Case 2 includes

uncertainty around the true mean values of the hyperparameters, and Case 3 adds more

complexity by centring the hyperparameter priors around values that are different from

the true values. Consistent with the data mismatch results, the LM-EnRML method

struggled to reproduce the true field in Case 3.

The hyperparameter posterior distributions for LM-EnRML and SEnRML are shown in

Figure 4.6 and Figure 4.7, respectively. For the LM-EnRML method, the posterior dis-

tributions of the mean hyperparameters do cover the true values, but their variances are

large for some hyperparameters, and skewed for others. It appears that the posterior

distribution of the correlation range is the result of incipient parameter ensemble col-

lapse, as the posterior distribution is skewed to the left, at the imposed lower bound,

for both cases. In contrast, for Case 2, the posterior distribution of the anisotropy an-

gle shows a wider variance compared to the prior distribution. Case 3 has a generally

better performance in hyperparameter estimation for method LM-EnRML compared to
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Figure 4.4: Evolution of data mismatch (log10) vs number of iterations during the history
matching process for the 2D aquifer model using the (a) SEnRML and (b) LM-EnRML
methods for the three cases defined. The boxes are built using the 25th and 75th per-
centiles, and the whiskers represent the 5th and 95th percentiles. The horizontal line
inside the box represents the median. The black circles represent the outliers. The
dashed horizontal line represents the target data mismatch of 25.0 (number of observa-
tions). Iteration 0 represents the initial data mismatch.
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Figure 4.5: History-matched hydraulic conductivity fields for the 2D aquifer model using
the SEnRML and LM-EnRML methods, for the three cases defined. The true field is
shown in the first column for comparison.
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Case 2. However, the posteriors do not significantly change from the priors, which is an

indication that the method is adjusting the values of standard deviates to fit the data,

but not the hyperparameters. The SEnRML method shows a better performance in the

hyperparameter estimation for both cases, with the posterior distributions of the mean

hyperparameters covering the true values (Figure 4.7), except for the anisotropy factor in

Case 3. In general, the posteriors are in this case narrower than the priors, which shows

that the method is adjusting the hyperparameters to fit the data, and not only the stan-

dard deviates. Case 2 shows an acceptable performance, although the posterior modes

are shifted away from the true values for the anisotropy factor and the anisotropy angle,

even though their priors were correctly defined. In contrast, for Case 3, the anisotropy

angle exhibits a posterior mode that is close to the true value, and the correlation range

has a posterior distribution that is shifted towards the true value, compared to the prior

distribution.

It is noted that the number of standard deviates z for the hydraulic conductivity field

was set to 400 (20× 20), which is less than the number used in the true field generation.

This was explicitly done to verify the effect on inferring the true hydraulic conductivity

field with a smaller number of parameters. It was demonstrated that this approach

worked, at least for the simplest case, and it is not clear if using fewer parameters is

the reason why the performance of the ensemble methods was degraded for cases 2 and

3. Therefore, an additional test was performed with Case 3 using 100,200, and 900

standard deviates z for the hydraulic conductivity field, combined with a prior ensemble

of size 100, 200, and 300. Figure 4.8 shows maps of the mean data mismatch normalized

to the mean values obtained for Case 3 (Table 4.2) for the SEnRML and LM-EnRML

methods for the different number of standard deviates and ensemble sizes. It can be

observed that both methods improve their performance under different configurations,

with a minimum relative data mismatch mean of 0.18 for the SEnRML method and

0.07 for the LM-EnRML method. The SEnRML method reaches its best performance

with 100 standard deviates and 300 ensemble members, whereas the LM-EnRML method

showed the best relative reduction in data mismatch mean with 900 standard deviates

and 100 ensemble members. These are interesting and important results, as they suggest

that some configurations may work better for some methods and not for others.

Figure 4.9 shows the posterior distributions of the mean values of the hyperparameters

for Case 3, for the cases with the best combination of number of standard deviates and

ensemble size for each method ((900,200) for LM-EnRML and (100,300) for SEnRML),

following the results of Figure 4.8. It can be observed that the posterior distributions

of the mean values of the hyperparameters are more acceptable in general, compared

to the previous cases (Figure 4.6, Figure 4.7). In particular, the true values are within

the sampled posterior distributions, except for the anisotropy factor in the LM-EnRML

method, and the correlation range for both methods.
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Figure 4.6: Comparison of prior (blue) and posterior (red) distributions of the mean
values of the hyperparameters for the 2D aquifer model using the LM-EnRML method,
for (a) Case 2 and (b) Case 3.
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Figure 4.7: Comparison of prior (blue) and posterior (red) distributions of the mean
values of the hyperparameters for the 2D aquifer model using the SEnRML method, for
(a) Case 2 and (b) Case 3.
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Figure 4.8: Normalized best mean data mismatch (relative to Case 3 results) for various
parameter and ensemble sizes: (a) SEnRML method, (b) LM-EnRML method.
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Figure 4.9: Prior (blue) and posterior (red) distributions of the mean values of the hy-
perparameters for Case 3, for the best combination of number of standard deviates and
ensemble size for (a) LM-EnRML and (b) SEnRML methods.
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Finally, a DSI model was implemented using a prior ensemble of model outputs that

resulted from the prior ensemble of model parameters. In this case, given that the ob-

servations and the forward model are hydraulic conductivity values, the DSI model is

a linear correlation model that mimics the hydraulic conductivity field. Therefore, the

DSI model outputs are a set of hydraulic conductivity fields that are consistent with the

data. The DSI model was history-matched to the observation dataset, using DREAM as

the MCMC algorithm provided by the pyDREAM package (Shockley et al., 2017). The

chain generation was set to 30000, with a 50% burn-in period.

The three cases previously presented were tested. The data mismatch mean, and standard

deviation are presented in Table 4.3. It can be observed from the table that the DSI

method achieved a data mismatch mean value that is close to the expected value of 25

for all cases, which is significantly better than the ensemble methods. The standard

deviation of the data mismatch is also lower than the ensemble methods. The DSI

method is also computationally cheaper, as it only requires 100 forward model runs, plus

the 30000 DSI model runs. Running of the DSI model has a minimal computational cost

as it is the implementation of a linear matrix on vector multiplication.

The advantages of the DSI method described above come with a cost, as there is no

assurance that DSI model outputs are physically meaningful, as suggested by visual

inspection of selected estimated hydraulic conductivity fields presented in Figure 4.10. As

shown in the figure, the DSI method is able to reproduce certain aspects of the true field,

but it lacks the spatial continuity that is present in the true field. Moreover, the estimated

fields appear to be more noisy and heterogeneous than the true field, in particular for

Case 2 and Case 3, where uncertainty on the mean values of the hyperparameters was

introduced. This is an inevitable consequence of the simplifications made in the DSI

model based on a limited number of forward model runs.

Table 4.3: Data mismatch mean, standard deviation, and number of iterations of the DSI
method, resulting from history matching of the 2D-aquifer hydraulic conductivity model.

Method Mean / Std / N model runs
Case 1 Case 2 Case 3

DSI 31 9 100 30 9 39 10 0 100
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Figure 4.10: History-matched hydraulic conductivity fields for the 2D aquifer model using
the DSI method, for the three cases defined. The true field is shown in the upper left
corner for comparison.
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4.4 Numerical Example 2: Flow and Transport 2D

Model

4.4.1 Model description

The second numerical example expands on the first one by including a groundwater flow

and transport model applied to the 2D aquifer case, simulating extraction and reinjection

of a solute mass in the system. The model is inspired by Direct Lithium Extraction (DLE)

from brines, where lithium-rich brine is pumped and reinjected once the mineral has been

extracted in a processing plant. Pumping and reinjecting is also a common practice in

the oil and gas industry, where water is injected in the reservoir to increase the pressure

and enhance the production of hydrocarbons.

The distinctive challenge of this example is that the prediction of interest is the future

depletion of lithium in the aquifer, which is a function of the extraction and reinjection

rates, and the heterogeneity of the aquifer. Given known extraction and reinjection

rates, and the depletion of the reinjected brine (assumed 1.0, i.e., complete), flow and

transport modelling is used to quantify predictive uncertainty of solute depletion, which

is conditioned by measurements of brine concentration in the aquifer.

The model domain, as in the first example, is a 50×50 2D grid of unitary dimension. The

problem is worked in dimensionless units. The aquifer as described in the previous section,

has nonstationary geostatistical properties for the distribution of hydraulic conductivity.

The model simulates extraction and reinjection of brine for two simulation stress periods.

The first stress period has a duration of 200 time units, while the second stress period

has a duration of 400 time units. In the first of these periods, brine is extracted from 7

wells and injected into 2 wells at a total rate of 5 × 10−4 volume units per time. In the

second period, the number of pumping wells increases to 10 while maintaining the same

total pumping and injection rate, in order to represent well replacement due to solute

depletion. Confined steady state flow and transient solute transport are simulated using

MODFLOW 6 (Langevin et al., 2017). The effective porosity is 0.25, while longitudinal

and transverse dispersivity are 5×10−3 and 5×10−4 length units, respectively. Figure 4.11

shows the (a) model configuration and contours the distribution of the depleted brine

plume at the end of the historic period, and (b) the time series of solute depletion at

pumping well locations. These results were obtained after running the forward model

with the true hydraulic conductivity field, and adding Gaussian noise of 0.01 standard

deviation to the model outputs. As inferred from the figure, the additional pumping

wells introduced in the second stress period—pw8, pw9, and pw10—are located outside

the depleted brine plume area observed at the end of the first stress period. It is assumed

that no information is available at these locations during the history matching process.

A synthetic measurement is taken every 10 time units during the first simulation period
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Figure 4.11: (a) Pumping well (back circles) and injection wells (red squares) locations,
and contours of the depleted brine plume at the end of the historic period; (b) time
series of brine depletion at pumping well locations. The dashed vertical line separates
the historic and predictive periods.

at 7 pumping wells. Therefore, the history matching dataset is comprised of 140 measure-

ments of solute depletion. A random realization of measurement noise with a standard

deviation of 0.01 concentration units is added to each measurement. Note that, during

the first stress period, depletions of 0.0 are measured at the sites of all pumping wells that

are active during only the second stress period. The second simulation stress period is

denoted as the “predictive period”. During this period, predictions of depletion made by

history-matched models (see below) can be compared with true depletions. The latter are

calculated using the true hydraulic conductivity field, presented in the previous section.

Model parameters that are adjusted are described in Table 4.1. Their priors correspond

to Case 3 of the previous numerical experiment.

The history matching process was performed using LM-EnRML and DSI (an attempt

to history-match the model using the SEnRML method was made, but the method did

not converge to an acceptable level of data mismatch). Local updating (Zhang et al.,

2018) and localization was required to get convergence for LM-EnRML, as previously

explained. This is due to the strong nonlinearity of the problem, mainly derived from the

nonstationary implementation of the hydraulic conductivity field. For DSI, prior model

outputs were derived from a prior ensemble of model parameters of size 600, twice the

size of the ensemble used for LM-EnRML. This was necessary to improve the predictive

performance of DSI for a marginal increase in computational cost.
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4.4.2 Results

The data mismatch evolution during the LM-EnRML history matching process is shown

in Figure 4.12. As can be observed, the LM-EnRML method struggled to converge during

at least the first 7 iterations, reaching full convergence after 20 iterations. Additional

model runs would be required if lambda testing was implemented, as in the case of

PESTPP-LM-EnRML (White, 2018). This could improve the convergence behaviour

of the method, but it would also increase the computational cost. The observed slow

convergence is the result of the strong nonlinearity of the problem. After 23 iterations,

the data mismatch mean and standard deviation are 658, and 347, respectively, which

are reasonable values given that the expected value is 140, the number of observations

(note that this is just a reference number, as it does not apply to nonlinear problems).

Figure 4.12: Evolution of the data mismatch during the history matching process for the
2D flow and transport model using the LM-EnRML method. The horizontal line repre-
sents the target data mismatch of 140.0 (number of observations). Iteration 0 represents
the initial data mismatch. The boxes, lines, circles, and whiskers have the same meaning
as in Figure 4.4.

With DSI, a very similar fit to the data was achieved after running MCMC with 12 chains

of 50000 iterations each. As previously mentioned, the DSI method is computationally

cheaper than the ensemble methods, as the inference of the posterior distribution of the

DSI parameters is based on a linear correlation model. Once the correlation model is built,

MCMC runs in a matter of minutes, compared to the LM-EnRML method that requires

hours to converge. Comparing the number of model runs of this numerical example,

LM-EnRML requires 6900 to achieve convergence (recall that during each iteration, 300
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model runs are required). In contrast, DSI requires 600 model runs and the minimal

cost of running MCMC with a linear model. That said, the DSI method is not free of

challenges, as the result of the posterior inference is not a physical model, but a set of

DSI parameters and DSI model outputs that are consistent with the data.

The observed and simulated depletion time series for the history-match dataset are shown

in Figure 4.13. As shown in the figure, the fit is acceptable for both methods. It is

expected that the DSI-MCMC method would achieve a better fit to the data, as it is

based on a linear correlation model that is generally able to reproduce the data with

a high level of accuracy. It is also expected that non-physical solutions were obtained

with the DSI-MCMC method, with depletions reaching values above 1.0, for some wells.

Looking at the predictive period, the uncertainty estimated by both methods is very

narrow, and in most cases the true values are within the predictive uncertainty bounds.

The exception is the depletion at well pw4, which is a well located inside the depleted

plume and next to one of the reinjection wells. This well shows narrow uncertainty

ranges that do not cover the true values. This suggests that in this highly nonlinear

case, data assimilation has the potential to over-constrain, rather than under-constrain

the uncertainties of predictions that bear a close relationship to observations, even where

model-to-measurement misfit exceeds that which would be expected from measurement

noise.

The simulated hydrographs of the wells that were not part of the history matching dataset

are shown in Figure 4.14. As shown in the figure, both methods resulted in dissimilar

predictive uncertainty bounds. The LM-EnRML method resulted in predictive bounds

that, although narrow, are able to capture the true values of the depletion. The DSI

method, on the other hand, resulted in wider predictive bounds, which are not fully able

to capture the true values. This is especially true for well pw10, which is located outside

the depleted plume area, and therefore the uncertainty is higher.

Finally, the posterior distributions of the mean values of the hyperparameters for the LM-

EnRML method are shown in Figure 4.15. Parameter ensemble collapse is evident, and

the posterior distributions do not cover the true values of the hyperparameters. This is a

consequence of the strong nonlinearity of the problem, and the nature of the LM-EnRML

method.

Although of secondary importance, the LM-EnRML history-matched hydraulic conduc-

tivity fields for the 2D aquifer model (Figure 4.16) do not reflect, to a reasonable extent,

the nonstationarity nature of the true field. However, the estimated fields are able to

reproduce some isolated zones of high and low hydraulic conductivity, which are consis-

tent with the true field, and also the true anisotropy angle of the system. This shows

that history matching using LM-EnRML can lead to a reasonable fit to the data, but not

necessarily to a representative estimation of the true hydraulic parameter field.
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Figure 4.13: Measured and model-calculated depletion time series for wells part of the
history matching dataset, For (a) LM-EnRML and (b) DSI-MCMC. The red lines with
solid circles represent the true values, the solid black line is the median, the grey-shaded
area is the P25-P75 percentile region, and the external black lines are the P5 and P95
percentiles of the simulated depletions.
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Figure 4.14: Model-calculated depletion time series for wells pw8, pw9, and pw10, for
(a) LM-EnRML and (b) DSI-MCMC. The red lines with solid circles represent the true
values, the solid black line is the median, the grey-shaded area is the P25-P75 percentile
region, and the external black lines are the P5 and P95 percentiles of the simulated
depletions.
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Figure 4.15: Prior (blue) and posterior (red) distributions of the mean values of the
hyperparameters for the 2D flow and transport model using the LM-EnRML method.
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Figure 4.16: Selected realizations of history-matched hydraulic conductivity fields for the
2D aquifer model using the LM-EnRML method. The true field is shown in the upper
left corner for comparison.
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4.5 Discussion

The proposed methodology adopts a hierarchical two-level parameterization scheme to

generate nonstationary fields. It was tested in two numerical examples using three dif-

ferent history matching methods (SEnRML, LM-EnRML, and DSI), demonstrating that

it can handle uncertain and nonstationary priors, history-match nonlinear problems, and

result in reasonable estimates of predictive uncertainty. The first example presented was

focused on estimating a 2D hydraulic conductivity field from a set of hydraulic conductiv-

ity measurements, to evaluate the methodology in a case without requiring a groundwater

model. The second example involved history matching and predicting solute depletion in

a 2D aquifer model with nonstationary anisotropy angles, incorporating a groundwater

flow and transport model. This is a more complex case as it requires the estimation

of both parameters and hyperparameters from a set of solute depletion measurements.

The nonlinearities in this case originate not only from the groundwater model but also

from the process of generating the nonstationary fields. History matching convergence

was achieved in both examples for most of the tested methods, except for SEnRML in

the second example. In this latter case, iterative local updating and localization were re-

quired for LM-EnRML to converge. These techniques are more challenging to implement

in SEnRML than in LM-EnRML, which limits the applicability of SEnRML for highly

nonlinear problems like the second example.

The results from the first example showed reasonable history-matched nonstationary

hydraulic conductivity fields, similar to the true field, for both the SEnRML and LM-

EnRML methods when mean hyperparameter values were fixed at their true values. As

more uncertainty was added to the problem, the performance of the SEnRML and LM-

EnRML methods was degraded, and their difficulties in reproducing the true field became

more evident. This was especially true for the LM-EnRML method, which appeared

to prioritize the adjustment of the standard deviates over hyperparameters. Similar

findings were presented by Oliver (2022) in his study. In contrast, the SEnRML method

showed a better performance in the estimation of the hyperparameters, even when the

mean values of the hyperparameters were uncertain. In the case of assuming uncertain

hyperparameters centred on values different from the true values (Case 3), the LM-

EnRML method struggled to converge to an acceptable fit and reproduce the true field.

This was not the case for the SEnRML method, which produced a similar hydraulic

conductivity spatial distribution compared to the true field (based on the best realization),

even though both methods achieved a similar misfit. It appears that the SEnRML method

preserves the prior ensemble structure better than the LM-EnRML method, which is

expected given the nature of the method. It was also shown that both methods work

best under distinct and specific configurations of the number of standard deviates and

ensemble size. LM-EnRML appeared to perform better with an increased number of
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standard deviates and a medium-sized (200) ensemble, whereas SEnRML preformed best

with a reduced number of standard deviates and a larger ensemble size (300). This result

aligns with the expected behaviour of ensemble methods, where the size of the ensemble

constrains the number of degrees of freedom (Emerick and Reynolds, 2012). In the case

of LM-EnRML, the best configuration led to a better fit to the data, but not necessarily

to a better estimation of posterior probability distribution of the hyperparameters. In

contrast, the best configuration for SEnRML resulted in improved estimation of the

posterior hyperparameters as well as a better fit to the data.

The second example demonstrated that the LM-EnRML method was able to converge to

an acceptable fit but at the cost of numerous iterations and, consequently, many model

runs. Much cheaper computational cost was incurred for the DSI method to achieve a

similar fit, but without the ability to provide history-matched parameter fields. With this,

it is not possible to assess the physical meaning of the DSI model outputs. Having said

that, LM-EnRML resulted in hyperparameter ensemble collapse and therefore history-

matched parameter fields that are not representative of the true field. Both methods

showed underestimation of predictive uncertainty for the solute depletion predictions at

pumping well pw4 that were part of the history matching dataset. In the case of LM-

EnRML, this underestimation does not appear to be the result of overfitting, as the

method did not converge to the expected data mismatch value. On the contrary, as the

combined number of parameters and hyperparameters was greater than the number of

observations, the results suggest that underestimation of predictive uncertainty was due

to the nature of the LM-EnRML method and the strong nonlinearity of the problem. On

the other hand, the observed limited ability of DSI to capture the true uncertainty of

predictions, may be due to the incomplete sampling of the prior ensemble parameter space

and consequent inability to explore the full range of possible model outputs. Interestingly

enough, predictions of solute depletion in wells that were not part of the history matching

dataset (pw8, pw9, and pw10) showed narrow but minimally biased predictions for LM-

EnRML, and wider but more biased predictions for DSI. In the case of LM-EnRML, the

propensity of a limited ensemble size to result in underestimation of predictive uncertainty

arises from limitations in its ability to explore the many dimensions of parameter space

that are uninformed by a history matching dataset (i.e. the calibration null space) but

to which predictions of interest may be sensitive (Kitlasten et al., 2022). As for DSI, the

linear model makes strong assumptions about the structure of the groundwater flow and

transport model, therefore it is expected that the predictions can be biased (Hastie et al.,

2009).

Several general discussion points can be made based on the results of this study. Oliver

(2022) suggested the need of a hybrid method that combines an analytical representation

of the hyperparameter sensitivities with the ensemble-based model parameter sensitivi-

ties, in order to successfully fit the data in a hierarchical problem. This study, however,
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showed that the application of the proposed methodology with ensemble methods works

reasonably well in history matching a nonlinear problem, without the need of an analyt-

ical representation of the hyperparameter sensitivities (although in the second example,

iterative local updating and localization were required to achieve convergence for LM-

EnRML). It is also apparent that history-match adjustment of parameter ensembles is

challenged when relationships between model outputs and parameters which must un-

dergo change (including stochastic hyperparameters) are highly nonlinear (Evensen et al.,

2022). This is unsurprising when it is considered that most methodologies that imple-

ment ensemble-based history matching are based on theory that assumes inverse problem

linearity; nonlinearity is then accommodated through iterative parameter adjustment.

Nonlinearity arises from two sources for the second example presented in this study. One

of these is the composition of the measurement dataset; this comprises entirely concentra-

tion measurements. The other is the use of adjustable, and spatially-variable, stochastic

hyperparameters that determine patterns of emergent hydraulic property heterogeneity.

In the inverse problem that was posed in this study, these must be adjusted simultaneously

with other parameters that determine the locations and magnitude of this heterogeneity.

This is a challenging task, and appears to degrade the ability of ensemble methods in

general and LM-EnRML in particular to estimate realistic parameters (and hyperparam-

eters). In some cases, the resulting history-matched fields may not resemble any trait of

the true field at all. However, making sense of these parameter fields is one of the aims

of modellers to confirm that the model is a good representation of the system, model

parameters still have a physical meaning, and that the model is able to make reliable

predictions. It has been shown by several authors (for example, Clark and Vrugt, 2006;

Doherty and Christensen, 2011) that parameters may adopt values that compensate for

model structural defects, in order to fit the data. Based on the results of this study, it

appears that parameters may also play ‘numerical compensatory roles’ when using en-

semble methods in highly nonlinear problems, due to the nature of the method and the

strong nonlinearity of the problem, even if the model is a perfect representation of the

system. If this holds true, for some highly nonlinear problems, it may warrant dispensing

with ensemble methods for history matching parameters. Instead, data space inversion

(DSI) methods could be considered, as they may achieve a comparable fit to the data

at a lower computational cost, without the need of adjusting parameters. In the present

study, DSI was found to be the cheapest, but not completely effective, method of pre-

dictive uncertainty exploration. A feature of this method (which is both a strength and

a weakness of it) is that it does not associate a parameter field with a prediction. Pes-

simistic predictions are therefore difficult to explain. This deficiency of DSI must be seen

in context however, as the LM-EnRML method does not necessarily generate parameter

fields that are particularly illuminating to a modeller. One of these benefits appears to be

a reasonable level of confidence that predictive uncertainty is not grossly under-estimated.
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It is worth remarking that experience gained in using the DSI methodology suggests that

confidence in its evaluation of predictive uncertainty increases with the number of model

runs that are dedicated to construction of the DSI model. Because DSI is so numerically

cheap, its use does not preclude the deployment of alternative history matching and un-

certainty analysis methods. The same parameter fields that are used for construction of

a DSI model can be used as starting points for both of the ensemble-based parameter

adjustment methods that are described herein.

Several limitations of this study should be noted. Although the proposed methodology

can be deployed with more complex, more highly-parameterised, and slower-running mod-

els than the flow and transport model described herein, it remains to be demonstrated

in real-world problems. Also, in the examples presented, a Gaussian kernel was used

due to its simple formulation. Other kernels could be used and tested. One example is

the exponential kernel, which is commonly used in geostatistics, but it would involve the

use of modified Bessel functions (Oliver, 1995) which are more computationally expen-

sive. Finally, the spatial distribution of standard deviates was performed in 2D and in

a simplistic manner consistent with the spatial nature of the examples. More complex

modelling problems involving the combination of zone-based and grid-based parameteri-

zation in a 3D domain, may challenge the applicability of the proposed methodology, due

to the cumbersome nature of the parameterization. This is a topic for future research.

4.6 Conclusions

This work demonstrates the success of a new methodology that accommodate uncertain

and nonstationary priors in history matching and predictive uncertainty quantification of

groundwater models. It does so, by formulating the inverse problem in a hierarchical man-

ner including spatially variable geostatistical hyperparameters that govern the shapes of

emergent hydraulic property heterogeneity, in addition to spatially distributed parameters

that govern its location. The spatial variability of hyperparameters and model hydraulic

parameters results from a two-levels spatial averaging of history-match-adjustable stan-

dard normal deviates using a Gaussian kernel, with geostatistical properties that can be

also history matched.

It was demonstrated that the proposed methodology can be deployed in history match-

ing using ensemble methods, achieve a reasonable fit to the data, and provide acceptable

predictive uncertainty estimates, assuming nonstationary and uncertain priors as addi-

tional sources of uncertainty. However, it is acknowledged that this is a highly nonlinear

Bayesian inverse problem. As a result, ensemble-based parameter adjustment can be

numerically inefficient and posterior parameter and predictive uncertainties can be un-

derestimated as an outcome of both nonlinearity and parameter realization insufficiency.

In contrast, data space inversion (DSI) was able to provide useable depictions of predictive

126



uncertainty with a numerical cost that is far smaller than LM-EnRML. Furthermore, its

model run burden is immune to structural and parameterization complexity. It achieves

these benefits by dispensing with the need for model parameter adjustment during the

history matching process. Unfortunately, a modeller is not, therefore, able to view pa-

rameter fields that result in pessimistic predictions. This study suggests that this may

not be an option anyway.
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Abstract

Structural errors, arising from imperfections in the model, can introduce bias and lead

to an underestimation of uncertainty. Accounting for these errors is essential to improve

the reliability of predictions derived from groundwater models. This study presents a

novel methodology to incorporate model structural errors in history matching and pre-

dictive uncertainty quantification. The proposed approach utilizes a complex model to

generate synthetic observations, which are then used to calibrate a simplified model, en-

abling the identification and quantification of the statistical properties of structural error.

A data space inversion (DSI) technique is employed to develop a correlation model be-

tween measurements and calibration residuals, termed the DSI-RES model. This model

is conditioned on actual observations to generate realizations of structural error, which

are integrated into the history matching process using the Subspace Ensemble Random-

ized Maximum Likelihood (SEnRML) method. The methodology is tested on a two-
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dimensional numerical model that simulates groundwater inflows to an open pit. Re-

sults demonstrate that explicitly incorporating structural errors in the history matching

process reduces predictive bias and produces more conservative predictive uncertainty

estimates. The study highlights the importance of accounting for model structural er-

rors to enhance the reliability of groundwater models for decision support. By providing

a practical framework for quantifying and integrating structural errors, the proposed

methodology improves predictive uncertainty quantification and supports more informed

decision-making in groundwater management.

5.1 Introduction

History matching and predictive uncertainty quantification are two essential compo-

nents of the groundwater modelling workflow in support of decision-making (Doherty

and Moore, 2020). Model parameters are first adjusted to fit observed data. This is

done to ensure that the model is capable of reproducing the observed system behaviour

and to reduce parameter and predictive uncertainty, using methods that are based on the

Bayesian framework (Tarantola, 2005). Within this framework, history matching requires

the definition of prior uncertainties for model parameters and the measurement error in

the data. More often than not, the outcomes of history matching are not satisfactory to

the modeller, as the differences between observed data and their corresponding simulated

outputs are not completely commensurate with measurement error. There are two pri-

mary causes for such mismatches: the prior is not correct, or the model is missing some

important features of the system. When model imperfections are the most likely cause of

the mismatch, adding complexity to the model may improve the fit to the data. However,

this solution may not be applied ad. infinitum due to limited resources (Mathews and

Vial, 2017), or because the model may become too difficult to run (due to model insta-

bilities, long runtimes, or both) which limits its ability to perform history matching and

predictive uncertainty quantification (Doherty, 2011). Moreover, model imperfections

might not be even be visible to the modeller. This is the rule rather than the exception

in groundwater modelling, acknowledging that the model will never be a perfect repre-

sentation of a natural system. Hence, for the reasons presented above, imperfect models

are unavoidable.

Model structural error (Beven, 2005) is a broad term that includes all imperfections in

the model that may lead to discrepancies between observed data and model outputs be-

yond what can be attributed to measurement error. It produces two major impacts on

uncertainty quantification: bias and the underestimation of uncertainty. Bias is defined

as the statistical difference between the expected value of the model outputs and the true

values (Hastie et al., 2009). Given a dataset of observations, bias can be quantified by

comparing the history-matched model outputs and the observed data. This bias is there-
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fore visible in the model residuals. Predictive bias in particular, is the difference between

the expected value of a model prediction and the true unknown value, and is invisible

for obvious reasons. One of the causes of predictive bias is the compensatory roles that

parameters may play to fit the data (Clark and Vrugt, 2006; Doherty and Christensen,

2011), which occurs when using an imperfect model. This results in parameter values

that can be significantly different from their prior expected values and potentially sensi-

tive to the prediction of interest. However, even if the parameter values do not change,

their prior expected values may be far from the values that minimize predictive bias in

the context of an imperfect model. This is the case when the model is unable to capture

the parameter or process details that significantly influence the predictions of interest

(Doherty and Christensen, 2011). In fact, Mathews and Vial (2017) showed how a prior

should be modified, under Gaussian assumptions, to minimize bias of a prediction of

interest when using an imperfect model. Posterior predictive uncertainty, i.e., the vari-

ability of predictive outcomes that can be expected from the model after conditioning it

to observed data, is also affected by model structural error. First, parameter uncertain-

ties might be artificially reduced as a result of history matching an underparameterized

model (an example of a structural model defect) to a relatively large dataset, potentially

leading to the underestimation of predictive uncertainty. This occurs when a prediction

of interest is sensitive to the parameters with underestimated uncertainties. Addition-

ally, the lack of parameters and processes in a model that are important to observations

may inhibit the history matching process from extracting the full information content

of the data, potentially leading to an overestimation of predictive uncertainty (Doherty

and Christensen, 2011). Finally, if there is predictive bias in the model, the posterior

predictive uncertainty will be shifted away from the true probability distribution. This

could limit the use of predictive uncertainty estimates for quantifying probabilities of

occurrence of unwanted events.

There is a growing (but limited) body of literature in this area, some of which will be

discussed here. Most of the studies focus on the identification of predictive bias, the

statistical representation of model error, and its update during the history matching pro-

cess. One of the strategies to quantify predictive bias is the use of paired simple and

complex models, where the parameterization of the complex model can be informed by

expert knowledge, and the simple model adopts a more parsimonious parameterization

scheme. Several authors have used this approach, including Cooley (2004); Cooley and

Christensen (2006). This methodology was extended by Doherty and Christensen (2011)

and modified by Gosses and Wöhling (2019) to evaluate predictive bias induced by not

only parameter simplifications but also other model structural errors, including factors

such as the number of layers, boundary conditions, among others. In simple terms, the

methodology proposed by Doherty and Christensen (2011) uses a random realization of

a complex model (including any uncertain aspect of it) to generate a set of synthetic
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outputs, which are then used to calibrate a simple model by applying regularized in-

version. This process is repeated many times, resulting in a set of simple model and

complex model predictions that can be compared to quantify predictive bias. Although

this methodology is illustrative, it is computationally expensive, as it requires the gen-

eration of many complex model output realizations and the calibration of the simple

model to each of these realizations. Another approach is to develop a statistical repre-

sentation of model structural error that does not rely on the assumption of uncorrelated

errors. Cooley (2004); Cooley and Christensen (2006) developed a methodology to esti-

mate the covariance matrix of structural error induced by parameter simplification, by

running many paired simple and complex models, and then apply it in the calibration

of a parsimoniously parameterized model. Other authors have extended this methodol-

ogy to evaluate and update the covariance matrix of structural error during the history

matching process (Oliver and Alfonzo, 2018; Alfonzo and Oliver, 2020; Evensen, 2021;

Lu and Chen, 2020). In their methods, the structural error is learned from the residuals

obtained during the history matching process or at the end of it, without the need of a

complementary complex model. Although this is a promising approach, it is not clear

how the observed residuals are affected by the compensatory roles that parameters must

adopt to fit the data, or even by the regularized/stochastic inversion process itself, all of

which may lead to artificially low residuals on one hand or excessively noisy residuals on

the other.

For groundwater modelling to still provide useful insights on the probability of occurrence

of events with potentially detrimental economic, social, or environmental consequences, it

is crucial to identify, evaluate, and assimilate model defects within the history matching

and uncertainty quantification workflow. In this work, a new methodology is proposed to

estimate the statistical properties of structural error using a correlation model of calibra-

tion residuals and observations. The correlation model is built using data space inversion

(DSI) (Sun and Durlofsky, 2017), and relies on an ensemble of residuals and observations

derived from the calibration of an imperfect model, referred to here as the simple model,

to a set of synthetic observations generated by a more complex model. Thus, the use of

paired complex-simple models is a prerequisite for applying the methodology. The simple

model must be calibrated to the complex model outputs multiple times to generate the

ensemble of residuals and observations. Conceptually, the complex model can be based

on the simple model but incorporating additional features whose impact on predictive

bias and predictive uncertainty can be tested. Alternatively, a modeller may choose to

simplify a complex model to improve runtime efficiency or stability. In this scenario, the

proposed methodology can be used to evaluate the impacts of these simplifications on

model predictions, both in terms of bias and uncertainty. Before testing the methodology,

an evaluation of predictive bias is performed using the complex-simple model approach

proposed by Doherty and Christensen (2011). Two parameterization schemes are tested
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for the simple model to assess their impact on misfit and predictive bias. An analysis

of the results leads to a discussion of the advantages and disadvantages of each param-

eterization scheme, as well as whether structurally simple but parametrically complex

models are better suited to quantify the uncertainty of predictions that are similar in

nature to the observations. Finally, the effectiveness of the methodology is evaluated in

the prediction of groundwater inflows to an open pit by comparing predictive uncertainty

estimates obtained both with and without the incorporation of structural error in the his-

tory matching process of a zone-based parameterized simple model. It is demonstrated

that by incorporating samples of structural error derived from the correlation model,

predictive bias is reduced, and predictive uncertainty is estimated more conservatively.

The chapter is structured as follows: The next section describes the methodology of

Doherty and Christensen (2011) to quantify predictive bias and presents the proposed

methodology to develop a linear correlation model of structural error. A workflow is

proposed that includes the generation of the ensemble of residuals and observations, the

construction of the correlation model, the generation of realizations of structural error,

and the use of these realizations in the history matching process. The subsequent section

presents an illustrative numerical example, where the proposed methodology is tested.

The chapter finishes with a discussion of the results and the drawing of conclusions.

5.2 Methodology

5.2.1 Predictive Bias Quantification

In this work, bias quantification is estimated using the complex-simple model approach

proposed by Doherty and Christensen (2011). This approach is based on theory de-

rived from subspace linear analysis, where the model parameter space is separated into a

solution space and a null space. The following is a subspace linear analysis theory summa-

rized from Doherty and Christensen (2011). Let the vector d be a set of measurements,

simulated from a complex model as

d = Gcxc + ϵ, (5.1)

where Gc is the sensitivity matrix of the complex model outputs associated with d to

the complex model parameter vector xc, and ϵ is the vector of measurement errors. The

complex model is assumed to be a representation of the system as accurately as possible,

including hydraulic parameters and boundary conditions.

Let the scalar sc be a prediction made by a complex model, and derived from a linearized

version of the model as

sc = gT
c xc, (5.2)
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where gc is the sensitivity vector of the prediction to complex model parameter vector

xc. If the complex model is simplified, it can be assumed that the parameter vector xc

can be decomposed into two orthogonal components, as follows:

xc = xs + xe, (5.3)

where xs is the parameter vector of the simple model and xe represents the vector of

parameters that are excluded from the complex model to simplify it. With this decom-

position, Equation 3.1 can be rewritten as

d = Gsxs +Gexe + ϵ, (5.4)

where Gs is the model sensitivity matrix of the simple model outputs to simple model

parameters xs, and Ge is the model sensitivity matrix of the complex model outputs to

excluded model parameters xe.

Similarly, the complex model prediction sc can be rewritten as

sc = gT
s xs + gT

e xe, (5.5)

where gs is the sensitivity vector of the prediction, using to simple model parameter

vector xs, and ge is the sensitivity vector of the prediction to excluded model parameters

xe. Let the scalar ss be a prediction made by a calibrated simple model, and derived

from a linearized version of the model as

ss = gT
s xs. (5.6)

The difference between the predictions of the complex and the simple calibrated model

is a measure of predictive error, and can be written as

ss − sc = gT
s xs − gT

s xs − gT
e xe. (5.7)

The systematic propensity of the simple model to predict higher or lower than the complex

model is a measure of predictive bias.

When singular value decomposition (SVD) is used to calibrate the simple model, the

calibrated parameter vector xs is estimated as

xs = Z1Σ
−1
1 ZT

1 d, (5.8)

where Z1 and Σ1 are the solution space matrices of left singular vectors and singular

values, respectively, obtained from SVD of Gs.

Replacing Equation 5.8 and Equation 5.4 into Equation 5.7, and further manipulating
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and simplifying the equation, the predictive error can be written as

ss − sc = −gT
s Z2Z

T
2 xs + gT

s Z1Σ
−1
1 ZT

1 ϵ+
(
gT
s Z1Σ

−1
1 ZT

1Ge − gT
e

)
xe. (5.9)

As discussed by Doherty and Christensen (2011), the three terms of Equation 5.9 are key

to understanding the generation of predictive bias by the simple model. The first term

is the contribution of the null space of the simple model to the predictive error. This

term exists even if the simple model is a perfect representation of the complex model,

or in other words, if the simple model is a perfect representation of the natural system.

The expected difference of this term is zero, as it is assumed that the prior expected

values of the simple model parameters are normalized to zero. Therefore, predictive bias

is not expected to arise from this term (this does not mean there will not be error in

the predictions). The second term is the contribution to the predictive error from misfit

of the simple model to the data (Moore and Doherty, 2005). The more singular values,

and therefore parameter combinations, are used to fit the data, the greater the risk of

predictive error. However, this term does not necessarily lead to predictive bias, as the

expected value of measurement error is zero. Finally, the third term is key. It is the

contribution of the excluded model parameters to the predictive error. As it is a function

of excluded model parameters, it may generate consistent predictive error, and therefore

predictive bias. Even if the model is not calibrated (i.e., gT
s Z1Σ

−1
1 ZT

1Ge = 0), this term

may be non-zero. Doherty and Christensen (2011) demonstrated that the only case where

this term is zero is when the prediction is only sensitive to the solution space component

of the complex (or real) model. This occurs when predictions tend to be similar in space

and time to the observations used to calibrate the model.

The methodology proposed by Doherty and Christensen (2011) is based on the genera-

tion of a set of synthetic outputs from a complex model, which represents a wide range

of possible outcomes. Parameters of the complex model may include any uncertain as-

pect of the model, including the number of layers, layer thickness, boundary conditions,

geological units, among others. Moreover, several conceptual models can be tested, each

representing a different hypothesis of the system. In this work, a complex model is param-

eterized to represent the system as accurately as possible, including hydraulic parameters

and boundary conditions. A prior probability distribution is assigned to each parame-

ter type, and the complex model is run multiple times using an ensemble of parameter

realizations, to generate a set of synthetic outputs. A simple model, which presumably

has structural defects, is calibrated against each of the complex model outputs, resulting

in a set of residuals. Assuming one or several predictions are obtained from the com-

plex model, counterpart predictions generated by the calibrated simple model can be

compared to the complex model predictions. The difference between the complex model

predictions and the simple model predictions is a sign of predictive bias and propensity
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for predictive error. Plots of complex model prediction vs. simple model prediction (‘s

vs s’ plots) can be generated as shown in Figure 5.1. Based on the theory presented

above, conclusions can be drawn from these plots, where visual inspection of these plots

can provide insights into the presence of bias and predictive error in the simple model

predictions.

Figure 5.1: ‘s vs s’ plot showing the bias in the predictions made by a simple model
compared to a complex model (Doherty and Christensen, 2011).

5.2.2 Structural Model Error Estimation

In the original methodology proposed by Doherty and Christensen (2011), the primary

goal was to generate a way of estimating unbiased predictive uncertainty estimates. While

this is a valuable outcome, the main objective of this work is to estimate the statistical

properties of structural error of the simple model, and incorporate these properties into

the history matching process.

As in the original methodology, it is assumed that there is a complex and a simple

model available. A total of N random realizations of the complex model outputs are

generated, and the simple model is calibrated against these synthetic measurements.

For each calibrated simple model, a set of residuals is obtained. It is evident that for

some measurements, residuals will be larger than for others, suggesting the model is

better suited to assimilate some data than others. This is a consequence of using a

simplified model to represent a complex system. It is then expected that the residuals will

contain information about the structural defects of the simple model. As more complex

model outputs are generated, more information about the structural defects of the simple

model can be obtained. Therefore, a statistical representation of the structural error in

the simple model can be developed using an ensemble of measurements and calibration

residuals.

Let oi be the vector of measurements and corresponding residuals for the i-th simple

135



model calibration, from a set of N calibrations, as follows:

oi =

[
di

ri

]
, (5.10)

where di is the vector of synthetic measurements (generated from running the complex

model) and ri is the vector of residuals. Let it be also assumed that an ensemble matrix

O is built with the N vectors oi. A matrix of ensemble anomalies Y is obtained by

centring O by its mean and normalizing it by its standard deviation σY . Singular value

decomposition (SVD) can be applied to Y as follows:

Y = UΣVT , (5.11)

whereU, Σ, andV are the left singular vectors, singular values, and right singular vectors

of the ensemble of measurement-residual anomalies. If Φ is defined as

Φ = U∗Σ∗, (5.12)

where U∗ and Σ∗ are the left singular vectors and singular values truncated by an energy

threshold (here set to 99%), then, a linear correlation model (DSI-RES model) can be

defined as

o = of +Φ · z · σY , (5.13)

where o are measurements and residuals simulated by the DSI-RES model, of is the

mean vector of measurements and residuals, and z is a random vector of standard normal

deviates (also called DSI-RES model parameters). Any realization of o can be then

generated by sampling z from a standard normal distribution and applying Equation 5.13.

This model is a surrogate model of the relationship between measurements and residuals,

or in other words, the structural error in the simple model dependent on the measurements

available for history matching. In other words, the structural error of the model will

depend on its ability to assimilate the data, and is expected that this ability will vary

depending on the measurements. Any random set of measurements and residuals can be

generated by the DSI-RES model. The number of realizations N required to estimate

model structural error is not clear, but given that DSI uses singular value decomposition,

just a few realizations may be enough to capture some aspects of the structural error.

Let now be assumed that the simple model is to be history-matched to a set of real mea-

surements d, through the use of ensemble methods, to estimate the posterior probability

distribution of the model parameters and to quantify predictive uncertainty. Ensemble

methods require the definition of a covariance matrix of the data noise Cd, or samples

of noise derived from a probability density function (pdf) that uses Cd. In the presence

of model structural error, samples of noise should not be necessarily drawn from a pdf
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that assumes uncorrelated errors, as the residuals might be correlated. In this case, the

DSI-RES model can be used to generate realizations of residuals.

Generating samples of residuals from the DSI-RES model to be used as samples of model

structural error in the history matching process involves two steps: conditioning the DSI-

RES model to the measurements d, and generating realizations of posterior residuals

(hopefully the set of measurements is part of the output space from which the DSI-RES

model was built). The first step is necessary as the unconditioned DSI-RES model is

a correlation model of measurements and residuals within the broad range of possible

measurements, generated from running the complex model multiple times; It is then

required to constrain the DSI-RES correlation model to the specific set of measurements

d, i.e., obtain a posterior probability distribution of residuals given the measurements.

This can be done by applying any Bayesian-based method. Here, Markov chain Monte

Carlo (MCMC) was implemented using the Python package pyDREAM (Shockley et al.,

2017) to maximize the exploration of the posterior probability distribution of residuals, or

posterior. The second step involves generating realizations of residuals from the posterior.

Given that the results of the MCMC is an ensemble of samples representative of the

posterior, subsamples can be drawn from this ensemble to be further used in the history

matching process.

5.2.3 History Matching in the Presence of Structural Error

Once the DSI-RES model is built, realizations of structural model error conditioned to

measurements can be generated, as explained in the previous section. There are several

ensemble methods that can accommodate structural model error in the history matching

process. The subspace iterative ensemble smoother (SEnRML) method (Evensen et al.,

2019) is the method used in this work. In the low-rank implementation of the method,

an ensemble matrix of model structural errors can be directly used in the inversion pro-

cess, without the need of reconstructing the covariance matrix of noise. The method is

summarized below.

The parameter solution of the SEnRML method is a linear combination of the initial

ensemble anomalies A,

Xl = Xf +AWf , (5.14)

where Xf and Xl are the first guess and updated model parameter ensemble realizations,

respectively, and Wl ∈ RNxN is the matrix of weights. Solving the problem in this way,

the inversion process is naturally regularized. The weights are iteratively updated as

follows:

Wl+1 = Wl − γ
(
Wl − SlT (SlSlT +Cd)

−1Hl
)
, (5.15)

where γ is the Gauss-Newton step length, and Hl is the ‘innovation’ term (Evensen et al.,
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2019) defined as

Hl = SlWl +D− g(Xf +AWl). (5.16)

The only matrix that requires inversion in Equation 4.13 is SlSlT +Cd, where Cd is the

covariance matrix of the data noise, and Sl is the matrix of predicted and ‘deconditioned’

ensemble anomalies at iteration l. There are several options for inverting this matrix

as presented by Evensen et al. (2019). In the low-rank option, used in this work, the

covariance matrix of the data noise (in this case the model structural error) is approxi-

mated by the ensemble of noise realizations E, and the inversion of the referred term is

approximated by the following:

(SlSlT + EET )−1 =
(
UΣ+T

Z
)
(IN +Λ)−1

(
UΣ+T

Z
)T

, (5.17)

whereU, Σ+, are the eigenvectors matrix and the pseudo-inverse of the matrix of singular

values, derived from SVD decomposition of Sl. Matrices Z and Λ are eigenvectors and

singular values of the following:

Σ+UTEETUΣ+T
= ZΛZT . (5.18)

The final ensemble parameter update Xl+1 is calculated as

Xl+1 = Xf (I+Wl+1/
√
N − 1). (5.19)

5.2.4 Workflow

The workflow of the proposed methodology is summarized below:

1. Build a simple and a complex model. It is expected that the complex model in-

cludes several aspects of the system, not represented in the simple model, that are

candidates as potential causes of structural errors.

2. Run the complex model N times using random realizations of parameters (by pa-

rameters it is meant any uncertain aspect of the model that is of interest) to generate

a set of synthetic measurements.

3. Calibrate the simple model to the complex model synthetic measurements, generat-

ing a set of residuals (difference between measurements and simple model outputs).

4. Build the ensemble matrix O integrating each vector oi of measurements and resid-

uals for each i-th calibration, and generate the DSI-RES correlation model.

5. Condition the DSI-RES model to the real measurements d using MCMC (or any

other numerical means), and obtain realizations of model structural error E.
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6. Use the matrix E in history matching the simple model to d using the SEnRML

method (Evensen et al., 2019) and quantify predictive uncertainty.

Two situations can be thought of in real world modelling that would allow the modeller

to have a complex and a simple model available:

• The simple model is built first and predictive uncertainty has been quantified.

Several hypotheses of potential causes of structural errors in the simple model that

may affect predictions of interest are posed. A complex model is then built to

include these aspects that are not represented in the simple model. It is assumed

that, because of numerical instabilities or long runtimes, the complex model will

not be used for history matching, but only to estimate the structural errors in

the simple model. Still, it is necessary to run the complex model multiple times

to generate a set of synthetic measurements. In any case, the number of model

runs required should be significantly lower than the number of runs required to

history match the complex model to the data. After estimating the simple model

structural errors, they can be incorporated in the history matching process. After

applying the methodology, the updated predictive uncertainty can be compared to

the initial one, therefore assessing the impact of the structural errors in the simple

model. This will provide insights into the sensitivity of the simple model predictions

to the assumptions made on noise in the data.

• The complex model is built first, and the simple model is the result of a simplifi-

cation process done to improve run time efficiency, stability, or to better assimilate

data and quantify predictive uncertainty. The estimated model structural errors

can then be incorporated in the history matching process of the simple model,

and predictive uncertainty can be re-estimated. As the model is simplified, model

structural errors may increase, leading to a reduced capacity of the simple model to

extract information from the data, and therefore to quantify predictive uncertainty.

However, assuming the simple model is a more efficient tool (in terms of runtime

and stability) to perform history matching, a better exploration of uncertainty is

foreseen. Perhaps prior to embarking on the last step, the modeller could evaluate

if the level of structural error is acceptable, otherwise more complexity would be

required. A trade-off between model structural errors and predictive uncertainty

can then be evaluated.
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5.3 Numerical Example

5.3.1 Model Description

Groundwater inflows to an open pit are important predictions for the design of dewatering

systems, as they could lead to reduced operational efficiency and higher mining costs

(Beale et al., 2014). Groundwater inflows are the result of the intersection of the slope

with the saturated rock mass, due to the sequential excavation of a mineral deposit.

Two numerical 2D models, simple and complex, were built to simulate groundwater

inflows to a pit slope during 7 years over monthly stress periods, using MODFLOW-

USG (Panday, 2024; Panday et al., 2013). The hydrogeological units are represented by

three geological units: bedrock, overburden, and intrusive rocks, and two fault zones:

subvertical and horizontal faults. The geological units are assumed to have contrasting

hydraulic properties (see Table 5.1), where the overburden has the highest permeability,

and the intrusive rocks have the lowest. Fault zones are assumed to have higher hydraulic

conductivity values than the surrounding geological units, acting as preferential pathways

for groundwater flow. The complex model has a total of 250 layers and 200 columns,

resulting in a total of 50,000 cells. The lateral extension of the model is 500 m, and the

vertical extension is 400 m, resulting in 2 m-width cells. This high level of refinement

is assumed to be required to represent details on the distribution of geological units and

faults, the pit excavation, and the temporal changes on hydraulic properties, due to the

lithostatic unloading process. This process occurs as a result of the decompression of the

rock mass due to the excavation of the pit, leading to the development of a disturbance

zone (Hoek and Brown, 2019), which enhances the permeability and storage properties

of the rock mass near the pit slope, potentially increases the groundwater inflows to the

pit. The disturbance zone goes around 30% of the total excavation depth, as is modelled

with the following equation:

xf = xfmax − xfmax

(
1− zpb − z

0.3H

)
, (5.20)

where xf is the parameter multiplier, xfmax is the maximum value of the parameter

multiplier, zpb is the elevation of the pit bottom, and z is the elevation of the cell. This

is a simplification of the real process, as the disturbance zone is not a linear function

of the depth, but it is a good approximation for the purpose of this study. Changes of

hydraulic properties from their initial values are modelled as a function of the parameter

multiplier xf , using the TVM package of MODFLOW-USG. This is applied for hydraulic

conductivity, specific storage, and specific yield.

Time-varying recharge to the pit has also been included in the complex model, to add

another layer of complexity to the groundwater inflows predictions. A view of the complex
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model with the pit excavation at 4 selected years is shown in Figure 5.2, where it is possible

to observe the disturbance zone around the pit slope, the three geological units, and the

faults. The water table and piezometric contours as a result of running the model with

contrasting parameter values are also shown for illustration purposes.

Figure 5.2: Cross-section views of the complex model at four selected years of pit ex-
cavation, showing the distribution of geological units, fault zones, lithostatic unloading
zones, water table, and piezometric contours. The geological units, from top to bottom,
are: overburden (green), bedrock (yellow), and intrusive rocks (red). Fault zones are
represented in green, with damage zones shown in red. The lithostatic unloading zone is
depicted by lighter-coloured cells around the excavation zone.

The simple model is a coarse representation of the complex model, with 16 layers and 13

columns, resulting in a total of 208 cells. This level of refinement precludes the model

from representing geological faults, and the operational changes on hydraulic properties.

Therefore, the model includes only the geological units and the pit advance (in a simplified

fashion). Figure 5.3 shows the simple model with the pit excavation at 4 selected years,

and the water table and piezometric contours.

The complex model is considered the true model and is used to estimate the structural

errors of the simple model. It is run many times with different realizations of parameter

sets. A grid-scale parameterization scheme is used for the complex model, for hydraulic

conductivity, specific storage, and specific yield. The prior distribution of the parameters

is assumed to be log-normal, with a covariance matrix derived from an exponential var-
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Figure 5.3: Cross-section views of the simple model at four selected years of pit excavation,
illustrating the distribution of simplified geological units, water table, and piezometric
contours, as described in Figure 5.2.
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iogram model, with variable range. The hydraulic properties details are shown in Table

Table 5.1.

Time-varying recharge factors for each stress period are also considered uncertain, and

temporally correlated using an exponential variogram model with a range of 1 year. These

factors are applied at each stress period to a synthetic recharge time series, that simulates

the infiltration of water derived from sporadic rainfall events.

Table 5.1: Prior parameters for different properties and geological units of the complex
model.

Property Geological Unit Mean Min Max Sill Range Anisotropy Ratio

hk

Bedrock 5× 10−3 1× 10−4 1× 10−2 0.25 100.0 1.0
Overburden 5× 10−1 1× 10−2 5× 100 0.25 250.0 10.0
Subvertical faults 1× 10−1 1× 10−3 1× 100 0.25 250.0 1.0
Subvertical fault damage zones 1× 10−4 1× 10−5 1× 10−3 0.25 250.0 1.0
Horizontal faults 5× 10−1 1× 10−2 5× 100 0.25 250.0 1.0
Intrusive rocks 1× 10−4 1× 10−5 1× 10−3 0.25 100.0 1.0

vka

Bedrock 1.0 0.1 10.0 0.25 100.0 1.0
Overburden 10.0 1.0 100.0 0.25 250.0 10.0
Subvertical faults 1.0 0.1 10.0 0.25 250.0 1.0
Subvertical fault damage zones 1.0 0.1 10.0 0.25 250.0 1.0
Horizontal faults 1.0 0.1 10.0 0.25 250.0 1.0
Intrusive rocks 1.0 0.01 100.0 0.25 100.0 1.0

ss

Bedrock 1× 10−6 1× 10−7 1× 10−5 0.25 100.0 1.0
Overburden 1× 10−5 1× 10−6 1× 10−4 0.25 250.0 10.0
Subvertical faults 1× 10−7 1× 10−8 1× 10−6 0.25 250.0 1.0
Subvertical fault damage zones 1× 10−7 1× 10−8 1× 10−6 0.25 250.0 1.0
Horizontal faults 1× 10−7 1× 10−8 1× 10−6 0.25 250.0 1.0
Intrusive rocks 1× 10−6 1× 10−7 1× 10−5 0.25 100.0 1.0

sy

Bedrock 1.5× 10−3 1.0× 10−4 1.0× 10−2 0.09 100.0 1.0
Overburden 5.0× 10−2 5.0× 10−3 2.5× 10−1 0.0144 250.0 10.0
Subvertical faults 1.5× 10−3 1.0× 10−4 1.0× 10−2 0.09 250.0 1.0
Subvertical fault damage zones 1.5× 10−3 1.0× 10−4 1.0× 10−2 0.09 250.0 1.0
Horizontal faults 1.5× 10−3 1.0× 10−4 1.0× 10−2 0.09 250.0 1.0
Intrusive rocks 1.5× 10−3 1.0× 10−4 1.0× 10−2 0.09 100.0 1.0

A total of 100 realizations of the prior distribution of parameters were generated, and the

complex model was run for each of these realizations. Seven realizations did not result

in physically plausible groundwater inflows to the pit, and were discarded. Figure 5.4

shows the groundwater inflows to the pit slope for the remaining 93 realizations. As can

be seen in the figure, the first three years of the simulation are defined as the calibration

period, and the remaining four years are the predictive period. A total of 15 discrete

measurements of groundwater inflows, every 2 months, were extracted from each of the

93 realizations, and a measurement error with a standard deviation of 0.05 m3/d was

added to each of these measurements. One realization of these measurements is shown

in Figure 5.4 as red squares. A separated predictive dataset was also extracted from the

predictive period. For the sake of simplicity, only a selected subset of the predictive time

series is used to discuss the results. These predictions are called O19, O23, O27, O31,

and O39 and are shown in Figure 5.4.

The synthetic measurements were used as the observed data to calibrate the simple

model using regularized inversion with the support of PEST software (Doherty, 2023).
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Figure 5.4: Complex model - prior simulated inflows to the pit. The solid black line is the
mean, the grey-shaded area is the P25-P75 percentile region, and the external grey lines
are the P2 and P98 percentiles of the simulated groundwater inflows. One realization of
measurements extracted from the mean complex model are shown as red squares.
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Four parameterization schemes were tested for the simple model, two of them using grid-

scale parameterization, and other two using zones - zonal model - as the parameterization

device. Two recharge variations were tested in these cases, one with a constant recharge

to the pit, and another with time-varying recharge. Table 5.2 summarizes the cases tested

in this work. The calibration included the parameters listed in Table 5.1, and the recharge

factors for the time-varying recharge option. For the highly-parameterized model, two

calibration schemes were tested, one with a target of goodness of fit commensurate with

the noise level of the data, and another with a target comparable to five times more

noise. The number of estimable parameters in this case was 1,008, including the 176

recharge factors. For the zonal model, two recharge parameterizations were tested, one

with a constant recharge factor applied to the synthetic recharge time series, and another

with 176 time-varying recharge factors, each applied to a different precipitation event.

Then, the zonal model was parameterized with 13 estimable parameters in one case, and

189 in the other. Prior information, used for regularization purposes, was weighted as

the inverse of the standard deviation, or the square root of the sill (see Table 5.1). The

same geostatistical properties (sill and range) were used for the simple model (highly-

parameterized case) as for the complex model.

Plots of predictive groundwater inflows made by the complex model and the simple model

(‘s vs s’ plots) were generated to compare the predictions of the two models and identify

predictive bias incurred by the simple model. These are the first results that will be

presented in the next section. Calibration residuals of ’measured’ groundwater inflows

were also included in the ‘s vs s’ plots and analysed to identify calibration-induced bias.

Case (c) was selected to be further analysed in the presence of structural error. A DSI-

RES correlation model was built using an ensemble O of 93 realizations of measurements

extracted from complex model outputs and residuals derived from simple model cali-

brations. The DSI-RES model was conditioned to one specific measurement dataset d

selected from the complex model output realizations, using MCMC implemented in py-

DREAM. Posterior residuals that represent model structural errors were extracted from

the posterior ensemble O′, obtained from the MCMC Bayesian inference. A subset of

these realizations were used to build the ensemble matrix E. The simple model of Case

(c) was history matched twice: once with samples of noise drawn from a pdf that as-

sumes uncorrelated errors with a standard deviation of 0.05 m3/d, and another using the

ensemble matrix E, representing samples of model structural error. The low-rank version

of SEnRML was used to history match the simple model to d.

5.3.2 Results

Figure 5.5 shows the ‘s vs s’ plot for the case (a), where the simple model is highly-

parameterized and calibrated to observed data. Before discussing the results, an expla-
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Table 5.2: Simple model parameterization schemes and recharge options tested.

Case Description
(a) Highly-parameterized model Grid-based parameterization for hydraulic properties, time-varying recharge.
(b) Highly-parameterized, poorer fit Increased target measurement objective function
(c) Zonal model Cells are grouped into zones
(d) Zonal model + variable recharge time-varying recharge

nation of the figure is necessary. First, measured versus simulated groundwater inflows are

represented as red dots in the plot, along with the 1:1 line. Knowing that the number of

measurements is 15, the red dots correspond to the 93 realizations of measured-simulated

data pairs, each representing a different calibration of the simple model. It is useful to

visualize the spread of these points along the 1:1 line, and compare it to the spread of

predictive bias. Second, each of the six plots within the figure shows a distinct prediction

of groundwater inflows (O19, O23, O27, O31, and O39), as previously described, with

predictions becoming more temporally distant from the end of the calibration period. It

is expected that predictions that are closer to the calibration period will exhibit less bias

than those that are further away. Each of the black dots represents a pair of complex-

simple model predictions for each of the 93 calibrated models. The distance between the

best linear fit of the prediction pairs and the 1:1 line provides a measure of predictive bias

of the simple model. The spread of these points quantifies the predictive error variance.

As shown in Figure 5.5, the simple model of case (a) fits the data well, as evidenced by

the red dots being close to the 1:1 line. However, there is a clear bias in the predictions

made by the simple model, which tends to underestimate groundwater inflows to the

pit. More notably, the bias is stronger for higher flows. As expected, bias increases as

the prediction period extends further from the calibration period. For prediction O31,

the simple model is strongly biased towards lower values, causing the line of best fit to

deviate significantly from the 1:1 line. It is identified that prediction O31 corresponds to

a peak flow derived from a recharge event. Although prediction O27 is also a peak flow,

the bias is less pronounced in this case. When the target measurement objective function

is increased, i.e., allowing for a poorer fit to the data (case (b)), the predictive bias did

not change significantly relative to the case (a), as shown in Figure 5.6. This suggests

that predictive bias is not necessarily caused by the adjustment of the parameters to

all data, but rather by specific measurements that are more difficult to fit, particularly

groundwater inflow peaks resulting from recharge events.
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Figure 5.5: ‘s vs s’ plot for case (a). Scatter points of measured vs simulated data are
shown in red (repeated in every plot).

147



Figure 5.6: ‘s vs s’ plot for case (b). Scatter points of measured vs simulated data are
shown in red (repeated in every plot).

The zonal model (case (c) and case (d)) is tested next, and the results are shown in

Figure 5.7 and Figure 5.8. It is apparent that the zonal model with only one recharge

factor cannot fit the data to the level of measurement error. Moreover, its goodness of

fit is similar to that of case (b), the highly-parameterized model with a poorer fit. The

inability to fit the data is a consequence of the simplifications made in the model, but

paradoxically translates into less predictive bias compared to the highly-parameterized

model (cases (a) and (b)). In fact, the best linear estimate of the complex-simple model

prediction pairs is closer to the 1:1 line, and the spread of the points along the y-axis is

slightly reduced, as shown in Figure 5.7. Case (d) introduces 176 recharge factors to the

zonal model to test their effect on the goodness of fit and predictive bias. Interestingly, the

level of fit to the data improved significantly without a noticeable increase in predictive

bias, as shown in Figure 5.8.

The visual comparison of the ‘s vs s’ plots for the four cases can also be complemented by

analysing of the best linear estimate of the complex-simple model prediction pairs. This

fit is defined by the slope and intercept of the line that minimizes the sum of squared

differences between the prediction pairs and the best linear estimate. The slope is a

measure of how the bias changes with the magnitude of the prediction, and the intercept

reflects the basal bias that is present for all predictions made by the simple model. A

comparison of the slopes and intercepts for case (a) (highly-parameterized model) and
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Figure 5.7: ‘s vs s’ plot for case (c). Scatter points of measured vs simulated data are
shown in red (repeated in every plot).

Figure 5.8: ‘s vs s’ plot for case (d). Scatter points of measured vs simulated data are
shown in red (repeated in every plot).
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case (c) (zonal model) is provided in Table 5.3. First, the coefficient of determination

R2 is higher for the highly-parameterized model, indicating a clear relationship between

the complex and simple model predictions. Also, the slope of the best linear estimate

is always greater than 1.0 for the highly-parameterized model, with a maximum value

of 1.79. This shows that the bias produced by the simple highly-parameterized model is

more pronounced for higher flow predictions. Among the predictions, only O27 exhibits

an intercept greater than 0, which is consistent with the visual analysis of the ‘s vs

s’ plot, where the bias is relatively constant across a wide range of predictions. For

the zonal model, the slope of the best linear estimate varies, falling below 1.0 for some

predictions and rising above 1.0 for others. The maximum value of the slope is 1.14,

which is lower than the minimum slope of the highly-parameterized model. This provides

a quantitative measure of the reduced predictive bias in the zonal model compared to the

highly-parameterized case. However, reviewing the coefficients of determination reveals

that the relationship between the complex and simple model predictions is less clear for

the zonal model. This may be due to the fact that the zonal model was not able to fit

the data to the level of measurement error, as previously discussed. By including 176

recharge factors in the zonal model, the slope of the best linear estimate remains largely

unchanged, but the coefficient of determination increases slightly for all predictions.

Table 5.3: Comparison of the best linear estimated parameters between case (a) and case
(c). R2 is the coefficient of determination.

Prediction (a) Highly Parameterized Model (c) Zonal Model
Slope Intercept R2 Slope Intercept R2

O19 1.09 -0.41 0.69 0.48 1.12 0.34
O23 1.55 -0.38 0.72 1.16 0.19 0.64
O27 1.79 -2.15 0.57 0.13 4.01 0.03
O31 1.51 1.82 0.52 1.02 2.20 0.43
O35 1.71 -0.53 0.74 1.12 0.41 0.58
O39 1.66 -0.45 0.75 1.14 0.29 0.58

A DSI-RES model was constructed using the ensemble matrix O, which corresponds to

the set of 15 measurements and residuals obtained from the calibrating the simple model

(case (c)) 93 times. Realizations of structural error were obtained after conditioning the

DSI-RES model to a specific set of measurements (this is one realization selected from

the complex model output realizations). First, it is insightful to compare the covariance

matrix of noise under the assumption of uncorrelated errors (diagonal matrix, with a

standard deviation of 0.05 m3/d) to the covariance matrix of simple model structural

error as shown in Figure 5.9. The latter is an empirical matrix built from posterior

model residuals extracted from the posterior samples O′ of the conditioned DSI-RES

model. As shown in the figure, the covariance matrix of simple model structural error

(right) exhibits spatial correlation, with greater variance and covariance between different
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observations compared to the uncorrelated covariance matrix of noise (left). This better

reflects the nature of the structural defects of the simple model when history matching

is performed with a specific set of measurements.

Figure 5.9: Covariance matrices of (a) measurement error and (b) simple model structural
error, the latter generated with DSI-RES, for the set of 15 measurements that were used
in the calibration process. Note the difference in the colour scale.

As previously explained, the simple model was history-matched using SEnRML on two

occasions: first with the diagonal covariance matrix of error, and then using the ensemble

matrix E, which represents samples of simple model structural error. The ensemble

matrix E was built using a subset of the posterior residuals extracted from the posterior

ensemble O′. Figure 5.10 shows the history matching results for the simple model, using

the two different approaches. The case that includes a diagonal covariance matrix for

the noise is described as ‘Diagonal Cd’, and the case that includes the structural error

is described as ‘Structural Cd’. It is observed that the residuals are generally high for

both cases and very similar to the regularized inversion results previously presented. On

one hand, this reflects the inability of the simple model to history-match the data to

the level of measurement error (0.05 m3/d) when using a diagonal covariance matrix

commensurate with measurement error. On the other hand, the similar result obtained

when using the ensemble matrix E suggests that the structural error incorporated in the

history matching process is of the same order of magnitude as the minimum misfit that

can be achieved by the simple model, which is expected.

Figure 5.11 shows the predictive uncertainty ranges obtained for the six predictions of

groundwater inflows to the pit, for both cases. As depicted in the figure, the predictive

uncertainty ranges obtained using a diagonal covariance matrix fail to cover the true

values for all predictions and have very limited coverage of the true values for three of

the six predictions: O19, O27, and O31. In contrast, the predictive uncertainty ranges
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obtained by incorporating structural error in the history matching process cover the

true values for all predictions and exhibit reduced bias compared to the previous case.

Furthermore, the predictive uncertainty ranges are wider due to the inclusion of structural

error, which is greater than measurement error. It is also noted that lower groundwater

inflows (predictions O23, O35, and O39) generally exhibit less predictive bias for both

cases. Hence, including structural error in the history matching process did not make a

significant difference in reducing predictive bias.

The results of predictive uncertainty ranges presented in Figure 5.11 and discussed above

reveal that the simple model is not capable of extracting enough information from the

data, and that there is predictive bias in the predictions. Although the inclusion of

structural error in the history matching process did reduce predictive bias compared

to the case where only measurement error was considered, it appears that predictive

uncertainty is still overestimated for some predictions.
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Figure 5.10: Histograms of history-matched groundwater inflows for the 15 measurements
used in the calibration process.
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Figure 5.11: Predictive uncertainty ranges for the simple model.
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5.4 Discussion

Several key findings of this study merit discussion. These include model simplification,

data harvesting, predictive bias, and predictive uncertainty—each a critical aspect of

groundwater modelling for decision support.

The results clearly show that the simple model, under an underparameterized zone-based

scheme, could not fit the data to the level of measurement error. This is due to the

limited capacity of the model to act as a receptacle for the information contained in

the data. As a result, the compensatory roles of parameters are minimized with this

parameterization scheme, and the misfit reflects these model deficiencies (White et al.,

2014). Predictive uncertainty may be overestimated (although this is case-specific), and

predictive bias may be partially mitigated by the inability of the parameters to adopt

compensatory roles to fit the data. In contrast, the results for the simple model with

a highly-parameterized scheme demonstrated that it could fit the data better than the

zone-based model but incurred greater predictive bias. This outcome is a result of the

expanded capacity of the parameters to adopt compensatory roles to fit the data, which

is a well-known issue in groundwater modelling (Doherty and Christensen, 2011; White

et al., 2014). However, a key finding of this study is that, in this case, the predictions of

interest - groundwater inflows to the pit - were of the same nature as the data used for

calibration. Predictive bias was found to be greater for the highly-parameterized model

than for the zone-based model. It has been argued that in such cases, the damage to

the predictive capacity of the model might be minimized, as the compensatory roles of

the parameters in fitting the data could produce a similar compensatory effect in the

predictions (Doherty and Christensen, 2011; White et al., 2014). This is characteristic of

data-driven models. In line with this, some authors (for example, Knowling et al., 2019)

have suggested that increasing the parameterization complexity of a simple model could

reduce predictive bias, supporting the ‘structurally simple but parametrically complex’

paradigm. However, based on the results of this study, it can be argued that this is not

always the case. Modellers cannot be fully aware of all the structural defects of a model

relative to the unknown reality, nor they can discount the possibility that some of these

unknown defects will contribute to predictive bias. This issue is inevitable, even when

building a prediction-oriented and strategically abstract representation of a groundwater

system (Doherty and Moore, 2020). Therefore, caution should be exercised when history

matching a highly-parameterized simple model to the level of measurement error, as

this may result in greater predictive bias than with a zone-based simple model that is

considered poorly calibrated. Aware of this issue, modellers must consider the bias-

variance trade-off (Hastie et al., 2009) when performing history matching and predictive

uncertainty quantification.

The results of the history matching process of the simple model using an ensemble ma-
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trix of structural error demonstrated that predictive bias was reduced and predictive

uncertainty slightly increased compared to the case where only measurement error was

considered. While it is recognized that wide predictive uncertainty ranges might not be

desirable for decision-making, models with large predictive bias and narrow predictive

uncertainty ranges might also be unsuitable for decision support, as their quantified pre-

dictive ranges might fail to encompass the true values of the predictions. Given that

most groundwater models are imperfect representations of reality, it is advisable to in-

clude structural errors into the history matching process to minimize predictive bias.

However, this comes at the necessary cost of increasing predictive uncertainty due to

limited capacity of extracting information from the data. Achieving a balance between

the model complexity and structural uncertainty is essential to minimize both predictive

bias and uncertainty underestimation. The proposed methodology could be used to serve

this purpose, but it is acknowledged that finding this balance is a monumental task.

The generation of random realizations of structural error estimates was achieved using

the DSI-RES model, conditioned on a set of measurements. This represents an innovative

application of data space inversion Sun and Durlofsky (2017) to a problem distinct from

its traditional use. The numerical example presented in this study demonstrated the

successful integration of structural errors into the history matching process of a simple

groundwater model using the subspace ensemble randomized likelihood method (Raanes

et al., 2019; Evensen, 2021). To the author’s knowledge, this is the first application of

this method, including structural errors, to a groundwater modelling problem.

Several limitations of the proposed methodology and the presented results should be

acknowledged. First, implementing the methodology requires running the complex model

multiple times to generate an ensemble of measurements and residuals. This can be

computationally expensive, especially if model runtimes are long, even for a small number

of realizations. Second, the statistical representation of the correlation model between

measurements and residuals assumes linear relationships. If the model exhibits significant

nonlinearity, the methodology may fail to capture the full characteristics of structural

error, particularly with a limited number of realizations. Finally, the methodology was

not tested on the highly-parameterized simple model, which could have provided insights

into the effect of structural errors on predictive bias and uncertainty in these parameter

settings. However, as the fit to the data improves, less information about structural errors

can be extracted, potentially reducing the effectiveness of the methodology. This is left

for future work.

5.5 Conclusions

In this work, two critical aspects of history matching and predictive uncertainty analysis

in groundwater modelling were addressed.
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First, the predictive bias of a simple model was evaluated using the ‘s vs s’ plot approach

of Doherty and Christensen (2011), comparing predictions of groundwater inflows to an

open-pit operation made with a complex model to those made with a simple model cal-

ibrated against complex model outputs. Several parameterization strategies were tested

for the simple model, including grid-based and zonal models, and time-varying recharge

factors. It was found that the simple model, under a highly-parameterized scheme, could

fit the data well but incurred greater predictive bias than the underparameterized zone-

based model. This bias difference is due to the expanded capacity of parameters in the

highly-parameterized model to adopt compensatory roles to fit the data, and predic-

tive bias was increased notwithstanding the fact the data was of similar nature to the

predictions.

Second, a new methodology was developed to estimate and incorporate structural errors

into the history matching process of a simple model. The methodology involves using

an ensemble of measurements and residuals obtained from calibrating a simple model to

complex model outputs to build a linear statistical correlation model (DSI-RES model)

using data space inversion in an innovative way, which is then conditioned on a specific

set of measurements to generate realizations of structural error. These realizations are

subsequently used as samples of structural error in the history matching process of the

simple model with the aim of minimizing predictive bias and increasing predictive uncer-

tainty. The methodology was demonstrated by history matching the simple model both

with a diagonal covariance matrix of measurement error and with the ensemble matrix

of structural error and comparing the predictive uncertainty ranges obtained for the two

cases. It was found that predictive bias was reduced, and predictive uncertainty slightly

increased, when structural errors were included in the history matching process. These

are key metrics for effective groundwater modelling for decision support, as quantified un-

certainty must accommodate all contributors to uncertainty, including those forthcoming

from model simplification.
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Chapter 6

Conclusions

6.1 Summary of findings

The following is a summary of the main findings of this research:

1. A comprehensive and mathematical unifying framework was developed to analyse

the assumptions, benefits and limitations of existing methods of inverse modelling,

history-matching and uncertainty quantification in groundwater modelling. Meth-

ods new to the groundwater community, such as SEnRML, and localization strate-

gies developed and tested within the petroleum engineering community, were also

included and tested in the groundwater context.

2. The value of separating calibration and uncertainty quantification was demon-

strated, as it allows for assessment and updating of the prior. This can be performed

using an empirical Bayesian approach, where the prior is updated using model cali-

bration results. It was demonstrated that by implementing this approach, predictive

uncertainty is not underestimated.

3. Acknowledging the uncertain nature of the subsurface, a new method was devel-

oped to accommodate nonstationary priors, that may act as a surrogate for the

representation of discrete geological features that is amenable to adjustment during

history-matching. The method was incorporated in history matching, confirming

its potential to infer nonstationary aspects of the geological medium from the mea-

surement dataset.

4. A method for generating realizations of structural error was developed using data

space inversion, and the value of incorporating this information during history-

matching was demonstrated reducing predictive bias and increasing the predictive

uncertainty. Important conclusions were drawn about whether the use of many

parameters to obtain a good model-to-measurement fit may, for some predictions,

158



be an inferior method for data assimilation than use of a parsimonious parameter-

ization scheme accompanied by adequate representation of structural error in the

inversion process.

6.2 Future work

The exploration of uncertainty in the prior and the accommodation of model structural

defects in the likelihood is a complex problem that requires further research. In this work,

an advance in the understanding of the problem has been made, and potential solutions

have been proposed as part of new methodologies. However, several questions, some

of which were partially explored during the PhD journey (not presented here), remain

unanswered. The following is a list of potential future research directions:

1. Prior inference from model calibration results is a promising approach to update

the prior probability distribution of the parameters in a groundwater model, before

embarking on the predictive uncertainty quantification process. However, it is im-

portant to acknowledge that the prior will be always wrong not necessarily because

of its misspecification, but because of the model structural defects. Research is

required to evaluate how the prior must be updated to accommodate these model

defects. An initial step in this direction was presented by Mathews and Vial (2017).

2. As part of this PhD it was demonstrated that the ensemble methods suffer from

nonlinearity, limiting the ability to quantify predictive uncertainty. Research is

needed to explore ways to overcome this limitation. Research opportunities include

the development of new methods to perform ensemble filtering of the prior ensemble

ahead to history-matching.

3. Also, as part of this PhD, model defects were identified using the paired simple-

complex model approach. Then a statistical linear correlation model (DSI-RES

model) of the structural model error was generated and used in the history-matching

process. Part of this methodology can be improved by allowing the estimation

of structural model error between iterations. This has been done in the past by

Oliver and Alfonzo (2018); Lu and Chen (2020); the DSI-RES approach could be a

potential alternative to this worth testing.
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