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ABSTRACT 

After passing through several decades of the emergence of aerothermoelastic problems, these 

problems are still conveniently considered by many modelers as an extension of aeroelastic 

problems. There is no doubt that by means of numerous useful methodologies proposed in the area 

of aeroelasticity, there now exist a range of sound strategies that potentially possess certain 

capabilities in solving a diverse range of problems arising in this area. However, it is evident from 

the literature that in situations where heating impacts become significant, the well-established 

framework of classical aeroelasticity would be unable to explain the true causality of the ongoing 

aerothermoelastic phenomena. 

It is known that the classical fundamentals of aeroelasticity are based on assumptions (such as 

separation principle or weak connectivity) that largely ignore the thermal connections between the 

various physical fields of a system within which aerothermoelastic phenomena exist. Although the 

impact of neglecting the thermal connections could be added into the solution of each filed of the 

system, the real interactive nature of the thermal connections between the various fields (that could 

have significantly changed the dynamics of the system if considered), has been completely lost in 

this process. As a result, the true physical links between the various fields measured by the 

universal principle of conservation of power transactions are no longer held. Reinstalling these 

physical links will require a reconstruction of the fundamental assumptions upon which the 

aerothermoelastic phenomena of the system can be truthfully reflected. 

Indeed, the classical decomposition of aerothermoelasticity into aeroelastic, aerothermo, and 

thermoelastic behaviors lacks a generic means with which the overall dynamics of the system can 

be effectively decomposed into components whose (i) energetic interactions can obey the universal 

conservation rules, (ii) are tractable, (iii) and can uncover the hidden details of the system’s 

physical insights. This is because the elements used to decompose the system in the classical 

approach stay at a level that is higher than the level expected for enabling the unveiling of the 

system dynamics in such detail. Currently, to compensate for this deficiency, modelers rely heavily 

on the use of mathematical constrains (such as filtration and stabilization) as well as powerful 

computers, which has led to the development of drastically high-order models valid only within a 

limited operational range. The desired elements that can reveal the hidden physical insights of such 

complex phenomena are evidently required to be at a level that can directly reflect the primary 
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energetic interactions of the system and physically link the fundamentals of each of the fields 

involved. 

In this thesis, an energy-based aerothermoelastic framework resulting from a unique 

decomposition of each of the involving fields of a system into a set of physical subdomains (e.g., 

thermal, kinetic, potential subdomains) is suggested. Given that the physical subdomains are alike 

in any fields, by generating their isomorphic models regardless of the field (i.e., domain-

independent modeling), the conservation of continuous power transactions within each of the fields 

and between the fields at their interface can then become realizable. This novel strategy leads to a 

complete conservative coupling between all fields involved.  

In this study, physical system theory in terms of Bond Graphs (BG) is employed to generate 

the proposed energy-based framework including domain-independent isomorphic components. 

The dynamics of the system are constructed from the reversible and irreversible dynamic 

interactions of the energetic components of the existing subdomains. Given that the energetic 

components are similar in different subdomains and that the interactions between the energetic 

components in different subdomains follow a similar pattern, the BG implementation can produce 

not only isomorphic models of counterpart physical subdomains between different fields, but also 

isomorphic models of all physical subdomains involved in the coupled fields. As a result, not only 

is the continuity of both the intra-field and inter-field power transportation satisfied, but also the 

possibility of tracking power transformation is provided. The conservation of power transactions 

of the entire system is thus guaranteed. The proposed methodology provides the ensuing 

framework with an intrinsically physical ability to control the data transactions between the 

coupled fields. The resulting conservative energetic framework of the system also allows modelers 

to check the well-posedness of the system before extracting state equations – a desirable capability 

for complex system dynamic investigations. 

To generate the proposed aerothermoelastic framework, (i) each field is first decomposed into 

its initial physical subdomains; (ii) the energetic components of each subdomain is then defined 

with respect to the geometrical and material properties of the field; (iii) the dynamics of each 

subdomain are generated from the energetic interactions of the present components; (iv) the 

dynamics of each field are generated from the reversible and irreversible interactions of the present 

physical subdomains; (v) finally, based on power continuity between coupled fields and possible 

connections between fields’ energetic components at the interface, a unique conservative coupled-
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aerothermoelastic model of the system is generated through connecting the corresponding pairs of 

physical subdomains of the coupled fields. For coupled fluid and solid fields, (v) can be done if 

and only if the compatibility between the fixed Eulerian frame of the fluid field and the moving 

Lagrangian frame of the solid field can be addressed satisfactorily. To address this issue, a Variable 

Interface Dynamic Adaptation (VIDA) technique is proposed where the likely motions of the 

Lagrangian solid frame is translated into a reversible volumetric flow of the fixed Eulerian fluid 

frame. The compatibility of the two frames is satisfied and the required information at contact 

surface is refined at any instant in time to keep the power transactions at the interface continuous. 

Using the proposed aerothermoelastic framework, an energetic network of the system is 

generated that can illustrate continuous reversible and irreversible power transactions among 

various subdomains and between coupled fields, and offer details in relation to memory, physical 

characteristics, and well-posedness of the system. This unique feature is critical for analyzing the 

complex multi-physical multiple-field behaviors of the system. As the model is developed without 

employing the typical slow-thermal-dynamics and weak-connectivity assumptions and with no 

additional mathematical constrains, the model is principally valid in an extended range much wider 

than its conventional counterparts. Undoubtedly, the proposed energetic network of the system can 

be a useful tool for developing control strategies and for energy management of the system. The 

novel framework proposed and implemented in this thesis provides a unique integrated platform 

based on which the aeothermoelastic phenomena in multi-physical-domain multiple-field systems 

can be modeled univocally while reflecting the true physical nature of such complex phenomena. 
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1. The emergence of Aero-thermo-elasticity  
For several decades, it appeared that the growth of aeroelasticity science was a sufficient basis 

for the design of different kinds of moving structures; however, by the early 1950’s, as higher 

speed for moving structures (e.g., high performance rotary machines) was demanded, entirely new 

aeroelastic problems were encountered [1]. After a decade of intense investigations, it was revealed 

in [2] that unpredicted structural vibrations resulting from weakened structures are the main cause 

for the majority of these problems.  

Relevant research suggests that substantial unknown thermal impacts on elastic moduli might 

be to blame for the unpredicted aeroelastic behaviors of structures [3]. These impacts have been 

attributed to various internal dissipation mechanisms, of which inelastic effects appear to be 

predominant. The increased importance of residual stress, creep, and material deterioration 
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associated with thermal effects leads to a greater consideration of the cumulative effects of 

thermally entangled aeroelastic loads.  

In addition to the undesirable effects of high temperatures on the modulus of elasticity, there 

is another effect of heat which can be very important even at moderate temperatures, i.e., the effect 

of internal thermal stresses [4]. Thermal stresses can arise from rapidly changing conditions of 

heat input where time lags are involved, or from equilibrium conditions where thermal gradients 

occur. Thermal gradients result in incremental tension and compression stresses in different 

regions of a structure. Commonly, but by no means inevitably, a thermally stressed structure has 

a lessened net stiffness available to resist both static loads and inertia loadings associated with 

vibrations.  

The foregoing problems have exemplified the necessity of Aerothermal investigations along 

with Aeroelastic considerations in structural analysis. Thus, the purely scientific aspects aimed at 

the prediction and understanding of this area, as well as the engineering or technological aspects 

aimed at simplified criteria, reliability, safety, and structural efficiency and integrity, are required 

to be refined with respect to the aforementioned added complexities. Since these aspects 

intrinsically are connected, it is necessary to pursue both aspects via modeling, analysis, and 

controlled experiments, and through specific component testing, environmental studies, and large-

scale investigations. This is why the “Aerothermoelastic field will be continuing to offer 

challenges for many years to come for both science and technology [4]”. 

1. Classical definition of Aero-thermo-elasticity 

A classical definition of aerothermoelasticity was first defined via the inclusion of the effects 

of heat inputs, H, into the collar’s aeroelastic triangle [4], known as the aerothermoelasticity 

tetrahedron – presented in Fig. 1-1. In this presentation, the aerothermoelasticity is dealt with by 

broad interdisciplinary aspects of four distinguished areas: aerodynamic (A), inertia (I), elasticity 

(E), and heat (H). 
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 Tetrahedron illustration the interrelationships of Aerothermoelasticity [4] 

The six edges of the aerothermoelasticity tetrahedron present:     

• E-I; Vibration, representing mechanical vibrations and structural dynamics with typical 

problem areas of determination of modes and frequencies of structures. 

• I-A; Stability, including rigid-body aerodynamics as well as stability and control related 

problems. 

• A-H; Aerothermodynamics, including problems relevant to shock waves and 

atmospheric heat inputs. 

• H-E; Thermoelasticity, including calculations of thermal stresses, heat transfers within 

materials, and buckling phenomena. 

• A-E; Static Aeroelasticity, including the classical field of static aeroelasticity due to 

deformation and air loads, including divergence and control reversal. 

• H-I; Thermal Molecular Processes, including problems related to thermal shock 

phenomena.  This is ordinarily a weak link on a macroscopic basis; however, it is a 

strong link for molecular processes in materials. 

Along with the edges of the tetrahedron, the four triangular surfaces present the domains of 

interaction of the respective disciplines designated by their boundary links: 

• A-E-I; Aeroelasticity, presenting the well-known Collar’s aeroelastic triangle including 

problem areas such as dynamic aeroelasticity, flutter, buffet, and perhaps control feedback through 

aero-servo-elasticity. 
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• A-H-I; Stability and Heat, presenting the problems relative to stability and control, 

including the dynamics of shock waves and thermal shock in the fluid field. 

• A-H-E; Static Aerothermoelasticity, presenting the effects of heat on static aeroelasticity, 

including the problems such as ablation, warping, and determination of associated aero loads. 

• H-E-I; Vibration and Heat, presenting such effects as those of heat on vibration modes and 

frequencies, on moduli of materials, and on fatigue; including the problems relative to materials 

not only in the sense of determination of their properties for given engineering materials, but also 

in the more fundamental sense of development of the components of the desired properties. 

• A-H-E-I; Aerothermoelaslicity, presenting dynamic aerothermoelasticity, including the 

interactions of the aforementioned ten fields. 

2. Literature review 

Aerothermoelasticity was a vibrant and active area of research in the late 1950’s and during 

the 1960’s. As is evident from [5] [6] [7], the solutions to problems in such a multidisciplinary 

area are mainly defined with respect to the following fundamental questions: 

• whether to separate or combine the problem areas;  

• whether the problems can be treated sequentially by aero-thermal, thermo-elastic, and 

aero-elastic methods;  

• whether the problem can be regarded as static or a quasi-steady time-varying procedure, 

or by truly unsteady flow methods.  

The answers, subsequently, will be strongly dependent on various time factors in the domains, 

as well as structural concepts and detail designs.  

There exist several early publications, such as [5] [4] [8] [9] [10], providing insight into the 

salient aspects of aerothermoelasticity on the basis of its classical definition. The main 

achievement of these studies, upon which the solution strategies toward aerothermoelastic 

problems has been designed, is the illustration of the degree of coupling between the aerodynamic 

heating, aerodynamic forces, inertial forces, and elastic forces. As shown in Fig. 1-2, the impacts 

of elastic forces on aerodynamic heating is seen to be negligible, the inertial forces and 

aerodynamic heating are shown as uncoupled domains, and the aerodynamic heating is viewed to 
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have no impact on aeroacoustics inputs. Accordingly, by neglecting the mutual coupling between 

the elastic forces and heat transfer process, the aerothermoelastic problem was simplified to an 

aerothermal problem together with a separate aeroelastic problem [10]. 

  
 Degree of coupling for the domain of Aerothermoelasticity [9] 

 
 Proposed process for including thermal effects into the finite element analysis of an aerodynamically 

heated structure [11] 
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The implementation of this terminology in finite element analysis (FEA) was first presented in 

[12] on the basis of the diagram depicted in Fig. 1-3. In this algorithm, the aerothermal solution is 

obtained first, and the aeroelastic analysis is then carried out on the updated structure. The main 

advantages of the implemented decomposition is the credibility of the already generated 

aeroelastic theories, methods, and tools to be directly applied to aerothermoelastic problems. 

The most common aeroelastic theory reused for aerothermoelastic problems is the piston 

theory, which yields a point function relation between the unsteady pressure on the surface of the 

panel and its velocity normal to the surface. By implementing the piston theory, the aerodynamic 

loads are generated, and added as inputs for structural analysis. The accuracy of this simple 

aerodynamic theory is often considered appropriate for preliminary calculations. For low to 

moderate Mach numbers, i.e., 1.2 < M < 2, the Van Dyke’s version [13] [14] is often used. For 

moderate regime of 2 < M < 4, the Lighthill’s version [15] is employed commonly in first-order 

form. For higher Mach numbers, the Lighthill’s nonlinear piston theory is preferred [16]. Although 

the implementation of this theory has helped to enhance the conceptual understanding of the 

phenomena, clarifying the valid range of the generated analysis in different situations remains to 

be an issue, as there is no direct interactive link to address the relationship between the considered 

components of the decomposed phenomena. 

A fairly comprehensive survey of nonlinear aeroelastic studies which define the valid range of 

the piston theory can be found in [17] [18] [19] [20]. An important issue in these studies is the 

validity of the piston theory aerodynamics, widely used for 1.8 < M < 5.0. While it is known that 

the piston theory is not valid for large Mach numbers [15], the actual upper bound is difficult to 

specify since it depends on the thickness of the geometry considered. Some researchers have 

suggested that the piston theory is generally valid for 3 < M < 10 [21]. However, preliminary 

results presented in [22] indicate that this issue warrants further study.  

In [10], the third-order piston theory, Euler, and Navier-Stokes aerodynamics were used to 

calculate the pressure on a typical panel in high Mach numbers. At M = 10.0, there was only a 5% 

difference between the unsteady pressure coefficient calculated using the third-order piston theory 

and that calculated using an exact solution to the Euler equations. However, there was 

approximately a 60% difference between the Euler solution and the pressure coefficient calculated 

using a numerical solution to the Navier-Stokes equations.  
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This result illustrates that at certain conditions, a solution to the Navier-Stokes equations may 

be needed for accurate prediction of the unsteady aerothermo loads. Since in higher Mach numbers 

the velocity perturbations are large as compared to the ambient speed of sound [23], the need to 

retain nonlinear aspects of the governing equations becomes significant. This makes the analysis 

of aerodynamic loading inherently more difficult than in other regimes. Furthermore, as the Mach 

number is increased, the shock, which is very strong, moves close to the body while the boundary 

layer grows rapidly. Therefore, viscous interactions between the outer inviscid flow, the shock, 

and the boundary layer become significant. Also, extreme temperatures are present in both the 

inviscid flow behind the shock and the boundary layer, due to significant flow compression and 

viscous dissipation. This intense aerodynamic heating can cause dissociation and ionization within 

the gas, resulting in chemically reacting boundary layers [24] [25] [26]. Thus, the proper solution 

to the aerodynamic problems within this regime can only be obtained by solving the unsteady 

Navier-Stokes equations which include high temperature effects, a task that presents a significant 

computational challenge.  

To diminish the computational challenge while still providing a desirable solution, an 

improved method for calculating quasi-steady generalized forces using steady CFD calculations 

was proposed in [27]. Separate solutions for the real and imaginary portions of the pressure were 

obtained using carefully constructed boundary conditions reflecting the unsteadiness of the flow. 

It was observed, by comparing results with complete unsteady CFD calculations, that the CFD-

based quasi-steady approach offered an improvement in accuracy over the linear piston theory 

[27]; however, the level of accuracy was not satisfactory for the desired range of applications.   

Consequently, no solutions remained other than the implication of complete unsteady CFD 

calculations for the problem, along with reduced order models (ROMs). In [28], a CFD based 

aeroelastic analysis of X-43 configuration was performed, using system identification based on 

order reduction of the aerodynamic degrees of freedom. The system identification was carried out 

using an Auto-Regressive Moving Average (ARMA) model, which describes the modal response 

force of a system at a given time as a summation of scaled previous outputs and scaled values of 

modal displacement inputs. Surprisingly, it was shown that ARMA Euler calculations predicted 

somewhat similar results to high order piston theory. To verify this possibility, in [29] the unsteady 

aerodynamics results obtained from CFL3D solver and specified NASA CFD solver were 
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compared to those computed using a modified version of the third-order piston theory. It was 

concluded that a quasi-steady aerodynamic theory such as the third-order piston theory can be a 

valid approach to calculate the unsteady aerodynamic loads. The results indicate that in spite of 

employing more detailed solutions, the level of accuracy remains unchanged. This fact points the 

accusation at the level of data transaction between the fluid and solid fields. 

Given that the incomplete understanding of the fluid-structure interactions may have been the 

cause of this problematic part of the aerothermoelastic studies, researchers were led to include 

more details in data transactions between the fields. However, since the combination of several 

different computational tools (CFD solver, structural solver, and heat transfer solver) is required 

for performing an aerothermoelastic analysis, significant data transfer between different 

computational tools becomes an issue to address. Several studies have focused on developing 

codes to efficiently combine these components. In [30], using the finite element method, the flow, 

thermal, and structural analyses were coupled into one integrated code. The aerodynamic pressure 

and heating were determined by solving the Navier-Stokes equations, and the internal dynamics 

of the structure were obtained by solving the Helmholtz free energy equations. Results indicated 

that at higher Mach numbers (M = 6.6), structural deformations due to aero-thermo loads introduce 

unforeseeable phenomena in the flow (such as shocks, expansions, and recirculation regions), and 

the heating rate distributions were altered significantly. As a result, the weak connectivity 

assumption (frequently used in former solutions for interface problems) seems to be no longer 

evident in aerothermoelastic analysis. Although this detailed approach revealed some hidden 

aspects of fluid-solid interactions, it brought new significant problems into the stage which limits 

the applications of such approaches. The problems are related to the different coordinate frames 

implemented for solid and fluid fields and, more importantly, to the control of data transactions 

between the solvers – the latter is associated with attaining dynamic data transfer between the 

fields and avoiding double counting of the physical impacts. 

The application of dynamic meshing strategies was chosen to address the problem related to 

the incompatibility of the Eulerian-Lagrangian coordinate frame. In [31], an implicit/explicit 

upwind cell-centered finite element algorithm coupled with an adaptive unstructured finite element 

re-meshing technique was examined in order to study the fluid-thermal-structural interaction of 

aerodynamically heated leading edges. The analysis was validated with experimental results of a 
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cylinder in M = 8.0. A loose coupling of these codes was achieved by selecting a master surface 

for a specific variable, and interpolating/projecting that variable to the other codes at each time 

step. Although the algorithm provided a cost-effective means of using existing CFD (fluid solver), 

CSD (structural solver), and CTD (thermal solver) codes with minimal alterations, the 

mathematical based data transactions necessitate significant computational cost for more complex 

geometries. 

In a recent study [32], an integrated CFD-CSD-CTD solver for aerodynamic heating analysis 

and aerothermoelastic stability analysis was developed to reduce the computational cost of the 

aforementioned data transactions. The fluid, structure, and mesh dynamics were solved separately 

in a serial manner, and the solutions from each of the computational domains were then transferred 

via the interface boundary to account for interaction effects. The proposed aerothermoelastic 

formulation was in principal an extension of a previous aeroelastic formulation developed in [33]. 

In the aerothermoelastic analysis, only one-way thermal coupling was considered. Furthermore, 

stress and deformations due to temperature changes were included; however feedback was 

neglected between the stress/deformations and the aerodynamic heating computations. It is 

therefore deduced that the reduction of the computational cost offered by the proposed formulation 

in that study is achieved at the cost of depleting the physical nature of the problem.  

From the reviewed literature it can be concluded that the physical gap resulting from the initial 

assumptions (developed to permit a sequential solution) cannot be satisfactorily filled by merely 

increasing the computational costs, unless some aspects (such as those described above) of the 

phenomena become neglected. This fact can indicate the limiting role of the fundamental 

assumptions in defining the capacity of the existing solutions.  

Overall, it is well known that aerothermoelastic phenomena is a multidisciplinary problem and 

has an influence over a wide range of operational conditions. This makes the study of this field 

severely challenging without the use of a varying degree of approximations to separate the different 

aspects of the phenomena. As stated by Bisplingoph in [5], “Since the time constants of the 

thermoelastic processes are usually considerably greater than those for the aerothermal and 

aeroelastic processes, indeed, there is very strong motivation for the structural designer to plan to 

separate as far as possible the severest regions of these three processes”. This permission has led 

to the establishment of highly operational methodologies and tools within this area of study. 
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However, from the literature, it can be concluded that the existing framework on the basis of the 

permission of separation has reached its maximum capacity in truly understanding the ongoing 

phenomena.  

One should consider that the motivation of separation is acceptable so long as it does not 

become a barrier to improvement, even after establishing highly operational frameworks. The 

challenges revealed in the aforementioned studies highlight the amount of extra attempts (e.g., 

expensive computational cost in data transactions between the solvers) made to maintain the core 

assumptions underpinning the separation motivation [5] [4] [8] [9] [10]:  

• Thermodynamic coupling between heat generation and elastic deformation is 

negligible;  

• Dynamic aeroelastic coupling is small, i.e. the characteristic time of the aerothermal 

system is large relative to the time periods of the natural modes of the aeroelastic 

system;  

• Static aeroelastic coupling is small, i.e. total elastic deflections are insufficient to alter 

the temperature distribution.  

Although the understanding of aerothermoelasticity up until this current stage was almost 

unmanageable without making use of these fundamental assumptions, as stated in [34], “it is 

evident that the intricate interaction of aerodynamic heating on the oscillating structure, over a 

wide range of operating conditions, is yet far from well understood”. This fact indicates an existing 

gap in this area of knowledge. To address this knowledge gap, a rethink of the existing assumptions 

tomove towards bringing the neglected part of the phenomena back into consideration may be 

required.  

3.  Shortcoming of the current approaches 

Considering the reviewed literature, it is clear that after passing through several decades of the 

emergence of aerothermoelastic problems, these problems are still conveniently considered by 

many modelers as an extension of aeroelastic problems. There is no doubt that by means of 

numerous useful methodologies proposed in the area of aeroelasticity, there now exist a range of 

sound strategies that potentially possess certain capabilities in solving a diverse range of problems 

arising in this area. However, it is evident from the literature that in situations where heating 
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impacts become significant, the well-established framework of classical aeroelasticity would be 

unable to explain the true causality of the ongoing aerothermoelastic phenomena. For instance, in 

[10], although the unsteady solution is employed for the flow, the data transformations between 

the generated component of the decomposed area has decreased the accuracy level of the total 

solution to a level that can also be generated via  a quasi-steady method. This vicious circle can be 

an indicator of the shortcomings of the physical knowledge when defining the thermal interactions 

between the components in the classically decomposed aerothermoelastic area. Accordingly, one 

can see that the consideration of aerothermoelasticity as the extension of aeroelasticity has brought 

researchers to an undeniable limitation, which even with costly mathematical computational 

solutions cannot be improved.  

It is known that the classical fundamentals of aeroelasticity are based on assumptions (such as 

separation principle or weak connectivity) that largely ignore the thermal connections between the 

various physical fields of a system within which aerothermoelastic phenomena exist. Although the 

impact of neglecting the thermal connections could be added into the solution of each filed of the 

system, the real interactive nature of the thermal connections between the various fields (that could 

have significantly changed the dynamics of the system if considered), has been completely lost in 

this process. As a result, the true physical links between the various fields measured by the 

universal principle of conservation of power transactions are no longer held. Reinstalling these 

physical links will require a reconstruction of the fundamental assumptions upon which the 

aerothermoelastic phenomena of the system can be truthfully reflected. 

As just mentioned, by using the classical definition of aerothermoelasticity, the conservation 

of power transactions that can be a physical foundation for generating a universal controlling tool 

for data transactions between the solid and fluid fields, cannot be granted. Therefore, although 

each of the solvers can generate an accurate behavior of the field within the solver’s valid range, 

the data transactions between the solvers by no means possess a physically-based dynamic nature. 

As concluded in the literature, the highest level of accuracies for the fluid and solid fields mainly 

belongs to the solutions of the Novier-Stokes [36] equations and the Helmholtz free energy [37] 

equations, respectively. Considering the different extensive variable choices in these approaches, 

the generated models for both the solid and fluid fields become domain-dependent [38] in nature, 

especially in their respective thermal subdomains. This feature makes the dynamic coupling of the 
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thermal subdomains of the two fields on the interface impossible to implement. Consequently, the 

entropic interactions between the two fields remain ambiguous. Although these interactions may 

be negligible [39] in comparison with mechanical interactions, the disregard for this factor will 

bring questions to the conservation of power transactions between the two fields. Accordingly, 

while the generated models are capable of providing a clear picture of the ongoing dynamics of 

the system, they are seen to be unsuitable for providing a useful and unbroken root upon which the 

physical memory of the system underpinning the energy conservation law can be firmly 

established. As a result, the remaining strategy for connecting the two models is to generate 

separate loads for the shared boundary at the interface, instead of following the power transactions 

(Fig. 1-4). This strategy on the one hand leaves no means for generating a conservative dynamic 

data transaction, and on the other hand leads to a tremendous computational cost.  

 
 Physical shortcoming of classical decomposition 

On the basis of the physical system theory, to generate such conservative data transactions 

between the fields, the general dynamics of the system are required to be generated from the 

constructive elements that can connect the dynamics of the system to the energetic interactions of 

the existing subdomains [40]. However, in the classical aerothermoelasticity, the level of 

decomposition (which is mainly phenomenon based) is higher than the level in which the 

constructive elements of the dynamics of the system exist. This leaves no generic means for a 

component to relate the general behavior of the system to its constructive energetic interactions by 

means of which the conservation of data transactions could be tractable. Consequently, the 
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transactions of the information between the fields are not detailed enough to include the required 

level of the history of such transactions. Accordingly, the true dynamic coupling between the fields 

won’t be achieved which can be problematic, especially when the two field are coupled via a 

combinatory dynamics with different time scales. 

The attained modeling accuracy using the classical approach is seen to be heavily rely on 

mathematical constraints (filtration and stabilization [41]) and computational capacity, which 

leads to the development of drastically high-order models valid only within a limited operational 

range. There is therefore a need to rethink the modeling technique and to create a new methodology 

that can be based on the purely intrinsic physical constraints of the system, in order to generate 

valid models that naturally obey the energy conservation law and reveal the interconnected 

physical insights of the system dynamics truthfully.   

4. Original contributions and the proposed solution 

The conservation of power transactions on the interface can be satisfied if isomorphic models 

of both the fluid and solid fields can be generated (as demonstrated in Fig. 1-5). In isomorphic 

models, for each portion of the power transportation in one field (either physical such as thermal, 

acoustic, or kinetic), there exists a specific gate in the other field with which a tractable transaction 

between the fields is attainable. However, because of the fundamental differences between the two 

fields (namely the existence of mass flow in the fluid field), generating isomorphic models for 

each of the fields in a general form is not possible unless each field is decomposed into a set of 

alike subdomains where counterparts between the two fields become isomorphic.  

 
 Isomorphism between two counterpart subdomains of two different fields  
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Knowing that aerothermoelastic phenomena occur in multi-physical multiple-field (fluid and 

solid) systems, if a field-independent model can be generated (using physical states) for existing 

physical subdomains for each of the fields, the counterpart physical subdomains between the two 

fields (e.g., the thermal subdomain of the solid field and the thermal subdomain of the fluid field) 

will become isomorphic. Thus, the conservative power transactions including power transportation 

and power transformation among the physical subdomains will become tractable, regardless of the 

specific field.  

4.1. The aim of the thesis 

In the current study, in order to develop a framework for a conservative coupled-aero-thermo-

elastic model, it is suggested that the physical decomposition of the system, as shown in Fig. 1-6, 

replace the phenomenon-based decomposition of the system. In doing so, since the physical 

(thermal, mass, kinetic, and potential) subdomains are alike in any fields [42], generating 

isomorphic models for the physical subdomains regardless of the field will make the conservative 

power transactions on the interface, and thus the complete dynamic coupling of the system, 

achievable. 

 
 Physical decomposition of aerothermoelastic problem 

4.2. Suggested approach 

Models of two subdomains become isomorphic if and only if the propagation of energy within 
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them becomes identical [43]. To generate such identical energetic models, in this study physical 

system theory in terms of the Bond Graphs (BG) methodology is employed [44] [45] [46] [47].  

According to this theory, the dynamics of the system are generated from the reversible and 

irreversible dynamic interactions of the system’s energetic components (namely, resistance, 

capacitance, and inertance). Given that the energetic components are similar in different 

subdomains and that the interactions between the energetic components in different subdomains 

follow a similar pattern (as shown in Fig. 1-7), the BG implementation can produce not only 

isomorphic models of counterpart physical subdomains between different fields, but also 

isomorphic models of all physical subdomains involved in the coupled fields. As a result, not only 

is the continuity of both the intra-field and inter-field power transportation satisfied, but also the 

possibility of tracking power transformation is provided. The conservation of power transactions 

of the entire system is thus guaranteed. The proposed methodology provides the ensuing 

framework with an intrinsically physical ability to control the data transactions between the 

coupled fields. The resulting conservative energetic framework of the system also allows modelers 

to check the well-posedness of the system before extracting state equations – a desirable capability 

for complex system dynamic investigations.  

  
 Possible interactions of the energetic components in a system 

4.3. Original contributions 

Using the proposed concept, the following steps are sequentially taken to generate the 

fundamental structure of aerothermoelasticity. Each proposed step contains its own novel 
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methodologies. Together, the implementation of the proposed steps forms the overall original 

contributions of this thesis: 

• Each field is first decomposed into its primitive physical subdomains (as shown in Fig. 

1-8); 

 
 Physical decomposition of the two fields 

• The energetic components of each subdomain are then defined with respect to the 

geometrical and material properties of the field (as shown in Fig. 1-9);  

 
 Generating energetic components with respect to physical properties of the system  
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• The dynamics of each subdomain are generated from the energetic interactions of the 

present components (as shown in Fig. 1-10);  

 
 Generating the dynamic of each subdomain with respect to the energetic component’s interactions 

• The dynamics of the field are then generated from the reversible and irreversible 

interactions of the present physical subdomains of each field (as shown in Fig. 1-11);  

 
 Generating the dynamic of each field with respect its subdomains interactions 

• Finally, based on the power continuity between the two fields, through connecting the 

counterpart pairs of the physical subdomains of the two fields with respect to the 

possible connections of their energetic components at the interface, the conservative 

uniform coupled-aerothermoelastic model of the system, as shown in Fig. 1-12, can be 

generated if and only if the compatibility issue between the fixed Eulerian frame of the 

fluid field and the moving Lagrangian frame of the solid field can be addressed 

satisfactorily.  
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 Coupled aerothermoelastic framework  

• To address the compatibility issue, a variable interface dynamic adaptation (VIDA) 

technique [48] is proposed. According to the VIDA technique, the likely motions of the 

Lagrangian solid frame is virtually translated into a reversible volumetric flow for the 

fixed Eulerian fluid frame. In doing so, the compatibility of the two frames is satisfied 

and the required information from the contact surface is refined at any instant in time to 

keep the power transactions at the interface continuous.  

4.4. The outcome of this thesis  

Overall, by using the proposed methodologies, an energetic network of the system will be 

generated that can illustrate continuous reversible and irreversible power transactions (including 

power transformation and power transportation) among the various subdomains and between the 

two fields. The dynamics obtained from such a model will include more details in relation to the 
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memory and physical characteristics of the system, which can in turn provide a well-posed model 

and a desirable basis for analyzing the complex multi-physical multiple-field behaviors of the 

system. As the model is developed without the slow-thermal-dynamics and weak-connectivity 

assumptions and with no additional mathematical constraints, the model is valid in an extended 

range, principally much wider than its conventional counterparts. Undoubtedly, the proposed 

energetic network of the system can be a useful tool for developing control strategies and energy 

management of the system. 

5. Thesis outline 

To illustrate the development of the proposed framework, the reminder of this thesis is 

organized as follows.  

In Chapter 2, to form an introductory on implementing the BG method and to demonstrate the 

capability of this method in providing the dynamics of the system from the system’s interactive 

energetic components, the nonlinear model of a multi-physical system is presented by which the 

combined transient behavior of the system is extracted from the conservative interactions of the 

present subdomains. 

In Chapter 3, highlighting the thermoelastic phenomena and the related problems in the solid 

field, a domain-independent dynamic model of the existing physical subdomains of the solid field 

is generated. To achieve this, the energetic components of the elastic and thermal subdomains are 

defined for a simple geometry, and the general behavior of each subdomain is generated from the 

reversible and irreversible interactions of the energetic components sequentially. Accordingly, 

separate energy lines for the present subdomains of the solid field is generated by means of which 

a decomposed power distribution of the system is obtained with respect to each subdomain.  

In Chapter 4, a reversible thermoelastic coupled model is generated. To achieve this, first a 

multi-dimensional capacitor is proposed by means of which reversible connections between the 

two present subdomains of the solid field is derived. By replacing the existing capacitance of each 

subdomain with the generated capacitive components, the dynamics of the existing subdomains of 

the solid field become reversibly coupled together. 
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In Chapter 5, to generate an energy-based thermoviscoelastic model, the irreversible coupling 

between the present subdomains of the solid field is generated. To achieve this, first an energy-

based domain-independent model of the existing dissipative mechanism of the solid field is 

generated, which gives the physical interpretation of the anelastic behavior of the system. By 

adding the generated dissipative mechanism in the form of resistive components to the already-

coupled model, the irreversible energetic interaction between the elastic and thermal subdomains 

is then generated, forming a thermoviscoelastic model. The proposed energy-based model is 

capable of generating the general dynamic behavior of the solid field from the reversible and 

irreversible interactions of the energetic components of the existing physical subdomains. 

In Chapter 6, an energy-based model of the fluid field is developed. To achieve this, first a new 

decomposition of the fluid field is proposed by means of which an identical decomposition with 

the solid field is obtained. Next, similar to the solid field, the multi-dimensional energetic 

components of the fluid field are defined. Finally, by generating the reversible and irreversible 

interconnections between the components, the power structure of the fluid field is developed in 

which the general behavior of the field is created from the energetic interactions of the existing 

subdomains. 

In Chapter 7, a comprehensive novel aerothermoviscoelastic model is generated via connecting 

the generated power structure of the fluid field with that of the solid field together. To satisfy the 

compatibility conditions raised from the implementation of different coordinate frames 

respectively for the solid and fluid fields, a novel VIDA technique is proposed to be implemented 

on the interface of the two fields. Since the decomposition of the two fields utilizes a similar 

terminology, the generated power structures of the two fields become connectable continuously, 

which demonstrates the continuous power interactions between the two fields.     

In each chapter, the capability of the proposed model in capturing the ongoing dynamic 

behavior of the system, together with the suitability of the generated model for use in discrete 

system modeling, are examined via a sample geometry. The capability of the proposed model in 

capturing the complex behavior of the system using the energetic interactions of the physical 

subdomains described in a discrete configuration is concluded in Chapter 8.  

Chapters 2 to 7 of this thesis are organized on the basis of the following peer reviewed papers 

submitted to the various journals:    
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Chapter 2:  

• Non-Linear Analysis of Hydro-Mechanical Interactions in Control Device during the 

Transient Period: Bond Graph Approach 

Journal of Dynamic Systems, Measurement and Control 

Chapter 3:  

• Energy-based Thermo-Mechanical Discrete Model: Bond Graph Approach 

ISA Transactions 

• Domain-Independent Conduction Discrete Model Compatible for Multi-Physical 

System Dynamic Investigations  

SIMULATION: Transactions of The Society for Modeling and Simulation International 

Chapter 4:  

• Domain-Independent Reversible Thermoelastic Coupling: a Bond Graph Approach 

Journal of Continuum Mechanics and Thermodynamics 

Chapter 5:  

• Energy-Based Viscoelastic Model: A Physical Approach for Material Anelastic 

Behavior 

Journal of Thermophysics and Heat Transfer (AIAA) 

• Domain-Independent Thermoviscoelastic Model: A Bond Graph Approach 

Journal of Thermophysics and Heat Transfer (AIAA) 

Chapter 6:  

• Energy-Based Compressible Convective Model Proper for Aerothermoelastic Dynamic 

Investigation: A Bond Graph Approach on FSI Problems 

AIAA Journal 

Chapter 7:  
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• A Novel Energy-Based Aerthermoviscoelastic Modeling Frame for Multiple-field 

System Dynamic Investigations, Bond Graph Approach 

AIAA Journal 

It should be mentioned that the References of each chapter are presented at the end of the chapter, 

and the entire Bibliography summarizing all references of the thesis is given at the end of the 

thesis. 
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CHAPTER 2: AN INTRODUCTION OF THE IMPLEMENTATION OF BG 

METHOD IN MULTIPLE-FILED DYNAMIC INVESTIGATIONS: 

Aim 

In this chapter, an introduction of the implementation of BG method on how to generate the 

nonlinear dynamics of multi-physical systems from the dynamic interactions of the existing 

energetic components is presented.  

Description 

To achieve this aim, for a chosen example, the procedure of decomposition of the system in 

terms of defining the energetic components of the system, developing the BG model for the system, 

and extracting the governing equations of the system from the BG model is demonstrated. For this 

purpose, a hydro-control device is chosen as a sample representative of a multi-physical multiple-

field system for which the initial transient of the system is investigated according to the following 

outline: 

1. Introduction on physical approach in multiphysical system dynamic modeling .......................30 

2. Defining the physical model as the chosen example .................................................................33 

3. Defining BG modeling strategy and extracting the mathematical model ..................................35 

4. Simulation results.......................................................................................................................44 

5. Conclusion .................................................................................................................................52 

6. References ..................................................................................................................................52 

Results 

The original contribution made in this study is the development of a novel variable degree-of-

freedom nonlinear model, by means of which the complex behavior of the system during the start 

procedure of such multiple field devices can be investigated. The obtained results clarify the 

capability of the chosen methodology (BG method) in defining such complex behavior of the 
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system in a way that can connect the system behavior to the physical root of the ongoing 

phenomena.  

Conclusion 

Overall, by means of the generated nonlinear model we show how the combined transient 

behavior of the system can be extracted from the conservative interactions of the involving 

subdomains.  
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NON-LINEAR ANALYSIS OF HYDRO-MECHANICAL INTERACTIONS IN 

CONTROL DEVICE DURING THE TRANSIENT PERIOD: BOND GRAPH 

APPROACH 

A. Zanj* & F. He 

Advanced Control Systems Research Group, School of Computer Science, Engineering & Mathematics, Flinders 
University, Adelaide, Australia, (e-mail: amir.zanj@flinders.edu.au) 

Abstract—In this paper, a feasibility study on modeling the multi-physical dynamic behaviors of the 
start period of hydro-mechanical control devices is presented. Using a novel multi-model Bond graph 
approach, a nonlinear, variable degree-of-freedom, state-space model is developed for a typical pressure 
regulator during its start period. Simulation studies demonstrate the essential physical behavior of the 
regulator during the transient, and confirm the integrity of the resulting nonlinear model of the system. 

Index Terms: Control systems, Multi-physical system, Fluid flow control, Hydrodynamics, 
Transient analysis, Dynamic interactions.  

1. Introduction 

TART period is an unavoidable multi-physical dynamic process during which the internal 

moving components of a hydro-mechanical control device will experience unpredicted 

dynamics before settling in their required operating condition. Maintaining the safety of these 

components during this process is one of the key design issues of the device. Although a smooth 

start period is preferred for the internal components, a quick start is often demanded of the device 

to meet certain transient performance specifications. In this situation, the device will exhibit a 

degree of unpredicted and severe dynamic behavior during its start period. Lack of attention to this 

period can lead to a complete failure of the device. This is certainly true for a liquid propulsion 

system often found in a space vehicle, where hydro-mechanical valves such as regulators and 

stabilizers are responsible for regulating the engine transient behaviors [1, 2].  

The start period of a hydro-mechanical control device, such as a regulator, is defined as the 

duration between the moment that the first fluid droplet enters into the valve and the moment that 

the internal moving components of the device are fully stabilized. During the early transient of the 

start period, fluid fills different chambers of the valve, forming the filling process of the period. 

Since the valve’s boundary visited by the fluid is varying, the geometry of the system with respect 

to the input energy flow will be a variable. One can thus consider the filling process as several 

consecutive early stages of the start period; each having its own way of distributing the power in 

S 
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the system. Modeling of the filling process is then a task of revealing the dynamics of the varying 

power distributions as a function of the varying geometry of the system touched by the fluid during 

this transient. In the late stages of the start period, hydraulic pressures move the valve’s internal 

components, instigating additional interactive hydro-mechanical phenomena between the fluid 

acceleration and the components’ movement. These complex multi-physical dynamic interactions, 

if not modelled properly in the device’s design phase, may result in severe damages to the system. 

The modeling of the entire start period therefore requires a valid analytical representation of the 

system that can accurately describe the internal power transfer and geometry change during the 

transient phase and truly reveal the coupled dynamic behavior in a multi-physical domain setting. 

Many techniques for modeling hydro-mechanical control devices in the literature have not yet 

touched on this issue.  

Early studies on the modeling of pressure control valves [1-3] only concentrated on the flow 

visualization of the system, and completely neglected the internal interactions between the fluid 

and the moving mechanical parts. The resultant models are useless in revealing the multi-physical 

dynamics existed in such systems. The transfer function technique used in [4] provided a 

conventional solution for the nonlinear dynamics of a pressure relief valve by linearizing the 

system about one operating point. The resulting linear model is unable to capture the nonlinear 

dynamic details and removes the true physical phenomena during the transient. These modeling 

techniques are deemed to be unsuitable for the start period, as the system dynamics within this 

period is highly nonlinear and physical.  

To adequately model the start period in a multi-physical domain setting, a physical approach 

that can truly reveal the nonlinear interactions between each domain of concern thus providing the 

required dynamic details of the system during this transient, is preferred. The Bond graph (BG) 

technique which works on the basis of power exchange inside a dynamic system [5-6] is deemed 

to be ideal, as the method is capable of keeping the integrity of the power flow within a system 

while extracting the physical model of the system as a set of nonlinear governing equations. It 

interpretes different physical domains in a unique terminology, reserves the true physical meaning 

of the system by conforming to the underlying governing laws, and provides an analytical 

representation of the system without linearization. 
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Some studies on hydro-mechanical devices’ modeling using the BG technique have been 

reported in the literature. Borutzky [7] analyzed the hydro-mechanical dynamics of a spool valve 

for the control of orifices. Dasgupta and Watton [8] studied the performance of a multiple-input 

multiple-output pilot relief valve with parameter variations; the system was then modelled using 

measured parameters [9] and analyzed in the transient and steady state [10]. Zanj et al. developed 

nonlinear BG models of direct and indirect pressure control valves [11-12], and investigated a 

range of dynamic behaviors of an indirect valve including nonlinear effects of flow forces, 

coulomb friction, hydraulic resistances, and fluid chamber compressibility [13]; the model was 

validated in experiment. None of these studies has attempted to model the start period, as the 

traditional single-model BG approach used can only describe fixed degree-of-freedom (DoF) 

dynamics, whereas the dynamics of the start period are varying DoF in nature. This is because the 

geometry of the system in contact with the hydraulic energy grows with time during the filling 

process, which requires the number of the state variables for each of the filling stages to be 

increased in order to describe the hydro-mechanical dynamic interactions within that stage 

properly. To reflect this graduate increase of DoF using the usual single-model BG approach will 

violate the energy conservation law underpinning the BG concept. 

A multi-model BG approach is thus proposed in this paper, where a growing-DoF structure is 

used to describe the dynamic behaviors of different filling stages while the energy conservation 

law within each of the stages is tightly upheld. By using a volumetric state whose dimension varies 

according to the energy conservation of the stage of concern, a variable energy distribution 

observable in the physical system during the start period can be captured and truthfully 

represented.  

The rest of this paper is organized as follows. In Section 2, the start period of a chosen hydro-

mechanical control devise is described. A multi-model BG approach is proposed in Section 3, 

where the state equation for each of the stages of the start period is extracted from the related BG. 

In Section 4, the multi-model structure of the start period for the chosen device is evaluated via 

simulation, and the significant impact of inclusion of the start period on the dynamic behaviors of 

the system internal components is revealed. The modeling effect of the proposed multi-model BG 

approach on the system safety and operation are concluded in Section 5.  
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2. Physical model 

A pressure regulator shown in Figs. 1 and 2 is chosen for the start period modeling. The control 

valve is composed of four major parts: (a) Control Part – including inlet (1), outlet (2), and control 

orifice (5) the size of which is changed by the movement of control spool (3); (b) Amplifying Part 

(where the pilot signal is regulated and amplified) – including control piston (4) and damping 

orifice which connects piston front zone (ppf) (17) and piston back zone (ppb) (18); (c) Adjusting 

Part (which regulates and sends the hydro-control signal to (a)) – including adjusting spool (9), 

flexible elements (16), feedback pipe (7), and adjusting orifice (15); (d) Pre-adjusting Part (where 

initial adjustment of the valve is imposed) – including adjusting screw (13), noise canceler (11), 

and adjusting spring (12).  

 
Fig. 1  A pressure control regulator valve [13] 

 
Fig. 2  Scheme of the chosen valve [13] 

The main goal of the control valve is to regulate the outlet pressure. In a nominal operating 

condition after the start period, the dynamic behavior of the valve can be described as follows. By 

increasing the inlet pressure, the pressures of the feedback pipe and adjusting zone (10) are 

increased, which will open the adjusting orifice resulting in a corresponding pressure rise in the 

ppf that will move the control spool to narrow the control orifice. As the cross section area of the 

passing flow decreases, the total pressure loss of the valve increases. The pressure rise in the outlet 
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flow is consequently compensated. This standard dynamic behavior cannot be applied to the start 

period, as the valve will experience entirely different transient interactions between multi-physical 

domains during this period. In fact, the internal components of the valve when moving from their 

initial positions (shown in Fig. 3) to their nominal operating positions during the start period will 

go through five consecutive stages. Initially (see Fig. 3), the control piston stays at the bottom of 

amplified cylinder (b), so control orifice (a) is fully open. The adjusting spring force pushes the 

adjusting spool to its upper seat (d), so the tip of the adjusting spool and plate (c) closes the 

adjusting orifice completely. Since the valve is initially placed empty of fluid, the first four stages 

of the start period will constitute the filling process where the fluid progressively fills different 

zones of the valve and the resultant hydraulic pressure moves the internal components of the valve. 

Using Figs. 1-3, the chosen valve’s internal dynamics of the five stages during the entire start 

period can be described as follows. 

 
Fig. 3  Initial positions of valve’s moving components, before start [13] 

Stage 1 – Filling part (a) of Fig. 1. Upon receiving the start signal, fluid starts to fill the inlet, 

control orifice, and sense zone (6). Other parts of the valve are untouched. No hydro-mechanical 

interactions occur in the valve, thus no inside mechanical movement is anticipated. 

Stage 2 – Filling zones (7) and (10) of Fig. 2. After filling the sense zone, the feedback pipe 

and adjusting zone are filled. The hydraulic pressure is increasing in the control area while staying 

at the atmospheric level in the adjusting zone. The hydro-mechanical interactions are about to 

occur on the control spool while currently pressuring it to stay at its seating position (b) of Fig. 3. 

Hence, no mechanical movement is yet to be anticipated. 

Stage 3 – Opening zone (15) and filling zone (17) of Fig. 2. After filling the adjusting zone, 

the hydraulic pressure starts to accumulate. The resultant hydraulic force pushes the adjusting 

spool and lifts it from its initial position (c) of Fig. 3. But, the plate inside the tip of the adjusting 

spool keeps the adjusting orifice closed until the hook of the adjusting spool reaches the plate. 

Mechanical motions are observed in the adjusting part, but not yet in the control part as the 
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hydraulic pressure is still forcing the control spool to remain at its seating position. Since the 

adjusting orifice is opened, the fluid fills the ppf up. 

Stage 4 – Filling zone (18) of Fig. 2. As the hydraulic force in the ppf increases, it pushes the 

control spool to narrow the control orifice, so the valve begins to control the pressure from this 

point on. Meanwhile, the feedback flow finds its way via the damping orifice located in the control 

piston to fill the ppb whose dimension is a variable depending on the location of the control piston. 

Filling the ppb works as a break for the moving control spool. At the end, all internal mechanical 

components are fully engaged in the dynamics behavior of the system.  

Stage 5 – Regulating the operating outlet pressure. After filling the ppb, the outlet pressure is 

continuously controlled by the movements of the internal components that attempt to stabilize the 

system until the required operating condition is achieved. 

The above 5-stage procedure is common to almost all hydro-mechanical automatic control 

devices of liquid engines. This highly-nonlinear multi-physical dynamic behavior, if ignored, may 

result in fatal collisions between the internal components and the body of the system. This is 

particularly true for engines that involve a fast start command. Modeling of the start period is thus 

a necessary step that can facilitate the proper selection of a suitable start command for a successful 

system operation. 

3. Mathematical model 

As can be seen, during the start period, the rate and location of the simultaneous interactions 

between the hydraulic power and mechanical movement within the system vary according to the 

different filling stages that the system is in. This makes the geometry of the energy domain of the 

system vary during the start period. To describe this effectively, the concept of a dynamic system 

with varying DoF is developed. A multi-model BG approach is proposed in which each BG model 

represents a corresponding stage of the start period. An exact energy distribution of the system for 

the corresponding filled geometry of the system is accurately defined for each of the filling stages. 

The system’s DoF is fixed for one filling stage, but varying for different filling stages. As the fluid 

is gradually filling the sequential chambers of the valve, the filled geometry of the system is 

growing and so does the DoF of the system. This varying DoF ceases when the filling process 

completes. 
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Consider the fluid inertia. Without loss of generality, six assumptions are adopted here: (i) the 

valve’s initial pressure be atmospheric; (ii) the flow stream inside the chambers be 1D; (iii) fluid 

be incompressible and Newtonian; (iv) resistive and capacitive effects be lumped when 

appropriate; (v) temperature effects be neglected; (vi) all solid elements be rigid.  

 
Fig. 4  BG model of the valve at Stage 5 of start period 
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Fig. 4 shows the overall BG model of the entire energy domain of the system at the final stage 

of the start period. Element Se1 represents the inlet pressure supplied to the valve from a stable 

source. Elements Se18, Se53, and Se64 denote, respectively, the stable sources of pressures in the 

valve outlet, drain outlet (19), and ambient pressure; all of which are equal to the atmospheric 

pressure Patm. Bonds 39 and 41 denote the momentum 𝑝𝑝39 and position  𝑞𝑞41 of the control spool. 

By the same token, bonds 62 and 63 denote those, 𝑝𝑝62 and 𝑞𝑞63, for the adjusting spool, and bonds 

57 and 60, 𝑝𝑝57 and 𝑞𝑞60, for the plate. Considering the causality of the extracted BG model, a total 

of eight state variables are defined for the entire system dynamics during the start period. These 

state variables will be gradually added into the system model as the energy domain of the system 

grows with the advancement of the filling stages. 

Four intermediate BG models that lead to the evolvement of Fig. 4 are derived as follows. Each 

intermediate BG model describes one corresponding filling stage of the start period. Collectively, 

the five BG models form the overall analytical model of the system for the entire start period, and 

reveal the very essence of the system’s internal dynamics when the system is progressing through 

the five stages defined in Section II. 

A. Model of Stage 1:  

Only the control part is being filled like a container while the other parts remain untouched. 

The energy distribution of this stage is shown in Fig. 5 with Se8 being Patm. The one-DoF state 

equation with a single state variable, p4 indicating the iterance flow momentum, for this stage is 

extracted from Fig. 5 as: 

 
Fig. 5  BG model of the valve at Stage 1 of start period 
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  �̇�𝑝4 = 𝑆𝑆𝑒𝑒1 −
1
𝐼𝐼4

(𝑅𝑅2 + 𝑅𝑅5)𝑝𝑝4 − 𝑆𝑆𝑒𝑒8  

B. Model of Stage 2: 

As the pressure of the control part increases, a new state variable, p20 indicating the feedback 

flow momentum, is added to demonstrate the inertial behavior of the flow in the feedback pipe. 

The energy distribution of this stage is shown in Fig. 6 with Se25 being Patm. The two-DoF state 

equation describing the system dynamics in this stage is derived from Fig. 6 as:  

 
Fig. 6  BG model of the valve at Stage 2 of start period 

  �̇�𝑝4 = 𝑆𝑆𝑒𝑒1 −
1
𝐼𝐼4

(𝑅𝑅2 + 𝑅𝑅5 + 𝑅𝑅12 − 𝑅𝑅19)𝑝𝑝4 − 𝑅𝑅19
𝑝𝑝20
𝐼𝐼20

− 𝑆𝑆𝑒𝑒18  

  �̇�𝑝20 = 𝑅𝑅19 �
𝑝𝑝4
𝐼𝐼4
− 𝑝𝑝20

𝐼𝐼20
� − 𝑆𝑆𝑒𝑒18 − (𝑅𝑅22 + 𝑅𝑅24) 𝑝𝑝20

𝐼𝐼20
− 𝑆𝑆𝑒𝑒25  

C. Model of Stage 3: 

The hydraulic pressure in the filled adjusting zone increases and pushes the adjusting spool, 

while the plate located inside the adjusting spool keeps the adjusting orifice close. Three state 

variables, the momentum p62 and location q63 of the adjusting spool and the plate’s location q60, 

are added to represent the dynamics of the adjusting components. The energy distribution of this 

stage is shown in Fig. 7 with Se35 being Patm and Sf56 0. Keeping Eq. (2) unchanged, the state 

equation of the system grows to five-DoF and is extracted from Fig. 7 as:  
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Fig. 7  BG model of the valve at Stage 3 of start period 

  �̇�𝑝20 = 𝑅𝑅19
𝑝𝑝4
𝐼𝐼4
− 𝑆𝑆𝑒𝑒18 + (𝑅𝑅19 − 𝑅𝑅22 − 𝑅𝑅24 − 𝑅𝑅34) 𝑝𝑝20

𝐼𝐼20
− 𝑅𝑅34(𝑏𝑏 + 𝑖𝑖) 𝑝𝑝62

𝐼𝐼62
− 𝑆𝑆𝑒𝑒35  

  �̇�𝑝62 = 𝑘𝑘𝑆𝑆𝑒𝑒64 + 𝑏𝑏 �𝑅𝑅34 �
𝑝𝑝20
𝐼𝐼20

− (𝑏𝑏 + 𝑖𝑖) 𝑝𝑝62
𝐼𝐼62
� − 𝑆𝑆𝑒𝑒35� + 𝑖𝑖 �𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− (𝑏𝑏 + 𝑖𝑖) 𝑝𝑝62
𝐼𝐼62
� − 𝑆𝑆𝑒𝑒35 − 𝑅𝑅47𝑖𝑖

𝑝𝑝62
𝐼𝐼62
� +

𝑞𝑞60
𝐶𝐶60

− 𝑞𝑞63
𝐶𝐶63

  

  �̇�𝑞60 = 𝑆𝑆𝑓𝑓56 −
𝑝𝑝62
𝐼𝐼62

  

  �̇�𝑞63 =
𝑝𝑝62
𝐼𝐼62

 

D. Model of Stage 4: 

The fluid fills the ppb, while the control spool is moving and creating a substantial effect on 

the valve dynamic performance via altering the dynamics of the adjusting area. The added state 

variables are p39, q41, and p57 which represent respectively the momentum and location of the 

control spool and the momentum of the plate. The energy distribution of this stage is shown in Fig. 

8 with Se45 being Patm. Keeping Eqs. (2) and (7) unchanged, the state equation of the system grows 

to eight-DoF and is derived from Fig. 8 as: 
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Fig. 8  BG model of the valve at Stage 4 of start period 
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𝐼𝐼20
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𝑆𝑆𝑒𝑒45� + 𝑖𝑖 �𝑅𝑅47 �𝑖𝑖
𝑝𝑝62
𝐼𝐼62

+ ℎ 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅48 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� −

𝑆𝑆𝑒𝑒45� + 𝑞𝑞60
𝐶𝐶60

− 𝑞𝑞63
𝐶𝐶63

  

  �̇�𝑞41 = 𝑝𝑝39
𝐼𝐼39
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  �̇�𝑞60 = 𝑝𝑝57
𝐼𝐼57

− 𝑝𝑝62
𝐼𝐼62

  

E. Model of Stage 5: 

Upon filling the ppb, for the first time, the energy can be in contact with the entire geometry 

of valve at any instant of time. Fig. 4 demonstrates the energy distribution of this final stage. 

Although remaining as eight-DoF, the state equation is changed to include the effect of the 

stopping force on the control piston and the impact of the drain orifice on the internal flow of the 

adjusting part. Keeping Eqs. (2), (7), and (12)-(13) unchanged, a set of eight governing equations 

describing the system dynamics from this stage onwards is extracted from Fig. 4 as: 

  �̇�𝑝20 = 𝑅𝑅19 �
𝑝𝑝4
𝐼𝐼4
− 𝑝𝑝20

𝐼𝐼20
� − 𝑆𝑆𝑒𝑒18 − (𝑅𝑅22 + 𝑅𝑅24) 𝑝𝑝20

𝐼𝐼20
+ 𝑅𝑅29 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62
� + 𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� +

𝑅𝑅48 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� + 𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53  

  �̇�𝑝39 = 𝑎𝑎(𝑅𝑅12 �
𝑝𝑝4
𝐼𝐼4
− 𝑎𝑎 𝑝𝑝39

𝐼𝐼39
� + 𝑅𝑅19 �

𝑝𝑝4
𝐼𝐼4
− 𝑎𝑎 𝑝𝑝39

𝐼𝐼39
− 𝑝𝑝20

𝐼𝐼20
� − 𝑆𝑆𝑒𝑒18 + 𝑔𝑔 �𝑆𝑆𝑒𝑒18 − 𝑅𝑅2 �𝑔𝑔

𝑝𝑝39
𝐼𝐼39

+ 𝑝𝑝4
𝐼𝐼4
�� +

𝑑𝑑 �𝑅𝑅48 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� + 𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53� −

𝑞𝑞41
𝐶𝐶41

  

  �̇�𝑝57 = 𝑐𝑐 �𝑅𝑅34 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅48 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� + 𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

−

𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53� + ℎ �𝑅𝑅47 �𝑖𝑖

𝑝𝑝62
𝐼𝐼62

+ ℎ 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅48 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

−

𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� + 𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53� + 𝑓𝑓(𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

−

𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53) − 𝑞𝑞60

𝐶𝐶60
  

  �̇�𝑝62 = 𝑘𝑘𝑆𝑆𝑒𝑒64 + 𝑏𝑏 �𝑅𝑅29 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62
� + 𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅48 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� +

𝑅𝑅73 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53� + 𝑖𝑖 �𝑅𝑅47 �𝑖𝑖

𝑝𝑝62
𝐼𝐼62

+ ℎ 𝑝𝑝57
𝐼𝐼57
� + 𝑅𝑅34 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57
� +

𝑅𝑅48 �
𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39
� + 𝑅𝑅73 �

𝑝𝑝20
𝐼𝐼20

− 𝑏𝑏 𝑝𝑝62
𝐼𝐼62

− 𝑐𝑐 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

− 𝑓𝑓 𝑝𝑝39
𝐼𝐼39
� − 𝑆𝑆𝑒𝑒53� + 𝑞𝑞60

𝐶𝐶60
− 𝑞𝑞63

𝐶𝐶63
  

F. System Parameters:  

Although the governing equations derived for each of the five stages have been shown in a 

linear format, the nature of the physical system is in fact nonlinear and represented by the so-called 

parameters of the equations that are typical energy elements: Ri, Ci, and Ii, representing 
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respectively the resistivity, capacity, and inertia of the system. For the chosen valve, although all 

Ci and Ii are constant and pre-determined (assuming incompressibility of the fluid and rigidity of 

the internal components), many Ri are time-varying and need to be updated at each time step. This 

is because the main nonlinearity of the system is related to the energy dissipation. Since the 

calculation of dissipated energy for a resistive element does not depend on the energy distribution 

history of the system, the values of Ri at each time step can be updated via the known values of the 

state variables and the boundary inputs of the system at that step. The updated Ri are then used in 

the governing equations to calculate the values of the state variables at the next time step. This 

way of presenting the state-space models of the system keeps the simplicity of the model structure 

while preserving the true physical meaning of the system during the entire solution process. 

Apart from 𝑅𝑅42, 𝑅𝑅61, and 𝑅𝑅58 that represent respectively the constant frictions of the control 

spool, adjusting spool, and plate, the rest of the dissipative elements are hydraulic and can be 

obtained as follows:  

𝑅𝑅𝑖𝑖 = 𝜌𝜌��̇�𝑄𝑖𝑖�𝜉𝜉(𝐴𝐴ℎ𝑖𝑖)     (𝑖𝑖 = 2, 5, 12, 19, 22, 24, 29, 34, 48, 57, 73)         

  𝜉𝜉�𝐴𝐴ℎ𝑖𝑖� =  
∑𝜁𝜁𝑙𝑙𝑖𝑖+𝜁𝜁𝑓𝑓𝑖𝑖
2𝐴𝐴ℎ𝑖𝑖

2          

where 𝜌𝜌, �̇�𝑄𝑖𝑖, 𝐴𝐴ℎ𝑖𝑖, 𝜁𝜁𝑙𝑙𝑖𝑖, and 𝜁𝜁𝑓𝑓𝑖𝑖 denote respectively the fluid density, volumetric flow rate, hydraulic 

cross section area, pre-determined local pressure loss coefficient, and pre-determined friction 

coefficient of the element. All volumetric flow rates, �̇�𝑄𝑖𝑖, are algebraically calculated at each time 

step using the current values of the state variables in the related BG model, and the calculations 

are not included here for brevity.  

The hydraulic cross section area, 𝐴𝐴ℎ𝑖𝑖, in (18) depends on the wet boundary of the 

corresponding cavities. For fixed cavities, it is a pre-determined constant parameter. For variable 

cavities, it must be calculated as: 

𝐴𝐴ℎ𝑚𝑚𝑚𝑚 = 𝜋𝜋
4𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠

(𝐷𝐷2
𝑖𝑖𝑠𝑠𝑚𝑚𝑚𝑚 − 𝑋𝑋2ℎ𝑠𝑠𝑖𝑖𝑠𝑠22𝛼𝛼),   𝑋𝑋ℎ = �́�𝑋 + 𝑥𝑥             

  

𝐴𝐴ℎ𝑐𝑐𝑚𝑚 = 𝜋𝜋
8𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠

(𝐷𝐷2
𝑖𝑖𝑠𝑠𝑐𝑐𝑚𝑚 − 𝑌𝑌2ℎ𝑠𝑠𝑖𝑖𝑠𝑠22𝛽𝛽),   𝑌𝑌ℎ = �́�𝑌 − 𝑦𝑦  

  

𝐴𝐴ℎ𝑐𝑐𝑝𝑝 = 𝜋𝜋𝐷𝐷ℎ𝑐𝑐𝑝𝑝𝑧𝑧    
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where 𝐴𝐴ℎ𝑚𝑚𝑚𝑚, 𝐴𝐴ℎ𝑐𝑐𝑚𝑚, and 𝐴𝐴ℎ𝑐𝑐𝑝𝑝 are respectively the hydraulic cross section areas of 𝑅𝑅5, 𝑅𝑅29, and 𝑅𝑅34. 

Constants 𝛼𝛼 and 𝛽𝛽 are the angles of attack of the control spool and adjusting spool, respectively. 

Constants 𝐷𝐷𝑖𝑖𝑠𝑠𝑚𝑚𝑚𝑚, 𝐷𝐷𝑖𝑖𝑠𝑠𝑐𝑐𝑚𝑚, and  𝐷𝐷ℎ𝑐𝑐𝑝𝑝 are the internal diameters of the control spool, adjusting spool, 

and plate, respectively. Variables Xh and Yh are the geometrical parameters attainable from the 

geometry of the orifice and the angle of attack of the spool with respect to the positions of the 

control spool and adjusting spool, respectively, with X' and Y' being the offsets obtained from the 

initial locations of the corresponding spools. The instantaneous locations of the control spool, 

adjusting spool, and plate are expressed by x, y, and z, respectively, and are calculated from the 

state variables as: 

𝑥𝑥(𝑡𝑡) = 1
𝐼𝐼39
∫ 𝑝𝑝39𝑑𝑑𝑡𝑡 ;  𝑦𝑦(𝑡𝑡) = 1

𝐼𝐼39
∫ 𝑝𝑝62𝑑𝑑𝑡𝑡 ;  𝑧𝑧(𝑡𝑡) = 1

𝐼𝐼39
∫ 𝑝𝑝57𝑑𝑑𝑡𝑡     

Parameters a, b, …, and i shown in the governing equations are the energy transformer 

coefficients indicating the pressure surfaces by which the hydraulic energy can be transferred into 

the mechanical domain and vice versa. For fixed cavities, these coefficients are equal to their 

respective known contact areas. For variable cavities, a and g will need to be derived as follows:   

𝑎𝑎 = 𝜋𝜋
4
�𝐷𝐷𝑡𝑡𝑚𝑚𝑚𝑚2 − 𝐷𝐷𝑚𝑚𝑚𝑚

2 − 𝐷𝐷𝑓𝑓𝑚𝑚𝑚𝑚
2 �;  𝑔𝑔 = 𝜋𝜋

4
𝐷𝐷𝑓𝑓𝑚𝑚𝑚𝑚2 ;𝐷𝐷𝑓𝑓𝑚𝑚𝑚𝑚 = �𝑋𝑋ℎ2 𝑠𝑠𝑖𝑖𝑠𝑠2(2𝛼𝛼)     

where 𝐷𝐷𝑡𝑡𝑚𝑚𝑚𝑚 and 𝐷𝐷𝑚𝑚𝑚𝑚 are the diameters of the control spool tip and beam, respectively. 

G. Switching Functions:  

To allow automatic switch of the five models from one stage to the next, switching functions 

are developed. A volumetric threshold, Vi(t), representing the filled volume of the respective zone 

(signified by index, i ) at each time step, is thus considered for each of the filling stages. Given the 

incompressibility of the fluid, for the fixed-geometry (control and adjusting) zones, Vi(t) is 

calculated from the integration of the respective volumetric flow rate during the corresponding 

stage. For the variable-geometry (ppb) zone, the calculation of Vi(t) takes the movement of the 

internal component into account in addition to the integration of the volumetric flow rate. The 

definitions of Vi(t) for each of the considered zones are then expressed as:       

   �̇�𝑉𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡𝐶𝐶𝐶𝐶𝑙𝑙 𝑍𝑍𝐶𝐶𝑠𝑠𝑒𝑒 = 1
𝐼𝐼4
𝑝𝑝4  
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   �̇�𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑡𝑡𝑖𝑖𝑠𝑠𝐴𝐴 𝑍𝑍𝐶𝐶𝑠𝑠𝑒𝑒 = 1
𝐼𝐼20
𝑝𝑝20  

   �̇�𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝20
𝐼𝐼20

− (𝑏𝑏 + 𝑖𝑖) 𝑝𝑝62
𝐼𝐼62

− (𝑐𝑐 + ℎ) 𝑝𝑝57
𝐼𝐼57

− 𝑑𝑑 𝑝𝑝39
𝐼𝐼39

  

Accordingly, four switching functions are formulated as: 

  
 𝑆𝑆𝑡𝑡𝑎𝑎𝑔𝑔𝑆𝑆 1 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ = �0 � �̇�𝑉(𝑡𝑡)𝐶𝐶𝐶𝐶𝑠𝑠𝑡𝑡𝐶𝐶𝐶𝐶𝑙𝑙 𝑍𝑍𝐶𝐶𝑠𝑠𝑒𝑒𝑑𝑑𝑡𝑡 < 𝑉𝑉𝐶𝐶𝑍𝑍 

1   𝑆𝑆𝑒𝑒𝑠𝑠𝑆𝑆
 

  
𝑆𝑆𝑡𝑡𝑎𝑎𝑔𝑔𝑆𝑆 2 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ = �0 � �̇�𝑉(𝑡𝑡)𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝑡𝑡𝑖𝑖𝑠𝑠𝐴𝐴  𝑍𝑍𝐶𝐶𝑠𝑠𝑒𝑒𝑑𝑑𝑡𝑡 < 𝑉𝑉𝐴𝐴𝑍𝑍  

1 𝑆𝑆𝑒𝑒𝑠𝑠𝑆𝑆
 

  
𝑆𝑆𝑡𝑡𝑎𝑎𝑔𝑔𝑆𝑆 3 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ = �0 � �̇�𝑧(𝑡𝑡)𝑑𝑑𝑡𝑡 < 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖  

1                         𝑆𝑆𝑒𝑒𝑠𝑠𝑆𝑆
 

  
𝑆𝑆𝑡𝑡𝑎𝑎𝑔𝑔𝑆𝑆 4 𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑐𝑐ℎ = �0 � �̇�𝑉(𝑡𝑡)𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑡𝑡 < (𝑉𝑉𝑃𝑃𝑍𝑍 − 𝑥𝑥(𝑡𝑡)𝑑𝑑) 

1 𝑆𝑆𝑒𝑒𝑠𝑠𝑆𝑆
 

where 𝑉𝑉𝐶𝐶𝑍𝑍, 𝑉𝑉𝐴𝐴𝑍𝑍, and 𝑉𝑉𝑃𝑃𝑍𝑍 are the pre-determined geometrical volumes of the control zone, adjusting 

zone, and ppb, respectively, and �̇�𝑧(𝑡𝑡) and 𝑧𝑧𝑖𝑖𝑠𝑠𝑖𝑖 are the velocity and initial location of the plate, 

respectively.  

4. Simulation results 

The BG models developed for the chosen valve are validated via simulation. Physical 

constraints, such as component inter-domain barriers and coulomb friction, are added to the 

software using subprograms that include the calculation of the various parameter auxiliary 

equations. The subprograms regenerate the component accelerations with respect to their frictional 

forces obtained from 𝑅𝑅42, 𝑅𝑅61, and 𝑅𝑅58 at each time step, using the amplitude and direction of the 

force and velocity of the spools alongside the spools’ locations. They predict possible collisions 

between the spools and the body using the moving components’ locations and accelerations, and 

transmit a signal to the integral part of the main program to reset the initial condition when a 

possible collision is detected. The main program can thus determine when and where a possible 

collision may occur.  

A simplified inlet pressure profile shown in Fig. 9 is used to mimic the valve input pressure 

change during field tests. The corresponding system dynamics for the entire start period are 
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presented in Figs. 10-20, where some of the curves are shown in dimensionless form as the range 

of the pressure difference for the chosen valve is too large. The designated five time intervals in 

seconds that correspond to the five stages of the start period are found to be: [0 0.0445), (0.0445 

0.1265), (0.1265 0.1763), (0.1763 0.749), and (0.749 1.5]. After 1.5 s, the system completes its 

start period and enters into the nominal operation. 

As shown in Fig. 9, after receiving the start signal, the inlet pressure starts to increase, and the 

flow begins to fill the control part. Fig. 10 shows the effect of the flow inertia during Stage 1. 

Continuously, the flow finds its way to the feedback pipe and adjusting zone. In Fig. 11, when the 

adjusting zone is completely filled, the flow rate in the feedback pipe suddenly stops as the 

adjusting orifice is still closed. Fig. 12  shows the pressure changes inside the valve during Stage 

2, where the pressure jumps in Pout and Padj are due to the fluid inertia inside the feedback pipe 

when the flow faces the closed end. 

 
Fig. 9  Suggested inlet flow pressure during entire start period 
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Fig. 10  Inlet and outlet flows to and from the valve at Stage 1  

 
Fig. 11  Feedback flow rate at Stage 2 of start period 
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to keep the passageway blocked. As the pressure rise continues, the hooks of the tip of the adjusting 

spool take the plate up from its seating potion (z) to allow the flow to fill the ppf and to increase 

the ppf pressure in Stage 3. 

 
Fig. 12  Variations of internal pressures of the valve at Stage 2  

 
Fig. 13  Variation of force on adjusting spool in Stage 3  
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Fig. 14  Movements of adjusting spool (y) and placid (z) in Stage 3  

Fig. 15 shows that the pressure accumulation in the ppf causes the control spool to move 

through to narrow the control orifice (x). In Fig. 16, the movement of the control piston decreases 

the volume of the ppb while the flow passing the piston’s damping orifice keeps filling the variable 

volume of the ppb.  

 
Fig. 15  Control spool movement in Stage 4  
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Fig. 16  Filling of ppb in Stage 4 of start period 

 
Fig. 17  Pressure changes in ppf and ppb in Stage 4 of start period 
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both the ppf and the ppb occur when the last empty part of the valve is filled, which symbolizes 

the end of the filling process. 

 
Fig. 18  Pressure behavior of the system during entire start period 

 
Fig. 19  Movement of adjusting part during entire start period               
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effect of the ppb filling completion is observed at 0.749 s where the pressure of the control zone 

faces a minor jump. 

Fig. 19 shows the movements of the adjusting spool and plate during the entire start period. At 

the beginning, these elements move to nearly the end of their stroke at 0.35 mm resulting in a 

pressure loss inside the adjusting zone. The adjusting spool then comes back to the middle stroke. 

The effect of the ppb filling completion is visible from the adjusting element’s performance which 

at t = 1 s corresponds to the negative step change in Fig. 9. The pressure drop due to the negative 

step change is sensed via the adjusting element, causing the adjusting spool to move towards 

narrowing the adjusting orifice. The pressure loss then increases, and the ppf pressure decreases 

(Fig. 18). This makes the control spool moving backward to open the control orifice. As shown in 

Fig. 19, the pressure loss of the valve is decreased, which leads to the compensation of the inlet 

pressure drop. 

 
Fig. 20  Regulator hydraulic resistance during entire start period  
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5. Conclusion 

The modeling of the start period for hydro-mechanical control devices is investigated in this 

study. A new multi-model BG approach that can provide essential insights into the multi-physical 

dynamic behaviors of the control devices during the start period is proposed. A nonlinear, varying-

DoF, state-space model is developed for a typical pressure regulator during its start period, and 

tested using a standard start command. The simulation results reveal a high-degree of complexity 

of the system’s physical behaviors during the start period, which may otherwise be overlooked by 

other conventional modeling methods. The revealed physical behaviors are fully agreeable with 

the fundamental physics underpinning the multi-physical dynamics of the system during this 

period, which confirms the integrity of the resulting nonlinear model of the system.  

From the insight provided by the proposed model, possible internal collisions or sever 

performance degradations of the system components during the start period can be predicted, and 

measures of preventions can be taken. The proposed modeling technique is thus seen to enable a 

better design of the system components and a safer operation of the system.  

The essential feature of the proposed multi-model BG approach lies in its ability to vividly 

reveal, through the use of a growing number of state variables in the system governing equations, 

the physical details of the system while the system progressively completes its initial transient 

towards a nominal operation. It is this distinctive feature of the proposed approach that makes the 

modeling of the complex start period of the system feasible. The proposed approach can be applied 

to other similar control devices to enhance the reliability of the systems. 
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CHAPTER 3: DOMAIN-INDEPENDENT MODELING OF SOLID FIELD’S 

SUBDOMAINS 

Aim 

The aim of this chapter is to generate a domain-independent nonlinear model of the involving 

physical subdomains of the solid field using the presented method in Chapter 2.  

Description 

To achieve this aim, sequentially, the energetic components of the elastic and thermal 

subdomains are defined for a simple geometry, the general behavior of each subdomain is 

generated from the reversible and irreversible interactions of the energetic components. The 

outcomes of this procedure are released in two papers:   

In the first paper, highlighting the thermoelastic phenomena and the related problems in the 

solid field, the energy-based model of the elastic domain (which includes potential and kinetic 

subdomains) is first developed for a simple geometry. Then, a unique thermal effort and a novel 

modulated capacitor are derived for use in the proposed model to address the true physical 

causality behind the dilation behavior and the temperature dependency of material stiffness. The 

outline of this paper is organized as follows: 

1. Introduction on thermomechanical phenomena .........................................................................57 

2. Elastic domain BG modeling (presented for a simple spool structure) .....................................60 

3. Consideration of structural expansion in elastic spool BG model .............................................62 

4. Consideration of material softening in elastic spool BG model ................................................64 

5. Relevancy of material stiffness and thermal energy in elastic domain ......................................65 

6. Modulated elastic energy storage (MC) vs conservation of energy ..........................................68 

7. Thermomechanical-enhanced spool B G modeling ...................................................................69 

8. Simulation result and analysis ...................................................................................................70 
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9. Conclusion .................................................................................................................................76 

References………………………..……………………………………………………………... 76 

In the second paper, to model the thermal subdomain a novel domain-independent conduction 

model compatible for multi-physical system dynamic investigations is suggested. By means of BG 

method, a classical nonlinear conduction model containing physical states is first represented. A 

compatible discrete configuration of the thermal domain in line with the generated elastic domain 

is then developed through the enhancement of the configuration of the conventional thermal 

element. The outline of this paper is organized as follows: 

1. Introduction on conduction physical modeling approach ..........................................................79 

2. Domain-independent state variables of thermal domain ...........................................................82 

3. BG model of thermal conduction ...............................................................................................83 

4. Port-based heat conduction compatible discrete model .............................................................87 

5. 1-D Conduction dynamic simulation .........................................................................................91 

6. Conclusion .................................................................................................................................98 

References ......................................................................................................................................98 

Results  

The obtained results from the above two papers indicate that the proposed models can 

effectively fill the gap between the conventional modeling techniques and the physical nature of 

the thermomechanical phenomena via the use of the BG methodology. 

Conclusion 

Overall, by means of the generated models, separate energy lines for the involving subdomains 

of the solid field (elastic and thermal subdomain) are generated with which a decomposed power 

distribution of the system with respect to each of the subdomains becomes obtainable. 
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Abstract 

Thermomechanical phenomena in control devices if not addressed properly can be a source of 

inaccuracy. The resultant entangled dynamic behavior in pneumo-hydro-control systems has always 

been a challenging issue for the design of such devices. This indicates a gap between the conventional 

modeling techniques and the physical nature of the thermomechanical phenomena. In this paper, an 

enhanced thermomechanical model is proposed for a spool valve that can effectively fill this gap via 

the use of the Bond graph methodology. A unique thermal effort and a novel modulated capacitor are 

derived for use in the proposed model to address the true physics behind the dilation behavior and the 

temperature dependency of material stiffness. The obtained results demonstrate the ability of the 

proposed model to dynamically capture the thermomechanical phenomena, and indicate the significance 

of these undesired dynamics in affecting the performance of the system.  

Keywords- Control device, thermoelastic phenomena, noise detection, Bond graph modeling, dynamic 

analysis, lumped modeling.  

1. Introduction  

Hydraulic and pneumatic control devices are such systems in which lack of attention to the 

internal thermomechanical phenomena may lead to an irreparable destiny of the devices. Thermal 

expansion may change the operational set-points of these devices on the one hand, and on the other 

hand material softening induced by temperature rise may alter the response modes of the systems. 

These thermomechanical behaviors in a typical liquid engine system can be fatal, as they may 

cause the propagation of a harmful disturbance in the engine’s hydraulic circuit and put the system 

into an unstable situation leading to a deadly failure [1] [2].  

Frequently, it is observed that during the operation of a control valve, thermal dilation of the 

valve’s internal components (spools) can add an entangled dynamic to the total behavior of the 

system. Depending on the magnitude of the temperature and the velocity of the internal flow, the 

heat exchange occurring between the flow and the valve internal spools can result in shrinking or 

mailto:amir.zanj@flinders.edu.au
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expanding of these components. This entangled thermomechanical dynamic can cause the 

alteration of the control parameters especially the set-point of the system by changing the size of 

the control cavity inside the control valve. Furthermore, it is observed that heating or cooling can 

change the behavior of the valve under cyclic loading. Dilation of a structure often coexists with 

alteration of the structure material properties including stiffness. In this circumstance, depending 

on the level of the existing aero-hydro load on the internal spools, the existing turbulent frequency 

of the internal flow can be transmitted into the spool structure. This unpredicted internal noise can 

cause an inevitable fatal effect especially on the transient performance of the system, which may 

make the system unstable and destine to an unwanted failure. It is therefore important to understand 

the internal thermomechanical phenomena of the system and to model the multi-physical 

interactive structural-dilation and property-alternation behaviors as a part of the essential dynamics 

of the system for a successful operation of the system.   

The common approach to investigate the thermomechanical phenomena inside a structure is 

via the Finite Element Methods (FEM). Odon and Kross [3] presented a complete review of the 

general concept on solving coupled thermoelasticity problems using FEM. In these methods, the 

main aim is to capture the phenomena as accurate as possible, however, in doing so, the time cost 

for generating the models is tremendously high. In addition, the models thus generated may not be 

desirable for control aspects, as they are fundamentally numerical and extremely higher-order in 

nature. A desirable modeling technique for use in control context is often required to be able to 

produce analytical and lower-order models within realistic timeframes (particularly if the models 

are used in real-time circumstances), and the ensuing models, apart from being able to catch the 

inherent dynamic behaviors of the systems of concern, must be easy to be used for the derivation 

of the control laws. The FEM results, however, naturally fail in these respects. 

The transfer function approach [4] [5] has been seen to be able to generate likable models for 

control aspects. Although this approach is capable of capturing the dynamic behavior of a system 

to a certain degree within a narrow operating point, the inherent linearization process of the 

approach makes it unsuitable for highly-nonlinear systems that possess integrative dynamics in 

multi-physical domain settings. In particular, this approach is unable to produce models that can 

reflect the true physical meaning of the underlining thermomechanical phenomena when, for 

example, the subsequent thermal expansion behavior is a result of the interactions between the 
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elastic and thermal subdomains. To represent such dynamics, the model of the system is required 

to be closely related to the system’s subdomain structures and parameters, as well as the nonlinear 

interactions between the various subdomains of concern. 

The Bond graph (BG) technique that is based on energy flow exchange [6] [7] [8] is, 

subsequently, considered to be a suitable approach for modeling interactive dynamics in multi-

physical domain settings. Using a diagram-based tool, the BG approach directly describes a 

physical system in the system’s subdomain settings and predicts the corresponding dynamic 

behavior of the system across all subdomains of concern [9] [10]. In this approach, the model of 

the entire system is constructed from its subdomain models that are interconnected according to 

the conservation of energy and power exchange [11]. Models obtained in such a way are proven 

to be reusable, extendible, and physical in describing complex multiple-domain interactive 

dynamics of the systems [12]. 

Several studies on using the BG technique to model control valves’ dynamics have been 

reported in the literature [13] [14] [15]. In these studies, to avoid the complications in revealing 

the valves’ thermomechanical phenomena, a rigid-spool assumption is adopted. Although the 

resultant analytical nonlinear models can cover a wide range of dynamics of the multi-physical 

systems, the models are inherently invalid when the rigid-spool assumption is violated in real-life 

scenarios where thermomechanical interactions have direct effects on the rigidity of the spools. 

Using these models to design the control valves under (especially, high-frequency) 

thermomechanical loadings will inevitably make the devices vulnerable in passing through the 

operational frequencies and, thus, unreliable in real-time operations. The rigid-spool assumption 

must therefore be abolished. 

In this paper, an elasto-expansive model of the spools is proposed to be incorporated into the 

existing BG models of the valves to make them capable of controlling the thermomechanical 

phenomena of the systems. The new thermoelstic model of the spool will address the coupled 

effects of structural expansion and material softening inside the spool, and provide desirable 

physical insights into the interactive dynamics that would, otherwise, be overlooked by existing 

comparable counterparts. The remainder of the paper is organized as follows. In Section 2, by 

means of the BG methodology, a distributed elastic model of the spool structure is first generated, 

and possible additions or alterations to the model for capturing the fundamental thermomechanical 
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phenomena of the spool are identified. In Section 3, to capture the effect of structural expansion, 

a thermal effort that represents the dynamics of dilations is proposed and added to the elastic model 

as an equivalent thermal load. In Section 4, to capture the effect of material softening, a new 

modulated storage element that reflects temperature-induced elasticity changes is developed and 

used to replace the tradition constant storage element in the elastic model. A new thermoelastic 

BG model of the spool, together with a new set of governing equations that takes the overall 

thermomechanical phenomena of the spool into account, is then presented in Section 5. The 

validity of the proposed spool model is assessed via simulation in Section 6. Concluding remarks 

regarding the model’s usefulness in fault detection and control strategy development are given in 

Section 7.  

2. Elastic spool Bond graph modeling  

According to the geometry of the spool in a control device, the spool can be considered in the 

category of beam members. To investigate their internal dynamics, these beam members can be 

presented as distributed parameter systems governed by partial differential equations and lumped 

in space for finite approximations [16]. This discrete-lumped configuration is deemed to be 

suitable for deriving the thermoelastic model of the spool, as the internal interactions between the 

thermal and elastic subdomains of the spool are indeed distributed while the overall structure of 

the spool can be discretely formed by lumped elements. The resulting model of the spool will 

possess both numerical and analytical characteristics in describing the inherent multi-physical 

dynamics of the system. The BG method that can effectively describe both lumped and distributed 

parameter systems is chosen as the modeling tool for the beam-like axial spool structure. Unlike 

the other numerical methods, the BG method does not impose any approximations in the lumping 

techniques, and can fully represent the discrete numerical structure of the spool in a systematic 

way [7].  

Fig. 1 shows a simplified Rayleigh reticulation of a simple beam structure. In this discrete 

space, using the acoustic assumption [17], each configured element is represented by two types of 

storage components, capacitor and inertia, that can store the potential energy and kinetic energy, 

respectively. Within each configured element of Fig. 1, the inertia component is considered to be 

distributed at both ends of the element on the boundary, whereas the capacitor component is 

assumed to be at the center of the element. This simply means that the potential energy of the 
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reticulated space can be stored at the center of each element, whereas the kinetic energy of the 

reticulated space is stored at the boundary of each element. Since the presented reticulated space 

is indeed continuous, the boundaries of any two adjacent elements are bonded to move together. 

Therefore, one can consider the discrete configuration of Fig. 1 as a junction-element chain in 

which the parameters of a junction between two adjacent elements are expressed as weighted 

functions of the related parameters of these two elements.  

 
Fig. 1.  1D beam reticulation 

The resultant BG model of the discrete beam of Fig. 1 is shown in Fig. 2. The state variables 

for the ith element and the jth junction are 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝐴𝐴 which denote the deformation of the ith element 

and the momentum of the jth junction, respectively. According to the conservation of energy, the 

state equation for each junction-element is derived from Fig. 2 as: 

 
Fig. 2.  Elastic beam Bond graph model 

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖
−
𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

 (1)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (2)  

𝐼𝐼𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (3)  

where the boundary inertance, 𝐼𝐼𝐴𝐴  , is a function of the two adjacent elements’ masses, and the 

element capacitance, 𝐶𝐶𝑖𝑖, is a function of the geometry and material parameters of the ith element. 

For the left-end and right-end elements, since they receive external mechanical loading to the 

structure, Equation (1) will accordingly be re-written as: 



  ISA Transactions (Under review)   

62 

�̇�𝑝𝐴𝐴 = 𝐹𝐹𝑙𝑙 −
𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

 (4)  

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖
− 𝐹𝐹𝐶𝐶 (5)  

where 𝐹𝐹𝑒𝑒 and 𝐹𝐹𝑟𝑟 are left and right external mechanical forces, respectively. Using Equations (1)-

(3), a distributed elastic model of the spool that describes the dynamics of the spool in a pure elastic 

nature is formed. This model combines the feature of analytically-generated governing equations 

with the feature of numerically-distributed space elements, and provides a platform within which 

possible input addition and parameter alternation can be implemented to address desirable multi-

physical dynamics as long as the energy within the domain is conserved. The model in its current 

shape is not yet able to describe the internal thermomechanical phenomena of the spool. 

To include the thermomechanical interactions in the model of the spool, additions or 

alternations that can adequately represent the spool’s structural expansion and material softening 

phenomena must be incorporated into the current pure elastic model in ways that are consistent 

with the BG methodology. An equivalent source of effort that can mimic the influence of dilation 

dynamics is thus proposed to be inserted into the boundary junction of each element to model the 

structural expansion phenomenon, while a modulated capacitance that can reflect the impact of 

temperature dependency of material properties is proposed to replace the existing constant 

capacitance inside each element to model the material softening phenomenon. Together, these 

changes will lead to the development of an enhanced elastic-structural model of the spool in which 

the underlining thermomechanical phenomena can be fully captured and revealed.  

3. Consideration of structural expansion in elastic spool Bond graph model 

To add a source to the existing pure elastic BG to mimic the influence of dilation dynamics, 

questions regarding the type of injected energy port and the location of injection must be answered 

first. For this reason, internal expansion behavior of materials due to temperature rise is examined.  

It is well known that transferring thermal energy into or from most materials causes 

deformation. Assume that the transferred energy is stored inside the system as elastic energy. 

Based on the BG terminology, one can represent this accumulated energy as a product of a 

temperature dependent elastic effort and the existing deformation. The mechanism of the dilation 

can then be introduced to the elastic domain in the form of a causal relation in which the introduced 
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temperature-dependent effort will cause the dilation. This sequence simply means that a certain 

amount of internal effort inside an elastic element is needed to stand against the elasticity of the 

material to allow the element to be deformed. Consequently, as the temperature of the element 

decreases, the saved elastic energy of the element is released to settle the system back to its initial 

equilibrium condition. According to this terminology, the dynamics of the thermal dilation will be 

added into the system if the suggested temperature-dependent effort is implemented in the elastic 

domain. An effort-based energy port, named the thermal effort, can then be chosen as the added 

energy port to the system.  

The suggested thermal effort can be identified by comparing the Hook’s law expression with 

Eq. (1). To avoid the unnecessary complexity in calculating the suggested thermal effort, let’s 

consider the well-known 1-D Hook’s strain stress expression:   

𝜎𝜎 = 𝐸𝐸𝐸𝐸 − 𝐸𝐸𝛼𝛼𝐸𝐸𝐸𝐸 (6)  

where 𝜎𝜎, 𝐸𝐸, 𝛼𝛼, 𝐸𝐸, and 𝐸𝐸𝐸𝐸 are the axial stress, strain, expansion coefficient, elasticity modulus, and 

temperature gradient, respectively. For a simple axial spool, one can rewrite the Hook’s law for 

each junction that relates to two adjacent elements as: 

𝐹𝐹 =
𝐴𝐴𝐸𝐸
𝐿𝐿
𝐸𝐸𝑞𝑞 − 𝐴𝐴𝐸𝐸𝛼𝛼𝐸𝐸𝐸𝐸 

(7)  

where F is the collective force applied to the junction, 𝐸𝐸𝑞𝑞 is the difference in deformation between 

the two adjacent elements, and 𝐴𝐴 and 𝐿𝐿 are the cross section area and length of each element. For 

a homogenous and uniformly-distributed beam structure, Eq. (1) from the pure elastic BG model 

can be reformed as: 

𝐹𝐹 =
𝐴𝐴𝐸𝐸
𝐿𝐿
𝐸𝐸𝑞𝑞 

(8)  

where 𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖+1 = 𝐴𝐴𝐸𝐸 𝐿𝐿⁄  and 𝐸𝐸𝑞𝑞 = 𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖+1. Comparing Equation (7) with Equation (8), the 

amount of thermal effort that can represent the temperature-induced internal force is identified as:   

𝐹𝐹𝑇𝑇 = 𝐴𝐴𝐸𝐸𝛼𝛼𝐸𝐸𝐸𝐸 (9)  

Considering the causality applied to the 1-junction elements of Fig. 2 and on the basis of the 

causality of the generated thermal effort as described in Eq. (9), the extra energy port that can 

represent the structural expansion phenomenon should be added to each 1-junction of the pure 
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elastic BG model (Fig. 2) to form a revised expansive BG model of the spool as depicted in Fig. 

3.  

 
Fig. 3.  Expansive beam Bond graph model 

In Fig. 3, the added thermal strain equivalent force for the jth junction is expressed as: 

𝑀𝑀𝑆𝑆𝑒𝑒th𝐴𝐴 = 𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝛼𝛼𝑖𝑖�𝐸𝐸𝑖𝑖 − 𝐸𝐸0𝑖𝑖� − 𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1𝛼𝛼𝑖𝑖+1�𝐸𝐸𝑖𝑖+1 − 𝐸𝐸0𝑖𝑖+1� (10)  

which will be added into Eq. (1) to form the new governing equation for the momentum of the jth 

junction: 

�̇�𝑝𝐴𝐴 = 𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖
− 𝑞𝑞𝑖𝑖+1

𝐶𝐶𝑖𝑖+1
+ 𝑀𝑀𝑆𝑆𝑒𝑒th𝐴𝐴             (11)  

Eqs. (11) and (2)-(3) form the new state equations for the expansive BG model of the spool. 

By injecting the equivalent modulated thermal effort source (10) into each junction, the momentum 

rate of each boundary will now not only be a function of the material parameters of the adjacent 

elements, but also a function of the temperature change. This additional link enables the resulting 

BG model to capture the dynamic behavior of the structural expansion accompanied by the 

kinematics of the chosen structure.    

4. Consideration of material softening in elastic spool Bond graph model 

It is well known that heating a structure under mechanical cyclic loading will result in changes 

in the system response in such a way that resembles the weakening of the system’s stiffness, known 

as material softening. To consider this phenomenon inside the pure elastic beam structure given 

by Fig. 2, one can assume that the capacitance C of an element is modulated via the element’s 
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temperature. It then seems that to represent the material softening phenomenon, the only alteration 

to Fig. 2 would be to replace the constant C with a modulated C, MC. However, this direct 

replacement without due diligence will in theory violate the energy conservation law that governs 

the dynamics within the domain. In essence, a modulated capacitor implies that there is an amount 

of energy that has been lost from or added to the domain. The energy difference between a constant 

capacitor and a modulated capacitor is indeed the quantity of a mysterious missing energy. 

Therefore, to implement a modulated C inside a structure, one must first identify the place where 

the missing energy has been consumed, and then investigate the consequence of overlooking this 

energy on the overall system dynamics. If the induced dynamic changes due to the missing energy 

could be observed in another domain or if the effects of these changes could be ignored within the 

domain of concern, the use of the modulated C would then become acceptable. These aspects are 

investigated in the following subsections, based on the fundamental physics behind the material 

stiffness and temperature induction. 

5. Relevancy of material stiffness and thermal energy in elastic domain  

Elastic module of most engineering materials is controlled by the atomic bond energy function 

[18]. For most materials, the amount of stretching experienced by a tensile specimen under a small 

fixed load is controlled in a relatively simple way by the tightness of the chemical bonds at the 

atomic level. This makes it possible to relate stiffness to the chemical architecture of the material. 

The relation between atomic attractive and repulsive forces and energies in a material is shown 

in Fig. 4. The intersect of the total force and the characteristic length (𝑟𝑟 𝜎𝜎⁄ ) illustrates the 

unstressed atomic separation, 𝑟𝑟0. This is also the point at which the potential energy 𝑈𝑈 is minimum, 

as the summation of the total attractive and repulsive forces is equal to zero. To relate these curves 

to material stiffness for small deformations, the tangential line to the total force at the intersect 

represents the Hook’s approximation of elastic force. This approximation provides a parabolic 

energy function, 𝑈𝑈(𝑟𝑟), about the minimum at 𝑟𝑟0. 
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Fig. 4.  Atomic total force and energy with respect to atomic distance [19]  

Using the polynomial-curve assumption to analytically approximate the attractive and 

repulsive forces of Fig. 4 as realistic interatomic forces, the atomic potential function of the 

material can be represented as a superposition of the attractive and repulsive parts [19]: 

𝑈𝑈(𝑟𝑟) = −
𝑎𝑎
𝑟𝑟𝑠𝑠

+
𝑏𝑏
𝑟𝑟𝑚𝑚

 
(12)  

where 𝑎𝑎, 𝑏𝑏, 𝑠𝑠 and 𝑚𝑚 are constants for an arbitrary material. Considering the derivative relation 

between potential and force, the resultant atomic force can be derived as:  

𝐹𝐹𝐶𝐶 = 𝑠𝑠
𝑎𝑎

𝑟𝑟𝑠𝑠+1
− 𝑚𝑚

𝑏𝑏
𝑟𝑟𝑚𝑚+1 

(13)  

The minimum in 𝑈𝑈 occurs when 𝐹𝐹𝐶𝐶 = 0 at  𝑟𝑟0 where Equation (13) becomes: 

𝑟𝑟0 = �𝑚𝑚𝑏𝑏
𝑠𝑠𝑎𝑎

𝑚𝑚−𝑛𝑛
 

(14)  

To derive the material stiffness from the obtained energy function (12), assume a simple model of 

an arbitrary solid shown in Fig. 5 with the interatomic separation of 𝑟𝑟 been represented by y in 

both perpendicular directions [18]. 

 
Fig. 5.  An arbitrary material’s atomic arrangement [18]  
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In classical solid mechanics, the stiffness (𝐸𝐸) of a material is defined as the ratio of tensile stress 

to tensile strain. The tensile stress is the force per unit area, 𝐹𝐹/𝐴𝐴, and the strain is the proportional 

increase in length parallel to the applied force, 𝛿𝛿𝑟𝑟/𝑟𝑟. Therefore, the definition of  𝐸𝐸 gives:  

𝐸𝐸 = lim
𝛿𝛿𝐶𝐶→0

𝛿𝛿𝐹𝐹
𝐴𝐴
𝛿𝛿𝑟𝑟
𝑟𝑟

⩰
𝑑𝑑𝐹𝐹
𝑑𝑑𝑟𝑟

𝑟𝑟
𝐴𝐴

 
(15)  

Taking the derivative of Equation (13) about the unstressed atomic separation (𝑟𝑟0) yields [18]: 

𝐸𝐸 = (𝑚𝑚−𝑠𝑠)𝑠𝑠𝑎𝑎
𝐶𝐶0𝑛𝑛+1𝐴𝐴

    (16)  

Therefore, the Young's modulus with respect to the atomic forces can be presented as a function 

of the unstressed atomic separation, 𝑟𝑟0, valid within the magnified range of Fig. 4. Equation (16) 

in principal indicates that under unstressed conditions, one can claim that the stiffness of a material 

is altered if and only if the unstressed atomic separation, 𝑟𝑟0, is a function of temperature, 𝑟𝑟0(𝐸𝐸).   

To prove this claim, let’s consider a more realistic potential function shown in Fig. 6 [18]. 

Clearly, the atomic potential function is not a symmetric curve. This asymmetry about the 

minimum in 𝑈𝑈(𝑟𝑟0) is indeed the main reason for dilation. An unstressed system generally has 

sufficient thermal energy to reside at a level somewhat above the minimum in the bond energy 

function, and oscillates between the two positions labeled as 𝐴𝐴 and 𝐵𝐵 in Fig. 6, with an average 

position near 𝑟𝑟0 [18]. If the internal energy is increased due to added heat, the system will then 

oscillate between the positions labeled as 𝐴𝐴 ́ and 𝐵𝐵  ́with an average separation distance �́�𝑟0. Since 

the curve is anharmonic, the average separation distance is now greater than before. Therefore, the 

atomic separation distance is indeed seen as a function of temperature.  

For a reasonable approximation, the relative thermal expansion about the initial unstressed 

atomic separation, ∆𝑟𝑟0, is often related linearly to the temperature rise above the initial reference 

temperature, 𝐸𝐸𝐸𝐸, and can be written as [20]: 

𝐸𝐸𝑟𝑟0
𝑟𝑟0

= 𝛼𝛼𝐿𝐿𝐸𝐸𝐸𝐸 
(17)  

where 𝛼𝛼𝐿𝐿 is the coefficient of the linear thermal expansion. Correspondingly, the Young’s modulus 

described in Equation (16) can be expressed as:  
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𝐸𝐸 =
(𝑚𝑚 − 𝑠𝑠)𝑠𝑠𝑎𝑎

(𝑟𝑟0(1 + 𝛼𝛼𝐿𝐿𝐸𝐸𝐸𝐸))𝑠𝑠+1𝐴𝐴
 

(18)  

Equation (18) clearly indicates that the elastic modulus is a function of temperature change and, 

thus, must be modulated dynamically. 

 
Fig. 6.  Thermal expansion induced by asymmetry bond energy function [18]    

6. Modulated elastic energy storage (MC) vs conservation of energy 

As demonstrated in Equation (18), the elastic modulus of a system will decrease as temperature 

increases. Reducing the elastic modulus means that the considered elastic potential energy, 𝑈𝑈, of 

the system is reducing. This behavior can be found from the potential function depicted in Fig. 6. 

A higher thermal level for the system is seen to lead to a lower elastic energy level. This indicates 

that an isolated elastic energy field in the presence of heat exchange is not conservative, which 

simply means that there is a specific amount of energy interchange between the elastic domain and 

thermal domain. To keep the overall energy conserved, the thermal domain will now need to be 

incorporated into the modeling process via coupled capacity storage (i.e., multiport C). This will 

inevitably increase the complexity of the model drastically, and make the representation of the 

system in a single elastic domain impossible to achieve. 

To avoid the undesirable modeling complexity and to derive a simple model of the system in 

the pure elastic domain that can reflect the temperature-dependent nature of the elastic modular, 

the concept of a modulated capacitor (MC) is suggested on condition that the energy conservation 

rule underpinning the BG technique be reserved.  

To explore the possibility of replacing the constant C with MC, let’s look into the considered 

elastic domain energy function, 𝑈𝑈, on the basis of atomic energy. Generally speaking, at the atomic 
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level, the internal energy of a material is composed of two parts: the atomic potential energy and 

the atomic kinetic energy. While elastic behavior of a material is mainly related to the atomic 

potential energy, heat power is solely contributed to the atomic kinetic energy. From this point of 

view, the implementation of the parabolic energy function in Fig. 4 based on the Hook’s 

approximation, while providing a reasonable accuracy for the elasto-dynamic behavior of the 

elastic domain, would be seen to have excluded the atomic kinetic energy from the solution. The 

reason for excluding the atomic kinetic energy can be revealed by revisiting Fig. 6 where atomic 

energy variations around the temperature-dependent unstressed atomic separation parameter are 

observed. This amount of energy variations in the atomic kinetic domain is indeed the missing 

energy. The corresponding modulation of capacitance in the elastic domain is therefore seen to be 

the true reflection of this missing energy in the atomic kinetic domain. While the elasto-dynamics 

of the elastic domain represented by the Hook’s approximation is clearly observable at a 

macroscopic level, the dynamics of the atomic kinetic domain represented by this missing energy 

is only detectable in a phonon scale [21] [22]. This fact proves that the dynamic changes caused 

by the “missing” atomic kinetic energy will have little effect on the elasto-dynamic of the system 

– the Hook’s approximation thus holds. Consequently, it is justifiable to ignore the effect of the 

atomic kinetic energy in the scale of an elastic body. The missing energy once it is reflected to the 

elastic domain can then be seen as playing a negligible role in the overall dynamics of the system. 

Ignoring the missing energy in the elastic domain will then not shake the foundation of the energy 

conservation principle. This conclusion makes the implementation of MC in place of C 

permissible. 

Utilizing Equation (18), a permissible modulated storage coefficient for the elastic domain can 

be derived as: 

𝑀𝑀𝐶𝐶𝑖𝑖 =
𝐿𝐿𝑟𝑟0𝑠𝑠+1(1 + 𝛼𝛼𝐿𝐿(𝐸𝐸𝑖𝑖 − 𝐸𝐸0))𝑠𝑠+1

(𝑚𝑚 − 𝑠𝑠)𝑠𝑠𝑎𝑎
 

(19)  

Replacing C with MC (19) in the existing pure elastic BG model of Fig. 2 will adequately address 

the impact of material softening as part of the thermomechanical phenomena of the spool.   

7. Thermomechanical-enhanced spool Bond graph modeling  

Incorporating the proposed thermal effort discussed in Section 3, and the proposed modulated 
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capacitors discussed in Section 4 into the pure elastic beam model of Fig. 2, an elasto-expansive 

model of the spool that can reveal the behaviors of both structural dilation and material softening 

of the thermomechanical phenomena is generated. The resultant BG representation of the 

thermomechanical-enhanced model is shown in Fig. 7 where the thermal information of the system 

is added to both the capacitor via the signal port to the storage element and the inertia via the 

energy port to the momentum junction. These changes allow the thermomechanical phenomena of 

the spool to be fully represented in a single elastic domain.  

 
Fig. 7.  Thermomechanical-enhanced beam Bond graph model  

From Fig. 7, a new state equation for the momentum of the jth junction is derived as: 

�̇�𝑝𝐴𝐴 =
(𝑚𝑚 − 𝑠𝑠)𝑠𝑠𝑎𝑎
𝑟𝑟0𝑠𝑠+1

�
𝑞𝑞𝑖𝑖

�1 + 𝛼𝛼𝑖𝑖�𝐸𝐸𝑖𝑖 − 𝐸𝐸0𝑖𝑖��
𝑠𝑠+1

𝐿𝐿0𝑖𝑖
−

𝑞𝑞𝑖𝑖+1

�1 + 𝛼𝛼𝑖𝑖+1�𝐸𝐸𝑖𝑖+1 − 𝐸𝐸0𝑖𝑖+1��
𝑠𝑠+1

𝐿𝐿0𝑖𝑖+1

+
𝛼𝛼𝑖𝑖�𝐸𝐸𝑖𝑖 − 𝐸𝐸0𝑖𝑖�

�1 + 𝛼𝛼𝑖𝑖�𝐸𝐸𝑖𝑖 − 𝐸𝐸0𝑖𝑖��
𝑠𝑠+1 −

𝛼𝛼𝑖𝑖+1�𝐸𝐸𝑖𝑖+1 − 𝐸𝐸0𝑖𝑖+1�

�1 + 𝛼𝛼𝑖𝑖+1�𝐸𝐸𝑖𝑖+1 − 𝐸𝐸0𝑖𝑖+1��
𝑠𝑠+1� 

(20)  

Eqs. (20) and (2)-(3) form the new set of governing equations sufficient for describing the 

thermomechanical phenomena of the spool. As revealed in Eq. (20), the momentum rate of each 

boundary of the configured element now depends on the temperature of the adjacent elements. The 

first two terms of Eq. (20) reflect the material softening dynamics of the spool, and the last two 

terms of Eq. (20) contain the structural dilation dynamics of the spool.   

8. Simulation result and analysis 

To evaluate the ability of the proposed thermomechanical-enhanced BG model to capture the 

spool’s thermoelastic phenomena, a set of simulations including pure elastic vibration, heating, 
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and thermomechanical loading is performed on a simple undamped beam structure that mimics an 

arbitrary spool. The geometrical and material parameters of the beam are given in Table 1, and the 

1D axial dynamics of the beam is to be investigated. To generate the discretized geometry, the 

chosen beam is reticulated into 20 uniform elements with the first and last elements being the end 

elements that receive external mechanical loading. It is assumed that the side surface of the beam 

is fully isolated and the beam is stress-free initially in the ambient room temperature. Sequentially, 

the validity of the proposed model in presenting pure elastic behavior of the beam is first checked 

in Fig. 8 and Fig. 9. The effectiveness of the suggested thermal effort in capturing the dynamics 

of structural expansion (thus nodal displacement) is then demonstrated in Fig. 11 and Fig. 12. 

Finally, the performance of the suggested modulated storage in revealing the behaviors of material 

softening is presented in Fig. 13.    

Table 1. Beam geometrical and material parameters 

Length 𝒍𝒍 2.1𝑆𝑆−1𝑚𝑚 

Cross section 𝐴𝐴 1𝑆𝑆−4𝑚𝑚2 

mass 𝑚𝑚 5.67𝑆𝑆−2𝑘𝑘𝑔𝑔 

Conductivity 𝜆𝜆 2.73𝑆𝑆2
𝐽𝐽

𝑚𝑚.𝐾𝐾
 

Density ρ 4𝑆𝑆3  
𝑘𝑘𝑔𝑔
𝑚𝑚3 

Molar mass 𝑀𝑀 2.698𝑆𝑆−2
𝑘𝑘𝑔𝑔
𝑚𝑚𝑚𝑚𝑒𝑒

 

Reference entropy @ 298K 𝑠𝑠0 2.83𝑆𝑆1
𝐽𝐽

𝑚𝑚𝑚𝑚𝑒𝑒.𝐾𝐾
 

Specific heat 𝑐𝑐𝑝𝑝 8.97𝑆𝑆2  
𝐽𝐽

𝑘𝑘𝑔𝑔.𝐾𝐾
 

To validate the proposed model in representing pure elastic behavior of the beam without 

thermal impacts, an axial mechanical cyclic load of amplitude 1N and frequency 1000 Hz is 

applied to the end elements of the beam. The resultant deformation of each element measured 

using its local axis with respect to time is presented in Fig. 8. It is seen that the external excitation 

induces a stress-wave propagation that results in rippled deformations of the elements that 

demonstrate the elastic behavior of the beam. In the absence of energy dissipation inside the 

system, farer elements to the ends are more flexible (thus much deformed) than the end elements. 

Fig. 9 shows the resultant force-deformation graph of each of the beam elements in its local axis. 
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The similarity between the obtained result and the Hook’s stress-strain line for the elastic material 

verifies the integrity of the proposed model, and demonstrates that the proposed model is indeed 

behaving physically.  

 
Fig. 8.  Deformations of beam elements under axial mechanical cyclic loading 

 
Fig. 9.  Force-deformations of beam elements under axial mechanical cyclic loading  

To evaluate the effectiveness of the suggested thermal effort in capturing the dynamics of 

elemental expansion, a temperature profile shown in Fig. 10 is selected to provide the temperature 

history of each element during the free-expansion process without mechanical loading. The chosen 

profile is the simulated result of a compatible 1D conduction model suggested in [23] [24]. The 

temperature input to each of the elements mimics a transient heating process of the isolated beam 

where the temperature of the both ends of the beam is raised up to 600K from ambient room 

temperature. Accordingly, the temperature of the side elements raises rapidly and a uniform 

temperature will be achieved by all elements eventually. During this process, as the temperature 
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profile to each element is different, the expansion pattern of each element is different as illustrated 

in Fig. 11. It is clearly shown that the expansion of the system is not homogenous alongside the 

beam. The elements closer to the hot spots of the beam experience more intense expansions than 

those of the far elements. This phenomenon results in imperceptible interactions between adjacent 

elements of the structure, which will cause different nodal behaviors for different elements during 

the expansion process. To physically illustrate this effect, consider the beam as the internal spool 

of a control valve in a cantilever configuration with its fixed left-end been connected to the pilot 

actuator and its free right-end indicating the location where the operational set-point of the system 

is defined. Fig. 12 shows the nodal global positions of the beam elements in this situation. It clearly 

shows that the nodal behavior of the free-end of the spool is drastically different than that of the 

fixed-end of the spool. The slow dynamics of the expansion can change the set-point of the valve, 

thus the operational level of the system, significantly without the interference of the valve’s 

internal control system. In fact, in the presence of thermal loading, the nodal position of the spool 

(measured by the position of the free-end element) varies according to the local temperature of the 

system. Given that the nodal position of the spool is a deciding factor for the design of the valve’s 

control strategies, if a strategy were designed using the pure elastic model of the system (Fig. 2) 

without including the thermal loading effect, the strategy would be bound to fail when used to 

regulate the thermoelastic behavior of the system. 

 
Fig. 10. Thermal input profile to beam elements 
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Fig. 11. Thermal expansions of beam elements 

 
Fig. 12. Nodal global positions of beam elements 

To investigate the capability of the suggested modulated storage in capturing the resultant 
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impacts of temperature-induced material softening, the behavior of the beam under cyclic 

mechanical loading is compared before and after the heating process. As the beam is modelled in 

1D, the impacts due to material softening will be reflected by the change in the system response, 

which indicates the change in the beam’s modes upon thermal loading. To this end, the following 

simulation sequence is arranged. Firstly, a high-frequency cyclic axial load (1N and 60000 Hz) is 

applied to the end elements of the beam to establish the behavior of the beam’s modes before 

heating. Then, the temperature profile of Fig. 10 is applied to the beam while the mechanical 

loading is ceased to allow the structure to become fully expanded. Finally, the same mechanical 

loading is reapplied to the beam to demonstrate the change in the beam’s modes due to material 

softening after heating. Fig. 13 shows the resultant oscillatory deformations of the center and end 

elements of the beam before (a) and after (b) heating. As can be seen, heating the system changes 

the range and frequency of the oscillation, which indicates the change in the system modes. The 

significant increase in amplitude and frequency does resemble the behavior of material softening 

due to heating.  The suggested modulated storage in the proposed model is thus seen to be able to 

physically capture the effect of material softening within the system. The observed amplitude and 

frequency changes in the system response cannot be overlooked, as they potentially can propagate 

unwanted dynamics throughout the entire structure and place the whole system into an unstable 

situation. For instance, in the case of a liquid propulsion system, if the unwanted dynamics is 

propagated into the feed-system components, then cavitation and explosion would be the inevitable 

consequence. 

 
Fig. 13. Deformation of beam under axial cyclic loading and thermal loading     
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9. Conclusion 

In this study, by means of the BG technique, an enhanced thermoelastic model is developed to 

address the thermomechanical phenomena present in typical control valves’ internal moving 

components (spools). Using the concept of an equivalent thermal source, the structural expansion 

behavior of the system due to thermal loading is captured and its impact on altering the system set-

point is demonstrated. By examining the elastic domain energy function at the atomic level, the 

concept of a modulated capacitor that complies with the energy conservation principle of the BG 

methodology is proposed. Using the modulated capacitor in the system’s momentum equation, the 

material softening behavior of the system induced by heating is revealed and its effect on changing 

the system vibration modes is illustrated. The combined thermal-source and modulated-capacitor 

approach makes the modeling of the system’s thermomechanical dynamics in a single elastic 

domain possible. The presented study explains the importance of unveiling the thermomechanical 

phenomena as a part of the dynamic examinations of the control devices under thermal loading. 

The simulation results not only confirm the validity of the suggested thermomechanical-

enhanced model of the system, but also demonstrate the potential benefit of the proposed approach 

in permitting the access of the system’s physical details during the transient and allowing each 

physical behavior of the system to be examined individually. It is this latter point that offers a 

unique feature of the proposed approach in providing a useful tool for conceptual design, fault 

detection, reliability assessment, and structural optimization of other similar macro-scale control 

devices.  
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Abstract 
In this paper, a novel domain-independent conduction model compatible for multi-physical system 
dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear 
conduction model containing physical states is first represented. A compatible discrete configuration of 
the thermal domain in line with the elastic domain is then generated through the enhancement of the 
configuration of the conventional thermal element. The presented simulation results of a simple 
structure indicate that the proposed conductive model can reveal a wide range of dynamic behaviors of 
the thermal domain. 

Keywords—Multi-physical system, conduction model, port-based modeling, dynamic interaction, 
physical modeling  

1.  INTRODUCTION 
ORMALLY in multi-physical domain dynamic modeling, the thermal domain dynamics are 

typically replaced by fixed sources and resistors [1]. As long as the dissipated energy does not 

return to the system, this way of modeling can simplify the multi-physical system behavior without 

imposing major undesirable impacts on the system dynamics [2]. In reality, however, the 

dissipated energy does come back to the system in the form of thermal energy, and this returned 

energy may change the behavior of the system. For example, in extremely high-speed structures, 

the vibration-induced heating can cause unsolicited deformation, and the thermoelastic damping 

mechanism can result in changes in the system dynamics. These unpredicted dynamics would then 

make the control of the system difficult, e.g., in the case of controlling an aileron that is subjected 

to external aero-thermal loads [3]. To adequately investigate multi-physical system dynamics that 

have a strong connectivity with the thermal domain, it becomes necessary to include the thermal 

domain dynamics in the modeling of the system.  

In a coupled multi-physical system, unlike some visible dynamics in other subdomains such as 

vibration in the mechanical subdomain, the dynamics of the thermal subdomain are not explicitly 

observable. A physical approach that can vividly reveal the nonlinear behavior of the thermal 

subdomain as well as its interactions with each of the other subdomains of the system is thus 

preferred. It is anticipated that by implementing such an approach, the interactive multi-physical 

N 
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phenomena such as material softening and viscoelastic damping can be unveiled through the use 

of fundamental physics that govern the dynamics of the system. From this point of view, a port-

based approach, known as the Bond graph (BG) approach that works on the basis of power 

continuity inside dynamic systems [4] [5] [6] [7] [8], is chosen for this study. The BG approach is 

principally capable of maintaining the integrity of the power transformation between different 

subdomains of a multi-physical system while extracting the system nonlinear governing equations 

from the interactive dynamics of the subdomains. The model thus generated is analytical in nature 

while potentially reflecting the true physical meaning of the system. This is a desirable feature of 

the BG approach over the other existing modeling approaches such as the FEM [9] [10] [11] 

techniques that are clearly unable to perform in the same context. 

Although a physical-modeling approach is a vigorous way to capture the system’s physical 

phenomena, lack of attention to the system geometry in forming the physical model’s fundamental 

components (i.e., the energy components such as resistors, inertias, capacitors, and transformers 

that construct the dynamics of the system) can make it unusable for studies of multi-physical 

system dynamic behaviors in a discrete form. Given that in a discretized multi-physical system, 

different subdomains in principle share the same geometry properties, the transmitted information 

between the subdomains should thus have the same geometrical characteristics. However, due to 

the existing coupling between the subdomains, one subdomain’s dynamic behavior may alter the 

existing properties (e.g., the length of the discretized segment) of the other related subdomains. In 

order to maintain the continuity of the power transmission between the different subdomains, the 

property changes of one subdomain must be reflected on the other related subdomains’ properties 

that share the same geometry. If this requirement is overlooked, the generated model will be 

inaccurate in revealing the true physical interactions between different subdomains of the system. 

It is therefore essential to separate the energy components of different subdomains that are 

geometrically compatible to each other in order to effectively communicate the dynamic changes 

in properties among each of the associated subdomains. The consideration of geometrical 

compatibility between different physical subdomain elements is thus the key to success of the 

investigation of multi-physical phenomena using a physical approach.  

This paper attempts to bridge the gap between a theoretically generated thermal model [1] and 

its practical realization in a multi-physical system setting using a discrete geometry that can reflect 



  SIMULATION: Transactions of The Society for Modeling and Simulation (Under review)   

81 

the geometrical compatibility considerations. This attempt will relate the port-based discrete 

elements with the so-called finite-element approach to form a port-based finite-element method. 

By applying a novel concept of compatible elements to different subdomains, a multi-physical 

system can be effectively modelled using separate power distribution frames, each involving a 

subdomain that is physically connected with other subdomains. The interactions between these 

power frames will shape the total behavior of the multi-physical system. Accordingly, the dynamic 

impacts of the thermal subdomain onto the other subdomains (and vice versa) that constitute the 

thermal-included multi-physical phenomena will be physically unveiled. 

To achieve this aim, a nonlinear 1-D conduction model suitable for thermo-elastic dynamic 

investigations is proposed in this paper. A domain-independent conductive discrete element with 

its thermal characteristics analogous to those of the mechanical elements is introduced using the 

concept of the port-based approach. The compatibility consideration of the proposed model will 

provide a guidance for the formation of the complex couplings between the thermal and elastic 

domains with less mathematical effort. The distinctive domain-independency feature of the 

conduction model will make it suitable for a wide range of multi-physical dynamic investigations, 

including studies involving aero-servo-thermo-elasticity.  

The remainder of this paper is organized as follows. In Section II, after a brief explanation of 

the adjugate physical thermal variables, the calculation of the conventional thermal element is 

presented. In Section III, a BG representation of the conventional independent conduction model 

is derived, and its associated governing equations are extracted through the implementation of the 

port-based approach. In Section IV, a novel compatible thermal element is proposed, and the 

compatibility of its configuration with the new concept of a port-based finite-element thermo-

elastic model is discussed together with the demonstration of the required modulated connections 

between a standard elastic element and a conductive thermal element. In Section V, to evaluate a 

capability of the proposed thermal element in discrete modeling, the thermal behavior of a 1-D 

conductive beam is simulated for different boundary conditions and the obtained results are 

discussed. Finally, the capability of the proposed domain-independent configured thermal element 

in modeling the dynamics of the heat conduction within an elastic body is concluded in Section 

VI. 
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2.  DOMAIN-INDEPENDENT STATE VARIABLES OF THERMAL DOMAIN 
In a physical modeling approach, the state variables of a multi-physical system are chosen on 

the basis of the physical system theory [12]. Accordingly, only the extensive variables of the 

system (such as entropy in the thermal subdomain) can be transferred between the elements of the 

different subdomains, resulting in changes in their associated potentials (such as temperature). 

From this point of view, the potentials of the system can be obtained from the constitutive 

equations that are functions of the extensive variables [13]. Implementing a physically-meaningful 

information transfer between different subdomains will result in a domain-independent modeling 

strategy. This strategy makes the thermal model connectable to the models of other subdomains 

effortlessly. The adjugate physical thermal variables that can form a domain-independent 

conduction model are explained as follows, based on the physical system theory. 

According to the literature, in a well-insulated media, the 1-D heat propagation within the system 

can be described as [2]: 

𝜕𝜕𝐸𝐸
𝜕𝜕𝑡𝑡

= 𝜎𝜎
𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥2

 (1)  

Discretization of the right-hand side of Eq. (1) in space leads to: 

𝜕𝜕2𝐸𝐸
𝜕𝜕𝑥𝑥2

≈
𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖+1) − 2𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖) + 𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖−1)

∆𝑥𝑥2
 

(2)  

which in turn results in: 

𝑑𝑑𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖)
𝑑𝑑𝑡𝑡

=
𝜎𝜎
∆𝑥𝑥2

�𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖+1) − 2𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖) + 𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖−1)� 

(𝑖𝑖 ∈   1, … ,𝑠𝑠) 

(3)  

where 𝐸𝐸(𝑡𝑡, 𝑥𝑥𝑖𝑖) denotes the ith element’s temperature at time t and location xi , and σ is the diffusion 

time. Conventionally, to calculate the nodal temperature of the system, heat �̇�𝑄 is used as energy 

flow between different discrete segments (thermal elements). Employing heat as the flow of the 

system will lead to the domain-dependency of the model. According to the physical system theory, 

to avoid the domain-dependency of the model, the flow of a subdomain is required to be the rate 

of the extensive state of the subdomain, and its corresponding effort (potential) is the constitutive 

equation of the subdomain dependent on state variables. Consequently, the power of a subdomain 

can be represented as a product of the flow and the effort of the subdomain. Given this requirement, 

heat can’t be considered as the flow of the thermal subdomain as it is, in principal, the power of 
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the thermal subdomain including the potential.  

It is known from the thermodynamic science that, for the thermal subdomain, entropy, s, is the 

justifiable extensive variable and temperature, T, is the resultant dependent variable. Therefore, 

according to the physical system theory, the rate of entropy must be chosen as the thermal flow 

and temperature must play the role of the effort of the thermal domain. The product of these two 

adjugate thermal variables, T and �̇�𝑠, forms the thermal power inside the system. In a reversible 

process, the entropy rate can be obtained as: 

�̇�𝑠 =
�̇�𝑄
𝐸𝐸

 (4)  

It is clear that by implementing the entropy flow instead of the heat flow, the potential component 

of the conventional heat flow is removed. This gives the thermal model the ability to receive 

thermal power from different subdomains with different constitutive equations. The resultant 

thermal model will then be domain-independent.  

3. BG MODEL OF THERMAL CONDUCTION 
By employing the domain-independent conjugate thermal variable explained in Section II, a 

physical conduction model can be developed based on a port-based approach. The BG method is 

chosen as it is a powerful tool to adequately model a complex system with dynamic interactions 

between its multiple energy subdomains [4] [36]. In this method, a unique language is defined to 

represent quantities in different physical subdomains. By means of the energy conservation law, 

the BG method effectively describes the system dynamic behaviors in the form of energy 

dissipation, storage, and power flow. 

Using the BG presentation, a 1-D conventional conduction model is described by a chain of 

dissipative, R, and capacitive, C, energy components [1], as shown in Fig. 1.  In this model, it is 

assumed that the thermal energy can be stored in C components and dissipated while passing 

through R components. The model is then expressed by a series of resistive-capacitive energy 

components placed interlaced. Although this BG model is exceedingly beautiful, it is most 

certainly incorrect because there are no energy sinks in the model. As can be seen, the amount of 

energy dissipated by resistor R is going nowhere. A resistor may make sense in an electrical circuit 
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if the heating of the circuit is not of interest, but it is most certainly not meaningful when the 

system is itself in the thermal domain. 

 
Fig. 1  Conventional BG heat conduction model [1] 

Since resistors convert free energy irreversibly into heat, the problem can be easily rectified by 

replacing each resistor by a resistive source, an RS-component, shown in Fig. 2. The entropy 

generated by the RS-component can then be re-entered into the thermal subdomain. The causality 

of the thermal subdomain is always such, that the resistor is seen as a source of entropy, never as 

a source of temperature, since the sources of temperature are non-physical. The resultant BG model 

using RS instead of R is shown in Fig. 3. The temperature gradient leads to an additional entropy 

that is re-introduced at the nearest 0-junction. This arrangement provides a good approximation of 

the physical reality. 

 
Fig. 2  BG RS-component [1] 

 
Fig. 3  Modified heat conduction BG [1] 

On the basis of the resulting thermal BG integrative causality, the state equation of the ith element 

of the thermal subdomain can be derived from its C energy storage component with respect to its 

state variable (thermal extensive state), 𝑞𝑞𝑡𝑡ℎ 𝑖𝑖, that denotes the amount of stored entropy, s, of the 

ith capacitor. Considering the layout of Rj and Ci components shown in Fig. 3, one obtains: 
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�̇�𝑞𝑡𝑡ℎ 𝑖𝑖 = �̇�𝑠𝐴𝐴 − �̇�𝑠𝐴𝐴+1 + �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠   (5)  

where �̇�𝑠𝐴𝐴, �̇�𝑠𝐴𝐴+1 and �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 are the amount of reversible inlet and outlet entropy flows, and the entropy 

generation rate (irreversible entropy flow), respectively. The internal thermal flow can be obtained 

as: 

�̇�𝑠 𝐴𝐴 =
1
𝑅𝑅𝐴𝐴

(𝐶𝐶𝑖𝑖−1(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1) − 𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖))  (6)  

where 𝑅𝑅𝐴𝐴 is the resistant coefficient of the jth RS-component and 𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) is a capacitive function 

of the state of the ith storage component representing the temperature (potential) of the element. 

Substituting Eq. (6) into Eq. (5) yields: 

�̇�𝑞𝑡𝑡ℎ 𝑖𝑖 =
1
𝑅𝑅𝐴𝐴
�𝐶𝐶𝑖𝑖−1(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1) − 𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖)� −

1
𝑅𝑅𝐴𝐴+1

(𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) − 𝐶𝐶𝑖𝑖+1(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1)) + �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠    (7)  

To identify 𝑅𝑅 and 𝐶𝐶 components of the BG model for the thermal subdomain, let’s assume that the 

capacity of a long well-insulated rod to conduct heat is proportional to the temperature gradient. 

Using Eq. (4), one has: 

𝐸𝐸𝐸𝐸 = Ɵ. �̇�𝑄 = (Ɵ.𝐸𝐸). �̇�𝑠 = 𝑅𝑅. �̇�𝑠 (8)  

Ɵ =
𝑒𝑒
𝜆𝜆𝐴𝐴

 (9)  

where θ, λ , l and A are the thermal resistance, specific thermal conductance coefficient, length and 

cross-section area of the element, respectively. Considering ∆x as the length of the jth resistive 

energy component, the related resistance coefficient can be derived as:  

𝑅𝑅𝐴𝐴 =
𝐸𝐸𝑥𝑥𝐴𝐴𝐸𝐸𝐴𝐴
𝜆𝜆𝐴𝐴𝐴𝐴𝐴𝐴

 (10)  

According to the Fourier heat conduction law, the capacity of a long well-insulated rod to store 

heat satisfies the capacitive law, thus: 

∆�̇�𝑠 =
𝛾𝛾
𝐸𝐸
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

= 𝐶𝐶
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

 (11)  

𝛾𝛾 = ρ𝑉𝑉𝑐𝑐 (12)  

where c, ρ and V are the specific heat capacity, density, and volume of the element. Considering 
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𝑒𝑒𝑖𝑖 as the length of the ith element, the related capacitance coefficient can be presented as: 

𝐶𝐶𝑖𝑖 =
𝑐𝑐𝑖𝑖ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑒𝑒𝑖𝑖
𝐸𝐸𝑖𝑖

 (13)  

From Eqs. (10) and (13) it is clear that the thermal R and C components, contrary to their 

electrical and mechanical counterparts, are not constant parameters. This makes the thermal 

subdomain highly nonlinear. Also, it can be seen that the thermal resistance is proportional to 

temperature, whereas the thermal capacity is inversely proportional to temperature. Hence, the 

diffusion time constant σ=RC is independent of temperature, and the generated state equation (7) 

according to the physical states is consistent with the heat conduction differential equation (3).  

To calculate the effort, T, of the storage component presented as 𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) in Eq. (6), integrate 

Eq. (11). The temperature of the element dependent on the local state can then be obtained as:  

𝐸𝐸𝑖𝑖 = 𝐶𝐶𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) = 𝐸𝐸0𝑆𝑆
1

ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0) (14)  

where 𝐸𝐸0 and 𝑠𝑠0 are, respectively, the reference temperature and entropy of the ith element. Finally, 

to calculate �̇�𝑠𝐴𝐴𝑒𝑒𝑠𝑠 for the solution of Eq. (7), consider the power transmission in Fig. 2 and the RS 

connections in the main BG body of Fig. 3. According to power continuity, the following relation 

can be derived for any RS-component of the model:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠𝐸𝐸𝑖𝑖 = �̇�𝑠𝐴𝐴 (𝐸𝐸𝑖𝑖−1 − 𝐸𝐸𝑖𝑖) (15)  

Substituting Eqs. (6) and (14) into Eq. (15) yields:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 =

1
𝑅𝑅𝐴𝐴
𝐸𝐸0𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0) (𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) − 1)2 (16)  

The governing equation of heat conduction in the thermal subdomain is now closed. It is clear that 

the amount of entropy generated inside an element is a function of the state variable, 𝑞𝑞𝑡𝑡ℎ 𝑖𝑖, material 

characteristics, and geometrical parameters of the element. 

By this stage, the extracted mathematical model is capable of capturing the dynamics of thermal 

conduction in a transient process. However, to enhance the capability of the model in use in multi-

physical systems, the generated model will not be suitable unless the compatibility consideration 

of the model has been taken into account.  
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4. PORT-BASED HEAT CONDUCTION COMPATIBLE DISCRETE MODEL 
For the generalized thermal model obtained in Section III, the multi-domain compatible 

characteristics of its energetic components will need to be generated in order for the model to 

become useful for a coupled multi-physical system. The compatible thermal model, once 

generated, will be able to be directly connected to other physical subdomains of the system that 

are identically reticulated.  

To achieve this, unlike the conventional physical thermal element that can only obtain an 

optional property (such as capacity or resistivity) with respect to the geometrical location of the 

element within the model, each new thermal element is now required to have its own independent 

properties and internal energy components in such a way that the boundaries of the internal energy 

components symmetrically become congruous with the boundary of the element. This requirement, 

regardless of the geometrical position of the element, will provide a physical connection between 

the thermal internal energy components and the corresponding energy components of other 

physical subdomains where an identical discretization process has been applied. This physical 

connection will make the thermal model of the system effortlessly connectable to other physical 

(such as the elastic, electrical, or chemical) subdomain models, and thus directly suitable for multi-

physical dynamic investigations. 

A series configuration of the proposed domain-independent compatible thermal element is 

shown in Fig. 4. In this configuration, it is assumed that heat can be stored in the 𝐶𝐶 part of the 

element, and can be dissipated while passing from one element to its adjacent element. On the 

basis of this assumption, for a 1-D element, it has been presumed that the center part of each 

element is the heat storage of the system where the memory characteristics belong to, and the two 

sides of each element are the parts in which the thermal energy is dissipated. 

 
Fig. 4  1-D heat conduction schematic 

The bi-dissipative consideration of the proposed thermal element makes it slightly different from 
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a conventional thermal element. According to the conventional representation (RC-chain), thermal 

energy can be stored in one side and dissipated from the other side of the element. This technique 

of discretization does not provide the power divergence information for each element, and thus the 

integration won’t be achievable locally. This limitation makes the conventional models unsuitable 

for parallel computation.  

To generate the proposed thermal element, it is assumed that each element of the system consists 

of both the dissipative and storage energy components. Unlike the conventional thermal element, 

the dissipation of the proposed thermal element is considered to be symmetrical with respect to 

the geometry of the element. To generate the symmetric dissipation of each element and, at the 

same time, maintain the continuity of the flux in a continuous geometry, the dual-shifted 

continuous reticulation of the energy components shown in Fig. 4 can be beneficial. Given that the 

boundary of each thermal element is bonded to move together with the adjacent elements, one can 

relate the dissipative behavior of each element to the dissipative mechanism of its adjoint 

boundaries known as the junction elements indexed by 𝑗𝑗. Considering the existing shifting between 

the storage component and the resistive components in the reticulated geometry, the dissipative 

characteristics of each junction elements can be produced by the dissipative parameters of the 

adjacent elements. This means that to generate the required flux crossing the boundary of each 

element, the local information can be employed. Therefore, dissipative parameters of each junction 

can be obtained with respect to the material and geometry properties of each element, which leads 

to the generation of a locally-integrative thermal element. 

 
Fig. 5  1-D conduction BG model 

The BG presentation of Fig. 4 is shown in Fig. 5. As can be seen, in the represented model, each 

element is considered as a 𝐶𝐶 storage component together with the state variable, 𝑞𝑞𝑡𝑡ℎ, denoting the 

amount of stored entropy. In the proposed BG model, each 𝐶𝐶 component is connected to its 
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adjacent elements via two intra-connection elements named earlier as junction elements. Assume 

that each element named after its junction element. As shown in Fig. 5, the characteristics of the 

junction elements are a weighted combination of its adjacent elements or the source and adjacent 

elements. Accordingly, one can assume that the generated entropy within each element can be 

obtained from a combination of the generated entropy of its adjacent junctions. Hence:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 = 𝑀𝑀𝐴𝐴𝐶𝐶�̇�𝑆𝐴𝐴

𝐴𝐴𝑒𝑒𝑠𝑠 + 𝑀𝑀𝐴𝐴+1𝑙𝑙�̇�𝑆𝐴𝐴+1
𝐴𝐴𝑒𝑒𝑠𝑠 (17)  

where �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 is the amount of internal entropy generation denoting the irreversibility of the heat 

conduction process, and 𝑀𝑀𝐴𝐴 is the switch working after each RS-component. This switch is 

responsible to conduct  �̇�𝑆𝐴𝐴
𝐴𝐴𝑒𝑒𝑠𝑠 to the correct direction by comparing the neighborhood temperatures 

together as such:  

If  𝐸𝐸𝑖𝑖−1 < 𝐸𝐸𝑖𝑖 ⇒ �
𝑀𝑀𝐴𝐴𝑙𝑙
𝑀𝑀𝐴𝐴𝐶𝐶

� = �01� 
(18)  

The net entropy generation for each element can be obtained as: 

�̇�𝑆 𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 = 𝐸𝐸0𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0) �

𝑀𝑀𝐴𝐴𝐶𝐶

𝑅𝑅𝐴𝐴
 (𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) − 1)2 +

𝑀𝑀𝐴𝐴+1𝑙𝑙

𝑅𝑅𝐴𝐴+1
 (𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1) − 1)2� (19)  

To formulate the RS-components in the proposed configuration, one should first construct a 

weighted function. For simplicity, the mean functionality is selected for calculating the junction 

resistance:  

𝑅𝑅𝐴𝐴 =
𝑅𝑅𝑖𝑖−1 + 𝑅𝑅𝑖𝑖

2
 (20)  

Given the constitutive equation related to the R components in the classical thermodynamic is the 

Fourier equation, considering Eq. (10) for the jth junction, the related resistivity can be obtained 

as: 

𝑅𝑅𝐴𝐴 =
𝐸𝐸0
2

(
𝑒𝑒𝑖𝑖−1𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑚𝑚0)

𝜆𝜆𝑖𝑖−1𝐴𝐴𝑖𝑖−1
+
𝑒𝑒𝑖𝑖𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖
) (21)  

Considering the compatible entropy generation, �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 and the resistivity of the system, 𝑅𝑅𝐴𝐴, the 

governing Eq. (7) for the port-based thermal element can be rewritten as:  
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�̇�𝑞𝑡𝑡ℎ 𝑖𝑖 =
�𝑆𝑆

1
ρ𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝑙𝑙𝑖𝑖−1𝑐𝑐𝑖𝑖−1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑚𝑚0)
− 𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)
�

�1
2�

𝑒𝑒𝑖𝑖−1𝑆𝑆
1

ρ𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝑙𝑙𝑖𝑖−1𝑐𝑐𝑖𝑖−1
(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑚𝑚0)

𝜆𝜆𝑖𝑖−1𝐴𝐴𝑖𝑖−1
+ 𝑒𝑒𝑖𝑖𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖
��

−
�𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)
− 𝑆𝑆

1
ρ𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝑙𝑙𝑖𝑖+1𝑐𝑐𝑖𝑖+1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1−𝑚𝑚0)
�

�1
2�

𝑒𝑒𝑖𝑖𝑆𝑆
1

ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖
(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝑒𝑒𝑖𝑖+1𝑆𝑆

1
ρ𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝑙𝑙𝑖𝑖+1𝑐𝑐𝑖𝑖+1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1−𝑚𝑚0)

𝜆𝜆𝑖𝑖+1𝐴𝐴𝑖𝑖+1
��

+ 𝑆𝑆
1

ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖
(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

 

⎝

⎜
⎜
⎜
⎛ 𝑀𝑀𝐴𝐴𝐶𝐶(𝑆𝑆

1
ρ𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝑙𝑙𝑖𝑖−1𝑐𝑐𝑖𝑖−1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑆𝑆0)

𝑆𝑆
1

ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖
(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑆𝑆0)

− 1)2

�1
2 (𝑒𝑒𝑖𝑖−1𝑆𝑆

1
ρ𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝑙𝑙𝑖𝑖−1𝑐𝑐𝑖𝑖−1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1−𝑚𝑚0)

𝜆𝜆𝑖𝑖−1𝐴𝐴𝑖𝑖−1
+ 𝑒𝑒𝑖𝑖𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖
)�

 

+

𝑀𝑀𝐴𝐴+1𝑙𝑙(
𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑆𝑆0)

𝑆𝑆
1

ρ𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝑙𝑙𝑖𝑖+1𝑐𝑐𝑖𝑖+1
(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1−𝑆𝑆0)

− 1)2

�1
2 (𝑒𝑒𝑖𝑖𝑆𝑆

1
ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑙𝑙𝑖𝑖𝑐𝑐𝑖𝑖

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−𝑚𝑚0)

𝜆𝜆𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝑒𝑒𝑖𝑖+1𝑆𝑆

1
ρ𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝑙𝑙𝑖𝑖+1𝑐𝑐𝑖𝑖+1

(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1−𝑚𝑚0)

𝜆𝜆𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)�

 

⎠

⎟
⎟
⎟
⎞

   

(22)  

It is clear that the rate of change in entropy of each element, according to the direction of heat 

conduction, solely depends on the material and geometrical characteristics of a spatial element. 

This exclusivity of the proposed model makes the thermal element compatible with any other 

domains’ elements with the same spatial references.  

Accordingly, the generated model is suitable to be used in multi-physical domain dynamic 

investigations. For instance, in thermo-mechanical phenomena, it is known that mechanical 

loading can change the conductivity of the system. Considering Eq. (10), the resistance of each 

element is proportional to the length of its resistor’s generalized length (∆𝑥𝑥𝑖𝑖). Under mechanical 

loading, this parameter will vary during the thermal process, which can affect the conductivity of 

the system.  By replacing the RS-components with a mechanically modulated resistivity, MRS, the 

impacts of mechanical deformation can be captured in the conductive behavior of the system. By 

means of a compatible 1-D BG representation of the elastic domain [15] with the proposed thermal 

model, the impact of elastic vibration on the conductivity of the system can be obtained from the 

connectivity of the system depicted in Fig. 6. It should be mentioned that the complete set of 

connections of thermal and elastic subdomain is not limited to what is shown in Fig. 6, however 
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the consideration of other connections is out of the interest of this paper. 

 
Fig. 6  Geometrical connectivity of thermal and elastic subdomains 

5.  1-D CONDUCTION DYNAMIC SIMULATION 
To evaluate the capability of the proposed thermal BG model in discrete modeling, the dynamic 

behavior of thermal conduction within a simple beam structure is analyzed. Two steps are taken: 

(i) To evaluate the ability of the proposed model to capture the heat conduction dynamics, a set of 

simulations including temperature pulse input and periodic thermal loading is performed for the 

chosen structure; (ii) To evaluate the compatibility of the proposed thermal elements with the other 

physical subdomains of the system, the elastic subdomain impact on heat conduction is 

investigated for the chosen structure. The geometrical and material parameters of the beam are 

given in Table 1, and the 1-D heat conduction dynamics of the beam are to be examined. To 

generate the discretized geometry, the chosen beam is reticulated into 20 uniform elements with 

the first and last elements being the boundary elements that can receive thermal input. It is assumed 

that the side surface of the beam is fully isolated and the beam is stress-free initially in the ambient 

room temperature. Sequentially, by employing the temperature input of Fig. 7, the validity of the 

generated model in presenting the thermal dynamics of the beam is first verified in Figs. 8 to 9. 

The capability of the model in capturing the dynamics of the thermal subdomain under periodic 

temperature loading of Fig. 10 is then presented in Figs. 11 and 12. Finally, to confirm the 
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compatibility of the generated thermal element with the elements of the elastic subdomain, the 

impact of thermal expansion on heat conduction is examined in Fig. 13 through coupling the 

thermal model with the elastic model presented in [15].    

TABLE 1 :The Material and Geometrical Spool Properties 

Length 𝑒𝑒 2.1𝑆𝑆−1𝑚𝑚 
Cross section 𝐴𝐴 1𝑆𝑆−4𝑚𝑚2 

mass 𝑚𝑚 5.67𝑆𝑆−2𝑘𝑘𝑔𝑔 

Conductivity 𝜆𝜆 2.73𝑆𝑆2
𝐽𝐽

𝑚𝑚.𝐾𝐾
 

Density ρ 4𝑆𝑆3  
𝑘𝑘𝑔𝑔
𝑚𝑚3 

Molar mass 𝑀𝑀 2.698𝑆𝑆−2
𝑘𝑘𝑔𝑔
𝑚𝑚𝑚𝑚𝑒𝑒

 

Reference entropy @ 298K 𝑠𝑠0 2.83𝑆𝑆1
𝐽𝐽

𝑚𝑚𝑚𝑚𝑒𝑒.𝐾𝐾
 

Specific heat 𝑐𝑐𝑝𝑝 8.97𝑆𝑆2  
𝐽𝐽

𝑘𝑘𝑔𝑔.𝐾𝐾
 

 
Fig. 7  Temperature input to the left side of the beam 

To evaluate the capacity of the generated model in capturing the dynamics of the thermal 

subdomain, the pulse temperature input shown in Fig. 7 is considered as the boundary input to the 

left side of the beam. Fig. 8 shows the temperature profile of different elements of the beam during 

the simulation period. The relaxing dynamics of the conduction are evident in this behavior. The 

temperature of each element rises one after another, and decreases with a different pattern from 

the rising period. To explain this, one can consider that after the input pulse is vanished, the heat 

flow in the system is reversed such that the boundary elements start releasing heat to the 

environment and to the rest of the system.  
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Fig. 8  Beam elements’ thermal behavior 
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Fig. 9  (a) Junction entropy flows, (b) Irreversible entropy generation rate 
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Fig. 9 (a), shows the entropy flow changes inside the system with respect to the considered input. 

The behavior of the entropy flow can vividly explain the resultant temperature profile of the 

system. As can be seen, neglecting the boundary element, the reversed entropy flow in the system 

is not as strong as its primary current. Therefore, the cooling process is to some extend slower than 

the heating process in this situation. 

Fig. 9 (b) shows the amount of generated entropy rate during this process. The dissipated 

energy generated from the resistivity of the system can return to the system via this generated 

entropy rate which can alter the dependent variable, T, of the system. Accordingly, one can 

conclude that the resultant thermal dynamics of the system in principal can be presented as a result 

of both the irreversible entropy rate and the net reversible entropy rate shown respectively in Fig. 

9 (a) and (b) for each element.  

A close examination of Fig. 9 (b) shows that for the beam elements closer to the heat source, the 

profile of the irreversible entropy generation contains two peaks, whereas the input heat pulse was 

unique. One can explain that the first peak is a definite result of the external-pulse resultant 

temperature gradient and the second peak is induced by the internal dynamics of the thermal 

domain during the cooling period. This result clearly shows that there exist specific internal 

dynamics within the thermal domain which, accompanied by the introduced dynamics to the 

system via boundaries, can form the total behavior of the system. 

 
Fig. 10  Cyclic thermal input 
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Fig. 11  Temperature contour alongside the beam during the periodic thermal input to both ends  

To evaluate the capability of the proposed model in capturing the dynamics of the thermal 

subdomain under periodic loading, a sinusoidal thermal input shown in Fig. 10 is considered to be 

applied to both ends of the beam. Fig. 11 shows the resultant thermal behavior of the beam. As 

can be seen, the side elements of the beam is acting as a thermal filter for the central elements of 

the beam. This behavior highlights the slow dynamics of the thermal subdomain. As mentioned 

earlier, this dynamic behavior is the result of the thermal subdomain extensive variable exchange 

between elements. The reversible and irreversible entropy flows of the system are shown in Fig. 

12 (a) and (b), respectively. It clearly shows the internal flow difference between the side elements 

and the central elements, which results in the formation of the observed temperature profile of the 

system. 
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(a) (b) 
Fig. 12  (a) Reversible entropy flow; (b) Irreversible entropy flow  

To evaluate the capability of the proposed compatible thermal model in multi-physical systems 

dynamics investigation, the impact of the elastic deformation on the conductivity of the beam is 

selected to be examined. To achieve this, considering the geometrical connectivity of these two 

subdomains shown in Fig. 6, the impact of the dilation of the beam on the conductivity of the beam 

is to be discussed. To include the dilation, the compatible elastic BG model presented in [15] is 

employed. A temperature pulse shown as Tin in Fig. 13 (a) is considered as the input signal to the 

left boundary of the beam, and constant temperature Tout is considered as the right boundary 

condition of the beam. To distinctively clarify the dilation impacts of elastic subdomain on thermal 

subdomain dynamics, only the behaviors of every second segments along the beam is presented in 

Fig. 13. In Fig. 13 (a) the temperature profile of the beam is presented for an expansive beam. As 

can been seen, the thermal behavior of the beam follows the same pattern as the non-expansive 

elements shown earlier in Fig. 8. To highlight the existing dilative impacts on the conductivity of 

the system, the difference in the dynamic behaviors of the thermal subdomain between employing 

the expansive thermal element and employing the non-expansive thermal elements are presented 

in Fig.13 (b) to (d). In Fig. 13 (b), the negative difference indicates a slight lag in the temperature 

rise of the expanded elements. Given that temperature is an equilibrium-determinant variable that 

is dependent on the extensive variable of the element, this behavior indicates that the amount of 

the accumulated entropy of the element during the expansion process in the case of employing the 

expansive thermal elements are relatively lower than that of employing the non-expansive thermal 
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elements. The negative differences of the provided reversible and irreversible entropy flows, 

shown respectively in Fig. 13 (c) and Fig. 13 (d), can explain this shortage of the accumulated 

entropy. A rational reason to justify this change in entropy flow of the system can be obtained 

from Eqs. (6) and (19) which denote an inverse relativity of entropy flow with the expansive 

element’s growing resistivity. Accordingly, since the expansion of the elements increases the 

resistivity of the corresponding junctions, and since the magnitude of the transferred entropy flow 

of the thermal subdomain is determined by the resistivity of the system, the process of expansion 

can cause a slight lag in the dynamics of the thermal subdomain as presented in Fig. 13 (b).  

 
Fig. 13  Expansion impact on system conductivity: (a) Element temperature change due to pulse input at left side; (b) 

Difference in thermal behavior between fixed and expansive geometry situations; (c) Difference in entropy 

generation; (d) Difference in reversible entropy flow  

 The simulation results shown in this section indicate that although the selected 

connectivity between the thermal and elastic subdomains is weak, the dilation of the system due 

to the interaction of elastic and thermal subdomains does exist and can change the conductive 
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behavior of the system in a tractable level. In general industrial applications, this level of impacts 

may be negligible. However, in high-tech applications such as aerospace controlled structures or 

MEMS systems where critical and stringent temperature-control performances are required, this 

level of interactions must be considered. For instance, in the lithography printing systems of the 

ASML machines, the temperature needs to be controlled within the range of 1 mK in order to 

provide the printing ability in the order of Pico meter. In this case, designers will need to take the 

internal conduction dynamics of the system into account to be able to control the temperature of 

the device within the acceptable range. 

6. CONCLUSION 
In this paper to investigate the dynamics of heat conduction in multi-physical phenomena, a 

new configuration of energy component to form a domain-independent compatible thermal 

element is proposed. Using this configuration in a multi-physical domain setting, the impact of the 

thermal subdomain dynamics on the total dynamics of the system and vs can be examined. This 

method provides a useful tool for the management of the energy consumptions in multi-

disciplinary systems where temperature control is an important issue. The discrete nature of the 

proposed thermal model is also ideally matched with parallel computation platforms that can 

reduce the required computation time significantly. This advantage can increase the likelihood of 

the proposed model in the development of control strategies. 

The simulation results indicate the capability of the proposed model in capturing the dynamic 

behavior of the thermal subdomain in a discrete form. The obtained results also confirm the slow 

and relaxing behavior of the conduction in the system which is well-matched with the essential 

features of the thermal subdomain. The simulated thermoelastic results demonstrate that despite a 

weak connectivity between the elastic and thermal subdomains, the proposed model is able to 

capture the impact of multi-physical phenomena on the thermal subdomain and vice versa.   
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CHAPTER 4: THERMOELASTIC COUPLED MODEL FOR SOLID FIELD 

Aim 

The aim of this chapter is to reversibly couple the proposed thermal and elastic subdomains’ 

models generated in Chapter 3.  

Description 

To achieve this aim, first, the generated distinctive power distribution of the existing 

subdomains is represented in the form of BG notation. Next, to provide a continuous power 

transmission between the thermal and elastic subdomains, a reversible coupling is designed and 

the corresponding multi-dimensional constitutive equations are derived that satisfy the Maxwell 

reciprocity. Finally, by employing the generated coupling, the thermal and elastic subdomains are 

connected dynamically. The outline of the presented activities is organized as follows: 

1. Introduction on thermoelastic problems ..................................................................................103 

2. Conventional thermoelastic model and existing problem ........................................................106 

3. Thermoelastic Bond graph model ............................................................................................110 
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5. Simulation analysis ..................................................................................................................116 
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a. Free beam consideration ........................................................................................... 121 

b. Fixed-end beam consideration .................................................................................. 123 

5.3. Free-beam under thermoelastic loading ......................................................................124 

6. Conclusion ...............................................................................................................................127 
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Results 

Implementing the energy-based strategies, a physical model that is capable of dynamically 

capturing the reversible thermal and elastic subdomains’ interactions while preserving the 

fundamental physical natures of the thermoelastic phenomena, is generated. The generated model 

is domain-independent, and principally more suited to be connected to other physical domains than 

its conventional counterparts. The demonstrated capability of the generated model provides a 

unique benefit to the development of appropriate schemes for controlling structural vibrations 

under aerothermal loads. 

Conclusion 

Overall, a novel domain-independent nonlinear thermoelastic model suitable for multi-

physical system dynamic investigations is achieved, with which the reversible dynamic coupling 

between the elastic and thermal subdomains is approachable without the use of the conventional 

weak connectivity assumption. 
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DOMAIN-INDEPENDENT REVERSIBLE THERMOELASTIC COUPLING: A 

BOND GRAPH APPROACH 

Amir Zanj1, Peter C. Breedveld2, Fangpo He3 

Abstract 

In this paper a novel domain-independent nonlinear thermoelastic model suitable for 

multi-physical system dynamic investigations is proposed with which the coupling between 

the thermal and elastic subdomains can be obtained without the use of the conventional weak 

connectivity assumption. To achieve this, first, a distinctive power distribution of each 

subdomain is defined by means of the Bond graph notation, and the corresponding governing 

equation for each subdomain is extracted on the basis of the port-based approach. Next, to 

provide a continuous power transmission between the thermal and elastic subdomains, a 

reversible coupling is designed and the corresponding multi-dimensional constitutive 

equations are derived that satisfies the Maxwell reciprocity. Finally, by employing the 

generated coupling, the thermal and elastic subdomains are connected dynamically. 

Implementing the energy-based strategies, a physical model that is capable of dynamically 

capturing the reversible thermal and elastic subdomains’ interactions, while preserving the 

fundamental physical natures of the thermoelastic phenomena, is generated. The generated 

model is domain-independent, and in principal more suited to be connected to other physical 

domains than its conventional counterparts. The demonstrated ability of the generated model 

provides a unique benefit to the development of appropriate schemes for controlling structural 

vibrations under aerothermal loads.  

Keywords: dynamic coupling, nonlinear modeling, thermoelastic phenomena, Bond 

graph modeling, multi-physical system modeling 

1. Introduction 

It is known that for a mechanical body, structural dilation and temperature variation coexist 

interactively – one behavior is both the cause and the consequence of the other behavior, and their 

                                                 
1 PhD Candidate, Advanced Control System Research group, School of Computer Science, Engineering & Mathematics, Flinders University, 

Adelaide, Australia, email: amir.zanj@flinders.edu.au.  
2 Associate Professor, University of Twente, Robotics and mechatronics group, Enschede, Netherlands.  
3 Associate Professor, Advanced Control System Research group, School of Computer Science, Engineering & Mathematics, Flinders 

University, Adelaide, Australia. 



  Journal of Continuum Mechanics and Thermodynamics (Under review) 

104 

coupled dynamics form the so-called thermoelastic phenomena [1] of the system. In general, 

unsolicited thermoelastic behaviors are classified into two categories: mechanical deformation due 

to dynamics of structural dilation, and material softening due to dynamics of temperature variation. 

While the former phenomenon can change the system’s operating point, the latter phenomenon 

can alter the system’s response modes. Neglecting these thermoelastic behaviors may have severe 

consequences. This is certainly true for a space craft’s propulsion system where unpredicted 

structural deformation and material softening can lead to the loss of the system controllability, 

resulting in inevitable catastrophes [2]. Modeling and control of the thermoelastic behaviors thus 

become a critical part of the engineering system design. 

To study the effect of thermoelastic phenomena on the overall dynamic behavior of a system, it 

is prudent to examine the mutual interactions between the thermal and elastic subdomains of the 

system and to characterize their individual effects on the system dynamics. A thermoelastic model 

that can reflect this nature of thermoelasticity becomes desirable. Since thermoelasitc behaviors 

are nonlinear and multi-physical, the model should not only be able to capture the coupled 

dynamics between the thermal and elastic subdomains, but also be compatible with the models of 

the other physical subdomains of the system. A domain-independent physical modeling approach, 

known as the Bond graph (BG) approach [3] [4] [5], is therefore preferred. It is anticipated that 

the model thus derived would give a clear physical meaning to the interactions between the thermal 

and elastic subdomains and, at the same time, provide a direct connecting platform to link with the 

models of the other subdomains of the system. 

To obtain such a required model, the essential thermal and elastic coupling relations must be 

described mathematically first. An early attempt to couple the thermal and elastic subdomains was 

postulated by Duhamel [6], originator of the theory of thermal stresses, who initiated the dilatation 

term in the equation of thermal conductivity, but did not provide a thermodynamic justification of 

the resulting equation. This justification was then only partly attempted by Voigt [7] and Jefferies 

[8], until in 1956 when Biot [9] derived a full justification of the thermal conductivity equation on 

the basis of thermodynamics of irreversible processes [10]. It noted that although the coupling 

between thermal and elastic subdomains is weak, the qualitative differences are essential. Nowacki 

[1] focused on the foundations of thermodynamic theories, derived the differential equations of 

thermoelasticity, discussed their solution methods, and provided the general energy-based 
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variational theorems. The simplifications and assumptions (including weak connectivity) that were 

applied to the development of these works, however, resulted in high-order solutions that 

eventually lost the interactive nature of the underlying thermoelastic phenomena.   

In the conventional methods, to drive the governing equations, Helmholtz free energy [1] is 

used instead of energy. This choice makes these modeling techniques domain-dependent and 

highly mathematical in nature, rather than domain-independent and physical. In these methods, the 

strain plays the role of the state of the elastic subdomain, and the temperature is chosen as the state 

of the thermal subdomain. In addition, the use of Helmholtz free energy suggests that temperature 

variations be assumed to play no role in the dynamic relations. From the physical system theory 

[11], strain is an energy state whereas temperature is an equilibrium-determining variable. Using 

these two variables as state variables of the respective subdomains will have obvious 

consequences. Firstly, the generated thermoelastic model will be incompatible with models of the 

other physical subdomains that utilize independent energy state variables, as the causality of the 

generated thermoelastic model will not be in line with the causalities of the other physical 

subdomains. Secondly, the energy conservation law that is universal for deriving and validating 

coupled dynamics of multi-physical domains will be disregarded in this case, as the generated 

thermoelastic model is not based on the principle of energy conservation. As a result, the accuracy 

of the classical models heavily relies on the accuracy of the measuring techniques and the order of 

the solutions. This has made these models unsuitable for insight dynamic investigations and 

control strategy developments.  

The aim of this paper is therefore to generate a domain-independent nonlinear physical model 

of thermoelasticity suitable for multi-physical dynamic and control investigations. In contrast to 

the other strategies that focus on the accuracy of the result, the main goal here is to generate an 

effective coupled thermoelastic model that can provide clear relations between parameters and 

components associated with the thermoelastic behaviors of the system while, at the same time, 

keeping the physical insight of the phenomena alive. Using the port-based BG approach [12] [13] 

[14] [15], the generated model will avoid using some of the conventional assumptions, and offer a 

simple yet elegant representation of the system that can be implemented using less computational 

effort. Such a model is deemed to be more suitable for use in thermoelasticity analysis and control. 

The remainder of this paper is organized as follows. In Section 2, a brief clarification of the 
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fundamental assumptions and relations of thermoelasticity is discussed. This is followed by the 

derivation of the mathematical model of a novel multiport thermoelastic reversible energy store 

using the BG approach in Section 3. In Section 4, the energetic meaning of the proposed ports is 

discussed, and the associated power continuous-interconnection structure that is essential for 

combining these design concepts together to form a comprehensive multi-physical model is 

defined. In Section 5, simulation results of the proposed domain-independent model for an 

arbitrary geometry are presented. The capabilities of the proposed model in capturing the physical 

thermoelastic behaviors and providing a useful tool for control strategy development are concluded 

in Section 6. 

2. Conventional thermoelastic model and existing problem  

For an un-deformed and unstressed homogeneous anisotropic elastic body, the conventional 

thermoelastic modeling procedure can be explained as follows. Define deformation 𝑑𝑑(𝑥𝑥, 𝑡𝑡) at 

position x and time t, and its associated temperature change 𝜃𝜃(𝑥𝑥, 𝑡𝑡) = 𝐸𝐸(𝑥𝑥, 𝑡𝑡) − 𝐸𝐸0 where 𝐸𝐸(𝑥𝑥, 𝑡𝑡) 

is the instant absolute temperature, T0 is the reference temperature, and 𝜃𝜃(𝑥𝑥, 𝑡𝑡) is related to 

mechanical stress 𝜎𝜎(𝑥𝑥, 𝑡𝑡) and strain 𝐸𝐸(𝑥𝑥, 𝑡𝑡). Traditionally, 𝜃𝜃(𝑥𝑥, 𝑡𝑡) is assumed to be small such that 

the impact of the elastic dynamics onto the thermal behavior can be neglected. Consequently, 

temperature 𝐸𝐸(𝑥𝑥, 𝑡𝑡) is selected as the state of the system.  

To generate the conventional thermoelastic model, consider the thermodynamic relations of the 

irreversible processes [16]. The constitutive relations among the stress, strain, and temperature can 

be presented as:  

𝐴𝐴
𝐴𝐴𝑡𝑡 ∫ �𝑈𝑈 + 1

2
𝜌𝜌𝑣𝑣𝑖𝑖 . 𝑣𝑣𝑖𝑖� 𝑑𝑑𝑉𝑉 = ∫𝐵𝐵𝑖𝑖𝑣𝑣𝑖𝑖 𝑑𝑑𝑉𝑉 + ∫𝑝𝑝𝑖𝑖𝑣𝑣𝑖𝑖 𝑑𝑑𝐴𝐴 − ∫𝑞𝑞𝑖𝑖𝑠𝑠𝑖𝑖 𝑑𝑑𝐴𝐴  (1)  

∫ 𝐴𝐴𝑆𝑆
𝐴𝐴𝑡𝑡
𝑑𝑑𝑉𝑉 = −∫ 𝑞𝑞𝑖𝑖𝑠𝑠𝑖𝑖

𝑇𝑇
𝑑𝑑𝐴𝐴 + ∫𝛩𝛩 𝑑𝑑𝑉𝑉  (2)  

where 𝑈𝑈 is the internal energy, 𝜌𝜌 is the density, 𝑆𝑆 is the entropy, 𝐵𝐵𝑖𝑖 are the components of the 

body forces, 𝑝𝑝𝑖𝑖  =  𝜎𝜎𝐴𝐴𝑖𝑖 𝑠𝑠𝐴𝐴  are the components of the stress vector with 𝜎𝜎𝐴𝐴𝑖𝑖 being the stress tensor 

and 𝑠𝑠𝑖𝑖  being the components of the normal vector of the surface 𝐴𝐴, 𝑞𝑞𝑖𝑖 are the components of the 

heat flux vector, 𝑣𝑣𝑖𝑖 = 𝜕𝜕𝑋𝑋𝑖𝑖
𝜕𝜕𝑡𝑡

 are the velocity components, and the quantity 𝛩𝛩 represents the generated 

entropy. For Eq. (1), the terms on the left-hand side represent the rate of increase of the internal 

and kinetic co-energies. The first term of the right-hand side is the rate of increase of the work of 
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the body forces, the second term is the rate of increase of the work of the surface tractions, and the 

last term is the energy acquired by the body by means of the thermal conductions. For Eq. (2), the 

left-hand side is the rate of increase of the entropy. The first term of the right-hand side represents 

the exchange of entropy with the surroundings, and the second term represents the rate of 

production of the entropy due to heat conduction.  

In the conventional approach, the state equations are obtained by relating the components of the 

stress tensor, 𝜎𝜎, with the components of the strain tensor, 𝐸𝐸, as well as the components of the 

temperature, 𝜃𝜃. To achieve this, using the equation of motion: 

𝜎𝜎𝐴𝐴𝑖𝑖,𝐴𝐴 + 𝐵𝐵𝑖𝑖 = 𝜌𝜌�̈�𝑥    (3)  

and applying the divergence theorem: 

�̇�𝑈 = 𝜎𝜎𝐴𝐴𝑖𝑖𝐸𝐸�̇�𝐴𝑖𝑖 − 𝑞𝑞𝑖𝑖,𝑖𝑖 , �̇�𝑆 = 𝛩𝛩 − 𝑞𝑞𝑖𝑖,𝑖𝑖
𝑇𝑇

+ 𝑞𝑞𝑖𝑖
𝑇𝑇2
𝐸𝐸.𝑖𝑖   (4)  

under the slow conduction (weak connection) assumption, the Legendre transformation [17] of the 

energy equation shapes the Helmholtz free energy F as a function of strain 𝐸𝐸𝑖𝑖𝐴𝐴 and temperature 𝐸𝐸 

which are chosen as the state variables of the energy storage of the thermoelastic field: 

�̇�𝐹 = 𝜎𝜎𝐴𝐴𝑖𝑖𝐸𝐸𝚥𝚥𝚥𝚥̇ − �̇�𝐸𝑆𝑆 − 𝐸𝐸 �𝛩𝛩 + 𝑞𝑞𝑖𝑖
𝑇𝑇2
𝐸𝐸,𝑖𝑖�    (5)  

Consider the standard form of time derivative of F as a function of the independent state 

variables: 

�̇�𝐹 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀𝑗𝑗𝑖𝑖

𝐸𝐸�̇�𝐴𝑖𝑖 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�̇�𝐸     (6)  

Conventionally, Θ, qi, and σji   are assumed to be implicitly dependent on the time derivatives 

of 𝐸𝐸𝑖𝑖𝐴𝐴  and T. The following equalities can then be derived by comparing Eq. (5) with Eq. (6): 

𝜎𝜎𝐴𝐴𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀𝑗𝑗𝑖𝑖

, 𝑆𝑆 = −𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇

, 𝛩𝛩 + 𝑞𝑞𝑖𝑖
𝑇𝑇2
𝐸𝐸,𝑖𝑖 = 0    (7)  

The postulation of the thermodynamics of irreversible processes will be satisfied if Θ > 0, i.e., 

−𝑞𝑞𝑖𝑖𝐸𝐸,𝑖𝑖 𝐸𝐸2⁄ > 0. This condition can be satisfied by the Fourier law of heat conduction [9]. In 

principle, the first two relations of Eq. (7) imply the constitutive relations of the coupled 

thermoelastic field. To extract the functionality of the constitutive relations with respect to the 

considered state variables, 𝐹𝐹(𝐸𝐸𝑖𝑖𝐴𝐴,𝐸𝐸) is expanded into an infinite series about the neighborhood of 

the natural state 𝐹𝐹(0,𝐸𝐸0): 
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  𝐹𝐹�𝐸𝐸𝑖𝑖𝐴𝐴 ,𝐸𝐸� = 𝐹𝐹(0,𝐸𝐸0) + 𝜕𝜕𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

𝐸𝐸𝑖𝑖𝐴𝐴 + 𝜕𝜕𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝑇𝑇

(𝐸𝐸 − 𝐸𝐸0) + 1
2
�𝜕𝜕

2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝜀𝜀𝑘𝑘𝑙𝑙

𝐸𝐸𝑖𝑖𝐴𝐴𝐸𝐸𝑘𝑘𝑙𝑙 + 2 𝜕𝜕2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝑇𝑇

𝐸𝐸𝑖𝑖𝐴𝐴(𝐸𝐸 −

𝐸𝐸0) + 𝜕𝜕2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝑇𝑇2

(𝐸𝐸 − 𝐸𝐸0)2� + ⋯    
(8)  

To form the linear relations between stress, strain, and temperature change, only the linear and 

quadratic terms of the expanded form are taken into account. Considering 𝐸𝐸𝑖𝑖𝐴𝐴  = 0 when T = T0, it 

can be assumed that 𝐹𝐹(0,𝐸𝐸0) = 0. Therefore, for the natural state: 

𝜕𝜕𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝑇𝑇

= −𝑆𝑆(0,𝐸𝐸0) = 0  (9)  

By taking the advantage of the first relation of Eq. (7), one has: 

  𝜎𝜎𝑖𝑖𝐴𝐴�𝐸𝐸𝑖𝑖𝐴𝐴 ,𝐸𝐸� = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇

= 𝜕𝜕𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

+ 𝜕𝜕2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝜀𝜀𝑘𝑘𝑙𝑙

𝐸𝐸𝑘𝑘𝑙𝑙 + 𝜕𝜕2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝑇𝑇

𝐸𝐸𝑖𝑖𝐴𝐴(𝐸𝐸 − 𝐸𝐸0)   (10)  

Assuming linear relations in small strains and infinitesimal temperature change, one obtains: 

  𝜕𝜕
2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝜀𝜀𝑘𝑘𝑙𝑙

= 𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙 ,    𝜕𝜕
2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗𝜕𝜕𝑇𝑇

= −𝛽𝛽𝑖𝑖𝐴𝐴 ,    𝜕𝜕
2𝜕𝜕(0,𝑇𝑇0)
𝜕𝜕𝑇𝑇2

= 𝑠𝑠   (11)  

Substituting the linear relations in Eq. (11) into Eqs. (8) and (10) yields: 

  𝐹𝐹�𝐸𝐸𝑖𝑖𝐴𝐴 ,𝐸𝐸� = 1
2
𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙𝐸𝐸𝑖𝑖𝐴𝐴𝐸𝐸𝑘𝑘𝑙𝑙 − 𝛽𝛽𝑖𝑖𝐴𝐴𝐸𝐸𝑖𝑖𝐴𝐴  𝜃𝜃 + 𝑠𝑠

2
𝜃𝜃2  (12)  

  𝜎𝜎𝑖𝑖𝐴𝐴 = 1
2
�𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙 + 𝑐𝑐𝑘𝑘𝑙𝑙𝑖𝑖𝐴𝐴�𝐸𝐸𝑘𝑘𝑙𝑙 − 𝛽𝛽𝑖𝑖𝐴𝐴  𝜃𝜃  (13)  

  �𝜕𝜕𝜎𝜎𝑖𝑖𝑗𝑗
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇

= 𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙 ,    �
𝜕𝜕𝜎𝜎𝑖𝑖𝑗𝑗
𝜕𝜕𝑇𝑇
�
𝑉𝑉

= −𝛽𝛽𝑖𝑖𝐴𝐴 ,      (14)  

In Eq. (13) the generalized Hooke's law known as the Duhamel-Neumann relation is 

recognizable, where the constants 𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙 and 𝛽𝛽𝑖𝑖𝐴𝐴 play the role of material constants.  

To extract the coupled thermoelastic model, the internal energy and entropy must be presented 

as functions of the chosen state variables. To ascertain this, revisiting the relations revealed in Eqs. 

(1)-(2),  the differential form of energy and entropy equations can be derived as: 

𝑑𝑑𝑈𝑈 = 𝜎𝜎𝑖𝑖𝐴𝐴𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 + 𝐸𝐸𝑑𝑑𝑆𝑆   (15)  

𝑑𝑑𝑆𝑆 = � 𝜕𝜕𝑆𝑆
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇
𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 + �𝜕𝜕𝑆𝑆

𝜕𝜕𝑇𝑇
�
𝑉𝑉
𝑑𝑑𝐸𝐸     (16)  

Substituting Eq. (16) into Eq. (15), the functionality of the energy and entropy equations with 

respect to the chosen state variables of the system can be found as: 

𝑑𝑑𝑈𝑈 = �𝐸𝐸 � 𝜕𝜕𝑆𝑆
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇

+ 𝜎𝜎𝑖𝑖𝐴𝐴� 𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 + 𝐸𝐸 �𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝑉𝑉
𝑑𝑑𝐸𝐸   (17)  

By satisfying the condition of total differential for energy equation, one has: 
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𝜕𝜕
𝜕𝜕𝑇𝑇
�𝐸𝐸 � 𝜕𝜕𝑆𝑆

𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗
�
𝑇𝑇

+ 𝜎𝜎𝑖𝑖𝐴𝐴� = 𝜕𝜕
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�𝐸𝐸 �𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝑉𝑉
�   (18)  

Hence: 
� 𝜕𝜕𝑆𝑆
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇

= −�
𝜕𝜕𝜎𝜎𝑖𝑖𝑗𝑗
𝜕𝜕𝑇𝑇
�
𝑉𝑉

    (19)  

Consider the volumetric expansion term and utilize the thermodynamic relation: 

� 𝜕𝜕𝑆𝑆
𝜕𝜕𝜀𝜀𝑖𝑖𝑗𝑗

�
𝑇𝑇

= 𝛽𝛽𝑖𝑖𝐴𝐴      (20)  

𝐸𝐸 �𝜕𝜕𝑆𝑆
𝜕𝜕𝑇𝑇
�
𝑉𝑉

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝑇𝑇
�
𝑉𝑉

= 𝑐𝑐𝑣𝑣   (21)  

where 𝑐𝑐𝑣𝑣 is a specific heat term that is related to the unit volume at constant deformation. Applying 

Eqs. (20)-(21) to Eqs. (15)-(16), one can obtain the final form of the thermoelastic governing 

equations with respect to the selected state variables as: 

𝑑𝑑𝑈𝑈 = 𝜎𝜎𝑖𝑖𝐴𝐴𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 + 𝐸𝐸𝛽𝛽𝑖𝑖𝐴𝐴𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 + 𝑐𝑐𝑣𝑣𝑑𝑑𝐸𝐸 (22)  

𝑑𝑑𝑆𝑆 = 𝛽𝛽𝑖𝑖𝐴𝐴𝑑𝑑𝐸𝐸𝑖𝑖𝐴𝐴 +
𝑐𝑐𝑣𝑣
𝐸𝐸
𝑑𝑑𝐸𝐸   (23)  

Substituting Eq. (10) into Eq. (23) and integrating Eqs. (22)-(23) with time with the assumption 

that for the natural state there exist S and U that equal to zero, the energy and entropy functions 

are obtained as follows: 

𝑈𝑈 =
1
2
𝑐𝑐𝑖𝑖𝐴𝐴𝑘𝑘𝑙𝑙𝐸𝐸𝑖𝑖𝐴𝐴𝐸𝐸𝑘𝑘𝑙𝑙 + 𝐸𝐸0𝛽𝛽𝑖𝑖𝐴𝐴𝐸𝐸𝑖𝑖𝐴𝐴 + 𝑐𝑐𝑣𝑣𝜃𝜃 (24)  

𝑆𝑆 = 𝛽𝛽𝑖𝑖𝐴𝐴𝐸𝐸𝑖𝑖𝐴𝐴 + 𝑐𝑐𝑣𝑣𝑒𝑒𝑚𝑚𝑔𝑔 �1 +
𝜃𝜃
𝐸𝐸0
� (25)  

Accordingly, the governing equations of the coupled thermoelastic system are closed. Eqs. 

(10) and (25) form the respective constitutive relations of the elastic and thermal subdomains. Eq. 

(24) forms the energy storage of the coupled system with respect to the chosen state variables 

(strain/deformation and temperature), where the first term represents the strain work, the second 

term represents the mutual interaction between deformation and temperature, and the last term 

represents the heat content in a unit volume.  

Although the resultant model can solve a variety of thermoelastic problems, the implemented 

assumptions and the choice of the states for the coupled subdomains have introduced limitations 

to the model that significantly restrict its application areas, especially in multi-physical system 

dynamic investigations. As explained previously, since temperature is thermodynamically an 

equilibrium-determinant variable, not a true extensive variable, using it as the state variable of the 
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thermal subdomain together with heat flux as the correspondent flow will lead to domain-

dependency of the resulting thermal dynamics. Consequently, the thermal subdomain cannot be 

presented as an independent physical subdomain containing its own power continuous energy 

frame. The power transformation between the different subdomains of a multi-physical system 

will not be achievable on the basis of the energy conservation which is a crucial principle for 

realizing the couplings between the subdomains. The generated thermal model will be unusable 

for thermoelastic systems that involve other physical subdomains such as aerothermodynamics or 

electrodynamics, as the dynamics of the thermal subdomain will be in principle dependent on the 

dynamics of the elastic subdomain.  

3. Thermoelastic Bond graph model 

In the following the problem related to the application of the conventional thermoelastic model 

in multi-physical system is addressed via retrieving the conservation principle in the procedure of 

modeling. To this aim, by means of the BG approach [3] [4] [5] a reversible thermoelastic coupled 

energy storage model is proposed, in which each subdomain of interest can remain independent 

and, thus, connectable to other physical subdomains.  

In the BG notation, energy storage of a multi-physical system can be represented by a multiport 

capacitor that relates the information of each port to the corresponding physical subdomain [5] and 

forms the reversible interconnectivity of the different subdomains of the system. Using this 

notation in a thermoelastic coupled model, the energy storage element of the thermal and elastic 

subdomains can form an interconnected passage with which the thermal dynamic changes due to 

alteration in the elastic subdomain, and vice versa, can be captured in an energy conservative 

manner. A two-port capacity element, ℂ, as shown in Fig. 1 is therefore proposed for modeling the 

thermoelastic reversible coupling between the two subdomains: 

 

Fig.1  Two-port C model of the thermoelastic energy storage 

In the proposed means of coupling, in order to make the model compatible with other physical 

subdomains, contrary to the conventional methods, entropy rate is considered as the time derivative 
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of the state for the thermal subdomain instead of heat. To define the constitutive equations of the 

potentials (F, T) for the suggested ℂ, since the integral causality is preferred, the true energy is 

considered as a function 𝑈𝑈 = 𝑈𝑈(𝑞𝑞𝑚𝑚,𝑆𝑆), where 𝑞𝑞𝑚𝑚 and 𝑆𝑆 are respectively the deformation and 

entropy of the system. Accordingly: 

𝑑𝑑𝑈𝑈 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑞𝑞𝑚𝑚

𝑑𝑑𝑞𝑞𝑚𝑚 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆 (26)  

By definition: 

� 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= 𝐹𝐹  ,  �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

= 𝐸𝐸 (27)  

𝐹𝐹 = 𝐹𝐹(𝑞𝑞𝑚𝑚, 𝑆𝑆)     ,      𝐸𝐸 = 𝐸𝐸(𝑞𝑞𝑚𝑚, 𝑆𝑆) (28)  
To define the conjugate (potentials) efforts for the ℂ storage, let’s start with the thermal 

subdomain where: 

𝑑𝑑𝐸𝐸 = �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆
𝑑𝑑𝑞𝑞𝑚𝑚 + �

𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

𝑑𝑑𝑆𝑆 (29)  

According to the thermal energy at constant volume: 

𝑑𝑑𝑈𝑈𝑡𝑡ℎ𝑒𝑒𝐶𝐶𝑚𝑚𝑎𝑎𝑙𝑙 = 𝐶𝐶𝑣𝑣𝑑𝑑𝐸𝐸 (30)  

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

=
𝐸𝐸
𝐶𝐶𝑣𝑣

 (31)  

where Cv is the specific heat in constant volume. To define the first term of Eq. (29), consider the 

Maxwell reciprocity and the Hook’s law for 1D geometry: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= �
𝜕𝜕𝐹𝐹
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

 (32)  

𝐹𝐹 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸(𝐸𝐸 − 𝐸𝐸0) (33)  

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= 𝛼𝛼𝐴𝐴𝐸𝐸 �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

= 𝛼𝛼𝐴𝐴𝐸𝐸
𝐸𝐸
𝐶𝐶𝑣𝑣

 (34)  

where 𝐴𝐴, 𝐸𝐸, 𝐿𝐿, 𝛼𝛼, and 𝐸𝐸0 are the element section area, material stiffness, element length, element 

axial heat expansion coefficient, and reference temperature, respectively. Substituting Eqs. (32)-

(33) into Eq. (29) yields: 
𝑑𝑑𝐸𝐸
𝐸𝐸

=
𝛼𝛼𝐴𝐴𝐸𝐸
𝐶𝐶𝑣𝑣

𝑑𝑑𝑞𝑞𝑚𝑚 +
1
𝐶𝐶𝑣𝑣
𝑑𝑑𝑆𝑆 (35)  

Considering an unstressed element and assuming constant specific heat, by integrating Eq. 

(35), the thermal effort can be presented as: 
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𝐸𝐸 = 𝐸𝐸0𝑆𝑆
𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣  

(36)  

Employing Eq. (36) to change the causality of Eq. (33) forms the elastic effort as: 

𝐹𝐹 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0(𝑆𝑆
𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 1) 

(37)  

Substituting the two constitutive Eqs. (36)-(37) into (26) forms energy function of the 

presented storage: 

𝑑𝑑𝑈𝑈 = �𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0(𝑆𝑆
𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 1)�𝑑𝑑𝑞𝑞𝑚𝑚 + �𝐸𝐸0𝑆𝑆

𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 � 𝑑𝑑𝑆𝑆 (38)  

𝑈𝑈 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚2

2𝐿𝐿
+ 𝐶𝐶𝑣𝑣𝐸𝐸0𝑆𝑆

𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0𝑞𝑞𝑚𝑚 

(39)  

The resulting nonlinear multiport energy function of the thermoelastic domain, as shown in 

Eq. (39), contains a contribution relating to the displacement/strain and a contribution relating to 

the entropy, thus showing the combined effect of thermoelasticity. It is clear that the contributions 

of the thermal and elastic subdomains can now be individually expressed via the extensive 

parameters (displacement and entropy) of these two subdomains. This feature makes the proposed 

modeling technique domain-independent and physical. Knowing that the dynamic coupling 

between the thermal and elastic subdomains can be represented by the proposed ℂ element, the 

next step is to install the proposed storage element in a thermoelastic junction structure.  

4. Thermal and elastic subdomains’ reversible coupling 

In this section, by means of the proposed coupling, a novel thermoelastic model is generated 

with which the energy distribution frames of the involving physical subdomains are presented 

separately. To this aim, an arbitrary domain-independent elastic model will be connected to a 

compatible conductive model. The key connection joint used here will be the proposed ℂ which 

describes the reversible, energy-conservative, nonlinear, and dynamic coupling between the 

thermal and elastic subdomains.     

For simplicity a 1-D reticulated geometry shown in Fig. 2 is considered to describe the 

propagation of energy within the elastic subdomain [18]. In this elastic model, each element is 

composed of two storage components, generalized capacitor (spring), and generalized inertia 

(mass). In the configuration of each element, applying the acoustic assumption, the inertial 

component is considered to be placed at both boundaries, and the capacitor is assumed to be in the 
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center of the element. Avoiding additional complexity, only the axial elastic behavior of the 

element is considered here.  

 
Fig.2  1-D geometry reticulation [18] 

As this reticulated space is indeed a continuous system, the boundary of adjacent elements are 

bonded to move together. Thus, one can consider the above discretization as a junction-element 

chain in which the parameters of each junction is a weighted function of the related parameters of 

the adjacent elements. Fig. 3 shows the resultant BG model of the presented elastic subdomain. As 

can be seen, the internal energy can be stored at the boundaries in the form of kinetic energy and 

inside each element in the form of elastic energy. 𝑝𝑝𝐴𝐴 and 𝑞𝑞𝑖𝑖 are considered as the state variables of 

the I-type and C-type storage elements, respectively, where 𝑝𝑝𝐴𝐴 denotes the momentum of each 

boundary and 𝑞𝑞𝑖𝑖  indicates the relevant deformation of each element.  

 
Fig.3  Bond graph of an elastic Beam  

To identify the propagation of energy in the thermal subdomain, a 1-D domain-independent 

compatible conductive model introduced in [19] is chosen. In this model shown in Fig. 4, a 

thermoelastic friendly conductive element is represented using the Fourier heat conduction 

equation. As can be seen, each thermal element is consisted of a C-type storage with state variable, 

𝑞𝑞𝑇𝑇𝑖𝑖, denoting the amount of stored entropy (𝑆𝑆𝑖𝑖), and dissipative boundaries. In the proposed 

conductive model, each C storage is connected to the neighboring storages via resistive junction 

elements that inherit their resistive characteristics from the boundaries of the adjacent elements.    
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Fig.4  1-D conduction Bond graph model [19] 

To finally generate the coupled presentation of the thermoelastic field, the single-port storage 

element of each subdomain (C) is replaced with the proposed two-port ℂ storage element. Fig. 5 

shows a BG representation of the reversibly coupled thermoelastic model. It shows that the 

interconnections of the two subdomains is through the storage of the system. Clearly, through this 

coupling, the products of effort and flow of the generated ℂ (𝐹𝐹. �̇�𝑞𝑚𝑚 and 𝐸𝐸. �̇�𝑆) form the continuous 

power interchanged between the thermal and elastic subdomains. Consequently, it is anticipated 

that, on the one hand, the thermal fluctuation of the system will affect the capacity of the elastic 

subdomain which will lead to mode-shape change and material softening and, on the other hand, 

the deformation of the structure in the elastic subdomain will lead to temperature change in the 

thermal subdomain.  

 

Considering the generated coupled thermoelastic BG model, the governing equations for a 

Fig.5  1-D thermoelastic Bond graph model 



  Journal of Continuum Mechanics and Thermodynamics (Under review) 

115 

single and port based thermoelestic element (the ith element in a chain) can be extracted as below:  

�̇�𝑝𝐴𝐴 = 𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝑞𝑞𝑚𝑚𝑖𝑖
𝐿𝐿𝑖𝑖

− 𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1
𝐿𝐿𝑖𝑖+1

+ 𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸0𝑖𝑖 �𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 1�

−  𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1𝐸𝐸0𝑖𝑖+1 �𝑆𝑆
𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑆𝑆𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 − 1� 

(40)  

�̇�𝑞𝑚𝑚𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (41)  

�̇�𝑆𝑇𝑇𝑖𝑖 =
1

𝑅𝑅𝐴𝐴−1
(𝐸𝐸0𝑖𝑖−1𝑆𝑆

𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆
�𝑆𝑆𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�

𝐶𝐶𝑣𝑣𝑖𝑖−1 − 𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 )

−
1
𝑅𝑅𝐴𝐴

(𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 𝐸𝐸0𝑖𝑖+1𝑆𝑆
𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑆𝑆𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 ) + �̇�𝑆𝑖𝑖

𝐴𝐴𝑒𝑒𝑠𝑠   
(42)  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 =

𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

𝑅𝑅𝐴𝐴−1
⎝

⎛𝐸𝐸0𝑖𝑖−1𝑆𝑆
𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1

𝐶𝐶𝑣𝑣𝑖𝑖−1
𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆

�𝑆𝑆𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

− 1

⎠

⎞

2

 (43)  

𝐼𝐼𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (44)  

𝑅𝑅𝐴𝐴 =
1
2

(
𝑒𝑒𝑖𝑖𝐸𝐸0𝑖𝑖𝑆𝑆

𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑆𝑆𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+
𝑒𝑒𝑖𝑖+1𝐸𝐸0𝑖𝑖+1𝑆𝑆

𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆
�𝑆𝑆𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�

𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
) 

 

(45)  

where 𝐼𝐼𝐴𝐴 is the boundary inertia and  𝑅𝑅𝐴𝐴 is the thermal resistance parameter of each junction 

element. Eqs. (40)-(42) represent the rate of element’s boundary momentum, deformation, and 

accumulated entropy, respectively, as nonlinear functions of the considered extensive states (𝑞𝑞𝑚𝑚 

and 𝑆𝑆), geometrical parameters, and material parameters. It clearly shows that the thermal state 

appears in the elastic subdomain’s momentum equation and the elastic state appears in the thermal 

subdomain’s entropy equation. This in principal indicates the influences between the thermal and 

elastic subdomains. Eq. (43) demonstrates the amount of irreversibility occurring in the thermal 

subdomain. It is clear that this equation satisfies the second thermodynamic law as the amount of 

the generated entropy is always greater than zero. Further attentions to the generated state 

equations reveal that, although the elastic subdomain is considered to be non-dissipative (pure 

elastic), the irreversibility of the thermal subdomain can affect the elastic domain’s behavior via 

the reversible connectivity of these two subdomains.  

The above explanation demonstrates the distinctive novelty of the proposed method in utilizing 

the BG technique to expose physically-meaningful insights of internal dynamics of 
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multidisciplinary systems. It should be mentioned that to obtain a complete coupling between these 

two subdomains, the elastic dispersion of the system is also needed to be taken into account. 

However, since the main aim is to generate reversible thermoelastic coupling, further attention to 

inelasticity is not included here in this study. 

5.  Simulation analysis 

To evaluate the ability of the proposed BG model to capture the thermoelastic phenomena, a set 

of simulation studies on a simple beam structure that is subjected to, respectively, low and high 

frequency elastic vibration, steady and cyclic heat transfer, and thermomechanical cyclic loadings, 

are performed. The geometrical and material parameters of the beam are given in Table 1, and the 

1-D axial thermomechnical behavior of the beam is to be investigated. To generate the discretised 

geometry, the chosen beam is reticulated into 10 uniform elements with the first and last elements 

being the boundary elements that receive external mechanical and thermal loads. It is assumed that 

the side surface of the beam is fully isolated and the beam is stress-free initially in the ambient 

room temperature. Sequentially, the internal behaviors of the system are presented, respectively, 

in Figs. 6 to 10 with respect to low and high frequency external mechanical loads and in Figs. 11 

to 13 with respect to steady and cyclic external thermal loads. The thermoelastic behaviors of the 

system with respect to simultaneous thermo-mechanical external loads are presented in Figs. 14 to 

17.     

Table 1. Geometrical and material parameters of the considered beam 

Symbol Description (unit) Value Symbol Description (unit) Value 

𝒌𝒌 
Conduction coefficient  

(𝐽𝐽 𝑚𝑚.𝐾𝐾⁄ ) 
2.73𝑆𝑆2 𝑚𝑚 Beam mass (𝐾𝐾𝑔𝑔) 5.67𝑆𝑆−2 

𝑬𝑬 Young modulus (𝑁𝑁 𝑚𝑚2⁄ )   6.9𝑆𝑆10 𝐴𝐴 Cross section area (𝑚𝑚2) 1𝑆𝑆−4 

𝑪𝑪𝒗𝒗 Specific heat (𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ )  8.97𝑆𝑆2 𝑒𝑒 Length (𝑚𝑚) 2.1𝑆𝑆−1 

𝜶𝜶 Linear expansion (1 𝐾𝐾⁄ )  2.22𝑆𝑆−5 𝑀𝑀 Molar mass (𝑘𝑘𝑔𝑔 𝑚𝑚𝑚𝑚𝑒𝑒)⁄  2.698𝑆𝑆−2 

𝑺𝑺𝟎𝟎 Reference Entropy (𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ ) 2.83𝑆𝑆1 𝑠𝑠 Number of segments 10 



  Journal of Continuum Mechanics and Thermodynamics (Under review) 

117 

5.1. Elastic effects on thermal domain 

5.1.1. a. Low frequency vibration 

To evaluate the impact of the elastic subdomain on the thermal subdomain, a sinusoidal external 

mechanical load shown in Fig. 6 (a) is applied axially to both ends of the free-beam structure. The 

resultant elastic deformation of the system is shown in Fig. 6 (b), which demonstrates the capability 

of the proposed model in capturing the elastic behavior of the system. Fig. 7 shows the 

corresponding behavior of the thermal subdomain, where Part (a) demonstrates the entropy change 

and Part (b) presents the resulting temperature profile. It is obvious that the temperature does not 

follow the same pattern as the entropy. While the entropy shows contraction that reduces its storage 

capacity, the temperature demonstrates rise as a result of the elastic contraction. This unexpected 

behavior can be explained by Parts (c) and (d) of Fig. 7 which illustrate, respectively, the element’s 

entropy rate and entropy generation rate. It is clear in Part (c) that the contraction of the beam 

causes entropy to exit from all elements at the same time even with positive entropy generation 

(Part (d)). This means that a certain amount of entropy has found its way to leave the system 

leading the system to entropic interaction with the surrounding. 

  
(a) (b) 

Fig.6  Applied external force (a) and the resultant deformation (b) 
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(a) (b) 

  
(c) (d) 

Fig.7  Deformation and entropy change of the system under cyclic loading 

A comparison between the behaviors of the resultant elastic and thermal subdomains shown in 

Fig. 6 and Fig. 7 indicates the well-known fact that the thermal dynamics are relatively slower than 

the elastic dynamics. This fact has to be taken into account in developing control strategies for 

thermoelastic applications. The proposed model is seen to possess a unique ability to separately 

demonstrate the dynamics of these two subdomains.      

5.1.2. b. High frequency vibration 

To check the high-frequency interactions between the elastic and thermal subdomains, an 

external force shown in Fig. 8 (a) is considered to be applied axially to both ends of the free-beam 
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structure. With the high-frequency excitation, the elastic response of the un-damped structure, as 

presented in Fig. 8 (b), becomes more complicated. Increasing the frequency of the applied force 

is seen to introduce a shock wave propagation in the elastic subdomain, which produces 

superposed dynamics of the elastic subdomain. Thus, the energy transformation between the 

different subdomains will be subjected to a more complicated dynamic pattern.  

Fig. 9 presents the thermal subdomain dynamic behavior with respect to the applied external 

force. A comparison between the elastic state variable, Fig. 8 (b), and the thermal state variable, 

Fig. 9 (a), reveals different energetic behaviors of these two subdomains. The highly-fluctuating 

oscillatory behavior of deformation in the elastic subdomain is in clear contrast to the calmly 

relaxing behavior of entropy in the thermal subdomain.  

  
(a) (b) 

Fig.8  High frequency vibration of the beam 

It is noticed that, although entropy has a smooth behavior (Fig.9 (a)), temperature exhibits 

oscillations (Fig.9 (b)). This fact reflects the elastic shock-propagation impact on the thermal 

subdomain dynamics. It implies that to obtain a complete dynamic connection between the thermal 

and other involving subdomains in a multi-physical system, entropy should be used as a state of 

the system. Otherwise, a portion of system dynamics will be missed if one relies only on the 

capability of temperature measuring techniques. 
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(a) (b) 

Fig.9  Thermal domain dynamics in high frequency oscillations         

Fig.10 shows the behavior of the system close to its natural frequency. Part (b) presents the total 

deformation profile under external force of Part (a), and Parts (c) and (d) demonstrates the 

corresponding entropy and temperature behaviors. As the elastic subdomain is considered to be 

non-dissipative, the deformation profile is in a repetitive pattern. However, there is a rising pattern 

in the entropy profile, as the nature of heat conduction within the system is irreversible. This 

behavior can be considered as the reason for thermoelastic damping phenomena in high-frequency 

oscillations. The generation of entropy leads to a gradual temperature rise in the thermal 

subdomain and a simultaneous structural expansion in the elastic subdomain. Since the resultant 

temperature rise is non-uniform across the structure owing to different elemental deformation, the 

resultant expansion of each element will vary from each other. Gradually, these dynamics will 

change the oscillatory behavior of each element in such a way that will disallow the elements to 

be unified to form a resonance mode. 

One should realize that in a macroscopic level, the situation explained-above rarely happens, as 

for a real physical system there always exists a certain amount of dissipation in the elastic 

subdomain that would prevent this from happening. However, in a microscopic level (e.g., in a 

microelectronic device), the thermal consideration in high-frequency situations may become an 

important issue for critical control strategy (e.g. high precision control of lithography printing 

microstructures) development.     
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(a) (b) 

  
(c) (d) 

Fig.10        Dynamic behavior of the system close to natural frequency        

5.2. Thermal effects on elastic domain 

5.2.1. a. Free beam consideration 

To discuss the impact of the thermal subdomain dynamics on the elastic subdomain dynamics, 

a force-free free-beam structure is considered where thermal power can transfer from its both ends. 

A step thermal input of 200 K is applied to both ends, and the resultant thermomechanical behavior 

is presented in Fig. 11. A gradual temperature rise in the system (shown in Part (a)) is seen to cause 

a gradual expansion of the system (shown in Part (b)). It should be mentioned that in the simulation 
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the contraction is considered to be positive, so the expansion is presented with negative quantity. 

The obtained simulation results reveal physical relaxing dynamics for both involving subdomains, 

which echoes the natural behavior of the system during the expansion process. 

  
(a) (b) 

Fig.11  Heat conduction inside a free beam 

To investigate the impact of cyclic thermal loading on the structural dynamics, a low-frequency 

thermal input, as shown in Fig. 12 (a), is applied to the structure. The resultant temperature profile 

is presented in Fig. 12 (b). It is observed that the temperature fluctuations in the outer elements are 

higher than those in the center elements. Fig. 12 (c) shows that the resultant dilative behavior in 

the elastic subdomain follows the same pattern as the temperature behavior in the thermal 

subdomain. Fig. 12 (d) demonstrates the generated entropy within the system as a result of these 

fluctuations. The gradual growth in this graph can explain the gradual rise in the temperature 

profile.  

From the temperature profile, it is clear that the deformation alongside the beam is dependent 

on the distance of the element from the heat source. This means that the dilation pattern of the 

system is not homogenous, which highlights the necessity for using different control strategies to 

stabilize high-speed structures under aero-thermo loads.  

0 50 100 150 200 250 300 350
Time (S)

200

300

400

500

600

T1 {K}
T2 {K}
T3 {K}
T4 {K}
T5 {K}

0 50 100 150 200 250 300 350
Time (s)

-0.0001

-5e-005

0

5e-005
Def-El1 (m)
Def-El2 (m)
Def-El3 (m)
Def-El4 (m)
Def-El5 (m)



  Journal of Continuum Mechanics and Thermodynamics (Under review) 

123 

  
(a) (b) 

  
(c) (d)  

Fig.12  Thermomechanical behavior of the system under cyclic thermal load  

5.2.2. b. Fixed-end beam consideration 

To investigate the impact of thermal stress on structural dynamics, it is assumed that heat power 

can get into the beam from its fixed ends. Fig. 13 (a) shows the considered entropy flow source of 

the system. Fig. 13 (b) demonstrates the resultant thermal behavior which has almost the same 

nature as the free-beam thermal fluctuation shown in Fig. 7. In Fig. 13 (c) the resultant internal 

force for each element is presented. One can vividly see the growing rate of the thermal reaction 

force as a result of the thermal energy storage in the system. In Fig. 13 (d) the internal deformation 

(as an indicator of thermal strain) is presented. It is clear that the total deformation of the system 
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is equal to zero; however the elemental deformation varies depending on the distance of the 

element to the thermal source.  

  
(a) (b) 

  
(c) (d) 

Fig.13  Fixed ends beam thermomechanical behavior 

5.3. Free-beam under thermoelastic loading 

To check the ability of the proposed model to track the internal dynamics under complex loading 

conditions, a mechanical load accompanied by a thermal load, shown respectively in Fig. 14 (a) 

and (b), are applied to both ends of the free-beam structure symmetrically. These loads are 

considered as flow sources into the system. In real conditions these loads are dynamically coupled 

together, thus, to obtain a more physical aero-thermo load, one would need to model the fluid flow 
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around the structure and then couple it dynamically with the proposed thermoelastic model to form 

a more reasonable aero or hydro-thermoelastic load. 

  
(a) (b) 
Fig.14  Deformation rate source (a), Entropy flow source (b) 

The resultant elements’ deformation and temperature changes are depicted in Fig. 15 (a) and 

(b), respectively. One can see that the deformation behavior in this case is similar to the 

deformation behavior in the fixed-end-beam cyclic-thermal-loading case. This is because in the 

latter case, the reaction of the thermal stress on the structure at both fixed ends is in principal 

equivalent to applying a mechanical load on the structure, which makes the situation similar to the 

former case. 

Fig. 15 demonstrates the energetic behavior of the beam under the considered mixed loading 

for a longer period of thermoelastic vibrations. Part (a) indicates the stored energy in the elastic 

subdomain, and Part (b) represents the corresponding energy change in the thermal subdomain. As 

can be seen, the styles of the energy consumptions of these two subdomains are totally different 

from each other. In the elastic subdomain, the potential of the domain (force) tends to have a non-

dissipative and conservative behavior in each cycle, whereas in the thermal subdomain an 

accumulative-dissipative pattern of the potential (Temperature) can be observed. To explain the 

shifting pattern of the obtained results, one can consider that the added amount of energy to the 

system, as a result of the thermal subdomain irreversibility, can increase the temperature and 

0 50 100 150 200 250 300
Time (s) {s}

-2e-007

-1e-007

0

1e-007

2e-007

Deformation rate source (m/s)

0 50 100 150 200 250 300
Time (s)

-0.04

-0.02

0

0.02

0.04

Entropy flow (J/K.s)



  Journal of Continuum Mechanics and Thermodynamics (Under review) 

126 

consequently the internal tension of the system. This unwanted energetic lift inside the system in 

a long term may result in unwelcoming deformations of the system.         

  
(a) (b) 

Fig.15  Elemental deformation (a), Thermal behavior (b)  

  
(a) (b) 

Fig.16  Energetic behavior of the system under mixed loading       

 The fact revealed in Fig.16 indeed demonstrates the benefits of implementing conservation 

of energy in the proposed model. The clockwise rotation in the thermal subdomain and the 

counterclockwise rotation in the elastic subdomain show that the amount of energy transferred 

between these two subdomains is always oppositely equal to each other. This, thanks to the 

generated reversible energy storage, means that energy exiting from one subdomain is entered into 
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the other subdomain without loss. The different energetic patterns between the thermal and elastic 

subdomains, although indicate a weak coupling between the two subdomains, do show how this 

weak interaction can actually alter the performance of the system. 

  
(a) (b) 

Fig.17  Center element thermal behavior about natural frequency (a), fixed ends beam elastic behavior under thermal 
loading (b) 

Having a clear understanding of the energetic behavior of a multi-physical system, especially 

in the form of a separate graph for each of the involving subdomains, can be a supportive tool for 

managing the energy consumption of the entire system. For example, knowing the local thermal 

behavior of the system about the natural frequency (such as Fig.17 (a)), in order to stabilize the 

system one can exclude a certain amount of entropy from the system via locally cooling the system. 

Alternatively, as in the case of a noise reduction application, knowing the local elastic behavior of 

the system (such as Fig.17 (b)), in order to suppress the undesired deformation one can compensate 

the impact of the stress growth inside the system via, for instant, implementing an effective active 

control mechanism. 

6. Conclusion 

In this study, by means of the BG method, a domain-independent, nonlinear, coupled 

thermoelastic model is generated for investigating the thermomechanical behavior of multi-

physical systems. In this model, via the proposed energy conservative coupling, the reversible 
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dynamic interactions between the elastic and thermal subdomains are considered. The generated 

model is capable of not only describing the dynamic behavior of the system, but also providing a 

useful power frame within which the energy distribution of the system with respect to each of the 

involved subdomains is distinguishable.  

The rational compatibility between the obtained results and the natural behavior of the system 

shows that the proposed model can unveil a high-degree of complexity of the system’s internal 

dynamics under thermoelastic loading, which would otherwise be overlooked by other 

conventional models. In addition, the obtained separate energetic framework of the proposed 

model offers a considerable potential for the development of more control-oriented strategies that 

can address the individual dynamics of each of the participating subdomains, instead of the total 

dynamics of the multi-physical system. 
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CHAPTER 5: THERMOVISCOELASTIC COUPLED MODEL FOR SOLID FIELD 

Aim 

The aim of this chapter is to generate an energy-based thermovisvoelastic model for the solid 

filed from the coupled model presented in Chapter 4.  

Description 

 To achieve this aim, the irreversible coupling between the present subdomains of the solid 

field is generated and added to the reversibly coupled thermoelastic model. To do so, first, energy-

based domain independent models of the existing dissipative mechanisms of the solid field are 

generated, which highlights the physical meaning of all aspects of the anelastic behavior of the 

system. Then, by installing the generated dissipative mechanisms in the form of resistive 

components into the already-coupled thermoelastic model, the irreversible energetic interactions 

between the elastic and thermal subdomains are included into the model to form an energy-based 

thermoviscoelastic model. The aforementioned achievements are released in two papers: 

In the first paper, a physical combined viscoelastic model is proposed to generate the 

viscoelastic model suitable for multi-physical domain dynamic investigations. To this end, energy-

based viscoelastic models are first generated for the existing conventional viscoelastic models, and 

their embedded dispersive mechanisms are interpreted physically by means of the BG method. 

Next, by including the interpreted dissipative mechanisms into the relative subdomains of the 

elastic domain, an energy-based combined viscoelastic model is proposed. The content of this 

paper is organized as follows:    

1. Introduction on anelastic behavior and conventioanal viscoelasticity .....................................133 

2. Fundamental issues of conventional viscoelasticity ................................................................136 

3. Energy-based viscoelastic model: a physical approach ...........................................................138 

3.1. Domain-independent pure elastic models ...................................................................139 

3.2. Domain-independent Maxwell viscoelastic model .....................................................140 

3.3. Domain independent Kelvin-Voigt model ..................................................................141 
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3.4. Domain independent SLS model ................................................................................143 

3.5. Domain independent combined linear solid (CLS) model .........................................144 

3.6. Temperature dependency of viscoelasticity ................................................................146 

4. Simulation and result analysis .................................................................................................148 

4.1. Maxwell model ...........................................................................................................149 

4.2. Voigt model ................................................................................................................151 

4.3. SLS model ...................................................................................................................153 

4.4. CLS model ..................................................................................................................154 

5. Conclusion ...............................................................................................................................156 

References ....................................................................................................................................157 

In the second paper, the reversibly coupled subdomains of the solid field, generated in Chapter 

4, are irreversibly coupled via installing the physical dispersive mechanisms presented in the first 

paper. Also, the impacts of geometrical and material changes on the system dynamics are added 

to the model via the compatibility consideration of the energetic components of different 

subdomains. The content of this paper is organized as follows: 

1. Introduction on thermoviscoelasticity......................................................................................160 

2. The classical fundamental of thermoviscoelasticity and its problems .....................................163 

3. Decomposed domain-independent thermoviscoelastic model .................................................166 

3.1. Dissipative elastic domain BG model .........................................................................166 
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Results 

The proposed model provides a connectable energetic structure of the solid field with which 

the general dynamics of the system are obtained from the constructive dynamics of each of the 

subdomains. This special capability of the model leads to an automatic capturing of the thermo-

mechanical phenomena inside the system. The obtained simulation results for a simple beam 

structure demonstrate the impacts of the internal dynamics on the observable behavior of the 

system, and prove the capability of the model in covering a wide range of thermo-mechanical 

behaviors including material softening, vibrational heating, dilation, relaxation, conduction, and 

damping of the solid field. 

Conclusion 

Overall, a novel thermoviscoelastic model is generated in which the general thermo-

mechanical behavior of the system is generated from the interactive dynamics of its existing 

subdomains including the irreversibility induced by the true physical nature of the system. 
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ENERGY-BASED VISCOELASTIC MODEL: A PHYSICAL APPROACH FOR 

MATERIAL ANELASTIC BEHAVIOR 

Amir Zanj1, Fangpo He2, Peter C. Breedveld3 

Understanding the true nature of viscoelastic behaviors in multi-physical systems has always been 

a challenging issue in the system dynamic investigations, as each existing physical subdomain of the 

system may follow a different attenuation pattern during the dynamic process. In this study, to generate 

a viscoelastic model suitable for multi-physical domain dynamic investigations, a physical combined 

viscoelastic model is proposed. To this aim, by means of the Bond graph approach, an energy-based 

conventional viscoelastic model is first generated, and its embedded dispersive mechanisms are 

interpreted physically. By including the interpreted dissipative mechanisms into the relative subdomains 

of an elastic domain, an energy-based combined viscoelastic model is then proposed. The obtained 

simulation results indicate that the proposed viscoelastic model is able to capture a variety of 

viscoelastic behaviors in the system with respect to the true physical nature of the system.   

Keyword: Bond graph modeling, Multi-physical systems, Energy-based modeling, Domain-independent 

modeling, Dispersive Mechanism      

1. Introduction 

To a high degree, elasticity is a suitable characteristic for modeling wave propagation through 

materials. No real materials, however, are perfectly elastic, but rather anelastic. In real medium, 

wave energy is gradually converted into heat. Attenuation of propagated waves in some cases, 

such as in viscoelastic materials, is quite significant and could be a source of erroneous results in 

forward modeling, inversion, and imaging if neglected [1]. Thus, analyzing the mechanics of 

viscoelastic materials has been proven to be extremely challenging. 

Many classical viscoelastic models of materials have been put forward, such as the Maxwell, 

the Voigt, and the Standard Linear Solid (SLS) models [2] [3]. In addition, various fractional 

viscoelastic models of materials have been presented and their constitutive relations discussed in 

[4] [5] [6] [7] [8]. In these models, existing viscoelastic dynamics are presented using mechanical 
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analogous components (such as springs and dashpots) and curve fitting techniques. The resultant 

models merely mimic the observable behaviors of the systems, but do not include the compound 

physical connections between the parameters (e.g. material and geometrical parameters) of the 

systems. They do not, therefore, adequately expose the physical concepts of viscoelasticity 

underpinning the dynamics of the systems.    

The problem associated with the conventional modeling techniques can generally be traced 

back to the use of the dispersive mechanisms (e.g. retardation and relaxation mechanism) [9] [10] 

[11] that only pays attentions to the regeneration of the attenuated dynamics of the systems and 

ignores the true casual interactions between the energetic components (e.g. capacity, inertia, and 

resistivity) of the systems. This negligence leads to the separation of the models from their intended 

internal energetic behaviors of the systems, and results in a limited applicability of these models. 

Given that the viscoelastic behavior of a system is a true reflection of the system’s kinetic, 

potential, and thermal subdomains’ energetic interactions, the conventional models are deemed to 

be unsuitable for multi-physical system dynamic investigations. 

The non-physical nature of the conventional models also limits the valid ranges of these models 

as frequently reported in the literature. Being disconnected from the physics of the systems, the 

generated models rely on combined parameters (such as relaxation time) to produce the dispersive 

behaviors of the systems. This makes the models incapable of distinguishing the dynamics of the 

same shape but different nature, thus unable to reveal specific physical behaviors of the systems 

on the level of their ongoing phenomena. Although attempts have been made to broaden the valid 

ranges of these models by employing more dispersive mechanisms that are activated in difference 

frequencies (e.g., the Maxwell–Wiechert model [12]), the added combined parameters are still 

unable to include the missing physics in the models that allow the tracking of the physical 

phenomena within the systems. 

Given the deficiencies associated with the conventional models, it becomes obvious that a 

physical viscoelastic model will be desirable if the ability to capture and track the continuing 

viscoelastic behavior of a system is of concern. The required model should employ typical 

parameters that can carry distinctive physical meanings of the system, and should provide ongoing 

dynamics that can reveal clear energetic interactions between involving physical components of 

the system. The level of physical details contained in such a model will decide the range of 
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suitabilities for the model’s application. 

To generate such a physical viscoelastic model suitable for multi-physical system dynamic 

investigations, the Bond graph (BG) modeling technique [13] [14] [15] [16] [17] [18] [19] is 

suggested in this paper. Working on the basis of physical system theory, the BG technique provides 

a continuous power exchange frame between the existing physical subdomains of a multi-physical 

system, and produces the behavior of the system on the basis of power conservative interactions 

between the existing energetic components of the system. The model thus generated is analytical 

in nature while potentially reflecting the true physical meaning of the system. This physical model 

then provides a meaningful insight of the ongoing dynamics in viscoelastic phenomena.  

The embedded physical lucidity of the proposed viscoelastic model can also provide a physical 

explanation to the limitations of the conventional models and, thus, lead to the development of a 

more physical approach that can extend the valid range of the generated model. In addition, using 

the BG approach, the domain-independency of the proposed approach can provide a low-cost 

dynamic coupling capability between the generated model and the models of other subdomains. 

This capability is particularly beneficial for multi-physical domain dispersive dynamic 

investigations. It also provides a desirable basis for the design of applicable control strategies to 

identify and suppress the undesired behavior of the system.      

To develop the proposed viscoelastic model, the remainder of this paper is organized as 

follows. In Section II, the fundamentals of viscoelasticity in the mechanical domain and the 

problem relating to the implementation of the conventional methods are explained. An energy-

based conventional viscoelastic model is then generated in Section III using the BG terminology, 

and the physical interpretation of the viscoelastic phenomena occurring inside the model is 

explained. By employing the obtained physical dispersive mechanisms, an inclusive viscoelastic 

model incorporating all aspects of energy dissipation of the system is proposed. In Section IV, the 

simulation results of the proposed energy-based combined viscoelastic model together with its 

conventional counterparts in BG representations are analyzed, and their corresponding capabilities 

in capturing the viscoelastic behavior of the system are demonstrated. The entangled viscoelastic 

behavior of material is then concluded in Section V where the use of the proposed viscoelastic 

model is justified and the reason for the limited applicability of the conventional models is 

revealed. 
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2. Fundamental issues of conventional viscoelasticity 

From the literature, the fundamentals of viscoelasticity are mainly interpreted on the basis of 

the observed behavior of a system, not on the basis of the energetic interaction within a system. 

The theory of viscoelasticity [10] and its associated issues can be highlighted as follows.  

The basic hypothesis in conventional viscoelastic theory focuses on the fact that a current value 

of the stress tensor depends on the history of the strain tensor [11] [20]. Considering the linear 

functional and continuous strain history, the Riesz’ representation theorem [21] allows the function 

to be rewritten as a convolution integral: 

𝜎𝜎(𝑡𝑡) = 𝐺𝐺(0)𝐸𝐸(𝑡𝑡) + � 𝐺𝐺(𝑡𝑡 − 𝜏𝜏)
𝑡𝑡

0
𝐸𝐸̇(𝜏𝜏)𝑑𝑑𝜏𝜏 (1)  

where 𝜎𝜎(𝑡𝑡)  and 𝐸𝐸(𝑡𝑡) denote the stress and strain of the system, respectively; 𝐸𝐸̇(𝜏𝜏) is the time 

derivative of the strain; 𝐺𝐺 is the stress relaxation function and is the viscoelastic analogue to the 

Lame constant, 𝜇𝜇, in linear elasticity. To define 𝐺𝐺, which is the key point to evaluate the 

viscoelastic behavior of the system, disregarding the physical nature of this function, it is assumed 

that the Laplace transform of stress relaxation function, 𝐺𝐺�, can be approximately represented by a 

rational function as: 

𝑠𝑠𝐺𝐺�(𝑠𝑠) =
𝑄𝑄(𝑠𝑠)
𝑃𝑃(𝑠𝑠)

 (2)  

𝑃𝑃(𝐷𝐷) = �𝑝𝑝𝑘𝑘𝐷𝐷𝑘𝑘
𝑁𝑁

𝑘𝑘=0

 (3)  

𝑄𝑄(𝐷𝐷) = �𝑞𝑞𝑘𝑘𝐷𝐷𝑘𝑘
𝑁𝑁

𝑘𝑘=0

 

(4)  

where pk and qk are polynomials, 𝐷𝐷 is the differential operator 𝑑𝑑/𝑑𝑑𝑡𝑡, and 𝑁𝑁 is an arbitrary integer. 

Accordingly, the differential operator form of the stress-strain relation in Eq. (1) can be represented 

as: 

𝑃𝑃(𝐷𝐷)𝜎𝜎(𝑡𝑡) = 𝑄𝑄(𝐷𝐷)𝐸𝐸(𝑡𝑡) (5)  

By taking the Laplace transform of Eq. (5), one has: 
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𝑃𝑃(𝑠𝑠)𝜎𝜎�(𝑠𝑠) −
1
𝑠𝑠
�𝑝𝑝𝑘𝑘

𝑁𝑁

𝑘𝑘=1

�𝑠𝑠𝐶𝐶𝜎𝜎(𝑘𝑘−𝐶𝐶)(0)
𝑘𝑘

𝐶𝐶=1

= 𝑄𝑄(𝑠𝑠)𝐸𝐸̂(𝑠𝑠) −
1
𝑠𝑠
�𝑞𝑞𝑘𝑘

𝑁𝑁

𝑘𝑘=1

�𝑠𝑠𝐶𝐶𝐸𝐸(𝑘𝑘−𝐶𝐶)(0)
𝑘𝑘

𝐶𝐶=1

 (6)  

Assuming that the order of 𝑄𝑄 is less than or equal to the order of 𝑃𝑃 + 1 and that 𝑠𝑠𝑃𝑃(𝑠𝑠)/𝑄𝑄(𝑠𝑠) has 

no multiple roots, one can express 𝐺𝐺 as a constant plus a sum of 𝑁𝑁 +  1 (or less) inverse first-order 

polynomials: 

𝐺𝐺(𝑠𝑠) = 𝐾𝐾 + �
𝑎𝑎𝑘𝑘

𝑏𝑏𝑘𝑘 + 𝑠𝑠

𝑁𝑁

𝑘𝑘=0

 (7)  

By taking the inverse Laplace transform of Eq. (7), the general solution for 𝐺𝐺 in the time 

domain is obtained as: 

𝐺𝐺(𝑡𝑡) = 𝐾𝐾 + �𝐶𝐶𝑘𝑘𝑆𝑆
− 𝑡𝑡
𝜏𝜏𝑘𝑘

𝑁𝑁

𝑘𝑘=0

 (8)  

The obtained 𝐺𝐺 can reveal the viscoelastic behavior of the system by fitting the obtained 

parameters 𝐾𝐾, 𝐶𝐶𝑘𝑘, and 𝜏𝜏𝑘𝑘 about an operational point.  

It is clear that in the theory of viscoelasticity the attempt is to generate a fading functional 

between the stress and strain of the system, whereas the actual viscoelastic behavior of the system 

is a result of the interactive dynamics of the system energetic components. Since these internal 

interactions are not observable, they are not tractable in an experimental attempt. Accordingly, the 

majority of the conventional viscoelastic models using this theory such as the Maxwell, the Voigt, 

and the SLS models [22] can only show the relaxing behavior of the system without paying 

attention to the physical reasons behind the phenomena. Although a conventional model can be a 

useful tool for investigating the relaxing behavior of the system, literature shows a low capability 

of such a model in covering the whole range of relaxation dynamics of a system [22], especially 

in the case of a multi-physical system where the role of the internal interactions becomes more 

significant. 

In a conventional viscoelastic model, although the molecular motion of the system can be 

visualized by allocating the analogous mechanical elements, spring and dashpot [5], in the form of 

the Maxwell and Voigt arms shown in Fig. 1, the introduced combined parameters of the model 

(such as the relaxation time 𝜏𝜏) can be the source of an erroneous justification of the viscoelastic 

behavior when the parameters of the model are modulated. To explain this, consider the SLS model 
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shown in Fig. 2 in a variable temperature system. The constitutive equation is simplified as: 

 
Fig.1 Viscoelastic model: Maxwell arm (a), Voigt arm (b) 

 
Fig.2 Standard linear solid (SLS) viscoelastic model   

𝜎𝜎(𝑡𝑡)
𝐸𝐸0

= 𝑘𝑘1 + 𝑘𝑘2𝑆𝑆
−𝑡𝑡𝜏𝜏  

(9)  

where for the analogous mechanical component of the model 𝑘𝑘1, 𝑘𝑘2, and 𝜂𝜂 present the elasticity 

of the system, the elasticity of the Maxwell arm, and the viscosity coefficient of the dashpot, 

respectively. Eq. (10) indicates the relaxation time of the model as a combined parameter expressed 

by the ratio of the viscosity and elasticity of the considered dispersive mechanism (Maxwell arm). 

To include the thermal impact in the model, generally the relaxation time is required to be 

modulated. Considering the relation between the relaxation time and the elasticity of the system, 

this modulation may reflect as a change in the elasticity of the system which is indeed the 

parameter forming the capacity of the system. From physical system theory, it is known that any 

changes in the capacity of a system will undoubtedly separate the system from its history, as the 

energy level of the system is changed. Therefore, modulation of the introduced parameters of the 

model will lead to disconnecting the model from its physical background. The combination of 

𝑘𝑘𝑖𝑖  and 𝜂𝜂𝑖𝑖  in the form of one significant parameter is thus seen to limit the valid range of the 

conventional viscoelastic model.  

3. Energy-based viscoelastic model: a physical approach 

To find the relation between a viscoelastic model and the energetic behavior of its 

corresponding system, the energetic interaction of the dispersive mechanism is required to be 

defined with respect to the involving subdomains of the system. To achieve this, in this paper it is 

𝜏𝜏 =
𝜂𝜂
𝑘𝑘2

 (10)  
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proposed that a dispersive model for each involving subdomain is first generated, and the generated 

models are then combined in a power continuous form. By doing so, it is anticipated that the 

resultant model of the system will automatically capture the various physical phenomena occurring 

inside the system, including the viscoelastic phenomena. 

To generate the physical dispersive model for each involving subdomain, one needs to identify 

the dissipation nature of different subdomains. To do this, a physical explanation of the existing 

entropic behavior of the conventional viscoelastic models is identified by means of the BG 

approach. The comparison between the physical interpretation of the existing dispersive 

mechanisms (relaxation and/or retardation) of the conventional viscoelastic models and that of the 

energy dissipative components of each subdomain can lead to the identification of the assortment 

of the dispersive mechanisms that can form an energy-based viscoelastic model. 

In the following, the procedure explained above will be conducted to generate the proposed 

energy-based viscoelastic model for a 1D reticulated structure.  

3.1. Domain-independent pure elastic models 

To define the energetic interaction between the involving subdomains of an elastic system, 

Rayleigh beam’s discrete geometry, suggested in [23], is employed. Fig. 3 shows a 1D distributed 

space on the basis of the acoustic assumption. According to this assumption, the elastic energy of 

the reticulated space can be stored in the center of each element and the movements of the 

boundaries are inertial. As this reticulated space is indeed a continuous system, the adjacent 

boundary of each two consecutive elements are bonded to move together. Therefore, one can 

consider the above discretization as a junction-element chain, in which each element represents 

the potential subdomain and each junction represents the kinetic subdomain with its parameters 

being a weighted function of the related parameters of the adjacent elements. 

 
Fig.3 1-D Rayleigh distributed geometry    

The BG representation of Fig. 3 is shown in Fig. 4. The considered state variables for the ith 

element and jth junction are 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝐴𝐴 which denote the deformation of each element and the 

momentum of each boundary, respectively. According to the conservation of energy, the state 
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equations of each junction-element are derived as: 

 
Fig.4 1-D decomposed elastic model 

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖
−
𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

 (11)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (12)  

𝐼𝐼𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (13)  

where 𝐼𝐼𝐴𝐴  is a function of the adjacent elements’ mass representing the boundary inertance, and 𝐶𝐶𝑖𝑖 

is a function of the geometrical and material parameters of the ith element representing the 

capacitance of the element. The presented model via the geometry and material related parameters 

is able to model the dynamics of a pure elastic system with respect to the dynamics of the kinetic 

and potential subdomains. To add the viscoelastic considerations to the model according to the BG 

approach, the energy is required to be dissipated while transferring between the subdomains of the 

system. To this aim, in the following the conventional viscoelastic models, namely the Maxwell, 

the Voigt, and the SLS models, will be interpreted physically to define the required resistive 

components for the presented elastic model.  

3.2. Domain-independent Maxwell viscoelastic model 

Consider the series arrangement of the mechanical element in the Maxwell model shown in 

Fig. 1 (a). The relaxation mechanism embedded in this model can be interpreted as a dissipative 

component for the potential subdomain and placed in series with the capacity of each segment. 

The equivalent BG representation of the Maxwell model is presented in Fig. 5 where a resistor is 

placed inside each element and in series with the storage element. This means that the internal 

energy of each medium can be saved or dissipated, resulting in a long term stress release (creep) 

in the system.   
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Fig.5 Maxwell model Bond graph representation of viscoelasticity 

For the BG model presented in Fig. 5, the governing equations of the Maxwell model can be 

obtained as: 

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖
−
𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

 (14)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−

𝑞𝑞𝑖𝑖
𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖

 (15)  

By integrating Eq. (15) and comparing the result with the constitutive equation in Eq. (9), the 

BG representation of the Maxwell relaxation time is equivalent to: 

𝜏𝜏𝑖𝑖 = 𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖  (16)  

From the Hook’s relation for 1D reticulation, the storage coefficient is also presented as [23]: 

𝐶𝐶𝑖𝑖 =
𝐿𝐿0𝑖𝑖
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖

 (17)  

where 𝐿𝐿0𝑖𝑖, 𝐴𝐴𝑖𝑖, and 𝐸𝐸𝑖𝑖 are the initial length, contact surface, and Young modulus of each segment 

(geometry element), respectively. The Maxwell relaxation time can then be expressed as a function 

of the geometrical and material parameters of each segment: 

𝜏𝜏𝑖𝑖 = 𝑅𝑅𝑖𝑖
𝐿𝐿0𝑖𝑖
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖

 (18)  

3.3. Domain independent Kelvin-Voigt model 

The Voigt model is well-known for systems under cyclic loading. As shown in Fig. 1 (b), the 

entropic dashpot of the Voigt model is placed in parallel with the main elasticity of the system. 

This model is known to capture the retardation behavior of the system. A BG representation of the 

Voigt model is given in Fig. 6 where the energy entered into each medium is distributed between 
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a resistor and a storage component with the same flow rate but different effort. This means that the 

system using the Voigt model can always conserve the internal potential energy without relaxing 

it. 

   
Fig.6 Voigt model Bond graph representation of viscoelasticity 

To extract the state equations of the Voigt model, by slightly changing the presented BG model 

to eliminate the existing loop, the BG presented in Fig. 7 is suggested. Accordingly, the state 

equations for the ith segment and jth junction are derived as:  

 
Fig.7 Loop-less Kelvin-Voigt model Bond graph representation of viscoelasticity  

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖

+ 𝑅𝑅𝑖𝑖 �
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
� −

𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

− 𝑅𝑅𝑖𝑖+1 �
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−
𝑝𝑝𝐴𝐴+1
𝐼𝐼𝐴𝐴+1

� (19)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (20)  

Comparing the Maxwell and Voigt BG models, one can notice that unlike the Maxwell model 

where the elastic energy of the system is dispersed, in the Voigt model the momentum energy of 

the system is dissipated as indicated by the causality of the resistive component. To explain this, 

consider the state equations of these two models. While the relaxation behavior in the Maxwell 

model occurs in the potential subdomain, the retardation behavior in the Voigt model occurs in the 

kinetic subdomain. This shows that these two viscoelastic models in fact describe two different 

phenomena occurring in different subdomains. Based on this finding, one can conclude that a 

combination of the Maxwell and Voigt methodologies is required to cover all the dissipation 
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aspects of a real system.  

3.4. Domain independent SLS model 

The SLS model attempts to include the dissipation impacts on both potential and kinetic 

subdomains; however, the obtained combination has a missing part. A Maxwell-like SLS BG 

model is presented in Fig. 8 where a Maxwell arm is placed inside the system parallel to the main 

elasticity of the element. This allows the system to have a certain amount of relaxation and 

retardation.  

 
Fig.8 SLS model Bond graph representation of viscoelasticity 

As shown in Fig. 8, an internal state is added to each segment. This added state temporarily 

stores elastic energy inside the segment, thus allowing the energy to relax to form creepy-like 

dynamics. Define the added state, 𝑞𝑞𝑚𝑚, as the displacement of the Maxwell arm, and change the 

elastic state to 𝑞𝑞𝑒𝑒 to represent the elastic displacement. The governing equations for this model can 

then be derived as: 

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑒𝑒𝑖𝑖
𝐶𝐶𝑒𝑒𝑖𝑖

+
𝑞𝑞𝑚𝑚𝑖𝑖
𝐶𝐶𝑚𝑚𝑖𝑖

−
𝑞𝑞𝑒𝑒𝑖𝑖+1
𝐶𝐶𝑒𝑒𝑖𝑖+1

−
𝑞𝑞𝑚𝑚𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

 (21)  

𝑞𝑞�̇�𝑒𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (22)  

𝑞𝑞�̇�𝑚𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−

𝑞𝑞𝑖𝑖
𝑅𝑅𝑖𝑖𝐶𝐶𝑚𝑚𝑖𝑖

 (23)  

As can be seen, dissipative terms appear partially in the potential subdomain state equations 

(Eqs. (22) and (23)), however no direct viscoelastic impact is found in the kinetic subdomain state 

equation (Eq. (21)). Although indirect viscoelastic impacts are shown in the kinetic subdomain via 

temporary forces generated in the system (the last two terms of Eq. (21)), there is no sign of 
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dispersion in the kinetic subdomain. This finding reveals that there is a missing part in the SLS 

model that will limit its performance in cyclic loading. It also explains the reason why there is not 

much success in expanding the valid ranges of the SLS-like viscoelastic models even with the use 

of more complex means such as the Weichert model shown in Fig. 9 [12]. 

 
Fig.9 Weichert viscoelastic model 

3.5. Domain independent combined linear solid (CLS) model 

As has been seen, the BG technique can physically clarify the fundamental differences between 

relaxation and retardation mechanisms of the system using constructive components to form the 

viscoelastic behavior. Accordingly, to generate a complete model including all required dispersive 

mechanisms, a combination of the Maxwell and Voigt models is therefore proposed in which the 

direct dissipation can occur in both subdomains. The proposed model is named as the Combined 

Linear Solid (CLS) model whose BG configuration is shown in Fig. 10 where the simplest form 

of combining the Maxwell arms in parallel with the Voigt legs is presented. 

 
Fig.10 CLS model Bond graph representation of viscoelasticity  

Consider the index of 𝑚𝑚 and 𝑆𝑆 denoting, respectively, the Maxwell and elastic parameters. The 

state equations for the proposed model can be derived as: 
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�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑒𝑒𝑖𝑖
𝐶𝐶𝑒𝑒𝑖𝑖

+
𝑞𝑞𝑚𝑚𝑖𝑖
𝐶𝐶𝑚𝑚𝑖𝑖

−
𝑞𝑞𝑒𝑒𝑖𝑖+1
𝐶𝐶𝑒𝑒𝑖𝑖+1

−
𝑞𝑞𝑚𝑚𝑖𝑖+1
𝐶𝐶𝑚𝑚𝑖𝑖+1

+𝑅𝑅𝑒𝑒𝑖𝑖 �
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
�−𝑅𝑅𝑒𝑒𝑖𝑖+1 �

𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−
𝑝𝑝𝐴𝐴+1
𝐼𝐼𝐴𝐴+1

�       (24)  

𝑞𝑞�̇�𝑒𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (25)  

𝑞𝑞�̇�𝑚𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−

𝑞𝑞𝑚𝑚𝑖𝑖
𝑅𝑅𝑚𝑚𝑖𝑖𝐶𝐶𝑚𝑚𝑖𝑖

 (26)  

It is clear that, similar to the SLS model, the CLS configuration is also a 3-DOF system. The 

last two terms of Eq. (24) indicate the direct dispersive impact on the kinetic subdomain, which 

include the retardation dynamics of the model. The last term in Eq. (26) indicates the energy 

dissipation in the potential subdomain, which can be counted as the root of the long-term response 

of the system including creep and relaxation dynamics. Unlike the SLS model, in the CLS model 

the energy transformation in both subdomains is dispersive as demonstrated in Eqs. (24) and (26). 

Generating bidirectional attenuated dynamic interactions between the subdomains makes the CLS 

model capable of capturing the viscoelastic behavior of the system under high-frequency cyclic 

loading where the SLS model fails to perform.  

The physical interpretation of the existing dispersive mechanisms associated with the 

conventional methods has revealed that the dissipation of the system and the resultant viscoelastic 

behavior are the direct result of two phenomena occurring simultaneously inside different physical 

subdomains. These two phenomena are by nature different from each other. The difference 

between the orders of 𝑅𝑅𝑚𝑚 and 𝑅𝑅𝑒𝑒 can explain this claim. By implementing Eqns. (17) and (13) in 

Eqns. (24) and (26), for a uniformly discretized homogeneous material, one can present the flowing 

relaxation time for both the kinetic and potential subdomains: 

𝜏𝜏𝑘𝑘 =
𝑅𝑅𝑒𝑒
𝐼𝐼

 (27)  

𝜏𝜏𝑝𝑝 = 𝑅𝑅𝑚𝑚𝐶𝐶𝑚𝑚 (28)  

It is clear that to obtain a logical relaxation time, in the kinetic subdomain the resistant 

coefficient is required to be in the order of the allocated mass of the segment, whereas in the 

potential subdomain the resistant coefficient is required to be defined in the order of the Young 

modulus of the segment. This fact highlights that the observed viscoelastic behavior of the system 

is indeed constructed by separate dynamic behaviors and, thus, separate parameters in different 

scales are required to regulate the model. The negligence of this fact in the conventional 
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viscoelastic modeling techniques has resulted in divisions of models into two different categories: 

models suitable for long-term response and models proper for cyclic loading. The consideration of 

separate relaxation time and retardation time as shown in the proposed CLS model, however, can 

result in generating an integrated viscoelastic model proper for all aspects of viscoelastic 

phenomena, thus a much wider valid range of the CLS model. 

3.6. Temperature dependency of viscoelasticity 

Traditionally, to include the temperature dependency in the conventional models, relaxation 

time is modulated via temperature input. In Section II, it has been claimed that the consideration 

of relaxation time as a ratio of viscosity coefficient to Young modulus can limit the valid range of 

the conventional models, and also, be the reasons for some erroneous outcomes especially at the 

presence of temperature fluctuations. To investigate this claim, in the following the physical 

interpretation of relaxation time modulation is highlighted via the energy-based modeling strategy. 

To include the thermal subdomain influence on the elastic subdomain, consider the energy-

based thermal model presented in [24] together with the CLS model, as shown in Fig. 11. The 

dissipated energy is seen to enter into the thermal subdomain, and change the temperature of the 

system via the RS energy links. Considering the energetic meaning of relaxation time, the 

modulation of this parameter can be presented as modulating its constructive components via the 

thermal information (signal lines shown as dash lines in Fig. 11) of the system. Modulation of 

resistance is permitted as resistance is proportional to the instantaneous information (effort and 

flow) [14] of the system. However, modulation of capacitance will undoubtedly violate the 

conservation of energy within the system, as capacitance is in an integrative relation with the 

instantaneous information of the system [13] and, thus, contains the memory of the model. One 

can see how modulation of relaxation time can result in disconnecting the model from the physical 

causality of the system leading to a limited range of validity. It should be mentioned that instead 

of modulation, to maintain the capacity conservation, the one-dimensional capacity would be 

required to be replaced by a multi-dimensional thermoelastic capacitor [25]. This possibility is 

beyond the interest of this study. 
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Fig.11 Possible thermal interaction of viscoelastic model    

Considering the coupled model shown in Fig. 11, the amount of the dissipated energy can be 

obtained as:  

�̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑡𝑡𝐶𝐶𝑡𝑡 = �̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑘𝑘 + �̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑝𝑝 (29)  

�̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑘𝑘 = 𝑅𝑅𝑆𝑆𝑘𝑘𝑓𝑓𝑘𝑘
2 (30)  

�̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑝𝑝 = 𝑅𝑅𝑆𝑆𝑝𝑝𝑆𝑆𝑝𝑝2 (31)  

𝑓𝑓𝑘𝑘 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (32)  

𝑆𝑆𝑝𝑝 =
𝑞𝑞𝑚𝑚𝑖𝑖
𝐶𝐶𝑚𝑚𝑖𝑖

 (33)  

where 𝑅𝑅𝑆𝑆𝑘𝑘 and 𝑅𝑅𝑆𝑆𝑝𝑝 can be defined with respect to the geometry and material properties. Therefore, 

the total heat generated as a result of viscoelastic phenomena for each element can be calculated 

as:  

�̇�𝑄𝐴𝐴𝑒𝑒𝑠𝑠𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖
= 𝑅𝑅𝑆𝑆𝑘𝑘𝑖𝑖 �

𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
�
2

+ 𝑅𝑅𝑆𝑆𝑝𝑝𝑖𝑖 �
𝑞𝑞𝑚𝑚𝑖𝑖
𝐶𝐶𝑚𝑚𝑖𝑖

�
2

 (34)  

This dissipated energy is another criterion reflecting the nature of the dispersive mechanism 

employed by the viscoelastic model. This criterion will be used in Section IV as a comparative 

tool to highlight the fundamental differences between the proposed and the conventional dispersive 

mechanisms. 
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4. Simulation and result analysis 

To compare the difference and capability of the proposed CLS model with the conventional 

models in capturing the viscoelastic phenomena, the axial behavior of a simple 1D discrete 

structure under cyclic loading is simulated. To generate the discretized geometry, the chosen 

structure is reticulated into 10 uniform elements with the first and last elements being the boundary 

elements that receive external mechanical loads. It is assumed that all side surfaces of the structure 

are fully isolated and the system is stress-free initially in the ambient room temperature. 

Sequentially, in Subsections IV.A and IV.B, the obtained results of the Maxwell and Voigt BG 

models shown in Figs. 12 to 15 are compared for cyclic tension of a soft tissue the properties of 

which are listed in Table 1. In Subsections IV.C and IV.D, the obtained results of the SLS and 

CLS BG models shown in Figs. 16 to 18 are compared for high and low frequency cyclic loading 

of a metallic alloy the properties of which are listed in Table 2.      

Table 1. Material and geometrical cartilage properties 
Length 𝑒𝑒 2.1𝑆𝑆−1𝑚𝑚 

Cross section 𝐴𝐴 1𝑆𝑆−4𝑚𝑚2 

mass 𝑚𝑚 5.67𝑆𝑆−2𝑘𝑘𝑔𝑔 

Conductivity 𝜆𝜆 2.73𝑆𝑆2
𝐽𝐽

𝑚𝑚.𝐾𝐾
 

Density ρ 4𝑆𝑆3  
𝑘𝑘𝑔𝑔
𝑚𝑚3 

Stiffness 𝐸𝐸 2.698𝑆𝑆−2
𝑘𝑘𝑔𝑔
𝑚𝑚𝑚𝑚𝑒𝑒

 

Viscosity 𝑠𝑠0 2.83𝑆𝑆1
𝐽𝐽

𝑚𝑚𝑚𝑚𝑒𝑒.𝐾𝐾
 

Specific heat 𝑐𝑐𝑝𝑝 8.97𝑆𝑆2  
𝐽𝐽

𝑘𝑘𝑔𝑔.𝐾𝐾
 

Table 2. Material and geometrical beam properties 
Length 𝑒𝑒 2.1𝑆𝑆−1𝑚𝑚 

Cross section 𝐴𝐴 1𝑆𝑆−4𝑚𝑚2 

mass 𝑚𝑚 5.67𝑆𝑆−2𝑘𝑘𝑔𝑔 

Conductivity 𝜆𝜆 2.73𝑆𝑆2
𝐽𝐽

𝑚𝑚.𝐾𝐾
 

Density ρ 4𝑆𝑆3  
𝑘𝑘𝑔𝑔
𝑚𝑚3 

Molar mass 𝑀𝑀 2.698𝑆𝑆−2
𝑘𝑘𝑔𝑔
𝑚𝑚𝑚𝑚𝑒𝑒

 

Reference entropy @ 298K 𝑠𝑠0 2.83𝑆𝑆1
𝐽𝐽

𝑚𝑚𝑚𝑚𝑒𝑒.𝐾𝐾
 

Specific heat 𝑐𝑐𝑝𝑝 8.97𝑆𝑆2  
𝐽𝐽

𝑘𝑘𝑔𝑔.𝐾𝐾
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4.1. Maxwell model 

The results obtained from the Maxwell BG model of the system for the applied external force 

given in Fig. 12 (a) are presented in this Subsection. The obtained deformation of each segment 

and the energetic behavior of the system are shown in Fig. 12 (b) and Fig. 12 (c), respectively. 

They indicate the relaxation behavior of the system as expected of the Maxwell model. For 

instance, the ratcheting of the system is clearly visible in Fig. 12 (c) which is one of the most 

wanted behaviors in viscos materials [26]. The dissipated energy profile is shown in Fig. 12 (d). It 

can be concluded that the magnitude of the energy loss in the Maxwell dispersive model is 

considerable.  

  

(a) (b) 

  

(c) (d) 
Fig.12 Pure elastic behavior of the beam 
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To physically identify the depressive mechanism of the Maxwell model and to relate the 

considered dissipative coefficient with the material parameters, the resistance of the model is 

increased to the extent equal to the capacitance of the system. The obtained result for the same 

external force is depicted in Fig. 13. Surprisingly, the deformation graph shown in Fig. 13 (b) 

demonstrates the elastic-like behavior of the system. In Fig. 13 (c) the energetic behavior of the 

system reminds the Hook’s force-deformation graph for elastic models. In Fig. 13 (d) the resultant 

dissipated energy of the system indicates that despite the increase in resistivity of the system, the 

amount of dissipated energy as compared to Fig.12 (d) remains almost negligible. Collectively, 

one can conclude that in the Maxwell model increasing the resistivity leads to decreasing the 

viscoelasticity of the system.      

  
(a) (b) 

  
(c) (d) 

Fig.13 Cartilage viscoelastic behavior under Maxwell model 
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To explain this conclusion, consider the Maxwell energetic component structure shown in Fig. 

5. The strain rate (the considered flow traveling between the kinetic and potential subdomains) is 

seen to be free to select between the storage or resistance components of the system. Hence, similar 

to electric circuits, when the resistivity on the way is high and when there is a possibility to select 

between the resistor and capacitor of the system, naturally the energy entering into the segment 

will be stored in the capacitor instead of being dissipated. Thus, more pure elastic behavior is 

achievable with higher resistivity in the Maxwell model. The Maxwell resistor in principal can be 

an indicator of the material parameter relating to the hardness of the system. 

4.2. Voigt model 

To compare the Voigt model with the Maxwell model described above, in this Subsection a 

similar energetic behavior of the system via the Voigt model is generated using the same loading 

situation and through changing the resistive parameter. Fig. 14 shows the viscoelastic behavior of 

the system obtained from the Voigt model. The energetic behavior shown in Fig. 14 (c) is similar 

to that presented in Fig.13 (c), but the internal dynamics presented in Fig. 14 (b) are different from 

those presented in Fig.13 (b). It seems that the external dynamics of the Voigt model cannot find 

the way to enter into the system, whereas the deformation variation of different segments of the 

Maxwell model can vividly indicate the stimulated dynamics of the system. To explain this, 

examine the amount of the Voigt resistance (𝑅𝑅𝑒𝑒). To generate the Maxwell-like behavior via the 

Voigt model, a higher amount of resistivity, almost the same size as that of the elasticity of the 

system, is needed. According to the BG representation of the Voigt configuration (Fig. 6), the 

strain rate (flow of the system) is not permitted to be divided between the resistor and capacitor of 

a segment; rather, it must be bonded together and go through both of the components 

simultaneously. By doing so, the higher amount of resistivity will oppose the strain rate to flow 

into the segment, causing the system to behave like a rigid body. By resisting the strain rate to flow 

into the system, although the resistivity is high, the amount of dissipated energy in the Voigt model, 

as shown in Fig. 14 (d), is considerably low as compared to that of the Maxwell model shown in 

Fig. 13 (d).  
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(a) (b) 

  
(c) (d) 

Fig.14   Cartilage viscoelastic behavior under Voigt model 
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is evidently seen to be unable to demonstrate the retardation behavior.  

  

(a) (b) 
Fig.15 Maxwell (a) vs Voigt (b) under high-frequency loading   
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explain this, one can relate it to the missing part of the SLS modeling approach. As explained in 

Subsection IV.C, in this model there is no direct dissipation in the kinetic subdomain of the system, 

thus making the model unable to perform desirably under high-frequency situations when the role 

of the kinetic subdomain becomes dominant.             

 
 

(a) (b) 

 

(c) 
Fig.16 Deformation behavior under high-frequency loading, SLS approach, (𝜔𝜔 = 7𝑆𝑆6 rad/s) 
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(a) 

 
(b) 

Fig.17 CLS model behavior under high-frequency loading (𝜔𝜔 = 7𝑆𝑆6 rad/s) 
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(a) 

 
(b) 

Fig.18 Comparison between SLS (a) and CLS (b) under high-frequency loading (𝜔𝜔 = 1𝑆𝑆4 rad/s) 
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the so-called relaxation time variable in the conventional viscoelastic models, the resistive and 

capacitive parameters of the system are combined in the system governing equations, which will 

limit the application of these models to a narrow range of fitted spectrum and single-domain 

dynamic investigations while viscoelasticity solely is a multi-physical domain phenomena 

including thermal subdomain.  

By relating the viscoelastic behavior of a mechanical domain to the dissipation of its 

subdomains, a four-parameter CLS model is developed. The comparison between the obtained 

results indicates that although the mathematical interpretations of both the proposed model and the 

conventional SLS model are the same, there exists a significant difference between the 

performances of these two models. This highlights that in the CLS model the dynamic level in 

which the viscoelastic behavior of the system is formed is lower than that in the SLS model. Thus, 

more detailed interactions between the various subdomains of the system can be revealed in the 

CLS model in contrast to its conventional counterparts. With the use of the energy-based modeling 

technique, generating a model, such as the CLS, at the level of subdomains is entirely feasible. 

This feature has allowed the proposed CLS model to sufficiently reveal the impacts of the 

subdomain interactions and specialized dissipation mechanisms on forming the comprehensive 

viscoelastic behavior of the system. 
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DOMAIN-INDEPENDENT THERMOVISCOELASTIC MODEL: A BOND GRAPH 

APPROACH 

Amir Zanj1, Fangpo He2, Peter C. Breedveld3 

Abstract- 
Controlling the thermo-mechanical behavior of a multi-physical system has always been a challenging 

issue, as the general behavior of the system in this case is a result of complex energetic transactions 

between the system’s existing physical subdomains. In this study, a novel thermoviscoelastic model is 

proposed in which the thermo-mechanical behavior of the system is generated from the interactive 

dynamics of its involving subdomains. To this aim, by means of the Bond graph approach, the dynamic 

behavior of each subdomain is first generated separately with respect to the interactions of its own 

energetic components. The dynamics of all involving subdomains are then coupled via generating 

reversible and irreversible interactions between the counterpart energetic components of different 

subdomains. The impacts of geometrical and material changes on the system dynamics are finally added 

to the model via the compatibility consideration of the energetic components of different subdomains. 

The proposed model provides an energetic structure with which the general dynamics of the system are 

obtained from the constructive dynamics of each of the subdomains. This special capability of the model 

leads to an automatic capturing of the thermo-mechanical phenomena inside the system. The obtained 

simulation results for a simple beam structure demonstrate the impacts of the internal dynamics on the 

observable behavior of the system, and prove the capability of the model in covering a wide range of 

thermo-mechanical behavior including material softening, vibrational heating, dilation, relaxation, 

conduction, and damping. 

Keywords:  multi-physical system, thermoviscoelastic modeling, material softening, discrete modeling, 

irreversible thermodynamic, coupled dynamics.          

1. Introduction 

Normally, to control the structural deformation of a high-speed vehicle, one must consider the 

aero or hydro-elasticity of the system. In extreme conditions, the thermal impacts that can change 

both the geometrical and material parameters of the system (e.g., expansion, material stiffness, and 

damping) must be taken into account. Given that the system control strategies will largely depend 
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on these parameters, the thermal impacts are seen to significantly affect the performance as well 

as the reliability of the system [1].  

In general, the thermal impacts on a system can be induced by two different scenarios: directly 

from the heat entered into the structure due to the solid and fluid interface interactions known as 

the aero or hydro-thermo loading [2], and indirectly from the heat generated inside the structure as 

a result of the internal structural damping mechanisms known as the dissipated energy [3]. The 

aero-thermo heat load is then added to the heat internally generated. This thermal energy 

transactions inside the system can interact with other existing energy streams (e.g. the potential or 

kinetic energy streams) of the system reversibly and irreversibly, resulting in unpredicted changes 

of the general behavior of the system. The discipline dealing with these phenomena called 

thermoviscoelasticity [4]  

According to the approaches used for constructing mathematical models of thermoviscoelastic 

bodies, the conventional methodologies describing thermoviscoelasticity can be divided into two 

main categories [5]. The first and the most general method is based on the theory of fading memory 

[6]. According to this theory, stresses depend not only on the values of strains and temperature at 

the given time instant, but also on their values at the previous time instants. In addition, material 

remembers the recent past better than the remote past [7]. In this method, the obtained constitutive 

equations of the linear thermoviscoelasticity are derived on the basis of the convolution relation 

between stress and strain in media. Accordingly, the fixed stand to derive the generalize equations 

of the thermoviscoelaticity is just based on the observable behavior of the system which does not 

reveal the interactive nature of the thermoviscoelastic phenomena. The implementation of this 

method purely relies on mathematical constrains and measuring techniques, neglecting the 

physical nature of the phenomena.  

The second method for dealing with thermoviscoelasticity is based on the use of standard 

rheological models [8] [9] that introduce a set of parameters, known as relaxation times, to explain 

the dissipative behaviors of the systems. Although physical elements are employed in rheological 

models to generate and describe the dissipative behaviors, the use of the generated relaxation times 

as the main outcome of the method does not satisfy the energetic behaviors of the systems 

especially at the presence of high-temperature fluctuations [10].     

A variety of problems relating to thermoviscoelasticity has been solved by employing the 
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existing methods explained above. However, there are problems, such as the dependency of the 

acoustic wave attenuation factor to a signal frequency, remain unsolved. The solutions to these 

problems may become approachable via considering the physical nature of the thermoviscoelastic 

phenomena. It is known that thermoviscoelasticity in principal reveals a multi-physical 

phenomenon in which the overall behavior of a system is a result of several existing dynamics 

between the engaging physical subdomains. Accordingly, to comprehensively describe such an 

interactive behavior of the system, a multi-physical approach would be required to unveil the 

interactions between the subdomains dynamically. This required approach would be in clear 

contrast to the existing methods that merely rely on the external behavior of the system and are 

unable to describe the internal interactions of the system. While the existing methods could only 

be useful for single-domain problems, the required approach would have the capacity to deal with 

multiple-physical problems by exposing the interactive passage between the different subdomains 

and, thus, revealing the truth behind any specific behavior of the system [11]. 

In this study to generate a physical understanding of thermoviscoelastic phenomena, by means 

of a port-based approach known as the Bond graph (BG) approach [12] [13], a physical 

presentation of thermoviscoelasticity on the basis of physical system theory [14] is introduced and 

a new model of thermoviscoelasticity is proposed. The proposed model will decompose the 

thermoviscoelastic domain into a set of corresponding primary physical subdomains to realize the 

attempt of discovering possible internal interactions between the involving subdomains. The 

model will produce separate energy cycles for different subdomains, thus offering the opportunity 

to identify the possible reversible and irreversible interactive connections between the subdomains. 

The generalized equations of the model would be expected to carry more physical insights of the 

system, thus providing a justifiable basis upon which more complex dynamics of the system could 

be identified using the existing causality of the physical phenomena. The energetic picture of the 

system provided in the model would generate a dynamic map of power distributions within the 

system that can be used to better manage and control the complex dynamic behavior of the system 

under coupled thermomechanical loading. 

To generate the required multi-physical nonlinear thermoviscoelastic constitutive model, the 

reminder of this paper is organized as follows. In Section II, the classical fundamental of linear 

thermoviscoelasticity is briefly explained, and the drawback of implementing the conventional 
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methods is pointed out. In Section III, using the BG approach, a novel thermoviscoelastic model 

is proposed. To generate the proposed model, the BG representations of the elastic and thermal 

domains are first developed in Subsections III-I and III-II for a simple beam structure. By means 

of the reversible and irreversible couplings introduced in Subsections III-III and III-V, these 

domains are then connected together to form a physical thermoviscoelastic domain in Subsection 

III-VI. In Section IV, for the chosen structure, the capability of the proposed model in capturing 

thermoviscoelasticity is discussed. The suitability of the proposed approach in physically 

describing the complex dynamic behavior of the system and assisting with specialized energy 

management is then concluded in Section V. 

2. The classical fundamental of thermoviscoelasticity and its problems 

To examine the capability and limitation of conventional thermoviscoelastic models, the 

fundamental theory relating to the conventional thermoviscoelasticity is briefly reviewed and the 

related problems regarding the implication of these approaches in multi-physical system 

applications are highlighted. 

As mentioned earlier the general approaches concerning thermoviscoelasticity can be divided 

into two main categories: memory fading and rheological approaches. To generate the constitutive 

equations of thermoviscoelasticity for both categories, almost identical strategies are employed. 

Fundamentally, from a classical point of view, for any material under consideration the stress 

tensor at each point, σij, can be split into two parts [15]: 

𝜎𝜎𝑖𝑖𝐴𝐴 = 𝜎𝜎𝑖𝑖𝐴𝐴𝐶𝐶 + 𝜎𝜎𝑖𝑖𝐴𝐴𝑖𝑖𝐶𝐶  (1)  

where 𝜎𝜎𝐶𝐶 and 𝜎𝜎𝑖𝑖𝐶𝐶 respectively represent the reversible and irreversible portions of the stress tensor 

with the following constitutive equations: 

𝜎𝜎𝐶𝐶 =
𝜕𝜕𝜕𝜕(𝐸𝐸,𝜃𝜃)

𝜕𝜕𝐸𝐸
 

(2)  

𝜎𝜎𝑖𝑖𝐶𝐶 =
𝜕𝜕𝐷𝐷(𝐸𝐸̇)
𝜕𝜕𝐸𝐸̇

 
(3)  

Here 𝜕𝜕 stands for the Helmholtz free energy as a function of strain 𝐸𝐸 and temperature 𝜃𝜃 = (𝐸𝐸 −

𝐸𝐸0) with T and T0 being the instantaneous and reference temperature, respectively; 𝐷𝐷 is the 

dissipation potential of the material given as a function of strain rate 𝐸𝐸̇: 
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𝜕𝜕(𝐸𝐸,𝜃𝜃) =
1
2
𝑎𝑎𝑖𝑖𝐴𝐴𝑘𝑘ℎ(𝐸𝐸𝑘𝑘ℎ − 𝛼𝛼𝑘𝑘ℎ𝜃𝜃)�𝐸𝐸𝑖𝑖𝐴𝐴 − 𝛼𝛼𝑖𝑖𝐴𝐴𝜃𝜃� −

1
2
�𝛽𝛽 + 𝑎𝑎𝑖𝑖𝐴𝐴𝑘𝑘ℎ𝛼𝛼𝑖𝑖𝐴𝐴𝛼𝛼𝑘𝑘ℎ�𝜃𝜃2 

(4)  

𝐷𝐷(𝐸𝐸̇) =
1
2
𝑏𝑏𝑖𝑖𝐴𝐴𝑘𝑘ℎ𝐸𝐸�̇�𝑘ℎ𝐸𝐸�̇�𝑖𝐴𝐴  

(5)  

where 𝑎𝑎, 𝑏𝑏, 𝛼𝛼, and 𝛽𝛽 respectively denote the elasticity tensor, the viscosity tensor, the thermal 

expansion tensor, and the coupled thermoelastic tensor. Considering the symmetry of the 

mentioned tensors for homogenous materials, the reversible and the irreversible stress of the 

system can be presented as: 

𝜎𝜎𝑖𝑖𝐴𝐴𝐶𝐶 =
1
2
𝑎𝑎𝑖𝑖𝐴𝐴𝑘𝑘ℎ(𝐸𝐸𝑘𝑘ℎ − 𝛼𝛼𝑘𝑘ℎ𝜃𝜃) 

(6)  

𝜎𝜎𝑖𝑖𝐴𝐴𝑖𝑖𝐶𝐶 = 𝑏𝑏𝑖𝑖𝐴𝐴𝑘𝑘ℎ𝐸𝐸�̇�𝑘ℎ (7)  

To generate the constitutive Eqs. (6) and (7), the Helmholtz free energy function is used. Given 

that in principal the Helmholtz energy function is a Legendre transformation of internal energy of 

the system with respect to entropy, implementing this functionality simply means the dynamic 

interactions between the thermal and elastic domains are neglected. This leads to a domain-

dependency of the temperature calculation of the system. Consequently, modeling of dynamic 

coupling between external thermal load (aero-thermo load) and internal thermal load (dissipated 

thermal energy) to form the general thermal load on the structure becomes out of reach. Although 

this may not be an issue for single-field studies (e.g., in thermoelastic phenomena where different 

dynamic levels between the thermal and elastic domains are expected), it becomes a significant 

issue in fluid-solid-interface (FSI) problems (e.g., in aerothermoelastic phenomena where multiple 

interactions of structure with surrounding fluid play a key role in forming the external loads). Thus, 

to satisfy the modeling requirement, the dynamic consideration of internal thermal domain 

becomes indispensable. 

Other problems may arise by employing the classical methods, such as the non-physical nature 

of material models frequently used to relate material properties (a and b) with constitutive 

equations. For example, in the rheological approach, using the Kelvin-Voigt solid model, the 

constitutive equation is [8]:       

𝜎𝜎 = 2𝐺𝐺𝐸𝐸 + 2𝐺𝐺𝜏𝜏𝑘𝑘𝐸𝐸̇ + 𝐸𝐸 ��𝐾𝐾 −
2
3
𝐺𝐺� 𝐸𝐸 −

2
3
𝐺𝐺𝜏𝜏𝑘𝑘𝐸𝐸̇ − 𝛼𝛼𝐾𝐾𝜃𝜃� 

(8)  

whereas using the Maxwell Solid model, the constitute equation is [8]:   
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�̇�𝜎 +
1
𝜏𝜏𝑚𝑚

𝜎𝜎 = 2𝐺𝐺𝐸𝐸̇ + 𝐸𝐸 ��𝐾𝐾 −
2
3
𝐺𝐺� 𝐸𝐸̇ +

𝐾𝐾
𝜏𝜏𝑚𝑚

𝐸𝐸 − 𝛼𝛼𝐾𝐾 ��̇�𝜃 +
1
𝜏𝜏𝑚𝑚

𝜃𝜃�� 
(9)  

Here 𝐾𝐾 denotes the bulk modulus, 𝐺𝐺 is the shear modulus, 𝜏𝜏𝑘𝑘 is the strain relaxation time, and 𝜏𝜏𝑚𝑚 

is the stress relaxation time. Although the resultant constitutive equations are different in 

appearance, in nature both use the same dissipative mechanism called relaxation time (𝜏𝜏) which in 

the fading memory approach will be replaced with relaxation function and convolution integral 

[7]:  

𝜎𝜎 = � 𝜑𝜑1(𝑡𝑡 − 𝜏𝜏)
𝜕𝜕𝐸𝐸(𝜏𝜏)
𝜕𝜕𝜏𝜏

𝑑𝑑𝜏𝜏
𝑡𝑡

0
+ 𝐸𝐸 �� 𝜑𝜑2(𝑡𝑡 − 𝜏𝜏)

𝜕𝜕𝐸𝐸(𝜏𝜏)
𝜕𝜕𝜏𝜏

𝑑𝑑𝜏𝜏 − � 𝜑𝜑3(𝑡𝑡 − 𝜏𝜏)
𝜕𝜕𝜃𝜃(𝜏𝜏)
𝜕𝜕𝜏𝜏

𝑑𝑑𝜏𝜏
𝑡𝑡

0

𝑡𝑡

0
� 

(10)  

 where 𝜑𝜑𝑖𝑖 are the relaxation functions that must satisfy the second law of thermodynamics.   

The problem with the implemented dissipative mechanism is that, in the majority of the 

conventional thermoviscoelastic models, either by means of the relaxation time parameters or by 

means of the relaxation functions, the anelastic behavior of a body is produced solely from its 

observable behavior. However, the thermoviscoelastic behavior of a body is a multi-physical 

domain phenomenon which is a direct result of the interactions among all involving physical 

subdomains. The inter-domain interactions, as a constructive feature that forms the multi-physical 

phenomenon, are not obtainable from the observable behavior of the body [11]. Regenerating the 

behavior of the system without considering its true formation procedure, although can reflect the 

behavior under especial conditions, will not be able to adequately predict the behavior of the body 

when the operational condition changes as it occurs in FSI problems.    

In addition, the conventional models are unable to predict the response of multi-disciplinary 

systems, especially when the subdomain interactions cause changes in the parameters of the 

system. For instance, in the elastic domain the relaxation time (𝜏𝜏) could be a beneficial parameter 

to explain the strain rate dependency of stress in the system; however; at the presence of the 

thermal domain the temperature dependency of its two components (stiffness and viscosity) can 

violate the conservation of energy. The stiffness of the system is the parameter forming the 

memory of the elastic domain and any changes in this parameter disregarding its impact on other 

involving domains’ memories will undoubtedly separate the system from its history and, thus, 

violate the conservation low. This will then limit the ability of the model to be coupled with other 

physical domains.  
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Considering the above explanations, to truly capture the multi-physical phenomena in a 

multiple domain setting, one needs to model the interactions of the domains in a physical and 

conservative way. If a model can satisfy the general physics, such as energy conservation and 

continuity, of the system, it will be able to automatically capture the phenomena occurring inside 

the system. The conventional models as demonstrated above clearly fail to present such a desirable 

performance.  

3. Decomposed domain-independent thermoviscoelastic model 

To physically explain the thermomechanical behavior of a system, a decomposed domain-

independent multi-physical model is proposed. The proposed model provides a meaningful 

understanding of the ongoing phenomena of the system via decomposing the existing complex 

behavior of the system into its primary physical (elastic and thermal) domain dynamics. To 

generate such a thermoviscoelastic model, a domain-independent dispersive model of each domain 

is first developed using the BG approach that can separately describe the energetic interactions 

within each of the domains. The possible reversible and irreversible energetic couplings between 

the domains are then installed inside the model to form an integrated decomposed model. Finally, 

the interactive modulations including deformation-modulated conductivity and temperature-

modulated mechanical resistivity are added to the model. The obtained thermoviscoelastic model 

will provide a clear dynamic map of the system’s energy propagation with which the energy 

consumption of each domain can be dealt with separately with respect to the dynamic interactions 

of domain’s energetic components (inertance, resistance, and capacitance). This added capability 

of the model will in turn provide the dynamic coupling capability between a domain of one field 

and its corresponding domain of another field (e.g., the thermal domain of the solid field and the 

thermal domain of the fluid field in a FSI problem). This clear physical understanding of the system 

can then be used to manage and control undesired features of the thermoviscoelastic phenomena. 

It should be mentioned that, to demonstrate the concept and to avoid unnecessary complexity in 

deriving the generalized thermoviscoelastic equations of the proposed model, a 1D beam structure 

is considered in this study.                   

3.1. Dissipative elastic domain BG model 

To generate a distributed dispersive elastic model, the Rayleigh discrete geometry of a beam 
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structure suggested in [16] is employed. On the basis of the acoustic assumption used in the 

Rayleigh reticulation, the mass of each element is considered to be at the boundaries of the element, 

and the elasticity of the element is assumed to be in the center of the element. This means that the 

elastic energy of the reticulated space will be stored in the center of each element, whereas the 

kinetic energy of the elastic domain will be saved at the boundaries of each element [16]. Fig. 1 

shows the discrete Rayleigh beam structure of a finite number of elements. Since this reticulated 

space is indeed a continuous system, the adjacent boundaries of each two consecutive elements are 

bonded to move together. Therefore, one can consider the above discretization as a junction-

element chain in which each element represents the potential subdomain of the elastic domain and 

each junction represents the kinetic subdomain of the elastic domain.  

 
 

For the BG representation shown in Fig. 1, the considered state variables for the ith element 

and jth junction are 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝐴𝐴 which denote the deformation and the momentum, respectively. 

According to the conservation of energy, the state equations of each junction-element are derived 

as: 

�̇�𝑝𝑖𝑖 =
𝑞𝑞𝐴𝐴−1
𝐶𝐶𝐴𝐴−1

−
𝑞𝑞𝐴𝐴
𝐶𝐶𝐴𝐴

 (11)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 (12)  

𝐼𝐼𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (13)  

𝐶𝐶𝑖𝑖 =
𝐿𝐿0𝑖𝑖
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖

 
(14)  

where 𝐼𝐼𝐴𝐴  is the boundary inertance defined as a function of the adjacent elements’ masses, and 𝐶𝐶𝑖𝑖 

represents the capacitance of the element as a function of its geometrical and material parameters. 

Parameters 𝐿𝐿0𝑖𝑖, 𝐴𝐴𝑖𝑖, and 𝐸𝐸𝑖𝑖 stand for the initial length, contact surface, and Young modulus of the 
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element, respectively. It should be mentioned that in the boundary elements of the structure, 

considering the type of the boundary (Neumann or Dirichlet) and the location (left or right in 1D 

structure) of the boundary, the corresponding terms in Eqs. (11) or (12) will be replaced by the 

terms relevant to the external sources (e.g., force or velocity).     

Using the geometrical and material parameters of the system, the presented model is able to 

generate the dynamics of the system in a pure elastic nature. To add the dispersive considerations 

to the model, according to the BG approach, there is a need to add an adequate number of resistive 

elements to certain points of the presented elastic BG model [10]. For this, in the following, 

energy-based presentations of the so-called conventional viscoelastic models, namely the Maxwell 

and Voigt models, will be added to the suggested model. 

3.1.1. Maxwell BG model 

From the literature, the Maxwell model is known as a spring-dashpot mechanism in series [17]. 

Considering the arrangement of the energetic component in the suggested elastic model of Fig. 1, 

the BG model shown in Fig. 2 can be the representative of the Maxwell anelastic model [10]. In 

this model, a resistor is placed inside each element in series with the storage component. This 

means that the internal energy of each element can be saved and dissipated. The series 

configuration of the energetic components (resistor and capacitor) in the Maxwell model allows 

the system to be relaxed during a long term loading.   

 
 

With respect to the BG model presented in Fig. 2, Eq. (12) is changed to: 

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−
𝑞𝑞𝑖𝑖
𝜏𝜏𝑖𝑖

 
(15)  

𝜏𝜏𝑖𝑖 = 𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖 (16)  
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where 𝑅𝑅𝑖𝑖  indicates the resistance of the system, and can be obtained from the viscosity of the 

material. Eqs. (11) and (15) form the state equations of the potential and kinetic subdomains of the 

considered anelastic domain, respectively. The physical representation of the equations highlights 

the fact that in the Maxwell model the energy of the system is dissipated just in the potential 

subdomain. This means that inside the kinetic subdomain of the system the energy consumption is 

still reversible. This explains why under highly dynamic situation the Maxwell model fails to 

present a proper energy loss for the system.  

3.1.2. Kelvin-Voigt BG model 

Another anelastic model frequently used for modeling materials is the Kelvin-Voigt model in 

which the resistive components are considered in parallel with the capacitive components of the 

system [10]. Unlike the Maxwell model, this model is well known for the system investigation 

under cyclic loading [17].  

   

 
 

The BG representation of the Kelvin-Voigt model is shown in Fig. 3. Accordingly, the energy 

entered into each medium is distributed between a resistor and a storage component with the same 

flow rate but different effort. This means that the system working under the Voigt model can 

always hold the elastic energy without relaxing it, and the sensitivity of the system is mainly on 

the loading rate applied to the system. According to the presented BG, the governing equations for 

the kinetic and potential subdomains on the basis of the Kelvin-Voigt model are defined as:   

�̇�𝑝𝐴𝐴 =
𝑞𝑞𝑖𝑖
𝐶𝐶𝑖𝑖

+ 𝑅𝑅𝑖𝑖 �
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
� −

𝑞𝑞𝑖𝑖+1
𝐶𝐶𝑖𝑖+1

− 𝑅𝑅𝑖𝑖+1 �
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴
−
𝑝𝑝𝐴𝐴+1
𝐼𝐼𝐴𝐴+1

� 
(17)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝐴𝐴−1
𝐼𝐼𝐴𝐴−1

−
𝑝𝑝𝐴𝐴
𝐼𝐼𝐴𝐴

 
(18)  

From the obtained governing equations, it is attainable that in the Kelvin-Voigt model the 
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energy is dissipated just in kinetic subdomain, and the potential subdomain stays reversible. Also, 

by comparing Fig. 2 and Fig. 3 one can notice that in the Voigt model, in contrast to the Maxwell 

model, the causality of the resistive elements is flow-based. This shows that these two viscoelastic 

models, in fact, describe two different phenomena in two different subdomains. Therefore, as a 

result of this physical consideration of anelastic models, an advanced model combining both the 

Maxwell and Voigt terminologies together is needed to consider all sorts of dispersions inside the 

system. Since the advancement of anelastic material models is beyond the interest of this paper, in 

the following, to generate the physical thermoviscoelastic model, the BG representation of the 

Maxwell model is selected to present the dispersive elastic domain.  

3.2. Thermal domain BG model 

A conduction model for the discrete geometry of the previous section will be generated using 

the geometrical reticulation and BG representation of a 1D conductive system shown in Fig. 4. As 

can be seen, the energy propagation in the thermal domain can be described by a chain of 

dissipative, 𝑅𝑅, and capacitive, 𝐶𝐶, energy components which are placed interlaced [18]. In this 

model, it is assumed that the thermal energy is stored in 𝐶𝐶 component, and is dissipated while 

passing through 𝑅𝑅 component. Given that the thermal sink is directly connected to the thermal 

source in the thermal domain [19], one can say that in the thermal domain each resistive component 

(R) acts as a two-port non-return transmitter (shown as RS in Fig. 4) with which the dissipated 

energy can re-enter to the thermal domain. The causality of the return side is always such that the 

resistor is seen as a source of the entropy rate, never as a source of the temperature because the 

sources of temperature are non-physical [16].      
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Based on the obtained thermal BG integrative causality, the state equation of the thermal 

domain is derived by defining all the entropy flow to the storage component of the system: 

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 = �̇�𝑠𝑗𝑗−1 − �̇�𝑠𝑗𝑗 + �̇�𝑆𝑖𝑖
𝑔𝑔𝑆𝑆𝑠𝑠   (19)  

where 𝑞𝑞𝑡𝑡ℎ𝑖𝑖 denote the amount of stored entropy, s, of the ith element; �̇�𝑠𝐴𝐴−1, �̇�𝑠𝐴𝐴, and �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 are the 

amounts of reversible inlet and outlet entropy flows and the entropy generation rate, respectively. 

Considering the resistive constitutive equation of the thermal domain, the internal flow crossing 

the jth boundary of the segment can be derived as: 

�̇�𝑠 𝐴𝐴 =
1
𝑅𝑅𝐴𝐴

(𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ𝑖𝑖) −𝜓𝜓𝑖𝑖+1(𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1))  (20)  

where 𝑅𝑅𝐴𝐴 is the resistant coefficient of the jth RS component, and 𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ𝑖𝑖) is the ith constitutive 

equation of the thermal domain. Substituting Eq. (20) into Eq. (19), the state equation of the 

thermal domain can be expressed as: 

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 =
1

𝑅𝑅𝑗𝑗−1
(𝜓𝜓𝑖𝑖−1(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖−1) − 𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖)) −

1

𝑅𝑅𝑗𝑗
(𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖) − 𝜓𝜓𝑖𝑖+1(𝑞𝑞𝑡𝑡ℎ 𝑖𝑖+1)) + �̇�𝑆𝑖𝑖

𝑔𝑔𝑆𝑆𝑠𝑠   (21)  

Assuming that the capacity of a long well-insulated rod in conducting heat is proportional to the 

temperature gradient [18], the resistive parameter 𝑅𝑅 is then described by: 

𝐸𝐸𝐸𝐸 = Ф. �̇�𝑄 = (Ф.𝐸𝐸). �̇�𝑠 = 𝑅𝑅. �̇�𝑠 (22)  

where Ф is the thermal resistance and, by considering the Fourier law for 1D structure, can be 

derived as:  

𝑅𝑅𝐴𝐴 =
𝐸𝐸𝑥𝑥𝐴𝐴𝐸𝐸𝐴𝐴
𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴

 (23)  

in which k and A are specific thermal conductance coefficient and cross-section area of the jth 

junction, respectively, and ∆x is the generalized length of the jth resistive energy component. 

Considering the capacity component of the segment, the constitutive equation of the thermal 

domain, 𝜓𝜓, can be defined as the relation between the equilibrium-determinant variable of the 

thermal domain, T, and the extensive variable of the thermal domain, 𝑞𝑞𝑡𝑡ℎ: 

𝐸𝐸 = 𝜓𝜓(𝑞𝑞𝑡𝑡ℎ) (24)  

Given the capacitive law in constant volume, one has: 
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𝑄𝑄 = ρ𝑉𝑉𝑐𝑐
𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

 (25)  

where 𝑐𝑐, ρ, and V are respectively the specific heat, density, and volume of the segment. 

Considering the relation between the conjugate variables of the thermal domain, one writes: 

𝑄𝑄 = 𝐸𝐸�̇�𝑞𝑡𝑡ℎ  (26)  

By substituting Eq. (25) and the time derivative of Eq. (24) into Eq. (26), for the ith element the 

following relation is obtained: 

𝑑𝑑𝜓𝜓𝑖𝑖
𝑑𝑑𝑞𝑞𝑡𝑡ℎ𝑖𝑖

=
𝜓𝜓𝑖𝑖

𝑐𝑐𝑖𝑖ρ𝑖𝑖𝐴𝐴𝑖𝑖𝑒𝑒𝑖𝑖
 (27)  

where 𝑒𝑒𝑖𝑖 is the length of the ith storage component. By integrating Eq. (27) with respect to the 

reference condition, the constitutive relation of the thermal domain is defined as:  

𝐸𝐸𝑖𝑖 = 𝜓𝜓𝑖𝑖�𝑞𝑞𝑡𝑡ℎ𝑖𝑖� = 𝐸𝐸0𝑆𝑆
1

ρ𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑚𝑚0� (28)  

where 𝐸𝐸0 and 𝑠𝑠0 are respectively the reference temperature and entropy for the ith segment.  

To define the generated entropy rate,  �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠, in Eq. (21), consider the continuous power 

transmission of the two-port RS-component and the resistive constitutive equation for each 

junction:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠𝐸𝐸𝑖𝑖 = �̇�𝑠𝐴𝐴−1 (𝐸𝐸𝑖𝑖−1 − 𝐸𝐸𝑖𝑖) (29)  

�̇�𝑠𝐴𝐴 𝑅𝑅𝐴𝐴 = (𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1) (30)  

Substituting Eqs. (28) and (30) into Eq. (29), the generated entropy rate of each segment is derived 

as:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 =

1
𝑅𝑅𝐴𝐴−1

𝐸𝐸0𝑆𝑆
1

𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑚𝑚0� (𝑆𝑆

1
𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1� − 1)2 (31)  

Accordingly, the governing equation of the thermal domain is closed. 

Since the generated thermal and elastic models are to be coupled to form the integrated 

thermoviscoelastic model, the geometrically compatibility conditions of their counterpart energy 

components must be satisfied. Each thermal segment is then required to have its own independent 

properties and internal energy components (𝑅𝑅,𝐶𝐶) in such a way that the boundaries of the internal 

energy components symmetrically become congruous with the boundary of the segment.  Also, 



 Journal of the Mechanics and Physics of Solids (under review) 

173 

each parameter of the thermal junctions, indexed by j, is required to be obtainable from the 

corresponding parameters of the adjacent elements via the same weighting function as that used in 

the elastic domain. Accordingly, similar to the elastic model, the memory characteristics of the 

thermal domain that carry the material and geometrical information are at the center part of each 

segment, whereas the resistivity characteristics of the thermal domain are at the two sides of each 

segment. To form the resistive component in the suggested configuration, assume the mean 

functionality:  

𝑅𝑅𝐴𝐴 =
𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖+1

2
 (32)  

From Eqs. (23) and (28), one has: 

𝑅𝑅𝐴𝐴 =
𝐸𝐸0
2

(
𝑒𝑒𝑖𝑖𝑆𝑆

1
ρ𝑉𝑉𝑐𝑐�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑚𝑚0�

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+
𝑒𝑒𝑖𝑖+1𝑆𝑆

1
𝜌𝜌𝑖𝑖+1𝑉𝑉𝑖𝑖+1𝑐𝑐𝑖𝑖+1

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑚𝑚0�

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
) (33)  

It is clear that by substituting Eqs. (28), (31), and (33) into Eq. (21), the rate of the change in 

the entropy of each element will be dependent on the material and geometrical characteristics of a 

spatial element. This exclusivity of the suggested model makes the thermal element compatible 

with any other domains’ elements that have the same spatial references, and leads to the 

appropriateness of the thermal model in multi-physical domain dynamic investigations. 

3.3. Thermoelastic reversible energetic coupling 

The generated dispersive elastic and thermal models provide two separate energy lines that can 

illustrate the power transactions in each of the domains individually. At this stage, the reversible 

dynamic connection of the two domains is added to the model, which clarifies the continuous non-

entropic power transformation between the thermal and elastic domains. The memories of these 

two domains (saved in their capacity components) are required to be reversibly coupled. To 

achieve this, the storage components of both domains are replaced with the two-port storage [20] 

shown in Fig. 5. This multiport storage, named as the reversible thermoelastic coupling, contains 

the information from both the thermal and elastic domains that can form the new coupled 

constitutive equation for the coupled domains. By installing this energy component to the model, 

the thermal dynamic changes are expected to be captured via alteration in the elastic domain, and 

vice versa, in an energy conservative manner. It should be mentioned that, to replace the existing 

storage of the domains with the reversible thermoelastic coupling, the compatibility of the storage 



 Journal of the Mechanics and Physics of Solids (under review) 

174 

components of the thermal and elastic domains is mandatory and satisfied while developing the 

thermal model.       

 
 

The replacement of the storage components mathematically means the change of the 

constitutive relation of each domain with two dimensional constitutive equations that are 

reciprocal together. To extract the new constitutive equations of each domain, assume that the total 

energy stored inside the two-port capacitor is a function of the extensive states of both the thermal 

and elastic domains as: 

𝑈𝑈 = 𝑈𝑈(𝑞𝑞𝑚𝑚 , 𝑆𝑆) (34)  

where 𝑞𝑞𝑚𝑚 represents the deformation and 𝑆𝑆 is the entropy of each segment. Considering the energy 

as a first-order homogenous function, the energy change in the field can be expressed as: 

𝑑𝑑𝑈𝑈 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑞𝑞𝑚𝑚

𝑑𝑑𝑞𝑞𝑚𝑚 +
𝜕𝜕𝑈𝑈
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆 (35)  

where by definition the constitutive equations of the elastic and thermal domains are: 

𝐹𝐹(𝑞𝑞𝑚𝑚, 𝑆𝑆) = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

  , 𝐸𝐸(𝑞𝑞𝑚𝑚, 𝑆𝑆) = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

 (36)  

in which F and T are defined earlier as the efforts (potentials) of the elastic and thermal ports, 

respectively. The deferential form of the constitutive equation for both domains with respect to the 

new variables can be presented as: 

𝑑𝑑𝐸𝐸 = �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆
𝑑𝑑𝑞𝑞𝑚𝑚 + �

𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

𝑑𝑑𝑆𝑆 
(37)  

𝑑𝑑𝐹𝐹 = �
𝜕𝜕𝐹𝐹
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆
𝑑𝑑𝑞𝑞𝑚𝑚 + �

𝜕𝜕𝐹𝐹
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

𝑑𝑑𝑆𝑆 
(38)  

To start with the thermal domain constitutive relation, for the second term of the right hand side 

of Eq. (37), given the thermal energy 𝑄𝑄 at constant volume, 

𝜕𝜕𝑄𝑄 = 𝐸𝐸𝜕𝜕𝑠𝑠 = 𝐶𝐶𝑣𝑣𝑑𝑑𝐸𝐸 (39)  

and considering the constant specific heat 𝐶𝐶𝑣𝑣, one can conclude: 
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�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

=
𝐸𝐸
𝐶𝐶𝑣𝑣

 (40)  

To define the first term of Eq. (37), by taking the advantage of the reciprocity of the two 

constitutive equations and the Hook’s law for 1D geometry, one has: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= �
𝜕𝜕𝐹𝐹
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

 
(41)  

𝐹𝐹 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸(𝐸𝐸 − 𝐸𝐸0) (42)  

Taking the partial derivative of Eq. (42) with respect to entropy and comparing it with Eq. (41) 

yield: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= 𝛼𝛼𝐴𝐴𝐸𝐸 �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

= 𝛼𝛼𝐴𝐴𝐸𝐸
𝐸𝐸
𝐶𝐶𝑣𝑣

 
(43)  

Substituting Eqs. (40) and (43) into Eq. (37) produces: 

𝑑𝑑𝐸𝐸
𝐸𝐸

=
𝛼𝛼𝐴𝐴𝐸𝐸
𝐶𝐶𝑣𝑣

𝑑𝑑𝑞𝑞𝑚𝑚 +
1
𝐶𝐶𝑣𝑣
𝑑𝑑𝑆𝑆 

(44)  

Considering the relaxed initial condition at ambient room temperature, the new constitutive 

equation of the thermal domain is extracted by intergrading Eq. (44): 

𝐸𝐸 = 𝐸𝐸0𝑆𝑆
𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣  

(45)  

The constitutive equation of the elastic domain can be obtained by using Eq. (45) to change the 

causality of Eq. (42), resulting in: 

𝐹𝐹 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0(𝑆𝑆
𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 1) 

(46)  

By substituting the two constitutive relations Eqs. (45) and (46) into Eq. (35) and integrating, the 

potential function of the two-port storage field is obtained as: 

𝑈𝑈 = 𝐴𝐴𝐸𝐸
𝑞𝑞𝑚𝑚2

2𝐿𝐿
+ 𝐶𝐶𝑣𝑣𝐸𝐸0𝑆𝑆

𝑠𝑠𝐴𝐴𝛼𝛼
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0𝑞𝑞𝑚𝑚 

(47)  

The obtained nonlinear multiport energy function of the thermoelastic domain contains a 

contribution relating to displacement/strain and a contribution relating to the entropy, thus showing 

the combined effect of thermoelasticity.  

Fig. 6 shows the updated BG representation of the reversibly coupled thermoelastic model. As 

can be seen, the interconnections of the two domains is through the storage of the system. This 

leads to a dynamic capture of the elastic deformation effect on the thermal domain, parallel with 
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the thermal load impact on the elastic domain, with less linearization and more physical insight. 

 
 

Considering the BG representation of the coupled domain, the governing equations for a single 

port-based thermoelestic element (the ith element in a chain) are extracted as follows where, to 

avoid the confusion between the parameters of the coupled domain, the indexes m and th are used 

to indicate the elastic and thermal parameters, respectively:  

�̇�𝑝𝑚𝑚𝐴𝐴 = 𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝑞𝑞𝑚𝑚𝑖𝑖
𝐿𝐿𝑖𝑖

− 𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1
𝐿𝐿𝑖𝑖+1

+ 𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸0𝑖𝑖 �𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 1�

−  𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1𝐸𝐸0𝑖𝑖+1 �𝑆𝑆
𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 − 1� 

(48)  

�̇�𝑞𝑚𝑚𝑖𝑖 =
𝑝𝑝𝑚𝑚𝐴𝐴−1

𝐼𝐼𝑚𝑚𝐴𝐴−1
−
𝑝𝑝𝑚𝑚𝐴𝐴

𝐼𝐼𝑚𝑚𝐴𝐴
−
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝑞𝑞𝑚𝑚𝑖𝑖
𝑅𝑅𝑚𝑚𝑖𝑖𝐿𝐿𝑖𝑖

 (49)  

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 =
1

𝑅𝑅𝑡𝑡ℎ𝐴𝐴−1
(𝐸𝐸0𝑖𝑖−1𝑆𝑆

𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�

𝐶𝐶𝑣𝑣𝑖𝑖−1 − 𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 )

−
1

𝑅𝑅𝑡𝑡ℎ𝐴𝐴
(𝐸𝐸0𝑖𝑖𝑆𝑆

𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 𝐸𝐸0𝑖𝑖+1𝑆𝑆
𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 )

+ 𝑆𝑆𝑡𝑡ℎ̇ 𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠   

(50)  

𝑆𝑆𝑡𝑡ℎ̇𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 =

𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

𝑅𝑅𝑡𝑡ℎ𝐴𝐴−1
⎝

⎛𝐸𝐸0𝑖𝑖−1𝑆𝑆
𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1

𝐶𝐶𝑣𝑣𝑖𝑖−1
𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

− 1

⎠

⎞

2

 (51)  

𝐼𝐼𝑚𝑚𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (52)  

𝑅𝑅𝑡𝑡ℎ𝐴𝐴 = 1
2

(𝐿𝐿𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝐿𝐿𝑖𝑖+1𝑇𝑇0𝑖𝑖+1𝑒𝑒

𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)  (53)  
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Eqs. (48), (49), and (50) form the updated state equations of the coupled thermal and elastic 

domains that represent the rates of the element’s boundary momentum, deformation, and 

accumulated entropy, respectively, as nonlinear functions of the considered extensive states (𝑞𝑞𝑚𝑚 

and 𝑞𝑞𝑡𝑡ℎ), geometrical parameters, and material parameters. Eq. (51) demonstrates the amount of 

irreversibility occurring in the thermal domain. It is clear that this equation satisfies the second 

thermodynamic law, as the amount of the generated entropy is always greater than zero.   

3.4. Thermoelastic irreversible energetic coupling or thermoviscoelastic coupling 

As mentioned earlier, in the thermal domain, the thermal sink is connected to the thermal 

source. Since the dissipation in other domains turns to heat, a more complete statement is that the 

thermal domain is in principal the sink of other physical domains in terms of energy dissipation. 

Thus, the dissipated energy from the elastic domain has to be transferred to the thermal domain. 

Given that this transformation of energy is irreversible, a non-return two-port energy transducer 

introduced in [10] as a resistive-source component (RS) is now required to be installed inside the 

system to irreversibly connect the elastic domain to the thermal domain.  

This new connection is presented in Fig. 7 where the dissipated energy in the elastic side of 

the system is seen to return to the system in the thermal side. This returned energy can then change 

the dynamics of the thermal domain which is coupled with the elastic domain. Hence, the whole 

dynamics of the system will be altered as a result of this interaction.   

 
 

To include the impact of this irreversible transaction on the thermal domain, it is required to 

calculate the amount of the entropy rate generated as a result of this transaction, and then add this 
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amount to the thermal state equation. To do this, assume that the transferred energy stays 

conservative while transferring between the domains. According to the allocated conjugate 

variables of each port shown in Fig. 8, the power transaction can be presented as: 

 
 

�̇�𝑞𝑚𝑚𝐹𝐹 = �̇�𝑆𝐴𝐴𝑒𝑒𝑠𝑠𝑚𝑚𝐸𝐸 (54)  

For the ith element, considering the constitutive equation of the resistive component with respect 

to its causality, the introduced entropy rate to the elastic domain can be calculated as: 

�̇�𝑆𝐴𝐴𝑒𝑒𝑠𝑠𝑚𝑚𝑖𝑖
=

𝐹𝐹𝑅𝑅𝑖𝑖
2

𝑅𝑅𝑚𝑚𝑖𝑖𝐸𝐸𝑖𝑖
 (55)  

where 𝐹𝐹𝑅𝑅 denotes the resistive effort and can be calculated as: 

𝐹𝐹𝑅𝑅𝑖𝑖 =  
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐿𝐿𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖 (56)  

Substituting Eqs. (45) and (56) into Eq. (55), the generated entropy is derived as: 

�̇�𝑆𝐴𝐴𝑒𝑒𝑠𝑠𝑚𝑚𝑖𝑖
=

�𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝐿𝐿𝑖𝑖
𝑞𝑞𝑚𝑚𝑖𝑖�

2

𝑅𝑅𝑚𝑚𝑖𝑖𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

 (57)  

As can be seen, the mechanical generated entropy equation is always greater than zero, which 

satisfies the second thermodynamic low. Adding Eq. (57) to the right hand side of Eq. (50), the 

new state equation for the thermal domain is defined as: 

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 =
1

𝑅𝑅𝑡𝑡ℎ𝐴𝐴−1
�𝐸𝐸0𝑖𝑖−1𝑆𝑆

𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�

𝐶𝐶𝑣𝑣𝑖𝑖−1 − 𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 �

−
1

𝑅𝑅𝑡𝑡ℎ𝐴𝐴
�𝐸𝐸0𝑖𝑖𝑆𝑆

𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 𝐸𝐸0𝑖𝑖+1𝑆𝑆
𝑠𝑠𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝛼𝛼𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 �

+
𝐸𝐸0𝑖𝑖𝑆𝑆

𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

𝑅𝑅𝑡𝑡ℎ𝐴𝐴−1
⎝

⎛𝐸𝐸0𝑖𝑖−1𝑆𝑆
𝑠𝑠𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝛼𝛼𝑖𝑖−1

𝐶𝐶𝑣𝑣𝑖𝑖−1
𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

− 1

⎠

⎞

2

+
�𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝐿𝐿𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖�
2

𝑅𝑅𝑚𝑚𝑖𝑖𝐸𝐸0𝑖𝑖𝑆𝑆
𝑠𝑠𝑖𝑖𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖

   

(58)  
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It can be seen that the mechanical resistive parameter now interferes with the entropy rate of the 

system according to an irreversible process. By this stage, Eqs. (48), (49), and (58) collectively 

form the state equations of the reversibly and irreversibly coupled thermoviscoelastic system.    

3.5. Thermoelastic interactive modulations 

In addition to the energetic connections between the thermal and elastic domains presented via 

energy ports, there exists information transformation between the non-memory components 

(resistors) of the system with which modulation of these parameters are possible. In the port-based 

approach, as long as a parameter of the system does not form the capacity of the system directly 

or indirectly, the modulation of resistive parameters are permitted. On the basis of this statement, 

there exist two more possible connections between the mechanical and thermal resistive 

parameters of the system. The modulation of these two parameters will lead to the deformation-

modulated conductivity and temperature-modulated viscoelasticity of the model, which physically 

extends the capability of the model to a wider range of thermo-mechanical loading. In the 

following, these modulations will be added to the model.                 

3.5.1. Deformation-modulated conductivity 

From experiment, it is known that mechanical loading can change the conductivity of a system. 

Considering Eqs. (23) and (33), the resistance of each element is proportional to the length of the 

element (𝐿𝐿). This parameter of the system will vary under mechanical load, leading to the change 

of the conductivity of the system. To add this interaction to the model, the length of the element 

should be considered as a variable instead of a constant. As shown in Fig. 9, by replacing the 

thermal RS-component with a deformation-modulated resistivity, MRS, the desired connection is 

generated between the two domains.  As can be seen, from the integration of the boundary velocity, 

the location of each boundary is obtained to generate the instantaneous length of each element. It 

should be mentioned that the main reason for using boundary velocity to generate each segment’s 

instantaneous length, instead of directly using the deformation of the element, is that in the 

Maxwell or any other solid models that allow the system to be relaxed, deformation is independent 

from the variation of length, since there exists an irreversible deformation inside the system.    
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Considering the above explanations, the deformation-modulated thermal resistance can be 

obtained as: 

𝑀𝑀𝐿𝐿𝑖𝑖 =  𝑥𝑥0𝐴𝐴 + �
𝑝𝑝𝑚𝑚𝐴𝐴

𝐼𝐼𝑚𝑚𝐴𝐴
𝑑𝑑𝑡𝑡 −𝑥𝑥0𝐴𝐴−1 − �

𝑝𝑝𝑚𝑚𝐴𝐴−1

𝐼𝐼𝑚𝑚𝐴𝐴−1
𝑑𝑑𝑡𝑡 (59)  

where 𝑥𝑥0 is the initial location of each boundary (node) in the global axis. By replacing the 

elemental length with the Modulated length in Eq. (53), the deformation-modulated conductive 

resistance can be obtained as: 

𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝐴𝐴 = 1
2

(𝑀𝑀𝐿𝐿𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝑀𝑀𝐿𝐿𝑖𝑖+1𝑇𝑇0𝑖𝑖+1𝑒𝑒

𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)  (60)  

3.5.2. Thermal-modulated mechanical resistivity 

It is frequently observed that heating most material changes the viscoelastic behavior of the 

system by changing its viscosity-related parameters. Considering the Maxwell model used to 

generate the material model in this study, the parameter to be modulated is the resistive 

parameter 𝑅𝑅𝑚𝑚. Accordingly, as shown in Fig. 10, the mechanical RS-components are replaced with 

the MRS-components in the model, and the corresponding signal ports are added to the model.  
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The modulated elastic resistance can then be presented as: 

𝑀𝑀𝑅𝑅𝑚𝑚𝑖𝑖 =  𝑅𝑅𝑚𝑚0𝑖𝑖
− 𝐵𝐵𝑖𝑖𝐸𝐸0𝑖𝑖(𝑆𝑆
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𝐶𝐶𝑣𝑣𝑖𝑖 − 1) (61)  

where 𝑅𝑅𝑚𝑚0 is the related viscosity parameter at the room temperature and 𝐵𝐵𝑖𝑖 is the correlative 

parameter. Accordingly, Eqs. (49) and (58) are changed to:  

�̇�𝑞𝑚𝑚𝑖𝑖 =
𝑝𝑝𝑚𝑚𝐴𝐴−1
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 (62)  
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(63)  

It should be mentioned that since the aim of this study is to generate the physical framework 

for possible connections between different physical domains, a simple linear functionality between 

the mechanical resistance and temperature is assumed. Using more complicated relativity is out of 

the scope of this study. 

3.6. Proposed thermoviscoelastic model 

Incorporating the proposed reversible and irreversible interactions with the presented 

modulations, a domain-independent thermoviscoelastic model that can reveal the interactive 

behaviors of the system is proposed. The collective BG representation of the proposed coupled 
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model is shown in Fig. 11 where a unique framework that reveals the physical insight of the power 

distribution of the system is provided.  
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(66)  

Eqs. (64)-(66) form the final set of governing equations sufficient for describing the ongoing 

thermoviscoelastic phenomena of the system on the basis of energy conservation of the system. 

As revealed in Eq. (64), the momentum rate of each boundary of the segment now reversibly 

(via 𝑞𝑞𝑡𝑡ℎ) depends on the temperature of the adjacent elements. Also, according to Eq. (65), the 

deformation rate of each element is now irreversibly (via 𝑀𝑀𝑅𝑅𝑚𝑚) dependent on the element 
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temperature. Similar to the elastic domain, Eq. (66) reveals that the entropy rate of the system is 

now reversibly (via 𝑞𝑞𝑚𝑚) and irreversibly (via 𝑀𝑀𝑅𝑅𝑚𝑚 and 𝑀𝑀𝑅𝑅𝑡𝑡ℎ ) related to the deformation of the 

system. The coupled nature of the system is seen to be fully exposed physically.  

4. Simulation result 

To highlight the capability of the proposed thermoviscoelastic model in capturing the details 

of the thermomechanical phenomena inside a system, several loading conditions for the presented 

beam structure in Fig. 12 is considered. Although simple, the chosen structure can mimic many 

engineering systems in practice.  

    
 

To define the system under investigation, a fully-isolated beam is considered with the top and 

bottom ends being the boundary of the system where the axial aero-thermo load can be applied. 

To define the initial condition, a stress-free beam resting at the room temperature is considered. 

Avoiding complexity, the beam structure is reticulated into 10 uniform elements with the 

characteristics listed in Table 1, and the axial thermoelastic behavior is to be investigated.  

Table 1. Geometrical and material parameters of the considered beam 

Symbol Description (unit) Value Symbol Description (unit) Value 

𝒌𝒌 Conduction coefficient  (𝐽𝐽 𝑚𝑚.𝐾𝐾⁄ ) 2.73𝑆𝑆2 𝑚𝑚 Beam mass (𝐾𝐾𝑔𝑔) 5.67𝑆𝑆−2 

𝑬𝑬 Young modulus (𝑁𝑁 𝑚𝑚2⁄ )   6.9𝑆𝑆10 𝐴𝐴 Cross section area (𝑚𝑚2) 1𝑆𝑆−4 

𝑪𝑪𝒗𝒗 Specific heat (𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ )  8.97𝑆𝑆2 𝑒𝑒 Length (𝑚𝑚) 2.1𝑆𝑆−1 

𝜶𝜶 Linear expansion (1 𝐾𝐾⁄ )  2.22𝑆𝑆−5 𝑀𝑀 Molar mass (𝑘𝑘𝑔𝑔 𝑚𝑚𝑚𝑚𝑒𝑒)⁄  2.698𝑆𝑆−2 

𝑺𝑺𝟎𝟎 Reference Entropy (𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ ) 2.83𝑆𝑆1 𝑠𝑠 Number of segments 10 
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Sequentially, the impact of a mechanical cyclic load on the thermal behavior and the impact of 

a thermal load on the mechanical behavior of the system are presented in Figs. 13-15 where the 

reversible dynamic interaction of the system between the thermal and elastic domains is 

demonstrated. In Fig. 16  the irreversible energy transaction between the two domains is presented 

highlighting the role of the RS- components. To reveal the modulation impact on the energetic 

transaction of the system, the behavior of the system is finally presented in Figs.17-18.  

4.1. Reversible energetic transactions 

To investigate the role of the embedded domain-independent reversible coupling in the 

energetic transaction between the thermal and elastic domains, the deformation source presented 

in Fig. 13 (a) is chosen to be applied to both boundary elements of the elastic domain 

symmetrically, while the thermal domain is considered fully isolated. The resultant mechanical 

behavior of the beam is presented in Fig. 13 (b). The stress relaxation of the system and the 

hysteresis loss presented in this graph demonstrate a good agreement with the natural mechanical 

behavior of an anelastic system. Fig. 13 (c) and (d) present the corresponding thermal behavior of 

the system. As can be seen, similar fluctuations can be tractable in the thermal domain, which 

reflects the role of the considered multiple storage in the model. The initial fluctuations in Fig. 13 

(c) shows the reflection of the relaxation behavior of the system in the thermal domain. This 

behavior can be explained with respect to the considered dispersive solid body of the model. In 

the chosen Maxwell body used in the model, dissipation is accompanied with releasing the state 

variable of the potential subdomain (𝑞𝑞𝑚𝑚). Considering the logarithmic term associated with 𝑞𝑞𝑚𝑚 in 

the constitutive equation of the thermal domain of the coupled field, the obtained fluctuation of 

the thermal domain’s potential (effort) is anticipated. The energetic behavior in Fig. 13 (d) 

indicates that the dynamic fluctuation in the thermal domain is non-entropic and reversible. 

Considering the fully-isolated beam, this fluctuation will not generate heat inside the system. Thus, 

the considered coupling is reversible.    
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(a) (b) 

  
(c) (d) 
 

       The thermoelastic loading is simulated for the chosen system to investigate the impact of the 

thermal domain dynamics on the elastic domain. To this aim, mimicking the heating process of a 

fixed-end beam, the entropy flow source shown in Fig. 14 (a) is considered for the thermal domain 

together with a zero deformation rate for the elastic domain. The considered thermal source, in 

principal, mimics a cyclic heating process of the system, and is applied to the top and bottom ends 

of the beam symmetrically while the side surfaces of the beam remain isolated. As a result, the 

temperature of each segment rises one by one as shown in Fig. 14 (b). As can be seen, for the 
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closer segments to the boundary, more thermal fluctuations are observed, which highlights the 

slow dynamics of the thermal domain. Fig. 14 (c) and (d) present the energetic behavior of the 

thermal domain, which indicates the accumulation of entropy that heats the system during this 

process as naturally anticipated. 
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be delivered by the system. However, in a fixed boundary situation, the deformation does not occur 

inside the system as a result of rising the generated thermal reaction force introduced to the system 

by the boundaries. The parameters shown in Fig. 15 (b) in principal are the extensive state of the 

elastic domain with which the potential energy (elastic energy shown in Fig. 15 (c)) can be saved 

inside the system in the form of tension or contraction. Considering the contraction as positive 

quantity in Fig. 15 (b), at the early period of the haeting process, the graph clearly indicates that 

the central elements of the beam are under contraction while the other elements have already under 

tension. 

In Fig. 15 (c), the total energetic behavior of the elastic domain is presented. The expanding 

pattern of the graph clearly shows the process of rising the potential energy level of the system 

during the expansion process. Considering the behavior presented in Fig. 15 (b), one can anticipate 

that the total energetic behavior of the elastic domain is in fact the combination of several energetic 

behaviors of different segments as shown in Fig. 15 (d). Having the capability of decomposing the 

observable behavior of the system into its constructive elements can be a desirable tool in 

managing the energy of the system. For instance, in the case of controlled structures (e.g., 

deformation controlled), this capability can help to define more intelligent and energy efficient 

control strategies for the system. 

In general, as claimed in this study, the core behavior of the system is developed on the basis 

of the reversible energetic interactions of the storage components of different subdomains of the 

system.  

4.2. Irreversible energetic transactions  

To add the irreversibility impact on the general behavior of the system, the irreversible energy 

transaction between the two domains is investigated. To this aim, the boundary condition assigned 

to the system is a cyclic mechanical deformation rate with a magnitude of 30 𝜇𝜇𝑚𝑚 and frequency 

of 0.5 𝜕𝜕𝑧𝑧 for the elastic domain, and a zero entropy rate for the thermal domain. The considered 

boundary condition mimics the vibration in a fully-isolated beam. Fig. 16 (a) presents the energy 

dissipation pattern of the elastic domain. At the early period of the simulation time, the difference 

between the dissipated power during the contraction and tension of the system is observed. As can 

be seen, for this period, the total resultant dissipated power contracting the system is more than 
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that expanding it; however, by continuing the process these two amounts become equal. This 

phenomenon, in fact, can be interpreted as the reflection of the stress relaxation of the system on 

the basis of the considered dispersive mechanism. It is known from experiment that the obtained 

data after certain oscillation of the structure under cyclic lodging are valid to present the behavior 

of the system, and the calculation of the initial time has always been an issue. Thanks to the BG 

energetic presentation of the system with which a physical base is introduced to this problem that 

may be helpful for calculating this initial time. Accordingly, the initial time for data gathering can 

be considered as the moment after the period taken for the dissipated energies in tension and 

contraction becoming equal.  
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As mentioned earlier, the general sink for the dissipated energies of other domains is the 

thermal domain. Considering the isolated system under investigation, the dissipated power shown 

in Fig. 16 (a) will be transferred to the thermal domain, leading to the rise in temperature of the 

system as shown in Fig. 16 (b) and (c). The comparison between the temperature fluctuation shown 

in Fig.13 (c) and the reversible coupling thermal behavior of Fig.13 (d) reveals the role of the 

irreversible transferred power in increasing the entropy of an isolated system. Increasing the 

entropy level and, thus, the temperature of the system in a long run will result in generating a 

thermal reaction force (thermal stress) inside the system as shown in Fig.13 (d). Neglecting this 

phenomenon may cause some unpredicted behavior of the system. The obtained results indicate 

the capability of the proposed model in presenting the dynamics of the system at a level in which 

such intangible dynamics of the system are attainable. This feature of the proposed model makes 

it suitable for micro-scale multi-physical system dynamic investigations (e.g., the thermo-

mechanical phenomenon investigation in MEMS devices).   

4.3. Modulation impacts on energetic transaction   

To demonstrate the effects of embedded modulations of the proposed model on dynamic 

behaviors of the chosen beam, the impact of expansion on conductivity is first examined via 

modulating the geometrical characteristics of the thermal domain. The impact of heating on elastic 

behaviors of the system is then studied via modulating the material parameters of the chosen beam. 

4.3.1. Deformation-modulated thermal domain  

Considering the geometrical connectivity of the thermal and elastic domains shown in Fig. 9, 

the impact of dilation on conductivity is to be discussed. To generate the required deformation, a 

pulse temperature source shown as Tin in Fig. 17 (a) is considered as the top-boundary input to the 

beam, and a constant temperature source Tout is considered as the bottom-boundary input to the 

beam. For the elastic domain, free-beam condition is created via zero force-source inputs to both 

boundaries.  
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shown respectively in Fig. 17 (c) and Fig. 17 (d), can explain this shortage of the accumulated 

entropy. A rational reason for justifying this change in entropy flow of the system can be obtained 

from Eqs. (20) and (33) which denote an inverse relativity of entropy flow with the expansive 

element’s growing resistivity. Since the expansion of the elements increases the resistivity of the 

corresponding junctions, and also the resistivity of the system determines the magnitude of the 

transferred entropy flow of the thermal domain, the process of expansion can cause a slight lag in 

the dynamics of the thermal domain as presented in Fig. 17 (b). 

The above simulation results indicate that, although the selected connectivity between the 

thermal and elastic domains is weak, the dilation of the system can change the conductive behavior 

of the system in a tractable level. In general industrial applications, this level of impacts may be 

negligible. However, in high-tech applications, such as in aerospace controlled structures or 

MEMS systems where critical and stringent temperature-control performances are required, this 

level of interactions must be considered.  

4.3.2. Temperature-modulated elastic domain  

To investigate the temperature dependency of the viscosity of the selected material on the 

general dynamics of the system, the behavior of the chosen beam will be compared before and 

after heating. To this aim, a similar vibrational source as that shown in Fig. 13 (a) is applied to the 

both ends of the beam symmetrically. In addition, the viscosity parameter of the system is reduced 

to magnify the viscoelastic behavior of the system. To generate the heating process, an entropy 

rate pulse with a magnitude of 0.09 (𝐽𝐽/𝑠𝑠𝐾𝐾) is applied to the system after 30 s for a period of 40 s. 

For the rest of the simulation, the system is considered isolated from the surrounding. Fig. 18 (a) 

shows the thermal behavior of the system during this process. As can be seen, the temperature of 

the system remains constant for 30 s, and then gradually rises till 70 s. By vanishing the thermal 

source from the system, the side elements release their thermal energy into the center elements. 

This causes the side and center elements to follow different temperature patterns until the whole 

system becomes isothermal again. In Fig. 18 (b) the internal force inside the system is presented. 

Applying heat to the system leads to a sequentially sharp rise and then a smooth drop in the internal 

force of the system till the end of the heating process. By vanishing the heat source, after a slight 

rise in the internal force, the system is stabilized at a lower internal force level. To explain this 

complex behavior, consider the internal force level of the system before heating as the initial level, 
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and divide the observed force behavior into four stages: first rise, first drop, second rise, and final. 

The reason for the first rise in the system is similar to what has been explained for the behavior of 

the system presented in Fig. 15 (c) and (d). In this case, the slow dynamics of the thermal domain 

(as compared with the elastic domain) leads to a propagation of the thermal reaction force 

alongside the system before propagating the material characteristic changes. Hence, the added heat 

to the system is reflected as the addition of the thermal reaction force to the internal force of the 

system at the beginning. However, by penetrating the thermal dynamics into the central elements, 

the stored energy of the system is relaxed via reducing the viscosity of each segment with respect 

to its current temperature. This can justify the behavior of the system during the first drop. The 

reason for the second rise can be found in the dynamic behavior of the thermal domain after 

vanishing the heat source. As shown in Fig. 18 (a), after the 70th s to reach to the second 

equilibrium, the elements closer to the boundaries lose temperature, while the central elements 

become hotter. Considering the amount of temperature fluctuation for each element during this 

period, it can be obtained that the viscosity of the boundary elements recovers more than that of 

the central elements. This increases the elasticity of the system and allows the system to be 

stabilized at the final force level. The resultant dissipated power of the system during this process 

is presented in Fig. 18 (c) where less energy dissipation is seen for a heated system as the level of 

the internal force is lower. For a controlled structure, this means that a heated system is more 

energy efficient than a cold system, thus requiring less energy to maintain the performance of the 

system.  

Fig. 18 (d) presents the general dynamic behavior of the system during the above-described 

process. The clockwise rotation of the Maxwell hysteresis ellipsoid is vividly demonstrated in this 

behavior. In the literature, this thermoelastic phenomenon is known as temperature-induced 

material softening. Occurring this phenomenon inside the structure leads to the change of the 

system dynamic response upon which control strategies for the system can be designed. Unlike 

the conventional methods in which the system observable behavior is regenerated via fitted 

parameters, the thermoelastic phenomenon captured here in this study is a result of the energetic 

interactions of the involving subdomains. It is evident that using the physical approach proposed 

in this paper, any changes in the complex dynamics of a system will become tractable on the basis 

of the energy transformation between the energetic components of the system. This distinctive 

feature of the proposed model allows the validity of the model to be extended to a much wider 
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range within which the physical insight of thermo-mechanical phenomena of the system can be 

revealed by the model. 
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(c) (d) 
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approach. By employing the proposed model, the complex thermo-mechanical behavior of a 

system can be obtained on the basis of the energetic interactions of the involving physical 

subdomains. To derive this model, the reversible and irreversible dynamic interactions between 

the elastic and thermal domains are generated together with the use of inter-domain modulations. 

To clarify the impact of the internal energetic interactions on the general behavior of the 

system, different thermo-mechanical loading conditions are simulated for a chosen discrete 

structure. The obtained results in general demonstrate a good agreement with the natural behaviors 

of the system. Several thermo-mechanical phenomena including dilation, thermal stress, 

relaxation, vibrational heating, and material softening are successfully captured during the 

simulation. The effect of the deformation of the system on the conductivity of the system is 

evidently tracked. On the basis of the attained physical insight of the system, it is clear that the 

changes in the viscosity of the system can be the main cause for the dynamic response changes of 

the system under temperature fluctuations. 

The physically generated thermo-mechanical behavior clarifies that the general behavior of a 

system is in principal a combined result of different dynamics produced by different elements of 

the system that can vary dynamically with regard to the location of the external source applied to 

the system. Constructing the general dynamics of the system from its constructive dynamics with 

respect to the geometry of the system makes the proposed model suitable for controlled-structure 

dynamic examinations. The domain-independency of the model will also provide a desirable 

foundation upon which more complex multi-physical system dynamic investigations can be 

conducted. The physical nature of the proposed model allows it to become a suitable candidate for 

use in modeling different-scale dynamic systems including MEM 
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CHAPTER 6: ENERGY-BASED MODELING OF THE FLUID FIELD 

Aim 

The aim of this chapter is to develop an energy-based model of the fluid field compatible with 

that of the solid field using the BG methodology.  

Description 

To achieve this aim, first, a new decomposition of the fluid field is developed with respect to 

the conservation equations. Next, by defining a set of multi-dimensional energetic components, 

possible reversible and irreversible connections between the subdomains of the fluid field are 

clarified, with which distinctive energy transformation between the subdomains as well as energy 

transportation within the fluid field become identifiable. Finally, an energetic network of the fluid 

field compatible with that of the solid field is achieved, which demonstrates the power transactions 

within the fluid field in a conservative manner. The content of this chapter is organized as follows: 

1. Introduction on fluid field modeling and the existing problems..............................................200 
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Results 

The generated fluid-field model is capable of presenting the complex behavior of the system 

attached to the system energetic memory. This capability can result in generating the behavior of 

the system from its physical constructive elements, thus providing a physical insight into the 

ongoing phenomena of the system. The presented results for the considered examples confirm this 

capability of the proposed model. 

Conclusion 

An energy-based compressible conductive model of the fluid field with identical 

decomposition to the solid field is generated, in which the general dynamics of the fluid field are 

presented in the form of a set of distinguishable and meaningful relations between the reversible 

and irreversible interactions of the energy components of the existing subdomains of the fluid field.  
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ENERGY-BASED COMPRESSIBLE CONVECTIVE MODEL PROPER FOR 

AEROTHERMOELASTIC DYNAMIC INVESTIGATION: A BOND GRAPH 

APPROACH ON FSI PROBLEMS 

A. Zanj1*, F. He2, P. C. Breedveld3 

Abstract 

In this study, attempt is made to relate the dynamics of a compressible convective fluid to the energetic 

interactions between the existing physical subdomains of the field. Accordingly, the general dynamics 

of the system are presented in the form of a set of distinguishable and meaningful relations between the 

reversible and irreversible interactions of the energy components of the subdomains. To this aim, the 

energetic decomposition of the fluid field is first developed from conservation equations. By defining 

multi-dimensional energetic components, possible reversible and irreversible connections between the 

subdomains are then clarified with which distinctive energy transformation between the subdomains 

and energy transportation within the fluid field become identifiable. Finally, the general energetic 

network of the system is achieved, which demonstrates the power transactions within the system in a 

conservative manner. The model thus generated is capable of presenting the complex behavior of the 

system attached to the system energetic memory. This capability can result in generating the behavior 

of the system from its physical constructive elements, thus providing a physical insight into the ongoing 

phenomena of the system. The presented results for the considered examples confirm this capability of 

the proposed model.       

           

Keyword: Energy-based modeling, Compressible flow, Multiple-field dynamic modeling, Heat and 

mass transfer, Irreversible thermodynamic, Aerothermodynamics.     

1. Introduction 

One of the key issues in modeling fluid dynamic systems with viscous, compressible, and 

thermal effects is the competent modeling of the transformation of mechanical to thermal energy 

and its irreversibility [1]. Considering the fluid field as a multi-physical system containing thermal, 

kinetic, and potential subdomains, the right understanding of the internal energetic transactions is 
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based on the right coupling between the reversible and irreversible dynamics of the involving 

physical subdomains. 

The Navier-Stokes (NS) equations are commonly known as a presentation of conservation 

equations for the fluid field with the soundest physical basis. Although the combination of mass, 

momentum, and energy conservation provides a comprehensive representation of the ongoing 

dynamics of the fluid field, it lacks the provision of individual energetic interactions (i.e., power 

network) of the system with respect to the physical subdomains present in the model. Although 

the generated model can represent the combined energetic behavior of the fluid field, it is unable 

to separate the energetic impacts of each physical subdomain on the general behavior of the fluid 

field. The latter aspect becomes an essential capability of the model in cases where external 

physical fields interact with the fluid field, such as in fluid-solid-interaction (FSI) problems where 

multi-physical subdomains in multiple fields are typically involved. In these complicated cases, a 

well-posed data transformation between the involving fields can only be obtained if the continuity 

of the power transformations is satisfied. In order to fulfil the power-continuity requirement, it 

becomes desirable to present a decomposed interactive power network that can provide separate 

power transformations between the counterpart physical subdomains of the involving fields. The 

NS solutions obviously fail in this aspect. 

Many attempts for constructing energetically-correct network models for fluid-system 

dynamics have been reported, with a majority of them being in pseudo Bond graph (BG) terms [2] 

[3] [4]. Using thermodynamic concepts, these methods provide the energetic network of the system 

by developing power continuous transformations between the introduced energetic components of 

the present physical subdomains. Generating the governing equation of the system with respect to 

the conservative interactions of the implemented components provides a clear map with which the 

mathematical well-posedness regarding the conservation principles of the generated models can 

be automatically satisfied. In these models, the reversible energy transformations between the 

subdomains occur in multi-dimensional capacitors (energy storage components), and the 

irreversible energy transportations within a field occur in multi-dimensional resistors (energy 

dissipative components). Although the generated storage components provide a clear view of 

mechanical to thermal energy transformations, the generally-considered convective variable, 

enthalpy, can limit the application of these models especially in multiple-field cases such as a FSI 
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problem where the resistive components are mainly considered as the connective components 

between the elements of the two fields.   

Indeed, enthalpy that has been considered as the state variable of the convective flow in these 

models is not a physical state variable, rather a combined thermodynamic variable that includes 

the information relating to different states of the existing physical subdomains. Because of this, 

although the energy storage in the system is decomposed with respect to the existing physical 

subdomains, the energy transportation within the field remains combined. Knowing that the 

decomposition of power transportation is a key requirement for energetically-connecting different 

subdomains of different fields, the use of a combined transportation variable (enthalpy) 

undoubtedly limits the application areas of the ensuing models to single-field investigations. 

Furthermore, as revealed in [5], the use of enthalpy as the transportation variable can lead to the 

blindness of the models in capturing some ongoing phenomena such as throttling that occurs 

frequently on an oscillatory interface. It then becomes evident that the existing energy-based 

decomposed models in the current form are not suitable for multiple-field dynamic investigations.  

In the current study, an enhanced convection model with decomposed energy transportation is 

proposed to generate a proper convective model suitable for FSI problems. In this model, the 

decomposed power transportation as well as the decomposed power transformation can provide a 

distinctive power distribution of the system with possible power connection gates to other physical 

subdomains of different fields. To this aim, we propose separate convection of entropy and volume 

in place of mere enthalpy convection. As a result, even in an isothermal situation the pressure can 

generate the flow of matter that convects entropy. Furthermore, the added possibility of volume 

convection at an interface where motion of the attached boundary can occur, will lead to the 

translation of the Lagrangian coordinate frame’s motion into changes expressed in the Eulerian 

coordinate frame (proposed as the VIDA technique in [6]). Collectively, these added capabilities 

of the model will make it suitable for multiple-field dynamic investigations.  

In order to achieve what has been proposed above, the remainder of this paper is organized as 

follows. In Section II, the procedure of energetic decomposition of the NS equations is briefly 

explained, and the multi-dimensional energy components of compressible convective fluid flow 

are introduced. In Section III, by considering the characteristics of air as an ideal gas, the governing 

equation of a 1D compressible convective flow for variable geometry is extracted. Section IV 
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highlights the capability of the generated model in demonstrating the energetic interactions of the 

system using an example that simulates the convective flow in a 1D flexible duct. The capability 

of the model in presenting the power-continuous transaction between the elements and components 

of the fluid filed is then concluded in Section V.                                           

2. Power decomposition of convective field  

In this section, using the general power structure of the system obtained from the conservation 

equations, the energetic components of a convective fluid field are first defined, followed by the 

definitions of the reversible and irreversible connections between these components. This will lead 

to the formation of a general energetic network of the system that presents a junction structure of 

the fluid field with which discretization of simultaneous time and geometry is achievable.         

Consider the conservation equations of a single-phase-single-component fluid [7]: 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡

= −𝛻𝛻. (𝜌𝜌𝑣𝑣) 
(1)  

𝜌𝜌
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

= −𝜌𝜌𝛻𝛻(
1
2
𝑣𝑣. 𝑣𝑣) + 𝜌𝜌𝑣𝑣 × (𝛻𝛻 × 𝑣𝑣) − 𝛻𝛻𝑃𝑃 + 𝜌𝜌𝐺𝐺 + 𝛻𝛻. 𝜏𝜏 

(2)  

𝜌𝜌
𝜕𝜕𝑢𝑢𝑉𝑉
𝜕𝜕𝑡𝑡

= −𝛻𝛻(𝑢𝑢𝑉𝑉𝑣𝑣) − 𝛻𝛻𝑞𝑞 − 𝑃𝑃𝛻𝛻. 𝑣𝑣 + 𝛻𝛻𝑣𝑣: 𝜏𝜏 + 𝜌𝜌𝜓𝜓 
(3)  

where 𝜌𝜌, 𝑣𝑣, 𝑃𝑃, 𝐺𝐺, 𝜏𝜏, 𝑢𝑢𝑣𝑣, 𝑞𝑞, and 𝜓𝜓 are respectively the density, velocity, pressure, body force per 

unit mass, viscos stress tensor, internal potential energy per unit volume, heat flux, and heat source. 

A continuous power structure of the system from the existing conservations (mass, momentum, 

and internal energy) can be defined via the following procedure. Given the intensive form of the 

total energy as the sum of the internal energy, 𝑢𝑢𝑉𝑉, and kinetic co-energy per unit volume, 𝑘𝑘𝑉𝑉, 

𝑆𝑆𝑉𝑉(𝜌𝜌, 𝑣𝑣, 𝑆𝑆𝑉𝑉) = 𝑢𝑢𝑉𝑉(𝜌𝜌, 𝑆𝑆𝑉𝑉) +
1
2
𝜌𝜌𝑣𝑣2 

(4)  

the general power balance of the system with respect to the considered intensive states (𝜌𝜌, 𝑣𝑣, and 

𝑆𝑆𝑉𝑉 denoting  density, velocity, and entropy per unit volume, respectively)  can be presented as: 

𝑑𝑑𝑆𝑆𝑉𝑉
𝑑𝑑𝑡𝑡

= �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝜌𝜌

�
𝑣𝑣,𝑆𝑆𝑉𝑉

𝑑𝑑𝜌𝜌
𝑑𝑑𝑡𝑡

+ �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝑣𝑣

�
𝜌𝜌,𝑆𝑆𝑉𝑉

𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡

+ �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝑆𝑆𝑉𝑉

�
𝜌𝜌,𝑣𝑣

𝑑𝑑𝑆𝑆𝑉𝑉
𝑑𝑑𝑡𝑡

 
(5)  

Eq. (5) in principal forms the general frame of the power structure within the system. The terms 

appearing in the right-hand side of Eq. (5) correspond to the power balance equation of the present 
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physical subdomains (in the form of the product of the conjugate variables of each subdomain). 

The partial derivatives appearing in each term of the right-hand side of Eq. (5) correspond to the 

potentials (efforts), and the time derivatives of the independent variables are the flows of the 

corresponding subdomains.  

Using the conservation equations and the following potentials (attainable from Eq. (4)):    

𝜇𝜇𝑉𝑉 = �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝜌𝜌

�
𝑣𝑣,𝑆𝑆𝑉𝑉

= �
𝜕𝜕𝑢𝑢𝑉𝑉
𝜕𝜕𝜌𝜌

�
𝑆𝑆𝑉𝑉

+
1
2
𝑣𝑣2 = 𝑔𝑔 + 𝑘𝑘 =

1
𝜌𝜌

(𝑢𝑢𝑉𝑉 + 𝑃𝑃 − 𝐸𝐸𝑆𝑆𝑉𝑉) +
1
2
𝑣𝑣2 

(6)  

𝑝𝑝𝑉𝑉 = �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝑣𝑣

�
𝜌𝜌,𝑆𝑆𝑉𝑉

= 𝜌𝜌𝑣𝑣 
(7)  

𝐸𝐸 = �
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝑆𝑆𝑉𝑉

�
𝜌𝜌,𝑣𝑣

= �
𝜕𝜕𝑢𝑢𝑉𝑉
𝜕𝜕𝑆𝑆𝑉𝑉

�
𝜌𝜌

 
(8)  

where 𝜇𝜇𝑉𝑉, 𝑝𝑝𝑉𝑉, and 𝐸𝐸 are the mass potential per unit volume, momentum per unit volume, and 

temperature, and 𝑔𝑔 and 𝑘𝑘 are the Gibbs free energy and kinetic co-energy per unit mass, the power 

balance equation of the mass subdomain can be simply obtained from multiplying 𝜇𝜇𝑉𝑉 by Eq.(1): 

𝜇𝜇𝑉𝑉
𝜕𝜕𝜌𝜌
𝜕𝜕𝑡𝑡���

𝑝𝑝𝐶𝐶𝑝𝑝𝑒𝑒𝐶𝐶 

= −𝛻𝛻. (𝜌𝜌𝜇𝜇𝑉𝑉𝑣𝑣)�������
𝐴𝐴𝑖𝑖𝑣𝑣𝑒𝑒𝐶𝐶𝐴𝐴𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

+ 𝜌𝜌𝑣𝑣𝛻𝛻𝑔𝑔 + 𝜌𝜌𝑣𝑣𝛻𝛻𝑘𝑘���������
𝑐𝑐𝐶𝐶𝐴𝐴𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝐴𝐴 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑚𝑚

 
(9)  

The kinetic subdomain power balance equation can be derived by considering the following 

relations: 

�𝑣𝑣 × (𝛻𝛻 × 𝑣𝑣)�. 𝑣𝑣 = 0 
(10)  

(𝛻𝛻. 𝜏𝜏). 𝑣𝑣 = 𝛻𝛻. (𝜏𝜏. 𝑣𝑣) − 𝛻𝛻𝑣𝑣: 𝜏𝜏 (11)  

and making a scalar product of velocity and Eq. (2): 

𝑝𝑝𝑉𝑉
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡���

𝑝𝑝𝐶𝐶𝑝𝑝𝑒𝑒𝐶𝐶

= 𝜌𝜌𝑣𝑣.𝛻𝛻𝑘𝑘���
𝑐𝑐𝐶𝐶𝐴𝐴𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝐴𝐴 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

+ 𝛻𝛻. (𝜏𝜏. 𝑣𝑣)�����
𝐴𝐴𝑖𝑖𝑣𝑣𝑒𝑒𝐶𝐶𝐴𝐴𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

− 𝑣𝑣.𝛻𝛻𝑃𝑃���
𝑐𝑐𝐶𝐶𝐴𝐴𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝐴𝐴 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

+ 𝜌𝜌𝐺𝐺𝑣𝑣�
𝑚𝑚𝐶𝐶𝐴𝐴𝐶𝐶𝑐𝑐𝑒𝑒 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

+ 𝛻𝛻𝑣𝑣: 𝜏𝜏�
𝑐𝑐𝐶𝐶𝐴𝐴𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝐴𝐴 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

 
(12)  

Finally, the thermal subdomain power balance equation can be obtained via substituting Eqs. (6), 

(8), and (9), into Eq. (3): 

𝐸𝐸
𝜕𝜕𝑆𝑆𝑉𝑉
𝜕𝜕𝑡𝑡���

𝑝𝑝𝐶𝐶𝑝𝑝𝑒𝑒𝐶𝐶

= −𝛻𝛻. (𝑞𝑞 + 𝐸𝐸𝑆𝑆𝑉𝑉𝑣𝑣)�����������
𝐴𝐴𝑖𝑖𝑣𝑣𝑒𝑒𝐶𝐶𝐴𝐴𝑒𝑒𝑠𝑠𝑐𝑐𝑒𝑒 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

− 𝜌𝜌𝑣𝑣.𝛻𝛻𝑘𝑘 − 𝑣𝑣.𝛻𝛻𝑃𝑃 − 𝛻𝛻𝑣𝑣: 𝜏𝜏���������������
𝑐𝑐𝐶𝐶𝐴𝐴𝑝𝑝𝑙𝑙𝑖𝑖𝑠𝑠𝐴𝐴 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚𝑚𝑚

+ 𝜌𝜌𝜓𝜓�
𝑚𝑚𝐶𝐶𝐴𝐴𝐶𝐶𝑐𝑐𝑒𝑒 𝑡𝑡𝑒𝑒𝐶𝐶𝑚𝑚

 
(13)  

As can be seen, in the power balance equations (Eqs. (9), (12), and (13)) of the fluid field, three 

types of terms can be distinguishably identified in the power transportation process: the divergence 



 AIAA Journal (under review) 

205 

terms, the source terms, and the coupling terms, which makes it possible to present the balance 

equation of each subdomain in a systematic form as:  

Ф𝑖𝑖𝑓𝑓𝑖𝑖 = �𝜓𝜓𝑖𝑖,𝛺𝛺

𝑚𝑚

𝛺𝛺=1

+ �𝛻𝛻𝑖𝑖,𝛤𝛤

𝐶𝐶

𝛤𝛤=1

+ � 𝐶𝐶𝑖𝑖,𝐴𝐴

𝑠𝑠

𝐴𝐴=1,𝐴𝐴≠𝑖𝑖

 
(14)  

where 𝜓𝜓𝑖𝑖,𝛺𝛺, ∇𝑖𝑖,𝛤𝛤, and 𝐶𝐶𝑖𝑖,𝐴𝐴 = −𝐶𝐶𝐴𝐴,𝑖𝑖 are respectively the body source power that constitutes the 

different power sources external to the system, the divergence power that takes into account the 

power introduced to the element through the spatial boundary 𝛤𝛤𝑡𝑡ℎ, and the coupling power that 

represents the internal power transformation.  

To clarify the existing relations between the various subdomains, the energetically 

decomposed power structure obtained above is graphically presented for a unit volume in Fig. 1. 

It is clear that the distinctive feature of the presented power frame is a general energetic network 

of the system which reveals the inertial, viscous, compressible, and thermal energetic interactions 

as well as the power dissipation of the generated irreversibility. This capability will help the 

formation of a correct understanding of the given system.  

 
Fig. 1 Graphic Presentation of energetical power decomposition of a unit volume  
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To generate a mathematically well-posed convective junction structure model from the 

generated physical insight of the system, the energetic components and their possible 

interconnections are defined with respect to the existing physical causality of the system. Consider 

the generalized form of Eq. (5) for n number of state variables, 

𝑑𝑑𝐸𝐸
𝑑𝑑𝑡𝑡

= �Ф𝑖𝑖𝑓𝑓𝑖𝑖

𝑠𝑠

𝑖𝑖=1

 
(15)  

the total power of the system is generated as the sum of the reciprocal potentials Ф𝑖𝑖(𝑥𝑥1, … , 𝑥𝑥𝑠𝑠) =
𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥𝑖𝑖

 times the time-derivative 𝑓𝑓𝑖𝑖 = �̇�𝑥𝑖𝑖 of the state variables, 𝑥𝑥𝑖𝑖, where each potential function 

represents the constitutive equation of each subdomain, and the time-derivative of each state 

variable forms the collective flow of each unit of the subdomain.  

As the energy remains conserved in each unit, the considered potential functions of the system 

form an n-dimensional storage component (capacitor) for the convective field, where the interred 

power to the unit is saved. The continuous reversible power transformations between the 

subdomains occur via these energy components. These potentials can be generated with respect to 

the geometrical 𝑃𝑃𝐴𝐴 and material 𝑃𝑃𝑚𝑚 parameters of the system as a function of the chosen state 

variables satisfying the Maxwell reciprocity. By means of the energy storage components, the 

instantaneous magnitude of the state variable is generated via time integration of the collective 

flow of each subdomain. In doing so, energy storage of the system carries the memory information 

of the field, with which time marching is achieved for the model. Furthermore, by means of the 

generated information from the storage components, the potential gradients required to generate 

the separate flows of the subdomains are provided for the model.    

Given that the energy can be irreversibly dissipated while transferring between the capacitors, 

the resistive components, R, of the system can be defined via relating the divergence terms of the 

adjacent spatial boundaries. This connection can be obtained with respect to the dissipative 

mechanism of each domain,  𝑅𝑅𝑖𝑖, and as a function of the instantaneous material and geometrical 

parameters of the adjacent units. Since these components contain the information relating to the 

proportionality of the potentials and flows of the system, the geometry marching of the model is 

attainable via these components. 



 AIAA Journal (under review) 

207 

Finally, to generate the well-posed network structure, connect the energetic components of the 

model for each of the subdomains. This is done via defining the collective flows from the 

instantaneous information of the system. Thanks to the well-organized power structure of the 

system, the collective flows can be systematically obtained via dividing each of the balance 

equations by the corresponding potentials. The generalized flow equations which in principal are 

the state of the system can then be energetically decomposed as follows:       

𝑓𝑓𝑖𝑖 = �𝜓𝜓𝑖𝑖,𝛺𝛺
Ф𝑖𝑖

𝑚𝑚

𝛺𝛺=1

+ �𝛻𝛻𝑖𝑖,𝛤𝛤
Ф𝑖𝑖

𝐶𝐶

𝛤𝛤=1

+ � 𝐶𝐶𝑖𝑖,𝑗𝑗
Ф𝑖𝑖

𝑠𝑠

𝐴𝐴=1,𝐴𝐴≠𝑖𝑖

 
(16)  

By defining the power terms appearing in Eq. (16) with respect to the current information provided 

by energetic components, the set of governing equations for the convective field will be closed.  

The body source power terms can be directly defined from the considered source information. 

The divergence power term is defined as a function of the potential gradient 𝛻𝛻Ф𝑖𝑖 provided by 

capacitor and the dissipative mechanisms,  𝑅𝑅𝑖𝑖, of the resistors of each subdomain:  

𝛻𝛻𝑖𝑖,𝛤𝛤 = 𝕗𝕗𝑖𝑖(𝛻𝛻Ф𝑖𝑖𝛤𝛤,𝑅𝑅𝑖𝑖𝛤𝛤 ) (17)  

where 𝛤𝛤𝐴𝐴 denote the 𝑗𝑗𝑡𝑡ℎ spatial boundary of the considered unit. Given that the coupling terms in 

the state equations appear as a result of the dependency of the convective state variables [8], the 

coupling power terms and the divergence power term obtain a proportional relation. As so, 

considering the power conservation, the coupling power terms for each subdomain can be 

presented as: 

𝐶𝐶𝑖𝑖,𝐴𝐴 = 𝑀𝑀𝐸𝐸𝐹𝐹𝑖𝑖,𝐴𝐴,𝛻𝛻𝑖𝑖 
(18)  

where 𝑀𝑀𝐸𝐸𝐹𝐹𝑖𝑖,𝐴𝐴 is defined as weighted functions of the state ratio of the connected subdomains (i 

and j). Accordingly, by defining all the existing terms in Eq. (16), the required collective flow of 

each subdomain is obtained by means of the existing information of the system. However, to define 

the collective flow of the thermal subdomain, there exists yet another parameter to be defined: the 

entropy generation rate of each subdomain.    

Given that the transferred energy is dissipated irreversibly while transferring, and knowing that 

the sink for all forms of dissipated energy is the thermal subdomain, there exists an irreversible 

power transformation from other subdomains to the thermal subdomain. Accordingly, by 
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considering a conserved non-return power transformation and the dissipative mechanism of each 

subdomain, the following irreversible power transformation, 𝛻𝛻𝑖𝑖𝐶𝐶𝐶𝐶, is added to the thermal 

subdomain’s divergence power term:    

𝛻𝛻𝑖𝑖𝐶𝐶𝐶𝐶 = ��
𝛻𝛻Ф𝛤𝛤𝑖𝑖

2

𝑅𝑅𝛤𝛤𝑖𝑖

𝐶𝐶

𝛤𝛤=1

𝑠𝑠

𝑖𝑖=1

 
(19)  

Accordingly, with the consideration of irreversibility, the collective flow of the thermal subdomain 

can be presented as: 

𝑓𝑓𝑚𝑚 = �𝑞𝑞𝛺𝛺
𝑇𝑇

𝑚𝑚

𝛺𝛺=1

+
𝛻𝛻𝑖𝑖𝐶𝐶𝐶𝐶

𝐸𝐸
+ �𝛻𝛻𝑠𝑠,𝛤𝛤

𝑇𝑇

𝐶𝐶

𝛤𝛤=1

+ � 𝐶𝐶𝑠𝑠,𝑗𝑗
𝑇𝑇

𝑠𝑠

𝐴𝐴=1,𝐴𝐴≠𝑚𝑚

 
(20)  

By generating the handshaking connections between the divergence power terms of each of 

the subdomains of the neighboring units regarding the corresponding adjacent boundaries, the 

junction structure of the fluid field shown in Fig. 2 is obtained with which the simultaneous time 

and geometry discretization is achievable for the system. 

 
Fig. 2 Convection field decomposed junction structure 

As can be seen, in the presented energetic junction structure of the system, the capacitors are 

located within each unit, while the resistors play the role of the connectors of the energy units that 
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provide the possibility of handshaking connections between the counterpart subdomains.  

The anti-symmetry of the appeared coupling terms in the balance equations reveals that if the 

total form of energy convection is considered for the system, as in the NS method, then although 

the general transportation of the energy can be obtained, the internal interactions of the existing 

subdomains stay unvalued, as via summation of the balance equations to form the total energy 

balance the coupling terms will be canceled out from the equations. This added capability could 

be a beneficial advantage in multi-disciplinary system dynamic investigations such as in FSI 

problems where a clear understanding of different forms of power transmissions between the fields 

is demanded especially when the impacts of the thermal subdomain becomes significant. 

3. Energy-based 1D convective model 

In this section, to demonstrate the capability of the proposed method in developing a well-

posed model, the governing equations of a 1D compressible convection field are extracted for ideal 

gas. To this aim, sequentially, the convective field is decomposed with respect to the general 

physical states, the arrangement of the energetic component is defined for the 1D convective field, 

the decomposed power structure of the system is presented using the BG notation, the correctness 

of the generated BG model is checked via causality allocation, the state equations corresponding 

to the generated BG model is extracted, and finally the potential functions together with the 

resistive and coupling coefficients are defined. 

 
Fig. 3 1D air duct 

3.1. Decomposition of the field    

Consider the 1D discretized duct with flexible walls shown in Fig. 3 in which compressible air 

can transfer alongside the duct. Since the attempt in this study is to generate a suitable model for 

multiple-field dynamic investigations, the domain-independency of the model is of interest [9]. 

Therefore, the general physical states: mass 𝑚𝑚, momentum 𝑝𝑝, entropy 𝑆𝑆, and volume 𝑉𝑉 are selected 
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with their corresponding potentials being mass potential 𝜇𝜇, velocity 𝑣𝑣, temperature 𝐸𝐸, and pressure 

𝑃𝑃. Considering the selected conjugate variables, the fluid field is physically decomposed to mass, 

kinetic, potential (acoustic), and thermal subdomains.  

3.2. Defining the energetic components of the field 

 Considering the junction structure obtained in Section II, each segment can be considered as 

the energy storage component (capacitor), and each connecting junction becomes the location for 

the resistive components of which the parameters are a function of both the material and 

geometrical parameters of the adjacent segments. Accordingly, the junction structure shown in 

Fig. 4 can be presented for the physically decomposed system containing four separate energy 

lines.   

 
Fig. 4 Decomposed 1D fluid field         

3.3. Generating the power structure of the system   

As mentioned in Section II, since the reversible connections among the subdomains occur 

in the capacitors and the irreversible non-return interactions occur in the resistors, the general 

frame for the power structure of the system can be elegantly depicted in the BG notation as shown 

in Fig. 5. As can be seen, the total power of the system is decomposed into four separate power 

lines, each indicating the energy flow of the corresponding subdomain. All the present subdomains 

are reversibly connected via C-components, and the collective flow for each subdomain can be 

obtained from the corresponding 0-junctions containing the divergence and coupling power terms 

provided by 1-junctions (the boundaries of the segment) and the flow source terms 𝑆𝑆𝑓𝑓𝑖𝑖. The 

irreversible connections of the subdomains are depicted by RS-components that act as non-return 

power transformers to the thermal subdomain. The coupling transformers (𝑀𝑀𝐸𝐸𝐹𝐹𝑖𝑖−𝐴𝐴 and 𝑀𝑀𝐺𝐺𝑌𝑌𝑖𝑖−𝐴𝐴) 

of the energy transportation in 1-junctions provide the required convective information of each 
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subdomain with respect to the natural dependency of the considered physical states of the system.  

 
Fig. 5 BG presentation of the general power structure of the fluid field   

The arrangement of the causality lines, provided by the global conservation laws, confirms the 

correctness of the proposed power structure. Thus, the well-posedness of the generated state 

equations from the obtained model is granted. 

3.4. Extracting the state equations  

Given that the collective flow of each subdomain is the state equation of the subdomain, a set 

of state equations corresponding to the generated power structure shown in Fig. 5 for the 

𝑖𝑖𝑡𝑡ℎ segment can be presented as: 

�̇�𝑚𝑖𝑖 = �̇�𝑚𝐴𝐴−1 − �̇�𝑚𝐴𝐴 + 𝑆𝑆𝑓𝑓𝑚𝑚𝑖𝑖
 (21)  

�̇�𝑝𝑖𝑖 = �̇�𝑝𝐴𝐴−1 − �̇�𝑝𝐴𝐴 + 𝑆𝑆𝑓𝑓𝑝𝑝𝑖𝑖

− 𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖
�

1
𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖+1 + 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴
(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1)

+ 𝑀𝑀𝑇𝑇𝜕𝜕𝑝𝑝−𝑚𝑚𝐴𝐴
�𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1 − 𝑅𝑅𝑝𝑝𝐴𝐴

𝑀𝑀𝑇𝑇𝜕𝜕𝑝𝑝−𝑚𝑚𝐴𝐴

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖

𝑣𝑣𝑖𝑖�� − (𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖+1)� 

(22)  

�̇�𝑆𝑖𝑖 = �̇�𝑆𝐴𝐴−1 − �̇�𝑆𝐴𝐴 + 𝑆𝑆𝑓𝑓𝑆𝑆𝑖𝑖
+ �̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶

𝐴𝐴𝑒𝑒𝑠𝑠
𝑖𝑖
 

(23)  

�̇�𝑉𝑖𝑖 = �̇�𝑉𝐴𝐴−1 − �̇�𝑉𝐴𝐴 + 𝑆𝑆𝑓𝑓𝑉𝑉𝑖𝑖
 

(24)  

where �̇�𝑥𝐴𝐴 (𝑥𝑥 = 𝑚𝑚,𝑝𝑝,𝑉𝑉, 𝑆𝑆) corresponds to the introduced flow to the segment from the 𝑗𝑗𝑡𝑡ℎ spatial 

boundary, and �̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
 denotes the collective generated entropy rate of the segment, named the 
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irreversible flow. Knowing that the coupling power and the divergence power transport to the 

segment via a unique flow, the flows cross the 𝑗𝑗𝑡𝑡ℎ boundary of the 𝑖𝑖𝑡𝑡ℎ segment can be defined as: 

�̇�𝑚𝐴𝐴 =
1

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖

𝑣𝑣𝑖𝑖 
(25)  

�̇�𝑝𝐴𝐴 = 𝑀𝑀𝑇𝑇𝜕𝜕𝑝𝑝−𝑚𝑚𝐴𝐴

1
𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖

𝑣𝑣𝑖𝑖  
(26)  

�̇�𝑆𝐴𝐴 =
𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1
𝑅𝑅𝑆𝑆𝐴𝐴

+ 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴

1
𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖

𝑣𝑣𝑖𝑖  
(27)  

�̇�𝑉𝐴𝐴 =
1

𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑉𝑉𝑖𝑖

𝑣𝑣𝑖𝑖 −
𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖+1
𝑅𝑅𝑉𝑉𝐴𝐴

 
(28)  

knowing the dissipated power is transferred to the thermal subdomain via generated entropy rate 

of each subdomain, by considering the resistive components of each subdomain as ideal non-return 

transducers, the irreversible flow to the thermal subdomain can be calculated as:  

�̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
= �̇�𝑆𝑝𝑝

𝐴𝐴𝑒𝑒𝑠𝑠
𝑖𝑖

+ �̇�𝑆𝑉𝑉
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖 + �̇�𝑆𝑆𝑆
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖  
(29)  

where: 

�̇�𝑆𝑝𝑝
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
=

1
𝐸𝐸𝑖𝑖

(𝑣𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖)2

𝑅𝑅𝑝𝑝𝐴𝐴−1
 

(30)  

�̇�𝑆𝑉𝑉
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖 =
1
𝐸𝐸𝑖𝑖

(𝑃𝑃𝑖𝑖−1 − 𝑃𝑃𝑖𝑖)2

𝑅𝑅𝑉𝑉𝐴𝐴−1
 

(31)  

�̇�𝑆𝑆𝑆
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖 =
1
𝐸𝐸𝑖𝑖

(𝐸𝐸𝑖𝑖−1 − 𝐸𝐸𝑖𝑖)2

𝑅𝑅𝑆𝑆𝐴𝐴−1
 

(32)  

The external body sources’ flows (𝑆𝑆𝑓𝑓𝑖𝑖) appearing in the state equations are defined with respect to 

the considered situation of the system. For simplicity, a non-gravitational, non-reactive, and non-

radiative flow is considered here, as so, the body flow sources appearing in the state equations 

vanish. 

The state equations of the system are considered to be closed, if the potentials, coupling factors, 

and dissipative coefficients can be presented as functions of the state variables (𝑥𝑥 = 𝑚𝑚,𝑝𝑝,𝑉𝑉, 𝑆𝑆), 

material parameters (𝑃𝑃𝑚𝑚), and geometrical parameters (𝑃𝑃𝐴𝐴) of the segment. 
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3.5. Defining the subdomains’ potentials (n-dimensional constitutive equation) 

To derive the potential functionalities, by rewriting Eq. (15) as a collective form of the internal 

energy (𝑈𝑈) plus the kinetic energy (𝐾𝐾), i.e., 𝐸𝐸(𝑚𝑚, 𝑝𝑝, 𝑉𝑉, 𝑆𝑆) = 𝑈𝑈(𝑚𝑚, 𝑉𝑉, 𝑆𝑆) + 𝐾𝐾(𝑚𝑚, 𝑝𝑝), the following 

relations can be presented for the potentials: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑝𝑝,𝑉𝑉,𝑆𝑆

= �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

+ �
𝜕𝜕𝐾𝐾
𝜕𝜕𝑚𝑚

�
𝑝𝑝

= 𝑔𝑔(𝑚𝑚,𝑉𝑉, 𝑆𝑆) + 𝑘𝑘(𝑚𝑚, 𝑝𝑝) = 𝜇𝜇(𝑚𝑚, 𝑝𝑝,𝑉𝑉, 𝑆𝑆) 
(33)  

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑝𝑝
�
𝑚𝑚,𝑉𝑉,𝑆𝑆

= �
𝜕𝜕𝐾𝐾
𝜕𝜕𝑝𝑝
�
𝑚𝑚

= 𝑣𝑣(𝑚𝑚, 𝑝𝑝, ) 
(34)  

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑝𝑝,𝑆𝑆

= �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= 𝑃𝑃(𝑚𝑚,𝑉𝑉, 𝑆𝑆) 
(35)  

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑝𝑝,𝑉𝑉

= �
𝜕𝜕𝑈𝑈
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

𝐸𝐸(𝑚𝑚,𝑉𝑉, 𝑆𝑆) 
(36)  

To start with the thermal subdomain, by considering Eq. (36), the differential form of the 

constitutive equation of the thermal subdomain can be presented as:  

𝑑𝑑𝐸𝐸 = �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
𝑑𝑑𝑚𝑚 + �

𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

𝑑𝑑𝑉𝑉 + �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

𝑑𝑑𝑆𝑆 
(37)  

Considering the energy law at constant volume and the thermal subdomain’s adjugate variables 

(𝐸𝐸, 𝑆𝑆), the last term of Eq. (37) can be obtained as: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

=
𝐸𝐸
𝑚𝑚𝑐𝑐𝑣𝑣

 
(38)  

where 𝑐𝑐𝑣𝑣 is the specific heat in constant volume and considered to be constant. By taking the 

advantage of the thermodynamics’ first law for an ideal gas, the second term of Eq. (37) can be 

defined as: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= −
𝑅𝑅𝐸𝐸
𝑉𝑉𝑐𝑐𝑣𝑣

 
(39)  

Finally, the first term of Eq. (37) with respect to the Gibbs equation for an ideal gas is presented 

as: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

=
𝐸𝐸
𝑐𝑐𝑣𝑣
�
𝑅𝑅
𝑚𝑚
−

𝑆𝑆
𝑚𝑚2� 

(40)  

By subletting Eqs. (38)-(40) into Eq. (37) and by integrating the obtained complete differential 
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equation, the constitutive equation of the thermal subdomain is obtained as: 

𝐸𝐸 = 𝐸𝐸0 �
𝑉𝑉0𝑚𝑚
𝑚𝑚0𝑉𝑉

�
𝑅𝑅
𝑐𝑐𝑣𝑣
𝑆𝑆
� 𝑆𝑆𝑚𝑚− 𝑆𝑆0

𝑚𝑚0
�

𝑐𝑐𝑣𝑣   

(41)  

where 𝐸𝐸0, 𝑚𝑚0, 𝑉𝑉0, and 𝑆𝑆0 are the reference temperature, mass, volume, and entropy, respectively. 

Similar to the thermal subdomain, the differential form of the potential subdomain (𝑃𝑃,𝑉𝑉) 

constitutive equation can be written as: 

𝑑𝑑𝑃𝑃 = �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
𝑑𝑑𝑚𝑚 + �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

𝑑𝑑𝑉𝑉 + �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

𝑑𝑑𝑆𝑆 
(42)  

Given that in a conservative field reciprocal relations do exist between the partial differential terms 

of the constitutive equations, the last term of Eq. (42) can be obtained as: 

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

= �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= −
𝑅𝑅𝐸𝐸
𝑉𝑉𝑐𝑐𝑣𝑣

 
(43)  

Considering the partial derivative of the ideal gas equation with respect to volume: 

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

=
𝑚𝑚𝑅𝑅
𝑉𝑉

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

−
𝑚𝑚𝑅𝑅𝐸𝐸
𝑉𝑉2

 
(44)  

and substituting Eq. (39) into Eq. (44), the second term of Eq. (42) can be defined as: 

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

=      
𝑃𝑃(𝑅𝑅 + 𝑐𝑐𝑣𝑣)

𝑉𝑉𝑐𝑐𝑣𝑣
 

(45)  

Finally, by substituting Eq. (40) into the partial derivative of the ideal gas equation with respect to 

mass, the first term of Eq. (42) is obtained as: 

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

=   𝑃𝑃 
1
𝑚𝑚

  �
𝑆𝑆
𝑐𝑐𝑣𝑣𝑚𝑚

−
𝑅𝑅
𝑐𝑐𝑣𝑣
− 1� 

(46)  

By substituting Eqs. (43), (45), and (46) into (42) and by integrating the resultant equation, the 

constitutive equation of potential subdomain is obtained as: 

𝑃𝑃 = 𝑃𝑃0 �
𝑉𝑉0𝑚𝑚
𝑚𝑚0𝑉𝑉

�
𝑅𝑅−𝑐𝑐𝑣𝑣
𝑐𝑐𝑣𝑣

𝑆𝑆
� 𝑆𝑆𝑚𝑚− 𝑆𝑆0𝑚𝑚0

�
𝑐𝑐𝑣𝑣   

(47)  

Considering the kinetic energy equation 𝐾𝐾 = 𝑝𝑝2

2𝑚𝑚
 and Eq. (34), the potential of the kinetic 

subdomain can be defined as: 
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𝑣𝑣 =
𝑝𝑝
𝑚𝑚

 
(48)  

The last potential to be defined is the potential of the mass subdomain. Knowing that the mass 

potential is the summation of the Gibbs free energy and the kinetic energy per unit mass, i.e., 𝜇𝜇 =

𝑔𝑔 + 𝑘𝑘, and considering the Gibbs-Duhem relation, 𝑚𝑚𝑑𝑑𝑔𝑔 = 𝑉𝑉𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝐸𝐸, the deferential form of 

the Gibbs free energy is presented as: 

𝑑𝑑𝑔𝑔 =  �
𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
� 𝑑𝑑𝑚𝑚 + �

𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

� 𝑑𝑑𝑉𝑉

+ �
𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

� 𝑑𝑑𝑆𝑆     

(49)  

From an extensive but straightforward analysis, with respect to the obtained partial derivatives, 𝑔𝑔 

is defined as: 

𝑔𝑔 =
𝑔𝑔0

�𝑅𝑅 − 𝑆𝑆0
𝑚𝑚0

�
��𝑐𝑐𝑣𝑣 −

𝑆𝑆
𝑚𝑚
� �
𝑉𝑉0𝑚𝑚
𝑚𝑚0𝑉𝑉

�
𝑅𝑅
𝑐𝑐𝑣𝑣
𝑆𝑆
� 𝑆𝑆𝑚𝑚− 𝑆𝑆0

𝑚𝑚0
�

𝑐𝑐𝑣𝑣 + 𝑐𝑐𝑣𝑣� 

(50)  

Considering the kinetic energy equation, 𝑘𝑘 simply is defined as: 

𝑘𝑘 = �
𝜕𝜕𝐾𝐾
𝜕𝜕𝑚𝑚

�
𝑝𝑝

= −
𝑝𝑝2

2𝑚𝑚2 
(51)  

By adding Eq. (50) with Eq. (51), the final form of the mass potential is then obtained as: 

𝜇𝜇 =
𝑔𝑔0

�𝑅𝑅 − 𝑆𝑆0
𝑚𝑚0

�
��𝑐𝑐𝑣𝑣 −

𝑆𝑆
𝑚𝑚
� �
𝑉𝑉0𝑚𝑚
𝑚𝑚0𝑉𝑉

�
𝑅𝑅
𝑐𝑐𝑣𝑣
𝑆𝑆
� 𝑆𝑆𝑚𝑚− 𝑆𝑆0

𝑚𝑚0
�

𝑐𝑐𝑣𝑣 + 𝑐𝑐𝑣𝑣� −
𝑝𝑝2

2𝑚𝑚2 

(52)  

Collectively, Eqs. (41), (47), (48), and (52) form the constitutive equations of the system 

with which the reversible interactions among the subdomains occur in each segment. 

3.6. Defining the transportation coupling factors  

To define the transportation coupling factors including transformation and gyration coupling 

factors, imagine an exchange of matter between two adjacent storages convect internal energy, and 

accordingly the intrinsic property of matter (densities). The flow of matter can be regarded as a 

continuous addition in the direction of the flow of infinitesimal simple systems, which have to be 

additive in the thermodynamical sense. The internal energy and the properties of these 

infinitesimal systems can only be described intensively by specific properties [10]. Since the 

Gibbs-Duhem equation relates the potential gradient of the existing subdomain for the adjacent 
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boundary of the neighboring segments (storages), the transformation coupling factors can be 

defined as the ratio of the reversible transportation flow of the subdomain to the flow of matter, 

which in principal is the intensive form of the state variable of each subdomain: 

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉 =
𝑉𝑉
𝑚𝑚

 
(53)  

𝑀𝑀𝑇𝑇𝜕𝜕𝑝𝑝−𝑚𝑚 =
𝑝𝑝
𝑚𝑚

 
(54)  

𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚 =
𝑆𝑆
𝑚𝑚

 
(55)  

The anisotropy induced by the momentum of the flow of matter results in non-reciprocity of the 

power transportation. The embedded gyration coupling between the kinetic and mass subdomains 

reflects this non-reciprocity of the system. Considering the power continuity of the gyration 

coupling, and taking into account the BG presentation of the convective field in Fig. 5, the gyration 

coupling factor is obtained from the ratio of the kinetic effort (potential) to the potential 

subdomain’s flow, where for the chosen system:    

𝑀𝑀𝐺𝐺𝐺𝐺𝑝𝑝−𝑚𝑚 =
1
𝐴𝐴

 
(56)  

where A is the surface of the adjacent boundary of the neighboring segments. 

3.7. Defining the dissipative mechanisms 

The final step to close the state equations is to define the dissipative mechanisms of the field, 

𝑅𝑅𝑚𝑚,𝑅𝑅𝑝𝑝,𝑅𝑅𝑉𝑉. To start with 𝑅𝑅𝑚𝑚, considering the Fourier conduction equation, the dissipative 

mechanism with respect to the chosen system can be presented as:    

𝑅𝑅𝑚𝑚 =
∆𝑥𝑥𝐸𝐸
𝑘𝑘𝑇𝑇𝐴𝐴

 
(57)  

where ∆𝑥𝑥 and 𝑘𝑘𝑇𝑇 are the generalized length of the resistive component and the conduction 

coefficient of the gas, respectively.  

Given that the dissipation of energy in the potential subdomain occurs as a result of geometrical 

changes (expansion or contraction) in the direction of the power flow, by considering a quadratic 

relation between the pressure difference and volumetric flow, ∆𝑃𝑃 = 𝜌𝜌�̇�𝑉2 2𝐴𝐴𝐴𝐴2⁄ , 𝑅𝑅𝑉𝑉 can be defined 

as: 
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𝑅𝑅𝑉𝑉 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑠𝑠��̇�𝑉�
𝑚𝑚��̇�𝑉�
2𝐴𝐴𝐴𝐴2𝑉𝑉

 
(58)  

where 𝐴𝐴𝐴𝐴 is the actual cross section area and can be defined with respect to the geometry of the 

spatial boundary and the local pressure loss coefficient, 𝜉𝜉 , as  𝐴𝐴𝐴𝐴 = 𝜉𝜉𝐴𝐴.  

To define the dissipative mechanism in the kinetic subdomain, given that the internal shear 

force can dissipate the kinetic power of the system, by comparing stokes hypothesis with the 

appearing terms of the momentum balance equation (Eq. (12)), the following relation can be 

defined for the kinetic subdomain dissipative mechanism: 

𝑅𝑅𝑝𝑝 ∝
∆𝑥𝑥
𝜇𝜇𝑝𝑝

=
3

2𝜇𝜇𝑝𝑝𝐴𝐴
 

(59)  

where 𝜇𝜇𝑝𝑝 is the viscosity of the gas. 

Accordingly, all the required coefficients appearing in the state equations of the system have 

now been defined on the basis of the chosen system’s material and geometrical parameters, as well 

as the states of the system.  

In the proposed model, the decomposed power transportation as well as the decomposed power 

transformation provide a distinctive power network of the system in which the possible power 

connection gates to external physical domains belonging to different fields are highlighted. This 

added capability to the model makes it suitable for multiple-field dynamic investigations, 

especially for FSI problems. 

4. Simulation and analysis 

In this section, to highlight the capability of the generated model in demonstrating the 

interactive dynamics of the convective field, two separate scenarios are chosen to be investigated 

via simulating the transient behavior of a compressible flow in a 1D flexible duct. Firstly, to 

examine the appropriateness of the generated model in discrete-system dynamic investigations, a 

discharge process is selected with the chosen duct as the connecting pipe between two different 

pressure chambers (1 and 2) as shown in Fig. 6 (a). In this scenario, the accumulated mass in 

Chamber 1 is discharged into the system, demonstrating the mechanics of mass and heat transfer 

within the system. Secondly, to demonstrate the energetic interactions between different physical 

subdomains and the suitability of the proposed model for use in multiple-field system studies, the 
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propagation of a volumetric perturbation resulted from fluid-solid interactions is investigated for 

an externally-excited system shown in Fig. 6 (b).  

For simplicity, it is considered that the chosen duct is uniformly discretized into 6 segments, 

and the axial dynamics for the lumped presentation of the system with the material and geometrical 

parameters listed in Table 1 is to be investigated. Unstressed room condition is considered as the 

initial condition of the system, and the system is fully isolated from its surroundings.       

    
Fig. 6 a) Connecting pipe, b) Wave generator 

 

Table 1. Geometrical and material properties of the convective duct 
𝒍𝒍 Length  𝟐𝟐.𝟏𝟏𝒆𝒆−𝟏𝟏 (𝒎𝒎) 
𝑨𝑨 Cross section area  1𝑆𝑆−4 (𝑚𝑚2) 
𝒏𝒏 Number of segments  6 
𝑷𝑷𝟎𝟎 Initial pressure  101315 (𝑝𝑝𝑎𝑎) 
𝑻𝑻𝟎𝟎 Initial temperature  298 (𝑘𝑘) 
𝑹𝑹 Individual gas constant  286.9 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒄𝒄𝑷𝑷 Specific heat capacity @ Pcte  1005 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒄𝒄𝑽𝑽 Specific heat capacity @ Vcte 718 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒌𝒌 Air conduction coefficient  2.57e−2 (𝐽𝐽/𝑚𝑚/𝐾𝐾/𝑠𝑠) 
𝝁𝝁𝒑𝒑 Air viscosity 5.81𝑆𝑆−5 (𝑘𝑘𝑔𝑔/𝑚𝑚/𝑠𝑠) 

 

For the first scenario, to check the appropriateness of the developed model in capturing the 

general dynamics of the system, a transient convective flow is generated within the system by 

connecting the mass, momentum, volume, and entropy flow sources to the corresponding energy 

lines of the left boundary of the first segment and the right boundary of the last segment. Since in 

a compressible flow the different energetic flows of the system are interrelated, the external 

capacitor components, named as Chamber 1 and Chamber 2 in Fig. 6 (a), are considered to generate 

the meaningful boundary flows for the system. Initially, Chamber 2 is in equilibrium with the duct, 

while Chamber 1 is resting above the atmospheric pressure and temperature (𝑃𝑃0𝑐𝑐ℎ1 =
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125810 𝑝𝑝𝑎𝑎 & 𝐸𝐸0𝑐𝑐ℎ1 = 440 𝐾𝐾, 𝑉𝑉𝑐𝑐ℎ1&2 = 10 𝑉𝑉𝑚𝑚𝑒𝑒𝐴𝐴𝑚𝑚𝑒𝑒𝑠𝑠𝑡𝑡 ). The corresponding boundary flows of the 

pipe is then provided by simulating the closed system including the two chambers and the 

connecting pipe. Accordingly, by running the simulation, the contracted gas in Chamber 1 is 

anticipated to be expanded in the closed system generating a flow of matter alongside the duct.      

 
Fig. 7 Boundary flows of the system Fig. 6 (a) 

Fig. 7 shows the energetic boundary flows of the pipe. Parts (a), (b), (c), and (d) 

correspondingly demonstrate the entropic, molar, volumetric, and momentum reversible boundary 

flows of the system, with which the reversible energy transportations occur to and from the system. 

The blue lines, demonstrating the inlet flows, show the flows of the considered extensive states to 

the system with their respective initial high-rate values leading to the final zero-rate value at the 

end of the simulation time. The pink lines show the outlet flows of the extensive states from the 

system with their initial and final values equal to zero. This behavior, as it has been anticipated, 

clearly demonstrates the process of discharging Chamber 1 into the connecting pipe and Chamber 
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(a) (b) 

  

(c) (d) 
Fig. 8 Connection pipe internal dynamic behavior 

 

The corresponding internal dynamics of the connecting pipe are presented in Fig. 8. Part (a) 

presents the potentials corresponding to the different physical subdomains of the system. As can 

be seen, by releasing the gas into the pipe, the pressure and temperature of different segments 

initially increase sequentially, and then settle in a higher equilibrium level by the end of the 

process. Similarly, the internal velocity of each segment increases initially, and by the time that 

the system becomes stabilized in the new equilibrium, the velocity tends to zero again. Part (b) 

presents the amount of accumulated extensive states of each segment. As can be seen, in the new 
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equilibrium condition, all the segments, except for the first segment, contain more states than the 

initial condition, demonstrating the distribution of matter from Chamber 1 to the rest of the system. 

The strange behavior of the first segment can be explained via the consideration of its neighboring 

chamber. However, since the aim here is to demonstrate the capability of the generated model in 

showing the ongoing dynamics in a discrete model, the explanation of the above phenomena is 

omitted for brevity. Collectively, from Parts (a) and (b) of Fig. 8, the reversible power 

transformation between the subdomains can be achieved within each segment. 

In Part (c) of Fig. 8, a different flow of the system is presented where the reversible power 

transportation occurs between the counterpart subdomains of the neighboring segments. As can be 

seen, all the obtained flows follow the similar patterns as the inlet and outlet flows. Part (d) of  Fig. 

8 presents the irreversible mechanical power transformation from the kinetic subdomain to the 

thermal subdomain. This transformation occurs via the generated entropy rate shown in the right 

graph of Fig. 8 (d). This amount of entropy is added to the system as a result of the kinetic power 

transportation between the neighboring segments. A closer comparison between the reversible and 

irreversible flows of the system, especially at the later part of the simulation where there exists an 

oscillatory fluctuation in the system, reveals the consistency of the generated model with the 

second thermodynamic law, as the irreversible flows are positive definite even though the 

reversible flows obtain negative values. 

Despite the coarse discretization of the system as well as a simple considered functionality to 

generate the required parameters of the proposed model, collectively the results presented in Figs. 

7 and 8 demonstrate an adequate agreement between the simulated results and the general 

convective behaviors of such systems. This consistency indicates the aptness of the proposed 

model in revealing the reversible and irreversible internal dynamics of discrete systems.    

In the second scenario, to demonstrate the capability of the proposed model in unveiling the 

physical interactions between the physical subdomains, the propagation of an external excitation 

inside the closed system shown in Fig. 6 (b) is examined. As the system is considered to remain 

closed during the simulation, no flow of matter is expected to enter into or be removed from the 

system. Consequently, the internal dynamics of the system can be considered as a mere result of 

the reversible and irreversible interactions among the subdomains. Accordingly, to keep the system 

closed, zero boundary flows are considered for thermal, mass, and kinetic subdomains, and to 
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generate an external excitation to the system, a sinusoidal pulse with an amplitude of 0.5 𝑚𝑚
3

𝑚𝑚
, and 

frequency of 1082.25 Hz is considered as the volumetric flow for the left boundary of the system. 

It is expected that the generated disturbance propagates alongside the system. 

  

(a) (b) 

  

(c) (d) 
Fig. 9  Internal dynamics during wave propagation 

The dynamic behavior of the system in responding to the considered excitation is presented in 

Fig. 9. Parts (a) and (b) demonstrate the dynamic behaviors of the potentials and the states of the 

subdomains at the early period of the simulation. As has been expected, the movement of the 

generated wave is clearly observable in the system. Part (c) shows the system results for the whole 

simulation time. As can be seen, the obtained results indicate the stability of the model, as the 
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system returns to its initial equilibrium condition. In Part (d), the irreversibility of the system is 

presented. Although the magnitude of the obtained irreversible power transactions between the 

kinetic and thermal subdomains is considerably low, stabilization of the system is a direct result 

of these existing irreversible transactions. One can see that, no matter how negligible the value of 

the intrinsic irreversibility of the system is, it can physically stabilize the model and make the use 

of mathematically-generated stabilizers pointless in the model. The capability of including the 

intrinsic dissipation of the system with respect to its physical subdomains’ interactions can be 

counted as another state-of-the-art of the proposed decomposition methodology as compared to 

other conventional decomposition techniques. 

In general, the result presented in Fig. 9 demonstrates that the proposed model is capable of 

capturing complex nonlinear behaviors of the system in spite of its simplicity, which highlights 

the significance of the added physical insights shown in the proposed model. Accordingly, since 

there exists a physical causality within the model, physical outcomes from the model are expected, 

with which a variety of behaviors of the system can be captured without intentionally regenerating 

them via added mathematical constraints. For instance, from Fig. 10 (a I-III), one can simply 

realize that although the dynamic behavior of the system is changing due to an increased frequency 

of the inlet perturbation, the disturbance in the system is traveling with a constant speed. This 

behavior is captured in the system as a result of the physical relations between the extensive states 

and the potentials of the system, not through mathematically-embedded constrains. Another 

example is the capture of noise compensation phenomena when an opposite similar input is applied 

to the other boundary of the system as shown in Fig. 10 (b I-II). It is clear that releasing an opposite 

noise to the system from the left end has led to the decrease of the fluctuation magnitude of the 

system; however, since there exists a natural lag in the system, the complete cancelation does not 

occur. This captured behavior highlights the sound physics behind such phenomena in the system. 

Obtaining the behavior of the system connected to the physical essence of the phenomena, via 

connecting the system to its natural memory, would lead to broadening the valid range of such 

models and reducing the costs of simulation.                 
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Fig. 10 Sensitivity analysis of the behavior of the system 

The physical decomposition of the system further leads to the domain-independency of the 

model, which makes the connection of physical subdomains possible regardless of the disciplines 

where the subdomains may belong to. This capability can broaden the application of the generated 

model in multi-disciplinary system dynamic investigations. For instance, Fig. 10 (b III) shows the 

impacts of external heat transfer on the general behavior of the system whose initial behavior is 

presented in Fig. 10 (b I). It is clear that the transferred heat into the system has totally changed 

the behavior of the system. Now, imagine the source of the transferred heat into the system as a 

hot interface. The coupled dynamics of heat transfer between the surface and the system can be 

obtained simply by connecting the thermal energy lines of the fluid and solid fields, if the model 

of the solid field has been generated using a similar terminology. In addition, one can see in an 

interactive multi-physical problem such as a supersonic FSI problem where the power transaction 

between the fields is a combined aero-thermo dynamic load, the physically-decomposed power 

transactions provided by the energetic decomposition of the two fields can be a great help to 

discover the unsolved problems relating to aerothermoelasticity.    
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5. Conclusion 

In this study, a domain-independent energy-based nonlinear model is developed for 

compressible convective flow. By means of the proposed decomposition of the fluid field into 

thermal, mass, potential, and kinetic subdomains, the general complex dynamics of the system are 

developed on the basis of the conservative reversible and irreversible energetic interactions of the 

present physical subdomains. The dynamics of the system obtained in this way are directly 

connected to the physical memory of the system, and thus, provide the possibility of capturing the 

ongoing phenomena of the system including the energetic transactions between the mechanical 

and thermal subdomains.  

The domain-independency of the generated model can be counted as a desirable feature for 

dynamic investigations of multi-disciplinary systems, as the complex power transactions between 

the disciplines can be decomposed with respect to the present similar physical subdomains of 

different fields. Furthermore, the developed energetic network of the system provides a useful tool 

for control strategy development and energy management of the system.  

The obtained relations discussed in this study can also be used to define proper relations for 

corresponding CFD modeling studies. The generated BG model of one segment can serve to 

generate the partial differential equations via a limited operation on the geometry of the segment 

to provide a full freedom of choice for numerical-solution techniques. The authors hope that other 

modelers will find inspiration to use this approach in their own research.  
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CHAPTER 7: COUPLED AEROTHERMOVISCOELASTIC MODEL 

Aim 

The aim of this chapter is to connect the energy-based solid and fluid models generated in 

Chapters 5 and 6, respectively.   

Description 

To achieve this aim, owing to the domain-independency of the generated models, and since in 

the decomposition of these two fields a similar terminology has been employed, the generated 

power structures respectively for the two fields become continuously connectable. As a result, the 

total conservative power transactions between the two fields can be defined distinguishably from 

the power transactions of each corresponding physical subdomains of these two fields in the form 

of handshaking. To satisfy the compatibility conditions raised from the implementation of the 

different coordinate frames for the solid and fluid fields, a novel Variable Interface Dynamic 

Adaptation (VIDA) technique is developed to be implemented on the interface of the two fields.  

The outline of the presented study is organized as follows: 
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Results 

The generated conservative power network of the system will make it possible to control and 

manage the system with respect to each physical subdomain individually, while allowing the 

influence of the other involving subdomains to be examined through explicitly-expressed 

embedded physical relations between the subdomains. The capabilities of the proposed physical 

model of the entire fluid-solid-interface system provide a novel feature into the system dynamic 

modeling that can, not only, broaden the valid range of the model but, more importantly, offer a 

unique opportunity for capturing and revealing the unknown phenomena of the system previously 

hidden using existing classical physical knowledge. 

Conclusion 

A novel fundamental framework for an integrated coupled-aerothermoviscoelastic model is 

generated with which the dynamics of the interactive solid-fluid system are generated with respect 

to the internal energetic interactions between the existing physical subdomains of each of the 

fields. 
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A NOVEL ENERGY-BASED AERTHERMOVISCOELASTIC MODELING 

FRAME FOR MULTIPLE-FIELD SYSTEM DYNAMIC INVESTIGATIONS, 

BOND GRAPH APPROACH 

A. Zanj1*, F. He2, P. C. Breedveld3 

Abstract- In this study, a new fundamental framework for a coupled-aerothermoelastic model is 

proposed with which the dynamic of the system is generated with respect to its internal energetic 

interactions between the existing physical subdomains. To this aim, by means of the Bond Graph 

terminology, a domain-independent model is first developed for each of the fluid and solid fields that 

can demonstrate the reversible and irreversible energetic interactions within the field of concern. By 

considering the conservative power transactions between the two fields, the reversible and irreversible 

intra-connections is then generated. Owing to the domain-independency of the generated models, the 

total conservative power transactions between the two fields can be defined distinguishably from the 

power transactions of each corresponding physical subdomains of these two fields in the form of 

handshaking. This capability will broaden the physical insights of power transactions in fluid-structure-

interactions (FSI) problems. In addition, the generated conservative power network of the system will 

make it possible to control and manage the system with respect to each physical subdomain individually, 

while allowing the influence of the other involving subdomains to be examined through explicitly-

expressed embedded physical relations between the subdomains. In general, the added capabilities of 

the proposed physical model provide a novel feature into the system dynamic modeling that can, not 

only, broaden the valid range of the model but, more importantly, offer a unique opportunity for 

capturing and revealing the unknown phenomena of the system previously hidden using existing 

classical physical knowledge.        

Keywords: Bond Graph modeling, FSI problems, Dynamic system modeling, Convective flow, 

Viscoelasticity.   

1. Introduction 

Modeling a correct aero-thermal load on a structure exposed to aerodynamic and 

thermodynamic conditions is one of the challenging areas in dynamic investigations of 

aerothermoelastic phenomena [1], as the magnitude of the aero-thermo load is entangled with the 

dynamics of both the fluid and solid sides of the interface instantaneously. Since the structural 
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deformation and thermal condition can change the thermodynamic characteristics of the 

surrounding fluid, and simultaneously the changes in the thermodynamic parameters of the fluid 

can generate different aero-thermo load for the structure, in order to generate a correct aero-thermo 

load, the systems respectively describing the fluid and solid fields are required to be dynamically 

coupled on the interface. However, there are two significant issues in coupling the fluid and solid 

fields together. The first issue is concerned with the conservation of power transmissions between 

the two fields, as the fluid power does not have an explicit character. The second issue relates to 

the translation of Lagrangian solid field’s motion into the Eulerian fixed frame of the fluid field. 

In earlier studies [2] [3], to address the above-described issues, slow-thermal-dynamics [4] and 

weak-connectivity [5] assumptions are commonly adopted. Through assumed decoupled-

dynamics between the structure and the thermal domain, the former studies intend to decrease the 

degree of freedom of the system in order to generate an explicit transaction between the fluid and 

solid fields. In recent attempts [6] [7] [8], the weak-connectivity assumption is seen to be avoided 

by using numerical strategies to include the thermal impacts on each field’s dynamics; however 

the slow-thermal-dynamics assumption on the interface is still firmly kept. In these studies, by 

employing the Helmholtz free energy in solid material model [9] and the Navier-Stokes equations 

for fluid field [10], the generated models for both the solid and fluid fields are domain-dependent 

[11] in nature. This feature of the modeling makes the dynamic coupling of the thermal subdomains 

of the two fields on the interface impossible to implement. Furthermore, the entropic interactions 

between the two fields remain ambiguous. Although the entropic interactions in comparison with 

other interactions may be negligible [5], the ignorance of this factor will put the conservation of 

power transaction between the two fields under question. Accordingly, the models thus generated, 

though capable of providing a clear picture of ongoing dynamics of the system, are seen to be 

unsuitable to provide a useful and unbroken root upon which the physical memory of the system 

underpinning the energy conservation law can be firmly established. In addition, the attained 

modeling accuracy relies heavily on mathematical constrains (filtration and stabilization [12]) 

employed and computational capacities required, which leads to the development of drastically 

high-order models valid only within a limited operational range. There is therefore a need to 

rethink the modeling technique and to create a new methodology that can be based on purely the 

intrinsic physical constrains of the system to generate valid models that naturally obey the energy 

conservation law and reveal the interconnected physical insights of the system dynamics truthfully. 
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The conservation of power transaction on the interface can be satisfied if isomorphic models 

of both the fluid and solid fields can be generated. In isomorphic models, for each portion of the 

power transportation (thermal, acoustic, or kinetic) in one field, there exists a specific gate in the 

other field with which a tractable transaction between the fields is attainable. However, because of 

the fundamental differences between the two fields (namely, the existence of mass flow in the fluid 

field), generating isomorphic models for each of the fields in a general form is not possible unless 

each field is decomposed into a set of alike subdomains where counterparts between the two fields 

become isomorphic. Knowing that an aerothermoelastic system is a multi-physical multiple-field 

(fluid and solid) system by nature, if one can generate a field-independent model (using physical 

states) of involving physical subdomains for each of the fields, the counterpart physical 

subdomains between the two fields (e.g., the thermal subdomain of the solid field and the thermal 

subdomain of the fluid field) will become isomorphic. Thus, the reversible and irreversible power 

transactions among the physical subdomains, regardless of the specific field, will become tractable.  

In the current study, to develop the fundamentals for a conservative coupled-aerothermoelastic 

model, physical decomposition of the system is suggested [13] for the fluid and solid fields at the 

interface. Accordingly, since the physical (thermal, mass, kinetic, and potential) subdomains are 

alike in any field, generating isomorphic models for the physical subdomains regardless of the 

field becomes possible [14]. To this aim, by means of the port-based approach (known as the Bond 

graph approach) [15] [16] [17] [18], each field is first decomposed into its initial physical 

subdomains, and the dynamics of the field are generated from the reversible and irreversible 

interactions of the energetic components of the physical subdomains. Based on power continuity 

between the two fields, through connecting the counterpart pairs of the physical subdomains of the 

two fields with respect to the possible connections of their energetic components on the interface, 

the conservative coupled-aerothermoelastic model of the system can then be generated if and only 

if the compatibility issue between the fixed Eulerian frame of the fluid field and the moving 

Lagrangian frame of the solid field can be addressed satisfactorily.  

To address the compatibility issue, the virtual interface dynamic adaptation (VIDA) technique 

[19] is employed. According to the VIDA technique, the likely motions of the Lagrangian solid 

frame is virtually translated into a reversible volumetric flow for the fixed Eulerian fluid frame. 

Accordingly, the compatibility of the two frames is satisfied and the required information of the 
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contact surface is refined at any instant in time to keep the power transactions at the interface 

continuous.  

In overall, by using the proposed methodology, an energetic network of the system will be 

generated that can illustrate continuous reversible and irreversible power transactions (including 

power transformation and power transportation) among the various subdomains and between the 

two fields. The dynamics obtained from such a model will include more details in relation to the 

memory and physical characteristics of the system, which can in turn provide a desirable basis for 

analyzing the complex multi-physical multiple-field behaviors of the system. As the model is 

developed without the slow-thermal-dynamics and weak-connectivity assumptions and with no 

additional mathematical constrains, the model is valid in an extended range principally much wider 

than its conventional counterparts. Undoubtedly, the proposed energetic network of the system can 

be a useful tool for developing control strategies and energy management of the system. 

To illustrate the development of the proposed model, the reminder of this paper is organized 

as follows. In Section 2, a simple multiple-field system is defined as an example to be physically 

decomposed. The energy-based model of the solid and fluid fields of the chosen system is then 

developed correspondingly in Sections 3 and 4. In Section 5, by implementing the VIDA 

technique, the conservative coupling between the two fields is generated to form a coupled-

aerothermoviscoelastic model. In Section 6, via simulating several scenarios of the chosen system, 

the capability of the proposed model in capturing ongoing dynamic behavior of the system is 

examined. Finally, the capability of the proposed model in capturing the complex behavior of the 

system from the energetic interactions of the physical subdomains described in a discrete 

configuration is concluded in Section 7. 

2. Physical system 

To develop an energy-based aerothermoviscoelastic model avoiding complexity, a simple 1D 

multiple-field system given in Fig. 1  is considered for which the procedure for extracting the 

system model will be explained. As illustrated in Fig. 1, the system consists of a flexible duct 

containing compressible fluid in the form of a closed system where mechanical energy and thermal 

energy transfer between the solid and fluid fields. For simplicity, only the axial deformation of the 

flexible duct is considered together with the axial dynamics of the confined gas. As so, the 
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mechanical power transactions between the fluid and solid fields will occur only at both ends of 

the duct while the heat transfer between the two fields will occur alongside the system.         

 
Fig.1 1D flexible duct structure 

For the chosen system, two energy-based models resulting from the physical decompositions 

of the fluid and solid fields are first derived individually. By developing the handshake connections 

between the physical subdomains of the obtained models of the two fields, a conservative 

aerothermoviscoelastic model of the system is then generated. It should be mentioned that the 

choice of a 1D system in this study is just for the purpose of clarifying the procedure for generating 

the energetic network of the system. Since the considered states for both the fluid and solid fields 

are standard extensive physical states, the extension of the generated model for higher-dimension 

systems is systematically attainable.              

3. Decomposed domain-independent thermo-viscoelastic model 

To generate a physically-decomposed model of the solid field, the energy-based modeling 

technique proposed in [20] is employed. According to this method, a domain-independent 

dispersive model for each of the three physical (kinetic, potential, and thermal) subdomains is first 

developed using the Bond graph (BG) approach that can separately describe the energetic 

interactions within each of the subdomains. The possible reversible and irreversible energetic 

couplings between the subdomains are then installed inside the model to form an integrated 

decomposed thermo-viscoelastic model. Finally, the interactive modulations including 

deformation-modulated conductivity and temperature-modulated mechanical resistivity are added 

to the model. The obtained model will provide a clear dynamic map of the solid filed for the 

considered system’s energy propagation.  



 AIAA Journal (under review) 

234 

3.1. Dissipative elastic domain BG model 

To generate a distributed dispersive elastic model (including potential and kinetic subdomains 

of the solid field) for the considered 1D system shown in Fig. 1, an energy-based Maxwell discrete 

model suggested in [21] is employed. In this model, a resistor is placed inside each element in 

series with the storage component. Fig. 2  shows a discrete Maxwell structure for a finite number 

of elements. Since this reticulated space is indeed a continuous system, the adjacent boundaries of 

each two consecutive elements are bonded to move together. Therefore, one can consider the above 

discretization as a junction-element where the elements are the representative of the potential 

subdomain, and the junctions are the representative of the kinetic subdomain of the solid field. 

 
Fig.2 Maxwell model BG representation 

For the BG representation shown in Fig. 2, considering the state variables for the ith element 

and jth junction as 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝐴𝐴 which denote the deformation and momentum, respectively, the state 

equations for each junction-element are derived as: 

�̇�𝑝𝑖𝑖 =
𝑞𝑞𝐴𝐴−1
𝐶𝐶𝐴𝐴−1

−
𝑞𝑞𝐴𝐴
𝐶𝐶𝐴𝐴

 (1)  

�̇�𝑞𝑖𝑖 =
𝑝𝑝𝑗𝑗−1
𝐼𝐼𝑗𝑗−1

−
𝑝𝑝𝑗𝑗
𝐼𝐼𝑗𝑗
− 𝑞𝑞𝑖𝑖

𝜏𝜏𝑖𝑖
  (2)  

𝜏𝜏𝑖𝑖 = 𝑅𝑅𝑖𝑖𝐶𝐶𝑖𝑖  (3)  

𝐼𝐼𝐴𝐴 =
𝑚𝑚𝑖𝑖

2
+
𝑚𝑚𝑖𝑖+1

2
 (4)  

𝐶𝐶𝑖𝑖 =
𝐿𝐿0𝑖𝑖
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖

 (5)  

where 𝐼𝐼𝐴𝐴  is the boundary inertance defined as a function of the adjacent elements’ masses; 𝐶𝐶𝑖𝑖 
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represents the capacitance of the element as a function of the element’s geometrical and material 

parameters; 𝐿𝐿0𝑖𝑖, 𝐴𝐴𝑖𝑖 and 𝐸𝐸𝑖𝑖 are the initial length, contact surface, and Young modulus of the 

element, respectively; 𝑅𝑅𝑖𝑖  indicates the element’s resistant coefficient obtained from the viscosity 

of the material. Using the geometrical and material parameters of the solid field, the presented 

model is able to generate the axial dispersive elasto-dynamics of the solid field of the chosen 

system.  

3.2. Thermal domain BG model 

An energy-based conduction model presented in [25] is employed to generate a thermal 

subdomain model of the solid field with its geometry reticulation and BG representation given in 

Fig. 3. The energy propagation within the model is described by a chain of dissipative (𝑅𝑅) and 

capacitive (𝐶𝐶) energy components placed interlaced [23]. It is assumed that thermal energy is 

stored in 𝐶𝐶 components and dissipated while passing through 𝑅𝑅 components.      

 

 
Fig.3 1D heat conduction schematic 

Based on the obtained thermal BG integrative causality, the state equation of the thermal 

subdomain is derived by defining all the entropy flow to the storage component: 

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 = �̇�𝑠𝑗𝑗−1 − �̇�𝑠𝑗𝑗 + �̇�𝑆𝑖𝑖
𝑔𝑔𝑆𝑆𝑠𝑠     (6)  

where 𝑞𝑞𝑡𝑡ℎ𝑖𝑖 denotes the amount of stored entropy, s, of the ith element; �̇�𝑠𝐴𝐴−1, �̇�𝑠𝐴𝐴 and �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 are the 

amounts of reversible inlet and outlet entropy flows, and the entropy generation rate, respectively. 

Considering the resistive constitutive equation of the thermal subdomain, the internal flow crossing 

the jth boundary of the segment can be derived as: 
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�̇�𝑠 𝐴𝐴 = 1
𝑅𝑅𝑗𝑗

(𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ𝑖𝑖) −𝜓𝜓𝑖𝑖+1(𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1))   (7)  

where 𝑅𝑅𝐴𝐴 is the resistant coefficient of the jth RS component, and 𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ𝑖𝑖) is the ith constitutive 

equation of the thermal subdomain. Assuming that the capacity of a long well-insulated rod is 

proportional to the temperature gradient [23], 𝑅𝑅𝐴𝐴  is then presented as:  

𝑅𝑅𝐴𝐴 =
𝛥𝛥𝑥𝑥𝑗𝑗𝑇𝑇𝑗𝑗
𝑘𝑘𝑗𝑗𝐴𝐴𝑗𝑗

  (8)  

where kj and Aj are specific thermal conductance coefficient and cross-section area of the jth 

junction, respectively; ∆xj is the generalized length of the jth resistive energy component. 

To define 𝜓𝜓𝑖𝑖(𝑞𝑞𝑡𝑡ℎ𝑖𝑖), use the constant-volume capacitive law: 

𝑄𝑄 = ρ𝑉𝑉𝑐𝑐 𝐴𝐴𝑇𝑇
𝐴𝐴𝑡𝑡

  (9)  

where 𝑐𝑐, ρ and V are the specific heat, density, and volume of the element, respectively. 

Considering the relation between the conjugate variables of the thermal subdomain: 

𝑄𝑄 = 𝐸𝐸�̇�𝑞𝑡𝑡ℎ  (10)  

the functionality of 𝜓𝜓𝑖𝑖�𝑞𝑞𝑡𝑡ℎ𝑖𝑖� can be derived as: 

𝐸𝐸𝑖𝑖 = 𝜓𝜓𝑖𝑖�𝑞𝑞𝑡𝑡ℎ𝑖𝑖� = 𝐸𝐸0𝑆𝑆
1

ρ𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑚𝑚0�  (11)  

where 𝑒𝑒𝑖𝑖 is the length of the ith storage component; 𝐸𝐸0 and 𝑠𝑠0 are respectively the reference 

temperature and entropy for the ith element. To define the generated entropy rate,  �̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠, in Eq. (6), 

considering the continuous power transmission of a two-port RS-component and the junction’s 

resistive constitutive equation:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠𝐸𝐸𝑖𝑖 = �̇�𝑠𝐴𝐴−1 (𝐸𝐸𝑖𝑖−1 − 𝐸𝐸𝑖𝑖)  (12)  

�̇�𝑠𝐴𝐴 𝑅𝑅𝐴𝐴 = (𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1) (13)  

the generated entropy rate of the element is derived as:  

�̇�𝑆𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 = 1

𝑅𝑅𝑗𝑗−1
𝐸𝐸0𝑆𝑆

1
𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑚𝑚0� (𝑆𝑆
1

𝜌𝜌𝑖𝑖𝑉𝑉𝑖𝑖𝑐𝑐𝑖𝑖
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1� − 1)2  (14)  

Accordingly, the governing equations for the thermal subdomain of the solid field are closed. 

Since the generated thermal and elastic models are to be coupled to form the integrated thermo-
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viscoelastic model, the geometrical compatibility conditions of their corresponding energy 

components must be satisfied. Accordingly, similar to the elastic model, the memory and 

resistivity characteristics of the thermal model are located at the center and the two sides of the 

element, respectively. To form the resistive component in the suggested configuration, using the 

same functionality in the elastic subdomain for junction elements:  

𝑅𝑅𝐴𝐴 = 𝑇𝑇0
2

(𝑙𝑙𝑖𝑖𝑒𝑒
1

ρ𝑉𝑉𝑐𝑐�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑠𝑠0�

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝑙𝑙𝑖𝑖+1𝑒𝑒

1
𝜌𝜌𝑖𝑖+1𝑉𝑉𝑖𝑖+1𝑐𝑐𝑖𝑖+1

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑠𝑠0�

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)  (15)  

It is clear that by substituting Eqs. (7), (11), (14) and (15) into (6), the rate of the change in the 

entropy of the element will be dependent on the spatial material and geometrical characteristics of 

the element. This exclusive feature of the proposed model makes the thermal element compatible 

with elements of any other subdomains that have the same spatial references, and leads to the 

appropriateness of the thermal model for multi-physical domain dynamic investigations. 

3.3. Thermo-elastic reversible and irreversible energetic coupling 

The generated dispersive elastic and thermal models provide two separate power lines that 

individually illustrate the power transactions in each of the subdomains (It should be mentioned 

that the elastic energy line contains the transaction relating to the potential and kinetic subdomains; 

however for simplicity in the following this combination is considered as the elastic subdomain). 

The reversible and irreversible connections among the subdomains need to be added to the overall 

model to clarify the continuous power transformation between them. For this purpose, the 

respective memories (stored in C) of these subdomains, as well as the resistivity of the system, are 

required to be coupled. To achieve this, the storage components of both subdomains are replaced 

by the multiport storage [11], and the dissipated energy from the elastic to thermal subdomains is 

transferred via the mechanical RS-element as shown in Fig. 4.       
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Fig.4  Coupled thermo-viscoelastic model 

The replacement of the storage components mathematically means the change of the 

constitutive relation of each subdomain with two-dimensional constitutive equations that are 

reciprocal together. To extract the new constitutive equations for each subdomain, let’s assume 

that the total energy stored inside this two-port storage is a function of the extensive states of both 

thermal and elastic subdomains: 

𝑈𝑈 = 𝑈𝑈(𝑞𝑞𝑚𝑚, 𝑆𝑆)  (16)  

where 𝑞𝑞𝑚𝑚 presents the deformation and 𝑆𝑆 is the entropy of each element. Considering energy as a 

1st-order homogenous function, the energy change in the field can be expressed as: 

𝑑𝑑𝑈𝑈 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑚𝑚

𝑑𝑑𝑞𝑞𝑚𝑚 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
𝑑𝑑𝑆𝑆  (17)  

where by definition the constitutive equations for the elastic and  thermal subdomains are: 

𝐹𝐹(𝑞𝑞𝑚𝑚, 𝑆𝑆) = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

 ,  𝐸𝐸(𝑞𝑞𝑚𝑚, 𝑆𝑆) = �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

 (18)  

where F and T are defined earlier as the efforts (potentials) of the elastic and thermal ports, 

respectively. The deferential form of the constitutive equation for both subdomains with respect 

to the new variables can be presented as follows: 

𝑑𝑑𝐸𝐸 = � 𝜕𝜕𝑇𝑇
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆
𝑑𝑑𝑞𝑞𝑚𝑚 + �𝜕𝜕𝑇𝑇

𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚
𝑑𝑑𝑆𝑆  

(19)  

𝑑𝑑𝐹𝐹 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆
𝑑𝑑𝑞𝑞𝑚𝑚 + �𝜕𝜕𝜕𝜕

𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

𝑑𝑑𝑆𝑆  
(20)  

To start with the thermal subdomain constitutive relation, for the 2nd term of the right-hand side of 

Eq. (19), given the thermal energy 𝑄𝑄 at constant volume, 
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𝜕𝜕𝑄𝑄 = 𝐸𝐸𝜕𝜕𝑠𝑠 = 𝐶𝐶𝑣𝑣𝑑𝑑𝐸𝐸  (21)  

and considering the constant specific heat 𝐶𝐶𝑣𝑣, one can conclude: 

�𝜕𝜕𝑇𝑇
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

= 𝑇𝑇
𝐶𝐶𝑣𝑣

  (22)  

To define the 1st term of Eq. (19), by taking the advantage of the reciprocity of the two constitutive 

equations and considering the Hook’s law for 1D geometry, one has: 

� 𝜕𝜕𝑇𝑇
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

  
(23)  

𝐹𝐹 = 𝐴𝐴𝐸𝐸 𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸(𝐸𝐸 − 𝐸𝐸0)  (24)  

Taking the partial derivative of Eq. (24) with respect to entropy and comparing it with (23) yield: 

� 𝜕𝜕𝑇𝑇
𝜕𝜕𝑞𝑞𝑚𝑚

�
𝑆𝑆

= 𝛼𝛼𝐴𝐴𝐸𝐸 �𝜕𝜕𝑇𝑇
𝜕𝜕𝑆𝑆
�
𝑞𝑞𝑚𝑚

= 𝛼𝛼𝐴𝐴𝐸𝐸 𝑇𝑇
𝐶𝐶𝑣𝑣

  
(25)  

Substituting Eqs. (22) and (25) into (19) and integrating yield: 

𝐸𝐸 = 𝐸𝐸0𝑆𝑆
𝛼𝛼𝐴𝐴𝐸𝐸
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣   

(26)  

The elastic subdomain constitutive equation can be obtained by using Eq. (26) to change the 

causality of Eq. (24), resulting in: 

𝐹𝐹 = 𝐴𝐴𝐸𝐸 𝑞𝑞𝑚𝑚
𝐿𝐿

+  𝛼𝛼𝐴𝐴𝐸𝐸𝐸𝐸0(𝑆𝑆
𝛼𝛼𝐴𝐴𝐸𝐸
𝐶𝐶𝑣𝑣

𝑞𝑞𝑚𝑚𝑆𝑆
(𝑆𝑆−𝑆𝑆0)
𝐶𝐶𝑣𝑣 − 1)  

(27)  

The nonlinear multiport constitutive equations of the thermal and elastic subdomain are seen to 

contain a contribution related to the displacement/strain and a contribution related to the entropy, 

thus showing the reversible effect of thermo-elasticity on both subdomains.  

To irreversibly connect the elastic and thermal subdomains, a non-return two-port energy 

transducer introduced in [21] is required to be installed inside the system. This new connection is 

presented in Fig. 4 as the RS-component connecting the elastic and thermal subdomains. Assuming 

that the energy stays conservative while transferring between the subdomains, and according to 

the allocated conjugate variables of each subdomain, one can write:  

�̇�𝑞𝑚𝑚𝐹𝐹 = �̇�𝑆𝐴𝐴𝑒𝑒𝑠𝑠𝑚𝑚𝐸𝐸  (28)  

For the ith element, considering the constitutive equation of the resistive component, the introduced 

entropy rate to the thermal subdomain can be calculated as: 



 AIAA Journal (under review) 

240 

�̇�𝑆𝐴𝐴𝑒𝑒𝑠𝑠𝑚𝑚𝑖𝑖
=

�
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐿𝐿𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖�
2

𝑅𝑅𝑚𝑚𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

  (29)  

Accordingly, the total generated entropy is obtained as: 

𝑆𝑆𝑡𝑡ℎ̇ 𝑖𝑖
𝐴𝐴𝑒𝑒𝑠𝑠 = 𝑇𝑇0𝑖𝑖𝑒𝑒

𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑅𝑅𝑡𝑡ℎ𝑗𝑗−1
�𝑇𝑇0𝑖𝑖−1𝑒𝑒

𝛼𝛼𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝐸𝐸𝑖𝑖−1
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑞𝑞𝑚𝑚𝑖𝑖−1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

− 1�

2

  (30)  

𝑅𝑅𝑡𝑡ℎ𝐴𝐴 = 1
2

(𝐿𝐿𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝐿𝐿𝑖𝑖+1𝑇𝑇0𝑖𝑖+1𝑒𝑒

𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)  (31)  

Eq. (30) demonstrates the amount of irreversibility occurring in the thermal subdomain. It can be 

seen that the mechanical resistive parameter now interferes with the entropy rate of the system 

according to an irreversible process. It is clear that this equation satisfies the second 

thermodynamic law as the amount of the generated entropy is always greater than zero. 

3.4. Thermo-elastic interactive modulations 

In addition to the energetic connections between the thermal and elastic subdomains, presented 

via energy ports, there exist information transformations between the non-memory components 

(resistors) of the system. Modulations of these parameters are thus required, which will provide 

the deformation-modulated conductivity and temperature-modulated viscoelasticity of the model 

and physically extend the capability of the model to a wider range of thermo-mechanical loading.  

 
Fig.5 Final thermo-viscoelastic BG model 

The modulations are presented in Fig. 5. Considering Eq. (8), the thermal resistance of each 
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element is proportional to the length of the adjacent element. This parameter of the system will 

vary under mechanical loading, leading to the change in the conductivity of the system. As shown 

in Fig. 5, via replacing the thermal RS-component with a deformation-modulated resistivity, MRS, 

the desired impact can be included as: 

𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝐴𝐴 = 1
2

(𝑀𝑀𝐿𝐿𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑘𝑘𝑖𝑖𝐴𝐴𝑖𝑖
+ 𝑀𝑀𝐿𝐿𝑖𝑖+1𝑇𝑇0𝑖𝑖+1𝑒𝑒

𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1

𝑘𝑘𝑖𝑖+1𝐴𝐴𝑖𝑖+1
)  (32)  

𝑀𝑀𝐿𝐿𝑖𝑖 =  𝑥𝑥0𝐴𝐴 + ∫
𝑝𝑝𝑚𝑚𝑗𝑗
𝐼𝐼𝑚𝑚𝑗𝑗

𝑑𝑑𝑡𝑡 −𝑥𝑥0𝐴𝐴−1 − ∫
𝑝𝑝𝑚𝑚𝑗𝑗−1
𝐼𝐼𝑚𝑚𝑗𝑗−1

𝑑𝑑𝑡𝑡  (33)  

where 𝑥𝑥0 is the initial location of each boundary (node) in the global axis.  

To modulate the mechanical resistance 𝑅𝑅𝑚𝑚, as shown in Fig. 5 the mechanical RS-components 

are replaced by the MRS-component as: 

𝑀𝑀𝑅𝑅𝑚𝑚𝑖𝑖 =  𝑅𝑅𝑚𝑚0𝑖𝑖
− 𝐵𝐵𝑖𝑖𝐸𝐸0𝑖𝑖(𝑆𝑆

𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 1)  (34)  

where 𝑅𝑅𝑚𝑚0 is the related viscosity parameter at room temperature, and 𝐵𝐵𝑖𝑖 is the correlative function 

of temperature.  

3.5. Thermo-viscoelastic final model 

By incorporating the proposed reversible and irreversible interactions together with the 

presented modulations shown in Fig. 5, the final state equations of the system are extracted as:  

�̇�𝑝𝑚𝑚𝐴𝐴 = 𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝑞𝑞𝑚𝑚𝑖𝑖
𝐿𝐿𝑖𝑖
− 𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1

𝑞𝑞𝑚𝑚𝑖𝑖+1
𝐿𝐿𝑖𝑖+1

+  𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸0𝑖𝑖 �𝑆𝑆
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 1� −

 𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1𝐸𝐸0𝑖𝑖+1 �𝑆𝑆
𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 − 1�  

(35)  

�̇�𝑞𝑚𝑚𝑖𝑖 =
𝑝𝑝𝑚𝑚𝑗𝑗−1
𝐼𝐼𝑚𝑚𝑗𝑗−1

−
𝑝𝑝𝑚𝑚𝑗𝑗
𝐼𝐼𝑚𝑚𝑗𝑗

− 𝐴𝐴𝑖𝑖𝛼𝛼𝑖𝑖𝑞𝑞𝑚𝑚𝑖𝑖
𝑀𝑀𝑅𝑅𝑚𝑚𝑖𝑖𝐿𝐿𝑖𝑖

  (36)  

�̇�𝑞𝑡𝑡ℎ𝑖𝑖 = 1
𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝑗𝑗−1

�𝐸𝐸0𝑖𝑖−1𝑆𝑆
𝛼𝛼𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝐸𝐸𝑖𝑖−1

𝐶𝐶𝑣𝑣𝑖𝑖−1
𝑞𝑞𝑚𝑚𝑖𝑖−1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1 − 𝐸𝐸0𝑖𝑖𝑆𝑆

𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 � −

1
𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝑗𝑗

�𝐸𝐸0𝑖𝑖𝑆𝑆
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 𝐸𝐸0𝑖𝑖+1𝑆𝑆
𝛼𝛼𝑖𝑖+1𝐴𝐴𝑖𝑖+1𝐸𝐸𝑖𝑖+1

𝐶𝐶𝑣𝑣𝑖𝑖+1
𝑞𝑞𝑚𝑚𝑖𝑖+1𝑆𝑆

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖+1−𝑆𝑆0𝑖𝑖+1�
𝐶𝐶𝑣𝑣𝑖𝑖+1 � +

(37)  
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𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝑗𝑗−1
�𝑇𝑇0𝑖𝑖−1𝑒𝑒

𝛼𝛼𝑖𝑖−1𝐴𝐴𝑖𝑖−1𝐸𝐸𝑖𝑖−1
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑞𝑞𝑚𝑚𝑖𝑖−1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−1−𝑆𝑆0𝑖𝑖−1�
𝐶𝐶𝑣𝑣𝑖𝑖−1

𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

− 1�

2

+
�
𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐿𝐿𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖�
2

𝑀𝑀𝑅𝑅𝑚𝑚𝑖𝑖𝑇𝑇0𝑖𝑖𝑒𝑒
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�
𝐶𝐶𝑣𝑣𝑖𝑖

    

where the indexes m and th are used to indicate the elastic and thermal parameters, respectively. 

Eqs. (35)-(37) form the final set of governing equations sufficient for describing the ongoing 

thermo-viscoelastic phenomena of the system based on energy conservation. As revealed in Eq. 

(35), the momentum rate of each element’s boundary now reversibly (via 𝑞𝑞𝑡𝑡ℎ) depends on the 

temperature of the adjacent elements. Also, it is seen in Eq. (36) that the deformation rate of each 

element is irreversibly (via 𝑀𝑀𝑅𝑅𝑚𝑚) dependent on the element temperature. Similar to the elastic 

subdomain, Eq. (37) reveals that the entropy rate of the system is reversibly (via 𝑞𝑞𝑚𝑚) and 

irreversibly (via 𝑀𝑀𝑅𝑅𝑚𝑚 and 𝑀𝑀𝑅𝑅𝑡𝑡ℎ ) related to the deformation of the system.  

4. Energy-based convective flow model 

To generate a physically-decomposed model of the fluid field, a simplified version of the 

energy-based modeling technique proposed in [25] is employed, with which the governing 

equations of a 1D compressible convective field are extracted for an ideal gas. Sequentially, the 

convective field is decomposed with respect to the general physical states, the decomposed power 

structure of the system is presented by means of the BG notation, the correctness of the generated 

BG model is checked via causality allocation, the state equations corresponding to the generated 

BG are extracted, and finally the potential functions together with the resistive and coupling 

coefficients are defined. 

4.1. Physical decomposition of the fluid field    

Consider the 1D discretized duct with flexible wall shown in Fig. 1 in which compressible air 

can transfer alongside the duct. Since the model is supposed to be used in multiple-field dynamic 

investigations, the domain-independency of the model is of interest. As so, the general physical 

states: mass 𝑚𝑚, entropy 𝑆𝑆, and volume 𝑉𝑉 are selected with their corresponding potentials: mass 

potential 𝜇𝜇, temperature 𝐸𝐸, and pressure 𝑃𝑃. Considering the selected conjugate variables, the flow 

field is physically decomposed to mass subdomain, potential subdomain (acoustic subdomain), 

and thermal subdomain, all of which can reversibly and irreversibly interact with each other. It 

should be mentioned that, in addition to the considered physical subdomains, there may exist the 
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velocity-momentum subdomain additional to the decomposed structure of the system [25]; 

however, since the main aim of this study is to clarify the entropic interaction of the interface via 

the BG method, this additional subdomain is omitted here to avoid unnecessary complexity.      

Considering the chosen physical decomposition and the existing energetic component of the 

fluid field [25], the junction structure of the 1D flexible duct can be presented by Fig. 6. As can be 

seen, each segment (element) is the location of the energy storage component (capacitor) that 

provides the memory of the system. Each connecting junction is the location for the resistive 

components of which the parameters are a function of both material and geometrical parameters 

of the adjacent segments.  

 
Fig.6 Decomposed 1D fluid field         

  Given that among the subdomains the reversible connections occur in the capacitors and the 

irreversible non-return interactions occur in the resistors, the general frame for the power structure 

of the system in the BG notation is depicted in Fig. 7. As can be seen, the total power of the system 

is decomposed into three separate power lines representing the energy flows of each of the 

subdomains individually. All the considered subdomains are reversibly connected via C-

components, and the collective flow of each subdomain can be obtained from the corresponding 

0-junctions containing the divergence and coupling terms coming from the 1-junctions (the 

boundaries of segment) and the flow source terms 𝑆𝑆𝑓𝑓𝑖𝑖, respectively. The physical subdomains are 

irreversibly connected via the RS-components which act as non-return power transformers to the 

thermal subdomain. The coupling transformers (𝑀𝑀𝐸𝐸𝐹𝐹𝑖𝑖−𝐴𝐴  ) of the energy transportation in the 1-

junctions provide the required convective information of each of the subdomains with respect to 

the natural dependency of the considered physical states of the system.  
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Fig.7 BG presentation of the general power structure of the fluid field of the system   

The arrangement of the causality lines regarding the global conservation laws confirms the 

correctness of the proposed power structure. Thus, the well-posedness of the generated state 

equations from the obtained model is granted.  

4.2. Fluid field state equations 

The set of state equations corresponding to the generated power structure for the 𝑖𝑖𝑡𝑡ℎ segment 

can be presented as: 

�̇�𝑚𝑖𝑖 = �̇�𝑚𝐴𝐴−1 − �̇�𝑚𝐴𝐴 (38)  

�̇�𝑆𝑖𝑖 = �̇�𝑆𝐴𝐴−1 − �̇�𝑆𝐴𝐴 + �̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
 

(39)  

�̇�𝑉𝑖𝑖 = �̇�𝑉𝐴𝐴−1 − �̇�𝑉𝐴𝐴  
(40)  

where �̇�𝑥𝐴𝐴 (𝑥𝑥 = 𝑚𝑚,𝑉𝑉, 𝑆𝑆) corresponds to the introduced flow to the segment from the 𝑗𝑗𝑡𝑡ℎ spatial 

boundary, and �̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
 denotes the collective generated entropy flow rate of the segment and is 

named as the irreversible flow. Condensing the coupling power and divergence power transported 

via unique flow, the flows crossing the 𝑗𝑗𝑡𝑡ℎ boundary of 𝑖𝑖𝑡𝑡ℎ segment are then defined as: 

�̇�𝑚𝐴𝐴 =
1

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑅𝑅𝑉𝑉𝐴𝐴

�𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖+1 +
1

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖+1 + 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴
(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1)�� 

(41)  

�̇�𝑆𝐴𝐴 =
𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1
𝑅𝑅𝑆𝑆𝐴𝐴

+ 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴

1
𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

1
𝑅𝑅𝑉𝑉𝐴𝐴

�𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖+1

+
1

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖+1 + 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴
(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1)�� 

(42)  
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�̇�𝑉𝐴𝐴 =
1
𝑅𝑅𝑉𝑉𝐴𝐴

�𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖+1 +
1

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴

�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖+1 + 𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴
(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑖𝑖+1)�� 

(43)  

Knowing that the dissipated power is transferred to the thermal subdomain via generated entropy 

rate of each subdomain, by considering the resistive components of each subdomain as an ideal 

non-return transducer, the irreversible flow to the thermal subdomain can be calculated as:  

�̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖
= �̇�𝑆𝑉𝑉

𝐴𝐴𝑒𝑒𝑠𝑠
𝑖𝑖 + �̇�𝑆𝑆𝑆

𝐴𝐴𝑒𝑒𝑠𝑠
𝑖𝑖  

(44)  

where: 

�̇�𝑆𝑉𝑉
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖 =
1
𝐸𝐸𝑖𝑖

(𝑃𝑃𝑖𝑖−1 − 𝑃𝑃𝑖𝑖)2

𝑅𝑅𝑉𝑉𝐴𝐴−1
 

(45)  

�̇�𝑆𝑆𝑆
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖 =
1
𝐸𝐸𝑖𝑖

(𝐸𝐸𝑖𝑖−1 − 𝐸𝐸𝑖𝑖)2

𝑅𝑅𝑆𝑆𝐴𝐴−1
 

(46)  

By defining the potentials, coupling factors, and dissipative coefficients as functions of the state 

variables (𝑥𝑥 = 𝑚𝑚,𝑝𝑝,𝑉𝑉, 𝑆𝑆), material parameters (𝑃𝑃𝑚𝑚), and geometrical parameters (𝑃𝑃𝐴𝐴), of the 

segment, the state equations of the system are closed. 

4.3. Fluid field potential functions 

To derive the potential functionalities, considering the internal energy 𝑈𝑈(𝑚𝑚, 𝑉𝑉, 𝑆𝑆) in a 

conservative field, the following relations can be presented for the potentials: 

�
𝜕𝜕𝑈𝑈
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

= 𝜇𝜇(𝑚𝑚, 𝑝𝑝,𝑉𝑉, 𝑆𝑆) 
(47)  

�
𝜕𝜕𝑈𝑈
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= 𝑃𝑃(𝑚𝑚,𝑉𝑉, 𝑆𝑆) 
(48)  

�
𝜕𝜕𝑈𝑈
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

= 𝐸𝐸(𝑚𝑚,𝑉𝑉, 𝑆𝑆) 
(49)  

To start with the thermal subdomain, considering Eq. (49), the differential form of the constitutive 

equation of the thermal subdomain can be presented as:  

𝑑𝑑𝐸𝐸 = �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
𝑑𝑑𝑚𝑚 + �

𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

𝑑𝑑𝑉𝑉 + �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

𝑑𝑑𝑆𝑆 
(50)  

Considering the energy law at constant volume and the thermal subdomain adjugate variables 

(𝐸𝐸, 𝑆𝑆), the last term of Eq. (50) can be obtained as: 
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�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

=
𝐸𝐸
𝑚𝑚𝑐𝑐𝑣𝑣

 
(51)  

where 𝑐𝑐𝑣𝑣 is the specific heat in constant volume. Considering the first thermodynamics law for an 

ideal gas, the second term of Eq. (50) can be defined as: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= −
𝑅𝑅𝐸𝐸
𝑉𝑉𝑐𝑐𝑣𝑣

 
(52)  

Finally the first term of Eq. (50) with respect to the Gibbs equation for an ideal gas is presented 

as: 

�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

=
𝐸𝐸
𝑐𝑐𝑣𝑣
�
𝑅𝑅
𝑚𝑚
−

𝑆𝑆
𝑚𝑚2� 

(53)  

By substituting Eqs. (51-(53) into Eq. (50) and integrating the obtained complete differential 

equation, the constitutive equation of the thermal subdomain for the 𝑖𝑖𝑡𝑡ℎ segment is obtained as: 

𝐸𝐸𝑖𝑖 = 𝐸𝐸0𝑖𝑖 �
𝑉𝑉0𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚0𝑖𝑖𝑉𝑉𝑖𝑖
�

𝑅𝑅
𝑐𝑐𝑣𝑣
𝑆𝑆
� 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖

−
𝑆𝑆0𝑖𝑖
𝑚𝑚0𝑖𝑖

�

𝑐𝑐𝑣𝑣   

(54)  

where 𝐸𝐸0, 𝑚𝑚0, 𝑉𝑉0, and 𝑆𝑆0 are the reference temperature, mass, volume, and entropy, respectively. 

Similar to the thermal subdomain, the differential form of the potential subdomain (𝑃𝑃,𝑉𝑉) 

constitutive equation can be written as: 

𝑑𝑑𝑃𝑃 = �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
𝑑𝑑𝑚𝑚 + �

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

𝑑𝑑𝑉𝑉 + �
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

𝑑𝑑𝑆𝑆 
(55)  

Given the reversible interactions between the subdomains in storage components and the fact that 

reciprocal relations do exist between the partial differential terms of the constitutive equations, 

one has: 

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

= �
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

= −
𝑅𝑅𝐸𝐸
𝑉𝑉𝑐𝑐𝑣𝑣

 
(56)  

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

=      
𝑃𝑃(𝑅𝑅 + 𝑐𝑐𝑣𝑣)

𝑉𝑉𝑐𝑐𝑣𝑣
 

(57)  

�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

=   𝑃𝑃 
1
𝑚𝑚

  �
𝑆𝑆
𝑐𝑐𝑣𝑣𝑚𝑚

−
𝑅𝑅
𝑐𝑐𝑣𝑣
− 1� 

(58)  

Substituting Eqs. (56)-(58) into Eq. (55) and integrating, the constitutive equation of the potential 

subdomain for the 𝑖𝑖𝑡𝑡ℎ segment is obtained as: 
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𝑃𝑃𝑖𝑖 = 𝑃𝑃0𝑖𝑖 �
𝑉𝑉0𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚0𝑖𝑖𝑉𝑉𝑖𝑖
�

𝑅𝑅−𝑐𝑐𝑣𝑣
𝑐𝑐𝑣𝑣

𝑆𝑆
� 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖

−
𝑆𝑆0𝑖𝑖
𝑚𝑚0𝑖𝑖

�

𝑐𝑐𝑣𝑣   

 

(59)  

To define the mass potential, 𝜇𝜇, considering the Gibbs-Duhem relation, 𝑚𝑚𝑑𝑑𝜇𝜇, = 𝑉𝑉𝑑𝑑𝑃𝑃 − 𝑆𝑆𝑑𝑑𝐸𝐸, 

the deferential form of the Gibbs free energy is presented as: 

𝑑𝑑𝜇𝜇 =  �
𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑚𝑚

�
𝑉𝑉,𝑆𝑆
� 𝑑𝑑𝑚𝑚 + �

𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑉𝑉
�
𝑚𝑚,𝑆𝑆

� 𝑑𝑑𝑉𝑉

+ �
𝑉𝑉
𝑚𝑚
�
𝜕𝜕𝑃𝑃
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

−
𝑆𝑆
𝑚𝑚
�
𝜕𝜕𝐸𝐸
𝜕𝜕𝑆𝑆
�
𝑚𝑚,𝑉𝑉

�𝑑𝑑𝑆𝑆     

(60)  

From an extensive but straightforward analysis with respect to the obtained partial derivatives, 𝜇𝜇, 

is defined as: 

𝜇𝜇𝑖𝑖 =
𝜇𝜇0𝑖𝑖

�𝑅𝑅 −
𝑆𝑆0𝑖𝑖
𝑚𝑚0𝑖𝑖

�
⎝

⎜
⎛
�𝑐𝑐𝑣𝑣 −

𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖
� �
𝑉𝑉0𝑖𝑖𝑚𝑚𝑖𝑖

𝑚𝑚0𝑖𝑖𝑉𝑉𝑖𝑖
�

𝑅𝑅
𝑐𝑐𝑣𝑣
𝑆𝑆
� 𝑆𝑆𝑖𝑖𝑚𝑚𝑖𝑖

−
𝑆𝑆0𝑖𝑖
𝑚𝑚0𝑖𝑖

�

𝑐𝑐𝑣𝑣 + 𝑐𝑐𝑣𝑣

⎠

⎟
⎞

 

(61)  

Collectively Eqs. (54), (59), and (61) form the constitutive equations of the fluid field with which 

the reversible interactions among the subdomains occur in each segment. 

4.4. Fluid field coupling factors 

To define the transformation coupling factors appearing in the state equations, using the Gibbs-

Duhem equation to relate the potential gradient of the existing subdomain for adjacent boundaries 

of the neighboring segments (storages) [13], the transformation coupling factors can be obtained 

from the ratio of the reversible transportation flow of the subdomain to the flow of matter, which 

in principal are the weighted functions of the intensive form of the state variable of each 

subdomain. Considering the simple mean functionality, one has: 

𝑀𝑀𝑇𝑇𝜕𝜕𝑚𝑚−𝑉𝑉𝐴𝐴
=

1
2
�
𝑉𝑉𝑖𝑖
𝑚𝑚𝑖𝑖

+
𝑉𝑉𝑖𝑖+1
𝑚𝑚𝑖𝑖+1

� 
(62)  

𝑀𝑀𝑇𝑇𝜕𝜕𝑆𝑆−𝑚𝑚𝐴𝐴
=

1
2
�
𝑆𝑆𝑖𝑖
𝑚𝑚𝑖𝑖

+
𝑆𝑆𝑖𝑖+1
𝑚𝑚𝑖𝑖+1

� 
(63)  

4.5. Fluid field dissipative mechanism 

Finally, to close the state equations, the dissipative mechanisms of the field, namely, 𝑅𝑅𝑚𝑚 and 



 AIAA Journal (under review) 

248 

𝑅𝑅𝑉𝑉, need to be defined. Considering the Fourier conduction equation, for the chosen system, 𝑅𝑅𝑚𝑚 

can be presented as: 

𝑅𝑅𝑚𝑚𝐴𝐴 =
∆𝑥𝑥𝐴𝐴

𝐸𝐸𝑖𝑖 + 𝐸𝐸𝑖𝑖+1
2

𝑘𝑘𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴
 

(64)  

where ∆𝑥𝑥 and 𝑘𝑘𝑇𝑇 are the generalized length of the resistive component and conduction coefficient 

of the gas, respectively. 

Since the dissipation of energy in the potential subdomain occurs as a result of geometrical 

changes (expansion or contraction) in the direction of the power flow, by considering a quadratic 

relation between the pressure difference and volumetric flow, ∆𝑃𝑃 = 𝜌𝜌�̇�𝑉2 2𝐴𝐴𝐴𝐴2⁄ , 𝑅𝑅𝑉𝑉 can be defined 

as: 

𝑅𝑅𝑉𝑉𝐴𝐴 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑠𝑠��̇�𝑉𝐴𝐴�
(𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑖𝑖+1)��̇�𝑉𝐴𝐴�
2𝐴𝐴𝐴𝐴2𝐴𝐴(𝑉𝑉𝑖𝑖 + 𝑉𝑉𝑖𝑖+1) 

(65)  

where 𝐴𝐴𝐴𝐴 is the actual cross section area and can be defined with respect to the geometry of the 

spatial boundary and the local pressure loss coefficient, 𝜉𝜉 , as  𝐴𝐴𝐴𝐴 = 𝜉𝜉𝐴𝐴. 

Accordingly, all the required coefficients appearing in the state equations of the fluid field of 

the system are defined using the material and geometrical parameters and the states of the system. 

In this model, the decomposed power transportation as well as the decomposed power 

transformation provide a distinctive power distribution of the fluid field with which the possible 

power connection gates to other physical subdomains are clarified.  

5. Aerothermoviscoelastic model 

The fluid and solid field models, using the arrangement of the energetic components of both 

fields, can be conservatively connected if the generated power gates (energy line) of the 

counterpart physical subdomains of both fields are connected on the interface. For the chosen 

system, there exist two different interfaces. The first interface is the boundary interface where both 

mechanical and thermal power can be exchanged. The second interface is the side interface where 

only thermal power can be transmitted between the fields. In the following, the continuous power 

connections for each of these two possible energy gates are developed.        
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5.1. Boundary-element interface energetic connections 

For the chosen system, as depicted in Fig. 8, the energetic interactions between the two fields 

can occur on the interfaces of the left and right boundary elements, as well as the side interface of 

each segment (element). To define the energetic connections of the boundary elements, consider 

the generated BG models of the solid (Fig. 5) and fluid (Fig. 7) sides’ of the interface. The 

conservative power connections of these two models can be achieved via, respectively, connecting 

the thermal and elastic energy lines of the solid model with the thermal and acoustic energy lines 

of the fluid model, as illustrated in Fig. 9.    

 
Fig.8 Interface energetic interactions 

 
Fig.9 Left boundary element combined BG model  

Considering the obtained BG model, the state equations for the boundary elements of each 

field are required to be refined with respect to the added connectivity of the model. For the solid 

field, since the left boundary interface of the chosen system is located at the second junction of the 

model and each junction is indexed after each segment in the junction structure (i-j-i+1-j+1), the 

refined boundary-element state equations are presented as:   

�̇�𝑝𝑚𝑚1 = 𝐴𝐴1𝐸𝐸1
𝑞𝑞𝑚𝑚1
𝐿𝐿1

+ 𝛼𝛼1𝐴𝐴1𝐸𝐸1𝐸𝐸01 �𝑆𝑆
𝛼𝛼𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑖𝑖
𝐶𝐶𝑣𝑣𝑖𝑖

𝑞𝑞𝑚𝑚𝑖𝑖𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ𝑖𝑖−𝑆𝑆0𝑖𝑖�

𝐶𝐶𝑣𝑣𝑖𝑖 − 1� −𝑀𝑀𝑇𝑇𝜕𝜕𝑖𝑖𝑠𝑠𝑡𝑡𝑃𝑃01 �
𝑉𝑉01𝑚𝑚1
𝑚𝑚01𝑉𝑉1

�
𝑅𝑅−𝑐𝑐𝑣𝑣
𝑐𝑐𝑣𝑣 𝑆𝑆

� 𝑆𝑆1𝑚𝑚1
−
𝑆𝑆01
𝑚𝑚01

�

𝑐𝑐𝑣𝑣   (66)  
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�̇�𝑞𝑚𝑚1 = 𝑝𝑝𝑚𝑚0
𝐼𝐼𝑚𝑚0

− 𝑝𝑝𝑚𝑚1
𝐼𝐼𝑚𝑚1

− 𝐴𝐴1𝛼𝛼1𝑞𝑞𝑚𝑚1
𝑀𝑀𝑅𝑅𝑚𝑚1𝐿𝐿1

  (67)  

�̇�𝑞𝑡𝑡ℎ1 = 1
𝑀𝑀𝑅𝑅𝑡𝑡ℎ0

�𝐸𝐸𝑖𝑖𝑠𝑠 − 𝐸𝐸01𝑆𝑆
𝛼𝛼1𝐴𝐴1𝐸𝐸1
𝐶𝐶𝑣𝑣1

𝑞𝑞𝑚𝑚1𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ1−𝑆𝑆01�

𝐶𝐶𝑣𝑣1 � − 1
𝑀𝑀𝑅𝑅𝑡𝑡ℎ𝑖𝑖𝑛𝑛𝑡𝑡

⎝

⎛𝐸𝐸01𝑆𝑆
𝛼𝛼1𝐴𝐴1𝐸𝐸1
𝐶𝐶𝑣𝑣1

𝑞𝑞𝑚𝑚1𝑆𝑆
�𝑞𝑞𝑡𝑡ℎ1−𝑆𝑆01�

𝐶𝐶𝑣𝑣1 −

𝐸𝐸01𝑓𝑓 �
𝑉𝑉01𝑚𝑚1
𝑚𝑚01𝑉𝑉1

�
𝑅𝑅
𝑐𝑐𝑣𝑣 𝑆𝑆

�𝑆𝑆1𝑚𝑚1
−
𝑆𝑆01𝑓𝑓
𝑚𝑚01

�

𝑐𝑐𝑣𝑣

⎠

⎞ + 𝑇𝑇01𝑒𝑒
𝛼𝛼1𝐴𝐴1𝐸𝐸1
𝐶𝐶𝑣𝑣1

𝑞𝑞𝑚𝑚1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ1−𝑆𝑆01�
𝐶𝐶𝑣𝑣1

𝑀𝑀𝑅𝑅𝑡𝑡ℎ0
� 𝑇𝑇𝑖𝑖𝑛𝑛

𝑇𝑇01𝑒𝑒
𝛼𝛼1𝐴𝐴1𝐸𝐸1
𝐶𝐶𝑣𝑣1

𝑞𝑞𝑚𝑚1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ1−𝑆𝑆01�
𝐶𝐶𝑣𝑣1

− 1�

2

+

�𝐴𝐴1𝛼𝛼1
𝑞𝑞𝑚𝑚1
𝐿𝐿1

�
2

𝑀𝑀𝑅𝑅𝑚𝑚1𝑇𝑇01𝑒𝑒
𝛼𝛼1𝐴𝐴1𝐸𝐸1
𝐶𝐶𝑣𝑣1

𝑞𝑞𝑚𝑚1𝑒𝑒

�𝑞𝑞𝑡𝑡ℎ1−𝑆𝑆01�
𝐶𝐶𝑣𝑣1

    

(68)  

where the f and int indexes denote the fluid and interface variables, respectively.  

For the fluid field, since the left interface is located at the left boundary of the first segment 

(𝑗𝑗 = 0), the terms to be refined in the state equations are the terms with the index 𝑗𝑗 = 0. Therefore, 

the state equations of the left boundary are defined as: 

�̇�𝑚𝑖𝑖=1 = �̇�𝑚𝐴𝐴=0 − �̇�𝑚𝐴𝐴=1 (69)  

�̇�𝑆𝑖𝑖=1 = �̇�𝑆𝐴𝐴=0 − �̇�𝑆𝐴𝐴=1 + �̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖=1
 

(70)  

�̇�𝑉𝐴𝐴=1 = �̇�𝑉𝐴𝐴=0 − �̇�𝑉𝐴𝐴=1 
(71)  

with the following collective flows coming from the interface: 

�̇�𝑚𝐴𝐴=0 = 0 (72)  

�̇�𝑆𝐴𝐴=0 =
𝐸𝐸𝑖𝑖=1𝑆𝑆 − 𝐸𝐸𝑖𝑖=1𝑓𝑓

𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑡𝑡
 

(73)  

�̇�𝑉𝐴𝐴=0 = 𝑀𝑀𝑇𝑇𝜕𝜕𝑖𝑖𝑠𝑠𝑡𝑡

𝑝𝑝𝑚𝑚𝐴𝐴=1

𝐼𝐼𝑚𝑚𝐴𝐴=1
 

(74)  

where 𝑀𝑀𝑇𝑇𝜕𝜕𝑖𝑖𝑠𝑠𝑡𝑡 and 𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑡𝑡 are the interface reversible coupling factor (between the elastic and 

acoustic subdomains) and the interface resistive parameter, respectively; index S specify the 

temperature of the solid field. Considering the continuous power transformation between the 

elastic and acoustic subdomains, 𝑀𝑀𝑇𝑇𝜕𝜕𝑖𝑖𝑠𝑠𝑡𝑡 for the chosen system is obtained as: 

𝑀𝑀𝑇𝑇𝜕𝜕𝑖𝑖𝑠𝑠𝑡𝑡 = 𝐴𝐴𝐿𝐿−𝑖𝑖𝑠𝑠𝑡𝑡 
(75)  

where 𝐴𝐴𝐿𝐿−𝑖𝑖𝑠𝑠𝑡𝑡 is the left boundary element area touched by the fluid. Considering the mutual 

relevancy of the transported entropy to the resistive parameters of both fields as a weighted 
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function of the dissipated mechanisms of the adjacent elements connected via interface, using a 

simple functionality, 𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑡𝑡 can be obtained as: 

𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑡𝑡 =
1
2

 
∆𝑥𝑥𝐴𝐴=1𝑆𝑆

𝐸𝐸𝑖𝑖=1𝑆𝑆 + 𝐸𝐸𝑖𝑖=1𝑓𝑓
2

𝑘𝑘𝐴𝐴=1𝑆𝑆𝐴𝐴𝐿𝐿−𝑖𝑖𝑠𝑠𝑡𝑡
+  

1
2

 
∆𝑥𝑥𝐴𝐴=1𝑓𝑓

𝐸𝐸𝑖𝑖=1𝑆𝑆 + 𝐸𝐸𝑖𝑖=1𝑓𝑓
2

ℎ 𝐴𝐴𝐿𝐿−𝑖𝑖𝑠𝑠𝑡𝑡
  

(76)  

where ℎ is the convection coefficient of the fluid field. To calculate the terms related to the right 

boundary of the first segment (𝑗𝑗 = 1), Eqs. (41)-(43) are employed. For simplicity, consider the 

reversible mechanical interaction at the interface. The entropy generation rate of the first segment 

is defined as:   

�̇�𝑆𝑖𝑖𝐶𝐶𝐶𝐶
𝐴𝐴𝑒𝑒𝑠𝑠

𝑖𝑖=1
=

1
𝐸𝐸𝑖𝑖=1𝑓𝑓

�𝐸𝐸𝑖𝑖=1𝑆𝑆 − 𝐸𝐸𝑖𝑖=1𝑓𝑓�
2

𝑅𝑅𝑆𝑆𝑖𝑖𝑠𝑠𝑡𝑡
 

(77)  

Thus, the right spatial boundary of the first solid segment is energetically connected to the left 

spatial boundary of the first fluid segment.  

For the right boundary interface, the connection scenario is the same. Via the generated 

connections, the distinctive mechanical power and thermal power exchanges between the two 

fields become possible. It should be mentioned that, in cases where the momentum subdomain of 

the fluid field needs to be considered, there will be more energetic connections between the 

subdomains of the two fields that can be defined using similar procedures. Since the aim of this 

paper is to introduce the proposed methodology, further connections to include the momentum 

subdomain following the demonstrated principles are omitted here for simplicity.     

5.2. Side interface energetic connections and the VIDA method 

By omitting the momentum subdomain of the fluid field, only the axial motion of the system 

is of concern. The energetic interactions of the side interface are then limited to the thermal power 

exchange via the side interface of each segment. The condition to generate this connectivity is the 

geometrical compatibility of the thermal resistive component [22] of both fields on the side 

interface. The mentioned compatibility is automatically satisfied for the boundary element 

interface, as the geometrical parameters of the resistive components of the fluid and solid thermal 

subdomains remain unchanged. However, for the side interface, the situation is different. As a 

result of the longitudinal elastic behavior of the solid field (resulted from, e.g., external mechanical 
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loads, or thermal expansion, or both), the side interface of the solid field can be variable. Since the 

side interface of each segment is the shared spatial boundary between the Lagrangian frame for 

the solid field and the Eulerian frame for the fluid field (as shown in Fig. 10), to generate a 

conservative energetic connection between the two fields, the motion of the Lagrangian frame has 

to be interpreted for the Eulerian frame. 

 
Fig.10 The connectivity of Lagrangian frame and Eulerian frame in the chosen system  

To address this issue, the variable interface dynamic adaptation technique (VIDA) proposed in 

[19] is employed. In this method, separate convections of entropy and volume are considered in 

place of the only enthalpy convection proposed in [25]. By adding the capability of volume 

convection at each junction where motion of the attached boundary can occur, the Lagrangian 

frame’s motion is translated into changes expressed in the Eulerian frame, as shown in Fig. 11.  

 
Fig.11 variable interface dynamic adaptation technique (VIDA) BG presentation 

Accordingly, the motion of each junction leads to zero potential gradient matter exchange 

between the attached segments of the fluid field connected to that junction. As a result of this 
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adaptation, the geometry of the fluid filed is no longer fixed in the axial direction. As so, the shared 

side interface remains unique between the two fields, and the compatibility of the resistive 

components of the two fields on the side interface is satisfied. 

By satisfying the compatibility issue, the continuous thermal power exchange between the two 

fields at the side interface can be simply realized by generating an energy branch between the two 

thermal subdomains, as shown in Fig. 11. Considering the generated thermal connection for each 

segment, the state equations of solid and fluid thermal subdomains are updated as follows:            
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(79)  

where 𝑀𝑀𝑅𝑅𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖 is the modulated side interface resistivity defined as: 
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𝑀𝑀𝑅𝑅𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖 =
∆𝑦𝑦𝑖𝑖

𝐸𝐸𝑖𝑖𝑚𝑚 + 𝐸𝐸𝑖𝑖𝑓𝑓
2

ℎ𝑖𝑖  𝐴𝐴𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖
 

(80)  

where ∆𝑦𝑦 is the generalized side resistor length, and 𝐴𝐴𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡 is the variable side interface obtainable 

from the instantaneous location difference of the junction boundaries of each segment as: 

𝐴𝐴𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖 = 𝑏𝑏𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖(𝐿𝐿0𝑖𝑖 + ��
𝑝𝑝𝑚𝑚𝐴𝐴

𝐼𝐼𝑚𝑚𝐴𝐴
−
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𝐼𝐼𝑚𝑚𝐴𝐴−1
� 𝑑𝑑𝑡𝑡) 

(81)  

with 𝑏𝑏𝑆𝑆−𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖 denoting the width of the segment and t being the representative of time. 

Collectively, for the chosen system, the side interface connections and the boundary interface 

connections form a conservative power exchange frame between the two fields, in which according 

to the considered situation all the internal energetic interactions are distinctively tractable.   

6. Simulation and analysis 

In this section, to highlight the capability of the generated model in demonstrating the 

interactive dynamics of the coupled fields, a simple vacuum injection is chosen to be investigated 

via simulating the transient behavior of the chosen system (shown in Fig. 1). For simplicity, it is 

considered that the chosen duct is uniformly discretized into 6 segments, and the axial dynamics 

for the lumped presentation of the system with the material and geometrical parameters listed in 

Table 1 is to be investigated. Also, it is assumed that initially the system is relaxed in room 

temperature.  

Table 1. Geometrical and material properties of the convective duct 
𝒍𝒍 Length  𝟐𝟐.𝟏𝟏𝒆𝒆−𝟏𝟏 (𝒎𝒎) 
𝑨𝑨 Cross section area  1𝑆𝑆−4 (𝑚𝑚2) 
𝒏𝒏 Number of segments  6 
𝑷𝑷𝟎𝟎 Initial pressure  101315 (𝑝𝑝𝑎𝑎) 
𝑻𝑻𝟎𝟎 Initial temperature  298 (𝑘𝑘) 
𝑹𝑹 Individual gas constant  286.9 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒄𝒄𝑷𝑷 Specific heat capacity @ Pcte  1005 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒄𝒄𝑽𝑽 Specific heat capacity @ Vcte 718 (𝐽𝐽/𝑘𝑘𝑔𝑔/𝐾𝐾) 
𝒌𝒌 Air conduction coefficient  2.57e−2 (𝐽𝐽/𝑚𝑚/𝐾𝐾/𝑠𝑠) 
𝝁𝝁𝒑𝒑 Air viscosity 5.81𝑆𝑆−5 (𝑘𝑘𝑔𝑔/𝑚𝑚/𝑠𝑠) 
𝒌𝒌 Conduction coefficient   (2.73𝑆𝑆2 𝐽𝐽 𝑚𝑚.𝐾𝐾⁄ ) 
𝑬𝑬 Young modulus  6.9𝑆𝑆10 (𝑁𝑁 𝑚𝑚2⁄ ) 
𝑪𝑪𝒗𝒗 Specific heat  8.97𝑆𝑆2(𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ ) 
𝜶𝜶 Linear expansion  2.22𝑆𝑆−5(1 𝐾𝐾⁄ ) 
𝑺𝑺𝟎𝟎 Reference Entropy  2.83𝑆𝑆1(𝐽𝐽 𝐾𝐾𝑔𝑔.𝐾𝐾⁄ ) 
𝒎𝒎 Beam mass  5.67𝑆𝑆−2(𝐾𝐾𝑔𝑔) 
𝑨𝑨 Cross section area  1𝑆𝑆−4(𝑚𝑚2) 
𝒍𝒍 Length  2.1𝑆𝑆−1(𝑚𝑚) 
𝑴𝑴 Molar mass  2.698𝑆𝑆−2(𝑘𝑘𝑔𝑔 𝑚𝑚𝑚𝑚𝑒𝑒)⁄  
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According to the considered scenario, the isolated fixed structure initially in equilibrium with 

its containing atmospheric gas is injected in a vacuum chamber under zero gravity situation.  The 

expected behavior of the system, for the solid field, is the expansion accompanied by stress wave 

propagation and, for the fluid field, is the propagation of acoustic waves inside the system.               

 
 

(a) (b) 

  
(c) (d) 

Fig.12 Internal dynamics of solid field     
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In Fig. 12 the resultant internal dynamics of the solid field is presented. Parts (a) and (b) 

demonstrate the internal deformation and the resultant tension of each solid element, respectively. 

Considering that the contraction of each element is positive, it is seen that each element responding 

to the existing pressure difference between the inside and outside of the duct tends to be expanded 

initially; however the generated tension returns the element to its initial size. A closer look into 

the profile of the generated internal tension indicates a generated stress wave inside the structure 

which is the result of the speed of the injection process. The corresponding temperature fluctuation 

of the solid field is presented in Part (c). One can see that the pattern of this fluctuation follows the 

pattern of behaviors of the elastic subdomain, which reflects the coupled thermoelastic dynamics 

of the solid field. In Part (d) the general energetic behavior of the system is presented. It is clear 

that for the considered material (aluminum-like material) this fluctuation remains in the elastic 

range. In general, one can see that in spite of the rough discretization, the physically-generated 

model for the solid field can demonstrate an acceptable presentation of the ongoing dynamics of 

the field. 

In Fig. 13 the internal dynamics of the fluid field is presented. Parts (a) and (b) demonstrate 

the behavior of the potentials and extensive states of the fluid field. The expected acoustic wave 

propagation in the field is clearly shown. A closer look to the initial stages of the process highlights 

the propagation of a negative pressure and temperature wave responding to the initially expanded 

structure, which indicates the compatibility of the dynamic behavior between the two fields. In 

Part (c) the profile of the matter flow crossing the spatial boundary of the first and last segments 

of the fluid field is presented. Considering the positive direction to the right, the symmetry of the 

flow in the system at the initial time is clear shown, which indicates a symmetrical expansion of 

the system as expected; however, this trend dose not last long as a result of the existing nonlinearity 

of the system. In Part (d) the irreversible power transaction of the fluid field is presented. Since 

there is no significant external excitation to the system, the magnitude of the irreversibility of the 

system as compared with the other obtained values is seen to be negligible. However, simulation 

studies reveal that this presented irreversibility of the system in actual fact plays a critical role in 

stabilizing the model naturally, as ignoring this amount would lead to a complete failure of the 

simulation. In general, one can clearly see the capability of the generated model in capturing the 

complex dynamic behavior and ongoing phenomena of the fluid field regardless of the coarse 

discretization and simple functionalities used in the simulation. 
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Fig.13 Internal dynamics of the fluid field 
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acoustic subdomain of the fluid field, occurring at the left boundary element interface. A 

comparison between Part (a) and Part (b) reveals different transaction patterns between the thermal 

energy and the elastic energy. This indicates the different existing dynamics for the present 

subdomains. Although the amount of thermal power transaction between the two fields seems to 

be negligible in comparison with the amount of elastic-acoustic power transformation between the 

two fields, its impact on the general dynamics of the fluid field may not be ignored as it has a direct 

influence on the formation of acoustic interactive power. Given the highly-nonlinear nature of the 

fluid field, overlooking this amount of transferred energy may result in some unexplained 

behaviors of the system. 

  

(a) (b) 

  

(c) (d) 
Fig.14 Interface dynamic power interactions 
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   In Parts (c) and (d) the side-interface reversible and irreversible thermal interactions are 

presented, respectively. Since the system was initially in equilibrium, one can consider the 

different dynamic levels of the two fields as the main cause for the side-interface thermal power 

transactions. Given that the propagated stress wave in the solid field travels with a different speed 

than the acoustic and thermal waves in the fluid field, the temperature profiles for both of the fields 

alongside the duct are not analogous. Thus, temperature gradient is generated on the side interface 

causing the side-interface power transactions of the system. 

7. Conclusion 

In the current study, via physical decompositions of the fluid and solid fields, an energy-based 

coupled aerothermoviscoelastic model is proposed in which the general behavior of the system can 

be obtained on the basis of the energetic interactions of the present physical subdomains. This 

modeling technique can provide a conservative power network of the system with separate energy 

lines dedicated to each of the physical subdomains of the two fields, and clear identifications of 

reversible and irreversible power interactions within and between the fields.  

The individual models of the fluid and solid fields are all domain-independent. This feature of 

modeling allows the development of a unique interface structure with which the power 

transformations between the two fields can be performed in a handshake manner. This capability 

of the proposed coupled model offers a greater physical insight into the system, thus a better 

explanation of the dynamic behavior of the system. It also provides a useful platform based on 

which control strategy development and energy management planning can be facilitated.  

As the proposed methodology does not rely on imposed assumptions and mathematical 

constraints, the model thus generated would have a much wider valid range than those developed 

using more traditional means. The proposed strategy has the potential to be extended to modeling 

more complicated systems and to be used for discovering unknown phenomena previously hidden 

with existing classical physical knowledge. 
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CHAPTER 8: SUMMARY AND CONCLUSION 

As discussed in the literature the classical sequential approach (on the basis of the separation 

assumption broadly used in aeroelastic modeling) appears to be no longer an efficient solution for 

newly emerged aerothermoelastic problems. In Chapter 1 it was concluded that there exists a 

vicious circle in the existing literature, which may be a result of the implemented assumptions of 

the classical aerothermoelasticity. Also, it was mentioned that the portion of the physical flavor of 

the phenomena (e.g., the weak connectivity) that was removed in order to generate the sequential 

solution, in fact, eliminates the intrinsic ability of the classical approach to check the conservation 

of power transactions between the present fields. Therefore, to control the data transactions 

between the solvers, there remains no other generic means apart from mathematical constraints 

that lead to dramatically expensive solutions for the problems.     

 In this study, to generate continuous data transactions between the fields, reviving the 

conservation of power transactions between the fields is proposed, with which an intrinsic physical 

handle is added to the solution as a controlling tool in data transactions. To this end, the 

fundamental of a novel integrated energy-based modeling framework is designed to replace the 

classical sequential phenomenon-based framework of aerothermoelasticity.  

To achieve this aim, given that the satisfaction of conservation in power transactions between 

the fields is due to the isomorphism of the power structure of each individual field, and that the 

generation of the isomorphic power structure for the fluid and solid fields is unfeasible using the 

traditional form due largely to the fundamental differences between them, an identical 

decomposition of each of the fields is suggested in order to attain the required isomorphism in the 

sub-structural level of each field. Since physical domains (e.g., kinetic, potential, thermal, etc.) are 

identical in any field, each field of interest is physically decomposed into its present physical 

subdomains. To include the fundamental differences between the counterpart subdomains of the 

fluid and solid fields while developing isomorphic models for them, a domain-independent 

modeling strategy is suggested. To generate such models, the port-based approach with Bond 

Graph (BG) notation is used, by means of which the general dynamics of each subdomain are 

attainable from the reversible and irreversible interactions between the energetic components (e.g., 

capacitance, inertance, resistance) of the subdomain. Since these components are identical in any 
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domains, and since the energetic interactions between the energetic components follow a similar 

pattern, the resultant models of the different physical subdomains generated in such a way become 

isomorphic with each other, and thus, the energetic transactions between them becomes tractable. 

Accordingly, the dynamic of each field is generated from the conservative interactions between 

the present subdomains of each field, and the general behavior of the multiple field system is 

defined with respect to the conservative power transactions between the fields at the interface. 

In the present study, to generate the proposed integrated energy-based domain-independent 

modeling framework, the following steps are performed for a simple 1-D structure:        

• First, the process of generating an energy-based model by means of the BG technique 

is clarified in Chapter 2, which provides a general sense of the implementation of the 

BG technique for the current purposes.  

• Next, in Chapter 3, the solid field was first decomposed into its present physical 

subdomains, and the energy-based domain-independent model of each physical 

subdomain is developed. 

• In Chapter 4, by reversibly coupling the solid field’s present subdomains, the reversible 

thermoelastic model of the solid field is developed.     

• Following the above, in Chapter 5, by adding the irreversible interactions between the 

subdomains, the general thermoviscoelastic model of the solid field is developed. 

• In Chapter 6, the fluid field is first decomposed into a set of physical subdomains 

identical with the solid field, and then the general energy-based model of the fluid field 

is developed by reversibly and irreversibly coupling of the present subdomains.  

• Finally, by defining a conserved coupling between the models of the solid and fluid 

fields, a conserved aerothermoviscoelastic model is generated in Chapter 7 in which 

the general behavior of the system is developed from the conservative interactions of 

the existing energetic components at the subdomain level. 

The outcomes of each chapter are summarized as follows:       

In Chapter 2, to introduce the fundamentals of the BG technique, and to evaluate the capability 

of this method in multi-physical multiple-field system dynamic investigations, the start period of 

hydro-mechanical control devices is investigated. A new multi-model BG approach is proposed 
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that can provide essential insights into the multi-physical dynamic behaviors of the system. The 

simulation results reveal a high-degree of complexity in the system’s physical behaviors, which 

may otherwise be overlooked by other conventional modeling methods. The revealed physical 

behaviors are fully agreeable with the fundamental physics underpinning the multi-physical 

dynamics of the system, which confirms the integrity of the resulting nonlinear model of the 

system. It is this distinctive feature of the proposed approach that makes the modeling of the 

complex systems feasible, and thus, suitable for the current study.  

In Chapter 3, firstly, in order to generate a domain-independent model of the elastic subdomain, 

an enhanced uncoupled thermoelastic model is developed for a beam structure of a control system 

(spool valve) that addresses the thermomechanical phenomena present in such systems. Using the 

concept of an equivalent thermal source, the structural expansion behavior of the system due to 

thermal loading is captured, and its impact on altering the system set-point is demonstrated. By 

examining the elastic domain energy function at the atomic level, the concept of a modulated 

capacitor that complies with the energy conservation principle is proposed. Using the modulated 

capacitor in the system’s momentum equation, the material softening behavior of the system 

(induced by heating) is revealed and its effect on changing the system vibration modes is 

illustrated. The combined thermal-source and modulated-capacitor approach makes the modeling 

of the system’s thermomechanical dynamics in a single elastic domain possible. The presented 

study explains the importance of unveiling the thermomechanical phenomena as a part of the 

dynamic examinations of the control devices under thermal loading. 

The simulation results of this first part of Chapter 3 not only confirm the validity of the 

suggested thermomechanical-enhanced model of the system, but also demonstrated the potential 

benefits of the proposed approach in accessing the system’s physical details during the transient 

and allowing each physical behavior of the system to be examined individually. It is this latter 

point that offers a unique feature within the proposed approach in providing a useful tool for 

conceptual design, fault detection, reliability assessment, and structural optimization of other 

similar macro-scale control devices. 

In the second part of Chapter 3, to generate a domain-independent model of the thermal 

subdomain of the solid field and to investigate the dynamics of heat conduction in multi-physical 

phenomena, a new configuration of energy components is proposed to form a domain-independent 
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compatible thermal element. Using this configuration in a multi-physical domain setting, the 

impact of the thermal subdomain dynamics on the total dynamics of the system (and vice versa) 

can be examined. This method provides a useful tool for the management of the energy 

consumptions in multi-disciplinary systems where temperature control is an important issue.  

The simulation results of the second part of Chapter 3 indicate the capability of the proposed 

model in capturing the dynamic behavior of the thermal subdomain. The obtained results also 

confirm the slow and relaxing behavior of the conduction process within the system and well-

match the essential features of the thermal subdomain. The simulated thermoelastic results 

demonstrate that despite a weak connectivity between the elastic and thermal subdomains, the 

proposed model is able to capture the impact of the multi-physical phenomena on the thermal 

subdomain, and vice versa. Furthermore, the discrete nature of the proposed thermal model in 

Chapter 3 ideally matches the parallel computation platforms that can reduce the required 

computation time significantly. This advantage can increase the likelihood of employing the 

proposed model in developing real-time control strategies.  

In Chapter 4, an energy-based, nonlinear, coupled thermoelastic model is generated which 

covers the reversible interactions of the present physical subdomains of the solid field. In this 

model, the reversible dynamic interactions between the elastic and thermal subdomains are 

considered using the proposed energy conservative coupling. The generated model is capable of 

not only describing the dynamic behavior of the system, but also providing a useful power frame 

within which the energy distribution of the system with respect to each of the involved subdomains 

is distinguishable.  

The rational compatibility between the obtained results of Chapter 4 and the natural behavior 

of the system shows that the proposed model can unveil a high-degree of complexity (which are 

typically overlooked by other conventional models) in the system’s internal dynamics under 

thermoelastic loading. In addition, the obtained separate energetic network of the proposed model 

offers a considerable potential for the development of more control-oriented strategies that can 

address the individual dynamics of each of the participating subdomains, instead of the total 

dynamics of the multi-physical system. 

In Chapter 5, to include the impacts of energy dissipation on the general dynamics of the solid 

field, in the first part, an energy-based combined viscoelastic model, namely the CLS model, is 
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proposed based on the fusion of the conventional dispersive mechanisms. The comparison between 

the conventionally generated models and their BG representations indicates that the observable 

viscoelastic behavior of the system is in fact a direct result of two different dispersive mechanisms 

which act in two different subdomains of the system. Although both dispersive mechanisms result 

in energy dissipation, their impacts on the dynamics of the system are fundamentally different in 

different situations. Therefore, to describe the attenuation pattern of wave propagations in the 

system, both relaxation and retardation parameters are necessary for the whole range of 

frequencies. Furthermore, it is discovered that by employing the so-called relaxation time variable 

in the conventional viscoelastic models, the resistive and capacitive parameters of the system are 

combined in the system governing equations, which will limit the application of these models to a 

narrow range of fitted spectrum and single-domain dynamic investigations.  

By relating the viscoelastic behavior of a mechanical domain to the dissipation of its 

subdomains, a four-parameter Combined Linear Solid (CLS) model is developed in the first part 

of Chapter 5. The comparison between the obtained results indicate that although the mathematical 

interpretations of both the proposed model and the conventional SLS model are the same, there 

exists a significant difference between the performances of these two models. This difference 

highlights that in the CLS model the dynamic level at which the viscoelastic behavior of the system 

is formed is lower than that in the conventional Standard Linear Solid (SLS) model. Thus, more 

detailed interactions between the various subdomains of the system can be revealed in the CLS 

model in contrast to its conventional counterparts. With the use of the energy-based modeling 

technique, generating a model, such as the CLS, at the level of subdomains is entirely feasible. 

This feature has allowed the proposed CLS model to sufficiently reveal the impacts of the 

subdomain interactions and specialized dissipation mechanisms on forming the comprehensive 

viscoelastic behavior of the system. 

In the second part of Chapter 5, by including the physically generated dispersive mechanisms 

in the proposed coupled thermoelastic model generated in Chapter 4, a domain-independent 

thermoviscoelastic model is developed. This model reveals the irreversible thermo-mechanical 

behavior of the system on the basis of the energetic interactions of the existing physical 

subdomains. To derive this model, the reversible and irreversible dynamic interactions between 
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the elastic and thermal subdomains are generated together with the use of inter-domain 

modulations. 

To clarify the impact of the internal energetic interactions on the general behavior of the 

system, different thermo-mechanical loading conditions are simulated in Chapter 5 for a chosen 

discrete structure. The obtained results in general demonstrate a good agreement with the natural 

behaviors of the system. Several thermo-mechanical phenomena including dilation, thermal stress, 

relaxation, vibrational heating, and material softening are successfully captured during the 

simulation. The effect of the deformation of the structure on the conductivity of the system is 

evidently tracked. On the basis of the attained physical insight of the system, it is clear that the 

changes in the viscosity of the system can be the main cause for the dynamic response changes of 

the system under temperature fluctuations. 

The physically generated thermo-mechanical behavior illustrated in Chapter 5 clarifies that the 

general behavior of a system is in principal a combined result of different dynamics produced by 

different elements of the system, which can vary dynamically with regard to the location of the 

external sources applied to the system. Constructing the general dynamics of the system from its 

constructive elements with respect to the geometry of the system makes the proposed model 

suitable for controlled-structure dynamic examinations. The domain-independency of the model 

will also provide a desirable foundation upon which more complex multi-physical system dynamic 

investigations can be conducted. The physical nature of the proposed model allows it to become a 

suitable candidate for use in modeling different-scale dynamic systems. 

In Chapter 6, a domain-independent energy-based nonlinear model, compatible with the 

proposed solid field’s model, is developed for the fluid field. By means of the physical 

decomposition of the fluid field into thermal, mass, potential, and kinetic subdomains (identical to 

the solid field), the general complex dynamics of the system are developed on the basis of the 

conservative reversible and irreversible energetic interactions of the present physical subdomains. 

The dynamics of the system obtained in this way are directly connected to the physical memory 

of the system, and thus, provide the possibility of capturing the ongoing phenomena of the system 

including the energetic transactions between the mechanical and thermal subdomains.  

The domain-independency of the model generated in Chapter 6 can be counted as a desirable 

feature for dynamic investigations of multi-disciplinary systems, as the complex power 
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transactions between the disciplines can be decomposed with respect to the present similar physical 

subdomains of different fields. Furthermore, the developed energetic network of the system 

provides a useful tool for control strategy development and energy management of the system.  

The obtained relations among the existing subdomains discussed in the studies presented in 

Chapter 6 can also be used to define more appropriate relations for corresponding CFD modeling 

studies. The generated BG model of one segment can serve to generate the partial differential 

equations of the fluid field via a limited operation on the geometry of the segment, to provide a 

full freedom of choice for numerical-solution techniques.  

In Chapter 7, finally, by combining the proposed solid and fluid models, an energy-based 

coupled aerothermoviscoelastic model is proposed in which the general behavior of the system can 

be obtained on the basis of the energetic interactions of the present physical subdomains. This 

modeling technique can provide a conservative power network of the system with separate energy 

lines dedicated to each of the physical subdomains of these two fields, as well as a clear 

identification of reversible and irreversible power interactions within and between the fields.   

 

Fig. 8-1. Coupled fields energy structure 
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In the proposed coupled aerothermoviscoelastic model of Chapter 7, the individual models of 

the physical subdomains of the fluid and solid fields are all domain-independent. This feature of 

modeling allows the development of a unique interface structure shown in Fig. 8-1 with which the 

power transformations between the two fields can be performed in a handshake manner. This 

capability of the proposed coupled model offers a greater physical insight into the data transactions 

between the fields, thus a better explanation of the dynamic interactions of the two fields at the 

interface. It also provides a useful platform based on which control strategy development and 

energy management planning can be facilitated. 

As the modeling techniques proposed in this thesis do not rely on imposed assumptions and 

mathematical constrains, the models generated using these methodologies will have a much wider 

valid range than those developed using more traditional means. The strategies proposed in this 

thesis possess the potentials to be extended to the modeling of more complex systems, and to the 

discovery of unknown phenomena previously inaccessible using existing classical physical 

knowledge. 
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