
Chapter 1 – Introduction

As we make use of technologies to enhance our lives and perform feats that were
not possible on our own, these systems being used are continuously improved upon
to  have  more  intelligence,  be  efficient  in  performing  the  given  tasks,  and  also
reducing the resource costs in the development and maintenance processes.

One particular area that is currently growing in interest is the field of robotics. The
scope of  this  field  encompasses a large range of  disciplines,  as the systems and
techniques that are developed can be used to assist in comprehending and automating
the activities that have previously required human interventions. Although traditional
applications of robots have been focused on non-reactive and repetitive tasks, there
has  been  a  push  towards  developing  interactive  systems  that  can  adapt  their
behaviour depending on immediate and historical interactions with the users and the
environment. This process is carried out through on-board sensors or external sensor
systems that can relay a specific set of states of the environment depending on the
type of sensors used and how they are used (Dudek & Jenkin, 2000).

The interactive systems provide a platform for  the implementation  of  a  wide
variety of algorithms and techniques, as the sensors are typically constructed to be
generic devices for capturing the data while the processing algorithms differ between
applications. The price of these sensors and the ease in integration has also become
an  important  issue  to  allow  not  just  the  research  institutes,  but  hobbyists  and
scientists of different disciplines to expand into and take from the field of mobile
robotics.

1.1 Mobile robotics

The majority of  robotic  systems that  are currently used in today's world have
predefined tasks they carry out  at  specific locations, thus the interactions require
physically moving the object of interest within the range of the robotic systems. This
can restrict  the type of  tasks it  can perform,  especially if  mobility  is  restricted.
Although restricted mobility can provide benefits such as predictability, controlled
scenarios,  and safety,  the ability to manoeuvre allows the interactive tasks to be
carried out in a much wider variety of locations, which greatly increases the type of
tasks  the  robots  can  be  assigned.  The  primary  task  for  mobile  robots  typically
involves the replacement of biological systems to carry out repetitive, strenuous, or
hazardous tasks either fully autonomously or with partial manual intervention from a
remote location (Buhmann et al., 1995; Burgard et al., 1998; Horchler et al., 2003;
Mayer, 2001; Sibley et al., 2002; Tucakov et al., 1997; Yamauchi et al., 1998; Zlatev
& Balkenius, 2001).

The  techniques  and  algorithms  that  are  used  depend  on  the  tasks  and  the
availabilities of the sensors included with the mobile robot systems, which may be
specifically designed for the task, or generic sensors that are used in a certain way to
enhance the capabilities of the robots. The development of the robot itself, the sensor
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usage, and the algorithms for processing the sensory data are all integral part of the
system which can be developed in parallel or separately,  before being combined
together. Due to the cross-over between different applications where the sensors and
algorithms  can  be  re-used,  many  algorithms  are  developed  independently  for
different purposes and are later integrated with the mobile robot system (Hu & Gan,
2005; Rajendran & Huber, 2004; Shen et al., 1998).

The flexibility in being able to attach multiple components means the physical
configuration of the mobile robot can differ significantly between systems. This also
includes consideration to the placement of the non-sensory components such as the
locomotive components, housing of the processing unit, providing power to run the
mechanical components, as well as the overall size of the robot, which all depend on
the tasks set for the robot and the resources that are available to construct the robot.

An alternative approach is to define the tasks by observing the configuration of an
existing  mobile  robot  platform  (Eklundh  et  al.,  1996).  This  approach  is  more
common, as the cost of developing a dedicated system is often not plausible until the
capabilities of the robot has been fully defined. An interchangeable design allows
portions of the system to be modified to suit particular tasks without the need to
replace the common components,  thus allowing experimental  development  to  be
carried out with ease.

The specific tasks carried out by the mobile robot can be split into four major
phases. These are the observation of the environment by the sensors, the processing
of the sensor data to interpret the current states of the robot and the surroundings, the
adaptation of the internal states with regard to the goal of the system, and finally the
response by the mobile robot to interact with the environment. Each of these phases
can be further  broken down  into  more specific  processes  that  are  the focus  for
researchers within the field of robotics. Figure 1.1 illustrates the phase cycle, where
the  decisions  made  by  the  robot  are  dependant  on  the  current  and  historical
information, as well as the overarching purpose of the system. This generic cycle
represents the high level flow of process for interactive or closed-loop systems.

Figure 1.1: Process cycle for a mobile robot.
The  double  lined  categories  represent  the  components  or
constraints of the system, while the solid lined categories represent
the processes and communication between them.
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1.2 Simultaneous localisation and mapping

A commonly seen theme throughout mobile robotics is the notion of recognising
the pose changes of the robot (Borenstein et al., 1997;  Kleinberg, 1994;  Zimmer,
1995), as well as merging and comprehension of the historical sensory information to
form a model of the environment (Debevec, 1996;  Thau, 1997). The two tasks are
strongly coupled since the pose changes are typically determined by the changes in
the perspective of the scene structure while the map construction requires the precise
pose  changes  to  be  combined  with  the  sensor  readings  about  the  surroundings
(Betge-Brezetz et al., 1995; Burgard et al., 1996 (a); Csorba, 1997).

The localisation aspect can range significantly;The such as by simply maintaining
mechanical estimates of the position changes to a more relativistic model that encode
the poses with respect to the surroundings. The ability to relate its pose to the actions
being  performed  allows the  task  to  be carried  out  at  multiple  locations  and  be
differentiated. Although it is possible to operate without knowing the current location
of the robot, assuming or fixing the location can restrict its capabilities, especially if
the robot is to interact with a dynamic environment.

The techniques that  are used for  localisation fall  within  two basic categories,
where one makes use of the domain knowledge about the locomotive behaviour and
configuration (Kelly & Murray, 1994; Ostrowski, 1999), called open loop, while the
other, called closed-loop, makes use of the sensory feedback about the current state
of the environment and the robot. The first approach is commonly seen in situations
where the environment and the robot system is well modelled or as an assistance
measure to monitor the difference between anticipated action and the actual actions.

The second approach is one that has attracted much research interest, as there is an
enormous number of ways to combine various sensors and to interpret the state of the
surroundings  to disambiguate the current  pose of  the robot  (Huang et  al.,  2005;
Ishiguro  &  Tsuji,  1996;  Jensfelt,  2001).  These  techniques  typically  involve
triangulation processes using distinctive observations, probability based approaches
to indicate the confidence in the various states (Bouguet & Perona, 1995; Bulata &
Devy, 1996; Chin & Dyer, 1986; Davison et al., 2007; Dellaert et al, 1999; Fox et al.,
2001;  Thrun,  2000;  Thrun  et  al.,  2001),  or  correlation  process between multiple
expected and measured models of the environment (Eklund et al., 1994;  Eliazar &
Parr, 2003; Mandelbaum, 1995; Wijk et al., 1997).

To be able to perform the correlation, as well as being able to inform the other
systems of the state of the environment, a virtual model of the environment can be
constructed to allow the maintenance of historical  sensory information at various
poses. The construction of these models or maps often involves a number of sensors
with varying modality to observe the surroundings through multiple view points. The
process  consists  of  interpreting  the  sensor  measurements  to  reconstruct  the
environment  by  extracting  the  distinguishable  components  and  overlaying  the
measurements from multiple view points to disambiguate and accurately locate the
objects into the model. (Roy & Dudek, 2001; Thrun, 1998).

The  interpretation  of  the  sensor  signals  and  the  integration  of  multiple
measurements  are  often  synonymous  to  many  non-robot based  research,  as  the
technology behind the algorithm can easily be interchanged with slightly different
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objectives.  These  include  fundamental  algorithms  such  as  search  and  clustering
techniques to more specific algorithms like object tracking and energy minimisation
algorithms to find optimal solutions.

Figure 1.2: Interactions between localisation and mapping.
The difference between the open and closed-loop approaches, as
well as the interactions with the mapping can be seen.

As  figure  1.2  shows,  the  two  components  of  Simultaneous  Localisation  and
Mapping (SLAM) are dependant on each other to provide disambiguation by the
sharing of information and the use of the sensors. The integration between the two
areas  typically  involve  iteratively  processing  the  sensor  readings from  the  two
perspectives and making use of the continual stream of sensor scans of the same
object to gradually decrease the errors in the representation. This design allows the
individual components to be developed more independently and merged later on to
improve each other. Since the mobile robot often has an exploration component to its
behaviour, the reliability and accuracy of the two components is crucial as any errors
that are introduced can quickly propagate and have a snowball effect on the accuracy
of the internal states.

1.3 Overview

The overarching theme behind this work is on the development of techniques and
algorithms for an indoor modelling mobile robot using affordable sensors. The focus
has been placed on the software side for adaptability of the proposed approaches on
other  platforms  and  disciplines  using  off-the-shelf hardware  that  can  be  easily
integrated.  The  use  of  multiple  sensors  provides  disambiguation  and  alternate
perspective for reliability and accuracy in the models that are constructed. However,
the integration and simultaneous processing of multiple modules means that one of
the primary limitations is resource consumption, which is constantly dealt with in
each of the algorithms.

Each chapter contains introductory and background information on the area, while
more specific details of existing work are included throughout the body of the thesis
when they are directly referred.

This thesis  is  organised  into  three  sections  illustrating  the  sequence  of
development  in  the various components of  the mobile robot  platform.  Section 1
contains three chapters; locomotion, sensors, and processing, which cover the three
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key subcomponents of the platform.

The overview of the system defines the capabilities and limitation of the robot.
This guides the tasks that can be carried out, as well as configuration knowledge that
can be exploited when designing the algorithms that interpret the data.

The base localisation technique and the configuration of the sensors involved are
discussed  in  section  2.  Discussion  on  the  configuration  process  is  described  in
chapter  5,  while  chapters  6  and  7  focus  on  the  localisation  technique  and  the
integration of multiple sensors to achieve high precision pose maintenance.

The focus of  this  section is  in  the development  of  an accurate and fast  local
localisation technique. The closed-loop approach deals with problems encountered
with  traditional  dead  reckoning  approaches,  such  as slippage  and  inappropriate
motion models being used. The improvement in the accuracy and reliability in the
local localisation implementation means it can be used to enhance global localisation
techniques. The proposed approach allows for reduced burden on meeting the correct
criteria of finding multiple distinguishable features to correct the pose, such as when
exploring new areas, as well as reducing the frequency of pose corrections to reset
drifting errors.

While  implementing  the  above  techniques,  several  related  problems  were
encountered and resolved, such as the noise reductions and synchronisation between
multiple  features.  The  noise  reduction  filters  that have  been  developed  use  the
camera characteristics to distinguish between the intended sensor reading and noise.
The majority of these filters are thus applicable in other fields which make use of
image streams.

The feature synchronisation  plays  an  important  role in  the  accuracy of  many
models that are used to translate the discrete sensor readings. Rather than reducing
the level of precision that is derived for the feature pose, the sub-unit characteristics
are  determined,  which  allows  simpler  interaction  between  features,  as  well  as
maintaining the continuity in the sensor readings.

Lastly,  section 3 covers the mapping aspect  of  the system and the high level
interpretations of the environment through the image sensors. Chapter 8 covers the
basics of the mapping process while chapter 9 introduces the mapping algorithm
used to  construct  the model  of  the environment.  Chapters  10 and 11 introduces
various strategies to enhance both the localisation and mapping processes through the
use of high level constructs to improve the efficiency of the sensor measurement
interpretations.

In this section, the focus shifts towards a fast and meaningful interpretation of the
sensor readings. The fast carving algorithm, together with the orientation dependant
range finders to map interaction, removes the limitation on the scan frequency. This
also allows the precision used in the grid map to be increased and the use of other
modules simultaneously due to the reduced processing load.

The algorithms dealing with the high level interpretation of the sensor data have
mostly  been  customised  for  the  purpose  of  enhancing the  attributes  that  are
maintained in  the  map.  This  includes  the criteria  and  considerations  for  feature
recognition for identifying and tracking surface boundaries,  the grouping of such
features to improve the pose triangulation, and recognising the presence of dynamic
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objects to notify the map of possible changes.

The  image  processing  algorithms  observe  the  characteristics  of  objects  seen
through the cameras to select the appropriate sampling points and the maintenance
strategies while being mindful of the processing load.

Several other techniques are proposed, but are currently not fully integrated with
the other  modules.  This  includes  a  landmark  detection  algorithm to  observe the
change in floor texture patterns, surface segmentation as an alternative approach to
the surface boundary detection, and some optimisation approaches to the mapping
process.

Finally, the thesis is concluded with a summary and general discussion on the
project in chapter 12. A more detailed list of contributions is also described here.

Figure 1.3: Mobile robot platform base.
The base includes the battery and the locomotive components.

The mobile robot platform used throughout this project started off as a simple
base, as shown in figure 1.3, which has now developed into a multi-tiered module
and sensor carrier, as shown in figure 1.4. The incremental attachment of the various
modules and sensors are discussed throughout the thesis.

Figure 1.4: Current mobile robot platform.
The current implementation includes five sensor modules that were
incrementally added to enhance the robot's capabilities.
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Section 1 – Platform

“Like the symbiosis between the mind and the body, the
platform provides the constraint and means for the

algorithms to operate.”

A  common  approach  to  developing  mobile  robots  is  done  by  clearly
distinguishing between specific modules that take care of a specific task.  In most
cases,  one  is  developed  after  the  other  with small  amounts  of  constraints and
optimisation being applied during  the integration process.  This style of  approach
allows for incremental development with solutions to specific tasks. However, some
of the components cause interference or do not allow for simple integration due to
the lack of foresight. This characteristic is different for purpose built robot systems,
which are very efficient and capable in using the existing devices, but typically come
complete and do not allow additional components due to the high level of coupling
between the various components. This can limit the adaptability as it becomes very
difficult to add or derive new capabilities for the robot system (Brooks, 1991).

The platform which has been used for this project is designed to be an extensible
and simple interfaced system to be developed in incremental phases to  allow the
development  and  addition  of  extra  modules  as  undergraduate  student  projects
(Arnold, 2004;  Fonseca, 2007;  Nagchaudhuri,  2002).  This requirement causes the
physical size of the robot to increase over time as additional modules are attached.
Fortunately, due to the nature of most projects, each module mainly focus on one
type of sensor to allow clean distinction of the functionality of modules and a simple
interface between the processor and the sensors.

The two basic shapes typically used on mobile robot systems are rectangles and
circles.  Although  the  decision  in  selecting  the  shape  is  typically  based  on  the
locomotive mechanisms, there are additional considerations such as the compactness,
sensor arrangement, and also the nature of the tasks to take into consideration. The
rectangular  shapes  often allow  more  compactness  due to  the  shapes  of  typical
mechanical systems and also provide balanced ground contact control, thus it is often
used for  outdoor  systems where ground coverage plays  a  significant  role  in  the
robot's functionality. For robots which require higher degrees of control in motion
such as an  omnidirectionally sensing systems, circular robots are more commonly
employed due to the uniform interface to the environment for many of the sensors.

Instead  of  chaining  a  series  of  carriage  like  modules  behind  the  robot,  the
extension modules are typically placed on top of each other in a towering fashion
(Ostrowski et al., 1997). The major benefit of the chaining structure is that it allows
the individual modules to control the elevation of the sensors quite freely, but it can
hinder the motion behaviours from the extra points of contact (Borenstein, 1993) and
also  the  operational  direction  of  the  mounted  sensors caused  by  obstruction.
Integration between the modules becomes a difficult task due to the high level of
coupling required to anticipate the locations of the other modules. By stacking each
of the modules on top of each other, there is a constant  constraint placed on the
configuration and introduces a much simpler dependency between the modules at the
cost of limited positions of the sensors.
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With the above in mind, a circular and layered platform was built. The footprint of
the robot was made large enough to house a wide variety of additional sensors and
devices which would be included in the future, but small enough to allow operation
in a confined indoor environment. The bottom base measures at 400 mm in diameter
with a height of  130 mm to house the components that  does not need extensive
external access, such as some circuit  boards for communicating with sensors,  the
battery, motors for controlling the wheels, as well as the majority of the wheel itself.

One  of  the  other  significant  physical  design  constraints  was  with  regards  to
whether the robot will be tethered or not. It is highly desirable for a mobile robot to
operate completely untethered to allow more flexibility in the environment they can
be used in (Feng et al., 1996). For this to occur, a 7 A h splash proof / gell-cell lead-
acid battery pack was installed in the base of the robot, as well as a laptop computer
mount to allow higher level program designs and implementation to be carried out on
the robot  itself.  It  can also allowing the  off-loading of  some processing tasks to
external  systems in  the  future due to the simple networking capability between a
laptop and another computer. The laptop and battery contributed for the majority of
the weight of the robot, which measures at approximately 7 kilograms with no other
load.

This section covers other physical issues which govern the mobile robot, as well
as the characteristics of various sensors that are present. Chapter 2 covers the issues
of  locomotion,  chapter 3 focuses on the characteristics  of  the currently available
sensors, while chapter 4 will discuss the processing issues as well as covering the
communication issues between the various modules.
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Chapter 2 – Locomotion

The definition of the term robot can vary between sources and environments, but
one  of  the  fundamental  qualities  of  a  robot  is  its  ability  to  interact  with  the
environment. A common approach is by physical interactions with external systems
through  a  medium that  is  typically  beyond the robot's  control.  The  components
involved in this type of interaction include how it will change the environment by
touching and manoeuvring itself and the object to change its pose. This behaviour
has strong links with the study of locomotion, which deals with the notion of self-
propelled motion to change its pose.

Depending on the deployed environment of the robot, the type of motion and the
mechanical requirements can  vary significantly (Halperin et al., 2004).  Although a
wheeled robot base is commonly seen for terrain robots, there are many other types
like pedal and self-rolling robots (Pratt et al., 1997), as well as an equally diverse
range of motion inducers that exist for other mediums, such as propeller and wing
powered robots for underwater and aerial exploration. The popularity of the wheel
based robots  on  land is  mainly  due to  its  simplicity  in  the  implementation  and
modelling the motion, as well as being an efficient form of motion in terms of power
usage.

The modelling process of a single driving wheel vehicle is quite simple, as the
motion is dependent on the direction of  the wheel  and the circumference of the
wheel. Although this simplified model does not consider issues such as ground and
wheel compaction, traction, lateral slip, and backlash, the approximation can be used
to predict and plan the robot's motion with reasonable accuracy. Figure 2.1 illustrates
some of these characteristics that are often ignored in simplified motion analyses.

Figure 2.1: Various components of a wheel based locomotive system.
This  illustrates  many of  the  wheel  characteristics  that  are  often
ignored in motion models, thus leading to inaccuracies and drifting
errors.

To balance the robot, additional wheels are often placed to increase the ground
contact points. These wheels, which are called  castor wheels, do not provide any
driving force or steering functionality and are simply there as support.  These are
often  freely  rotating  in  any  axes,  thus are  left  out  in  most  motion  modelling
calculations. Unlike the training wheels on a bicycle, the castor wheels, which can be
seen in figure 2.2, typically do not hinder the motion due to the constant traversal on
a single plane.
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Figure 2.2: Castor wheel.
The robot's balance is maintained by three castor wheels located
around the robot.

By increasing the number of driving wheels, the robot is able to traverse to a
given point with more control and variety in the path. This is achieved through a
combination  of  forward  and backwards  traversals,  sidewards  motion,  as  well  as
rotations that are centered on artificial pivot points, which is sometimes referred to as
the instantaneous center of curvature (ICC). This pivot point is derived from the
intersecting point between the rotational axes of the wheels, which can be altered by
changing the orientation of one or more steering wheels with respect to each other, or
by modifying the relative velocities of the wheels, which will be described below.

2.1 Differential drive

Differential drive systems are equipped with two or more driving wheels that are
individually controlled by motors,  such that  they lie along a common axis.  This
allows the center  of  curvature  to  occur  anywhere along that  axis,  which  allows
rotation to occur by varying the relative motor speeds of the wheels. For example, by
setting the velocity of one motor to be the opposite to the other, but at the same
magnitude, the robot will rotate around the midpoint of the two wheels. This type of
motion allows controlled motion in confined locations without the risk of collision.

This configuration is one of the simplest and commonly implemented approaches,
that allows for a large variety of motion to occur and is suited for a smooth terrain
environment with many obstacles. However, due to the high sensitivity to the relative
velocity between the wheels, the smallest amount of difference can result in a change
of trajectory. It also relies on a smooth lateral slippage to occur, thus place an extra
emphasis on the synchronisation between the two wheels and knowing the exact
motions taken by the wheels.

Figure 2.3: Components of differential drive system.
The motion  model  for  a  differential  drive  system  is based  on
smooth motion around the ICC and constant wheel arrangements.
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The derivation of the components in figure 2.3 can be achieved through initial
calibration measurements, the wheel velocities and by using the following formulas:

D = W . VL / (VR – VL) (1)

Ɵ = (VR – VL) / W (2)
Where D is the distance between the instantaneous centre of curvature, W is the

distance between the wheels, VL and VR are the velocities of the left and right wheels
respectively, and Ɵ being the rotational angle of the motion.

One of the limitations of the differential drive system is the inability to move in
the direction  along the rotational axes of the wheels. Attempting to move in this
direction  requires  a  combination  of  rotation  and  translation  to  occur.  One
increasingly  popular  strategy  to  overcome  this  limitation  is  the  use  of
omnidirectional  wheels,  which  can  rotate  in  two  perpendicular  axes  while  still
allowing the wheel to be driven by a motor. This hybrid between a caster wheel and a
driving wheel can be arranged in such a way to allow the sum of the motion vectors
between the multiple wheels to direct the motion of the robot (Feng et al., 1989; Voo,
2000). A typical configuration involves three omnidirectional wheels arranged in an
equilateral  triangle.  One  of  the  downside  to  this  is  that  the  freely  moving
characteristic can lead to drifting, as most omnidirectional wheels do not include
breaks to stop the robot.

2.2 Synchronous drive and steering

To  overcome  the  drifting  issue  experienced  by  omnidirectional  wheels  while
providing the same manoeuvrability, an ordinary wheel can be used in conjunction
with another motor to control the orientation of the wheel with respect to the robot
base. This allows the robot to move in any desired direction without the need to
rotate the robot body. Typically, these systems make use of multiple wheels, much
like the omnidirectional wheel arrangement, that are constrained in orientation with
each other. This is mostly done for balance, but it can also allow arc motions to occur
by  using  different  power  outputs  for  each  of  the motors  spinning  the  wheels
(Borenstein, 1995).

By  combining  the  ideas  of  controllable  and  fixed  orientation  wheels,  more
complex manoeuvring systems can be developed such as those commonly seen on
tricycles and auto mobiles. The center of curvature of these systems lie along the axis
of the fix oriented wheels while the distance to the center of curvature from the robot
can be controlled by the angle of the steering wheel. For a single steering wheel
system, such as on a tricycle, the only parameter controlling the location of the pivot
is the orientation of the one wheel. However, for a dual steered wheel system, such as
the  Ackermann  or  kingpin  steering  systems  implemented  on  auto  mobiles,  the
rotation of the two wheels must be proportionally controlled so that all the rotational
axes intersect at one point. That said, it is possible to design a system which relies on
large amount of wheel slippage for rotation. However, the motions of such systems
are very difficult  to anticipate due to irregular slippage, as well  as causing large
amount of wearing to the tyres, thus are avoided in most cases.
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2.3 Joint based motion

As advancements are made to feedback sensors,  the trend from the traditional
wheel approach to a more flexible pedal based locomotion systems have started to
appear.  This  biologically motivated design allows much greater  flexibility in  the
environment it can operate under, but is hindered by a more complex motion patterns
that are both self induced and influenced by the terrain (Quinn et al., 2001). The
system also incurs  a much higher  material  cost  from the complex integration of
motors and joints to make up a leg. The software processing costs also increases
when accounting for the complex motion and terrain, thus most implementation of
pedal robots are still  in their experimental stage. An implementation that resolves
some of  the  balancing  issue  is  one  that  makes  use  of  more  than  three  legs to
constantly maintain balance while allowing other legs to move around and position
itself for the desired motion.

While the legs provide a flexible means to manoeuvre, a very similar  technique
can be applied to an arm mounted on the robot to interact with the environment. The
kinematics are quite similar the the legs, but focuses on the exact alignment of all of
the components, as the shape of the arm is more important than gaits and balance
issues.

2.4 Traversal mode

There are two distinct models to be used when commanding the robot to move; a
velocity based command and a trajectory based command. Although some robots
make use of both types in conjunction with each other, dynamically exploring robots
often  make  use  of  one  or  the  other  based  on  the  type  of  environment  and  the
flexibility of the robot's motion for the given task. A velocity based command is
typically used when manually controlling the robot, or where the robot's task is to
navigate  around  without  any predefined  path.  This  allows for  a  simple  reactive
system where the robot must explicitly poll for new information which will modify
the current motion (Garnier et al., 1995;  Paromtchik & Nassal, 1995;  Rives et al.,
1993; Ward & Zelinsky, 1997). Although this approach does not need to spend time
planing the path, it can often lead to unnecessary motions or not detecting various
targets if the polling is not conducted at the appropriate interval. The trajectory based
command allows for the robot to explore the world more consistently and accurately,
but does not adapt well to changes in the environment as the path of traversal is
required before the command is given. This usually results in slower motion, but can
ease the processing load by assuming the planned path is free of obstacles.

2.5 Current configuration

Based on the simplicity and the typical  operating environment  for  the mobile
robot, a differential drive system has been used in the current implementation. Table
2.1 summarises the characteristics of the various steering systems discussed above.

A belt drive system is used to connect the wheels to the motors, such that the
wheel positions could be carefully adjusted to be directly positioned in the middle of
the robot. The wheels measure at 49.5 mm in radius, while the foam tyres are 11 mm
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in thickness. The foam was placed on the wheels to promote smooth motion on most
surface types as it can absorb most of the small bumps on the surface. The width of
the wheels measures at 39 mm across at the ground contact point, while the length of
the ground contact area was measured to be 31 mm on a solid surface and 36.5 mm
on a softer surface, such as carpet flooring. This difference is due to the softness of
the surface which allowed the castor wheels to sink into the ground. There are three
castor wheels currently present that operate on a roller ball principle. These wheels
control the minimum elevation, which measures at 16.5 mm on a solid surface, while
it can reach around 11 mm on soft surfaces. The elevation usually plays an important
role for outdoor robots where small obstacles that can scrape and damage the bottom
of the robot must be avoided. This is not as important for indoor robots, since the
surface  tends  to  be  flat  with  very  few  exceptions  such  as  small  steps  between
different surfaces, frames on walkways and cables running on the floor. The wheels
were placed near the outer edge of the robot, at just 33 mm inwards from the edge, to
allow greater control over rotation, as well as increasing the overall balance of the
robot to avoid rocking motions. Figure 2.4 show a sample blueprint for the robot
base, while figure 2.5 shows the dimensions.

Figure 2.4: Sample blueprint for the robot base.
The robot was built from scratch to allow flexible adjustments and
expansion.

Figure 2.5: Dimensions of the robot base.
The left image shows the bottom of the robot, the top right shows
the wheel in contact with the ground, and the bottom right shows
the dimensions of the actual wheel.

13



2.5 Current configuration

Table 2.1: Characteristics of common steering systems

Name Degrees
of

freedom

Typical
number of

motors

Motion
model

Common issues

Differential y, Ɵ 2 Simple Caster wheels can introduce motion model
errors.

Synchronous x, y, Ɵ 2 x 3 Simple Not suitable on rough surfaces.

Ackermann y 2 Simple Not suitable in confined spaces.

Pedal y 2 Complex The motion of the body is very rough.

The compression of the wheels due to the weight, cushioning of the tyres, and the
ground  meant  that  the  exact  parameter  values  for  forward  kinematics  are  very
difficult to achieve, especially on soft surfaces. During the calibration phases, the
ratio  of  motor  axial  rotation  and  the  traversed  distances  were  measured  to
approximate the robot motion on a soft carpet floor so that it can be used as a rough
measure for traversing. This configuration allows a very simple base for an indoor
mobile robot with opportunities to develop further modules to make improvements
later on. The base can also be replaced in future implementation if other locomotive
configurations are desired.

Since  the  primary  objective of  the  robot  is  to  explore  the  environment
autonomously, the motion model has been set to the trajectory based approach, that
is, the command is sent as a distance measure. This allows for a sophisticated path
planning algorithm to be implemented.  The velocity and acceleration parameters
being loaded to the motor is currently fixed when exploring autonomously, but can
be modified quite easily to allow variable speed navigation in case the robot needs to
travel to a destination quickly. The commands, however, are still kept as distance
measures,  so  the  overall  motion  of  the  robot  will  be  a  cycle  of  stop-and-go
operations.
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Chapter 3 – Sensors

In order for the robot to successfully operate within the environment, it must sense
and acknowledge the surroundings, as well  as possessing the ability to sense the
states  of  itself.  Being  able  to  receive  and utilize these input  information  allows
greater range of applications for the robot, as it allows adaptive behaviours to occur.
The major drawback of closed-loop systems against  open loop systems is in the
complexity of interpreting and integrating the sensor readings to the internal state
with minimal errors such that the sensors can make use of the updated states about
the environment and itself to enhance the subsequent calculations.

There is a wide range of sensors that are available for registering many different
types  of  signals,  but  unlike  simulated  environments,  real  world  sensors  are
influenced by environmental conditions, limitations in the sensor range or capacity,
and the characteristics of the device itself, such as the capture time and sensitivity to
noise (Betke & Gurvits, 1997). In addition to these considerations above, other issues
that are often ignored in simulations include the material costs, power consumptions,
physical placement  constraints,  and  the  general  applicability  for the  particular
environment.

The sensors  mounted on the mobile  robot  can  be broadly classified  into  two
categories in terms of  what it senses; internal sensors for measuring the attributes
about  itself,  and  external  sensors  which  interacts  with  other  systems,  like  the
environment, to obtain some information about them or in turn, about the robot. In
the case of external sensors, there is a further classification which can be made on
whether the sensor makes use of the ambient signals, called passive sensors, or emits
signals to the environment to be detected when it returns to the sensor, called active
sensors.  Both  types  of  sensors  have  their  own  benefits,  such  as  low  energy
consumption  and  non-intrusiveness  behaviour  for  passive  sensors,  while  low
ambiguity and a wider range of operating environments are some of the benefits in
using active sensors.

3.1 Internal sensors

Internal sensors are responsible for measuring attributes of the robot itself, thus
play an important role in grounding the other sensor readings by specifying the state
of the robot. These sensors are often not as interesting as the external sensors due to
the controlled manner in which they operate since they lack the interactions with
other systems.

3.1.1 Timer

The  most  fundamental  of  all  signals  feeding  in  to  the  robot  is  the  timing
information from a clock. Whether it is to simply time-stamp particular events or to
perform complex synchronisation tasks, the clock forms the foundation for ordering
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3.1.1 Timer

the events in some consecutive sequence (Lamport, 1978).  Most systems often rely
on a single central clock to coordinate the events, but extra considerations must be
made  when  combining  multiple  clocks,  such  as  offsets  and  drifts,  that  can  be
determined through a  calibration phase or  through  continuous synchronisation in
case  of  irregular  drifts  during  operation  (Lamport  et  al.,  1982;  Mattern,  1989;
Mattern et al., 1991; Schwarz & Mattern, 1994).

3.1.2 Rotary encoder

Another commonly used sensor can be found on the motors for measuring the
shaft  positions  using  an  encoder.  This  position  indicator  is  bundled  on  most
commercial motors and can be used to determine the degree of rotation of the motor
shaft  from some given position.  Using this value,  it  is  possible to anticipate the
motion behaviour or estimate the required motion for the attached components if
attributes such as the circumference and gear ratios are known. The accuracy and
reliability of these encoders are quite reasonable, except for rare mechanical failures
from wearing or excessive stress on the rotating shaft. However, the reliability of the
system  which  makes  use  of  the  encoder  values  can  vary  significantly  on  the
characteristics of the attached components and environment they operate in, such as
the quality of the wheels.

3.1.3 Power indicator

A measure that is commonly seen in commercial products is the power indicator
based on the remaining battery charge.  This information is often not considered  in
many researches based robots due to the irrelevance to the mechanical or algorithmic
development.  The  lab  environment  also  provides  simple  means  to  recharge  the
battery or  the robot does not consume a large enough power in a single execution.
For researches that involve specific power outputs, such as being able to determine
the precise power  output  of motors, the information allows algorithms to consider
modifying other attributes to counterbalance the effect  of the reduced battery or to
simply warn the user (Martin & Seiwiorek, 1996; Oh et al., 2000).

3.2 External sensors

While the use of internal sensors provide useful information about the state of the
robot, the external sensors involve a much more complex process to cater for the
broad range of information through interactions with the environment. The generic
tasks for these include the validation and translation of the sensor signals given the
current environmental conditions. The sensors are often categorised by the modality
of the detectable signals, but they can also be categorised by the type of information
it generates. Considerations in selecting the external sensors includes the usability
with  respect  to  the characteristics  of  a  typical  operating environment,  reliability,
precision, and the material cost of the device, which can range significantly between
high and low quality implementation of the same type.
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3.2.1 Passive sensors

3.2.1 Passive sensors

Often referred to as inertial sensors, accelerometers and gyroscopes are sometimes
fitted  to  mobile  robots  that  manoeuvre  on  different altitudes  caused by non-flat
terrains, bumpy motions, as well as the tilting of the robot body. These sensors play
an  important  role  in  tracking  the  3D pose  changes  and  maintaining  the  robot's
balance. These sensors  can also play a role in 2D environments by monitoring the
change the robot's state to support the other sensor readings.

A similar  sensor  to  the  accelerometer  is  the  inclinometer,  which  is  used  to
determine the current pitch and roll of the robot using the acceleration provided by
gravity. Due to the common occurrence of drifts in some sensors, the inclinometer is
commonly  used  to  ground  the  measurements  to  avoid  potential  hazards  from
incorrectly  measuring  the  balance.  Similarly,  instead  of  accumulating  the  yaw
changes,  absolute  values  of  the strength  of  the  Earth's  magnetic  fields  can  be
measured  on  compass  sensors  to  identify  its  current orientation  (Duckett  &
Nehmzow, 1998). These sensors are prone to electrical noise, thus must be mounted
on an extended arm to stop the metal body and the electronics from influencing the
signal.

3.2.2 Ranging sensors

A more commonly  applied  sensor  in  a  research  environment  used  on mobile
platforms is the ranging finding sensor. Several different methods and modalities are
used in identifying the region of open space between the sensor and an obstacle.
These are often used to detect the presence of an obstacle in the immediate vicinity
that  is  visible to  the particular  sensor,  but  can also be used to  identify multiple
obstacles as well as the attributes of the objects by exploiting the characteristics of
the type of signal being used.

3.2.2.1 Sonar

The sound navigation and ranging (sonar) sensor has long been a popular addition
to mobile robots due to its low cost and simplicity of  operation.  A sonar sensor
typically  operates  by detecting  the  time of  flight  or  the  phase shift  of the  high
frequency chirp they  emit, which is detected after it bounces back to the receiver.
Although  its behaviour  appears  simple,  the  sensor  is  affected  by  many  other
contributors, such as the speed of the chirp  in the medium, interference from other
noise sources,  operational range, angle of incidence, absorption and reflectivity on
surfaces, echoes,  and a cone shaped dispersion of  the sound signal  (Drumheller,
1987; Dudek et al., 1992; Kleeman, 1999). Figure 3.1 shows sample signal strength
of a sonar  chirp at varying angles from the emitter. Note that the time of flight is
unaffected by the loss in the strength, but the smaller lobes can potentially become an
unwanted signal if the threshold is not appropriately set. Some of these issues can be
corrected trivially through the use of multiple sonar sensors or by combining the
reading with other types of sensors. There currently exists a wide range of research
dedicated towards making better use of the sonar  sensors in the attempt to achieve
high precision object detection and map construction systems such as those found in
biological systems (Araujo & Grupen, 1997; Bank, 2002; Borenstein & Koren, 1995;
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3.2.2.1 Sonar

Borghi & Tosolini,  2007;  Cahut et al.,  1998;  Chong & Kleeman, 1999;  Crowley,
1989;  Goel  &  Sukhatme,  2000;  Kleeman,  2003;  Kleeman &  Kuc,  1995;
Varveropoulos, 2000; Wijk, 2001).

Figure 3.1: Typical sonar signal strength at varying angles.
The lobes  of  the  sonar  sensor  signals  can  result  in detecting
secondary  reflections  if  the  appropriate  thresholds are  not
considered.

3.2.2.2 Radar

While the sonar sensor operates using an acoustic signal, the radio detecting and
ranging (radar) sensor  operates by using the phase and frequency characteristics of
radio waves within  the electro-magnetic  spectrum to measure the distance  to an
obstacle.  The sensor has similar behaviours to that of the sonar sensor, both in the
way it operates and the problems they face, with the exception of the material cost,
the ability to operate  without the need of a dense medium to traverse through, the
speed,  and  the  ability  to  penetrate  certain  surfaces  which  can  provide  useful
information about objects that may not be directly in sight  (Bahl & Padmanabhan,
2000; Clark & Whyte, 1997; Foessel-Bunting, 2000).

3.2.2.3 IR

Another  type  of  electro-magnetic  wave  based  sensor  which  has  similar
characteristics to the above is the infra-red (IR) range finder. This type of sensor uses
the reflected light's intensity or  a triangulation process to determine the distance to
the obstacle. Due to the wide variety in the reflectivity of different surfaces and the
scattering  of  light  from  Lambertian  surfaces  (Oren  &  Nayar,  1995;  Poulin  &
Fournier, 1990),  the signals  can sometimes be inconsistent. The low cost device is
often  used  as  a  non-contact  bumper  for  obstacle  avoidance  to  protect  sensitive
equipments (Borenstein, 1989; Kwon & Lee, 1995).

3.2.2.4 LIDAR

Light detection and ranging (LIDAR) is regarded as the most accurate and reliable
sensor for measuring distances to an obstacle, as  the devices  emit a very narrow
beam to  a  well  controlled  direction.  The  operational  range of  these sensors  can
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3.2.2.4 LIDAR

extend from a few meters for low powered beams, to thousands of kilometers for
some of the high end  sensors used in fields such as astronomy.  Although the  high
precision is desirable, the sensor comes at a very high cost, which is often a key
deciding factor in research projects. They are also potentially more hazardous than
the sensors above due to the focused beam which can enter the human eye when
operating in  populated  areas,  especially  in indoor  applications.  Another  potential
drawback is the reduced viewing area which can affect the usability in certain tasks
which require a broad coverage of the area instead of a precise measure of a single
point.  To  overcome  this,  some  implementations  make  use  of  other  sensors  in
conjunction with the laser range finders (Aboshosha & Zell, 2003; Castellanos et al.,
2001; Diosi & Kleeman, 2004; Dudek et al., 1996; Elgazzar et al., 1997; Kelly, 1994;
Lewis & Johnston, 1977; Lu & Milios, 1997; Neira et al., 1999).

3.2.2.5 Bump and tactile sensors

While the range finders mentioned above are all examples of non-contact sensors,
there are also a range of contact based sensors available to detect degrees of contact
with the robot. Often referred to as a tactile sensor, it involves a switch or a pressure
sensor  to  determine  the  degree  of  potential  energy  involved  in  the  collision.
Depending  on  the system,  this  type of  sensor  can  vary in  purpose from  simple
obstacle  detection  to  determining  the  appropriate  forces  required  to  grip  onto
something with a robotic arm. The range in sensitivity,  as well  as the amount of
sensor points determines the cost involved in implementing the tactile sensor, but the
use is typically limited to systems which requires sensitive pressure information or a
very cheap implementation of a collision detector (Krotkov, 1991).

3.2.3 Camera

With the price of cameras becoming more affordable, the improvements in the
quality,  and  the  development  of  sophisticated  image processing  algorithms,  the
popularity of visual sensors have dramatically increased in recent times (Bigas et al.,
2005; Smith & Brady, 1997). There exist vast repertoire of approaches in extracting
useful information by analysing the pictorial data that is based on the intensity values
of  the reflected  electro-magnetic  waves and the position of  the detecting photo-
sensor. These techniques can range from simple colour detection to a more complex
feature  tracking  algorithms  using  spatial  and  temporal  relationships  (Whelan  &
Molloy, 2001). The major differences between the camera sensor and the other light
based sensors discussed above are in the passive modality, where it makes use of the
ambient light rather than emitting any controlled beam for the sensors to operate, the
large  number of  simultaneous measurements that can be made  from the array of
photo-sensors within, and also the directional information that are extracted instead
of the distance information.

The increased number  of  simultaneous  measurements is  achieved through the
array of  individual photo-sensors  that  are  present  within  the  single  device.  This
characteristic allows for the camera's greatest benefit, which is the ability to capture
the scene structure by taking a snapshot of the inter-pixel intensity information in a
single  instant. This ability allows the camera sensor to identify and track objects
within the scene with ease while providing more information  with regards to the
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3.2.3 Camera

relationships between neighbouring views such as the presence of shadows, surface
structure from lighting changes, textures and patterns  for  segmentation, and when
combined with other sensors, it too can determine the distance to obstacles (Murray
& Little, 2000; Narkhede & Golshani, 2004; Zitnick & Kanade, 2000).

The availability of more data  gives rise to more sophisticated algorithms with
aims  of  one  day  outperforming  the  abilities  of  those  in  biological  systems
(Navalpakkam & Itti,  2005;  Soyer  et  al.,  2003).  This  development  requires both
hardware  and  software  improvements,  as  the  digitised  approximations become
detailed enough to distinguish the most subtle directional and intensity information,
while the processing capability increases to allow more information to be analysed.

The most common visual  sensor  makes  use of  the visible spectrum as it  best
mimics the human visual system, as well as their low cost and availability. However,
there exist other sensors that are designed to capture the reflected light in the other
parts of  the electro-magnetic spectrum. These types of sensors are often used in
specialised tasks, such as observing the ambient thermal radiation of an object or to
avoid interference from the visible spectrum.

3.2.4 GPS

The global positioning system (GPS), which was originally intended to be used
for  stealth  localisation by the military,  has become a popular  source of  latitude,
longitude, altitude and time information which are delivered from multiple satellites
orbiting the Earth. Its usage has typically been focused on outdoor systems due to the
direct line of sight and the constant density of the medium of travel that are required.
The  satellites  transmit  their current  coordinate  points  which  the  system uses  to
triangulate the current  pose.  Due to the wide coverage using a small  number of
satellites,  the  accuracy that  can be achieved is not as high as  required for robots
operating in  confined  environments,  but  can  be combined with  other  sensors  to
derive a multi-scaled pose (Li & Hayashi, 1998).

3.3 Sensor configuration

As extension modules are developed and integrated with the mobile robot, extra
sensors can be placed to observe the environment using different  modalities and
approaches.  In  the  current  implementation,  the  robot  consists  of  six  different
modules; the base,  IR sensor  array  module, sonar module, floor tracking module,
directional camera module, and an omnidirectional camera module (Baker & Nayar,
1998;  Spacek, 2005).  The base, as described earlier consists of a cylindrical frame
with space inside for the controller boards, battery, the motors with their encoders,
and the wheels. The IR sensor array is arranged on a disc which is placed on top of
the base. The sonar module currently sits on top of the IR sensor array at the front of
the robot, while the controller boards for the IR and sonar modules sit towards the
back of  the  robot on top of  the IR array.  The controller board also contains the
communication ports, which can be used to relay commands to  another computer.
Shielding the controller boards is the laptop mount to allow high level processing in
place of the microprocessors. To the sides of the robot are the floor pointing mounts
and cameras, while the directional camera  is currently  placed on top of the sonar
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3.3 Sensor configuration

module to provide the panning motion by reusing the servo motor used on the sonar
sensor. In future implementations, the directional camera will be given its dedicated
servo  motors  for yaw  and  pitch  control.  Lastly,  the omnidirectional  camera  is
mounted on top of the laptop mount to  minimise viewing  itself as it  observes the
surrounding environment.

3.3.1 Encoder

Using the rotational encoders on each of the motors, the ratio between the pulse
counts and the distance the robot has traversed was determined. This simplified the
complex  wheel  compression  and  gearing  factors  by  assuming  constant  motion
characteristics during operation. This ratio  was then used for forward and inverse
kinematic calculations to predict the motions and plan the paths of traversal. This
simple mapping allows the high level programs to deal in a  more consistent unit
rather  than  having to  know the  exact  pulse requirement  to  use the device.  It  is
important  to note that  this open-loop approach is only an approximation and the
calibration value is never precise or consistent across different environments. With
the existing set-up, the ratio was determined to be 801603 pulses to one meter when
tested on a solid surface with no visible signs of slippage. This value was calculated
by specifying a certain number of pulses to count to, then measuring the traversed
distance. The ratio was then used to verify the correct pulse to distance conversion on
the same surface.

3.3.2 Infra-red module

Within  the  IR sensor module, the sensors  are placed in a circular  arrangement
around the robot to allow simultaneous measurements of the perimeter of the robot.
This allows the sensor array to act as a non-contact bump sensor to avoid collision as
well as determining the distance to obstacles that are close by. Instead of measuring
the  change  in  intensity  or  shifts,  which  is  heavily dependant  on  the  reflective
properties of the obstacle's surface, the  current  sensor,  the  Sharp GP2D12 ranger
finder as shown in figure 3.2, makes use of a triangulation technique to measure the
distance to the obstacle. The sensor is equipped with an emitter and a detector, which
contains a linear charge-coupled device array to detect and determine the incidence
angle of the reflected light. Due to the known distance between the emitter and the
detector, the distance to the obstacle can be derived for a particular angled beam from
the emitter.  Figure 3.3 below illustrates this process, where D equals the distance
between  the  emitter  and  the  receiver,  and  Ɵ  represents  the  angle  between  the
incidence ray and reflection.

Figure 3.2: The Sharp GP2D12 infra-red sensor module.
The two lenses are the emitter and the receiver of the IR beam.
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3.3.2 Infra-red module

Figure 3.3: Deriving the distance to an obstacle with the IR sensor.
Triangulation  is  used  to  determine  the distance  between the IR
sensor and the object.

This approach requires the obstacle's surface to be parallel to the sensor's face or
the  surface  must  exhibit  Lambertian  behaviour  such  that  the  emitted  beam can
bounce  back  into  the  detector,  thus  can  potentially be  problematic  in  certain
environments and orientation as it may miss the obstacles or incorrectly measure the
distance. However, this technique in measuring the distance overcomes some issues
such as interference from ambient light and the absorption properties of the obstacles
which can reduce the intensity and result in significantly erroneous readings.

One of the major downside to this approach is the very limited range of surface
orientations that are allowed for the surface materials. With increased distance to the
obstacle, the amount of light entering back to the receiver decreases dramatically. A
slight misalignment in the surface orientation results in the object not being observed
until it is quite close to the robot where the tolerance to the surface orientation is
greater. Figure 3.4 shows the sensor readings at various surface orientations when the
obstacle is placed at 10 cm intervals away from the robot. The shift in the peak is due
to the alignment of the emitter and receiver, as well as the non-grainy surface, which
preferred the surface to be tilted slightly towards the receiver.

Figure 3.4: IR sensor sensitivity against various surface orientations and distances to
the surface.

There is a steep sloping of the sensor reading as the orientation is
changed. The peak is not centered due to the arrangement of the
emitter and receiver. The lines represent the distance between the
sensor and the surface.
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3.3.2.1 Placement

3.3.2.1 Placement

The module is designed with a capacity of twelve IR sensors arranged in a ring,
equally spaced at 30 degrees apart, which can be seen in figure 3.5. Due to budgeting
reason, the current system only uses eight, which are placed at the 30, 60, 90, 120,
150, 210, 270, and 330 degrees. The arrangement is designed to anticipate most of
the  obstacles  to  appear  as  the  robot  from  the  front,  while  still  allowing  some
detection of obstacles behind itself for dynamic objects and when it  has to reverse.
Note that cross-talks between the sensors  do not occur due to the  large  angle of
separation between the sensors.

Figure 3.5: Infra-red sensor mount.
The photo shows three IR  sensors that  are  mounted  on holders
spaced 30 degrees apart and 10 cm in from the outer edge of the
robot to avoid overlap and ambiguous sensor readings when the
obstacle is too close.

The sensors are embedded inside the robot by 100 mm with the operational range
of the  sensors in mind. The minimum distance of operation  was suggested by the
hardware specification manual, but is actually the distance to the back plate to which
the sensors are mounted on. The actual distance from the sensor to the outer edge of
the robot is measures at 85mm, which allows for a slightly larger operational range.
This also means that the sensors can potentially give false readings when the obstacle
is almost touching the robot, but since this is not a safe operating range for the robot,
obstacles should never get this close to cause any ambiguity.

3.3.2.2 Sensor reading

Most active range finders have limited ranges they can operate in, whether  they
are due to  the hardware or  the modal  characteristics.  In  this  particular case,  the
limitation is governed by the sensitivity of the charge-coupled device arrays and the
reduction of the signal strength over large distances. The hardware specification state
the operational range to be from 100 mm to approximately 800 mm with a beam
width of approximately up to 160mm, but these values varies from sensor to sensor,
thus a calibration process was carried out on each of the sensors.
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3.3.2.2 Sensor reading

Using a rough grained black  plastic surface,  distance measurements were  taken
for each of the sensors while the obstacle was placed at controlled distances away
from the sensors. The average readings for the sensors are summarised in figure 3.6,
where the deviation tended to remain low and consistent for various distances at
around 5 to 10 units as the surface orientation was kept parallel to the face of the IR
sensor. The surface  material  was chosen to find the smallest upper bound on the
distance,  due to the scattering and the loss of intensity, thus allowing a reasonably
safe assumption that the obstacle is detectable at a certain distance away before the
signal is lost.

Figure 3.6: Distance measure against each IR sensor's readings.
The relationship is slightly different between different sensors, thus
require individual calibration.

The distance measures used for figure 3.6 are taken from the center of the robot to
the  obstacle  to  ease  the  mapping  required  to  convert  between  each  sensor's
coordinate system to the one of the robot at a later stage. The radius of the robot is
200mm, thus anything below that are considered to be inside the robot which cannot
occur. It was found that the saturation point of the sensor was not a single point, but
covered a small range of distances due possibly to the sensor hardware limitations or
the characteristics of the surface. Variation between the different surfaces when the
obstacle was placed at a fixed distance showed a wide range of fluctuation, as shown
in  table  3.1,  indicating  the  necessity  for  supporting  the  measurement  by  using
alternate sensors.

As the trend indicates, the behaviour after the 200 mm mark shows an inverse
power  like  behaviour.  Instead  of  using  a  complex  polynomial  approximation to
represent this curve,  it  is  also possible to convert  the curve into series of linear
transitions between the  calibrated points, especially with a small  enough interval.
This involves iterating the array of calibration values until the appropriate interval is
found, then interpolating the two adjacent values to find the  proportional  distance
measure for the given sensor reading. Although there is the cost involved in iterating
and interpolating between the two calibrated values, this process is reasonably fast
for small number of calibration points and can often approximates the curve better or
faster  than  using  a  single  function  which models the  whole  curve  quickly  or
accurately. To speed up the process, it is also possible to consider algorithms such as
a binary search algorithm or by remembering the previous interval to start the search
due to the continuity in the distance measures between consecutive data readings.
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3.3.2.2 Sensor reading

Table 3.1: IR sensor reading at 50 cm for various materials

Material IR reading

Plastic 181

Matte paper 184

Glossy paper 190

Silk 198

Cotton 202

Carpet 191

Rubber 190

The pseudo-code for mapping the sensor readings to distance measures using the
linear interpolation approach and remembering the previous value is shown below in
algorithm 3.1.

set index = len( calibration_array) – 1
function IRSensorValueToDistance( value):
   while true:
      set upper = calibration_data[ index]
      if value <= upper:
         set lower to calibration_data[ index + 1]
         if value > lower:
            set weight = ( upper – value) / ( upper – lower)
            return minimum_distance + interval * ( index +
             weight)
         else
            index++
      else
         index--

Algorithm 3.1: Linear interpolation mapping from sensor value to distance for the IR
sensors

The calibration phase also involved the measurement of the dispersion angle for
the  emitted  beam.  Due  to  the  spreading  of  the  beam from the  emitter  and  the
scattering  which  occurs  at  the  obstacle's  surface,  the  sensors  could  detect  the
obstacles that existed in a cone shaped viewing area. Since the distance to the object
is  measured,  this  resulted  in  an  arc shaped  positions  for  the  obstacle.  The
approximation to a cone shape is not entirely accurate due to other factors such as the
reflectivity  and  sensitivity  at  different  incidence angles,  but  is  a  reasonable
approximation of  the behaviour of  the scanned area  by  the sensor.  By using the
locations of sharp changes in the sensor readings as an obstacle was moved in an arc
across the front area of the sensors, the viewing angle of the sensor was determined.
Since  the  variation on  the  viewing  angle  for  the  different  sensors  were  not
significantly  different,  at  less  than  1.5  degrees,  they  were  approximated  to  the
smallest of the measured viewing angle of 10.5 degrees to underestimate the vacancy
to avoid potential collisions.
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3.3.2.3 Motion limit

As small obstacles that are very close to the robot lie in the blind spots of most
sensors, it is crucial for the robot to avoid allowing anything to move too close. To
provide the robot with a safe buffer zone, a motion limit operation has been included
at the controller board level, which overrides the current motor command with a stop
command  if an obstacle  is  detected within  approximately  150 mm from the outer
edge of the robot. To allow the robot to continue its operation safely, the motion limit
sets a flag to limit the direction of the subsequent move command. To simplify the
direction of the traversal, if the IR sensors located at the front of the robot triggers
the override, the robot then only accepts a backward motion command or rotations
and the reverse is done for  the back sensors. Initially,  the robot  was allowed to
perform a rotation at any time, but due to the addition of extra modules that extended
beyond the circular boundary of the robot, a rotation meant it would cause portions
of the robot to collide with obstacles.  To prevent this from happening,  the sensors
located at the 30 and 210 degrees positions  are used to stop left turns, while the
sensors at the 150 and  330 degrees  positions were used to  limit right turns. These
sensors  were  chosen  as  they  can  view  the  adjacent  space  to  the  floor  viewing
cameras, which extend out to the side of the robot by approximately 10 cm. Figure
3.7 below illustrates the allowed motions after the sensor has detected an obstacle
within the motion limit area.

Figure 3.7: Available motion directions after motion limit.
The black dots represent the location of the IR sensors, while the
white circles are currently unoccupied.

This approach allows the robot to keep operating automatically while avoiding
collisions with the environment. A more traditional emergency stop mechanism can
also be included in tele-operation scenarios.

3.3.3 Sonar

Some of  the  major  limitations  of  the  IR sensor  include  the  large  variety  of
reflective surfaces and the short operating range that is available for the device. The
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sensor  often  reports  varying  distance  measures,  which  can  fluctuate  quite
significantly due to the orientation, especially  at longer  distances to the object.  By
emitting acoustic  chirps,  the sonar sensors are able to receive a more consistent
distance measure as the surface types does not affect the time of flight. Although the
measurements are still dependant on the behaviour of sound in the environment, such
as the temperature, humidity and air density, the readings  typically stay consistent
with minimal variation during a single experimental run. The sonar sensors that are
used, the Polaroid 6500 ranging modules (Polaroid, 1995; SensComp, 2004), operate
at a frequency of approximately 49 kilohertz, which is outside the range of  most
ambient noise.

3.3.3.1 Placement

Due to the low cost and reasonably consistent performance, there are large range
of research that incorporate the sonar sensors. These include the investigation of the
acoustic  behaviours  to  sophisticated  object  localisation  techniques  by combining
multiple sonar readings. The current module consists of two sonar sensors mounted
at the front of  the robot that are spaced 156 mm apart and oriented in the same
direction as shown in figure 3.8. This stereo set-up allows simple error correction
between the two to  identify disparity in the  object's  surface  angle  and erroneous
readings from echoes and dispersed signals.

Figure 3.8: Sonar modules on top of the servo motor.
The sonar  sensors  can  be  rotated  independently  of  the  robot's
orientation, thus allowing greater flexibility in the sensor usage.

Since the two sonar sensors overlap in their area of coverage, the sensors face the
problem of cross-talk between each other. A simple solution has been implemented to
compensate for this behaviour by setting one of the sensor to be a dedicated receiver,
while the other sensor switches between the send and receive mode (Vilmanis, 2005).
This allows both sensors to use the same chirp to identify the difference between the
times of  flight  to  identify  the  location  of  the  obstacle.  The simple  triangulation
technique is illustrated below in figure 3.9, where TOF is the time of flight.
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3.3.3.1 Placement

Figure 3.9: Finding a target using a dual sonar behaviour.
Only one sends the chirp to avoid cross-talk between the sensors.

3.3.3.2 Operational range

To allow the scanning of different areas without having to rotate the robot, which
can be imprecise due to the interactions with an unknown surface, the sonar sensors
are mounted on a servo motor to control the orientation of the sending and receiving
faces. The servo  motor which was used,  the Hitec HS-422 Deluxe, is  set with an
rotational range of –60 to +60 degrees with a single degree of granularity. The higher
level of precision it is capable of does not provide a great deal of extra benefit, as the
width of  the sonar  chirp  is  not  consistent,  nor  can be accurately measured.  The
maximum and minimum range is set to stop the sonar sensor from seeing the other
components of the robot located behind itself and to avoid the wires getting tangled.

The operational range of the sonar sensors are controlled by the hardware based
limitation on the time taken to switch between the sending and receiving modes and
the loss of  signal strength  when the chirp is sent over a long distance. The sonar
sensor must account for the residual  ringing within the module after sending the
chirp,  called  the  blanking  time,  which  is  currently set  to  be  approximately  2.4
milliseconds. This value can be modified by sending an override bit, but since this
value also contributes to the minimum time of flight, the distances should account for
the ideal distance of the obstacle. To achieve a more reliable measurement, the two
sonar sensors should operate in a similar manner. This means the object should be
viewable by both sensors, thus the ideal distance starts from when the viewing area
of the sensors start to overlap.

The maximum operational range for the sonar module, according to the hardware
specifications, is at just over 10.5m. However, in an indoor environment with large
number of  obstacles,  it  is  unlikely that  a sensor  measurement  from such a long
distance will not be corrupted by noise such as echoes and secondary reflections. By
setting the sonar module to anticipate for long distances, it also means waiting for the
time-out to occur will greatly reduce the sampling speed of the sensor. Although the
detection of obstacles that are far away may not be reliable, the availability of this
information allows the module to be deployed in other  environments,  as well  as
giving a rough indicator of vacancy to be used for path planning and can avoid
frequent  updating  of  paths.  The  module  is  currently set  to  time  out  after
approximately 30.84 milliseconds, which translates to roughly 5m, as the chirp is
required to traverse back to the receivers.
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3.3.3.2 Operational range

Much like the IR sensor, the sonar sensor also suffers from the dispersion of the
signal after it is emitted from the device and reflects off of the obstacle's surface. The
behaviour of the acoustic signal is  slightly more complicated than the light sensors
due  to  more  ambiguity  from  secondary  waves,  multiple  reflections  from the
increased  range,  and  the  wider  wave  front.  A  detailed  investigation  into  the
applicability of  sonar characteristics  has not  been conducted for this project,  but
significant attributes such as the dispersion angle for the primary lobe of the sound
wave  strength  has  been measured  so  the  sonar's  most prominent signal can  be
determined. To measure this angle, a similar process to the IR sensor was carried out,
but using a small grained plastic plate. The rough surface was intended to induce
some scattering to make sure the signal reflected back to the sensor. Since the type of
material only affects the amplitude of the signal, as long as the reflected signal was
strong enough to be detected, the absorbency did not affect the distance measure. The
experiment showed that  the beam was reasonably narrow at  7.5 degrees in each
direction from the perpendicular line to the face of the receiver.

3.3.3.3 Sensor reading

The calibration  process  indicated  three distinct  regions for the sensor operation;
the blanking and blind zone for the passive sensor before approximately 450mm, a
linear trend  in the middle, and the region after the cut-off point where the sensors
time out.  The results of the calibration is summarised in figure 3.10.  The dividing
point between the first two ranges is the minimal distance the sensor can operate due
to the single emitter approach, which can be derived from the viewing angle and the
distance between the receivers. The distance between the receivers is 120mm, thus
giving the theoretical minimum distance of approximately 455.7mm. To account for
possible errors,  the minimum distance was set  to a  round value of  500mm.  The
maximum value was simply set to when the sensors timed out, which then reports an
empty reading.

Figure 3.10: Time of flight versus distance measure for the sonar sensors.
The linear trend and the operational range for both receivers can be
observed.

29



3.3.3.3 Sensor reading

Within the valid zone, the linear trend for each sensor has been modelled into a
simple linear  function to convert  the time of flight  into a distance measure.  The
relationship is  not  consistent across different environments, but remains reasonably
accurate unless significant changes occur in the operating environment, such as the
toggling of the air conditioner.  Note that the sensor values correspond to the clock
counts, which is proportional to the time of flight. Rather than a two step conversion,
the sensor value can be converted directly with the following function;

right_distance = 0.135 * right_clock_count – 26.761 (3)

left_distance = 0.137 * left_clock_count – 43.209 (4)
The small intercepts are due to slight inaccuracies in distance measures during the

measurement process, but is a negligible amount compared to the magnitude of the
clock count. Although the object was placed equally distant from the two sensors, the
slight difference in the coefficient  indicated that the placement was not  perfectly
accurate, or the slight delay introduced from the sequencing of the sensor readings.
The linear trend showed very consistent results indicating the reliability of the sonar
sensors when used in a consistent environment. The consistency between the two
readings plays an important role in error detection and when encountering smaller or
angled surfaces. This will be explained in further details in chapter 8.

3.3.3.4 Tilting

Due  to  the  increase  in  the  likeliness  of  receiving  an  erroneous  signal  when
measuring an obstacle that is further away, it can often be advantageous to limit the
range of the sensor manually. By reducing the time-out value, it allows faster sensor
re-use  and  reduces  the  uncertainty  in  the  sensor  measurement.  However,  this
approach must consider potentially receiving the first chirp just after the second chirp
is fired after it times out. It is possible to cater for this by using multiple frequencies
or  by introducing a  pause while  ignoring  all  measurements  that  are  beyond the
threshold distance.

An alternative approach to limit the range of the scan is to modify the direction of
the emitted chirp, such that it limits the locations of the surfaces that can reflect the
signal back to the receiver. A simple implementation of this technique is to tilt the
face of the receiver, such that it points down to avoid  the reflected signal from a
distant, vertically standing surface. There are also other benefits, such as being able
to detect smaller obstacles near ground level and avoiding the detection of obstacles
that are too high for the robot. By tilting just the sensors itself, rather than the sonar
module, the rotational axis of the servo remains consistent, thus allows for a constant
elevation of the sensors to simplify the calculations.

The approach was tested on a carpet and vinyl flooring to note the validity on
different surface types. Operation on the carpet floor showed more fluctuation in the
viewable angle due to the irregular surface structure, but did not show any significant
difference to the overall behaviour. The effects and measurements at various tilting
angle for an obstacle placed 2 meters away is summarised in figure 3.11 and 3.12
respectively. The green area shown in figure 3.11 is for a parallel scan to the ground
at an elevation of H and viewing angle of  Ө, while the blue area shows the tilted
version. Note that the actual distance, D, to a flat surface starts to differ if the sensor
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3.3.3.4 Tilting

is  rotated  beyond  its  viewing  angle.  The  tilting  angle,  Φ,  also  causes  a  larger
ambiguity in  the actual  distance to  the obstacle.  Although most  of  the obstacles
encountered by the sonar are large enough so it does not fall within the newly created
blind spots, having multiple blind regions and inconsistencies with other sensors can
become difficult to manage. The flat surface also means less of the reflected signal
will  reach the receiver  due to the increase in  the angle of  incidence against  the
obstacle.  Although  these  limitations  can  help  narrow  the  beam  to  improve  its
precision,  the approach also  introduces  many constraints  on the obstacles  it  can
observe. In the end, the tilting has not implemented in the current set up.

Figure 3.11: Effects of tilting the sonar.
The solid line bound region shows normal orientation, while the
spotted region shows the area covered by tilting the sensor by an
angle of Φ, where the source of the signal is the grey circle.

Figure 3.12: Tilting angle versus sensor reading.
The change in the distance to the sonar sensor can be observed by
tilting the receiver.

The applications of the IR and sonar sensors will be discussed in more detail in
chapter  8 where they are employed for the task of  mapping the  structure of the
environment. The strategies involved in using these range sensors play an important
role  in  constructing  a  useful  map  for  the  mobile  robot  as  the  captured  data  is
combined with other sensor readings.
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3.3.4 Cameras

3.3.4 Cameras

The last and the most complex type of sensor included on the mobile robot is the
series of off-the-shelf USB webcams with charge-coupled device sensors mounted at
different  locations  on  the  robot.  The  cameras  are  used  simultaneously  and
independently for capturing different aspects of the environment and from different
perspectives.  Currently,  there are four cameras mounted on the mobile robot that
make up three different modules. Each module is implemented for specific tasks with
some common filter combined with unique parsing algorithms to extract the required
information for the task.

As noted earlier, the visual sensor allows capturing of  an  enormous amount of
information about the  scene  and  is possible to parse the same  data using different
techniques  and  algorithms  to  extract  different  information.  The  specific
implementation of the algorithm depends on the task the camera is set to perform.
Restricting the camera to a single perspective can limit  the types of information
which  can  be  derived,  thus  the  processed  data  from  the  cameras  are  used  in
conjunction with other techniques, such as moving the camera, providing a modified
view through manual distortions or mirrors, and combining multiple sensors.

There are two cameras currently being used for the task of ground texture based
visual  odometry  (Clark  &  Ferrier,  1992;  Hutchinson  et  al.,  1996;  Marchand  &
Chaumette,  2005;  Sundareswaran  et  al.,  1994).  The  camera's  placement  is  well
controlled and is given the task of identifying unique patterns on the ground to be
tracked during consecutive  frames  while  the  robot  moves.  The two cameras  are
synchronized  to  provide  precise  2D  pose  information including  rotation.  This
implementation, as well  as the issues related to localisation is discussed in more
detail in chapters 5 to 7.

To observe the environment that is being explored, a single camera is mounted at
the front  of  the robot.  This configuration best  mimic the visual  sensors of  most
biological  systems  as  the reflected  light  from the  obstacles  are  observed  in  the
direction of the traversal. The camera is also capable of panning by being mounted
on a servo motor, which is currently shared by the sonar module. The rotation allows
more precise control over the orientation of the camera over rotating the entire robot.
The details of this module is discussed in chapter 10, where it attempts to identify
landmarks and meaningful regions of interest in the environment to be integrated to
the rest of the knowledge base that is being built up from the sensors (Astigarraga et
al., 2004; Mata et al., 2002; Nehmzow et al., 2000).

The last module makes use of a reflective dome to distort the incoming rays to
provide  an  omnidirectional  view  of  the  environment  (Huang  &  Trivedi,  1998;
Ishiguro, 1998; Nayar, 1997; Yagi, 1999). This module is mounted at the top of the
robot and allows the simultaneous view of the immediate surroundings by using a
natural compression in the density of the captured image through changes to the
viewing  angle  per  photo-sensor  ratio.  The  use of  the  omnidirectional  camera is
detailed  in  chapter  11,  where  it  assists  in  the  scene  analysis  using  its  unique
characteristics to simultaneously view a larger surrounding area.
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Chapter 4 – Processing

The degree of successful operation for every mobile robot system depends on the
appropriate  processing  and  analysis  of  the  sensory data,  as  well  as  the internal
representation constructed to model the states of the surrounding environment. These
form the basis for almost every mobile robotics research, as they attempt to improve
the data that are captured from the sensors and represent it in a more precise and
meaningful way. To perform these processing tasks, a processing unit is required to
efficiently interpret the sensor data and generate the appropriate information required
for the given task. It must also consider the relaying of messages between various
modules to combine the knowledge to improve and enhance the information.

4.1 Processor selection

The key element to carrying out the various tasks is the processing unit that is
capable of using the various attributes about the environment and converting the data
to  a  more  informative  value.  Rather  than  dealing  with  the  intricacies  of  the
processing unit, considerations were made primarily on the ease of use, availability
and extensibility in terms of both development and maintenance requirements.

4.1.1 PIC

The simplest type of the processors used on mobile robots is the micro-controller
that are used directly on the controller board for manipulating with the sensor at a
very low level. The PIC micro-controllers are well suited for highly specialised tasks,
as the limited resources and the small  set of operations allow for well optimized
operations.  Although  they  do  not  allow  for  some  complex  algorithms  to  be
implemented, especially those requiring large memory footprints, the processor has
an easy learning curve as the chip is commonly used throughout the course work of
undergraduate students.

4.1.2 Laptop computer

While using a specialised processor for a specific task allows for a very efficient
processing, it does not provide the flexibility compared to a generalised processing
unit,  such  as  that  in  a  personal  computer.  For  an  experimental  platform,  it  is
advantageous  to  include  the  general  purpose  processing  device  to  simplify  the
integration of peripherals and the availability of software packages due to the device
drivers  that  are  pre-written  by  the hardware  manufacturers.  The  large  range  of
additional components can allow simple and isolated experiments without the hassle
of defining the complex interfaces, while the availability of development kits and
libraries allow for accelerated development process when enhancing or extending the
system.
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4.1.2 Laptop computer

Due to the limited space and power available on the mobile platform, it is not
feasible to place a desktop computer on the robot. Typical implementations make use
of an on-board laptop computer or a message relaying device to off-load some of the
non-time critical  processing  to  a  nearby computer  not  on  the  robot.  The  laptop
computer  often  acts  as  the  central  hub  for  the  various  modules  to  simplify  the
communication, while providing a greater processing capacity for the robot than the
microprocessors.

4.1.3 Off-board computer

As mentioned above, an alternative to using a laptop computer on the robot is to
relay the  data  gathered  by the  sensors  to  and  from a  more  powerful  computer
elsewhere. The additional processing power provided by a scalable computer system
can greatly increase the robot's capabilities. However, this requires the mobile robot
to  be  equipped  with  some  sort  of  communication  mechanism  to  transmit  the
messages  as  well  as  requiring  an  extra  consideration  to  allow for  the  increased
latency in transmitting the messages.

When using an off-board computer to process the sensor information, the benefits
of having a central hub on the robot fade and the interfaces between the modules and
hardware become a significant issue. This means a dedicated controller board with
the appropriate device drivers must be designed and built for each sensor, making
this a costly requirement. For this reason, many experimental mobile robots make
use of a laptop computer which is also equipped with communication capabilities to
relay  the  process  intensive  and  non-time  critical  tasks.  This  hybrid  approach
combines many of the benefits, but must consider the overheads in splitting the task
and also the costs in the actual laptop computer if none are already available.

4.2 Communication approaches

When using a tethered approach to link between the robot  and the externally
located  processing  computer,  the  mobile  robot  becomes  quite  constrained  in  its
motion as the traversal distance and the possible paths can be severely limited, as
well as potentially blocking the view of the sensor signals. Using a wireless mode for
communication, it is possible to avoid many of the above issues, but is more prone to
loss of messages. Within the robot itself, the use of the cable allows fast and reliable
connection between the different  modules.  Since most  of  the components on the
robot remain fixed or move in a controlled and predictable manner, the cables can be
placed so that they do not interfere with the functionality of the other components.

The commercially packaged devices, such as the webcams, come with standard
interfaces which can easily connect to other devices. However, many of the other
devices require a separate communication device to be attached so the transmission
of data can occur to and from the devices without the hassle of changing a lot of the
hardware if different modules are connected to it in the future.

When transmitting  the data  between  the different  modules,  it  is  important  to
understand the meaning of the values that are being passed around. This means a
certain degree of coupling is required, such as the establishment of protocols and the
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use of consistent units. Since each module is assigned a processing unit, the raw data
from the sensors can be converted to an appropriate unit using hard-wired mapping
functions.  Where there are multiple  processors present  before the data is  passed
along, it is possible to leave the conversion until the end to maintain the original data.
This late conversion allows certain modules to focus on the conversion and leave the
data generating modules to be implemented independently of the whole system. The
layer  of  processes also allows the reuse of  algorithms or  to view the same data
through multiple perspectives which can promote the derivation of new pieces of
information. However, the layers can sometimes contribute to excessive coupling and
redundancy thus is important to consider the interfaces between the modules with
respect to the given tasks before data is passed on.

4.2.1 Processor to sensor communication

The tasks for a given processing unit can vary from a simple sending of pulse
instruction  to  a  motor  to  a  more sophisticated  feature  extraction  process.  When
commanding  the  various  sensors  to  operate,  the  processor's  task  is  a  matter  of
converting the high level command, such as “rotate the robot by 45 degrees to the
right” to the appropriate command depending on the protocol being used, usually by
combining multiple simple commands and operations in a sequence. The process
eventually reaches the low level  device,  where the command is translated to the
appropriate instruction for the hardware using the known or calibrated attributes.

The high level  commands are typically derived after combining the data from
multiple  modules  and  a  decision  is  made  based  on  the  task,  the  state  of  the
environment it  has sensed, and the strategies that  have been put in place for the
current  situation. The generated commands are then passed on to the appropriate
modules while certain attributes may be filled in by other modules along the way.
Although it is easier to visualise the command being carried out through physical
modules,  a significant  number of  commands are processed internally in software
within the physical devices to reduce the inter-hardware transmissions.

Many  of  the  commands  that  are  generated  from  a  decision  which  result  in
mechanical changes are motor based, as most of the sensor modules do not require an
explicit high level command to operate. Instead, they are continuously activated and
the latest data is relayed whenever another module requires the information. This
allows the sensor  modules  to  quickly react  to  environmental  changes  instead of
having to wait for the chain of processes between modules before events are handled.

4.2.2 Sensor to processor

When the sensor generates data, the value represents some device specific reading
which must be converted to a higher level concept, such as the time taken or the
strength of the received signal. Depending on the task of the module, the information
can be converted even further to simplify the process of the subsequent module,
possibly resulting in the loss of some information during the conversion process. The
information carried to the central  processing module,  if  present,  must collate the
information from various sources thus requires a set of shareable attributes to be
used.
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4.2.2 Sensor to processor

Without  the multiple layers to convert  the data to the appropriate format,  the
central  unit  is  placed  with  the  burden  of  converting  the  data  to  a  uniform
representation. This requires the central unit to know the type of data being used for
the  other  modules,  thus  requires  constant  modification  if  new  modules  are
introduced. For this reason, it is advantageous to delegate the conversion of data to
the other processing units and define a global unit for the other modules to adhere to.
Not having access to the raw data is often not a critical issue, since the conversion
can often be reversed as long as none of the data is lost.

4.2.3 Compression

When transmitting the data across to a different module or system, the data must
be formatted according to the transmission protocol, which can sometimes alter the
original  information.  This is  often the case with large volume of data producing
devices, such as video or audio capturing sensors, which must be compressed before
being transmitted to another module. This compression is often necessary due to the
limitations in the communication channel and is achieved by discarding or merging
portions of the data. The criteria for how to compress the data differs significantly
between  protocols,  thus  post-processing  algorithms  are  sometimes  required  to
recover  from the degraded  information  if  explicit  control  of  this  process  is  not
available.

4.3 Current set up

Due to the incremental development of the mobile robot, some of the modules
have been layered to simplify the interface between the high level processing unit
and the low level hardware interfacing modules. The motor, sonar and the IR sensors
are all  combined through custom built  controller boards which are equipped with
variants of the PIC micro-controllers to relay the commands to activate and control
the attached devices (Bologiannis et  al.,  2003;  PIC-Servo /  PIC-Enc,  2005;  PIC-
Servo  Board,  2005).  The  sonar  and  motor  modules  have  been  implemented  on
separate circuit boards and are connected to the main controller board using ribbon
cables and a RS485 connection, while the IR module is integrated directly with the
main board. The main controller board collates the data from multiple modules and
relays messages to the laptop computer through a RS232 connection.

4.3.1 Commands to the low level modules

The main controller board interprets the high level commands from the laptop
computer to the appropriate units and measurements for the other modules. There are
several commands defined in the protocol for various operations to allow the re-use
of utility functions and to simplify the view from the laptop's perspective. These
commands are listed in table 4.1, which show the currently implemented high level
operations. Note that the units for velocity and acceleration depend on the variable
characteristics  of  the  robot,  such  as  the  weight  and  battery  level,  thus  is  never
precisely defined. Some of the commands are not utilised as the high level decision
process does not include certain operations or are there for debugging purposes.
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Table 4.1: Commands for the controller board.

Command Argument Description

n - Silent: Toggles sending of messages to the laptop.

i - IR: Activate the IR sensors immediately.

c - Chirp: Activate the sonar sensors immediately.

y Angle (degree) Yaw: Rotation of the sonar servo.

m Displacement (mm)Move: Moves the robot forward. Negative for reverse.

v Rate (unit) Velocity: Set the maximum speed of the motors.

a Rate (unit) Acceleration: Set the acceleration of the motors.

t Angle (degree) Turn: Rotates at the center of the robot.

l Displacement (mm)Left: Moves the left motor forward.

r Displacement (mm)Right: Moves the right motor forward.

e Rate (unit) Left velocity: Set the maximum speed of the left motor.

g Rate (unit) Right velocity: Set the maximum speed of the right motor

f Rate (unit) Left  acceleration: Set the acceleration of the left motor.

h Rate (unit) Right acceleration: Set the acceleration of the right motor.

o - Sonar: Toggles the activation of sonar sensors.

Due to the simple process that is required to execute the command in software, the
majority of the time consumption occurs while waiting for the signals to be sent and
received, as well  as the readying of the hardware for reuse. Because of this, the
commands are buffered, where the most recent of the same command type is kept
and executed when the resources become available. Note that buffering too many
commands can lead to overflow errors or significant delays in processing. Some of
the issues  can be avoided using a  priority queue,  but  the  task  of  managing  the
commands is left to the higher level processor on the laptop instead of the PIC chip
on  the  controller  board.  For operations  that  have  consequence  on  other  sensor
behaviour,  such  as  changing  the  pose,  the  older  commands  cannot  simply  be
overridden. This can be dealt  with by merging the multiple commands, buffering
them  infinitely,  or  by  responding  to  the  command  generator  that  the  previous
command has not been acted yet, thus no further command can be sent.

Time consuming operations, such as the motor motion commands, do not have to
wait for the completion of the command before resuming control. Instead, the motor
motion is passed onto the controller board of the motor and an interrupt driven flag is
checked to note any changes in the state before sending a new command.

4.3.2 Data from the low level modules

After the commands are carried out by the individual devices, the acquired data
are  converted  digitally  and sent  back  to  the  main controller  board.  This  is  then
collected together and passed back to the laptop computer for higher level processing
using the serial connection as a single message. As most modern laptop computers
lack a serial connection interface, a serial-to-USB converter has been put in place.
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4.3.2 Data from the low level modules

The use of the converter  has not introduced any limitations to the performance or
required the protocol of the commands to be changed.

The data rate of the serial connection between the main controller board and the
laptop computer is currently set at 115200 bits per second, which is adequate for the
amount of messages being transmitted. The data is currently transmitted in ASCII
format for simplicity in the debugging process, but does not contribute to a large
overhead in the data size due to the small numbers being represented. The current
data format combines the latest sensor data from the sonar sensors, IR sensor array,
motors and the timing information from the central board into one and sends it with
delimiter characters to allow easy parsing of the message. Figure 4.1 illustrates the
protocol with the size of each attributes in bytes when using the binary mode.

Figure 4.1: Messages protocol for binary mode.
The numbers represent the number of bytes used.

The baud and the content of the message allows for approximately 140 of these
messages  to  be  sent  in  one  second.  Since  this  is  much  greater  than  the  data
acquisition rate of the devices, no compression mechanisms are implemented. If the
inclusion of  additional  modules in  future  implementations result  in  the need for
compression mechanisms, the messages can be converted back to the raw binary
format  with  well  utilized  data  types  for  each  of  the  values.  Another  plausible
approach would be to split the message and varying the sensor updates depending on
the requirement or the individual data acquisition speed of the sensor. This allows
each of the modules to operate at their own speed and report the new reading when
they become available, rather than reporting an out-dated value due to having to wait
for slow operating sensors.

4.3.3 Processing on the laptop

The  laptop  computer  acts  as  a  hub  for  several  modules,  as  it  allows  simple
interfacing with many off-the-shelf devices, as well as the custom built controller
boards. Currently, the four webcams and the main controller board are connected to
the laptop, all via USB connection. The captured data from the devices are parsed
and  interpreted  individually  by  the  appropriate  modules  and  the  extracted
information  is  passed  onto  the  core  processing  module  which  combines  the
information to form some knowledge about the environment, as well as managing the
sequence of events in a proper chronological order. Three of the four cameras are
also fitted with microphones, but  are not used as no audio processing module is
implemented. This is mainly due to the limited information an audio data can portray
about the environment. The availability of the audio information is beneficial when
the  robot  is  under  voiced  control,  as  it  allows the robot's  operator  or  a  speech
recognition module to respond to voiced commands from on-lookers, as well as the
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4.3.3 Processing on the laptop

implementation of speaker localisation techniques when multiple microphones are
used (Schauer & Gross, 2001). By combining a speech synthesis module, the robot
was successfully deployed as a tour guide for the university's open day by manually
controlling the robot from a remote location.

4.3.3.1 Cycle speed

The cycle speed for the main processing module depends greatly on the amount of
useful information that can be extracted from the other modules. To allow consistent
performance, the cycle speed should be set to the lowest common multiple of the
capture  rate  of  all  the  modules  to  allow  the  latest data  for  any  inter-module
dependencies. However, this can result in a significant bottleneck as it awaits for
synchronisation between the modules.  The fluctuations  in  the sampling intervals
from spikes in the processing load and error handling mechanisms can contribute to
potential delays, thus causing even further delays in the processing of the data. This
approach thus requires extremely high processing speed in each of the modules, or
perhaps the inclusion of time-out mechanisms to guarantee a regular interval.

Another strategy to overcome this issue is to set the cycle speed high enough to
suit  the most time-critical module, then buffering the latest  information from the
other modules or approximating the current information from trends seen in the past.
The  predictions  can  introduce  some  overheads  from  the  maintenance  of  past
measurements and when determining the actual trends, but can allow for smoother
transitions  of  values  from  slower  modules.  Note  that  this  approach  can  often
introduce  errors  as  the  trends  cannot  accurately  predict  the  current  state  of  the
environment.

Using the buffered approach, the latest reading from each of the modules can
update its buffer entry when ready, possibly with a time-stamp information. Note that
the time-stamp information may not be available to the central module, especially if
the updates are initiated by the central module. This is because the information may
not be extracted or be available. The time-stamp information is maintained by the
other module or sent along with the other messages when the central module requests
the updated information. This information is vital for detecting duplicates in case the
updates did not occur at the expected time, which can cause the prediction based
algorithms  to  misbehave,  and  to  correctly  sequence  the  messages  at  the  proper
interval.

Since it is desirable for the main cycle to operate slightly faster than the fastest
module, such that the data is not skipped, many of the information being used will be
out of time. This allows the cycle to be delayed slightly while it waits for the values
from the sensors to be updated. At present, the sensor information from the custom
controller board has the fastest data update speed, at approximately 35 messages per
second. This does not cause significant issues if some information is lost, as it reports
the state of the environment, which is continuous. This is also because the time-
stamp used by the central module is also sent along with the message. The messages
are parsed and stored in a buffer, which is where the latest information is maintained.

The webcams, on the other hand, which operate at a maximum speed of 30 frames
per second, requires the continued sequence of data due to many algorithms requiring
transitional information between the captured frames. By making sure that the speed
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of the central module is slightly faster, it is able to guarantee that no frame is lost, but
duplicate frames must be detected and removed. This process is described in detail in
chapter 5. This differs slightly from the sampling theorem, which is interested in the
reconstruction of the original continuous signal using infinite number of samples,
while this approach is only interested in accessing the continuous stream of frames
(Shannon, 1998). By observing the rate of duplicate frames being detected, the cycle
speed can be dynamically modified to suit the current processing load.

Although  the  ideal  cycle  speed  is  slightly  above  35 frames  per  second,  the
addition of extra modules will eventually cause the reduction of the cycle rate to a
much lower value. For this reason, certain modules which do not require immediate
interactions with another module can perform some of the processing on a separate
processor, such as a designated digital signal processor for parsing the image frames.
It  may also be feasible to off-load some of the non-time critical processing to an
external system using wireless communication available from the laptop computer in
future implementations.

Since there is only one laptop computer mounted on the mobile robot, there are
hardware  limitations  in  terms  of  the  number  of  devices  that  can  be  physically
attached. The laptop computer and the devices currently communicate through the
USB connection, thus is limited by the number of available USB ports. Although it is
possible to increase this by using a USB hub, the net data rate of the USB connection
still  remains the same due to the sharing of  the bus. This causes the data to be
delayed based on the priority algorithm defined by the operating system and the
bandwidth requirement of the connected devices. Using a faster bus can control this,
but care should be taken to arrange the devices such that devices that require high
number bandwidth are not using the same shared bus as another high bandwidth
devices.

4.3.4 Off-board communication

Although communication to an off-board PC is possible using the built-in wireless
card  on  the laptop  computer,  the  current  system does  not  make use of  external
processing  units  to  avoid  the  extra  latency  and  complexity  introduced  from
distributing the processing task and to synchronise between the multiple processing
units.

One potential use for the off-board computer is to use it for a data storage unit for
the captured information. Since the current processes discard all of the old sensory
data, it loses the useful scene information which could become useful for an alternate
processing algorithm developed in the future. Maintaining the sensor data also allows
manual intervention to view and correct any issues with the automated processes
(Graves et al., 1992).

Another  use  for  the  communication  mechanism  is  the  interactive  behaviour
mentioned earlier by manually controlling the robot at times. This allows for a much
simpler model of interaction than having to chase after the robot to issue special
commands and also avoids the driver  from being included in the scene analysis
process.
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4.4 Summary

Figure 4.2 summarises the modules, the hardware, and the connections involved
in the current mobile robot platform, where blue represents the hardware and purple
represents the different modules. The green lines represent the physical connections
between the devices, while the orange lines represent the inter-module connections.
As  the  diagram  shows,  the  design  is  heavily  dominated  by  the  physical  link
requirements, which places a burden on the laptop computer to perform the majority
of the process intensive operations. This will require modification in the near future,
such as by developing dedicated localisation hardware or by off-loading portions of
the mapping module to the controller board. It is also possible to simply use a more
powerful laptop computer in the future, which will allow the majority of the system
to remain a generic platform for development of modules.

The  core  module  currently  coordinates  the  operations  on  the  laptop  by
maintaining an adaptable scheduler to initiate the other modules at the appropriate
intervals, with the exception of the controller module. This is achieved by observing
the execution times of the scheduled tasks to modify the waiting periods. Due to the
heavy load on the processor, the waiting time is almost non-existent and requires
some of the process intensive modules to reduce the data rate for it to operate without
skipping some data. Currently, this is done by reducing the capture resolution of the
cameras,  disabling  the  functionality  of  the  microphones  and  also  the  archiving
module.

Figure 4.2: The components within the mobile robot system.
The blue objects represent the physical components, the green lines
represent  physical  connection between the physical  components,
and the purple ovals represent the processing modules, while the
orange lines represent the communication between the processing
modules.

With the processing issues and the mechanical components involved in the mobile
robot analysed, development of data processing algorithms can be carried out. The
clear  definition  of  the  platform  allows  the  grounding  of  measurements  and
algorithms  as  the  two  components  form  a  tight  coupling  to  better  utilize  the
capability of each other.
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Section 2 – Localisation

“Counting steps tell me how far I want to have
moved, but the actual question I need to ask is,

where am I now?”

For almost every mobile robot system, it is a vital requirement that the robot know
its  current  location.  The  locality  information  can  vary  in  form  from  absolute
coordinate points based on some pre-defined coordinate axes to a high level concept,
such as “corridor” or “office room”, which allows it to carry out various navigational
and  exploration  tasks  that  are  appropriate  for  the  immediate  surroundings.  By
knowing where the robot is, it is possible to make informed decisions about where it
has and has not been to, as well as where it needs to go. This allows to plan paths to
goals and to analyse the environment using the correct perspective (Boudihir et al.,
1998).

Localisation for the robots, which is often referred to as pose maintenance, can be
described as the process of deriving the spatial position and orientation with respect
to some representation of the environment. This process is one of the major areas of
research in the field of mobile robotics, as it plays a major role in the functionality
and reliability  of  the  interactive  system.  The field  is  often combined with  other
research  areas  which  focus  on  the  use  of  specific  sensors  and  scene  analysis
techniques to enhance the localisation ability.

The localisation process typically involves the use of open or closed-loop control
to accumulate or derive the pose based on the sensor readings and knowledge about
the environment. The correlation between the sensor generated data and the internal
representation of the environment, whether it be purely theoretical or generated from
real sensor readings, allows the pose to the derived when they are combined together
(Crowley et al., 1998; Mackenzie & Dudek, 1994; Wolf et al., 2002).

Using the open loop control approach, the robot calculates the current pose based
on predetermined motion models and the motion commands executed by the motors.
This involves the use of forward kinematics and the locomotive characteristics such
as the wheel dimensions and gait patterns (Alexander & Maddocks, 1989; Bloch et
al., 1996;  Chakarov, 2006;  Crowley & Reignier, 1992). Although this approach is
very simple to implement it relies heavily on the accuracy of the motion model, the
consistency of the environment, and the robot's characteristics during the operation,
as no feedback information is provided to the robot.

An approach which uses feedback information from sensors, called the  closed-
loop control, requires a much more sophisticated algorithm to correctly interpret the
gathered  data  to  derive  the  current  pose  of  the  robot.  This  process  requires  an
understanding of the various sensor behaviours and the appropriate algorithms to
combine  the  information  by  correlating  with  the  internal  representation  of  the
environment. This allows for the grounding of the sensor readings, such that internal
representation can be extended or improved upon (Jensfelt, 2000; Mark et al., 2002).

The  correlation  process  between  the  sensor  readings and  the  internal
representation of the environment can vary significantly between the techniques, but
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typically involves the identification of a limited number of regions within the scene
deemed as interesting and constrained (Bourque & Dudek, 1998 (b); Bourque et al.,
1998; Harris & Jenkin, 2001; Nayar et al., 1994; Sim & Dudek, 1998; Thompson &
Pick Jr, 1993),  such as the appearance (Ben-Arie & Wang, 1997), to be used as
reference points. The use of the significant features within the scene allows for a
reduction in the search space when matching the observed scene with the existing
representation, as well as simplifying the correlation process when the same feature
is encountered (Bennewitz et al., 2006; Davison & Murray, 1998; Se et al., 2002 (a);
Thompson et al., 1993; Zhang et al., 1994). The selection criteria for these interesting
areas  can  be  derived  from  pre-determined  or  adaptive  attributes  which  help
distinguish itself amongst the other, repetitive and uninteresting, data (Marsland et
al., 2001).

The field of localisation is sometimes categorised into two levels of perspectives
and difficulties. Local localisation refers to the pose maintenance with respect to the
current view of the world to the robot, while  global localisation is concerned with
pose  maintenance  on  a  larger  scale,  typically  involving  minimising  errors  in
correlations between the states produced by the local localisation (Se et al., 2002 (b);
Simmons  &  Koenig,  1995).  Although  both  areas  are  ultimately  concerned  with
identifying the pose of the robot, the differences in the scope means different inputs,
algorithms,  and  considerations  are  required  to  achieve  their  respective  goals.
Typically, the two areas are used in conjunction with each other, in that the global
localisation makes use of the results and data gathered from local localisation to
assist in disambiguating the pose, as sensors with limited ranges are used.

This ability is often trivial to many biological systems (Redlick et al., 2001), but
implementation with very limited number of specialised sensors, the low precision
which can be distinguished, the lack of knowledge about the environment, as well as
the lack of optimised algorithms integrating the various sensor readings make this
process  a  very  challenging  task  for  man-made  systems.  The  overall  goal  is  to
construct a system, including both software and hardware, which is able to accurately
identify the robot's current location with minimal materiel and processing cost. This
often means using existing and affordable sensors to minimise the equipment costs,
but developing highly specialised algorithms using a multitude of techniques and
algorithms, and also by fusing the data from multiple sensors. There is also scope for
simulated environments, which focus on the development of the algorithms, as well
as the construction of realistic virtual environments.

Some of the popular implementations of localisation algorithms include the use of
purposely  designed  markers  such  as  signs  and  bar  codes,  known  scene
characteristics, identifying distinguishable features on the fly,  or a pose detecting
device such as a GPS or a compass (Blaer & Allen, 2005; Bulusu et al., 2001; Guibas
et al., 1995; Merke et al., 2004; Shen & Hu, 2004; Werman et al., 1999). These are
often combined with dead reckoning algorithms to calculate the current pose, or to
estimate the error rate of  the dead reckoning approach (Deans & Herbert,  2000;
Duckett & Nehmzow, 1999; Ghidary et al., 1999; Kleeman, 1992).

This section introduces a local localisation technique using visual odometry in an
unmarked environment using off-the-shelf webcams (Del Bimbo & Santini, 1994).
This strategy aims to improve the precision of the local localisation approach, such
that it can improve the accuracy of the internal representation of the environment.

Chapter  5  covers  the  configuration  issues  in  using  the  camera  on  the  robot
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platform. In chapter 6, considerations to the feature detection process is made for the
specific  configuration  and  task  for  the  camera,  while  chapter  7  investigates  the
various techniques and validity of multi-camera visual odometry techniques.
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Chapter 5 – Camera configurations

In recent years, the availability and popularity of off-the-shelf visual sensors have
increased  dramatically  due  to  the  improvements  in  the  picture  quality  and  the
affordability to ordinary home users. This has had positive influences to and from
visual  data  processing techniques  as it  has  allowed more researchers to  develop
vision based systems. Although the performance aspect of these low cost devices are
inferior  to  the  high  end  visual  sensors,  this  gap  is  rapidly  decreasing  as  more
commercial backing for low-cost cameras drives the technology forward.

Various different fields within robotics and image processing, such as machine
vision, active vision, and feature recognition, all relate back to the task of using these
photo-sensor arrays to capture the scene structure to be able to identify information
from it. The different areas tend to focus on a small portion of the information, which
has  lead  to  very  sophisticated  algorithms  and  approaches  to  be  developed  for
specialised tasks and environments (Dudek & Jugessur, 2000). Although some of the
basic principles implemented in the algorithms can be reused in other systems, many
actual implementations are well optimised to improve their efficiency.

For the task of local localisation, there are several approaches in existence which
make use of visual sensors (Beauchemin & Barron, 1995; Corke, 1994; Davison &
Kita, 2001).  Many of these approaches capture as much of the scene then  apply
filtering  algorithms  to  extract  the  desirable  aspects  within  the  view  (Basri  &
Weinshall, 1993). The conversion of the 3D environment into a 2D representation
introduces ambiguity due to the lack  of  depth information that  can be captured.
However, by acknowledging this limitation and utilizing the characteristics that are
naturally  present  or  known,  the  image  processing  algorithms  can  be  greatly
simplified (Lowe, 1987). It can also decrease the processing time and the amount of
errors being introduced from the lack of the transformation processes to convert the
data into the desired representation (Black & Anandan, 1991). This simplification
can be achieved by constraints to the observed scene to a 2D surface, which may be
difficult to achieve, but also allows for the increase in the accuracy and reliability of
the data as long as the constraint can be maintained (Horn & Schunk, 1981).

A commonly seen use of the above approach is in the optical mouse, which uses a
specialised image sensor to measure the displacement of the ground texture from a
predetermined perspective (Ng, 2003). An approach which makes use of a similar
idea, but using a webcam instead of the purpose built  system, is investigated for
applicability for mobile robot localisation. Contact based distance measures do exist,
but  can  be  influenced  by commonly  occurring  errors  like  slippage,  inconsistent
wheel odometry on various surfaces, and the wearing of the system. The vision based
approach, on the other hand, allows for a more consistent behaviour on different
surface types as long as the camera to surface configuration remain known.

The precision which can be achieved by the optical mouse is incredibly high due
to  the  very short  focal  distance  and  the  high  sampling  rate  of  image  capturing
process. But the severe constraint on the allowed surface types limits the usage to a
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very small range of environments (Ng & Carne, 2007). The use of a webcam can
overcome some of the issues by allowing small  variances in height  and a larger
viewing area at the cost of the loss in precision and increased processing time due to
the additional image processing algorithms required to handle the increased volume
of data. Figure 5.1 shows a typical set of captured images from a ground pointing
camera at different resolutions taken from 10 cm above the ground.

Figure 5.1: Snapshots of ground texture at multiple resolutions.
The top two are taken of carpet flooring, while the bottom two are
of vinyl flooring. The left column were taken at a resolution of 320
x 240

5.1 Camera settings

One of the most important constraints placed by the proposed approach is that the
surface being observed must remain flat. To achieve this, the camera must be placed
steadily and accurately as this controls the precision which can be achieved by the
approach. It also indirectly contributes to other issues such as the illumination of the
surface as  the camera sensor  is  a  passive  device,  frame rate  for  controlling the
smoothness of the transitions between consecutive images, and the focal distance,
which corresponds to the tolerance in height changes. These issues are considered in
more  detail  from  a  practical  perspective  by  observing  the  camera  and  robot
characteristics on various realistic ground textures.

5.1.1 Mount position

In most visual processing algorithms that observe the scene from an arbitrary view
point, the transformation processes must convert between the camera's view and the
coordinate  system used  to  represent  the  environment.  A calibration  process  and
feedback  sensors  can be used  to  detect  the  changes  to  the  camera's  orientation,
known as ego motion, to derive the necessary transformation matrix (Faugeras et al.,
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1992,  Chum  et  al.,  2005).  However,  a  well  controlled  placement,  where  the
coordinate axes overlaps with each other, during the initial mounting stage can avoid
a lengthy transformation process if the camera configuration does not change during
execution. This allows for a better utilization of the calibration process, which will
avoiding a complex self calibration process (Lowe, 2004).

Translating the observed displacement to the actual displacement of the camera
requires the calculation of the viewing angle characteristic. This, combined with a
known distance to the ground, allows the proportional coefficient to be determined
between the two displacements. As the horizontal and vertical viewing angle differs
for most cameras, both coefficients must be determined by observing the dimensions
of the viewable areas at known distances.

For  a  typical  webcam,  the  viewing  angle  is  around  40  and  30  degrees  for
horizontal and vertical directions respectively, which only allows for a small viewing
area when the camera is placed close to the ground. Adjusting the height  of  the
camera allows the control of the maximum precision and operational speed of the
robot. Since each pixel size remains constant, varying the height allows different
amount of area being captured through aliasing, which contributes to the precision
that can be achieved. Since the approach relies on tracking the displacement of the
previously observed ground texture, the same ground pattern must also exist in the
subsequent  frame.  Hence,  the  adjustment  of  the  camera height  also  controls  the
maximum operational speed of the robot. Figure 5.2 below illustrates the relationship
between the various attributes involved, while figure 5.3 shows the relationship in
mapping the observed displacement to actual displacement. DA and DB represent the
distance that  is  viewable in  the image,  while  M represents  the  difference in the
distance between the camera and the ground to obtain DA and DB. H represents the
height of the camera, W represents the width of the projected image, Ө represents the
viewing angle, while I represents the position of the point of interest on the projected
image.

HA = M * DA / (DB – DA) (5)

HB = M * DB / (DB – DA) (6)

Ө = 2 * tan-1((DB – DA) / (2 * M)) (7)

Figure 5.2: Deriving the viewing angle and distance between the camera and the
ground.

The attributes of the configuration can be derived by knowing the
dimension of the image that is viewable at two different camera
positions with known disparity between them.
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Figure 5.3: Deriving the translation coefficient from pixel coordinates to ground
coordinates.

The outer lines represent the limits of the viewing area while the
double line represents the location of the point of interest.

A key factor that must also be considered is the processing load of the visual
odometry  algorithm.  Although  this  issue  should  be  considered  for  almost  every
software component, it is also influenced by the physical settings, such as the search
area  for  the  texture  patterns  when  the  viewing  area changes  and  the  necessary
modification of the feature size to account for the change in the level of detail when
the camera mount height  is  changed. To optimise the capabilities of the robot, a
careful  balance  between  the  operational  speed,  precision  requirement,  and  the
processing capacity must be made to utilise the available resources for the given task.

Since the assumption that the camera height with respect to the surface remains
consistent can be invalidated from bumps and slopes, the derived displacement can
drift from the actual displacement. Simple solutions can be put in place to reduce this
effect, such as by using soft tyres to absorb the small bumps, the use of a transparent
plate and a spacer to push the protruding objects down or to move it out of the way
with a sweeper, and the addition of specialised devices like a gyroscope or focus
control on the cameras. However, they do not guarantee the accurate and consistent
performance and can introduce other issues like issues with limitation or not being
able to traverse over certain damaging surfaces. In the absence of an accurate height
change correction mechanism, the original camera height can be used to anticipate
the range of the potential drifts. The equations below can be used to approximate the
errors for a change in height by a particular amount.

G = 2 * I * H * tan(Ө / 2) / W (8)

∆G = 2 * I * (H + h) * tan(Ө / 2) / W - G (9)

∆G = G + 2 * I * h * tan(Ө / 2) / W – G (10)

∆G = h * (2 * I * tan(Ө / 2) / W) (11)
where G represents the ground motion, I represents the motion in the image, H

being the distance from the camera to the ground, Ө is the viewing angle, W is the
width of the image, and h is the change in height.
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Many of the newer camera models are equipped with a software controlled focus
adjuster to allow the focusing of the incoming light to the desired location. Since the
distance from the camera to the ground remains consistent, this feature does not
provide a significant enhancement to the visual odometry technique. It is, however,
possible to make use of the focus control feature to make corrections on the camera
height, since the image being observed will blur when placed at an non-ideal height.
This causes the reduction to the overall strength of the intensity transitions within the
image, which can then be used to correct the focal distance. The tolerance of the
change in the focal distance is proportional to the distance to the object, as shown in
figure 5.4, which is quite short for this type of visual odometry configuration. In the
left figure, F represents the focal distance and D represents the distance from the lens
to the object.

Figure 5.4: Focal distance and tolerance.
The left diagram shows the arrangement of the lens with regards to
the object. The right graph illustrates the relationship between the
distance to the object and the required change in the projection's
position.

Since most webcams are built with the intention of capturing an image of a person
seated approximately 1 meter away from the camera, the operational range typically
do not allow for the camera to observe something too close. The compact designs of
these  cameras  often  limit  the  lens  positions,  which control  the  minimum  focal
distance and thus the minimum camera height. This threshold is quite significant in
some  cameras,  which  can sometimes  have  a  minimum  distance  of  tens  of
centimeters.

5.1.2 Lighting

The passive nature of the cameras means that the device is not able to operate in
the absence of a light source. Although the constraint that the height of the camera
stays constant indirectly means no obstacles can directly obstruct the view, with the
exception of flat obstacles on the surface, this does not stop shadows from extending
into the view to modify the appearance of the texture. The main contributor to this is
the robot and the camera itself, as the typical ambient light sources at located well
above the robot, which causes the camera to cast a shadow directly into the viewing
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area. Figure 5.5 shows a snapshot of a view where a portion of the image is darkened
by the shadows from the camera.

Figure 5.5: Snapshot of the viewing area with and without shadows.
There is a clear change in the colour where shadows are visible but
do not correspond to boundaries that belong to the actual surface.

A simple strategy to overcome this issue is to provide an additional light source
with the camera that provides consistent illumination to avoid ambient light changes.
Before  the  light  source  was  used,  various  characteristics  of  the  light  had  to  be
considered, including the direction, the shape of the beam, the brightness, and the
colour of the light.

When considering the direction of the light, it was noted that lighting provided
from the side allowed for a stronger contrast to be displayed due to the rough surface
structure,  as  shown  in  figure  5.6.  This  enhancement of  the  surface  texture
characteristics can allow for more uncommon features to be observed, but is limited
to when the same surface is observed from the same light  source direction.  This
characteristics means that for a short interval in time which does not involve the
rotation  of  the  light  source,  a  light  source from the side would  provide greater
benefit.  However,  for  the feature to remain consistent  in between frames over  a
longer period of time, such as for the purpose of capturing landmarks, the light must
provide consistent illumination of the surface from different perspectives. It is also
worth noting that the design for the older optical mouse focuses more on the surface
roughness rather than the actual colour pattern of the surface. This is changing in
recent  times,  where  some  of  the  newer  models  take  into  account  of  both  the
roughness and colour patterns to allow operation even on flat surfaces.

Figure 5.6: Illumination of the same carpet surface from multiple directions.
The  left,  middle,  and  right  image  shows  the  carpet  being
illuminated from the left, top, and right respectively.
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Based on the same requirements as above, the surface appearance are required to
remain consistent for the particular shaped beam that is used. Using a narrow beam,
it is possible to end up with bright streaks or spots, possibly with other interference
patterns  being  displayed  from  unwanted  overlapping  of  secondary  reflections.
Sample snapshots of different types of beans can be seen in figure 5.7. To overcome
these problems, the light had to be dispersed evenly across the whole view. The
initial approach consisted of using a circular array of light emitting diodes (LED)
around  the  camera,  but  this  resulted  in  spots  appearing  due  to  the  difficulty  in
controlling the intensity. An alternate approach of using a bright light source and a
scattering surface was implemented next.  The set  up consists  of  the bright  light
source located above the camera shining onto a reflective surface, which was made
from a crumpled aluminium foil to scatter the light evenly. The scattering provided
by the Lambertian like surface allowed the light  source configuration to  remain
compact rather than the last implementation, which was to move the light source
away to disperse the light.

Figure 5.7: Various shaped beams of light.
Top left  shows a narrow directed bean from the side,  top right
shows a wider beam by using secondary reflections from a mirror,
bottom  left  shows  a  well  scattered  light  to  allow  uniform
distribution of the illumination, while bottom right shows a spot
light placed along side the camera.

While  investigating  the  use  of  LEDs  for  illumination,  various  colours  were
considered, which can be seen in figure 5.8. It is sometimes beneficial to make use of
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a particular light colour when extracting a known coloured component amongst other
components. However, without any prior knowledge of the ground texture, or when
no typical colour can be dynamically determined, providing a white light source can
allow for a consistently performing texture extraction process. As the webcam is able
to capture multiple colours simultaneously, the biasing can also be done at a later
stage within software. It also allows the inter colour based analyses to be carried out
in  future  implementations,  as well  as  making sure no information is  lost  due to
unexpected surfaces absorbing the particular wavelength. However, using the three
colour component increases the processing load, and is typically compressed to a
grey scale image in many image processing applications, especially when interested
in shapes rather than colours.

Figure 5.8: Snapshot of coloured light sources.
The  left,  middle,  and  right  image  shows  the  carpet  being
illuminated by white, red, and green light respectively.

The last consideration which was made with regards to the light source is the
brightness of the light. Due to the limited range of intensity readings that can be
captured by the camera, as well as the reliance on the exposure time, the brightness
of the light source must be controlled to maximise the intensity variance observed in
the view. Some light sources can allow the brightness to be controlled, but others
require  physical  masks  to  dampen  the  intensity  if  it  is  too  bright.  This  can  be
achieved by placing a semi-transparent material over the light source, which can also
assist in scattering the light. As previously mentioned, it is also possible to move the
light  source  away  from  the  surface,  but  this  is  often  limited  by  the  physical
constraints  on where the light  source can be attached.  Instead of  modifying  the
intensity of the light source, the exposure time setting of the camera was investigated
in more detail.

5.1.3 Exposure time

By controlling the exposure time of the camera, it allows different amount of light
to be captured to modify the apparent intensity. Most cameras and their drivers are
bundled with automatic exposure control to adjust the shutter speed and gain to suit
the ambient light present in the environment. This filter is often applied by using the
average intensity of the whole view to shift and stretch the intensity to allow for
varying  light  conditions.  However,  this  shifting  causes  inconsistencies  in  the
apparent intensity of objects under varying lighting conditions, thus must be reversed
when attempting to use the intensity as an identity measure. The exposure time also
has the effect of causing motion blur when it is set high, which can be problematic
when analysing views of moving objects and when the exposure is set high due to
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low level of ambient light.

By setting the exposure time to be very short, it can reduce the effect of motion
blur, but limits the amount of light entering the camera to limit the richness of the
captured texture. This effect can be seen in figure 5.9. With the introduction of the
permanent  light  source,  the  exposure  time  can  be  controlled  depending  on  the
flexibility in the brightness level. By setting the brightness of the light to be very
high, it also creates a larger variance in the observed intensity, thus must make sure
the light is dispersed evenly as possible. By manually controlling the exposure time,
it can be reduced to the point of being able to observe the most amount of variance in
the ground texture, which can also reduce the artefacts from motion blur while still
allowing enough contrast in the ground texture.

Figure 5.9: Various exposure time at constant brightness.
The exposure time is decreased in the order of top left, top right,
bottom left, and then bottom right.

With the exposure time being fixed at a constant value, the camera is unable to
make adjustments when the ambient light conditions change, such as when shadows
form or the room light being toggled. There is also a subtle flickering that occurs in
indoor operations due to the alternating current induced timing differences between
the room light and the sampling time of the camera. Although the timing offset only
causes a very gradual change in the intensity, the overall effect of this flickering can
be quite significant, as shown in figure 5.10. Software algorithms can be put in place
to detect these conditions, but a simpler solution is to modify the frame rate of the
camera or to physically shield the viewing area, such that the additional light source
becomes the sole provider of the light. Completely shielding the light is difficult to
achieve since the shield would scrape against the ground, thus a small gap must be
made off the floor. As a side note, this shield also doubles as a sweeper to remove
light obstacles which may enter within the view of the camera.
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Figure 5.10: Flickering caused by ambient light.
Slight  changes  in  the  appearance  can  be  noticed  between
consecutive frames from the room light.

Other than having discrete intensity readings,  the cameras differ  from organic
visual  sensors  by  not  having  a  logarithmic  response characteristic  to  the  light
intensity. This results in a very narrow range of intensities that can be observed at
once.  By  applying  techniques  similar  to  high  dynamic  ranging  sensors,  it  is
sometimes  possible  to  compose  an  image  which  maximises  the  amount  of
information by stretching or compressing the inter-pixel intensity differences. When
capturing the image with a fixed exposure time, different amount of light  allows
certain portions of the scene to be captured better than the other. By adjusting the
exposure setting for the same scene, it is possible to superimpose and merge multiple
images into one, as shown in figure 5.11. This allows better utilisation of the given
range of intensities to produce a very information rich image.

Figure 5.11: Merging of the four images from figure 5.9.
Superimposing  and  blending  of  multiple  frames  allows  the
interesting portions of the imaged to be combined and shown in
one frame.
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Tone mapping techniques such as using the median value and using the exposure
time when a certain intensity level is reached can be applied, but the shifting of the
intensity results in the loss of colour based information and also requires multiple
frames to  be captured  using different  exposure  settings.  Implementing this  on a
webcam is a challenging task, since the exposure control is not readability available
on some cameras; it greatly reduces the frame rate, and also requires the elements of
the scene to stay stationary while multiple images are captured.

Implementing this  for  a  mobile  robot  can  potentially  be useful  if  used in  an
environment where large fluctuations in the light intensities occur and where the
focus is on the shape of the features rather than the colour, such as sign recognition
tasks in an outdoor environment or rooms with windows on a sunny day for an
indoor application. For the task of ground texture viewing, the lighting conditions are
well controlled, thus this approach has little applicability.

5.1.4 Capture rate

The last camera settings to be considered are the capture rate of the images and
the synchronization issues which arise from the use of multiple clocks. One of the
key contributors in achieving the high level of precision on the optical mouse is in its
extremely  fast  frame  rate,  which  is  typically  over  several  thousand  frames  per
second. The high rate of data allows for very small motions to be observed, which
accumulate to a very smooth motion being observed. The increase in the processing
load is offset by the small size of the texture being captured, at sometimes around 8
by 8 pixels, and the smaller search area due to the reduced distance the mouse can be
moved within the shorter time span.

Indirectly, the capturing rate contributes to the maximum operational speed, as
this determines whether a pattern stays within the field of view in the subsequent
frame. This relationship is illustrated in figure 5.12, where L is the width of the area
being tracked and W is the width of the captured image. Ideally, the capturing rate
should be set to the maximum possible setting while taking into account of the data
transfer rate between the modules and devices. The smoothness provided by the high
sample rate allows the transformational changes to the images to remain small and
also  increases  the  validity  of  prediction  algorithms  which  may be  implemented
(Faugeras & Robert, 1993).

Figure 5.12: Effect of sample rates against the operational speed.
The motion of the robot is limited by the sampling rate of the floor
texture.
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A potential issue in using multiple components is the timing difference between
the data capture time and the access time, which can cause the misalignment between
the scene and the internal representation or disrupting the behaviour of the devices
with manually induced pauses. With the webcams, the capturing process and the
reading process are executed independently. If the reading process is slower than the
capturing process, the extra frames that are captured typically override the old data to
only maintain the latest information. If,  on the other hand, the reading process is
faster, the old data will be read in. Ignoring this behaviour can cause loss of critical
information  about  the  scene  such  as  jumps  in  motion of  objects  and  incorrect
predictions about the object's behaviour.

These  issues  can  sometimes  be  addressed  with  the  use  of  precise  timers  or
semaphores,  but  can suffer  from clock drifts  over  long periods and unnecessary
pauses within the process.  An alternative approach is to observe that  the loss of
frames cause unrecoverable errors as the texture tracking would not be able to see the
features  that  have exited  the field  of  view,  but  a  duplicate  frame can be easily
detected to avoid the errors being introduced to prediction algorithms. With this in
mind, as long as the cycle speed of the reading process is faster than the capturing
rate, the tracking can still operate with the same level of accuracy at the rate of the
capturing process. To detect the occurrence of the duplicate frame, the change in the
intensity within the frame can be observed to determine if the image has not been
updated yet. This technique is plausible due to the presence of random noise, which
causes the image to change even if  the camera observes the same portion of the
ground.

It is also possible to calculate the clock offsets and the amount of drift, but this
depends greatly on being able to know the exact changes in the processing load to
anticipate spikes which can modify the timing. Therefore, it is more plausible and
reliable to specify the maximum processing load, then deriving the minimum cycle
speed of the reading process for the current sampling rate of the camera.

5.2 Image and sensor noise

For many years, the field of image processing and robotics have progressed in
parallel and under a merged name called machine vision. The discipline attempts to
combine the data rich visual sensors, with its plentiful information extraction and
processing algorithms, to an autonomous and physical agent for carrying out real
vision related tasks. As developments are made in both areas, the integration allows
for superior sensor systems to be developed. Rather than making use of high end
hardware to perform the image capturing process, there has been an increase in the
use of a more economical  webcam in its  place.  The quality of  these cameras is
constantly improving,  but  due to the manufacturing process and the components
being used, they produce lower quality images.

The quality of the image is limited by the characteristics of the complimentary
metal  oxide silicon  chip,  which  records  noisy data  due to  the  photo-sensor  and
transistor  arrangements.  Many of  the older  model  webcams make use of  plastic
lenses, which purposely blur the image for natural interpolation of the textures. This
is done to mask the granularity caused by the low resolution and the poor quality of
the sensors. These contribute to the artefacts to the image, but by identifying these
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noise characteristics and developing the appropriate filter to remove the effects, the
webcams will be able to provide useful and reliable information about the scene.

5.2.1 Lens distortion

Due to the warping introduced by the camera lens, the image cast onto the photo-
sensor array tends to be distorted in a radial pattern. This is caused by the projection
of the Petzval surface to a flat plane. For the webcam, this causes the compression of
the outer regions of the image. The effect is sometimes corrected at the driver level
software for some of newer models, but in the absence of the de-warping algorithm,
the distortion characteristic can be determined by observing a known shape, such as a
grid pattern, throughout the whole view and stretching the image until the calibration
object can be observed without distortion. This process typically involves the use of
algorithms like the Hough transforms, as shown in figure 5.13, to characterise the
features observed within the view (Kalviainen & Hirvonen,  1995;  Shaked et  al.,
1994).

Figure 5.13: Hough transform for calibration.
The straightness of each line is determined through the sharpness of
the meeting points of the faint curves.

The cameras being used in the current system showed very little warping due to
the manufacturer's lens distortion correction implementation, but the side effect of
the  stretching  caused  visible  signs  of  blurring  at  the  outer  edges  of  the  image.
Attempting to reduce the blurring by applying sharpening algorithms can result in the
enhancement  of  noise  generated  features  or  a  costly process  involving  the
identification  and  suppression  of  the  de-warping  induced  blurring  by  weighted
adjustments to the intensities.

A useful characteristic to know about the warping is the gradual increase in the
distortion and blurring from the center of the image to the outer edges. This means
that  although the distortion  is  non-linear,  the  difference in  the  artefacts  between
adjacent pixels and consecutive frames is quite small. However, since the effect of
the blurring is not noticeable within the inner portion of the image, the outer portion
can simply be cropped out from further analyses. The reduction in the overall image
size does not cause a significant issue to the visual odometry algorithm other than
reducing the range of acceptable motions.  This is because of the processing cost
involved in searching over a large area, thus  only a small portion of the captured
image is used.
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5.2.2 Sensor noise

Although there are always issues with sensor noise with any type of cameras,
webcams are notorious for the low quality images they capture. Although the quality
depends on many other factors such as the colour richness, refresh rate and lens
quality,  the  amount  of  noise  introduced  by  the  photo-sensor  contributes  to  a
significant  portion  of  the  problem  facing  image  processing  tasks.  This  noise  is
generated by the hardware itself and thus cannot be prevented. Instead, filters must
be introduced to suppress the noise level.

When viewing the image as a whole, these noises are not immediately apparent as
our  eyes  tend to  focus  on the larger,  semantic  information portrayed  within  the
image.  However,  when  attempting  to  identify  and  track  a  particular  pattern  by
considering the intensity reading at each pixel, changes in the appearance can cause
problems for the image processing algorithms. The problem is further enhanced by
the highly repetitive texture patterns and the lack of variety in the intensity within a
single viewing area.

To identify the contributions from the noise, the camera was exposed to a variety
of different conditions to isolate and characterise the behaviour shown through the
intensity readings. The first measure to be identified was the per pixel based noise
level,  which  is  the  noise  from  the  photo-sensor  sensitivity,  interference  from
neighbouring pixels, and any defects, such as scratches on the lens. The measures
that  were  identified  include  the  minimum,  maximum,  mean,  and  the  standard
deviation of the intensity for each of the pixels as the camera was exposed to several
different  colours.  To  minimise  the  neighbouring  photo-sensor  interference  from
occurring, the intensity was chosen to be uniform for all three colour component, as
well as throughout the whole image.

Providing uniform intensity was quite easy to achieve for the two extremities,
since they just  required  the elimination of  the light  source for  black colour  and
saturation by a bright light source for white. When exposing a grey image to the
camera, the variation in the detected intensities from other artefacts was distinctly
visible, thus the data gathered could not be used to generalise the hardware generated
noise for the grey colour.

To gather the typical intensities, the same view was sampled until the mean values
converged to a point where the maximum variation could not be distinguished on a
pre-determined range. This point can be formalised with the following relationship:

Precision > | ∆Iave | (12)

Precision > | (In,ave * n + In+1) / (n + 1) – In,ave | (13)

Precision > | In+1 – In,ave | / (n + 1) (14)
Where I ave  is the average intensity and n is the number of samples. Note that the

change in the mean is maximised when the difference between the average and the
next intensity is greatest. This occurs when the average is 0 and the next intensity is
1, and vice versa, thus leading to:

Precision > 1 / (n + 1) (15)
Since the range of  the  intensity for  most  modern  coloured  devices  is  28,  the
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precision, which is defined as the resolution in the pixel intensity, is 2-8. This means
the sampling must occur at least 257 times.

Figure 5.14: Noise level when exposed to a pitch black scene.
Left image shows the maximum error reading, middle image is the
standard deviation that has been stretched, while the right image
shows the average intensity reading.

Figure  5.14  illustrates  the  noise  characteristics  detected  from  the  above
experiment, while table 5.1 shows the noise characteristics of the image, both for the
black scene.  The left  image in figure 5.14 shows the maximum reading, middle
shows the standard deviation, while the right shows the average readings, where all
the values have been stretched to enhance visibility. An interesting behaviour which
was observed was with regards to the saturation point, as well as the regular pattern
in the noise prone areas. When the camera was exposed to the bright light source,
every pixel was saturated to the point where no fluctuations could be observed. From
a noise removal perspective, this is simply an exception case to be wary of, but from
an image processing perspective, a saturated pixel is a tricky case where there is too
much light present and the intensity characteristic is lost, thus should be avoided by
carefully setting the exposure rate and noting the brightness of the light sources.

Table 5.1: Minimum, maximum, mean, and standard deviation of noise at sample
points when observing a black scene.

Colour Minimum Maximum Mean Standard Deviation

Red 0 55 15.52 8.23

Green 0 41 14.14 6.81

Blue 0 39 9.89 15.78

The noise characteristics observed when no light source was present showed some
patterns, which is primarily caused by the photo-sensor arrangement and artefacts
from the compression in the codec. The interesting observation which was made was
that the minimum values that could be observed for most of the pixels were slightly
above zero.  This meant  that  the pixels  can not  distinguish the intended intensity
range. The pattern also showed the different levels of fluctuation. This information
allows the formation of a location dependant filter to account for the amount of noise
that is to be expected.

Since there was no light source passing through the lens, the obvious regions of
irregularity can be attributed to faulty photo-sensors. The amount of noise observed
in these areas were significantly higher than the other regions, thus the use of the
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pixels should be avoided when possible, such as by cropping or  interpolating the
neighbouring pixels.

It is also worth noting that some device drivers require sequential distinguishable
frames to allow for some of the image adjustment and restoration processes to take
place. This meant exposing the camera to a pitch dark scene would halt the camera
until a brighter scene is observed. To test for the characteristics of the camera under
no light,  the calibration process has to  be carried out  multiple times to allow a
portion of the view to be exposed to the light while the remaining region is observing
black.

When performing the above experiment for the various grey levels, it was noted
that  if  the  obvious  scaling  effect  was  ignored  around the  image,  which  will  be
discussed  later,  and  the  intensity  levels  were  treated  as  the  mean  of  what  was
captured, a significant trend was observed with the amount of fluctuation seen for the
various  intensity  levels.  This  prompted  a  more  formal  experiment  involving
measuring the noise level for the full grey-scale range. The intensity levels between
the three colour sensors were kept as close to each other as possible, but the slight
differences  may have  contributed  to  some of  the  inter-sensor  interference based
noise.

The experiment made use of a grey-scale gradient to note the same attributes as
the  earlier.  Figure  5.15  shows  the noise  trend  for  the  three  different  colours  at
different intensities. The difference between the intended and captured intensity due
to the location within the view did not matter, since the intention was to identify the
general characteristics of the fluctuation in the intensities.

Figure 5.15: Trend in noise for a given intensity.
The  graph  on  the  left  illustrates  the  reduction  in  noise  when
observing a brighter colour. The top right image was used as the
calibration image.
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Although not  all  of  the intensity was captured,  the trend that  the  noise level
reduces  with  higher  intensity  value  could  be  observed  for  all  three  colour
components. The trend showed that lighting up the scene or adjusting the camera
setting to capture a brighter scene would result  in a less noisy image. However,
careful considerations must be made to not saturate the image, as mentioned earlier,
as the region will no longer be distinguishable. It is worth noting that the saturation
point and the range is dependant on the brightness and gain settings on the camera,
thus these settings should be set appropriately for the exposure time being used to
maximise the intensity variation that can be observed.

Another distinct feature that is apparent in the trend is the regular wave pattern in
each of  the  three colours.  Although this  may appear to  be a significant  artefact
interfering with the experiment, it is caused by the hardware related noise pattern
encountered earlier for the black image. The effect is distinctly visible due to the
alignment  of  the image being captured, where the grey level  is  increased in  the
direction.

During these testing processes, it was noted that the noise does not extend to the
whole range of intensities, but fluctuates close to the intended intensity value. This
behaviour allows for various noise reduction filters to limit the range of alterations it
makes to the captured intensity, as well as providing more capability to derive the
actual intensity.

The consideration of the photo-sensor arrangements (Adams, 1997; Hubel et al.,
2004)  are  not  discussed  here,  but  can  potentially  allow  more  meaningful  noise
characteristics to be identified, such as explaining the regular noise pattern observed
earlier.

5.2.3 Colour based noise

When analysing the noise level  of  a pixel,  the three colour  components  were
treated  independently  for  the  same  source  of  light. The  goal  was  to  allow  the
characteristics of each colour sensor to respond to the same amount of light being
captured by controlling the light source. Ideally, the photo-sensors should not cross-
talk with each other, but the sensors will typically be exposed to a wide range of
intensities in a natural environment. This can lead to varying interactions between the
photo-sensors which require analyses.

An initial experiment involved a very rough measure of the noise characteristics
for various colours. This was done by showing an image of the full visible spectrum
to the camera and identifying the individual noise characteristics at each pixel. Since
each of the pixels was exposed to multiple colours within proximity it was not able to
give a clean characteristics of the noise data for a single colour, but an obvious trend
was observed, as shown in figure 5.16 below, between the exposed colour and the
amount of noise for the colour.
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Figure 5.16: Calibration image and the corresponding standard deviation in colour.
Left image shows what the camera observed, while the right image
shows the relative noise levels.

The trend observed above prompted a more detailed analysis in identifying the
noise characteristics for a given colour. Due to the huge number of variation in the
possible colours, it was unreasonable to carry out the detailed experiment for each of
the  224 colours.  To  reduce  the  number  of  data  being  captured,  while  providing
reasonable amount of redundancy to account for other noises interfering with the
data, the sampling area was reduced to a small square of 14 by 14 pixels, such that
multiple intensities could be tested at the same time. When positioning the sampling
areas for the camera, the noise prone areas that were detected earlier were avoided.
The locations were specified manually as the variation in the other portions of the
image did not appear to be significantly different to each other, but a better location
could have been selected using simple minimization algorithms. To account for the
interpolation  from neighbouring  pixels  from affecting the sampled  square,  the  2
border  pixels  surrounding  the  square  were  also  kept as  the  same  colour.  The
arrangement of these sampling areas is shown in figure 5.17.

Figure 5.17: Arrangement of sampling squares.
The sampling squares are superimposed over the maximum noise
image to illustrate reasonably consistent sensor characteristics.

Even with the simultaneous testing for multiple colours at  the same time, the
number of colour variations is still too large to be sampled individually. Since the
trend  observed  in  the  simple  experiment  showed a  regular pattern  with  varying
colour, the precision used for the colour was also reduced to a quarter for each of the
three colours, which can be interpolated later to fill in the missing values. The trend,
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when observed individually for the three colours, turns out to be quite similar to the
one found for the grey-scale experiment, which can be seen in figure 5.18, and did
not show deviation when varying the other colour components. The trend which was
observed in the simple experiment was most likely caused by the by product  of
observing a highly colour variant scene under irregular ambient lighting conditions
and the different thresholds in the sensitivity of the sensors.

Figure 5.18: Standard deviation in intensity for various colours.
The trend observed was similar to that of figure 5.15.

Since the refractive index of the lenses usually depends on the wavelength of the
light, the three waves that are detected do not have the same focal length. Whether
this is accounted for by the photo-sensors is unknown, but could contribute to the
variation in the noise levels for the same intensity due to the blurring and dispersion
of the light, especially near the outer edges where the difference in the focal length is
greater.

5.2.4 Radial intensity shift

When observing the uniform grey image, the captured image showed a gradual
darkening  as  it  neared  the  outer  edges  of  the  viewing  area.  This  effect  can  be
attributed  to  the  lens  characteristics,  interference  from  reflected  rays,  and  the
increased distance and angle from the incidence angle (Basri & Jacobs, 2000). This
radial intensity shifting behaviour is heavily dependant on the ambient light that is
present  and  the  reflective  properties  of  the  observed  surface,  thus  if  the  light's
characteristics, such as the incidence angle and the specular properties of the surface
are known, the center point of the this radial effect and the amount of necessary
shifting can be determined to smooth out the image.

Since these attributes cannot be known in most scenarios, the plausibility of a
generic filter must be carefully analysed in the case that the adjustment is incorrectly
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aligned and weighted. Figure 5.19 shows a typical  view of a uniformly coloured
surface with the radial intensity differences. The left shows the actual image, middle
shows the relative intensities, and the right shows the standard deviation. Since the
difference experienced between the pixel intensities is most significant between the
center and the outer edge of the image, the cropping process, as used earlier, can
sometimes be considered as an alternative approach to reduce this effect. The rings
indicate  the subtleness  of  the  effect,  as  well  as  the aliasing of  colours  that  has
occurred  from  the  image  compression  process  and  the sensitivity  of  the  photo
sensors.

Figure 5.19: Radial shift characteristics on a uniform looking surface.
Left  image is  the actual  image captured  by the camera,  middle
image shows the stretched image to highlight the difference in the
intensity.  The  right  image  shows  the  standard  deviation,  which
clearly  shows  the  formation  of  bands  to  group  the  similar
intensities.

5.3 Image processing filters

The characteristics that were found during the calibration phase can be used to
design the filters to correct any noise in the stream of images. The effects of the noise
and the conditions under which the artefacts were introduced were considered to
derive several filters.

The filters work on the principle of observing the captured intensity for the pixel
of  interest,  sometimes  along  with  the  surrounding  pixels,  and  applying  a
transformation based on the position, the intensity, and on the change in the intensity
between consecutive frames. By adjusting the parameters for these attributes using
the characteristics determined earlier, the undesired artefacts can be reduced while
minimising the additional artefacts being introduced by the filter, which commonly
occur with standard image filters.

The evaluation and validation of these filters are very difficult to achieve due to
multiple factors  that  contribute  to  the  noise.  It  is  also  difficult  to  justify  the
restoration result amongst many other variables, thus the assessment process is done
individually  for  the  artefacts  the  filter  attempts  to  reduce.  Other  than  the  noise
removal and the restoration of the intended intensity,  the other common attribute
considered  as  part  of  the  evaluation  included  the  amount  of  artefacts  that  are
introduced from incorrect use of the filter, as well as the speed and memory usage
taken to process the image.
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5.3.1 Range modification

The first  filter  to be investigated makes use of the intensity range which was
detected for the three colour values at  each pixel. Ideally,  this range would be a
constant  value  covering  the  maximum  range  possible  for  the  camera  sensor.
However, the observations indicated the potential presence of sensitivity thresholds,
offsets, or precision inconsistencies which may be causing the reduction in the range.
Since  the  maximum  intensity  resulted  in  a  constant  intensity  reading  from  the
saturation, this adjustment only concerns the characteristics of the minimum intensity
value that could be detected.

In the case of a sensitivity threshold, where values that are too low are shifted up
from the minimum value,  the  average values  and  the standard  deviation  should
support this and be lower than usual as more intended intensities are mapped to the
same lowest observed intensity. However, the small minimum value and the much
larger fluctuation experienced at the lower intensities meant that the cause of the
noise was most likely not due to the above hypothesis.

Assuming that  the shifting of  the minimum value is  caused by an offset,  the
available range may have been stretched to allow the full span of the intensity range.
This requires the use of a lookup table for the offset value, Imin, at each pixel and a
scaling function to derive the new intensity, I, from the captured intensity, Iraw:

I = (Iraw – Imin) / (1 – Imin) (16)
The mapped intensity is intended to balance the three colour components within

the image by stretching the value over the maximum possible range. Disregarding the
obvious effects from the radial shifting, the standard deviation for a particular colour
should decrease as the colour scales match up. However, the tests indicated that the
scaling of the ranges caused slightly larger fluctuations in the intensities, which are
shown in table 5.2 for a red dominated, a green dominated, and a blue dominated
colour.

Table 5.2: Stretching the range using the minimum intensity value detected.

Colour
Original Scaled

Average Std. dev. Average Std. dev.

Red R 8.3 4.0 7.42 4.14

G 73.26 7.58 69.94 7.73

B 253.29 1.26 253.28 1.26

Green R 64.0 8.57 63.31 8.68

G 181.06 13.01 179.7 13.45

B 111.97 13.55 111.33 13.65

Blue R 193.98 14.21 193.76 14.31

G 44.17 5.71 40.32 5.87

B 18.55 3.55 17.49 3.6
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An alternative use for  the  minimum value was considered  which  extends  the
offset  idea,  where  the  minimum  value  may  be  caused  by  the  shifting  of  the
representation while the value that is read is correctly scaled. To test this approach,
the minimum value was added to the value that was read, encouraging a brighter
image. A side effect of this approach is in the shifting of the range from [I min ,1)  to
[2*I min ,  1  +  I min ) ,  which  results  in  some of  the  brighter  intensities being
truncated.  The  experiment  itself  was  carried  out  in the  same  way as  the  range
stretching test, but like the other, resulted in causing a larger fluctuation of the noise.

The findings here indicate that minimum value is most likely caused by internal
noise within the photo-sensor circuitry and overlaps with the incoming light, which
responds to the higher value. This could also be a side effect of avoiding a pitch
black image from being captured which affects some of the automated camera setting
control algorithms.

5.3.2 Filter selection

Many of the image processing filters in existence defines a generic template for
the algorithm and are typically used across the entire image without acknowledging
the side effects. By blindly applying these filters, it has the effect of enhancing or
suppressing certain portions of the image while introducing artefacts where the filter
effect is not applicable. Post-processing of the filtered image is sometimes carried
out to identify and remove the artefacts. This is often combined with the analysis
stage by setting a threshold criterion to correct the wrongly modified regions. This
filter application approach can sometimes be problematic due to the dependency on
the initial parameters used to transform the image and also on the threshold value
used to distinguish the difference between the true and false positives.

Instead of using a generic image transformation filter, a customised filter based on
the pixel and colour characteristics can be applied to avoid the post-processing phase.
This will  also allow the appropriate amount of weights to be used to restore the
image according to the current state of the pixels.

5.3.2.1 Spatial filter

One commonly used filter is a neighbour or spatial filter, where the value of the
neighbouring pixel influences the current pixel of interest. In many cases, there is a
constant weight factor used when combining the intensity information, but this can
be modified using the characteristics found earlier to control the weighting.

Based on a blurring filter, a noise reduction algorithm can be implemented by
interpolating  the  neighbouring  pixels  to  generate  smoother  transitioned  pixel
intensity (Simoncelli, 1996). The discrete pixel interval means the transitional trend
must be approximated using the surrounding pixels.  This can sometimes involve
calculating the equivalent to the derivatives by finding the difference between the
surrounding intensities and interpolating between them to derive the new intensity.
The approximated intensity can be compared to the measured intensity to determine
how correct the approximation is and to see if  the difference was caused by the
sensor generated noise. Since the sensor generated noise causes fluctuations around
the actual intensity, the tolerance range, which can be set to the standard deviation or
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the maximum and minimum range in the intensity measured earlier, can be used to
distinguish actual changes in the view or noise.

Figure 5.20: Blurring the image to reduce noise levels.
Left  image shows the original  image, while the right  image has
been spatially blurred using a uniform mask.

A more commonly implemented approach at blurring is the use of a weighted
summation of  the neighbouring intensities.  A sample image before  and after  the
blurring can be seen in figure 5.20. The image on the left is the original, while the
right has been passed through a Gaussian filter of size 3 by 3 pixels. The weighting
allows the number  of  neighbouring  pixels  to  be modified  when  influencing  the
current pixel of interest, while the individual weights can also be modified depending
on how strong the blurring should be. Applying this blurring filter can reduce a large
portion of the fluctuating noise, but at the same time, suppresses the intended inter-
pixel  differences,  such  as  edges  or  spots  in  the  scene.  To  avoid  combining  of
unrelated pixel intensities, the neighbouring pixels can be checked with the current
pixel for similarity (Peters, 1995). The threshold values that are used are derived
from  the  anticipated  noise  levels,  the standard  deviation, for  the  current  pixel
intensity. This can be seen in figure 5.21, where the neighbours were blended with
equal weighting if the difference in the intensity was less than the standard deviation
score for that pixel. The left image shown is the original image and the right image is
after the selective blurring filter has been applied.

Figure 5.21: Interpolation based on threshold noise levels.
The left image shows the original image, while the right image has
been  filtered  with  a  selective  filter  which  only  blurs  if  the
neighbours are of similar intensity.

Instead of the noise being used as a threshold, the strength used in the blurring can
be modified to be proportional to the strength of the noise. This allows for a more
controlled use of the blurring to reduce the noise while still retaining some of the
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intended pixel intensity differences.

As  these  filters  make  use  of  the  noise  characteristics  based  on  location  and
intensity,  the memory footprint can end up being large, especially when multiple
attributes are stored. The use of a lookup tables can typically be faster and more
precise  than deriving the values dynamically using  a  closely modelled  function.
Depending on the size of the table, this can potentially cause time consuming paging
operations if the access pattern is not well controlled. Compressing the lookup table
is possible, but this requires an decompression phase when the table is used, which
can cause spikes in the processing load and cause delays and synchronization issues.
It  is  possible  to  balance  between  the  dynamic  generation  and  loading  of  pre-
generated values, which is to store the key trend defining values in the lookup table
and interpolating between the surrounding points to generate the values in between
when required. This idea was also used for the IR sensor reading, and has similarities
to the key frames used in video compression techniques. The functions used between
the  key  values  can  often  be  made  very  simple  and  more  efficient  than  that
representing the whole range.

In the approaches discussed above, it is important to consider the processing load
when using many neighbouring pixels. Although it is often possible to obtain a more
suited model for the current pixel intensity by increasing the number of neighbours to
consider, the process must be repeated for all of the pixels, thus has a dramatic effect
on the processing load. By noting that the scene does not contain large objects with a
predictable intensity structure,  using more neighbours does not  just  decrease the
noise,  but  significantly  reduces  the  fluctuation  of the  intensities,  which  can
compromise the ability to distinguish between the textures.

It is also worth noting that since the criteria for considering which neighbours to
use is generally determined by a simple shaped template, special considerations must
be made if  the  neighbours extends out  to  an invalid location  in  the image.  For
example, when considering the neighbours within 2 pixels of the current pixel, pixels
that lie  along the border  of  the image must make sure their  neighbour checking
algorithm is adjusted appropriately. This can sometimes involve reducing the number
of neighbours, not including the overflowing pixels, or even including virtual pixels
at the borders so the algorithm does not need changing.

For the purpose of ground texture servo, the typical image being observed often
does not contain smooth and continuous regions, as this would not allow significant
features to be tracked across frames. This means that a spatial filter can suppress the
important information on the transition of intensity even if the occurrence of this is
limited with a threshold, thus is not used when observing the ground textures.

5.3.2.2 Temporal filter

A different type of neighbour involves the time domain to observe the inter-frame
trends from the same pixel location, which can be seen in figure 5.22. Since the
fluctuations from the sensor generated noise are centered on the intended intensity,
combining multiple samples of the same scene allows for  the suppression of the
majority of the noise if the scene remains stationary. Other than the lack of motion in
both the camera and the scene being the critical requirement for this approach to
work, its use is also limited to regions where there are little to no intensity changes.

68



5.3.2.2 Temporal filter

This is because the pixel attempts to portray the transition between the two different
colours through aliasing and frequently switches between the two as the dominant
colour, even if the camera appears to remain completely stationary.

Figure 5.22: Derivation of time based smoothing filters.
The colours are sampled across several  frames then averaged to
obtain a more consistent intensity.

There are two basic approaches for combining the neighbours. One involves the
accumulation of multiple frames then processing the combined image once enough
have been stored. The other approach, which is more common, uses a sliding window
approach, where the previous frames are stored, usually in a circular buffer, and the
weighted sum of the frames within the window is used. Using the accumulation
approach,  the  processed  number  of  frames is  reduced by the number  of  frames
stored, while the windowed approach requires a large memory allocation to store the
individual frames.

In both these approaches, motions can be quite problematic as the intensity at a
particular location can change dramatically. This causes the merged pixel to portray
an average intensity which may not reflect any of the colours that were actually
present and can also introduce residual objects, much like motion blur. The duration
of this artefact depends on the number of frames that are considered in the filter. To
avoid this problem, a threshold value can be used to limit the number of frames in the
filter.  This value can be derived from the noise characteristics to distinguish the
change in intensity due to motion or from noise.

By only analysing a single pixel location at a time, the noise characteristic is the
only information that can be used to distinguish scene motion from noise. However,
in  the  presence  of  motion,  many  pixels  belonging  to the  same  object  will
simultaneously experience motion as a cluster. To exploit this, region based motion
constraint or optical flow approaches are used to detect the motion of objects, rather
than using single pixel analysis (Barron et al., 1992; Irani et al., 1994; McCarthy &
Barnes,  2003).  This  requires  an  additional  higher  level processing load,  but  can
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detect  the presence of  motion quite accurately,  thus reducing the artefacts  being
introduced from the filter. For the ground texture tracking application this idea can be
made simpler, since the distance from the camera to the ground remains consistent.
This means, with the exception of flat objects that move independently to the floor
and perfectly uniform colour, everything in the view moves together. If motion is
observed anywhere within the image, the buffered frames can be emptied as the other
pixels will also observe motion.

Since the temporal noise reduction filter requires the scene to remain stationary, it
is quite limited where it can be applied. When tracking the motion of the ground, the
filter may come in use when the robot is stationary on a surface with very limited
texture pattern, such as when  required to capture a long term landmark. However,
since the majority of the robot's execution involves the robot being in motion, this
filter would not be applicable for general usage.

5.3.3 Hue colour model

So far, all of the algorithms have made use of the red-green-blue (RGB) scale
information captured  by the camera sensor  and have treated them independently
when being processed. Many of the existing image processing approaches make use
of a grey-scale model instead of using the colours to reduce the processing load and
to focus on the shape instead of colour. This is a reasonable approach to make, since
many scenes are  filled  with  a  variety of  colour  with  no  significant  links  to  the
semantic  information they portray.  When the chromatic  information is  used,  the
target object is usually of a customised colour to simplify the object identification
process or is used as an additional attribute to the object of interest. However, the
extra set of relationships provided by the combination of colours distinguishes each
pixel and can allow for more reliable correlations to be made. Instead of treating the
colours individually, the data can be combined to portray new information (Borzenko
et al., 2006, Xu et al., 2006). A simple approach is to map the RGB colour model to
an alternate colour model, where the colours are measured in terms of the relative or
perceptive values instead of absolute intensities (Ford, 1998).

The absolute intensity is very susceptible to ambient conditions and must often be
accompanied by shifting or scaling to account for different environmental conditions.
With a relative colour scale, it is more difficult to define a particular set of attributes
for  a  feature,  but  identifying  the  presence  of  an  object  in  the  scene  is  greatly
simplified. The idea of inter-pixel relative intensities has been demonstrated in the
spatial  filters, but it is also possible to use the single pixel to derive inter-colour
relative values.

When considering the visual perception mechanism of biological systems, they
possess many properties not directly present in cameras. One such property is the
high level perception of colour. Although the cone cells on the retina responds to a
particular  wavelength,  much  like  the  behaviour  of  photo-sensors,  the  data  are
combined to form a higher level concept of how the colour is perceived. One set of
colour scales which represent the information in similar ways is the hue based colour
scale.

A commonly used hue based scale uses three dimensions to define a colour. The
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hue defines the relative colour between the red, green and blue, and is represented on
a cyclic scale, often visualised like angles in a circle. The richness of the colour is
called the  saturation and represents the difference between the intensities. The last
attribute is can vary depending on the definition of the overall  brightness of the
colour, and is called luminance in the HSL scale, or value in the HSV scale, which
use different points of reference with regards to the saturation. It is worth noting that
a grey-scale image can also makes use of the average intensity instead of luminance
or value, but generally end up portraying a similar type of information. The formula
for mapping from RGB to the HSL scale is as follows.

Imax = max(Ired, Igreen, Iblue) (17)

Imin = min(Ired, Igreen, Iblue) (18)

Luminance = (Imax + Imin) / 2 (19)

Saturation = (Imax – Imin) / (1 – | (Imax + Imin) – 1 |) (20)

Hue = π / 3 * (Igreen – Iblue) / (Imax – Imin), if I red = Imax (21)

Hue = π / 3 * ((Iblue – Ired) / (Imax – Imin) + 2), if Igreen = Imax (22)

Hue = π / 3 * ((Ired – Igreen) / (Imax – Imin) + 4), if Iblue = Imax (23)
where Ired, Igreen and Iblue are the RGB intensities of red, green and blue respectively.

The mapping process from the RGB colour scale to the HSL scale can be carried
out dynamically, but it is important to note the differences between the two scales,
such as  the  non-linear  mapping,  the  special  cases  where  hue  and  saturation  is
undefined, as well as the cyclic nature of the hue value.

One of the successful criteria for many machine vision techniques is their ability
to  mimic the human visual  perception system. Since we perceive the colours  as
relative values, many of the objects and the high level constructs we have to describe
the object uses the hue like colour model to define the colour attribute. Although the
underlying values used in the hue colour scale is still based on an absolute scale, this
alternative  colour  model  allows a  different  perspective  that  can  relate  to  higher
concepts of colour more easily, thus allowing smoother conversion between what the
robot sees and what it should see.

Using the hue based colour scale; it is possible to exclude certain aspects of the
colour, such as the amount of ambient white light, which can be used to isolate the
hue of the object. This allows for the removal of effects like shades and change in the
ambient light intensity (Geusebroek et al., 1999). This will be noted by changes in
the luminance while the hue and saturation values remain relatively steady.

The shading information that is derived can be used to assist the identification of
the object shape, the reflective properties, as well as the characteristics of the light
source (Phong, 1975). The removal of these effects greatly simplify the analyses of
the surface by being able to  cluster  the pixels  without  being affected  by colour
changes from shadows and lighting conditions, which is especially useful on curved
or sloped surfaces.

When  being  used  for  the  ground  texture  analysis,  the  effect  of  shading  is
negligible due to the controlled lighting and the absence of obstructions from objects
at different height. Although the alternate measure of the texture can be advantageous
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in  adding  confidence  to  a  correlation  measure,  it  does  not  provide any obvious
benefits. This is also due to the undesired clusters it forms on the texture, which
removes the important features such as the rough surface textures and grey textured
surfaces, not to mention the added computational load.

5.3.4 Quantisation blocks

A single image is able to  portray an enormous amount of  information,  but  it
comes at the expense of requiring a large memory footprint to store the intensity
information.  When  it  comes  to  continuous  streams  of images,  this  problem  is
enhanced, both in the processing load and the transmission load. To overcome the
huge bandwidth and memory usage requirements, compression algorithms have been
put in place to maintain as much of the original  information while removing the
redundant and unnecessary component of the images (Gall, 1991).

When inspecting the images acquired from the webcams, it was noted that the
images had undergone a moderate amount of compression due to the distinct pattern
in  the  artefacts  that  were  observed.  Without  the  exact  specification  of  the
compression technique used by the camera,  the  specific  strategy used was quite
difficult to identify. However, the pattern showed the same trends as the compression
used for the Moving Pictures Experts Group codec, and subsequently based on the
techniques  used  for  the  Joint  Photographic  Experts  Group  (JPEG)  image
compression algorithm. Since many applications leave the decoding of the stream to
the driver level software, the constructed image must be treated from the artefacts
introduced during the compression phase. Figure 5.23 shows a zoomed in view of the
captured image where the effects of this compression are very distinctive.

The artefact that was observed is the block formation which is commonly seen in
heavily compressed JPEG images. The algorithm attempts to characterise an 8 by 8
pixel block by observing the inner intensity trends using discrete cosine transforms
and removing the insignificant components by quantising the values. Depending on
the amount of compression used, it causes distinct square patterns around the block
and a blurring of the intensity within the block. This block can cause significant bias
when considering the inter-pixel transitions, such as edge detection algorithms.

Observations of the captured image showed the distinctive block formation, but
with a dimension of 4 by 4 pixels and a weaker block formation of 2 by 2 pixels
inside. This was caused by the size of  the block being considered and from the
weighting pattern used in the quantization matrix. To reduce the distinct blocks from
biasing the various algorithms, the pixels surrounding the border of the square were
blended in with the neighbouring pixels. By observing this trend in the transitions, an
interpolation mask can be derived to focus on the appropriate portions of the image.

Since the pixels have been influenced by all of the pixels within the block while
some  of  the  information  has  been  lost,  reconstruction  of  the  original  intensity
becomes a very difficult  and time consuming process. By using a lower capture
resolution, it is possible to reduce the number of these blocks forming, but reduces
the precision available for the camera. By increasing the resolution, it will introduce
more blocks since the dimensions of the blocks remain the same. However, it is able
to capture the details of the environment and allow for a better smoothing algorithm.
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The evaluation of  the appropriate  weighting is  difficult  to  achieve due to  the
inability to capture the noise-less version of the same scene. When using the different
resolutions, the lower resolution image was too imprecise and the intensities did not
correlate well due to the large amount of blending which had already occurred. Using
the  higher  resolution  showed  an  interesting  behaviour,  where  the  amount  of
compression was increased,  making the blurring effect  within  the  block  and the
difference at the borders of the blocks much stronger. This effect was caused by the
attempt to maintain similar throughput with the larger volume of data.

Figure 5.23: Block formation from compression.
The codec groups the 4 x 4 squares and blends them, creating a
distinctive border between these squares.

Since the significant  issue with  the  block formation  was  with  the  inter-block
boundaries,  the weights in the interpolation was adjusted accordingly to promote
smoothing while retaining most of the original appearance. Several weight values
were tested for the merging of the bordering pixels and were judged manually on the
effective and accurate noise removal. Figure 5.24 shows the original image and a
typical Gaussian blur algorithm being applied, while figure 5.25 shows the various
weights and the resulting image from the customised filter.

Figure 5.24: Original image and the result of applying a Gaussian blur filter.
Left image is the original, while the right image has been blurred
using a Gaussian filter.
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Figure 5.25: Customised block removal weights and the resulting images.
The weights used are shown in the small grid at the bottom right of
each image. The top left number is the weight used between the 4 x
4 squares,  while  the number in  the middle is used between the
internal 2 x 2 squares.

5.4 Summary

The  use  of  a  webcam  has  allowed  easy  integration  of visual  processing
capabilities on mobile robot platforms. The low quality and the lack of dynamic
control  over camera attributes can be compensated for by carefully analysing the
characteristics  of  the  camera  and  the  environment  it  is  operating  under.  These
characteristics can then be applied to the camera settings, configurations, and the
image filters to take advantage of any known constraints to improve its effectiveness
and to restore the image from various artefacts that are introduced by the device.

Many conditions and configuration issues of the webcam were investigated, as
well as image filter algorithms to target specific artefacts to be removed. In both
cases, the settings and the use depend greatly on the specific application and the
available resources. For the task of ground texture servo, the camera settings have
been well defined due to the constraints of the platform. The image filter algorithms,
however, depends greatly on the processing capability of the system and the required
level of accuracy.

The majority of the noise encountered by the camera is negligible for the ground
texture servo task. This is due to the characteristics of the ground textures, which
often contains locally unique surface structures and textures when viewed from a
close distance.  However,  there is  scope for  the filters  that  were discussed to be
applied for other webcam applications where image restoration is more critical.

Due to the limited resources, the selection of the filters to be used had to be done
carefully and to not waste the precious processing cycles and memory usage on a
filter  that  did not  make significant differences. The various intensity based noise
characteristics required an enormous memory footprint, so they were approximated
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to a polynomial function instead. The spatial and temporal filters which made use of
these characteristics showed some signs of noise being removed, but consumed a
reasonable processing time. Since the ground textures could still  be distinguished
without the filters, these neighbourhood based approaches were not implemented as
part of the ground texture tracking system.

Since the lighting configuration is known for this application, the radial shifting
characteristics  allowed  for  a  significant  improvement  in  evening  out  the  image
intensities. The typical operating surfaces for the mobile robot are the carpet and
vinyl  flooring,  where  the  reflective  properties  differ  significantly.  This  meant
controlling  the  amount  of  adjustment  involved  the  use  of  the  average  intensity
difference between the center portion of the image and the outer edges of the image.
The  current  implementation  performs  this  check  every  1000  frames to  ease  the
processing load, which equates to approximately once every 30 seconds.

The most significant filter to be included is the removal of the blocks caused by
the image compression algorithms. Although the weighting values have not been
fully explored, the filter has shown significant improvement in the image appearance
by removing the artefacts without introducing too much artefacts of its own from the
blurring.

The configuration process and the filters that have been defined form the primary
step of processing image streams from webcams. The characteristics of the filters can
be used to identify which situations they can be applied in to improve the analysis
processes on the images.
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Successfully navigating around an environment feels like a trivial task for many
biological  systems,  but  defining the complete process from a series of  primitive
instructions  is  a  tremendously  difficult  task.  Although  many  researches  are
influenced by the workings of biological systems, acknowledging the differences can
often lead to a more efficient and precise system (Mondada & Franzi, 1993).

The use of cameras for navigation attempts to mimic the eyes, but this requires a
significant amount of processing capability, adjustable sensitivity, as well as memory
capacity in recognising  similarity between objects. An electronic system is able to
perform consistent and regular actions with high degrees of precision, which can be
made use of to assist this task.

Visual odometry approaches involve identifying the location or the change in the
location of  features  and landmarks  in  the  environment  and in  turn,  deriving the
location of  itself.  This  requires  three major  phases,  which  consist  of  identifying
candidate features within the captured image, tracking their motions by correlating
with the stored features from a different  perspective,  and finally establishing the
location of the feature and the mobile robot (Krootjohn, 2007;  Lucas & Kanade,
1981).

The area of feature tracking algorithms is well studied and already consists of
many fundamental  techniques (Ritter & Wilson, 1996; Shi  & Tomasi,  1994) and
related  algorithms (Fleet  &  Langley,  1995;  Isard  &  Blake,  1998) for  achieving
reliable  and  efficient  tracking  of  points  of  interest.  However,  many  projects
customise  these  existing  algorithms  by analysing  the  problem from a  particular
perspective. This constrains the parameters involved in the algorithms, as well as
including other constraints to suit the particular task.

The  proposed  approach  involves  the  use  of  a  downward  pointing  camera  to
measure the displacement of the ground by identifying and tracking patterns across
frames. Using a simple triangulation technique, the motion of the ground can be
translated to the motion of the robot since the technique assumes that the distance
between  the  camera  and  the  ground  remains  constant. The  instantaneous
displacement can then be accumulated to form 2D pose information with respect to
the starting point.

The camera sensor, which is sometimes categorised as a directional sensor, is able
to associate a direction of the incoming intensity through the position of the photo-
sensor, thus often measures its precision characteristics in terms of degrees. As the
distance between the camera and the observed object increases, the precision of the
observed  object  decreases  since  the  arc  length  is  proportional  to  the  distance.
However, with the proposed camera configuration, this error rate can be set quiet low
due to the small distance to the ground, and more importantly, stays constant.

Before  the  images  are  analysed,  they are  filtered  using  several  algorithms
described in chapter 5. By allowing the ground texture to move a significant distance
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around  the  image,  the  approach  runs  the  risk  of  encountering  repeated  texture
patterns,  especially  on  smooth  surfaces.  This  means the  viewing  area  and  the
maximum speed of the robot should be reduced, which allowed the outer edges of the
captured image to  be discarded,  as per  the lens distortion correction.  Two more
artefact removal filters were implemented, which were the radial shift adjustment
filter and the block formation restoration filter.

The change in the sequence of the filters did not show any obvious visible effects,
thus  the radial  shift  was  applied  first  to  discourage too  much shifting  from the
original intensity. Since the access patterns of the pixels are different, the two filters
could not be merged together. However, the block restoration process benefited from
caching some of the merging between the pixels, as each merge is used twice for the
two pixels that are on the border. This can be seen in algorithm 6.1 below. Note that
the implementation shown below illustrates  the caching approach and is  not  the
optimised algorithm. For this particular algorithm, the sequence of positions is well
structured,  thus  the  loops  and  the  conditional  statements  can  be  unwrapped  to
improve the performance.

function RemoveQuantisationBlock(image, weight_stro ng,
 weight_weak):
   set v_cache_array[image.width] = { 0... }
   set restored_image[image.width, image.height, 3]
   for row in 0 to image.height:
   set row_mod = row % 4
   set h_cache = 0
      for col in 0 to image.width:
         for rgb in {red, green, blue}:
            set value = 4 * image[col, row, rgb]
            set weight = 4
            switch col % 4:
               case 3:
                  if col == image.width-1:
                     set h_cache = 0
                     break
                  else:
                     set h_cache = image[col+1, row , rgb] *
                      weight_strong
               case 0:
                  set value = value +  h_cache
                  set weight = weight + weight_stro ng
                  break
               case 1:
                  set h_cache = image[col+1, row, r gb] *
                   weight_weak
               case 2:
                  set value = value +  h_cache
                  set weight = weight + weight_weak
                  break
            switch row_mod:
               case 3:
                  if row != image.height-1:
                     set v_cache_array[col] = image [col, row+1,
                      rgb] * weight_strong
               case 0:
                  set value = value + v_cache_array [col]
                  set weight = weight + weight_stro ng
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                  break
               case 1:
                  set v_cache_array[col] = image[co l+1, row,
                   rgb] * weight_weak
               case 2:
                  set value = value + v_cache_array [col]
                  set weight = weight + weight_weak
                  break
            set restored_image[col, row, rgb] = val ue / weight
   return restored_image

Algorithm 6.1: Algorithm for quantisation block filter.

When integrating the three algorithms, the changes in the speed and memory
consumption were monitored to allow more capacity in the image analysis phase.

The different phases of visual odometry are investigated in more detail to identify
the set of criteria to be used for the localisation technique. Considerations such as the
effectiveness, accuracy, and processing requirements were made when evaluating the
various approaches.

6.1 Feature detection

The first  of  the  three  phases  is  one  of  the  most  well  studied  area  in  image
processing  as  it  forms the  foundation  for  most  high level  processing  tasks.  The
difficulty  of  identifying  and  extracting  the  relevant  information  from  a  grid  of
intensity  measures  can  be  as  complex  as  desired,  depending  on  the  available
equipment, requirements, the reliability of a priori information, and the constraints
that can be placed to assist in simplifying the task.

Although  the  domain  is  known,  applying  too  many constraints  yields  a  very
inflexible algorithm that is severely limited in where it can be applied. To avoid this,
only the generic and crucial domain knowledge is applied, such as the repetitiveness
of the textures, the lack of variety in the intensity levels and patterns within a single
frame, the constant elevation of the camera, lack of depth queues, some availability
of motor commands, and limited motion constraints from the wheel configuration
(Draper et al., 1996).

In addition to the above, an extra constraint is introduced which assumes that no
rotations  can occur  between the captured  frames.  As the majority of  correlation
algorithms  tends  to  exhaustively  search  the  available  space  or  require  very
sophisticated dynamic programming algorithms to prune the search space for the best
correlation, this constraint allows for a significant reduction in the search space, as it
narrows  down  the  possible  dimensions  down  to  2.  This  is  because  the
transformations are prohibited due to the fixed elevation (Lowe, 1999; Matas et al.,
2000).

The constraint mentioned above is made possible due to the fast frame rate, the
pace of the robot, and controlled motions. The short interval between the capturing of
the frames allows for the transformation of the feature to remain very small, thus
almost eliminating the rotation that can occur. By decreasing the operational speed of
the robot, it can also reduce the rotation in a similar way to increasing the frame rate.
The difference between the two strategies includes catering for non-self  powered
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motion when the frame rate is modified, and the reduction in the operational speed of
the robot does not cause the increase in the processing load.

When  considering  just  the  motion  of  the  webcam,  successfully  eliminating
transformations and partial translations requires the precise control of all motions of
the camera. Since this is an unreasonable constraint to uphold, the camera should be
placed to minimise the blending of the pixels. This can be achieved by placing the
camera away from the rotational point, as the amount of transformations that occur is
greater towards the pivot point. For a differential drive system, the motions of the
robot can be restricted while it remains in the normal mode of operation. That is, the
robot is propelled by the  self  induced forces. This information, together with the
wheel arrangement, can be used to place the camera away from the rotational axis of
the wheels. When rotations do occur, it will consist of the combination of translation
and small  amount of rotation. The camera placement will  be discussed in further
details in chapter 7.

6.1.1 Lifetime

Another  important  consideration to  make before  the image is  analysed is  the
effective lifetime of the features. In most feature detection algorithms, the process
involves  identifying  an  object,  or  attributes  of  the  object,  that  allows  it  to  be
distinguishable from multiple perspectives (Paletta et al., 2005). This implies that the
feature is to be tracked for a reasonable period of time as it moves around within, and
possibly even out of, the view. The process of identifying these features requires non-
morphological  attributes  to  be  extracted  and  also  requires  the  presence  of  a
reasonable candidate to be present in the view.

Since  the  typical  view  observed  by  the  ground  pointing  camera  consists  of
repetitive texture patterns, low contrast, and the limited viewing area, successfully
identifying  and  tracking  a  feature  is  made  considerably  more  difficult.  These
conditions mean that for a real time system, the feature identification process must be
very rapid in identifying its uniqueness and be effective enough to be able to track its
motion in subsequent frames (Davison, 2003). The major contributor to the limited
availability of the features is the small elevation of the camera and the operational
speed of the robot,  which controls the rate of  movement of  the ground textures.
Although these can be adjusted to reduce the texture motion,  the increase in the
height reduces the precision, while slowing of the robot can conflict with the speed
requirements  of  the robot.  This  means the feature  may only be observed in  the
immediately  subsequent  frame  and  fall  outside  the  viewing  area  later.  This  can
potentially cause issues like incorrect tracking occurring when a non-unique feature
is selected, especially as no confirmation of the tracking can be provided.

Although the limited lifetime results in frequent re-computation of the feature, it
has several positive side effects, such as reduced morphological transformation of the
feature and the reduction in the search space as the feature will  only need to be
tracked once from a confirmed position in the image. This also means if a feature is
badly chosen and corrupts the localisation process, the effect will only contribute to a
very small amount of error as a new feature will be used in the subsequent frame.

Since the feature does not need to consider morphological transformations, the
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attributes that require consideration only includes the amount of longitudinal and
latitudinal shifts, as well as the intensity information, which may be altered by the
change  in  the  ambient  light  or  from  sub-pixel  motion.  These  attributes  can  be
considered  by  specifying  the  shape  and  size  of  the  search  area,  as  well  as  the
intensity based information which includes the raw intensity and also some derived
patterns from the pixel intensity arrangement, such as intensity transition strengths.

6.1.2 Score

One of the key criteria in selecting a feature is the ability to identify a region that
remains unique and identifiable even after some degrees of transformation (Peters &
Strickland, 1990). An approach which only uses the intensity values is very simple to
implement, but does not allow reliable performance when there are changes in the
ambient light, rotations, or sub-pixel motion. Due to the constraints placed by the
system, which limits the changes in the ambient light and the camera rotation, the
intensity based approach eliminates two of the issues.

By using the intensity values, the inter-pixel information, and the locations of the
pixels,  it  is  possible to  derive many scores which can be used to assign unique
attributes to the feature. The correlation between just the intensity values is the most
frequently used approach due to the simplicity, as it simply requires the measure of
the sum of  the difference between the intensities  across the region  used for  the
feature, which is often accompanied with limited change in the location to manage
the search space (Huttenlocher et al., 1993).

Using  the  inter-pixel  information,  such  as  edges,  which  are  the  differences
between the intensities (Harris & Stephens, 1988; Hildreth, 1985; Liao et al., 1997;
Torre & Poggio,  1986;  Ziou & Tabbone, 1997),  it  is  able to portray the relative
information in case global intensity change occurs from events such as shades or the
room light changes. Using this measure by itself  does not allow for the absolute
reference point, thus can potentially correlate with a significantly different texture,
but with a similar arrangement in the pixel intensity change. This approach can also
be made use of to identify higher level constructs to the intensity pattern, such as
edges  and corners  that  are  not  constrained by the current  perspective  (Smith &
Brady,  1997).  However,  these  techniques  often  require  a  larger  viewing  area  to
support the findings of the constructs.

One  other  frequently  used  approach  is  a  template  based  approach,  where  a
particular  intensity  or  frequency  pattern  is  determined  beforehand  by  specific
arrangement of the intensity or simply by setting the valid bounds. The template is
then used to find the closest matching candidate as the feature. Although determining
a good candidate can be simplified, this approach requires a priori knowledge on the
expected  features  and  potentially  very  sophisticated  and  time  consuming  pre-
processing  of  information  to  convert  the  data to  fit  the  template,  together  with
dynamic adjustments to account for new surfaces.

Although  the  feature  identification  process  primarily focuses  on  the  unique
region, it  is also important to capture the surrounding information to identify the
context of the feature. The increased area of the feature improves the reliability as it
introduces more attributes to the correlation process. This also prevents the feature
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from  being  ineffective  when  the  main  unique  portion is  corrupted  or  modified
through blurring and sub-pixel motion.

To  identify  the  effectiveness  of  a  feature,  a  scoring  scheme  was  devised  to
compare and rank the feature candidates. The uniqueness of a feature is influenced
by the attributes discussed above, thus considerations were made to determine which
approaches  and  attributes  would  best  suit  the  criteria  for  a  good  feature.  The
processing time required to assign the score is also included, as this plays a crucial
role in real time operation where new features are constantly required.

The first  and the simplest  approach makes use of  the  difference between the
average intensity, or the standard deviation score, to identify a region showing the
most fluctuation. The score is derived for three different averages, where the first
only considers the region included for the feature; the second considers the pixels
within the search area for the candidates, while the last considered the whole image.
The algorithm for the whole view can be seen in algorithm 6.2 below. The features
which were identified through this process depend heavily on the current view and
do  not  include  a  uniqueness  value  into  the  score  evaluation.  In  terms  of  the
processing load, this approach requires two parses to determine the average intensity
then accumulating the difference for each pixel within the feature.

function FindStdDevCandidate(image, candidate, feat ure):
   set sum[3] = {0, 0, 0}
   for row in 0 to candidate.height + feature.heigh t:
      for col in 0 to candidate.width + feature.wid th:
         for rgb in {red, green, blue}:
            set sum[rgb] = sum[rgb] + image[candida te.x + col,
             candidate.y + row, rgb]
   set average[3] = {0, 0, 0}
   for rgb in {red, green, blue}:
      set average[rgb] = sum[rgb] / ((candidate.hei ght +
       feature.height) *
       (candidate.width + feature.width))
   for row in 0 to candidate.height:
      for col in 0 to candidate.width:
         set score = 0
         for v in 0 to feature.height:
            for v in 0 to feature.width:
               for rgb in {red, green, blue}:
                  set score = score + abs(image[can didate.x +
                   col + v, candidate.y + row + v, rgb] –
                   average[rgb])
         if score > feature.score:
            set feature.score = score
            set feature.x = candidate.x + col
            set feature.y = candidate.y + row
   return feature

Algorithm 6.2: Feature score based on the difference between the average score.

Using  the  difference  between  the  neighbouring  intensities,  the  amount  of
fluctuation in the differences was accumulated as the score for ranking the feature
candidates. This alternative approach requires the evaluation of both the horizontal
and vertical  intensity difference for each pixel,  as a weak difference can lead to
ambiguity in that direction and can cause the features to slide along the axis. This
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approach allows for  a more consistent  measure in  the presence of  ambient  light
changes.

Since this algorithm is interested in accumulating the overall fluctuation of the
intensity, the direction of the intensity change and the per-pixel information is not
important. This means that the magnitude of the difference in the intensity can be
accumulated for all  the inter-pixel transition points instead of iterating over each
pixel.  Algorithm 6.3 illustrates this process, while the idea of traversing over the
transition point between the pixels is discussed later.

function FindSumDifferenceCandidate(image, candidat e, feature):
   for row in 0 to candidate.height:
      for col in 0 to candidate.width:
         set score = 0
         for rgb in {red, green, blue}:
            for v in row to feature.height + row:
               for h in col to feature.width + col:
                  set score = score + abs(image[can didate.x +
                   h, candidate.y + v, rgb] – image [candidate.x
                   + h - 1, candidate.y + v, rgb]) +
                   abs(image[candidate.x + h, candi date.y + v,
                   rgb] - image[candidate.x + h, ca ndidate.y +
                   v - 1, rgb])
               set score = score + abs(image[candid ate.x +
                feature.width, candidate.y + v, rgb ] –
                image[candidate.x + col + feature.w idth – 1,
                candidate.y + v, rgb])
            for h in col to feature.width + col:
               set score = score + abs(image[candid ate.x + h,
                candidate.y + row + feature.height,  rgb] –
                image[candidate.x + h, candidate.y + row +
                feature.height - 1, rgb])
         if score > feature.score:
            set feature.score = score
            set feature.x = candidate.x + col
            set feature.y = candidate.y + row
   return feature

Algorithm 6.3: Feature score based on the sum of the fluctuation in neighbouring
pixel intensities.

6.1.2.1 Edge map

The process of searching for the ideal feature typically involves moving a viewing
window and evaluating the score of the pixels bound by the window until the search
space has been exhaustively searched or it has been deemed that no better feature can
be found. This means most of the regions within the view will be visited multiple
times as it contributes to the feature from different starting location of the window.
By  storing  the  difference  information  for  the  whole view,  it  can  avoid  the  re-
processing the transition information calculated between the pixel pairs.

This idea is similar to that used in the quantisation block algorithm, where the
evaluated intensity information is maintained and used in the subsequent iteration.
This  allows  the  number  of  evaluations  to  be  reduced to  almost  half,  since  the
buffered values are only encountered twice. The extra memory requirement for this is
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quite small, which only requires an array to store the vertical transition, as well as a
single buffer to store the latest horizontal transition value.

The  difference  between  the  intensity  values  are  frequently  used  for  many
algorithms, hence it can be beneficial to implement an efficient way to access this
information. Depending on the type of edges to be considered, such as the direction,
the number of neighbours to consider, and the access patterns, the storage location of
the intensity differences can be customised configured.

Many applications  which  make  use of  the  intensity  changes often  neglect  or
approximate the aliasing effect and use the pixel coordinates to represent the overall
change in intensity experienced at that point. This is typically done by mapping the
edge scores  back  to  the  central  point  of  the  pixel, which  can cause some edge
information to interfere with each other and can also increases the misalignment
between the edge location and the actual edge in the scene. By isolating the intensity
changes  at different  locations and storing them separately, it  can maintain a more
precise representation of the edge information. Due to the extra level of redundancy,
this requires a larger memory footprint. As the edge values are relative, it is possible
to  reduce  the  memory  footprint  by allowing  iterations  to  derive  the  value  at  a
particular point. However, this introduces more processing load which defeats the
purpose  of  pre-calculating  the  transition  information.  Figure  6.1  illustrates  the
positioning of the edge map.

The current implementation only makes use of the intensity difference values in
the  immediate  neighbours  that  are  accessed  in  a  simple  sequential  scan pattern.
Although this requires one of the dimensions to jump back as the other reaches the
end,  the  dimensions  of  the image is  too small  to  cause dramatic  problems with
paging. Instead of arranging the map so that it  suits the particular access pattern
involved  in  the  difference  approach,  offsets  and  jumps  are  used  to  allow  other
algorithms to make use of the edge map without the hassle of arranging a complex
lookup pattern to access the values.

Calculating and storing the difference score beforehand allows for some speed
ups, but this can be further optimized by combining the portions that are moved in
and out of the window area to quicken the process of evaluating the new score when
the window shifts. This accumulation of the score can be done at the same time as
the difference evaluation, or on the fly, such as when the newly included pixels are
accumulated individually and stored to be used when the group of pixels are removed
from the window. This process is illustrated visually in figure 6 2 below, where case
1 is the initial process, case 2 is when the window is shifted horizontally, and case 3
is when the stored score at the start of the row is brought back.
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Figure 6.1: Illustration of the edge map.
The  red  squares  represent  the  intensity  difference  between  the
horizontal  neighbours,  while  the  blue  squares  represent  the
intensity difference between the vertical neighbours.

Figure 6.2: Evaluation of the score by applying the difference in scores as the
window moves.

Case 1 shows the initial point, where all cells must be evaluated.
Case 2 shows the usual transition where the left most column is
removed and the cells to the right of the previous region is added.
Case 3 shows the wrapping between multiple rows by reverting
back to the state at the beginning of the row and applying a vertical
version of that seen in case 2. The scores from the green cells are
thus discarded.
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This  difference  approach  of  the  window,  as  well  as  the accumulation  of  the
portions  being  changed,  can  lead  to  decreased  processing  time  due  to  smaller
computational cost in adjusting the current score rather than evaluating a new score
by scanning through the entire window. Using the standard sequential approach, the
number of accesses to the score of each pixel is:

Widthfeature * Heightfeature * Widthcandidate * Heightcandidate (24)
Using the proposed approach, this can be reduced to:

Widthfeature * Heightfeature + 2 * Heightcandidate * (Widthcandidate * Heightfeature +  Widthfeature) (25)
The above can be reduced even further by rotating the image or traversing the

candidates vertically. Since the values at each pixel are visited at least twice, it is
important  to cache this value or derive the value before the accumulation of the
score.  Algorithm  6.4  below  shows  the  score  evaluation  process  by  using  the
difference in the scores, while table 6.1 summarises the effects of the implementation
compared to a simple approach of summation of the intensity and the difference in
the intensity.

function FindMaximumSumCandidate(image, candidate, feature):
   set score = 0
   for row in 0 to feature.height:
      for col in 0 to feature.width:
         set score = score + GetScore(image, candid ate.x + col,
          candidate.y + row)
   for row in 0 to candidate.height:
      if score > feature.score:
         set feature.score = score
         set feature.x = candidate.x
         set feature.y = candidate.y + row
      set row_score = score
      for col in 0 to candidate.width – 1:
         for v in row to feature.height + row:
            set score = score + GetScore(image, can didate.x +
             feature.width + col, candidate.y + v) –
             GetScore(image, candidate.x + col, can didate.y +
             v)
         if score > feature.score:
            set feature.score = score
            set feature.x = candidate.x + col
            set feature.y = candidate.y + row
      score = row_score
      for h in 0 to feature.width:
         set score = score + GetScore(image, candid ate.x + h,
          candidate.y + feature.height + row) – Get Score(image,
          candidate.x + h, candidate.y + row)
   return feature

Algorithm 6.4: Evaluation of score using the difference as the window shifts.

Table 6.1: Execution time of implementing the difference algorithm.

Sequential algorithm (ms) Difference algorithm (ms)

ΣIntensity 2.48 1.29

Σ∆Intensity 3.21 2.04
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6.1.2.2 Uniqueness

The attributes used above focuses primarily on the interestingness of the feature
with  respect  to  the  current  view  or  against  some  range  of  possible  intensity
arrangements. Although this attribute contributes to the effectiveness of the feature, a
more  important  measure  to  consider  is  the  uniqueness of  the  feature  within  the
current and the subsequent or the previous frame, depending on when the tracking is
done. The uniqueness is a measure of how distinctive the feature is, thus requires the
comparison to the other feature candidates.

The brute force approach of comparing the feature with every single candidate for
the most uniqueness requires O(n2) comparison between the features, where n is the
number of feature candidates. This search space can be reduced with sophisticated
algorithms such as beam search to prune away the bad candidates early on or using
A* like algorithms to rank and prioritise the processing of good candidates first. For
a search space with differences in the scores,  the overheads in implementing the
algorithms often outweighs the gain in speed. This is also true when is a low number
of candidates, thus a simpler algorithm is more applicable for real-time applications
by restricting  the  candidates  and  making  assumptions  about  the  features  it  will
observe.

As the candidates are exhaustively searched, the scores that are accumulated while
portions of the feature are examined can be compared against a threshold value for
early  termination.  This  simple  elimination  can  be  introduced  by  comparing  the
candidates one at a time and maintaining the best score so far. Since the scores can
be made to be accumulative, the current score should always be better or equal to the
best  score  achieved  so far.  If  the  score  becomes  worse than  the  current  best
candidate,  the  search can be terminated for  that  candidate  as the end score  will
always be worse than the best one so far.

Another approach is to compare the difference against other candidates to identify
an outlier. The efficiency of this approach greatly depends on the algorithm used to
assign the scores which requires a large range of values and the actual presence of
outliers  from  the  clusters  that  form  amongst  the  scores.  Using  a  single  score
compresses the clustering problem into a simple distance comparison.

This approach can also make use of the threshold value for early termination, as
the desired feature will have the largest minimum distance between the scores. If an
evaluated score between a candidate pair is less than the current threshold value, both
candidates can be discarded as not being the most distinctive score. It is also possible
to make use of  other  simple clustering algorithms, such as an uniform grid spaced
density approach using bucket sorting, but this does not guarantee the selection of the
most distinctive feature as it finds the local maxima, thus requires multiple parses to
re-cluster the scores to identify the most distinctive feature.

By observing the trends between multiple frames, certain behaviour, such as the
presence of flickering lights and repetitive patterns in the texture can be observed to
influence the uniqueness scores. The approach can also be used to determine the
general flow of the ground using techniques such as optical flow that can assist in the
disambiguation of similar patterns. The identification and derivation of these trends
often  requires significant  amount  of  resources  or  strict  constraints  on  the
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environment the approach can be  used. The typical view observed by the cameras
consists of repetitive and non-distinctive intensity patterns, which make the process
of identifying the trends even more difficult. There are no guarantees in the presence
of trends, while general optical flow approaches often does not work in the presence
of non-distinctive textures due to the small pixel area being tracked. Although these
approaches are not included when determining the best feature candidate to use, the
idea is used when tracking the feature, as described in detail later. This is due to the
extra constraints that can be enforced as the desired target is known.

The ability to identify the most unique feature is desirable, but it is not a necessity
as long as the feature can still be tracked using other constraints. This implies that the
resource usage and the validity of the uniqueness score must be balanced to best
utilise the processing capability.

The approaches above were compared using a constant rectangular feature size of
16 by 16 pixels against 64 candidates by sequentially shifting the feature window in
a 8 by 8 square.  To compare the result  against  naïve algorithms, several  simple
algorithms were introduced, which included the selecting of the brightest and darkest
features, the most average feature, and also a randomly selected feature. The process
involved averaging the various attributes across 500 frames, which consisted of the
average time taken, the utilisation of the range of values possible which is calculated
by the difference in  the minimum and maximum observed value divided by the
range, and also the uniqueness score, which is the percentage rank of uniqueness
determined by comparing the distance in the scores. The tests were carried out on
two common ground texture types, a carpet floor and vinyl flooring, which contained
less  distinctive  texture  patterns  than on  carpet.  Table  6.2  below summarises  the
results from the experiment.

Table 6.2: Comparison of feature selection algorithms.

Carpet Vinyl

Time
(ms)

Utilisation
(%)

Uniqueness
(%)

Time
(ms)

Utilisation
(%)

Uniqueness
(%)

max(ΣI) 2.33 3.21 91.23 2.27 0.44 97.45

min(ΣI) 2.31 3.26 73.23 2.41 0.41 89.06

mid(ΣI) 2.34 3.22 39.03 2.29 0.46 7.83

rand(ΣI) 2.38 3.31 49.57 2.33 0.43 51.46

max(Σ|Ix,y – Iave (all)|) 3.9 1.32 99.67 3.63 0.61 97.54

max(Σ|Ix,y – Iave (view)|) 3.81 1.22 96.66 2.61 1.48 95.55

max(Σ|Ix,y – Iave (feature)|) 4.09 1.44 97.1 3.01 0.58 88.05

max(Σ|Ix,y – Ix+1,y| + |Ix,y – Ix,y+1|) 3.37 1.26 65.58 3.85 0.56 37.12

max(Σ|Ix,y – Ix+1,y| * |Ix,y – Ix,y+1|) 3.43 0.19 57.25 4.43 0.01 93.74

The low utilization scores in all of the algorithms is due to the limited range of
intensities that are available within the small viewing area. This was to be expected
due to the repetitive nature of the ground textures. This means the algorithms which
are based on the relative intensities are affected even more due to the similarity in the
intensity and the blending which occurs from the aliasing.
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The results above show that the naïve approaches differ greatly. However, it was
noted that the majority of the best utilised feature either had the highest or lowest
score. This means the utilisation score can be further improved by tracking the top
and bottom two scores and selecting the one with the greater difference.

Using the averaging algorithm indicated high level  of  uniqueness, but showed
slower performance. Note that the algorithms were implemented without using the
difference algorithm introduced earlier, thus can potentially be sped up to improve
the  performance.  The  edge  score  based  approaches,  on  the  other  hand,  did  not
perform well due to the repetitive nature of the texture patterns. The lower utilisation
for the product of the edge score is due to the much larger range and the non-linear
distribution of scores.

The low uniqueness score means it would be more difficult to identify the feature,
as there are more candidates with similar scores. However, it is important to note that
although the feature selection process may base the criteria on one attribute,  the
feature tracking algorithm used to correlate between features does not have to rely on
the  same  attribute.  The  uniqueness  is  simply  one  measure  to  rank  the  feature
candidate for selection.

One of the major issues with the edge based approaches is the effect of sub-pixel
motion, which can significantly modify the scores. The lack of absolute information
can also reduce its effectiveness when shaped patterns are repeated. Although this is
also problematic when the intensity information is used, the controlled lighting and
the ability to interpolate absolute values to anticipate intensity changes from sub-
pixel motion means it is more attractive for this application. Since the feature must
be  tracked  around  the  view,  the  use  of  the  viewing  area  average  allows  better
portrayal of the feature's effectiveness, thus is implemented as the current feature
selection algorithm.

6.1.3 Shape and size

When specifying the characteristics of the feature, attributes such as the size and
the shape contribute greatly in controlling the reliability, processing requirements, as
well as the ability to make use of any a priori knowledge about the typical types of
textures it  will  observe. Using a small  feature would allow faster processing, but
suffers  from  the  reduced  variety  in  the  captured  intensity,  which  causes  non-
distinctive features to be selected. A larger feature, on the other hand, can allow more
distinct features to be selected due to the additional constraint from the extra pixels.
However,  this  leads  to  the  increased  processing  requirement  and  the  additional
memory consumption in maintaining the intensity and any derived values.

Since the feature involves analysing a group of pixels, a consideration into how
the pixels should be arrange is required to make the most of the available pixels for
the feature selection process. The  different arrangement formed by the pixels  can
allow different styled features to be captured since it can cater for certain trends to be
captured more effectively than others. The use of a square or rectangular shape is the
most common approach due to the sequential access pattern and the simplicity in the
implementation. This is also due to the arrangement of the pixels in most images
where the pixels are of uniform sized squares, arranged densely one after the other.
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Deviation from this shape can include the change to other primitive shapes, such as
circles to focus attention to a particular point rather than a region, or a line if certain
motions  can  be  constrained  to only  have  one  unknown dimension.  This  choice
depends  on  a  priori  information  about  the  ground  textures  and  the  orientation
considerations which can affect the placement and the number of pixels required at a
certain location.

The use of the solid rectangular shape also makes use of some domain knowledge
about the frequency or the distinctive textures in one direction to another. As well as
the efficient indexing, the density can also assist in the case of  when  motion blur
occurs by capturing the adjacent information to compensate for the interpolation in
the intensity. The  orientation and frequency of the motion blur plays an important
role in the above argument, which is constrained through the original assumption that
the feature will primarily translate in one axis, and the effect of the blurring will be
limited due to the short exposure time.

When observing the trends of the scores on some surfaces, it was noted that some
portions of the image did not make much of a contribution to the scores, especially
when  using  the  edge  based  scoring  techniques.  Instead  of  being  constrained  to
primitive  shapes,  alternative  shapes  were  designed  to  take  advantage  of  this
observation to determine the effectiveness of modifying the shape to suit the texture.

This has lead to the formation of a straight edged donut shape where the central
square portion of the feature is removed. This is due to the structure of the carpet
floor, where the bundle of threads that make up the grooves are present. The regions
between these bundles show large differences in the intensity, whereas the bundled
portion itself does not show any interesting transitions for edge based scores to make
use of. By skipping over these regions through aligning the hole with the bundled
portion, the processing load should be reduced without hindering the effectiveness of
scores. The purpose of this shape was to measure the effectiveness of a customised
shape based on the observed texture, which could be determined dynamically.

When  implementing  the  donut shaped  approach,  an  extra requirement is
introduced to make sure the feature candidates include the view with the optimally
aligned position. This can  potentially  increase the number of candidates depending
on the interval and the size of the unattractive region.

The last shape to be investigated was a scattered grid formation with uniform
spacing, intended to maintain reasonable efficiency through regular intervals while
increasing the coverage at the cost of the neighbouring details surrounding a pixel.
This drawback means interpolation of neighbours will  not be possible when sub-
pixel motion occurs.

By extending the idea of configuring the feature shape to suit the environment, an
approach involving a dynamic analysis of the surface texture pattern is required. The
use of this approach can potentially provide the best  range of scores for a fixed
number of pixels. However, like other dynamic approaches, the periodical evaluation
of the current state and configuration would cause significant overheads, as well as
relying on the presence of predictable patterns it can exploit. This is due to the rapid
changes in the texture caused by the small viewing area and the frequent motion of
the robot. Instead, the manually configured shape and sizes will indicate the validity
and effectiveness of the shape and configuration attributes to suit the environment.
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They  will  also  allow  the  switching  between  these  configurations  for  particular
textures if  desired,  as the operating surfaces of  the  robot  will  be  limited in  the
majority of situations.

Figure 6.3: Shapes and sizes of the features that are investigated.
The highlighted portions show the size and arrangement of the cells
being considered.

Figure 6.3 shows the various shapes and sizes that were tested using the same
benchmark  attributes as  the  previous  experiment  to  measure  the  effects  on  the
algorithms using intensity and the difference in the intensity as the score. Note that
the time consumption only covers the process of identifying the feature and not the
tracking  process,  thus  should  be  viewed  relatively, as  the  correlation  time  will
increase dramatically with an increased number of pixels. The number of candidates
was increased to 256, as the small features were too fast to measure the running time
accurately. Table 6.3 below summarises the findings.

The results show that by selecting between the maximum and minimum score, as
discussed earlier, the uniqueness score could be maintained very high in most cases.
The algorithms with obvious difference in the rank may have been due to the lack of
variety in the sampling data or a particularly bad patch of ground texture. In any
case, the modified feature shapes did not show significant signs of improvement, as
the rate of finding the outlier using the proposed scoring algorithms were already
quite high.

In both experiments, the utilisation score did not show any obvious relevance to
the uniqueness score. It does, however, show the possible relationship between the
effectiveness of the algorithm on different surfaces, as the uniqueness scores tended
to be slightly lower when the utilisation score was lower. It may be feasible to run
some simulations in the future to investigate any trends which may be present, which
can be used to modify the feature size and shape.

As mentioned earlier, the processing time that was measured is only that of the
feature selection process thus should be kept as small as possible. With this in mind,
the 16 by 16 square shape was selected as the fixed shape as it also performed well in
isolating the most distinct feature.
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Table 6.3: Comparison of different feature shapes and sizes.

Algorithm Carpet Vinyl

Time
(ms)

Utilization
(%)

Uniqueness
(%)

Time
(ms)

Utilization
(%)

Uniqueness
(%)

Score max(Σ|Ix,y – Iave (view)|)

8x8 square 2.98 5.27 98.07 5.78 0.72 92.23

16x16 square 5.63 1.85 99.65 4.05 1.57 98.97

24x24 square 18.06 0.88 99.84 17.39 1.03 95.73

32x32 square 32.95 0.99 99.79 30.07 0.98 99.43

16x8 rectangle 3.13 3.74 99.54 5.92 0.88 92.58

24x16 rectangle 7.86 1.65 98.78 5.62 1.12 99.18

16x16 – 8X8 donut 3.09 2.61 99.7 7.56 0.88 99.68

24x24 – 8X8 donut 17.03 1.22 99.65 16.68 0.57 85.59

24x24/2 spaced 3.32 2.19 62.5 3.96 1.76 92.76

32x32/2 spaced 6.97 1.12 99.72 6.37 0.97 99.3

32x32/4 spaced 2.81 2.77 99.86 3.12 0.48 97.94

Score max(Σ|Ix,y – Ix+1,y| * |Ix,y – Ix,y+1|)

16x16 square 22.41 1.01 99.41 19.49 0.018 99.71

24x16 rectangle 31.88 0.57 99.13 31.86 0.015 89.84

16x16 – 8X8 donut 17.69 1.31 99.77 18.3 0.5 72.58

32x32/2 spaced 20.96 0.85 99.67 20.66 0.029 99.1

With the ideal feature identified, a copy of the region is stored until the next frame
is captured. The feature is then searched for within the next frame to determine the
displacement of the feature. The opposite process of storing the entire frame, then
finding the current feature in the previous frame can allow adjustment of the features
until a good match is found, but requires a much larger footprint and processing time
to be included for the backtracking algorithm.

6.2 Feature tracking

The core of the feature tracking algorithm involves a simple region alignment
algorithm based on the distance measures between the attributes of the feature and
the  current  view.  Instead of  investigating  the  different  measures  to  consider  the
distance, such as the edge strengths and histograms (Huang et al., 1999; Pass et al.,
1996), the intensity information was used due to its simplicity, adaptability in case
the texture pattern is slightly modified between frames, near consistent locality, as
well  as  the consistency with the feature selection process. Although the absolute
values are susceptible to shifts from ambient light changes, this effect should be quite
small due to the customised configuration using the sole light source.

Due to the small  time interval  between frames, the most frequently occurring
changes to the feature is the interpolation effect between adjacent pixels when sub-
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pixel  motions  occur.  This  can  invalidate  the  stored feature  information,  as  the
distinctive pattern may not  appear within the view. The tracking algorithm must
continue to operate even when the typical scores of the region alignment fluctuates
and  must  attempt  to  differentiate  between  sub-pixel motion  and  the  incorrect
selection of the feature location.

Instead of simply scanning for the pattern in a linear sequence, the scan pattern
can be controlled to increase the efficiency of the algorithm by finding the most
potent  candidates quickly.  Since the majority of  region alignment  algorithms are
based on a score accumulation approach, this can allow dynamic thresholds to be set
for early termination instead of continuing to evaluate a badly matching candidate.

6.2.1 Motion prediction

Closed-loop techniques which make use of the feedback information to anticipate
the current state, such as Kalman  filters (Kalman, 1960;  Welch & Bishop, 1995),
allow effective modelling of the motions by predicting the likely state of the robot in
the  subsequent  frames  (Crowley,  1995;  Ghahramani,  1998;  Guivant,  2002;
Negenborn, 2003; Roumeliotis & Bekey, 1997). Several attributes can be made use
of  to  assist  in  the  process,  such  as  dead  reckoning estimates  from  the  motor
command given to the wheels by knowing the dimensions of the wheels, the encoder
feedback counts, the velocity from the wheel rotation and the clock, acceleration
from the change in the velocity, and the location of where the feature was captured
within the frame. Some of the measurements are maintained internally, while others
require  extraction  from  different  modules  of  the  robot,  thus  an  appropriately
synchronised  or  time-stamped  measurement  is  required  to  make  use  of  the
information without corrupting the calculation.

Due  to  the  noticeable  latency  in  receiving  the  encoder  values,  the  feedback
information from the wheels was not used as part of the motion prediction algorithm.
The information it can provide, however, relies on a precise motion model between
the motor rotation and the motion of the robot. This involves a precise knowledge of
the  attributes  involved  in  the  motion,  such  as  the  wheel's  circumference  under
compression, slippage, backlash and the follow through motion for  non-breaking
motors. This is especially problematic in many natural environments where these
conditions can vary significantly. The additional information can thus be treated with
a lower weighting to avoid potentially corrupting the prediction if they are required.

Since the process between sending the motor command and the motion eventually
being  carried  out  by  the  wheels  is  reliable,  with  the  exception  of  overridden
commands, the actual motor command that is generated by the high level processes
can be passed onto the motion predictor to aid the algorithm. This information is
especially  useful  when  the  search  area  is  large  due to  a  rapid  change  in  the
acceleration.

This implementation involves the use of a command queue which stores a small
list of sent commands to be able to construct the anticipated motion of the robot. A
list is required here due to the latency between sending the command and observing
the  motion.  Since  the  latency  can  vary  depending  on the  processing  load,  the
commands are removed when there is a noticeable change in the command pattern,
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which is can include the detection of a change in the direction and when the size of
the queue becomes a larger than a threshold value, which indicates that the there is
too  much  delay or  a  command has  been missed or  misinterpreted.  One way to
manage the commands within the queue is to compress the commands of the same
direction, which can be simplified by the restricted variety in the commands that can
be sent. The current implementation caters for this by simply using the direction of
the motion to add to the anticipated location.

There are three other attributes used to determine the location of the feature in the
subsequent  frame. They are the location where the feature was captured,  current
velocity and the acceleration vectors that are determined in the previous cycle. The
velocity is determined by the change in the robot position from the last frame, while
the acceleration is calculated from the difference in  the velocity.  The short  term
dependencies of these values mean the values can fluctuate quickly. This allows for
quick adaptation to the rapidly changing velocities,  as well  as catering for when
sudden motions occur, while still considering the historical information to encourage
smooth motion. Note that these values are not time dependant, although the frame
rate should remain reasonably consistent due to the process cycle and the capture
rate,  which  can potentially introduce errors  to  the motion prediction.  Figure 6.4
below illustrates the four components which contributes to the motion prediction.

Figure 6.4: Illustration of the vector components predicting the robot motion.
The different sources of motion prediction are applied individually
to identify where the feature should be searched.

The errors  in  the prediction that  are included in  Kalman filters  are  indirectly
corrected within the two vectors,  since the displacement values are based on the
precise observed motion. The prediction only has a very small and indirect influence
on the accuracy and more to  do with  the time consumption,  thus the effects  of
incorrect  predictions are negligible.  The occurrence of  errors in the prediction is
quite frequent since the robot frequently makes adjustments to its trajectory and also
due  to  the  discrete  motion  distances  that  can  be  observed.  Although  the  actual
velocity model is more of a sigmoid shape, the simple prediction model still allows
for a good estimation of the robot's motion.

Quantifying the effects of the prediction can be done in several ways, such as the
rate  of  a  perfect  match,  average  error  distance  in  the  prediction,  the  memory
footprint,  and the time taken to execute the new scan pattern. Although the most
practical measure would be a time based measure to see if an improvement was made
in  the  processing  time,  there  is  little  meaning  without  a  very  high  rate  correct
prediction. A more useful measure, the average error value, is determined to illustrate
the overall correctness of the prediction. Figure 6.5 shows a sample histogram of the
error rate of the algorithm when the robot is under operation for approximately 2
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minutes.

Figure 6.5: Histogram of prediction error rate.
The hit  rate shows that the majority of the prediction errors are
quite small.

As figure 6.5 indicates, the successful rate of prediction is quite high compared to
those where  the predictions  have  failed  by a  significant  amount.  An  interesting
observation is shown where the rate of a prefect prediction is lower than those where
the prediction is off by one pixel width. This is partially the result of an incorrectly
modelled  motion,  such  as  where  the  acceleration  changes  and  some  sub-pixel
motions that  are  not  accounted for.  The other  contributing factor,  which will  be
described in more detail  later, is the lack of activation of the algorithm when no
motion  is  detected.  Nevertheless,  the  algorithm  shows  promising  results  in
anticipating the current feature location.

6.2.2 Radial scan

The resulting location can then be used as the starting location for the region
alignment. Presuming that the prediction is reasonably accurate, the feature is likely
to be found at or around the expected location. The traditional scan pattern involves a
raster sequence, where small coordinate changes are applied to allow simpler and
efficient data access and execution of code. Note that due to the unique alignment of
each  pixel  involved  when  comparing  the  two  groups  of  pixels,  the  difference
accumulating approach used in the feature score evaluation cannot be applied here.
Since the goal is to find the best fitting position, the scan pattern can be changed to
prioritise the positions that are closer to the predicted location instead.

To arrange  the  sequence  such  that  the  positions  are checked  in  the  order  of
increasing error distance, a radial scan pattern is introduced. This shape must also
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consider several other factors, such as likelihood of scalar and axial errors in the
prediction,  un-modelled  environmental  influences,  and  also  the  efficiency  of
generating and traversing the non-sequential coordinate offsets. Although the motion
of the robot is used in the prediction, the proportional aspect of the motion in the two
axes is not included in any adjustments. The domain knowledge about the motion
patterns of the robot can be used to modify the scan pattern to anticipate more drifts
in one axis over the other. Since the robot's primarily motion is in the longitudinal
direction, the scan pattern can be changed to an elliptical shape, where the longer
portions of the ellipse align with the direction of the motion. The shape reflects the
tendency for more un-modelled contributors to the robot motion given the direction
of the traversal. These include issues such as the rocking motion due to backlash,
sudden acceleration from compression and decompression of the tyres from bumps
and the change in surface friction, and slippage.

The sequence of the scan must be dynamically changed depending on the various
state of the robot, which requires consideration to the additional costs involved. This
generation at every cycle leads to a significant amount of processing load (Eberly,
1999), thus a lookup table is implemented to first generate the scan pattern offsets in
a pre-processing stage before the robot starts  its  operation.  Since the number of
variation to the pattern can be quite large, this can lead to an extremely large memory
footprint and potentially cause paging issues. However, since this motion prediction's
primary purpose is to hasten the process of finding the best alignment of the feature,
the  algorithm  is  allowed  to  take  short  cuts  to  increase  the  efficiency  over  the
accuracy in the optimal result. With this in mind, the shape of the scan pattern is
fixed to the most common shape and the coordinate offsets of this are used for a
simple lookup at runtime. Figure 6.6 illustrates the scan sequence by using the offset
lookup table.

Figure 6.6: Illustration of scan sequence using the radial scan.
The numbers indicate the search order, which starts at the center
and expands out in a clock-wise direction.

Due to the limited motion capability, the upper bound on the distance was used to
restrict the scan pattern size. This allowed the offsets to be generated during the pre-
processing stage by iterating through all longitudinal-latitudinal pairs and ranking the
resulting distance. The elliptic shape meant that the symmetry can be exploited to
only generate a quarter of the offsets. Since some offsets have the same distance
measure, the ranking will be fixed in a predefined sequence when they are stored in
the lookup table. Although it is not critical, as this is carried out in the pre-processing
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stage, the distance measure does not have to be square rooted, as the magnitude is
used to rank the offsets.

Due to the requirement that the pixels within the feature and the candidate must be
correctly aligned, strategies such as partial  matches cannot be used to modify the
scan sequence. However, one possible case where this may be applicable is when
there is a reasonably high level of correlation, but there is a slight mismatch in all of
the pixels. This is  likely to be caused by sub-pixel motion, thus finding a better
candidate  within  the  immediate  neighbours  may be  possible.  Rather  than  using
irregular sequences, which can introduce extra levels of complexity and overheads,
the scan sequence is left as consistent.

With the sequence now defined, the algorithm requires a mechanism to determine
if the target feature has already been found. Since the indicator of this is the exact
correlation in the intensity values, this is unlikely to occur. The algorithm instead
determines when a better candidate cannot be found. This early termination approach
is achieved by maintaining the best  correlation score,  which can be accumulated
during the correlation, such that as soon as the score of the current candidate reaches
past that point, it can be discarded and the next candidate in the sequence can be
compared.

To measure the performance, the algorithm was compared to a simple linear scan
pattern with and without using the threshold value. The test was carried out using a
feature size of 16 by 16 pixels, where the search area was an ellipse with longitudinal
range of ±10 pixels and latitudinal range of ±4 pixels on a carpet surface and was
averaged out over a period of approximately 1 minute. To compare the efficiency of
both algorithms equally, the same number of positions were compared as candidates.
Since the radial scan traverses through 135 different positions, the linear scan was
conducted  over  a  15  by  9  region.  To  make  sure  both  algorithms  performed
consistently, the robot's speed was reduced to keep the feature displacement within 5
pixels. The results of the experiment is summarised in table 6.4 below.

Table 6.4: Processing time in linear and radial scan patterns with and without early
termination.

Without threshold (ms) With threshold (ms)

Linear scan 7.866 6.964

Radial scan 10.166 5.624

As the results show, the overhead in the non-sequential offsets is quite large as the
mirrored offsets were generated at runtime. However, by implementing the threshold
algorithm, there was a dramatic improvement in the processing time, as the best
candidates were found very early in the process.

While the effectiveness of the motion prediction plays a significant role in the
performance improvement of the radial scan, it is also affected by various surface
textures. In the presence of higher variation in the scores, which is related to the
utilisation  scores  used  in  the  earlier  experiment,  the  scores  are  more  likely  to
accumulate past the threshold value quicker, thus improving the effectiveness of the
algorithm. As the typical ground texture consists of small amount of fluctuation, it is
important to keep in mind of the relationship between the overhead and the number
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of comparisons saved. A possible approach to target this in the future may be to make
better use of the colour information, such as using a combination of the RGB and
HSL scale (Cumani, 1989).

While  using  the  threshold  value has  shown  to  improve the efficiency  of  the
algorithm, the scan must continue to the end of the spiral to make sure no better
solution can be found. An alternative to the radial scan is to apply an extra cost to the
correlation  score  as  the  error  in  the  prediction  increases.  This  encourages  the
candidates that are far away to fail earlier as the ideal match is likely to have been
found  already.  This  also  assists  in  disambiguating  between  similar  features  and
encourages a smoother motion being observed. One very important drawback to this
approach is that if the added cost is too high, it can suppress the ideal candidate and
restrict the motions from being registered.

Initial results using an offset value showed that it either biased the correlations too
much or none at all. Due to the rapidly fluctuating nature of the ground textures,
selecting an appropriate offset becomes a difficult task. Rather than investigating the
optimal weight, which is likely to be derived from the range of correlation scores that
are being observed for the current  surface, the biasing is removed in the current
implementation and will be left for future investigation. If two candidates both end
up having the same score, the one closer to the prediction is chosen.

6.2.3 Sub-pixel motion

The approaches involving the accumulation of the local coordinate and orientation
changes are often criticised for their lack of error correction mechanism from small
errors that are accumulated over long traversals. The use of external pose indicators,
such as landmarks and measurements from other systems, can assist in re-calibrating
the pose. However, the limited access and availability to such techniques, caused by
visibility problems or when exploring new territories where there are no existing
model to make use of, does not allow the mobile robot to depend on them at all
times.

Often times, the errors are unnoticed by the algorithms, thus leading to warped
poses where the robot's  internal  and actual  pose gradually becomes significantly
different. By estimating the errors, localisation algorithms can allow adjustments to
the pose measurements,  especially  the  confidence values,  to  flag the subsequent
observations as potentially erroneous. It is also possible to make some corrections to
the errors by taking other measurements with the available sensors to disambiguate
the readings. Many approaches leave this task to the global localisation portion using
landmarks or map correlation techniques to correct the pose.

In the presence of repetitive textures, blending of intensities from interpolation, as
well  as  noisy  artefacts,  the  feature  tracking  algorithm  is  constantly  tested  for
reliability and accuracy in difficult circumstances. The proposed algorithm is able to
perform quite effectively even when similar patterns appear by appropriately setting
the feature size, frame rate, exposure time and the tracking algorithm. However, the
algorithm is frequently troubled by the inability to find the exact position of the
feature due to the discrete levels in the feature positions (Turkowski, 1990). Although
the algorithm is often able to find the adjacent position to the actual feature position,
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the small amount of error accumulates to a significant amount of error over time and
must be reduced before it has a cascading effect.

One approach that is proposed is to store several copies of the feature which have
been interpolated with its neighbours at various proportions to simulate the effects of
sub-pixel motion. The region alignment algorithm can then match against the original
feature and the interpolated versions to determine the best  candidate.  This  naïve
approach dramatically increases the search space for the feature,  especially when
considering multiple weights to generate the various interpolated versions. It also has
the potential to introduce more errors from the introduction of implausible and fake
features which may score well, but should not actually match.

Several  improvements  can  be  made  to  the  above  approach,  starting  with  the
reduction of the search space by controlling the activation of the sub-pixel motion
checks.  By specifying appropriate  conditions  for  triggering the sub-pixel  motion
check, such as when the predicted location is ranked high, which can indicate a
partial match, when the rank of the prediction is very low, which can be the result of
large amounts of interpolation on highly repetitive textures, or when the best match is
significantly far away from the anticipated location, the number of checks against the
interpolated features can be reduced, as well as helping prevent false positives in the
feature's location.

Implementing the ranking of the top few matches can be done quite simply by
maintaining the top few matches in a sorted manner and using an insertion sort like
algorithm  of  adding  from  the  worst  scored  candidate's  end,  as  the  rate  of
encountering  the  best  candidate  is  lower  than  encountering  the  almost  best
candidates. Since the algorithm only requires a small number of candidates to check
for sub-pixel motion, the other candidates can be removed from the list. By using the
threshold approach, the value to be compared against will be the worst candidate in
the list, which will be discarded if a better candidate is found.

Another  improvement  can  be  made  by  storing  the  surrounding  pixels  of  the
feature  instead  of  pre-generating  the  interpolated  versions.  This  will  allow  the
generation of interpolated feature with any weight when desired. An alternative is to
interpolate the current view instead of the feature from the previous frame, as this
will  help reduce the memory footprint size. However, both these approaches will
require knowledge about what weights to use or would face similar processing load
issues as before.

Using the group of best matches, an alternative algorithm can be implemented by
merging  together  the  neighbouring  matches.  After  the  top  few  matches  are
determined, the distance between the best match and the others can be checked to see
if they lie directly next to each other. If  so, the matches can be merged together
depending on the difference in the rank or the closeness of the correlation scores. The
weighting used to interpolate  them can also  be controlled through the scores  to
determine the approximate positions of the feature.

Although these approach caters for a more flexible weighting of sub-pixel motion,
it  can  potentially  register  sub-pixel  motion  where  non  existent.  The  erroneous
measurements occur quite frequently,  as the intensity characteristics are naturally
interpolated across neighbouring pixels. This results in the neighbours having similar
texture and thus also being ranked high. Instead of simply merging the highly ranked
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candidates, the newly construct candidate and the correlation score can be compared
to verify the correctness of the merge.

The use of the landmark can allow certain sub-pixel motions to be detected as it is
tracked over multiple frames to narrow down the potential pose. However, due to the
limited view area and the rapidly moving ground texture, the criteria for a long term
landmark is very difficult to achieve. One of the conditions which can allow long
term landmarks to be found is when the robot's  motion is very small.  When no
motion is observed, the ground texture may have undergone a very small movement
which was not  registered.  However,  if  the feature is  re-captured,  the very small
motion is lost without any way of recovering from it. Instead, the feature captured
from the previous frame can be re-used until the small motions accumulate until the
motion becomes distinctive enough to be registered.

The  simplest  implementation  in  obtaining  a  higher  precision  in  the  motion
tracking is to make use of a higher camera resolution to start off with. The additional
pixels allows for a more detailed pattern to be captured, which can simulate the sub-
pixel  motion  when  the  granularity  is  changed.  The  additional  information  does
require  more  resources  to  process,  while  the  transmission  and memory copying
process are often the bottle-neck when analysis is conducted on a reduced portion of
the image. This can sometimes cause frames to be skipped and introduce delays in
the other processes. As some of the USB cameras tend to apply software enhanced
high resolution capturing and harsh compression algorithms, this can introduce more
noise when observed at an individual pixel level and places more stress on the image
restoration filters that are used.

The current implementation of the various sub-pixel motion strategies involves a
combination of some of the approaches discussed above to provide a more robust
algorithm in detecting the sub-pixel  motion and attempting to register  the actual
motion.

When the feature is chosen, the pixel intensities of the feature and the immediate
surrounding pixels are stored. The weights being used to interpolate them will vary,
thus storing this will allow the tracking algorithm to later determine how the feature
should be viewed. When scanning through the candidates for the feature motion, the
top three candidates are maintained. The small number allows the thresholding to
remain efficient while still allowing the candidates to be combined in both axes. An
additional criterion is used in the merge, which restricts the second best candidate
and third best candidate to only merge with the best candidate and must merge in the
perpendicular direction to each other. This eliminates the case of implausible sub-
pixel motions.

To utilise  the confidence  of  the candidate,  the  correlation  scores  are  used  to
weight the interpolation. This is done by diving the score of the best candidate with
the  sum  of  the  best  and  the  other  candidate.  The  value  is  then  applied  to  the
coordinate  point  of  the best  candidate,  as  well  as  the weight  to  derive  the new
intensity values, which is then correlated and compared against the best candidate.

To check to see if the actual motion was near the predicted location, the predicted
location and the four adjacent positions are interpolated using a predefined weight of
0.5 to generate four more candidates that are also included. This acts as a fall back
mechanism  in  case  the  ideal  location  was  skipped  due  to  badly  interpolated
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intensities.  Due  to  symmetric  weights,  it  is  possible  to  efficiently  generate  the
interpolated values by re-using the merged values for the extra candidates. Note that
this algorithm can still be executed even if the best candidate was found where it was
predicted to be.

With the components of the tracking algorithm defined, the overall accuracy of
the visual odometry can be compared. Table 6.5 shows the results of moving the
robot for 5m in a straight line on a carpet floor. To measure the difference in the
precision, the experiment was carried out for two camera resolutions to determine the
reliability using a higher resolution. Note that to maintain the consistency between
the algorithms,  the operational  speed of  the robot  was modified.  This  meant  the
difference in the processing load was isolated to the handling of the image data
stream and not the algorithm itself.

Table 6.5: Precision of the visual odometry using different sub-pixel motion
correction techniques.

Algorithm Error (%)

Resolution

160 x 120 320 x 240

None 5.5 1.93

Merge top candidates 1.43 1.41

Fixed weight with neighbour 5.2 1.67

Variable weight with neighbour 1.02 0.32

Combined 0.98 0.28

6.3 Motion detection

With  the  motion  of  the  feature  determined,  the  vector  can  be  converted to
determine  the  motion  of  the  robot.  The  triangulation  approach  allows  this
instantaneous  motion  to  be  derived  and  accumulated, but  is  limited  to  only
translations due to the lack of rotation.

Since the algorithm uses an accumulative approach, the robot must ground the
coordinate  point  to  some  known  location.  At  this  stage,  no  other  sensors  or
algorithms have been introduced to take advantage of well recognisable landmarks,
thus the starting position of the robot is used as the origin.

The algorithm currently does not make use of a long term feature to calibrate its
pose, thus the accumulative approach is still  prone to drifting in the tracking and
camera  configuration  errors  that  can  quickly  accumulate.  To  help  reduce  the
configuration errors, it is important to make frequent calibration measurements to
improve the accuracy of the configuration attributes so they converge to the actual
value.
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6.4 Summary

The  proposed  feature  tracking  algorithm considers  many  practical  aspects  of
ground  texture  tracking  for  visual  odometry.  In  doing  so,  it  incorporates many
constraints that  are based on the environment and the task.  This  allows efficient
utilisation of the available data and resources to improve the accuracy and efficiency
of the algorithm for real time application. The notable constraints placed are that the
view's proportionality remains the same, the ground texture contains distinguishable
patterns, and that the operational speed of the robot remains controlled to allow the
captured texture to show up in the subsequent frame.

The  various  techniques provide  a  reliable  and  efficient  approach  in  tracking
ground  textures,  which  forms  the  basis  for  the  visual  odometry  algorithm.  The
components that were considered include the selection criteria for the feature, the
number and arrangement of the individual pixels that make up the feature, motion
estimation  using  feedback  information  to  improve  the  efficiency  of  the  search,
modified scan patterns to encourage early detection of the ideal candidate, and also
several algorithms to reduce and recover from sub-pixel motions due to the discrete
amount of change the camera can determine.

Although the majority of the testing of the above approaches were conducted on a
set of known surfaces, preliminary tests showed that the algorithm can operate quite
well on many other surfaces that are typically seen in indoor environments. A more
comprehensible experiment on this is carried out in chapter 7, which do not require
the modification of the attributes determined here.

During the testing phases, the tracking showed infrequent  occurrences of large
jumps away from the predicted  area.  This  behaviour  was  commonly seen when
frames were skipped or when motion blur had occurred due to bumps or jerks of the
robot, especially when using the higher resolution. This meant extra precautions had
to be taken when setting the camera configuration attributes, such as the frame rate
and exposure time to reduce the occurrence of this problem.

The  approach  investigated the effectiveness of  a single,  non-rotational  feature
tracker of ground textures, which has showed promising results in observing the pose
changes of the robot. In its current state, the technique has too many limitations to be
used  as  the  sole  technique  for  the  mobile  robot  localisation.  To  target  this,  the
technique must  be integrated  with  other  approaches and modules to  improve its
effectiveness and accuracy. The strategies for this are discussed in chapter 7.
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Chapter 7 – Multi-sensor localisation

There are many different approaches to tracking the pose of a mobile robot. The
approaches can be separated into two broad categories, where one use of an observer
to monitor the motion of the robot,  and the other being the robot measuring the
motion of the environment with respect to itself. The two approaches can differ in
precision, reliability and also on the availability, since the observer must be placed
within the environment before the mobile robot and know its own pose.

To track the pose from the robot's perspective, the location and orientation can be
derived by monitoring how the robot has moved through dead reckoning or aligning
itself against landmarks. The landmarks can be dynamically determined or given to
the robot as markers to look out for, but in doing so, requires interaction with the
environment before the robot,  thus limits the capabilities in similar ways to having
the observer. By selecting the features dynamically, it places an extra burden on the
localisation  algorithm  to  identify  and  re-locate  the  landmark  from  different
perspectives. This can often only allow for local pose information to be derived and
require multiple landmarks to be viewed simultaneously to accurately triangulate its
position.  The  simultaneous  tracking  and  fusing  of  multiple  landmark  tracking
introduces many new issues on top of the standard tracking problem.

7.1 Multiple tracker

The use of the tracker introduced in chapter 6 has shown promising capabilities
for mobile robot localisation, yet the constraints which improve the efficiency restrict
the detectable motion to simple 2D displacements. For it to be a useful localisation
technique, the rotational motions must also be captured to allow the robot and world
coordinate axes to be correctly aligned. By introducing a second feature tracker on
the robot, the two detected motions, as well as the constraint between the positions of
the two trackers can be used to determine rotational changes. The two motion vectors
that  are detected can be used to  determine the instantaneous center  of  curvature
(ICC) of the motion, while more than two can introduce redundancy to improve the
accuracy or disambiguate the inconsistencies in the detected motions.

Although the introduction of  more trackers  introduces  many new  capabilities,
extra  problems  are  introduced,  such  as  the  ideal  location  of  the  trackers,
synchronization,  as  well  as the extra  processing  load.  Many of  these issues  are
discussed and strategies are introduced to construct a localisation technique capable
of detecting translation and rotation.

7.1.1 Testing and validation

Throughout the development process, the various algorithms were tested using a
consistent set up, which comprised of a translational test of traversing forward and
backwards along a guided rail, and a rotational test around the center of the robot
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7.1.1 Testing and validation

using a lazy susan. The purpose of the guides is to maintain a consistent motion for
the different implementations to be compared. Although the motions are not entirely
realistic, it allows the different algorithms to compare their performance evenly as if
under ideal motion conditions. A more realistic test is carried out later on using the
derived localisation algorithm.

The rail was placed near the center of the robot for it to slide against, but due to
the imperfect set up, it allowed for slight rotations to occur. The rotational test was
also not perfect, as the robot had to be lifted slightly for the rotating plate, thus the
amount of ground contact was not normal and the camera height parameter had to be
adjusted.  With  both  tests,  the  placement  of  the  guides  was  done  by  manually
observing the robot's motion, which may have contributed to some errors in terms of
the expected motions.

The tests were conducted on a flat  carpet surface using a tape measure and  a
protractor with 0.5 mm and 0.5 degree  of  precision respectively. The forward and
backward test was conducted by moving forward for  1 meter, then reversing along
the  same  path.  The  rotational  test  was  done  by  measuring  the  algorithm's
performance over a 360 degree rotation, then reversing the same amount to get back
at the original orientation. The accumulated pose was then compared to the expected
motions to determine the accuracy. This was carried out  for five repetitions each,
then averaged to indicate the consistency of the performance.

The purpose of reversing the same path allowed the removal of any scale based
inaccuracies which many not have been ironed out. It also has the effect of traversing
over the same ground pattern, thus potentially reversing or doubling any effects of
error prone areas. Figure 7.1 illustrates the testing set-up.

Figure 7.1: Testing configuration.
The circles represent  the robot,  the outlined arrows indicate the
forward  and  clockwise  motion  tests,  while  the  solid arrows
represent the reverse and anti-clockwise motions.

7.1.2 Single camera

Techniques involving the tracking of  multiple features are commonly applied in
machine vision, where the extra trackers allow  the algorithm to  focus on several
different entities simultaneously, or to provide a better approximation of the motion
by a voting or interpolation algorithms, such as approaches which use optical  flow
(Bretzner & Lindeberg, 1996; Camus & Bulthoff, 1995; Irani et al., 1997; McCarthy,
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2005). Depending on the criteria of the tasks, the approaches and techniques used can
vary  significantly  to optimise the resource usage and improving the quality of the
measurements.

Many of the issues with regards to identifying and tracking ground textures has
already been considered, thus this portion of the algorithm can simply make use of
multiple instances of  the developed  tracker. Since the processing requirements for
these trackers are  slightly more expensive compared to simple trackers.,  this can
limit the number of instances being used simultaneously, but at the same time, has a
much higher reliability. The right balance between the two should ideally be used,
but several criteria must also be considered during the design.

When attempting to support the measurements of the other tracker, it is important
for the tracker to be exposed to a very similar type of motion. This means that the
location viewed by the tracker must be positioned close to each other, as well as
being away from the center  of  curvature.  Since a  small  shifting of  the  viewing
window for the feature is all that is necessary to produce a new feature, it is possible
to capture the second feature that is sub-millimeters away from the first feature. This
allows the two trackers to capture the motions with minimal difference in the motion
vectors, which can be easily combined without the hassle of location dependant pose
changes. However, having closely placed trackers cause the majority of the texture to
be overlapped with each other, thus the redundant measurement is also likely to be
corrupted if the error was due to a bad region of indistinguishable ground texture. To
increase the reliability,  the tracker should thus be located  slightly  away from the
other tracker to avoid observing the same bad texture. This also increases the chances
of either one encountering the bad texture, but the approach allows the option of
verifying the measurements when discrepancy occurs.

The commonly used approach  for verification is to implement a simple voting
algorithm using odd number of measurements. Since this approach requires many
redundant resources to implement, another common approach that is used is to make
use of a score for each measurement to indicate the validity or the confidence. This
type of  redundancy mechanism  is suited for  trackers that  are not  so  reliable  by
themselves and require multiple, concurrent trackers to support the measurements.
However,  by  using  a reliable  tracker,  it reduces  the need  to  rely  on  supporting
measurements from the similar ground texture motion.

By changing the distance between the trackers, the dilution of precision can be
controlled to improve the precision of the derived motion. Placing the trackers at
extreme ends of the viewable area of the camera will maximise the distance between
the two trackers,  but  considerations must be made for the quality of  the images
observed at different points within the image and the typical motions encountered by
the  trackers.  Note  that  increasing  the  mounting  height  of  the  camera  does  not
improve the relative accuracies as the actual distance between the trackers remains
the same.

As noted in chapter 5, although small, the quality of the image degrades as they
near the outer edge of the viewing area due to warping. Since the distance between
the trackers is quite small  in comparison to the typical  distance to the center of
curvature, even a slight mismatch in the scales can result in a large deviation of the
motion measurement. The cropping approach introduced earlier reduces the effect of
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7.1.2 Single camera

the warping, but limits the available positions for the trackers to be used.

Another critical issue to consider is the importance of synchronisation between the
multiple trackers. When using a single camera, it is  quite simple to obtain a frame
where all of the intensity measurements were taken at the same  time. This can be
done by controlling the exposure time and removing any inter-frame interpolations,
which can delay the transmission and cause portions of the image to be out of sync
with other parts of the image. This sampling problem is typically taken care of by the
camera  and the driver to produces a well  synchronised  image. However, the  same
capturing time does not mean the exact amount of motion will be registered due to
the discrete amount of motion that can be measured.

Since the combined motion of the trackers is used to determine the overall motion
of  the robot,  the difference can contribute to  large  drifts  between the actual  and
measured  motion.  This  problem  is  targeted  by  the  sub-pixel  motion  tracker
introduced  in  chapter  6,  but  the  previous  analysis  did  not  consider  the  timing
difference between the detected motions of the trackers.

On a related note, the timing difference experienced between the sending of the
motor commands, the motors carrying out the motion, and the registration of the
motion with the sensors,  does not  affect  the precision of the current  localisation
algorithm. Since the delay only causes a mismatch to the information from other
modules, such as the path planning or mapping modules, where the information must
be time stamped for appropriate integration with other sensor data, this issue can be
ignored  within  the  localisation  module  and  dealt  with  at  a  later  stage.  If  an
implementation of the localisation algorithm does require timing based information,
such  as  a  more  precise  velocity  or  acceleration  model,  this  latency  must  be
considered  using  techniques  such  as  clock  synchronization  with  time stamps  on
every event.

Due to the motion constraints enforced by the wheel configuration, each portion
of  the  robot  will  experience  different  types  of  ground  texture  motion.  This
information can be used to select an appropriate location of the camera. As noted
earlier, the precision can be made higher by increasing the distance away from the
center of curvature. Since the center of curvature lies on a line connecting the two
wheels for a differential drive system, placing the camera at the outer perimeters of
the robot yields the most attractive tracker.

By  placing  the  tracker  onto  the  sides  of  the  robot, they  will  experience  a
longitudinally dominant motion, even when the robot rotates. This means that the
subtle  latitudinal  motions  must  be  accurately  registered  to  differentiate  between
rotation and displacement. Trackers placed at the front or the back of the robot will
register  distinctively  different  motions  during  rotation  and  displacement,  thus
simplifying  the  process  when  distinguishing between the  two.  Another  possible
location is somewhere between the longitudinal and latitudinal extremes of the robot.
This will allow a mixture of motions, but since the majority of the motion will cause
a combination of motion in the two axes; this can create more ambiguity due to a
more jagged motion and interpolations in both axes. Figure 7.2 shows the various
mounting location of the camera, as well as the motion vectors that are likely to be
encountered for the corresponding wheel motion.
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7.1.2 Single camera

Figure 7.2: Camera mounting position and the motion vectors when rotation and
translation occur.

The camera locations are shown as the olive rectangles, while the
wheel motion and the corresponding observed motions are shown
as colour coded arrows.

When deciding on where to  place a  component  onto a  robot,  many practical
considerations must be made. For example, although placing the camera at the front
of  the  robot  can  allow the  robot  to  foresee  hazardous  ground  up  ahead,  it  can
potentially  cause damage to  the device if  it  accidentally collides with  obstacles.
Depending on the design of the robot chassis, it may be possible to place the camera
within  the  body,  thus  protecting  it  from potential  collision  related  hazards.  The
chassis of the mobile robot used does allow for a camera to be mounted inside, where
it  can  look through a small  gap towards the back of the robot,  but  required the
camera to be mounted quite close to the ground to avoid portions of the chassis
obstructing the view. This meant that the speed of the robot was severely limited and
also required a camera with a small minimum focal distance. Placing the camera at
the back of the robot provides the same range of motion as the front of the robot
while greatly reducing the possibility of collision, as the majority of the motions are
in  the  forward  direction.  Figure  7.3  below  shows  photographs  of  the  cameras
mounted  on  the  robot.  The  internally  placed  camera  is  provided  with  a  natural
shielding, while the side camera mount provides a wider viewing area by stabilising
the camera with adhesives.

Figure 7.3: Webcams placed within and on the side of the robot.
Left image shows the eyeball camera just behind the battery, while
the  right  image  shows  the  configuration  of  the  side mounted
camera.
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One of the downside that was discovered in placing the camera at the back of the
robot was that the search area for the feature had to be increased. Although this may
seem like a small  increase in  the overall  scheme of things,  it  also increases the
likelihood of detecting a false feature due to the repetitive patterns.

The benefits of  being able to distinctively determine the difference between a
translation and a rotation is quite significant, as these two types of motions form the
majority of the robot's traversal, the other being elevation, which is disallowed in the
environment. Since the camera mounted on the side is only able to distinguish the
difference using a small variation in the sidewards direction, the approach falsely
identifies a significant amount of rotation as translation motion and vice versa. As the
results in table 7.1 show, neither of the approaches resulted in anything feasible due
to the lack of distinctive behaviour between the trackers within the single camera.
The accuracy of the camera being placed at the back of the robot was exceptionally
bad due to the slight latitudinal motions that were observed. The experiment was
carried out with the two trackers placed at the extreme ends of the image after the
cropping.

Table 7.1: Accuracy of single camera tracking.

Position Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Side 2.05 1.9 69.2 81.53

Back 53.16 55.53 62.43 0.89

7.1.3 Multiple cameras

An alternate approach to the above is to consider the use of multiple cameras to
increase the possible arrangement of the trackers. This can increase the precision in
deriving the center of curvature, as the motions that are detected can be made more
distinctive. The extra camera must consider the issues described earlier, as well as
several others including simultaneous access to the two devices which can possibly
look identical to the media library accessing the camera, characteristic differences
between the camera, the extra processing load, synchronization of the frames being
captured, and the secondary location to place the camera.

Depending on the library being used to access the devices, the simultaneous use of
webcams can be prohibited, such as with the Java Media Frame library and Video for
Windows. Therefore, it is important to develop the application using an appropriate
language and library to make use of the extra sensor. The current implementation has
been ported over to C++, and makes use of the DirectShow library which allows
simultaneous access to multiple devices of the same type.

Although  the  two  cameras  may be  identical  models,  the  subtle  characteristic
differences, including the lens quality, the responsiveness of the photo-sensors, and
the noise ratio, can cause variations to the captured image. When the captured data is
mapped to the same representation, it  is important to apply filters, usually at  the
software level, to reduce these inconsistencies. This requires calibration processes to
identify the camera characteristics, such as those introduced in chapter 5, and inter-
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camera consistency measures by observing the same object  features to  note any
differences in the captured frames. Due to the aliasing effects, this process must be
carried out by taking multiple snapshots of the same feature from slightly different
positions  and  comparing  all  pairs  to  find  the  best  positional  correlation.  Slight
variation in the adjustable characteristics like the mount height, exposure time and
colour adjustments can all lead to similar problems, thus should be properly noted.

Issues with the processing load are one of the key deciding factor in making use of
extra  sensors  or  devices.  If  the  sensors  were  allocated  dedicated  processors  for
handling the non-shared data,  it  is  possible to  utilise the extra information quite
efficiently. However, since the processing of the webcam images are done on the
shared processor on board the laptop computer, this causes a significant increase in
the load and potentially slows down the other modules of the system. The change in
the  processing  time can  be  seen  in  table  7.2.  Note  that  these values  should  be
observed proportionally,  as  the conditions  between this  experiment  and those in
earlier  chapters  are  not  exactly the same.  Choosing the appropriate  settings and
algorithms becomes even more crucial and requires some sacrifices to be made, such
as the reliability or the reduction of the search area for the tracker by limiting the
operational speed of the robot.

Table 7.2: Time consumption using one and two cameras.

Task One (ms) Two (ms)

Initialisation 5.03 9.79

Frame capture 0.17 0.32

Execution 0.12 0.13

A  related  issue  to  the  registration  timing  of  the  motions  is  the  precise
synchronization of the two frames that are used before they are combined as one
motion.  Since the capturing  occurs independently  at the actual  devices,  the  two
images can capture the scene at slightly different times. The rate of the capturing
typically remains fixed, but can be shifted depending on the devices and processing
load at the driver level. A simple approach at determining the capture time difference
can be implemented by capturing the frames when a sudden change is applied to both
the cameras and monitoring the difference. One way to implement this is to use a
bright light source, where switching the light on and off in a dark room will cause
instantaneous change to both observers. When doing so, it is important to set the
exposure time to low and the frame rate as high as possible and to note any delays
caused by extra filters that are active on the cameras. For example, when using a
colour balancing filter, the images can be delayed as they buffer the adjacent frames
to shift the captured intensity values.

Inconsistent  intervals in the capture time is a much more difficult  attribute to
identify, as it requires regular calibration phases to detect and adjust the access times
of the frames. This can sometimes be achieved by using a precise and synchronized
clock together with interpolation. This can be provided by external light sources,
such  as  the  flickering  of  the  ambient  light,  which  can  be  used  to  calibrate  the
capturing intervals.  However,  dependency on these external  calibration regulators
simply passes on the responsibility of precisely keeping the time to another system
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and also introduces some overheads in making use of the other system.

After numerous test runs to determine the timing difference between capturing of
the  images,  it  was  noted  that  the  capture  times  of  both  cameras  were
indistinguishable. Although the test was not comprehensive to say it never occurs,
early  results  showed  that  the  focus  should  be  placed  on  other  portions  of  the
algorithm and avoid the overhead of detecting unlikely events.

When deciding on where to mount the cameras, it is vital to take advantage of
being able to increase the distance between the trackers. Since the risk of placing the
camera at the front of the robot remains the same and the problem of jagged motion
still  exists  in  placing  the  cameras  that  are  not  aligned  with  the  longitudinal  or
latitudinal axes, these are once again ignored. By placing the cameras at the back and
the side of the robot, the back camera is still able to distinguish the different types of
motion, but allows the camera mounted on the side to support the measurement. It is
also possible to allocate each camera a designated axes to focus on, such that the
back camera is used to identify rotation first,  followed by translation by the side
camera if a rotation was not detected.

The initial problem with placing the camera on the side was that it was unable to
distinguish  the  difference  between  translational  and  rotational  motion.  However,
using the second camera allows simple disambiguation of the two types of motion by
placing the camera on the either  side of  the robot. The combination of  the two
motions can be thought of as the equivalent to closed-loop version of using the wheel
motions. When the two trackers support each other's motion, the robot motion can be
said to be a translational motion, while if they conflict with each other, the robot has
undergone a rotation.

As the motions compliment each other, it is important for each tracker to correctly
and precisely measure the motion. This means the approach may require additional
strategies to improve its reliability, possibly by utilising multiple trackers within each
camera to allow error corrections to occur before the motion is combined with the
other camera.

The  two  camera  positions  discussed  above  still  showed  unattractive  results,
especially in the rotational tests. The configuration with the camera set up at the back
of  the robot  showed occasional  signs of  erroneous tracking,  possibly due to  the
increased viewing area as the shape of the radial scan pattern had to be enlarged.
Using  the  approach  of  dedicated  motion  checking  for each  of  the  cameras,  the
latitudinal  motions  that  were  detected  by the back  camera triggered  a  rotational
motion to be detected, but also did not display a desirable algorithm. This approach
also severely limited the types of motions possible by the robot as it assumes that the
center of curvature will always be exactly in the center of the robot. The results of
the  experiment,  which  was  conducted  in  the  same  way as  the  single  camera
approaches, are summarised in table 7.3.

The use of multiple cameras was not able to display attractive results, but showed
slight improvements in the consistency. During the experiments, it was noted that the
majority of errors were the result of mismatches in the motions that were detected by
the two trackers. This was especially problematic when rotation was being observed,
as the center  of  curvature that  were being derived often did  not  reflect  the true
motion of the robot.
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Table 7.3: Accuracy of multiple camera tracking.

Position Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Back-side 22.55 6.61 41.99 3.42

Back-side dedicated 36.84 8.34 32.68 5.28

Side-side 2.88 1.21 82.12 9.2

7.2 Smooth motion

Not being able to precisely register the motion at each tracker is a significantly
issue which must be addressed if the multiple trackers are to be merged together to
derive  the  robot  motion.  It  is  possible  to  eliminate  this  problem  under  certain
conditions, such as when the robot always moves a discrete distance or the camera
can be moved around precisely while  the robot  remains stationary. However, when
these camera motions cannot be controlled, the sub-pixel motions must be calculated
or guessed by using the available information about the type of motion the robot is
under.

7.2.1 Accumulation

As noted  in  the  single tracker  explanation,  the accumulation  of  the  sub-pixel
motions will eventually result in a full pixel motion. It was also noted that delays
between the robot motion and the registration of the robot were not a significant
issue within this module. Based on the two assumptions, it is possible to accumulate
the robot motions until  a certain condition is met, which is when the motions are
processed as a one large pose change. The motion can be applied in a single phase, or
split into the average motions then applied retrospectively. Although this allows the
majority of the sub-pixel motions to accumulate, there will still be some motion that
does not accumulate enough during the build up stage. The proportionality of this,
however, should be much less than those that do get accumulated depending on the
condition  that  is  used  to  trigger  the  batch  processing.  Before  the  appropriate
triggering condition can be determined, the characteristics of the algorithm and how
well  it fits  to  the environment  must  be considered. Figure 7.4 below shows the
motion vector accumulation algorithm, along with the pose differences it introduces.

Figure 7.4: Motion vector accumulation approaches.
The effect of merging multiple motion vectors before being applied
can be observed by the difference in the final pose.
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One of the key issues of the above approach is that the smaller motions that are
accumulated  are  compressed  and  thus  loses  their  individuality  as  well  as  any
sequence information.  The sequence  in which the motions are detected can play a
vital role, as the coordinate axes used can be misaligned with the actual pose of the
robot. The extreme case of this is where the motion vectors cancel each other out and
misses out on the crucial rotational changes. One way to reduce this is to specify a
triggering condition  so that  any large change to  the motion  direction to  the one
currently being accumulated will trigger the accumulated motion to be applied and
reset before the current motion is used.

The  simplest  implementation  for  motion  vector  accumulation  involves the
triggering condition being a counter,  where a fixed number of  measurements are
buffered before they are combined and emptied.  This will  allow the localisation
algorithm to stay reasonably up to date. However, as noted earlier, the approach also
requires an additional triggering condition to avoid the introduction of misalignment
errors.  By observing the current  trend in the motion,  such as using the previous
motion or the average of the motion currently stored in the buffer, the amount of
error  that  will  be introduced can be estimated  to  determine if  the  accumulation
should occur or not.

To remove this error further, the exact orientation of the motion vector must be
compared as well as reducing the motions capturing and application intervals, such
as by making sure that all motion vectors are consistent. Since this constraint can be
difficult  to achieve, the accumulation approach must allow for certain amount of
error  being  introduced.  One  reasonable  approach  consists  of  allowing  the
accumulation if the motion vector is in the same quadrant. This will avoid the case of
the motions cancelling each other out.

Since all of the trackers must be synchronised, the approach must enable access to
the other tracker's state of the accumulated motion vectors, as the emptying must
occur at the same time. It is possible to postpone the updates of the pose until all
trackers have applied some of the motions and modify the pose retrospectively, but
this causes issues when integrating with other modules if certain guarantees cannot
be made with regards to how long the other modules must wait.

The accumulation algorithm was first tested using various number of frames as
the threshold value to  trigger  the  emptying of  the buffered motion  vectors.  The
testing of this involved a slightly different process to before, where the robot was
moved without the use of the physical guides. This allowed the characteristics of the
approach to be measured in a realistic context to test the problematic areas of the
algorithm. Although the approach provided reasonable results when the guides were
used, the algorithm failed to register the subtle irregularities in the motions and was
unable to perform adequately under normal mode of operation, which is summarised
in table 7.4.

Instead of using just the simple counter as the threshold for emptying the buffer,
the change in the motion vector orientation was also introduced to trigger the buffer
being emptied.  Defining the valid range of angles to allow accumulation can be
difficult, as the changes in the orientation lead to differences to the actual motion. To
simplify the condition, the accumulation was allowed if the direction did not cross
the borders of the quadrant. To allow for a slower rotation, pure forward or backward
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transitions were flagged as neutral and did not trigger the emptying of the buffer.
Using just  the above condition to empty the buffer  could potentially result  with
extremely large number of motions being condensed into one if the robot continues
to move in one direction. To maintain the regular emptying of the buffer, a count
based threshold was used in combination. The results of the three approaches and the
algorithm for distributing the accumulated motions with a buffer size of 8 can be
seen in table 7.5.

Table 7.4: Effect of accumulating the motion vectors.

Buffer size Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

4 3.21 0.58 11.43 1.22

8 4.1 0.59 10.66 0.87

16 3.57 0.3 13 2.76

32 3.83 0.29 10.9 5.2

Table 7.5: Various trigger conditions and distribution algorithm for the accumulated
motion.

Trigger condition Distribution Translation (%) Rotatio n (%)

Forward Backward Clockwise Anti-clockwise

Quadrant only One 3.71 0.95 12.51 0.72

Quadrant + neutral One 4.22 0.68 12.6 0.81

Quadrant + neutral + buffer One 3.5 0.44 11.38 0.65

Average 5.67 0.91 9.28 0.58

Note that in both experiments, the large improvement in the precision, especially
those of rotation, is the result of applying a differential motion model, which will be
explained in detail later on. The change was necessary to note the behaviour of this
approach with  a  more  precision  error  tolerant  model,  as  the dependency on  the
motion vector direction was often too great for the exact motion models.

7.2.2 Window

An alternate approach to the batch processing of the motion is to make use of a
sliding window to  interpolate  the registered  motions and apply  a  portion  of  the
motion at each cycle. Unlike the earlier approach, this allows for a much quicker
response time for the registering of the motion while still allowing it to influence to
subsequent motions as a way of simulating a smoother motion.  Using a uniform
weight in the window leads to a very similar effect to the buffering approach where
the average of the motion being used. By modifying this weight, such that the more
recent motions are weighted greater than older motions, the immediacy of the motion
registration can be modified to improve the response time. Figure 7.5 illustrates the
windowed approach, along with the weights for the entries in the window.
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Figure 7.5: Windowed interpolation of motion vectors.
The motion vectors from consecutive frames are weighted down
and combined to smooth the motions. Each square represents an
image frame, the rectangle represents the window, and the arrows
represent the motion vectors that were observed.

Similarly to the previous approach, the use of the window also suffers from delays
in the registration of the motion. The weighting is able to reduce this effect, but is
unable  to  completely  remove  this  without  a  reset  like  mechanism,  which  can
correctly approximate the current accumulation of the sub-pixel motions. A simple
example of this problem is when motion can be observed even after the robot has
stopped. Although the robot has moved that amount, the delay can appear unnatural
with incorrect time stamps for the pose and indicate motions that did not actually
occur.

As illustrated in figure 7.4, the more merging that occurs between the motion
vectors, the greater the difference in the rotational pose it registers. The misalignment
of the starting positions of the sub-motions being combined leads to an accumulation
of pose errors, which is dependant on the proportional split of the motion vector. This
is illustrated in figure 7.6 where the difference in the positions can be seen when
dividing the motion vector into two segments. M represents the proportional weight
used  to  split  the  motion,  x  and  y  represent  the  horizontal  and  vertical  motion
respectively, and ϴ represents the orientation of the motion. The graphs illustrate that
the errors are reduced when the proportion is increased for the first division.

Figure 7.6: Error in segmenting a motion vector.
Left  image shows the components  used in the derivation of  the
pose, while the right image shows a sample relationship between
the horizontal and vertical  error with respect to the proportional
weight. Note that the error for weight being 0 would actually be 0,
as no rotation would occur initially.

113



7.2.2 Window

By steeply decreasing the proportion being distributed across the multiple frames,
the accumulated error can be reduced. Using this approach assumes certain amount
of error will be introduced, as the merging of the motion vectors are required to cater
for the sub-pixel motion. The weights can be generated dynamically, or derived in
the pre-processing stage and stored in a lookup table. Figure 7.7 shows four weight
distribution functions that were considered for a window size of 4 where W is the
weight, i is the index, N is the window size, and F is the weight factor. The derivation
of the quadratic equation is shown below as an example.

∑ j=0
N−1 W j=1  (26)

W j=F.W j1  (27)

Equation 26 can be expanded to:

W1W2W3...WN=1  (28)

W1W1/FW1/F
2
...W1/F

N−1
=1  (29)

W1=F N−1
/∑

j=0

N−1

F j  (30)

Substituting equation 30 with equation 27 yields:

W i=F N−i
/∑

j=0

N−1

F j  (31)

Figure 7.7: Weight distribution functions for a window size of 4.
The left column is the name, middle column is the formula used to
derive the weight, while the right column visually illustrates the
weight distribution if N is 4.
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Although the windowed approach involves a slight increase to the processing load
to calculate the weighted motion at each frame, the benefits of using this approach
include the faster registration of motions and the improvements in the accuracy due
to a more consistent motion being modelled. The summary of the results for the four
weight functions and several window and weight factor sizes can be seen in table 7.6.

Table 7.6: Windowed motion with various weight distributions and sizes.

Distribution Factor Size Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Constant 1 4 3.1 0.86 10.87 1.37

8 3.98 0.88 11.65 1.08

Quadratic 2 4 5.23 1.03 12.2 2.01

8 4.8 0.89 11.9 1.34

16 4.91 0.91 12.42 1.27

4 4 2.88 0.78 9.72 0.97

8 2.91 0.87 9.84 0.89

16 3.01 0.8 11.21 1.14

Normal 0.5 4 2.94 0.89 10.02 0.98

8 2.91 0.79 8.78 1.03

2 4 37.65 1.31 64.84 12.73

8 24.36 1.16 43.64 9.05

Shifted 4 4 2.95 0.92 10.87 0.88

As  the  behaviour  of  the  linear  distribution  is  very similar  to  that  of  the
accumulation approach, it showed little difference in the performance. Note that the
sum  of  the  distribution  does  not  equal  1  when  using the  normal  distribution
algorithm. This can be seen especially for the higher factor, as the motions often
ended up being short  of  the actual  amount.  Increasing the window size allowed
closer representation of the full value, but the effects could only be observed with a
large factor which did not improve the accuracy. The lower factored implementations
showed attractive results due to the sharp drop-off which lead to very small amounts
of merging between the frames. The quadratic approaches also showed improvement
in the accuracy, especially with the higher factor. The effects of using a larger sized
window did not show much of an effect when the factors were set larger, except for
the  latency  issue  described  earlier.  The  difference between  the  shifted  and  the
quadratic  distribution  were  not  significant,  but  allow  the  anticipation  of  the
subsequent motion to improve the transition of the motion. The small decrease in the
responsiveness is not a critical issue, but the approach can potentially be problematic
if too much smoothing occurs from an incorrect factor size.
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7.3 Motion model

When converting from the tracker motions to the robot motion, various models
can be applied to combine and determine the translation and rotation undergone by
the robot. Since the fundamental base for local localisation is to precisely measure
the instantaneous pose changes, the models being used must accurately portray the
actual  motion  the  robot  has  undertaken.  This  process  typically  involves  the
classification of the motion to be either pure translational or rotational motion, which
leads to the derivation of the rotational pivot point, called the ICC. This approach
allows any rotational motion to be simplified to a point and an angle, which can then
be applied to the robot for that frame. One of the requirements to use this approach is
a very fast frame rate, as all the motions between the frames are compressed into a
single motion representation. As well as the camera having a high frame rate, the
heavy and rigid body of the robot and the controlled set of contact points to the
ground also assist in maintaining a consistent and smooth motion occurring between
the frames.

Depending on the assumptions made for that frame along with the model being
used, various constraints are placed on the robot motion and the type of errors that
will be introduced. This is due to the non-continuous motion that is captured by the
tracker,  as well  as  any approximations made by smoothing algorithm introduced
earlier. This often causes theoretically designed models to behave erratically, thus
factors such as the robot's wheel configurations and typical motions it expects must
be integrated with the sensor inputs for use in determining the motion.

7.3.1 Exact motion

Assuming that the motions measured by the trackers are precise and consistent
throughout the frame captures, the center of curvature can be derived by identifying
the line of possible location of the point for each of the trackers, then identifying the
intersection  point  of  the  lines.  The  line  itself  can  be  derived  by  extending  a
perpendicular line from the midpoint of the motion vector, since the whole motion is
assumed to be consistent and the symmetry constrains the motion. Using the derived
point and the distance to the tracker location, the rotational angle can be determined.
A special case is triggered when the two lines are parallel, which signifies a pure
translational motion. Figure 7.8 below illustrates this concept. ϴ represents the angle
between the starting and ending location of the feature centered around the ICC.

Figure 7.8: Exact motion model.
The  precise  motion  detected  by  the  tracker  can  be  used  to
determine the ICC and the rotational angle. The arrows indicate the
tracker motions.
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The derivation of the pivot position for the exact motion model requires a number
of steps using the starting and final positions of both trackers, starting with the line
equation for the possible location of the pivot:

Slope = (Yend – Ystart) / (Xend – Xstart) (32)

Slopeperpendicular = – 1 / Slope (33)

Intercept = ((Yend + Ystart) – Slopeperpendicular (Xend + Xstart)) / 2 (34)
Where Xstart, Ystart, Xend, and Yend represent the x and y positions of the initial and

final tracker locations. The lines for the two trackers can be combined together to
determine the center of curvature:

Slopea * X pivot + Intercepta = Slopeb * X pivot + Interceptb (35)

Xpivot = (Interceptb – Intercepta) / (Slopea – Slopeb) (36)

Ypivot = Slopea * X pivot + Intercepta (37)
Where a and b represent each of the trackers. The derivation of the rotational

angle can then be carried out:

Radius = √((Xend – Xpivot)2 + (Yend – Ypivot)2) (38)

sin(Ө / 2) = √(((Xend – Xstart)2 + (Yend – Ystart)2) / (2 * Radius)) (39)

Ө = 2 * sin-1(√(((Xend – Xstart)2 + (Yend – Ystart)2) / (2 * Radius))) (40)
At this point, it is easy to see the inconsistencies that can be found, as the angles

that are detected for  the trackers may differ between each of the trackers.  Since
multiple parameters are known from the tracker motions, any excess attributes can be
used as part of error detection and correction process which will be discussed later.

Although models that can derive the exact position of the pivot are often used in
simulations, these approaches do not always translate well under realistic conditions,
especially when the motions are measured with a finite precision and granularity. To
reduce  the  errors,  more  sensors  can  be  introduced  to  model  the  states  of  the
environment and the robot, the precision of the sensors can be increased, or different
motion models can be made use of to note any inconsistencies.

Although the performance of the tracking algorithm was quite reasonable when
only  considering  the  single  dimension,  the  synchronisation  and  precision
requirements for 2D motion meant that the motion vectors being combined often
misrepresented the actual motion and resulted in an incorrect  center of  curvature
being used.

7.3.2 Differential motion

Another model that is commonly used in simulations is a constraint based motion
model, where the characteristic of the components that causes the robot to move is
assumed to dictate all of the motion of the robot. This model is often used to model
the forward and inverse kinematics to measure and anticipate the robot motion. The
model simplifies the robot motion by disallowing any irregular motions,  such as
external  forces,  and  assuming  perfect  and  consistent  behaviour  of  the  moving
components. For a differential drive system, the forward and backwards motions of
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the two wheels are used to derive the center of curvature which has been constrained
to a line joining the rotational axes of the wheels. Using the proportional motion of
the two wheels and the placement of the wheels, the rotational point and the angle
can be determined. Figure 7.9 illustrates the components of the approach and the
derivation of the unknown parameters, where the blue arc represents the left wheel's
motion while the red arc represents the right wheel's motion. L and R represent the
motions  detected  by  the  left  and  right  tracker,  while  D  represents  the  distance
between the trackers.

Figure 7.9: Motion model for differential drive systems.
The proportionality in the left and right motion vectors are used to
derive the ICC and the angle of rotation.  The arrows indicate the
tracker motions.

The characteristics of this approach can be translated to the motions detected by
the trackers  when the cameras are mounted on the sides of the robot.  Since the
cameras provide feedback information about the robot motion, many of the problems
with dead reckoning can be avoided while allowing simple calculations to derive the
motion.

It is important for the tracker to be placed precisely, as the configuration of the
camera with respect to the robot motion plays a significant role in the accuracy of the
approach. This means that the trackers should be placed where they form symmetry
along the rotational  axes of  the  wheels.  As the actual  position can vary slightly
depending  on  the  surface  and  the  wheels,  the  algorithm  must  assume  certain
constraints and expect certain levels of inaccuracies.

The placement of the viewing window for the feature was chosen to be slightly
ahead of the rotational axis, as the majority of the robot motion would be in the
forward direction, and does not allow dynamic adaptation to reduce the complexity
and the false predictions. Due to the fast frame rate, the motions of the feature should
remain quite small, thus any adaptive behaviour will have little benefit to the overall
precision.  Even if  an algorithm was able to  determine the ideal  location for  the
tracker, the uniqueness of the ground texture below will modify the position of the
tracker to improve the feature tracking process.

The inaccuracies in the measurements lead to selecting the incorrect position for
the  center  of  curvature,  but  the  constraints  placed by  the  model  restricts  the
placement of the rotational point, thus forces a much smoother motion. However, if
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the assumptions made by the model is invalidated, such as when the robot slips, the
model will force the irregular motion to be mapped to the constrained motion, thus
will register an incorrect motion. Although the inherent error tolerance is welcomed
when the reduced precision in the measurement does not allow the correct motion to
be  captured;  the  severe  constraint  does  not  always  allow  realistic  motion  to  be
registered.

Depending on how the 2D tracker motion is made use of, different variations of
the  differential  motion  model  can  be  implemented.  The  first  of  these  models
combines the longitudinal and latitudinal motions as the arc length, thus allows for a
simple  translation  to  the  original  approach.  It  is  possible  to  combine  the  two
displacement values as an angled motion, or a simple addition of the magnitudes. An
alternate model is to assume that the longitudinal motions are simply the by-product
of the rotation, and only the latitudinal motion is used to determine the motion of the
tracker. The results of these models can be seen in table 7.7, where no smoothing
algorithms were used.

Table 7.7: Accuracy of differential motion models.

Tracker motion Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Arc length 3.21 2.93 13.56 3.22

Latitude + Longitude 11.32 5.31 29.66 5.82

Longitude 2.93 1.31 10.2 1.31

As  the  above  shows,  the  use  of  just  the  longitude  allowed  for  much  more
attractive results where the subtle latitudinal motions are ignored. The stability of the
robot in typical operating surfaces means the approach is an attractive alternative to
the exact motion model if motions by external forces do not apply.

7.3.3 Hybrid motion

To overcome the weaknesses of the two models above, a hybrid motion model is
introduced to determine and switch between the appropriate model to suit the motion
detected by the tracker. This requires the detailed analysis of the motion behaviour of
the robot in operation.

The  constraint  based  approach  provides  a  reasonably accurate  model  for  the
majority of the robot's motion when under normal operation. Using this as the basis,
the situations where the robot performs an irregular motion can be detected and used
to trigger an alternate motion model. Since the tracker is capable of tracking motion
in multiple axes, the proportionality between the motions in each axis can be used.

Under the assumption that the wheels are the sole provider of the motion, any
sideward motion will be accompanied by a larger forward or backwards motion. The
proportionality between the two depends on the motion measured by the trackers, as
well as the distance between them. With the tracker placed to form symmetry around
the rotational  axis,  the  latitudinal motion will  be maximised halfway during the
motion and cancels out by the time the motion is registered. To remove this effect of
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latitudinal motion cancellation, the tracker must be placed such that it does not cross
the rotational axis. This meant that the starting position for the tracker  has to be
placed on  or away from the rotational axis  and  to allow  the motion away from it.
Since the maximum displacement of the tracker with respect to the rotational axis
depends on many external factors, using a pre-empted tracker motion to position the
starting location is a difficult  problem. The initial  tracker location is thus simply
placed directly on the wheel's rotational axis, such that any natural motion will cause
the tracker to move away from the axis.

To determine the maximum displacement, the slope of the function can be used.
This indicates that the latitudinal motion is increased as the longitudinal motion is
increased because of the high frame rate, which restricts the maximum rotation that
can be observed. When two tracker motions are involved, the interaction between
them must be considered. Figure 7.10 illustrates the latitudinal motion for various
longitudinal motion pairs.

Figure 7.10: Latitudinal motion from two tracker motions.
The relationship between the latitudinal motion given the left and
right wheel motion.

The figure above clearly shows that the maximum latitudinal motion occurs when
both sides travel at the maximum speed in opposite directions. Although it is possible
to  derive  the  exact  expected  latitudinal  motion  values  for  a  given  longitudinal
motion,  the  granularity  and  errors  in  the  measurements  often  leads  to  slight
inconsistencies between the two directions. The effect of this is reduced from the
smoothing of the motions introduced above, but is not reliable enough to confidently
say that the proportional motion becomes accurate. Instead, a simple lookup table
can be used to determine the expected value, which includes an error tolerance value
to assist in determining the correct proportionality. As the current implementation
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limits the maximum longitudinal motion to be 10 pixels in either direction, the table
is given a capacity of 100 entries, where each entry is mapped to a 2 by 2 pixel
interval.

Based on  the fitting with the table entries,  an alternate motion model  can be
triggered to process the irregular motion. This type of motion is unlikely to occur as
part of a continuous motion due to the friction caused by the wheels, but instead, be
the result of small bumps or slips the robot may experience. Although the tracker is
reliable during normal operation, sudden and irregular motions can throw off the
predictions, blur the image, and invalidate some assumptions with regards to the
allowed motions. This means that the use of the exact motion model is more likely to
make use of inaccurate tracker motions, which can introduce large amounts of errors
to the pose.

Instead of modelling the motion as a rotation, it is possible to simplify the motion
as a pure translational motion involving the averaging of the two motion vectors that
are detected. The validity of this approach depends greatly on the similarity of the
detected motion vectors and the likelihood of this type of motion occurring within
the environment.  As well as the likely causes mentioned above,  the current set of
sensors and the  operational  environment  allows for slightly  easier recovery from
angular errors than displacement errors as the camera sensors can provide a higher
precision than the range finders when used to determine the relationship against the
environment.

The testing of the hybrid motion was quite difficult to compare with the other
tests, since it had to test for the accurate registration of irregular motions. Instead of
artificially constructing an experiment that just involved the irregular motions, the
test involved the same configuration as the previous test to compare their overall
performance against earlier implementations. The results of the tests can be seen in
table 7.8.

Table 7.8: Accuracy of the hybrid motion model.

Hybrid motion Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Differential + exact 2.98 1.83 16.42 6.9

Differential + translation 2.44 1.18 5.32 0.93

The experiment showed that the use of the exact motion model did not allow the
accurate portrayal of rotational motions due to the greater possibility in the center of
curvature, as well as the dependency on synchronising the motions detected between
the two trackers. The switching of the model to a translation model allowed for a
much more precise localisation algorithm, simply by specifying a threshold value to
distinguish the different types of motion. Although this is dependant on the surface
types and the types of motions to be encountered by the robot, it shows promising
results in providing the local pose.

As a final comparison, three motion models are compared using the windowed
smoothing algorithm with a quadratic function of factor 4 and size of 4. This is
summarised in table 7.9.
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Table 7.9: Motion model precision using smoothing.

Motion model Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Exact 2.88 1.21 88.12 9.2

Differential 2.88 0.78 9.72 0.97

Hybrid motion 1.95 0.41 2.32 0.53

7.4 Error handling

To help prevent the localisation algorithm from including erroneous information,
the motions that are detected must be analysed and adjusted before being applied to
the  pose.  This  process  consists  of  two main  components;  the  detection  and  the
correction  of  errors.  The  approaches  that  are  investigated  are  based  on  local
information rather  than  the  long termed global  error  reduction,  which allows the
motions to be analysed quickly to reduce the cascading effect the error may cause. It
also decouples the issue to just the localisation module, but can allow separate error
correction processes later on by a different module.

7.4.1 Detection

As  noted  earlier,  the  detection  of  errors  can  occur at  various  stages  when
analysing  the  tracker  measurements.  They are  often  determined  by  comparisons
against known constraints and domain knowledge to flag suspicious measurements.
It is also important to note the difference between an error which can potentially do
significant  harm  and  those  that  are  uncontrollable  as  they  are  inherent  in  the
approaches or the devices used.

The use of the exact motion model allowed for some extra parameters to solve for
the center of curvature. It  is possible to derive the pivot position using the other
parameters using alternate sets of equations, which can then be used to compare the
consistency. Due to the precision in the tracker measurements, there will be small
amounts  of  differences  which  will  have  to  be  distinguished amongst  larger
inconsistencies. The two simple checks that can be made are the angular differences
detected from the pivot point and the consistency in the distance between the tracker
positions. Since the robot and the camera remains rigid, the distance between the
starting positions and the final position where the features were tracked to should
remain the same.

Knowing the precision limitations of the trackers, it is possible to derive a region
for where the center of curvature may reside. Given that the sub-pixel motion may
not be registered, the tracker measurements may be, at most, 1 pixel different to the
actual  motion.  With  the  potential  pivot  positions  established,  the  motion can be
validated against expected motions with more leniency than against a single value.
By adding the tolerance adjustments to the final positions, the range of positions for
the x and y values can be determined.
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Slope = – (Xend + Xtolerance – Xstart) / (Yend + Ytolerance – Ystart) (41)

Intercept = ((Yend + Ytolerance + Ystart) – Slope * (Xend + Xtolerance + Xstart)) / 2 (42)
Similarly, the adjusted positions for the constrained motion can be derived.

Distance = Dtracker * (DR + Rtolerance) / ((DL + Ltolerance) – (DR + Rtolerance)) (43)
where Xstart, Xend, Ystart and Yend refers to the start and end position for X and Y

coordinate points, Xtolerance, Ytolerance, Rtolerance and Ltolerance refers to the variations allowed
in the position and measurements, Dtracker is the distance between the trackers, while
DR and DL represent the longitudinal motions detected by the right and left trackers.
Note that the difference in the slopes of the lines used to find the center of curvature
has a significant  impact  on the range of  possible locations,  thus  the  benefits of
identifying a region for acceptable pivot positions can be very limited, especially
when the robot does not rotate.

Another way to check for errors using a threshold value is at the tracker level,
where the correlation score can be used to determine whether the match meets the
expected  score. Since the correlation scores are dependant on the  type of  ground
textures, it is important to modify the threshold to suit the environment. This can be
implemented by techniques such as monitoring the ground textures or maintaining
the recent correlation scores to observe the trends in the scores.

Although the above approach may have potential, there is no guarantee that the
expected score appropriate for the current ground texture. This meant any fluctuation
in  the scores,  such as  when sub-pixel  motions  occur,  would flag the motion as
erroneous and would frequently require a separate validation algorithm.

7.4.1.1 Redundancy

The error  detection based on constraints  and domain knowledge can be quite
effective  at  times,  but  it  also  means  a  portion  of  the  measurement's  range  is
consumed  by  sentinel  values.  Another  limitation  of  the  approach  is  that  the
effectiveness of the error detection depends greatly on adhering to the constraints,
which cannot always be guaranteed, and also in knowing the domain beforehand. A
commonly used work around for this is to make use of redundant measurements
which can be used to measure the consistency for both the detection and correction
of errors.

Since the tracker is implemented in software, introducing more trackers does not
require  significant  changes  as  most  of  the  issues,  such  as  synchronisation,
consistency and placement, have already been considered. The decision in selecting
the location is determined by what type of information is required. As mentioned
earlier, the more distant the tracker is to the others, the more unique the detected
motions  are,  thus  a  decision  must  be  made  between  implementing  a  more
independent tracker or simply providing a backup for the existing tracker. Using a
dedicated backup for an existing tracker can simplify its purpose by focusing on
consistency thus can be implemented more efficiently than an implementation with
extra independent trackers.  Table 7.10 shows the extra processing time consumed
from introducing one or two more trackers for a single camera. Note that this only
considers the tracking of the features and do not implement any other algorithms that
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may be used to remove the errors.

Table 7.10: Processing time for extra trackers.

Trackers Initialisation (ms) Tracking (ms)

2 0.11 0.07

3 0.2 0.16

Due to the sophisticated algorithms that are implemented for the tracker, each
additional tracker increases the overall processing load by a significant amount. This
increase can potentially cause delays in the other timing crucial processes, perhaps
even delaying the capturing of the next  frame and causing a whole frame to be
skipped. This can have disastrous effect on the localisation algorithm, as the incorrect
tracking  effects  the  feedback  information  used  to  anticipate  future  motions.  To
reduce  the  overheads  in  using  the  extra  trackers,  techniques  such  as  sharing  of
common or similar attributes between trackers and triggering the extra tracker on
demand could also be considered.

7.4.2 Recovery

The second part to the error reduction process is the correction of  the detected
errors.  This  phase  involves  the  use  of  various  approaches  and  the  available
information to reconstruct the intended measurements. The types of information that
can be used include the measurements from adjacent time frames, predictions from
trends and constraints, as well as measurements from the redundant trackers.

On some occasions, it may also be possible to use the erroneous measurement as a
guide  to  identify  the  cause  of  the  problem  to  adjust  the  recovery  process
appropriately.  Characteristics  such  as  a  sudden  decrease  in  the  overall  intensity
fluctuations,  which  is  likely  to  be  caused  by  motion  blur,  or  the  motion  being
reasonably consistent but was voted as being the outlier, which may be caused by the
precision  errors,  indicate  that  the  erroneous  measurement  does  not  need  to  be
discarded completely.

7.4.2.1 Merge

If  there are redundant measurements available, the information can be merged
together into a single value. This can be based on simple averaging or weighted
interpolation, depending on any confidence values that are available. This, of course,
requires that the values being used have been filtered to remove the erroneous values
and are reasonably similar to each other. It is important to consider the sources of the
information before being combined, as its origin determines how the value needs to
be converted before they can be combined.

The effects of merging adjacently placed trackers can be seen in table 7.11, which
showed some improvement in the accuracy for a translation, and reasonable results
for  rotation. This  is  likely  due  to  the  infrequent  occurrence  of  erroneous
measurements,  thus  introducing  more smoothing  to  the  motion  observed  by the
camera.
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Table 7.11: Merging of redundant tracker motions.

Trackers Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

2 1.96 0.56 2.98 0.73

3 1.77 0.21 3.43 0.9

Although  merging  the  motions  showed  attractive  results,  it  can  potentially
combine erroneous tracking in the absence of a filter  to remove the problematic
reading first. In this particular case, the redundant tracker was placed close to the
original tracker, thus the tracker motions did not require much alteration before they
were combined.

7.4.2.2 Eliminate

If the measurement is deemed erroneous and cannot be used to derive the intended
motion, the motion must be discarded and recovered by other means. Since many of
the recovery approaches make use of the historical measurements, it is desirable that
consecutive measurements are available and be accurate. Although this is difficult to
enforce, it is possible to flag the current localisation state as being unstable to inform
the other modules to make appropriate adjustments, such that measures can be taken
to  avoid  using the current  pose.  This  could  include slowing  the robot  down  or
reversing,  so  that  the  landmarks  can  be  observed  again  to  correct  the  pose
retrospectively.

Depending  on  the  consistency  of  motion  and  the  availability  of  historical
information, it may be possible to  predict the current  position.  Although the idea
seems  reasonable,  the  erroneous  measurement  is  typically  caused  by  irregular
motion, thus would not fit the anticipated motion pattern.  However, this approach
does give an instantaneous result if the pose is required immediately.

Combining the newly observed motion and the previously observed motion can
often allow for  a better  approximation of the motion in between.  This  approach
presumes that the measurements surrounding the erroneous one are valid and the
motion is smooth. If consecutive tracking are deemed erroneous, the predictions can
be further extended and retrospectively applied for a longer period.  This places a
greater  emphasis  on  the  presence  of  smooth  motions  and  the  accuracy  of  the
measurements,  but  may  be  necessary  due  to  the  slow  response  time  between
informing  the  other  modules  to  make  adjustments  to  reduce  the  error  causing
behaviour and in case the irregular motions, such as bumps, carry on for multiple
frames.  Table 7.12 summarises the accuracy of  implementing the prediction and
retrospective error correction approach.

Table 7.12: Accuracy of prediction and retrospective error correction.

Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Retrospective 5.44 1.3 13.31 6.91
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Although the motion of the robot seemed smooth and consistent,  the motions
being tracked often fluctuated, especially when rotations occurred. This meant the
inter-frame  motions  are  not  as  consistent,  as  confirmed  by  the  findings  in  the
precision algorithm in chapter 6.

A typical use of the redundant trackers is to implement a voting mechanism. The
tracker measurements can be compared to identify any inconsistent measurements,
which can then be flagged for subsequent error correction mechanism. In order to
implement a voting algorithm, there must be an odd number of measurements, or a
weighting attached to the measurements to allow disambiguation. However, if the
measurements are significantly different, such as with the case when the trackers are
placed far apart, the approach is less effective due to the increased range of plausible
motions and the wider variety in the tracking.

A very simple implementation of this is to introduce two more trackers for each of
the  original  trackers,  thus  allowing  a  local  voting mechanism  before  they  are
combined. Since the positions of the trackers must differ, it is important to place the
extra trackers appropriately, such that the motion characteristics can be calculated
easily. One strategy to achieve this is to place the three trackers along the same axis
as the wheel rotation and vary the distance measure to the center of the robot. The
voting algorithms that  were  implemented  compared the displacement  values  and
noted  the  outlier,  followed  by  either  the  selection of  the  median  value  or  the
averaging of the non-outlier motion vectors. The results of this can be seen in table
7.13. The hybrid motion model with the windowed smoothing algorithm, as per the
best performing algorithm was used for this experiment.

Table 7.13: Results of voting off outlier

Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Median 2.52 0.37 39.04 0.51

Average 2.42 0.27 46.93 0.38

An  interesting  observation  which  was  made  after  implementing  the voting
algorithm was that the type of motion contributed greatly to the performance of the
algorithm. It was able to remove the outlier tracker reading very effectively  when
errors were introduced, but the majority of the rotational motions were also deemed
erroneous.  The  subtle  changes  were  only  observed  after  they  had  accumulated
enough  sub-pixel motion,  which occurred at different times  between the trackers.
Instead of blindly removing the extreme values,  it would be beneficial to apply a
threshold value to correctly classify an erroneous reading before they are discarded.

7.5 Practical considerations

While  consideration  to  the  workings  of  the  localisation  algorithm  has  been
investigated in detail, several other important issues must be addressed concurrently
for the approach to be of practical use. Some of these issues are concerned with how
the algorithm is  affected  by the environment,  while some deal  with  the internal
configuration issues that may require adjustments.
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7.5.1 Motion

When transforming the sensor measurements to robot motion, it is important to
establish a well placed reference point for the coordinates. As briefly mentioned in
chapters 4 and  6, the information from the sensor must be mapped to a uniform
coordinate system to be shared by other  modules. The coordinate space joining the
multiple sensors is  typically set relative to the robot and does not  have a  strong
preference for a  unit  to be used. When the  robot's motion is mapped against  the
environment,  it  must  be  bound  to  a  certain  coordinate  system,  whether  it  be
something  the  observers  of  the  robot  can  understand or  practical  for internal
representation. For this reason, the coordinate system used by the robot typically uses
the observer's preference of units to reduce the conversions when the pose is viewed.

Defining the coordinate axes for the environment can be a difficult task, as the
robot can be  activated in an arbitrary position and there are rarely any indicators
which specify the  ideal  starting location. When the robot's pose is being combined
with external information, such as when data from multiple  activations are being
compiled  or  if  global  pose  indicators  such  as  a  compass  or  GPS  are used,  the
reference point becomes more crucial.  However, in terms of local localisation, the
coordinate axis can simply be placed at some arbitrary point, such as the starting
location and use the relative coordinate points from then on.

When using only the downwards pointing cameras, global localisation is a very
difficult  task to  achieve due to  the  lack  of  long term features.  Overcoming this
requires  the  use  of  the  other  sensors  to  help  disambiguate  between  the  similar
looking  locations,  or a distinguishable texture pattern to be present on the ground,
such as the change in the floor material or significant markings like stains or cracks.
This is investigated in more details in chapter 11.

Since  the  localisation  algorithm  is  highly  dependant  on  the  precision  of  the
calibration measurements, even the slightest deviations from the actual value causes
an accumulation of errors, which is difficult to correct in normal situations. This is
often because the robot does not back track the same path and the error in the scale is
accumulated. This can be seen from the inconsistency between the accuracies of the
forward and backwards values in the experiments.

To minimise this issue, the calibration and testing processes must be repeated
numerous times while being careful not to alter the placement of the cameras. This
process requires significant manual intervention, but is unavoidable without a secure
placement for the cameras or an automated calibration phase during the initialisation
of the robot.

Since this primarily causes scaling errors, it is also possible to counteract this by
maintaining the motion vectors in memory and applying the properly scaled version
if and when calibration data becomes available, possibly from long term landmarks
or external pose indicators. This allows the robot to avoid the initial set up time by
treating the measured motions as proportional values instead. Similarly, the robot can
be  encouraged  to  reverse  its  motions  instead  of  rotating  and  making  forward
traversals all the time. This will allow cancellation of scaling errors when the robot
returns to the original location.
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7.5.2 Surfaces

Since the texture of the floor during the experiment was fixed, the algorithm must
be validated on other surfaces the robot could encounter. The current configuration of
the robot assumes operation in indoor environments, but the tests also included some
surface types that were typically seen only outdoors.

The range of surfaces that were tested included those with different reflectivity,
regular  and  irregular  patterns,  as  well  as  different  levels  brightness.  To  avoid
damaging the robot, surfaces such as grass and sand were not conducted. The large
variance  in  the  height  would  not  have  met  the  pre-conditions  required  for  the
algorithm, so the results would have been very inconsistent. Measurements taken on
rough surfaces, like brick and concrete included minor adjustments to the robot  so
that  the balls used as caster  wheels were not  scratched.  This  involved placing a
plastic sheet under the caster wheels to roll on, which were away from the camera's
views and the  path of the  foam wheels. These meant some of the bumps it would
have  normally  encountered  were avoided,  but  since the robot  is  not  intended to
operate  on these types of surfaces, the validity of the visual odometry can still be
measured from the perspective of a different looking surface texture.

The testing procedures were kept as the same, where the robot would perform a
forward  and backwards  traversal  test,  followed  by a rotational  motion  test.  The
various  settings  on  the  robot,  such  as  the  camera  position,  lighting  and  tracker
parameters were kept consistent,  while the algorithm that was used was a hybrid
motion model with a windowed quadratic smoothing factor of 4, with the size also
being 4. As for the error correction algorithm, two trackers per camera were used to
allow merging if the longitudinal motions were within 2 pixels of each other. If there
were  inconsistencies  between  the  redundant  trackers,  the  tracker  with  the  better
correlation score was used. Table 7.14 summarises the results.

The performance of the visual odometry algorithm showed reasonable consistency
on many other surface types, including those with very little visible differences such
as the table top and tiled floors. The small bumps and grooves on these surfaces
provided the uniqueness to be able to distinguish them locally. The textures on the
vinyl floors consisted of many small marks, such as dirt and scratch  marks, which
allowed very distinctive features to be present.

The localisation on timber floors and rubber mats provided interesting results,
where the patterns were quite visible to humans, but  the tracking algorithm was
unable to distinguish them due to the difference in scales to what we recognise as
patterns to what the camera can see. The patterns that were present were too large
and repetitive, which caused issues with similar correlation scores being evaluated
for different features. A possible strategy to avoid these problems is to increases the
feature sizes dynamically based on the uniqueness scores of the ground textures, to
control the anticipated motion of the feature by slowing down the robot, or by using
a  camera  with  a  much  faster  capture  rate  such  that  the  repeated  pattern  is  not
observable within the search area.
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Table 7.14: Localisation accuracy on different surfaces.

Surface Sample Translation (%) Rotation (%)

Forward Backward Clockwise Anti-clockwise

Vinyl 1.87 0.29 2.83 0.58

Table 2.37 0.52 3.08 0.92

Timber 8.21 1.07 7.18 3.84

Rubber 17.3 0.28 18.71 6.17

Tile 1.94 0.2 2.96 0.86

Brick 1.7 0.42 3.21 1.6

Concrete 2.44 0.27 2.69 0.76

Overall,  the  proposed  localisation  algorithm performed  well  on  many of  the
typical textures that an indoor operating robot would encounter. However, operations
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on surfaces with large and repetitive textures must require adjustments to the feature
selection process to cater for the differences in the texture patterns.

7.5.3 Extended traversals

The  last  and  the  most  important test  conducted  was  the  performance of  the
approach over a long period of time. The algorithm was compared against manual
measurements  and  dead  reckoning  algorithms  over  a  traversal  around  the  lab
environment, with position measurements taken and motion commands being given
every 500 mm of motion.  Slight adjustments to the ideal motion was  necessary to
avoid  collisions  with the office furniture,  due to the  slight  inconsistencies in the
wheel motions, such as the dimensions and speed, which caused the robot to stray off
to one side. This is evident in the arced path taken by the robot, as seen  in figure
7.11.  Some of  the corrections were  over-applied  to allow the robot  to reach  the
desired  points  after  the  arced  motion  by  guessing  the  required  increase  to  the
rotation. The result of this experiment was averaged out over three runs.

Figure 7.11: Comparison of extended traversals.
The colour coded paths illustrates the dramatic improvement in the
localisation implementation using only local localisation.

The traversal covered a total distance of 26.5m, where the difference between the
encoder  based  localisation  and  the  proposed visual  odometry  technique  can  be
observed quite distinctively.  Although the errors  are accumulative,  the difference
between the actual motion and those observed by the localisation algorithm is quite
small,  making  it  an  effective  algorithm  to  be  implemented  for  local  pose
maintenance.  With  the  proposed algorithm,  it  is  possible  to  perform the  global
localisation more efficiently and less frequently, as the measurements do not stray
too much to avoid the corrections from unrealistic or ambiguous poses.
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7.6 Summary

The trackers  that  forms the foundation for the localisation algorithm performs
efficiently and effectively in registering translational motion, but is unable to detect
rotations due to the constraints placed by the configuration and the algorithm. The
translations that are detected by multiple trackers can instead be combined to identify
the robot's pose through the extra constraint introduced between the placements of
the trackers.

The  introduction  of  multiple  trackers  considers  additional  issues  to  correctly
synchronise the  multiple motion vectors and uses an appropriate motion model to
convert the tracker motion to robot motion. The placement of the extra trackers had
to consider the distance between each other to register distinct motions. This allowed
the narrowing of the possible motions due to  the imprecise  motions that  could be
observed  from the presence of  sub-pixel motions. Instead of being restricted to a
small viewing area, additional cameras are included to increase the flexibility in the
tracker locations. In doing so, different motion models are introduced which allowed
more control over how the tracker motions related to the robot motion.

To encourage  the  smooth  transition  in  the  motions  for  better  synchronisation
between  the  trackers,  various  algorithms  were  integrated  to  account  for  the
granularity in the motion. It  was found that using a window to view the previous
frames  with  a  strong  weight  to  the  more  recent  motion  allowed  for  improved
accuracy from the blending of the motion vectors.

To improve the effectiveness of the localisation algorithm, error detection and
correction  mechanisms  were  also  incorporated  into  the  algorithm.  The  use  of
threshold values and redundant trackers allowed for some improvement in the overall
accuracy, but issues with resource usage must be addressed to note the overall gain in
the accuracy if an alternate error correction approach becomes available.

With the visual odometry technique implemented and tested for applicability for
the mobile robot, a reliable local pose has been made available for the other modules.
The proposed technique minimised the dependency with other modules, thus can be
improved quite easily with additional sensors and algorithms developed in the future.
This will include an algorithm to map the local pose to a global pose.
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Section 3 – Mapping

“The derivation of a useful map requires both direct
and indirect sensory information thus requires a

rapid cycle of refinement.”

The second half of the SLAM paradigm focuses on the generation and usage of
the  environmental  map,  which  comprises  of  a  virtual representation  of  the
environment  that  links  to  the  physical  world.  This  allows  the  grounding  of the
localisation  procedure as  it  assists  with  the  global  localisation  problem  (Olson,
2000), as well as introducing a historical database to be constructed with regards to
the state  of  the surroundings.  The representations can range from modelling the
physical properties of the environment, such as the location, and texture, to higher
level representations, such as classifying a region of space as an office or a corridor.

Whether the maps are provided beforehand or not, the mobile robot must make
use  of  the  available  sensors  in  order  to  perceive  the  characteristics  of  the
environment. The various sensors and systems provide different ways to classify the
immediate surroundings, which can later be combined as part of a larger map that
extends beyond the robot's current  view. As each of the sensors measure certain
attributes in various ways, they require appropriate translation processes when being
merged. This requires careful  calibration of each sensor,  as well  as appropriately
selected algorithms to model the interaction of the sensor to the environment.

Although some sensor characteristics can be determined during the calibration
stages, they are often dependant on the actual environment and cannot be completely
anticipated. The fluctuation in the measurements caused by these are often tackled by
limiting  the  operational  ranges  or  combining  multiple  sensor  measurements  for
disambiguation (Dudek et al., 1995), which can occur at various stages before the
information is represented in the map. The inaccuracies from the sensor readings
mean the attributes are often applied as a probability of a particular state (Thrun et
al., 1998).

The attributes that are detected allows the robot to make decisions based on the
surroundings, as well as being able to relate the features to known objects. As many
of the sensors use a specific modality, many of the comparisons can only be achieved
between the same sensors. There is also another issue of timing and the visibility
range, which can limit the interactions between the sensors. By converting the sensor
readings  to  that  which  can  be  related  to  another  sensor's  readings,  the  sensor
measurements  are  able  to  influence  each  other  to  build  up  a  more  informed
representation of the environment.

Storing the attributes, which include any derived information, involves arranging
the information in an easy to access and modifiable data structure, as well as placing
constraints on the range and amount of information, typically by using compression
mechanisms. These implementation issues play a crucial role in real time operations,
especially in the presence of high volumes of data. Although key attributes can be
filtered by their respective sensor modules, combining the information to a uniform
representation requires carefully designed algorithms and a significant  processing
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time.

One of the key aspects of SLAM is that the localisation module influences the
mapping module, while the mapping module provides feedback information for the
localisation module. The close coupling between the two means constant cross-talks
between the modules occur, which is aimed at gradually reducing the uncertainty in
the pose and the map. However,  the cyclic dependency can also lead to gradual
divergence  over  time.  To  overcome  this  issue,  many  strategies  are  required  to
anticipate, detect, and correct any errors that may propagate by means of calibrating
dynamically.

This  section  deals  with  the  map construction  techniques implemented  on  the
mobile robot and covers the issues ranging from efficient map usage, merging of
sensor readings, as well as the detection and handling of  land marks and  dynamic
objects within the scene (Coombs & Brown, 1993; Fox et al., 1998 (a); Stachniss &
Burgard, 2005). Chapter 8 introduces the various mapping issues and the types of
maps  that  are  available,  while  chapter  9  introduces several  map  construction
techniques using the range finders on the robot. Chapter 10 investigates the use of a
forward looking camera to gather the scene information using a different  type of
sensor to the range finders. Finally, the derivation and integration of higher level
concepts are described in chapter 11.
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Chapter 8 – Representing the environment

The  portraying of  the  environment  results  from  the  compilation  of  the
instantaneous sensory information into a consistent representation. As well as being
able to  provide relational  information between the sensor  readings,  the map can
allow higher level constructs to be derived and provide historical information for
subsequent sensor measurements to compare against. These benefits contribute to the
successful and accurate operation of the mobile robot, as most tasks require more
than just the instantaneous sensory information (Bailey, 2002; Thrun, 2002).

From the  perspective  of  the  representation,  the  map is  required  to  store  the
sensory and derived information with enough detail, such that the tasks being carried
out  can  operate with  some certainty and confidence. Depending on the types  of
interactions required to the map, the efficient  accessibility and accuracy must be
maintained (Kuipers & Levitt, 1988). This is dependant on the data structures being
used to store the attributes, as well as the algorithms to interface between the sensor
readings and the map. The third issue to be considered is the organisation of the
maps,  such that  the environment can be viewed from multiple perspectives.  The
isolation of different attributes creates a more cluttered representation, due to some
repeated information,  but  allows for  easy distinctions between the attributes and
leaves scope for different map management algorithms in the future.

8.1 Map generation

When sensing the environment,  the robot may be exposed to several  different
forms of input, which range from direct sensor readings to pre-generated maps by
other systems. Handling the different forms of input and the unique information they
represent requires various techniques to effectively process and use the information.
This is due to the semantic information (Hild, 2000; Kuipers & Byun, 1991), capture
time, and the accuracy of the information often dictates how they are processed.

8.1.1 Attributes

In terms of the content of the maps, the types of attributes that are commonly
stored include the likes of the location, occupancy, texture, elevation, and measures
of interestingness, which are typically derived from analysing the features within the
map. Since the addition of attributes incurs extra processing and memory costs, only
those that are necessary for the particular task is calculated and maintained.

The most commonly used attribute to be assigned to the entries in the map is the
location of the interesting point. Typically, this is assigned from the relative pose
based on the robot's current pose. However, in some cases, this attribute is registered
as relative positions against landmarks and do not have a numeric value assigned to
it.

Another commonly used attribute by mobile robots is the occupancy of an area.
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This is crucial to the functionality to a mobile robot, as it indicates both the areas it
can and cannot explore, and indirectly, the areas it has and has not explored. A wide
range of devices that are mounted on the robot allows for this measure, such as range
finders or even just the pose information by the robot. The occupancy also allows the
other attributes to be attached using the positions and the semantics of the sensor
readings.

An  interesting  attribute  that  is  sometimes used is  for  the  distinction  between
individual objects  within  the  scene.  Although  this  attribute  requires  complex
correlation process between the sensor readings or prior knowledge about the shape
of the objects, this can allow for inter-object and dynamic properties to be derived,
together with the ability to focus on a particular object of interest. This ability is
crucial in environments where objects are constantly moving or when the robot is
required to search or identify a specific object. This may include the detection of
doors and people that move while the robot is observing the object or when the robot
returns to note the change in the occupancy of the area.

Each of the sensors exhibit varying behaviours depending on the environment and
the level of noise and ambiguity expected for the device. For this reason, it is often
desirable  to  assign  a  weighted  value  or  a  probabilistic  model  to  indicate  the
confidence in the assignment of the attributes to the map (Basye et al., 1989). This
value  may  include  the  error  tolerance  of  the  sensor or  the  detection  of
inconsistencies,  such as those derived from correlation scores between the sensor
reading and one that is expected from the stored map. The variation in the confidence
allows the scope for various disambiguation techniques using historical information
and alternate perspectives from multiple sensors.

When converting analogue data to a digital representation, there is a limitation to
the level of precision that can be achieved. The limit to the precision is dependant on
the  sampling  capability  of  the  sensor,  the  resource requirements,  and  also  the
precision  requirements  for  the  specific  application. It  is  important  to  note  the
precision the map uses with respect to the specific tasks, as this can introduce the
misalignment  between  the  environment  and  the  representation,  similar  to  the
previously encountered issue with aliasing errors.

8.1.2 Sensor inputs

The most direct input to the robot can be made using the on board sensors to
perceive the current state of the immediate surroundings. The characteristics of each
sensor determine what information can be derived about the environment, as well as
how it will affect the map. In some cases, each of the sensor readings must also be
time-stamped due to latency issues or  delays introduced by batch processing the
sensor inputs.

The communication between the sensor and the map often involves filters being
applied very early on to reduce the unnecessary components and convert the readings
to a more compact and useful form. This also assists in the isolation between the
different  modules,  as  they  can  each  parse  and  extract  the  relevant  information.
Although  some redundancy  may appear,  it  is  possible to  reduce  the  processing
requirements by carefully applying the filters in a sequence, such that many of the
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processed data is reused. Other strategies used to improve the efficiency include the
use  of  simple  shapes  and  templates  when  interacting with  the  data,  the  use  of
constraints  by  knowing  the  range  of  possibilities  beforehand,  and  setting  the
appropriate update rate of the map, as changes to the environment often does not
occur as fast as the sampling rate of most sensors.

When selecting the type  of  sensors  to  use,  the  usability  of  the modality,  the
characteristics of the information it captures, and the reliability plays a significant
role in terms of effectively modelling the environment. The sensors must capture the
scene through various environmental conditions, which may require interactions with
multiple sensors to accurately interpret the sensor readings. The modality dependant
behaviours are sometimes neglected due to the small amounts of effect it has, or the
lack of sensors to be able to distinguish the changes in the environmental condition.
As many of the applications for mobile robots have specific tasks to be carried out,
the  range  of  operating  environment  are  often  constrained,  thus  the  adaptive
behaviour can be removed. This is a common and reasonable assumption to be used,
since  many  experimental  platforms  are  focused  on  developing  a  small  set  of
algorithms to solve a very specific problem instead of deriving a general purpose
algorithm for  all  situations.  That said,  many of the environmental  effects can be
modelled through simple scaling, which can be easy implemented if extra sensor for
detecting the change in conditions are available.

Since many of the sensors are included with the intention of actively sensing the
conditions of the environment, the particular modality they use is restricted to those
that are continuously available when desired. This defines the attributes that can be
determined, but  at  the same time, the selection of the appropriate attributes also
depends on the type of map being constructed and the requirements for the map. In a
typical  case, the unnecessary attributes are derived information from the sensors,
which simply means they are not produced if they are not required. This is due to the
careful planning used before the sensor is integrated, as each device incurs a cost in
both material and processing wise.

Although it is possible to simply capture the state of the scene according to the
sensor  readings,  it  is  often  desirable  to  assign  a  measure  of  importance  or
interestingness to various portions of the map after analysing the other attributes of
the map. Although these values can require significant processing time to derive and
may not  be consistent  from different  perspectives,  they can be used to  identify
landmarks and correlation points for localisation and to uniquely classify the area.

8.1.3 External systems

Using the sensors in the natural  environment  can lead to  many unforeseeable
problems that may hinder their performance. These may include issues like changes
in lighting or difference in the reflectivity to the calibration data. The problem is
enhanced when there are no references to identify the occurrence of these events to
modify the sensor usage.

One strategy to overcome this  is  to interact  with  external  systems which can
inform the robot with consistent or grounded measurements. A simple example of
this is a calibration feature that is used to reset the sensor's parameters, but can also
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extend to pre-defined targets such as bar codes with encoded information.  These
calibration markers are commonly seen in environments where constant errors to the
sensor readings occur, or when the computational load must be kept down. Often
times, this involves careful crafting and placement of the markers and the integration
of  the associated algorithm to identify and correct the current  settings using the
difference measure determined from the pose or data from the markers.

When templates are used,  the variations that  commonly occur are usually not
included as part of the constraint.  An example of this may be a template with a
specific colour or shape, but not both. This allows some flexibility in the attribute,
which  may  be  slightly  different  to  the  expected  due to  the  conditions  of  the
environment.  The  variations  that  are  allowed  introduces  the  ability  to  encode
independent information into the marker, such as those seen in road signs, where the
shape and the positioning of the sign is matched by the template and the arrangement
of the colours on the sign depicts a particular information using a separate template.
This idea is commonly seen in controlled lab environments, where encoded markers
are placed around the environment to inform the location of the robot.

A slightly different approach that can be used is the exchange of information from
externally located sensors or systems that can observe the state of the robot or the
environment. These include systems like the GPS, surveillance cameras, or another
robot that is operating concurrently (McLurkin, 2004).  These allow dynamic and
adaptive information to be sent to the robot, sometimes from a fixed pose, and can
often  be  considered  as  another  sensor  measurement.  These external  systems are
typically equipped with multiple sensors, as well as several derived attributes of their
own,  which  can be  passed onto  the  robot  to  allow multiple  perspectives  of  the
environment without physically moving around.

Although  the  set  of  constraints  placed  on  the external  sensors usually  allow
confident and accurate measures to be made, the dependency to the other system can
limit  the  applicability,  especially  since  the  other system  must  be  placed  in  the
appropriate place before the robot can make use of them. The use of the calibration
marker is often the easiest to carry out, as they can be placed along with the robot.
This is very effective when the robot's operation is restricted to a particular area,
where each of the markers can be accurately placed to inform the robot. As for the
independent system informing the robot, the difficulty lies in the coordination of the
appropriate  information  being  passed  along,  as  well as  the  additional  cost  in
developing and maintaining the other system. Having to manage the other sensors is
often the deciding factor when their use is considered. Many real world applications
tend to make use of already existing, yet man-made, markers, such as road markings
and room number plates.

8.1.4 Existing maps

Rather than making use of the sensor signals which portray an immediate measure
of  the  environment,  it  is  also  possible  to  make  use of  a  more complete  set  of
attributes which corresponds to the state of the environment at some time in the past
(Zelinsky & Yuta, 1993). These can often be classified as pre-constructed maps, since
they  contain  information  about  the  scene  from  multiple  perspectives  and  often
contain  a  complete  set  of  attributes  that  were  required  at  the  time  of  the  map
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construction. Depending on the purpose of the provided map, the level of accuracy
and attributes that are used may differ, as well as the difference in the representation
itself.

When  converting  the  provided  map  to  the  format  required  by  the  robot,  the
translation of the attributes must be appropriately weighted by the reliability of the
map, which often depends on the original intention of the map. As the majority of
maps are intended for use by humans, the characteristics that are shown are typically
incorrect in proportion and contain higher level concepts which require knowledge of
the context, thus do not directly include a lot of information that can be used by the
robot. This is typically due to the absolute measures that are used by the robot. The
higher level concepts can be copied over to the robot's maps, but they are often not
understood by the robot due to the lack of context. When accurately scaled maps are
available,  such  as  the  blue  print  of  a  building,  it is  important  to  filter  out  the
irrelevant portions of the map that are not required by the robot.

One of the more commonly seen occurrences of pre-generated maps is the use of
older maps generated by the same robot in a different execution. The consistency in
the configuration allows for simple integration between the two maps, which allows
for a highly confident inclusion of the given set of information. This technique is
often used in global localisation algorithms, dynamic object and drifting detection, as
the consistency and also the lack of consistency between the maps allow for the
differences in the maps to be marked as being an interesting characteristic (Dudek et
al., 1997).

8.2 Map types

The consideration of how the derived attributes are to be stored and maintained
include  aspects  like  the  accessibility,  memory consumption,  manipulation  speed,
extensibility, as well as the precision or the amount of detail it can contain. The type
of map that is used has a direct influence on the internal representation at the low
level, thus close coupling is required to the data-structure. As with most applications,
it is the context which defines the data-structures to be used, especially due to the
flexibility and resource availability of general purpose processors to freely allow the
selection of the most appropriate implementation. Although it is possible to make use
of dedicated processors, such as  graphic processors due to the highly independent
nature of map components, the fundamental  usage behind the different map types
remain the same. With this in mind, various map types are discussed along with the
appropriate data-structures that may be used to implement it.

8.2.1 Grid

Based on the idea of the metric map, a finite interval coordinate points can be
used to define a unit of space for the attributes to be assigned to. By restricting the
size of these spaces to a consistent amount, they can be placed in a grid like manner.
This configuration allows fast random access to each of the grid cells and can control
the memory consumption by modifying the size of the cell. It is quite common to see
a Cartesian coordinate based grid map being used, especially when combined with
the occupancy of the cell for robot navigation tasks (Borenstein & Koren, 1991).
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The memory consumption is often limited in grid maps, as the majority of the
implementations use a fixed sized array to represent the map. The regularity of the
coordinate  points  allows  inter-neighbouring  cell  comparisons  to  be  carried  out
quickly and allows simple storage of  attributes,  as each of the cells  can directly
maintain a group of different values. One of the crucial issues with this approach is
dealing with increases in the operational  range or the number of  attributes while
maintaining an acceptable memory footprint, as the data-structure doesn't often allow
easy expansion, as well as the maintenance of uninteresting portions within the map.

In the event of the robot traversing beyond the initially anticipated range, the map
must undergo various strategies to deal with the increase in the map. The three basic
strategies  that  are  available  are  shifting,  extending,  and  scaling.  The  shifting
approach involves the removal of unwanted portions of the map to make way for the
new area to be mapped. This allows for the memory footprint to remain consistent
and typically only requires a simple change to the underlying data structure, such as
the changing of the offset value. This strategy is commonly used when only certain
portions  of  the  environment  is  needed  in  the  map,  such  as  the  immediate
surroundings, since the discarded portions are reset and used to represent the new
area.

When shifting the map, there are two basic strategies to maintain the same grid
structure, such that the neighbourhood relationships and the same memory footprint
are maintained. The first of the approaches involve copying the cell contents across,
such that the coordinate point with respect to the data structure is consistent. With
this approach, an offset value from the origin of the map to the grid itself may be
necessary for better utilisation of the array. The second approach involves the use an
offset value with respect to the grid itself to indicate where the new reference point is
for the data inside the array. This approach typically makes use of a circular counting
technique, such that the same memory location can be used for multiple indexes
without the need for shuffling of the contents.

The copying process for a 2D grid map is typically triggered by the whole row or
column being eliminated, thus each of the cells in the perpendicular direction must
be shifted by the same amount to fill the now vacant cells. This means the number of
copy operations can be a significant amount if the size of the map is large or the is
this is  frequent.  Although the approach is  very simple to  implement,  the second
approach is more commonly seen due its effectiveness for all map sizes. Since the
shifting that is required is constant for all the remaining cells, this can be converted
to an offset value to be used when accessing a particular cell. To re-use the vacant
cells, the indexes to the position in memory can be wrapped around, such that the
wrapping is invisible from the perspective of the map user. Note that this technique is
applicable for cases where the cells being removed is exactly one map width apart to
the  cells  being  introduced,  as  it  simply  re-uses  the  memory location  instead  of
allocating more for the new cells.

Although this approach removes the need for the copy process, the introduction of
the extra offset means frequent access to the cells in the map will require repetitive
division  operations  to  wrap  the  index  values  around.  This  drawback  is  often
neglected and can end up resulting in a reduction in the performance. To reduce this
overhead, an extra constraint can be introduced by setting the map size to the power
of 2. This then allows the use of a simple bit mask to determine the wrapped offset,
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as  the  positions  of  the  bits  stays  relative  to  the  array  positions.  Algorithm  8.1
illustrates the circular indexing of the grid cells where the width of the map is a
power of 2, while the height is not. Note the case where the position is negative,
which is with respect to the origin of the coordinate axis. This can be ignored if two's
compliment negative values are used with the bitwise operation, as with the w index.

function GetAttribute(map, i, j):
   set h = j % map.height
   if h < 0:
      set h = h + map.height
   return map[i & (map.width-1), h]

Algorithm 8.1: Circular indexing of grid cells.

The shifting process can potentially consume a significant processing time and
can contribute to the corruption of the attributes if the process is not carried out at
appropriate moments.  In  typical  scenarios,  the robot's pose has a higher level  of
precision than the one used by the map. This means that the change in the robot's
pose  will  require  partial  shifts  of  the  array  elements,  which  can  be  costly  and
introduce large amounts of artefacts through interpolation. The blurring of the cell
attributes can be avoided by a simple technique of buffering the pose changes before
the map is updated. The actual buffer size can differ depending on the pace of the
robot and the range of the sensors with respect to the size of the map. However, they
should be multiples of the cell size, which will avoid the interpolation issues between
the cells occurring.

Extending the map involves additional memory being allocated for the new area
and merging the two maps together. This approach handles the range issue without
compromising  the  existing  information  about  the  environment.  However,  it  can
suffer from the bloating of the memory footprint as portions that are unlikely to be
used in  the  future  will  still  remain  to  be just  as  accessible.  A typical  grid  map
implementation involves a square structure,  thus the increase in  the map size is
proportional to the dimension of the current map, thus can increase significantly if
motion in multiple axes are equally present. This inefficiency is often tackled by
restricting the motion of the robot rather than manipulating the map.

The last of the approaches, the scaling, involves the compression of the current
map and a change in the representative scale for the cell sizes, such that the memory
footprint remains the same. This technique is widely used in rendering processes by
applying  well  known  algorithms  like  sub-sampling  and  various  interpolation
techniques to remove the uninteresting details of the data without removing much of
the interesting or distinctive portions. It is important to observe the decompression
time with certain algorithms, as the access time is just as important as the memory
footprint. The various attributes within the grid cell and the purpose of the map are
often  considered to  determine  the  type  of  compression  algorithm,  but  typically
involves a lossy process.

While the cells being updated is important, it is equally important to make sure
that the information carried by the cells being discarded are not completely lost and
the new cells being introduced consider the availability of information that surrounds
the position (Balmelli et al., 1998). For cells being removed, the key contents of the
cells should be carried over to another representation, or stored in memory for future
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reference, which may be accessed during an off-line processing stage. This process
should ideally take place using a number of cells at once to form a higher level
perspective of the area for compression, thus require a buffer or a viewing window to
analyse the portion being removed.

For the cells being introduced into the map, the contents can be initialised from
three potential sources. The first approach simply resets the cells by assuming the
portion of the environment has not been explored yet. This allows for a safe but
slower approach, as past information from other sources such as other maps are not
utilised. This assists in clearly identifying the presence of dynamic objects, as the
lack of influence from the old map will  help generate an unbiased model of the
current surroundings.

The  second  approach  involves  the  use  of  another  map,  where  the  cells  are
populated with information generated from the past. This hastens the map generation
process,  but  can  potentially  introduce  errors  from  misalignment  or  mislead the
process in case changes to the environment occur. There is also the issue with the
attributes that are not shared between the maps, which must be initialised by some
other means.

The  third  approach  is  similar  to  one  that  is  often  seen  in  video  processing
algorithm, where the image is extended beyond its boundaries by replicating the
bordering textures when attempting to predict the texture outside the current view.
Since many man made obstacles, especially those that form structures, have regular
shapes, this technique can provide a reasonable model of the newly introduced area,
especially if trends like lines can be determined for those that intersect the borders.

To combat the drawbacks of the three approaches above, a hybrid algorithm can
be implemented which relies on the reinforcement of cell attributes. By combining
the cell information from the other map and the neighbouring cells, similarities and
irregularities  can  be  identified  to  weight  the  confidence  in  using  the  provided
attributes. The actual prediction can be derived from one or both the sources, while
the confidence weight can shift the attributes from the unexplored state. Algorithm
8.2 below shows an implementation of the update process of the old and new cells
using the circular indexing where the average of the two approaches above is used.
Only  the  horizontal  shift  is  shown,  as  the  vertical shift  is  almost  identical  in
implementation. The variable another is used to store a compressed form of the cells
being removed.

function HorizontalShift(map, delta_x, another):
   if delta_x > 0:
      set to_remove_array[map.height][delta_x]
      for j in 0 to map.height:
         set neighbour = GetAttribute(map, map.x + map.width –
          1, j + map.y)
         for i in 0 to delta_x:
            set to_remove_array[j][i] = GetAttribut e(map, i +
             map.x, j + map.y)
            set other = GetAttribute(another, i + m ap.x +
             map.width, j + map.y)
            SetAttribute(map, i + map.x + map.width , j + map.y,
             (other + neighbour) / 2)
      Merge(to_remove_array, another, map.x, map.y,  map.buffer,
       map.height)
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   else:
      set delta_x = -delta_x
      set to_remove_array[map.height][delta_x]
      for j in 0 to map.height:
         set neighbour = GetAttribute(map, map.x, j  + map.y)
         for i in 0 to delta_x:
            set to_remove_array[j][i] = GetAttribut e(map, i +
             map.x + map.width, j + map.y)
            set other = GetAttribute(another, i + m ap.x -
             map.buffer, j + map.y)
            SetAttribute(map, i + map.x - map.buffe r, j +
             map.y, (other + neighbour) / 2)
      Merge(to_remove_array, another, map.x + map.w idth –
       map.buffer, map.y, map.buffer, map.height)

Algorithm 8.2: Removal and initialisation of old and new cells when the map is
shifted horizontally.

The components of the grid map can be seen in figure 8.1, while the algorithm for
moving the robot can be seen in algorithm 8.3.

Figure 8.1: Components of the grid map when the map is shifted.
The same notation is used in algorithm 8.3, except for ∆x, which is
called horizontal.

function Move(map, robot, horizontal, vertical, ano ther):
   set robot.x = robot.x + horizontal
   set robot.y = robot.y + vertical
   set new_x = robot .x - map.x
   set new_y = robot .y – map.y
   if new_x > map.width:
      set delta_x = map.buffer
   else if new_x < 0:
      set delta_x = -map.buffer
   if delta_x != 0:
      HorizontalShift(map, delta_x, another)
   set map.x = map.x + delta_x
   if new_y > map.height:
      set delta_y = map.buffer
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   else if new_y < 0:
      set delta_y = -map.buffer
   if delta_y != 0:
      VerticalShift(map, delta_y, another)
   set map.y = map.y + delta_y

Algorithm 8.3: Pseudo-code for robot motion and monitoring when the map requires
shifting.

One of the distinct problems of this approach is that any error in the cells along
the border will be carried over to the extended cells to form distinctive streaks that do
not correspond to the real world. Although these portions can later be corrected when
the sensors scan the regions, these unnatural patterns can cause strange trends to be
observed when high level analysis is carried out. Since a detailed analysis on the
shape and trends of objects are not  carried out  at  this stage due to performance
issues, the reliability of the attributes included in the initialisation must gradually
decrease with distance.

To implement this, a corrosion of the weights introduced, such that the scores of
the attributes are slowly decreased as they are introduced. It is possible to simply
average the neighbours, lowering the weights by a fixed amount or a percentage, as
shown  in  figure  8.2.  The  first  approach  allows  the  objects  to  spread  out,  thus
promoting true and false positives and can require a reasonable amount of distance
from the original position before the attributes are deemed irrelevant. By gradually
reducing the weight of the attributes and promoting the uncertainty of the attributes,
it provides some level of consistency with the adjacent cells and allows control over
how  much  it  should  rely  on  the  existing  attributes. Since  the  precision  of  the
occupancy can be unreliable at times, the size of the reference row or column can be
increased for a better indication of the state of the space near the map's boundary.

Figure 8.2: Corrosion of attributes in the initialisation of newly introduced cells.
The intensity of the cells is the proportional weight used for the
attributes.

Note that when shifting is required in both axes simultaneously, the operations for
both  directions  must  occur  simultaneously  to  avoid  biasing  of  attributes  by
sequentially extending from one axis then another.

By allowing the robot's position with respect to the map to change, the map can no
longer be modified through a fixed template of sensor interactions, such as fixed
positions for shapes and directions of the sensor scans. The variation in the position
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introduces aliasing issues, which is also the case when rotations occur. However, by
allowing the cell's attributes to rotate with the robot, it causes dispersion and merging
as the cell is mapped onto a group of cells after rotation. This also causes problems
with  the  corner  areas  of  the  map,  as  they enter  and leave  the  map.  Instead  of
changing the orientation of the map, the direction of the sensor scans can be modified
and the aliasing issue can be dealt with in similar ways to that of the sub-cell sized
motions.

Due to the similarity of the grid map and raster graphics, many image processing
algorithms can be applied to enhance the performance in the maintenance of the map.
This will be discussed in further details in chapter 9.

8.2.2 Quad tree

Instead of using uniformly spaced grid cells, it is possible to combine different
sized and shaped cells to better utilise each cell. A commonly seen example of this is
the quad tree, where the size of the cell is determined by density of the information to
be represented (Balmelli et al., 1999). The structured splitting and merging of the
cells allow for effective compression of information, but the approach can sometimes
be overwhelmed by the modification of the cell arrangements (Yang & Lee, 1994).
This can often limit its use during the construction of maps, especially if the cells are
merged and divided frequently  to  increase  the effectiveness  of  the  compression.
However, this approach is useful in compressing portions of the map that are inactive
or may not be of interest, which are problematic in grid maps due to the dense and
uniform representation of the surroundings (Chen et al., 1995).

8.2.3 Geometric

Based on the group of sensory data, a map can be represented using a collection of
geometric  shapes (Dudek & MacKenzie, 1993).  This representation can consist of
constructs such as points, lines, polygons, and so forth, which combines the sensory
data by some constraint.  This  often requires a set of primitives or templates to be
used to  associate the sensor data, but allows a very compact representation of the
environment. The formation of these geometric shapes are also accompanied by set
of rules to encourage certain shapes to form over others, such as larger shapes with
lower number of vertices over smaller and complicated shapes. Once these geometric
representations  are formed, manipulation of each construct becomes a simple task.
However, the models are often difficult to derive due to the limited sensor precision,
variation in the tolerance specified in the  template,  and the loss of subtle features
when approximating to one of the pre-specified shapes.

Although the memory footprint  may start  off  being small,  this can potentially
grow as more sensor data is introduced and often overlap one other. To overcome this
issue, compression mechanisms are required to detect and remove redundant shapes,
such as the removal of  shapes that  overlap. One of the major drawbacks of this
approach  is  the  complexity  in  identifying  relationships  between  the  points  and
structures, as sequence or neighbourhood information is not maintained and would
rely on other structure,  such as a tree structure to store some form of adjacency
information to increase the processing efficiency (Guttman, 1984).
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8.2.4 Topology

An alternative approach to using a geometric shape based mapping is to identify
regions with some form of semantic information (Kuipers, 1978) to describe itself
and to connect between them, such as by using graphs, matching against patterns, or
apply clustering techniques (Nagatani et al., 1998; Remolina & Kuipers, 2004). Since
the  number  of  data  points  is  proportional  to  the  number  of  scans  and  is  not
necessarily the measure of relevance or interestingness, the sensor readings require
compression to leave behind only those of interest.

As more and more sensory data is converted to the map, the level of complexity in
the map increases and can require additional layers to summarise the map, or at least
a sub-portion of the map. The summary, like the template shapes and clusters, can be
classified into groups of higher level concepts to form what is called a topological or
semantic  map  (Shatkay  &  Kaelbling,  1997).  They  represent  the  relational  and
category labels on components within the map, such as corridor and room. The map
is  typically  represented  in  a  graph  structure,  which  allows  for  high  levels  of
compression  and also has  commonalities  with  the  spatial  perception  of  humans.
Since these high level constructs often do not have a spatial constraint, the use of a
graph structure is more suited than the grid representation.

Many of the map types discussed above are often used in parallel  for specific
tasks.  The  specialisation  allows  the  individual  maps  to  focus  on  portraying  a
particular information, while the combination with other maps allows complimenting
information to  be derived  and stored  (Duckett  & Safflotti,  2000).  To  coordinate
between them, effective inter-map messages must be devised to allow changes to one
map to affect another, thus maintaining the synchronisation (Thrun & Bucken, 1996).

One commonly seen topological map is a connectivity map, which illustrates the
neighbourhood of significant points, such as directions between landmarks. Although
the information that is represented is quite similar to that of a grid map, the graph
based approach allows varying levels of detail between points of interest. This means
the details about how they are connected can be stored, but the information with
regards to the region in between can be discarded.

Figure 8.3 shows a sample connectivity map, superimposed over a floor plan map
to indicate the presence of a path between the nodes. It is important to note that the
links between the nodes is not required to represent the immediate neighbours like
the grid maps, nor does it  indicate a direct  line of sight. Instead, the connection
simply states that  it  is possible to get  to the other node without  directly passing
through another node.

One of the most crucial considerations to make when implementing a graph based
map is  the criteria for  creating a node. The analysis  of  the  grid  map allows for
various  attributes  to  be  considered,  such  as  the  occupancy  of  a  region  and  the
relationships to the other nodes. This can potentially form the basis for the attributes
of the node, as well as deciding whether it is necessary to create the new node within
the map. Unlike the previous maps, where the relationships between the grid cells
could be derived with ease from the coordinate values, the nodes within the graph
must carefully consider the connectivity, such as the necessary motions required by
the  robot or line of sight,  to  allow connections between the nodes. However, it is
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entirely possible to configure the links such that a different measure is used to link
between  the  nodes,  which  may include  things  like  decision  points  in  mazes  or
restrictions in the traversable direction, such as with one way roads.

Figure 8.3:Example connectivity map superimposed over a floor plan.
The circles  in  this  example  represent  the  nodes  containing
information about the region.

Once  a new node has been placed into the map, the rest of the nodes must be
analysed to determine the appropriateness with the current view of the environment.
Depending on the level of precision and memory consumption required by the nodes,
it may also be feasible to maintain several layers of semantic maps simultaneously to
allow  analysis  of  the  nodes  from  multiple  perspectives.  This  may  involve  the
removal  of  redundant  or  insignificant  nodes,  or  even a merger  between multiple
nodes. When merging is required, some information will be lost from interpolation
and elimination of certain attributes, thus each node should maintain a record of the
number of merging operations it  has  performed to note the amount of errors that
could have been introduced.

The  type  of  map  we  are  most  accustomed to  is  the  semantic  map,  where  it
portrays a series of very high level concepts with minimal precision and detail of the
other attributes. When constructing a semantic map for a mobile robot to use, it is
important to note that it is often quite meaningless to the robot itself, as it does not
have the contextual understanding of  the  attributes.  It  is  possible to  classify the
attributes using templates or cluster them in similar ways to self organising maps, but
are typically only useful to human observers thus the formation of topological maps
should be regarded as a secondary functionality for compression and for  human
observers to view later on.

8.3 Map layers

The process of creating the map can be categorised into two types, where one
involves the maintenance of the immediate surrounding environment, called the local
map, and the other involves the whole environment the robot is exposed to, called the
global map.
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8.3.1 Local map

The local map typically extends to the area where the on-board sensors can reach,
which means they are frequently accessed and manipulated to reflect the up to date
readings of the sensors, thus the overall size of this map is kept small. Since the local
map must interpret the sensor information of multiple types, it must be equipped with
strategies to convert the various sensor readings into a uniform representation. This
allows for simple interaction between the sensors. Figure 8.4 below shows a sample
view of the local map, where the red circle is the current location of the robot, blue
areas represent the regions that are deemed to be free of obstacles and the green areas
are areas where there could be obstacles present.

Figure 8.4: Sample view of the local map.
The yellow represents vacancy, which is carved by the robot's body,
the  IR  sensors  and  the  sonar  sensors.  The  magenta  represents
occupancy, which is where the range finder scans terminate. The
intensity represents the confidence measure.

Since the map must be able to handle the sensor measurements, it must have the
capacity to modify the map in all directions the sensors face. This often leads to the
centering of the robot within the map, since sensors are placed around the robot in all
directions in most configurations. Whenever the robot moves, the map must shift in
the opposite direction to maintain the robot close to the center of the map. Note that
it does not have to remain perfectly in the center, as long as there is enough room for
the sensors measurements to affect the map.

Although the use of a geometric map would allow accurate portrayal of the sensor
readings, a grid map allows for an easy base for the various sensor measurements to
be merged. Since the length of time the local map stays constant is dependant on the
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speed of the robot, using the geometric map could result in large number of shapes
being included if the robot does not move around or if the scan rate of the sensors are
set very high. Using the grid map allows for fast random access to the sensor data, as
well as being able to maintain a constant memory footprint.

Various strategies in using the range finders for forming the local map is discussed
in chapter 9, while techniques using visual sensors are discussed in chapters 10 and
11.

8.3.2 Global map

Since  the  scales  of  the  local  map  remain  the  same,  exploration  of  a  large
environment would not allow the robot to maintain any information about how the
current view relates to previously visited areas. Although the scales and granularity
should depend on the obstacles and the robot's size, it is also important to include the
proportionality of the traversal area by the robot. The global map differs from the
local  map  by  maintaining  a  scaled  or  compressed  perspective  of  the  entire
environment the robot is interested in. The map allows for a global perspective of the
explored environment to allow a large scaled analysis, such as path finding (Low et
al.,  2002;  Masoud  &  Masoud,  2000),  derivation  of  semantic  information, and
connectivity.

To control the memory consumption, portions of the map must be discarded when
the  robot  explores  a  new  area  outside  the  bounds  of the  current  map.  When
determining the compression algorithm, considerations as to what information will
be retained and discarded must be made, as well  as the potential  introduction of
ambiguities  in  the  connectivity  and  alignment  due  to  the  change  in  the  scale.
Depending  on  the  compression  algorithm  and  the  constraints  to  the  robot's
operational range, it may be possible to use a lossless algorithm by sacrificing some
processing time using a non-lossy compression algorithm or storing the data to a
permanent memory for off-line processing.

The  majority  of  the  global  map  generation  is  done  through  the  information
provided by the local map, where periodic updating occurs to fill in the details of the
current surroundings by superimposing the local map onto a portion of the global
map (Clemente et al., 2007; Williams, 2001). Although the primary function of this
will be to fill in the unexplored portions of the global map, it is also possible to use
the merging phase as a correlation process to correct the current pose of the robot or
to determine any inconsistencies to flag areas of dynamic properties or even errors
(Schiele & Crowley, 1994; Weiß et al., 1994). Strategies for implementing a global
map by combining the local maps are discussed in detail in chapter 9.

8.4 Summary

When generating the map, it is important to consider the characteristics of the
available information, such that meaningful information is used and maintained. The
selection of the appropriate attribute depends on the specific task of the robot. For a
navigational  robot,  the  important  attributes  include  the  occupancy  and  dynamic
properties of the obstacles, as well as connectivity between various points the robot
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can manoeuvre. Many other attributes can also be used, but this depends greatly on
how useful the extra attributes are to the robot. One strategy that is considered in
chapter 11 is the use of sparse landmarks which is maintained in a separate map
layer.

Although the  accuracy and  the level  of  information  that  can  be provided  by
artificially crafted markers and external systems can be very desirable, the focus of
the current system is to develop a series of algorithms that can operate independently
of other systems, thus forming a strong foundation for extension and improvement
later on which could include the use of the external systems for support.

While  keeping  the  memory  footprint  low  and  reducing the  processing
requirements  for  the  map  is  desirable,  maintaining  multiple  layers  can  assist  in
simplifying  the  communication  between  other  systems.  As  well  as  the  actual
information being stored, the various layers need to consider the arrangement of the
information, the conversion process between the layers, and the maintenance of the
information in terms of how much and how long the information should be stored.

With the idea of specialisation in mind for the map layers, three different layers
are implemented to simplify the task at each layer, which are the local, global, and
the  connectivity  maps.  The  primary  focus  of  the  local  and  global  maps  are  to
combine the sensor information quickly, which is achieved through the use of the
grid map, while the connectivity map is used to store higher level concepts to be used
for complex decision making and to allow a more tangible representation to the
observer. This map also maintains some of the vital information about the structure
of the environment that may be lost when the scale for the global map becomes too
large.

149



Chapter 9 – Carving using range finders

Due to the simple process that is required for a uniform representation for the
sensory information to bind to, a 2D Cartesian coordinate based grid map is used to
represent the local map of the robot. The highly dense and memory consuming nature
of this type of map allows an accurate portrayal of the environment, while providing
quickly  accessible  information  between  different  locations  within  the  map.  This
characteristic allows for fast modelling of the sensor readings while maintaining a
consistent memory footprint.

As the current task for the robot is to model the structure of the environment, the
emphasis is placed on the occupancy of areas within the map where the robot can
observe. Although it is ideal to construct a 3D representation of the environment,
many of the sensors on board are not capable of modelling this due to the lack of
elevation control on the robot and also on the viewing angle (Katz et al., 2005). For
this reason, the map is constrained to the 2D representation of obstacles, which is
still capable of high level tasks, such as path finding and segmentation of the scene to
identify sub-components (Shi & Malki, 2000).

One of the key strategies used in this particular implementation of map formation
is the idea of a multi-layered representation of the environment. The local map is
used as the initial interface for the raw sensor measurements, while the global map is
derived through the layered superimposition of the local maps. The range finding
sensors, which are the sonar and IR sensors, are considered for the construction of
the local map, which can identify where the obstacles lie using a technique known as
carving (Burgard et al.,  1999). The basics of this technique involve removing the
occupancy of regions that overlap with sensor scans.

9.1 Occupancy map

Using the current array of sensors, it is possible to obtain directly or to derive a
wide variety of attributes about the environment, such as the acoustic reflectivity and
texture information. However, many of these are not necessary for the majority of
map construction phase, as the map is mainly interested in the physical occupancy of
regions.  The  implementation  of  occupancy  maps  can  include  simple  binary
occupancy levels, a counter based accumulator, or a probabilistic model, which can
be similar to a normalised implementation of the accumulation approach (Martin &
Moravec, 1996; Wijk & Christensen, 2000).

9.1.1 Sensors and attributes

The complete construction of the occupancy map involves the use of the majority
of the sensors on the robot, including the IR array,  two sonar sensor modules, a
webcam mounted  on  top  of  a  servo  motor,  and another webcam as  part  of  the
omnidirectional camera module at the top of the robot. The sensors being used can be
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categorised into two distinct groups. The IR and sonar sensors are grouped as the
range finders,  while  the webcams are categorised as directional  sensors,  as they
measure the incoming light's intensity at various angles. Since the two categories
behave significantly differently to each other, they will be treated separately and any
information that is derived will be merged at a later time. The considerations for the
directional sensors are discussed in further detail in chapters 10 and 11.

One of the effective characteristics of the range finders is the ability to determine
the distance to an observed object. This indirectly allows the region before the object
to be marked as vacant, as the range finder requires a direct line of sight between the
sensor and the object. Note that the signals actually determine the distance to the
surface which could not be penetrated by the sensor signal, thus can sometimes be
misleading. Although the obstacles indicate the areas that cannot be traversed by the
robot, there is also another attribute related to how hazardous the area is. This being
an important attribute for the safe operation of the robot. The use of this attribute will
be discussed in chapter 11.

Depending on the modality used by the sensors,  other  attributes,  such  as the
reflective properties  and surface orientation (Araujo & Grupen,  1998;  Lacroix  &
Dudek, 1997) can sometimes be determined indirectly, which can also be used to
assist the formation of the scene structure. Many of these extra attributes will not be
included in the discussion, as they require specific sensor arrangements or multiple
scanning  of  the  environment  to  observe  the  inconsistencies  in  the  sensor
measurements.

Other attributes that are maintained within the cells include the frequency count of
how many times the cell  has been modified by the sensor scans, the pose of the
sensor which affected the cell, the time stamp of the last access to the cell, and finally
the surface orientation, which will be useful when constructing object surfaces from
the combination of the cells. These attributes are put in place to allow for a more
robust  carving  algorithm,  such that  it  minimises  the  effects  of  erroneous  sensor
readings and repeated sensor readings from the same perspective.

Using  the  orientation  of  the  robots  when  the  scans  are  made,  the  surface
orientation can be measured by observing the incoming angles of the sensor beams
and noting the range in which the sensor signal was successfully reflected. This is
achieved by maintaining an average of the perpendicular direction to the sensor using
the frequency counter. As the value represents an angle, this value can cycle around
and also does not have a specific initial value.

When observing the behaviour of the sensors, it was noted that fluctuation in the
sensor  readings  fell  within  two  distinct  categories.  One  was  where  the  value
fluctuated by a small amount, possibly due to sensor and ambient noise, while the
other was when an erroneous reading was made. The distinction could be made quite
easily by using a median filter for the IR sensor and a confirmation check for the
sonar sensor.

The  implementation  of  the  median  filter  involved  a  simple  buffer  that  was
maintained to filter out the outlier value amongst the two adjacent measurements.
This was achieved using a cyclic buffer, which encouraged smooth transitions in the
measurements. This approach meant that the IR sensors would misalign when there
was  a  sudden  change  in  the  distance  to  the  object,  but  the  high  rate  of  scans
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compared to the speed of the robot meant the error would stay quite small.

As  for  the  sonar  sensors,  although the arrangement  of  the  two receivers  can
potentially allow for narrowing of the obstacle's location through triangulation, the
level of precision that can be achieved does not allow for a reliable distance measure.
Instead,  the  two  measurements  are  used  to  identify  any  inconsistencies  in  the
measurement to flag the cases where the orientation of the object's surface did not
allow for one of the sensors to receive the signal or when an obstacle was not in line
with one of the sensor's viewing area. To implement this, the two measurements had
to be within 700 units of each other, which equates to approximately just under 10
cm.

9.1.2 Carving

The carving process can be implemented using several different approaches. A
commonly used  technique is  to  only  note  the  presence of  obstacles  by initially
assuming that all areas are occupied and removing those regions that are traversed by
the sensor signals. The opposite approach of assuming all regions are unoccupied is
also commonly seen, where the locations of the objects detected by the sensors are
marked. Other techniques include the formation of two maps, where one is used for
the vacancy and the other for occupancy, or the combination of the two together as
they are mutually exclusive. Another measure that is commonly used in conjunction
is an uncertainty measure, which is sometimes used together with the occupancy and
vacancy, such as the difference between the two values. Using a single range, it is
possible to represent the three together where a low value represents vacancy, a high
value represents occupancy, and the mid point represents uncertainty.

When the sensors are used to carve out an area, the shape of the region being
affected will depend on the sensor characteristics. In simplified implementations, the
effective area is confined to a straight line extended in a perpendicular direction from
the sensor, such as the case with laser range finders (Wallner et al., 1997). This leads
to a very fast processing time, as it simply requires a 2D ray tracing to mark the cells
involved.  This  approach  assumes  precise  information of  where  the  sensor  has
interacted with, thus does not suffer from ambiguity issues in terms of where the
sensor signal has reflected from. This behaviour often does not portray the actual
behaviour of the sensor signal, as many of the devices exhibits a dispersion from
both the sensor and the reflected surface. Although it is possible to treat the shape as
a straight  line,  appropriate  algorithms must  be implemented  to  correct  any false
flagging of cells as obstacles and better utilise the actual characteristics of the sensor
signals (Pfister et al., 2002).

Using a more realistic model of the sensor signal shape, a sector like shape can be
considered.  The angle of  the  spread is not always consistent, but can  typically be
approximated during  the  calibration  phase  for  each  of  the  devices.  Sometimes,
different weighting functions are applied to reflect a more realistic shape, but the
weights are generally applied after the sector has been established to isolate the cells
that  are  affected  by the  scan.  Instead  of  using  a  sector,  it  is  possible  to  use  a
combination of other primitive shapes to represent the shape, namely a triangle and a
circle  with  portions  of  overlap.  The  circle,  or  the convex  hull  of  the  arc,  can
sometimes be decomposed into small triangles, which can potentially increase the
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efficiency due to a simpler mapping of the shape's boundary onto the grid map. The
geometric shapes can be decomposed further into the lines defining the bounding
area. With the outer bounds established, the sector can be filled with simple and
efficient algorithms (Henrich, 1993). Figure 9.1 illustrates two approaches to carving,
where the left shows just the potential position of the obstacles, while the right shows
the vacancy, occupancy, as well as the uncertainty based on how green each cell is.

Figure 9.1: Occupancy map carving.
The left image shows the potential location of obstacles from the
range finder scans, while the right image shows the vacancy. The
small ring represents the robot's body.

The availability of the two types of sensors allow for a wider range of information
to be captured, in particular the confirmation of the sensor readings, as the sensors
behave differently against obstacle surfaces and have different operational ranges.
This can be exploited to encourage the use of both the IR and sonar devices to
contribute to the carving, rather than simply using the one with more reliability or
consistency. With the current sensor configuration, the sonar sensor beam overlaps
with the IR beam at the front end of the robot between the ranges of approximately
400 to 800mm, as shown in figure 9.2. To maintain the difference between the two
types of sensors, the attribute for storing the time of last access can be maintained
individually  for  each  of  the  two  types  of  sensors.  This  means  the  sequence  of
processing  the  two  sensor  modules  will  not  bias  the measurements,  as  well  as
allowing confirmations to be carried out if the time of last access is near identical.

Figure 9.2: Range and effective area of the sonar and IR sensors.
The large arcs represent the sonar scan area, while the shorter arc
regions represent the IR sensor scan area.
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Since the robot will  approach many of the obstacles from the front, the sonar
sensors should attempt to face forward and the robot should not need to move closer
than little under 800 mm to an obstacle to get  a distance measurement.  This, of
course, depends on the reliability of the individual sensors at various orientation and
ranges, but can be kept in mind as a simple rule to fall back on for the navigation
algorithm.

9.2 Local map

As  the  local  map  reflects  the  current  surroundings  of  the  robot,  the  carving
process must consider the change in the pose of the sensors. The behaviour of the
sensors can differ significantly with both sensor and detected object's orientation,
thus should influence the appropriateness and weighting when the sensor scans are
translated onto the map.

9.2.1 Sensor pose

By measuring the difference in the time to the previous sensor scan, it is possible
to modify the weight of the current scan such that rapid scans of the same area does
not influence the map as significantly as after waiting for some time to pass. This
rule encourages the robot to move around and explore large areas before returning to
analyse an already visited region. It also avoids having to use a slow scan frequency
which requires normalisations to avoid local maxima from forming if the motion is
not consistent. Similarly, using the change in the position of the robot for the weight
also  encourages  the  robot  to  move  around  and  observe  the  environment  from
multiple perspectives.

Although the two attributes above sound reasonable, the main contributor to the
ideal operation of the sensors is the correct sensor to surface orientation (Grabowski
et al., 2003). This is primarily due to the sensor signals being unable to reflect back
to the device if  the orientation is not  within a particular range, which can cause
incorrect distance measures to be made. By storing the orientation of the sensors
modifying the cells, it encourages the robot to observe the obstacle from multiple
perspectives (Feder et al., 1999). This will eliminate some of the problematic issues
with the approaches proposed earlier where the motion is not consistent, such as
when the robot simply moves back and forth against the object.

To illustrate the effects of the pose based weighting, three different approaches to
objects  are  analysed  involving  the  robot  moving  directly  towards  the  obstacle,
moving parallel to the obstacle's surface, and rotating the robot around the center to
allow multiple orientations. The three weight functions that are used include a simple
counter,  a  difference in  the  positions,  and a difference in  the orientations based
approaches. The interval between the scans is set as consistent to simulate the current
behaviour of the sensors, thus the difference in time based approach is not illustrated.
However, the end effect is similar to the distance based approach, with the exception
of the rotation, which is similar in behaviour to the orientation based approach. The
simulation is carried out for 10 scans of encountering a flat surface, a small object,
and an angled surface.
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When the robot moves towards the object's surface, the sensor reading adjusts
inversely to flag the overlapping region. Using a simple counter, the arc region is
marked as containing the object, which can change in length, but still marks multiple
cells as being consistently and highly likely to contain an object. The same occurs for
a small object, thus the two objects are indistinguishable and requires an alternate
measure to indicate the true location of the object. The distance measure resulted in a
similar result as above, as the motion encouraged the accumulation of the scores to
flag several cells as containing the object. Using the orientation weighted approach;
the cells are almost unmodified by the subsequent scans, as the orientation does not
change.  This  results  in  very  little  changes  to  the  map  thus  does  not  allow  any
confident decisions to be made and awaits for the robot to approach the obstacle
from a different angle. When facing an angled surface, the arced portions often do
not overlap with each other, thus the only algorithm that is effective is the negation
of the occupancy when the portions of the arc overlaps with a non-arc region. Figure
9.3 below illustrates the three approaches,  where the score of  the  counter  based
approach has been scaled down to a range of 0 to 1. The red regions indicate the
possible  locations  of  the  object,  while  the  blue  regions  indicate  the  regions  of
vacancy.

For the case where the robot moves parallel to the object's surface, the cells that
are encountered the most is in fact those which lie slightly in front of the surface.
This behaviour occurs from the fact that the actual surface is reached by a small tip
portion of the arc, which results in a jagged surface being modelled. Although this
can later  be analysed at  a higher  level  to  be converted to  a flat  surface,  it  can
contribute to misalignments of the surface if the robot is moving at different speeds.
Depending on whether the vacancy is or is not used in conjunction, some of the false
positive objects can be eliminated as they occupy a space that is marked as vacant by
different  scans.  Note  that  this  can  create  large  gaps  between  the  local  maxima
depending on the interval of the scans.

As figure 9.4 shows, the detection of small objects produces a highly desirable
result for two of the approaches, where the score at the obstacle is higher than the
rest. Depending on the number and the proximity of the scans, the difference in the
counter values will change, thus a filtering process is often required to identify the
local maxima or normalised using the total number of scans.

Although the angle from the sensor to the cell changes between the scans, this is
undetectable by the sensor and the sensor's orientation remains in the same direction.
This causes the orientation based weight approach to map the same shape, but with
low level of confidence, thus preventing false positive objects from being formed.
When  the  approach  is  applied  to  a  small  obstacle,  the  technique  is  unable  to
capitalise on the repeated access of the same cell since the orientation remains the
same. Once again, this approach requires re-scanning of the area at a later stage when
the orientation of the sensors are changed before any confident measures can be
established. Observing the angular  surface resulted in the same behaviour  as the
previous robot motion, but with the local maxima being wider apart.

The last of the scenario, which consists of rotating the robot around the center,
resulted in similar  behaviour to the previous case for  the flat  and small  objects,
except with the two weighted approaches being swapped around. The behaviour for
the angled surface showed that the orientation based approach formed the jagged
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surface  behaviour,  much  like  the  simple  counter  based  approach.  Figure  9.5
illustrates the behaviour for the last scenario.

Figure 9.3: Motion towards the object.
The  rows  represent  the  different  type  of  obstacle  encountered,
while  the  columns  represent  the  three  score  accumulation
strategies. The left being the simple counter, the middle being the
position based, and the right being the orientation based strategies.

Figure 9.4: Parallel motion to the object.
The  rows  represent  the  different  type  of  obstacle  encountered,
while  the  columns  represent  the  three  score  accumulation
strategies. The left being the simple counter, the middle being the
position based, and the right being the orientation based strategies.
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Figure 9.5: Rotation around the center.
The  rows  represent  the  different  type  of  obstacle  encountered,
while  the  columns  represent  the  three  score  accumulation
strategies. The left being the simple counter, the middle being the
position based, and the right being the orientation based strategies.

In all of the approaches above, the cases where the object  is detected slightly
before the surface can be corrected by increasing the scan frequency. This means that
the only problematic  cases are  the counter  and  position  based approaches  when
heading straight towards a flat or small object, as this incorrectly marks multiple
cells as being occupied. To avoid this from occurring,  the robot's motion should
encourage rotation, such that  the sensor  scans are at  varying angles to avoid the
undesired overlaps.

Using  the  orientation  based  approach  does  not  allow the  quick  detection  of
objects, as the robot would not be rotating while traversing to various locations, but
at the same time, does not form false positives. This strategy can be utilised for the
sonar  sensor  by constantly  rotating  the sensor  using  the servo  motor.  It  is  also
possible to avoid using the sensors located at the front and back of the robot, thus
eliminating the first  scenario  from occurring.  This will  allow the position based
approach to operate without the problematic case. An important issue to note is that
the real motion of the robot is never perfectly translational or rotational, thus the
cases with little effect on occupancy detection will generally find an obstacle at or
near the local maxima.

9.2.2 Weights

In many experimental trials, robots manoeuvre around in a set path and focus on
covering  more  distance  than  repeating  scans  in  the  same  area  to  improve  the
accuracy and attempting to disambiguate faulty measurements. This means many of
the  scans  are  spaced  apart  while  measurements  done  around  the  turning  points
sometimes contain more scans. The frequency of the scans thus reflects the speed of
the robot,  rather  than the complexity or  importance of  the region.  Although the
increased turning points may indirectly indicate the complexity of the surroundings,
this would only be applicable if the robot's motions were based on the presence of
obstacles. The  simple rule can be used to normalise the points to discard or scale
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redundant  measurements  so  the  density  information  can  be  used  to  distinguish
between an actual object and an erroneous reading. The approach is typically used in
conjunction with the vacancy counter to remove the false positive values first, such
that the surfaces that are formed do not include rough arcs.

Another commonly used approach is the detection of local maxima by simply
observing the scores between the neighbours. One of the issues with this approach is
the difficulty in identifying surfaces, as the number of scans dictates how prominent
the object is amongst false positives. This technique is used when specific points of
interest is desired, such as corners, which can be used in a post-processing phase to
construct a surface by connecting straight lines between them. This, of course, places
certain conditions on the types of surfaces it can observe.

When the scan is carried out in quick succession, the sensors are not given enough
time  to  move  or  change  its  orientation  in  case  the  sensor  signal  is  incorrectly
reflected. This is also true for the time interval, which can be too small to notice any
dynamic behaviour of the objects. By allowing the interval to become large enough,
the  sensor  reading  can  be  given  a  significantly  more  weight  to  emphasise  the
importance of the particular scan. Rather  than simply using a threshold value to
specify when the next scan can occur, a weight can be determined to scale the value
depending on the length of the interval. This is because the setting of a threshold can
cause an important scan to be missed, as the limitation in the reflecting angles may
not allow the surface to respond to many orientations. Since the maximum time or
position difference is unbound, the difficulty lies in finding a reasonable range to
spread the weight. This can be easily controlled for the orientation based approach
due to  the cyclic  nature by assuming that  the cell  size is  small  enough for  one
surface.

Using the attributes introduced earlier, the weighting function can allow the scores
to be accumulated more effectively. However, it is important to note the range, as
well as the non uniform number of scans that are carried out. To counteract this, the
number of scans that have accessed the cell  can be maintained, the vacancy and
occupancy can be  stored  as  separate  measures,  or  the  weight  used to  apply the
change in the occupancy can be proportioned using the current value.

The use of the counter allows simple calculation of the hit rate for a cell, which
can be used to  normalise the scores.  By maintaining a separate measure for  the
vacancy and occupancy, the two can be superimposed to note any inconsistencies, as
well as being able to maintain the number of accesses separately without it cancelling
each other out. The last approach can be implemented by observing the current value,
then weighting the change as a proportion of the remainder. This will contain the
value within a known range at all times, but can lead to rapid fluctuations if only one
value is maintained for the occupancy and vacancy. This issue can lead to significant
biasing of the last scan, as any change in whether it is occupied or vacant will modify
the score dramatically if the observation contradicts the previous observation.

With this in mind, the current implementation uses the orientation based weight
by noting the difference in the angles from the last  access and scaling the range
between 0 and 1.  Figure  9.6 below illustrates  the weight  function based on the
orientation.
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Figure 9.6: Occupancy and vacancy weight modification.
The red  line  illustrates  the  weights  used for  a  given  difference
between the previous and current sensor scan.

To distinguish the difference in the reliability between the two types of range
finders, another weight is introduced to scale the effect of the sensor readings based
on the typical fluctuations in the measurements. Although the fluctuations depend on
the  distance  to  the  object,  as  well  as  the  surface  types,  the  reliability  can  be
generalised in a rough manner by observing the consistency in various environments.
In the current implementation, the sonar sensors are given a higher weighting due to
the consistency in operation with a wider range of surface orientations. Since the
majority of  the fluctuation occurs from the surface orientation,  which cannot  be
determined, the derivation of  the most appropriate weight  is difficult  to achieve.
Instead, an arbitrary value of 0.15 is currently used for the IR sensor scans and 1 for
the sonar sensors. Using the low scaling coefficient reduces the rate of change in the
scores,  thus  preventing  large  fluctuations  in  the  occupancy  score  if  the  cell  is
mistakenly observed.

It is also possible to apply weights to the cells within the sector to account for
variations in the sensor behaviour, such as using the distance or the angle away from
the perpendicular direction of the sensors. However, this approach is not pursued
here as the model depends greatly on the reflective properties of the obstacles, as
well as the sensitivity of the sensors. One simple addition which could be considered
in future implementation is the use of the standard deviation values or the difference
in the distance to the obstacle due to the spherical surface in the distance measures to
create a region of potential termination of the sensor scan instead of the constant
shape.  This  may require  a  more  controlled  calibration  process  to  determine  the
appropriate weight functions to be applied to result in something resembling figure
9.7, where the brighter portion represents a higher weighting. Note that the reverse
will be applicable for the vacancy, where the black regions will be more likely to be
vacant than the white regions.
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Figure 9.7: Weight function based on position within the sector.
The grey scale indicates the weights used, where white represents
high and black represents low values.

When observing the behaviour of the sensors on various surfaces, it was noted
that although a surface may be correctly detected when observed from a particular
orientation, if the sensor's orientation is changed so it is too close to being parallel to
the surface, the scans will miss the surface and return an erroneous measurement. By
maintaining the occupancy and vacancy as different values, it is possible to detect
this occurrence by observing that both values are high.

It is important to note that the false positives will also be flagged as being a real
object due to the potentially large number of overlaps. To distinguish this, the surface
orientation can be used or a higher level analysis can be carried out based on the
connectivity of vacant regions and the proximity of clusters of occupied cells.

Since the surface orientation is gradually derived, this may not be a reliable source
to make use of. Similarly, the change in the distance measurements can be attributed
to many different events, thus the unexpected bypassing of obstacles cannot be the
solely attributed to incorrect orientation of the sensors.

A simple implementation to counter this is to note that the majority of objects are
continuous, which suggests that the change in the distance measure should remain
small if the same structure is being observed. This technique is used for the sonar
sensors, which requires the two readings to be similar to each other. As for the IR
sensors, the detection of an erroneous reading from sudden increase in the distance
measure remains a difficult task. Rather than reducing the overall weight of the IR
sensor  measurement  based  on  the  distance  measure,  the  operating  range  of  the
devices is kept small  to avoid the possibility of secondary reflections that causes
objects to appear behind another. Note that the median filter is able to remove many
of the noisy readings which are often caused by the sensor and not the obstacles.

By reducing the operating range, it also limits the positions of the spurious objects
which can often be placed inside real objects. Since the sensor scans are carried out
frequently, the boundaries formed by the real objects can be used to eliminate the
faulty objects using a filling algorithm to identify the actual objects.

9.3 Carving

The carving process  itself  must  occur  very  quickly  and efficiently,  especially
when the vacancy must be modified. This is due to the large area the sensor scan can
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cover, and the computational cost involved in the translation of the geometric shape
to the discrete grid cells. Since the boundaries of the sector can be determined from
the distance measure and the viewing angle of the sensor, it is possible to determine
if the cell's coordinate point lies within the sector, given the position of the sensor.
This reverse lookup process can be sped up using a simpler boundary, such as a
bounding rectangle, to reduce the search space for checking the inclusion of the cell.
Algorithm 9.1 can be employed for the reverse lookup process:

function ReverseLookupSector(map, sensor):
   for j in 0 to map.height:
      set relative_y = j – sensor.y
      for i in 0 to map.width:
         set relative_x = i – sensor.x
         set distance = √(relative_x 2 + relative_y 2)
         if sensor.distance >= distance:
            set angle = 2 * (tan -1 (relative_y / relative_x) -
             sensor.orientation)
            if sensor.view_angle <= angle:
               if sensor.distance == distance:
                  ApplyOccupancy(map[i, j])
               else
                  ApplyVacancy(map[i, j])

Algorithm 9.1: Applying occupancy or vacancy using reverse lookup.

The  idea  of  converting  the  sector  into  a  series  of  geometric  shape  can  be
employed, which can allow for a faster traversal of the shape's boundaries. By first
identifying the boundaries, it is possible to apply a filling algorithm with a linear
scan. In a similar fashion to the above algorithm, the two lines and the arc can be
traced,  while  maintaining  the  minimum  and  maximum  values  for  each  row,  or
column,  then  simply  iterating  through  the  stored  ranges  to  apply  the  vacancy.
Algorithm 9.2 illustrates this process. Note that for simplicity, the algorithm ignores
some of the boundary conditions and only considers the case where the sector is in
the first octant. This eliminates the issue of repeated values along the perpendicular
direction to the one being traced due to aliasing, which will be discussed in more
detail later.

function BoundarySector(map, sensor):
   set low.x = sensor.distance * cos(sensor.orienta tion –
    sensor.view_angle / 2)
   set low.y = sensor.distance * sin(sensor.orienta tion –
    sensor.view_angle / 2)
   set low.slope = low.y / low.x
   set low.const = sensor.y – low.slope * sensor.x
   set high.x = sensor.distance * cos(sensor.orient ation +
    sensor.view_angle / 2)
   set high.y = sensor.distance * sin(sensor.orient ation +
    sensor.view_angle / 2)
   set high.slope = high.y / high.x
   set high.const = sensor.y – high.slope * sensor. x
   set min = sensor.x
   set max = low.x
   set min_array[max - min] = { map.height... }
   set max_array[max - min] = { 0... }
   for i in 0 to low.x:
      set j = sensor.y + low.slope * i
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      if min_array[i] > j:
         min_array[i] = j
   for i in 0 to high.x:
      set j = sensor.y + high.slope * i
      if max_array[i] < j:
         max_array[i] = j
   set r_squared = sensor.distance 2

   for j in high.y to low.y:
      set i = √(r_squared – (j – sensor.y) 2)
      ApplyOccupancy(map[i + sensor.x, j])
      if max_array[i-1] < j:
         max_array[i-1] = j
   for i in min to max:
      for j in min_array[i-min] to max_array[i-min] :
         ApplyVacancy(map[i, j])

Algorithm 9.2: Applying occupancy or vacancy using boundary identification and
area filling.

Both algorithms above allow the appropriate grid cells to be found, but it does not
deal with partial coverage from aliasing errors. At the same time, it is possible to
improve  the  line  and  arc  tracing  algorithm  to  eliminate  some  of  the  redundant
computation involved.

9.3.1 Anti-aliasing

The problem of aliasing is often ignored  by many mapping tasks  or reduced by
using a smaller granularity for the cell sizes based on the level of precision that can
be achieved by the sensor scans. However, efficient anti-aliasing approaches can be
implemented to derive the proportional coverage of the cells using various sampling
techniques (Schilling, 1991). A sample set of anti-aliasing algorithms are illustrated
in figure 9.8, where the blue border represents the areas where the selection can
occur, while the red dots indicate the super-sampled cell. Certain algorithms, such as
randomised sampling algorithms, are more suited for irregular  or unknown  shapes
occupying  the  cell.  However,  for  regular  or  known  shapes,  the  super-sampling
algorithm can be controlled to exploit the expected coverage of the cell.

Figure 9.8: Sample super-sampling algorithms for anti-aliasing.
The red circles represent the cells selected, while the blue square or
circle  represent  the  region  in  which  each  of  the  selected  cells
occupy. The random case contains overlapping blue squares, thus
allowing multiple selected cells to be within one blue region.
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It is important to try and make use of high precision data when they are available
before applying any anti-aliasing algorithms. This includes values such as the robot's
pose over the apparent position in the map, or the sensor values over the truncated
distance values, as the aliasing can quickly lead to the degradation of the map's
quality.

9.3.1.1 Line

Given the line equations, it is quite simple to implement a line tracing algorithm,
which will efficiently trace the cells being intersected since the slope of the line stays
consistent.  Although Bresenham's algorithms are efficient  in tracing the line,  the
aliasing caused by the cell size is undesirable (Bresenham, 1965). Wu's algorithm, on
the other hand, allows for sub-pixel precision line drawing, but does not  directly
translate  to  the  filling  that  is  required  (Wu,  1991).  Figure  9.9  illustrates  the
components  of  the Bresenham's  line  drawing algorithm.  Note  the importance of
splitting  the  problem into  mirrored  and  flipped  version  of  the  first  octant.  This
assumption allows the algorithm to be simplified, as it restricts the horizontal and
vertical motion to fall into two distinct cases.

Figure 9.9: Components of Bresenham's line drawing algorithm.
Top left shows the translation of the coordinates to bring it back to
the first octant, top right shows an example line being drawn using
Bresenham's algorithm, and the bottom image shows the two cases
where one is a horizontal transition and the other being a diagonal
transition.

Based on the conditions used in Bresenham's algorithm, it is possible to devise an
anti-aliasing algorithm using the accumulated error values, or the intercept (Pitteway
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& Watkinson, 1980). The two kinds of shapes intersecting the cell can be determined
to be a triangle and a rectangle.  The triangle represents  the upper region of  the
coverage, while the rectangle extends from the bottom of the triangle to the bottom
of the cell.  Since the slope remains consistent  throughout the line,  the intersects
defining the points between the triangle and the rectangle can easily be traced. The
special case, where there is an overflow in the intersect  offset to the one above,
results in a portion of the triangle being registered for the upper cell, while the area
of the bottom cell must be reduced to account for the missing tip of the triangle.

The characteristics of the two basic shapes are easily determined through the slope
of the line and the intersecting point.  The area of the triangle always remains the
same, while the area of the rectangle is simply the intersection offset,  as it spans
across  the  whole  cell.  Handling  the  special  case,  where  the  top  of  the  triangle
requires trimming, involves slightly more work as the vertical intersecting point now
needs to be evaluated. Determining when an overflow occurs is a simple task of
checking for the difference in the rounded down intersect points at the left and right
hand sides of the cell. Using the difference between the intercept at the right hand
side  and  the  rounded  down  value,  the  area  of  the  triangle  can  be  derived  by
determining the distance from the vertical intersect point and combining it with the
slope of the line.  Since the algorithm assumes operation in the first  octant,  it  is
important to inverse the values depending on which octant it is actually applied to
and which side is within the sector.  Figure 9.10 illustrates the various components
used in the area based anti-aliasing algorithm,  while algorithm 9.3 describes the
sequence of operations.

Figure 9.10: Components of the area based anti-aliasing algorithm.
Left image shows the simple case where the line is contain within
one cell, while the image on the right shows the case where the line
intersects a vertical cell boundary.

function TraceUpperLine(map, xi, yi, xf, yf):
   set x = └ xi ┘

   set y = └ yi ┘

   set slope = (yf – yi) / (xf – xi)
   set triangle = slope / 2
   set endi = 1 + x - xi
   set lower = yi - y
   set upper = slope * endi
   set area = endi * (upper / 2 + lower)
   set lower = upper + lower
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   set excess = lower - 1
   if (excess > 0):
      set overflow = excess ^ 2 / slope / 2
      carve(map, x, y, area – overflow)
      area = overflow
      set y = y + 1
      set lower = excess
   carve(map, x, y, area)
   set x = x + 1
   for i in └ xf ┘ – x to 0:
      set area = lower + triangle
      set lower = lower + slope
      set excess = lower -1
      if (excess > 0):
         set overflow = excess ^ 2 / slope / 2
         carve(map, x, y, area – overflow)
         set area = overflow
         set y = y + 1
         set lower = excess
      carve(map, x, y, area)
      set x = x + 1
   set x = └ xf ┘

   set y = └ yf ┘

   set endi = xf – x
   set upper = endi * slope
   set endj = yf – └ yf ┘

   set lower = endj – upper
   set area = endi * (upper / 2 + lower)
   if lower < 0:
      set overflow = endj ^ 2 slope / 2
      carve(map, x, y, overflow)
      set area = 1 + area – overflow
      set y = y – 1
   carve(map, x, y, area)

Algorithm 9.3: Coverage area with line tracing.

Since the arc is placed at the end of the triangle, it is not necessary to complete a
triangle  shape  before  traversing the  arc  to  form  a  bound  for  the  sector.  When
executing the algorithm for the other line, it is important to invert the area that is
derived, since it is now the area above the line that exists within the sector.

The end points are processed in a slightly different way, as the area is bounded by
the starting or ending point. This simply requires the two shapes to be derived using
the new bounds. The algorithm currently does not consider the case where the cells
are entered multiple times, but will be discussed later on during the filling phase,
which will  correct  any duplication of  the areas from the overlap.  Note that  post
correction techniques like this can potentially result in the overflow of values from
the expected range,  thus must  carefully consider  the data type used to  store the
intermediate values.

While optimisation algorithms such as the use of repeated line segments can be
implemented with ease, the level of precision often limits the usage, as well as the
introduction of overheads in dealing with the edge conditions. Alternate optimisation
algorithms will be discussed later to improve the efficiency of the operations that are
performed as part of this algorithm.
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Table 9.1: Performance comparison of drawing random lines of length 500 units.

Algorithm Time (ms)

Line Complete

Bresenham 0.0029 86.48

Wu 0.0037 168.78

Super-sampling (256 random) 2.28 173.16

Super-sampling (256 grid) 32.26 201.88

Area based anti-alias 0.0059 140.94

The results in table 9.1 show that the proposed approach performs reasonably well
compared to the other algorithms. The first column represents the time used in the
traversal,  while  the  second  column  includes  the  time  used  to  modify  the  cell
attributes. Since the anti-aliasing algorithms traverses more cells than Bresenham's
algorithm, the overhead is increased in the proposed algorithm as the slope of the line
in the first octant equivalent approaches 1.

9.3.1.2 Arc

With the two lines traversed, the two open ends of the sector can be joined by an
arc with similar intentions to the lines. Traversing the cells on an arc is slightly more
complicated than the line, as the vertical and horizontal shifts changes proportionally.
Using the circle drawing algorithm like Bresenham's allows for the whole pixel to be
found, but it  does not allow the exact  area covered by the  traversal (Bresenham,
1977; Van Aken & Novak, 1985).

Determining  the  area  of  occupancy  can  be  done  using several  different
approaches, which can be categorised into two types. The first is the exact approach,
where the precise area within the arc is evaluated by determining the horizontal and
vertical intersection points and using various geometric shapes to derive the bounded
area. The second category is the approximate approach, where certain amount of
error is allowed by replacing the arc shape with a simpler  shape that allows faster
processing.

The  first  of  the  exact  approach  involves  splitting  and  deriving  the  areas  of
different geometric shapes within the cell. The cell's occupancy can be represented as
the combination of  a rectangle, a triangle, and the convex hull of the arc, which is
bound by the radius of the sector and the two intersecting points.  Only the simple
case where the arc intersecting the top and bottom of the same cell will be discussed,
as the complex case where there is a horizontal  intersect  is just  an extension using
one more primitive shape. The area of the rectangle can be derived using the smaller
of the two intersects, while the area of the inner triangle can be evaluated using the
difference between the intersecting points. To derive the area of the convex hull of
the arc, the area of the triangle portion can be subtracted from the area of the sector.
The process and formula for evaluating this area can be seen in figure 9.11 below. R
is the distance from the center of the circle to the intersect point of the cell, D is the
distance between the two intersects and ϴ is the angle between the two radii.
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Figure 9.11: Cell coverage derivation using exact points.
The green lines show the radii, the red curve is the bound of the
circle, while the blue line joins the two intersects to form a triangle
with the radii.

The second of the exact approach uses the integration approach by either applying
a double integral or splitting the area into sections like before and evaluating the area
of each component. Using the double integral approach, the area can be evaluated by
assuming unit elevation of the surface. The equations only require the coordinate
values of the cell, thus is only complicated by the circle formula to bound the arc.
The derivation for the double integral can be found in figure 9.12 below. This process
can be visualised as taking the integral over the arced region, then subtracting the
rectangular area outside the cell.

Figure 9.12: Cell coverage using double integral.
The green lines show the radius of the circle and the red curve is
the bounds  of  the  circle.  The  blue  areas  represent  the  portions
where the integration is evaluated over.
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Although some of the computation can be reused, there are distinct bottlenecks
when evaluating the inverse trigonometric functions and the square roots. Although
there  are  obvious  signs  of  slowness,  the  approaches provide  an  accurate  and
consistent time performance. The processing time for the two approaches can be seen
in table 9.2 below, where the arcs from sectors with a radius of 500 with a viewing
angle of 45 degrees were traced from 1000 different randomly selected positions.

Table 9.2: Performance of the two exact arc drawing algorithm.

Algorithm Time (ms)

Geometric 0.39

Double integral 0.23

Note that  both  of  the above approaches  require  all  the intercept  points  to  be
evaluated.  This  involves  a series  of  calculation between the starting and ending
points to determine the x and y pairs for every cell boundaries. It is beneficial to keep
the previous intercept buffered, much like that shown in chapter 6 or to calculate all
intercepts first, then use those to iterate through the arc. However, the most time
consuming  component  of  the  approaches  are  the  trigonometric  function  calls,
especially the inverse functions.

To improve the speed of  the  algorithm,  several  approximation algorithms are
considered. The evaluation of these approaches consists of the accuracy, processing
speed, as well  as the appropriateness of the assumptions or constraints placed to
achieve the simplification.

The first approach involves the use of the Bresenham's arc drawing algorithm,
where the error value is accumulated until it overflows. The absence or occurrence of
the overflow determines whether a  vertical transition has occurred or there was a
diagonal transition. Triggering of the overflow, which is also the amount of error that
has accumulated, depends on the cell sizes, thus controlling this can allow for a more
precise tracing of the arc. Although the cell's characteristics are determined by other
constraints in the whole mapping module, virtual cells can be generated temporarily
to allow arbitrary precision for the purpose of evaluating to the desired accuracy.

A critical decision to be made here is the level of precision to be used for the
virtual cells. Putting this in the context of a graphic rendering scenario, each of the
RGB colour uses 8 bits to distinguish a particular colour. Therefore, the level of anti-
alias precision required would be 2-8 of the occupancy of the pixel, assuming the cell
occupancy is directly proportional to the intensity. Since there are two dimensions to
the pixel, the granularity required for each axes would be 2-4. With this in mind, the
Bresenham's circle drawing algorithm can be used to traverse  the 16 virtual cells
within the single cell, as illustrated in figure 9.13. As the traversal is made, the virtual
cell positions within the cell can be used to accumulate the overall cell occupancy.
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Figure 9.13: Arc traversal using Bresenham's algorithm through virtual cells.
The curve represents the bounds of the arc, the dark cells indicate
the boundary cells,  while  the  light  cells  are  all  accumulated  to
evaluate the area of coverage.

Although the potential  for the improvement in efficiency exists,  this  approach
greatly depends on the chosen precision and the level of errors it is allowed to make.
The algorithm is still  prone to errors  when accumulation of sub-precision values
overflow. That is, using the previous example, when the average error in each of the
24 cells is more than 2-(4+8). Based on this, the minimum divisions that are required to
maintain the same level of precision can be derived. Since the amount of error in
each  virtual  sub-cell must  be  less  than  the  precision  divided  by the number  of
divisions,  the  minimum  value  was  determined  to  be  precision-1.  The  level  of
precision  that  is  achieved  greatly  influences the efficiency,  thus  the approach  is
limited  to  certain  situations,  where  the  level  of  precision  can  be  set  quite  low.
Algorithm 9.4 shows a simplified arc traversal for the first octant using virtual cells.

function ArcTraversalVirtualCell(radius, precision) :
   set radius = └ (radius * precision) ┘

   set x = radius
   set error = 0
   set loop = radius / √2
   for y in 0 to loop:
      set sum = 0
      for p in 1 to precision+1:
         set add = x % precision
         set sum = sum + add
         set error = error + 2 * y + 1
         if error > 0:
            if add == 0:
               carve(x / precision, y / precision, sum /
                precision 2)
               set sum = p * precision-1
            set error = error – 2 * x + 1
            set x = x – 1
         set y = y + 1
       carve(x / precision, (y-1) / precision, sum / precision 2)

Algorithm 9.4: Arc traversal using virtual sub-cells.
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The basic idea of integration involves splitting the function into manageable parts
and summing the area of each component. By controlling the size of these parts, it is
possible to control the accuracy and the speed, as the parts approximate the original
function  more  closely.  This  technique  was  applied  in  the  above  approach  by
modifying  the  vertical  and  horizontal  precision,  but  a  similar  approach  can  be
implemented by decomposing the sector into a series of triangles with varying angles
from the origin of the sector.

This process is based on decreasing the area of the convex hull  of the arc by
splitting the cell into two virtual cells, thus introducing another intercept to be used
as the vertices of triangle. This allows smaller triangles to form within the convex
hull area to better approximate the arc. This process is illustrated in figure 9.14. The
two perspectives differ in that the approach using the triangle based at the origin
requires a numerous use of trigonometric functions for evaluating the area of the
virtual triangles, whereas the introduction of small triangles can be achieved quite
easily using the intersection points. As well as being able to specify a fixed number
of divisions to be made, the process can be carried out recursively until  the area
converges to the desired precision which is when the area does not increase by a
certain amount.

When considering the granularity of the divisions, it is important to determine the
appropriate point to divide the cell to best occupy the convex hull. To identify the
best location, the area of the triangles must be evaluated to maximise the coverage.
Since the area of  the triangle within  the sector  is maximised when an isosceles
triangle is formed, this assists in identifying the optimal split point, as shown in 9.15.
ϴ is the angle to the line joining the intersecting points, R is the radius, D is the
distance between the intersecting points joining line and the arc from the mid-point.

In  this  particular example,  the best  location for the split  is  quite close to the
halfway point. Using this fixed value allows for a faster evaluation with reasonable
accuracy in specifying the required sub-divisions. However, since this is dependant
on the elevation of the cell from the originating point of the sector, the placement of
the optimal sub-division point  can vary along the arc traversal.  Since the arc is
evaluated in the first octant, the approximation of the sub-division point to the half-
way point is quite reasonable. Algorithm 9.5 below shows a simplified sub-division
algorithm with a fixed number of divisions at the half way point.

function FindArcAreaTriangleDivision(radius, split,  x1, y1, x2,
 y2):
   set lower = y2
   set right = √(radius 2 – lower 2) - └ x2 ┘

   set sum = 0
   for i in 0 to split:
      set upper = lower + 1 / split
      set left = √(radius 2 – upper 2) – └ x1 ┘

      set sum = sum + (right + left) / (2 * split)
      set lower = upper
      set right = left
   return sum

Algorithm 9.5: Approximate arc tracing using sub-divisions.
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Figure 9.14: Illustration of subdividing the triangle.
The red curve illustrates the bound of the arc, the green line and
region shows the base area with no subdivision, the blue line and
region  shows  the  extended  area  being  occupied  with  one
subdivision, and the purple region represents the extra area after
two subdivisions.

Figure 9.15: Area of coverage at various split points.
The red represents the bounds of the sector, the blue line is the
radius which bisects the sector, and the green line joins the two
intersects of the cell.

One  of  the  characteristics  of  the  above  approach  is that  the  value  always
converges from one direction, thus will always be less than the desired amount. As
observed previously,  this  amount  can  be predicted,  but  doing so efficiently is  a
difficult task. The error trend can be modelled as a polynomial function, but doing so
requires  more computation and still  consists  of  slight  approximation  errors.  The
derivation  of  the  polynomial  function  itself  is  costly,  as  this  depends  on  the
characteristics of the sector, thus cannot achieve a high performance.

Table 9.3 illustrates the two approximation approaches against the Bresenham's
arc drawing algorithm to compare their performances. The difference in the accuracy

171



9.3.1.2 Arc

is  also  shown  to  note  the  benefits  of  the  algorithms  against  the  precise
implementations.

Table 9.3: Performance of approximate arc drawing algorithms.

Algorithm Time (ms) Coverage (%)

Bresenham 0.0089 137.29

Virtual cell (8) 0.84 91.17

Virtual cell (16) 0.97 95.83

Virtual cell (256) 1.62 100.04

Split (1) 0.024 98.89

Split (2) 0.035 99.72

Split (4) 0.077 99.93

Split (8) 0.11 99.98

Split (256) 3.53 99.99

The results indicated that the performance of the approximate algorithms were
quite  reasonable,  especially  the  splitting  algorithm.  The  small  processing  time
overhead of the algorithm showed very attractive results while maintaining a high
level of accuracy.

Similarly to the line drawing, the end points of the arc can be evaluated separately
to the arc. Since the anti-aliasing algorithms mark the amount of occupancy in a
particular direction, any cell  that overlap during the three traversals suffers from
excess coverage. This is because the algorithms assume complete coverage of one
side of the line or arc. During the traversal, the cells that are accessed are marked to
represent the bounds for a filling algorithm. This is done by marking four values for
each row or column, parallel to the direction of the filling process. Two of the four
are used for the outer boundaries, while the other two are for the inner boundaries.
Figure 9.16 shows the various components of the boundary points.

Figure 9.16: Tracking 4 boundary values for the filling algorithm.
The four  sector  intersects  are  maintained  to  determine  which
regions require modification or filling.
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The purpose of the outer boundaries is to limit the scans when filling,  while the
region between the inner boundaries indicates whether an overlap has occurred. If the
regions do not overlap, the cells in between were not traversed during the definition
of the boundary, thus require the scores to be changed as if it  was fully covered.
However, if the regions do overlap, the cells in between has been visited twice, thus
must be adjusted to remove the excess coverage. The excess amount, as shown in
figure 9.17, is the size of one cell coverage, thus can be applied quite easily. As for
the end points, they require special treatment since the cell coverage excludes certain
portions of the cell.

Figure 9.17: Excess coverage from repeated traversal.
The left case shows the modification required at the origin of the
sector, the middle shows the case where both the upper and lower
bounds of the sector traverse across the same cell, and the right
case illustrates modification required where the line bound and the
arc bound occur in the same cell.

Since the occupancy is applied to the cells in the arc, it is difficult to note which
cells, and how much of the cell, contains an object. It is possible to mark the adjacent
cells along the arc as potentially containing objects, but this still does not allow for a
clear indication where the object may lie. For this reason, the other cells that are
visited are all flagged as vacant based on the proportional coverage of the cell.

9.3.2 Optimisation

With the anti-aliased carving algorithm defined, optimisation techniques can be
applied to improve its performance even further. As previously mentioned in the arc
drawing algorithm, it is sometimes possible to know the required precision before
hand. This may come from the granularity of the required result, the precision of the
inputs, or a simple constraint  defined for the system to prioritise faster processing
over accuracy. The limited range in precision can be combined with other weighting
values to simulate a higher range, thus allowing short cuts in the carving algorithm.

So far, the algorithms have not specified the data type to be used for the values.
The anti-aliasing algorithms that make use of trigonometric or square root functions
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operate using floating point precision data types, as they have been implemented as
generic functions with a wide range of possible values. However, with a specific
range of values defined and by using techniques that do not rely on these generic
functions, it is possible to make use of fixed point precision data types for faster
processing. By knowing the range of the values, the bits can be shifted manually to
allow full utilisation of the available bits for the given data type. This then allows the
remaining bits to be used to represent the decimal values, thus the approach simply
simulates a scaled version of the values so no decimal value is required. Figure 9.18
illustrates several mapping depending on the range of values using an unsigned 16 bit
data type.

Figure 9.18: Implicit decimal point shifting.
The top  example  shows  8  bits  being  used  for  the  fraction
component,  the  middle  shows  all  16  bits  being  used  for  the
fraction, while the bottom case shows the case where high order
bits are replaced with low order bits.

The  applicability  of  this  approach  depends  upon  the frequency  of  arithmetic
operations, the acceptable range of the value, the number of available bits, and the
performance overheads in manually shifting the values. Since the range of the cell
occupancy has an upper limit, the available bits can be used to represent the low
order  values.  The operations within  the carving process are  also very frequently
repeated, thus improving the utilisation of the proposed approach. The values can
then be limited by powers of two's to improve the efficiency in shifting the range, as
well  as  conditional  statements.  It  is  possible to derive and use a multiplier  or  a
constant offset, but this management of values introduces unnecessary overheads and
negates the benefit of using a fixed point data type.

The shifting and the management before each of the arithmetic operations depend
on the operator being used. For an addition, the maximum range doubles and the two
operands must be aligned correctly. That is, the implicit decimal point must line up,
as  the  alignment  determines  the  pair  of  bits  being  added.  For  subtraction,  the
maximum range does not change unless dealing with a negative operand. Unless the
sign of the value is known, the operands may require shifting before the subtraction
can occur. Since the behaviour of the algorithm is known, as well as the signs of any
values that are derived, the operands simply require the adjustment for alignment.

For multiplications, the range can increase dramatically, as the implicit decimal
point positions must be added. This often leads to excess bits being introduced which
require trimming off, but this happens automatically at the end of the most significant
bits, thus the new range must be anticipated and appropriately shifted before the
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operation. This, however, means that the low order bits are lost in the process. It is
possible to select how much of each operand to shift, as long as the resulting value
does not overflow. Unlike the addition and subtraction, the two operands do not need
to  be  aligned  as  each  bit  is  multiplied  with  the  other  operand.  That  said,  it  is
advantageous for both operands to have equal positions, as a biased trimming of just
one  operand  leads  to  larger  errors  in  the  calculation.  Figure  9.19  illustrates  the
workings of the multiplication process.

Figure 9.19: Illustration of the multiplication process.
The initial shifting forces a loss in the precision to make room for
the multiplication to occur and fill in the low order bits from the
multiplication result.

The division operator provides the most challenging problem, as there are no clear
and reasonable range defined when two operators are divided. Another interesting
characteristic is that the divisor must be shifted down such that the result will contain
enough bits of information rather than filling up with zero's. This often means a
significant portion of the right operand is discarded and the inverse amount is lost
from the result. Unlike with multiplication, where the low order bits are populated
after the multiplication, the division does not allow for the filling of the high order
bits  through  automated  shifting  during  the  arithmetic  operation.  The  inaccuracy
introduced by this approach can be ignored if the precision requirement can be set to
a very low value, or a larger data type can be used for this operation. Using a larger
data type, the dividend can now be shifted up without the loss of information. By
shifting the left operand appropriately, the result can later fit back into the original
size of the data type. Figure 9.20 illustrates the division process using a larger data
type before the operation.

Figure 9.20: Division using a larger data type.
The loss in the low order bits during the division means a larger
data type is used and padded before the division takes place.

175



9.3.2 Optimisation

These scaled fixed  point  arithmetic  techniques  require careful  tracking of  the
implicit decimal point positions and pre-empting of the changes in the range after the
arithmetic operations. Since the shifting operations are required before many of the
operations, certain blocks of operations can anticipate the overall change in the range
and make the appropriate range shifts early on. This can sometimes cause the loss of
precision, thus must be used with care so any information that is lost does not have a
significant effect on the final result.

Sample code for the shifting technique can be seen below, which is taken from the
line drawing algorithm. To simplify the debugging process, the variables are labelled
with the position of the decimal  point.  Note that  some of the range is not  fully
utilised,  as  operations  later  on  will  require  the  values  to  be  shifted  into  the
appropriate multiple.

UINT ui23_x1 = (UINT)(x1 * (1<<23));
UINT ui23_y1 = (UINT)(y1 * (1<<23));
UINT ui23_x2 = (UINT)(x2 * (1<<23));
UINT ui23_y2 = (UINT)(y2 * (1<<23));
UINT ui23_dx = ui23_x1 - ui23_x2;
UINT ui23_dy = ui23_y1 - ui23_y2;
UINT ui30_slope = (UINT)((((ULNG)ui23_dy)<<30) / ui 23_dx);
ULNG ul32_inv = (((ULNG)ui23_dx)<<32) / ui23_dy;
UINT ui30_triangle = ui30_slope>>1;

Since the approach has limited places where it can be applied, the implementation
is currently restricted to the sector carving algorithm. This meant that the floating
point values needed to be mapped to and from the fixed point types at the start and
end of the algorithm.

The performance of the optimisation is summarised in table 9.4, which show a
small amount of improvement for the operations. It  may be possible to apply the
approach elsewhere,  but  the difficulty in  managing  the data  means a  significant
amount of work is required which may not yield any benefits due to the overhead in
converting between the floating point numbers, as well as when pre-defined function
calls that require floating points are required.

Table 9.4: Performance of manually specifying the decimal points.

Operation Time (x 10-6 ms)

Fixed point Floating point Shifting

Addition 3.12 4.758 4.086

Subtraction 3.416 5.337 4.492

Multiplication 3.822 7.597 5.226

Division 13.057 27.487 15.584

9.4 Global map

The global map, which is used on top of the local map layer, must address four
key  issues for implementation. The first is the  list of attributes to maintain, as the
layer will be interested in a different set of information to the local map. The second
issue involves the updating of the contents given the local map, as the inputs to this
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layer are no longer directly from the sensors. The consistent interface simplifies the
task, but must consider the current state of  both  maps when being integrated. The
third issue  is  in  the  management  of  the  attributes representing the environment,
specifically in terms of compression when the robot explores an area beyond its
initial expectation. The  final issue is the use of the map for a large scale analysis.
This may include connectivity, path finding, or the detection of anomalies through
superimposition of other maps.

9.4.1 Attributes

While  the  global  map  is  largely  an  amalgamation  of  many  local  maps,  the
differences in the level of detail and viewing area must be reflected by the attributes
that are maintained within. Instead of storing the multiple attributes that make up the
occupancy in the local map, a single value can be used to represent the occupancy.
This allows a reduction in the number of attributes to maintain, as well as allowing a
firm value to base various high level algorithms on.

When combining the inconsistent readings of occupancy and vacancy, the regions
with vacancy can be flagged as not containing any objects, even if the occupancy has
also been flagged. Due to the shape of the sensor signals, the accumulation of the
occupancy would have resulted from the overlaps in the arcs just before the surface.
With this in mind, the transition between a vacant and non-vacant cell is used to
identify the location of objects.

The occupancy is used to distinguish the regions it has already observed, as the
occurrence  of  the  transition  between  vacancy  and  occupancy  indicates  that  the
boundary has been observed. This measure allows the sides of the sector to remain
ambiguous until more scans are carried out.

An attribute which has not been well used until now is the surface orientation.
This attribute, when combined amongst other cells, can increase the efficiency in
forming continuous surfaces of  obstacles, as it can guide and validate the possible
connectivity between adjacent cells. Since the higher level analysis will deal with the
formation of shapes and patterns, the global map must also carry this information to
remove the irregular jumps between layers.

Another attribute to be included is the presence of dynamic obstacles. Since the
map is built up over a significantly longer period of time than the local map, it is
possible to identify changes within the obstacle's arrangement. This includes chairs
and doors being moved around, as well as the presence of people that obstruct the
sensors temporarily. These obstacles tends to be quite small in comparison to the
static obstacles, thus the aliasing effect can hinder the localisation of these objects
later on.

The last attribute to be maintained is the ability to traverse through the cell. This
attribute is required as the arrangement of the objects within the cell can be lost if the
map is compressed. The details of this attributes will be described later.
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9.4.2 Update

Being on a separate layer  to the local map, the global  map can assume many
simplifications  provided  by  the  filtering  which  occurs  at  the  lower  level.  This
includes dealing with noisy sensor readings, uniform size and range of cell attributes,
as well  as any cleaning-up from higher level analysis carried out using the local
information. The updating of the global map requires the timing, the size and also the
weighting of the attributes to be considered before the superimposing can occur.

Although synchronisation between the maps is desirable,  excessive occurrence
results in  a large processing load and a reduced purpose of the extra  layer, as the
environment in the local map is not given enough time to accumulate.  The process
should take place when the local map has built up enough information, as well as just
before certain information is discarded due to the area leaving the viewing area of the
map. The first strategy to be considered is a timer based approach, where the updates
occur at a specific interval. The second and third approaches both involve analysis of
the robot's state in determining the need to update. The simpler approach is done by
analysing the amount of change to the local map has occurred since the last update,
which can be derived from correlations, as well as accumulating the changes it  has
observed. The last approach involves the use of a traversal accumulator, where the
relative or  absolute distance traversed by the robot is  used  to trigger  the update
process.

The timer based approach and the accumulation of change approaches have some
common grounds when used with particular settings.  The rapidly scanning range
finders poll and update the local map at regular intervals, thus the number of scans is
proportional to any given time period. The difference occurs when the area of each
scan is considered, as the presence of obstacles will modify the rate of area covered
per scan. To make sure no information is lost, the timer value must be reduced to
consider  the  robot's  maximum  velocity.  While  this  takes  care  of  most  normal
motions,  it  is  possible for  the robot  to  move backwards  and forwards  suddenly,
possibly trying to escape from a dead end. In situations like this, the timing interval
between cells being introduced then being removed at the border of the map is very
small.  Therefore,  using  just  the  timer  would not  suffice  as  this  will  require  too
frequent updating. Similarly, accumulating the amount of change is often not enough
to handle these tricky cases, although the ability to detect dynamic objects with ease
can be quite attractive.

Accumulating the distance traversed behaves slightly differently, in that the maps
would not be updated if the robot remains stationary. This characteristics means it is
more difficult to detect dynamic objects, as the movement of the robot is required
before  the  map is  updated  and  analysed.  By  setting  a  simple  threshold  for  the
absolute distance, this approach would encounter similar issues to the above. With a
simple modification, the threshold values can be set to each of the four directions to
handle the problematic situations of rapid changes in the direction.

Depending on the availability of resources, it  is be possible to combine some of
the approaches above to increase the utilisation of the available information. The four
way distance  threshold  approach  provides  the  safest approach without  excessive
updating,  thus can form the base condition.  The ability  to  form the global  map
without motion can yield greater flexibility in the sensors used, such as the sonar
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sensor on top of the servo motor, which can sweep a large area even while the robot
is stationary. These scans typically allow greater precision than those from motions
by the robot, and can also be used to track the path of dynamic objects with ease. For
this reason, a secondary condition is introduced which accumulates the amount of
scans conducted to trigger the update.

Rather than using an area based accumulator, an angular coverage or a simple
counter can allow for a more consistent and efficient performance, as the viewing
angles of the sensors remains constant. Using this also allows the map to update
while the robot stops to decide what to do, such as path finding. Depending on what
portion is updated, it can be advantageous to reset both the distance thresholds and
number of scan counter when the update occurs to reduce the unnecessary updates.

The frequent merging of the local map can result in excessive copying if clipping
of the uninteresting potions are not done. The simplest approach is to copy the entire
local map across, which has little overheads in implementing the algorithm and also
allows more correlations to occur if the alignment is considered as a reinforcement
measure  to  the  pose.  Although  this  allows  for  the  confidence  measures  to  be
increased, many of the cells remains unchanged from obstruction, which should not
affect the confidence value of the global map, thus are unnecessary.

It is possible to flag the cells when they have been modified since the last update,
thus allowing for selective updating. However, individually determining whether it
has been modified can consume precious processing time. Since the flagging of the
modified cells occur in groups due to the span of sensor scans and the density of the
flagged cells  are  high for  areas around the robot,  it  is  possible  to  make use of
template  shapes  which  groups  the  modified  areas.  Although  the  modified  cells
around the robot will tend to form a circular pattern, traversing this shape can be
quite  costly  unless  a  change  is  made  to  the  coordinate  scale,  such  as  to  polar
coordinates. Instead, assumption that the sensors will scan an area consisting of flat
surfaces is used to allow the area to be rectangular, thus allowing a simple sequential
iteration of the region. A bounding rectangle can be maintained for the sensor scans,
which indicates the recently modified region within the local map.

The different conditions which trigger the updating signify the need for analysing
the different portions of the map. When transition of the robot is about to lead to the
discarding of  a portion of  the map,  only that  portion is  required to  be updated.
Similarly,  when the number of  scans has reached a certain  value, it  is  the areas
around the robot that have been affected by the sensors which require updating. By
distinguishing the two categories,  it  is  possible to  isolate the cells  involved and
reduce the processing load. Note that the bordering regions are also affected by the
bounding rectangle, thus typically only covers a small portion. Figure 9.21 illustrates
the two regions that are updated under the scan counter and motion based conditions.
Currently, the number of scans used for the threshold is equal to twice the number of
angles the sonar is able to point to, which allows for a rough scan of the complete
viewing area before the update occurs.

The alignment between the robot and the environment can potentially reduce the
number of processed cells within the bounding rectangle if the rectangle is kept at the
same orientation  as the obstacles in  the scene.  It  is  possible to improve this  by
initially orienting the robot to suit the overall trend in the obstacle's surfaces, or by
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performing  an  initial  scan  to  calibrate  the  initial orientation.  The  orientation
adjustment should be avoided after the robot has started producing the map, as it will
require interpolation of the cell attributes to rotate the map or a resetting of the map
with the new coordinate system. Since this is just a small optimisation consideration,
no great emphasis was placed on these techniques.

Figure 9.21: Regions within the local map to be combined with the global map.
The colour coded regions correspond to the rectangle being copied
over to the global map.

With  the  portions  of  the  local  map  selected  for  updating,  the  cells  can  be
superimposed  over  the  global  map  with  an  appropriate  weight  to  merge  the
information together. Since the local map is intended for portraying the current state
of the surrounding environment, the global map should be greatly influenced by the
local  map.  However,  the  attributes  should  be  treated  individually  to  allow  for
adaptation in its own way.

The occupancy and vacancy values are both very crucial to the global map, as it
contributes to several other attributes. It is important to try and use the up to date
values for the map, as the change in the occupancy yields useful information. As
noted earlier, the transition between the vacancy and occupancy values allows for the
interesting cells to be determined. However, it is the combination of high occupancy
and high vacancy transition that yields the desired information about objects. This is
used to identify the regions that will increase the interestingness value, while the rest
of the regions carved out from the vacancy can be used to reduce the interestingness.

It is important to allow the transition to be noticed, but at the same time, the value
should remain within a set range so they can be compared amongst other values
within the map. By allowing the three states to be represented using the one value,
where a high interestingness is the boundary to the objects, low interestingness is a
vacant area, and the midpoint, which represents uncertainty, either from not having
visited the cell or when there is confusion with regards to the interestingness. To note
the dynamic objects, the interestingness value will transition between high and low
very quickly. Another way to look at this is to say that the dynamic object is found if
the interestingness moves towards the midpoint. This allows the interestingness value
to be adjusted normally to add confidence about the structure of the cell, while the
discrepancy in the change to the value can be used to add to the attribute representing
the dynamic state of the cell. With this in mind, a weighted averaging can be carried
out such that the newer value is given more precedence.
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In future implementations, it may be possible to make use of a frequency counter
to observe the number of scans the cell has received and use that to weigh between
the old and new values. In the current implementation, a weight value of 0.75 is used
along with the change in the vacancy of the surrounding cells and the occupancy.

Interestingnessnew = (Occupancy – ∆vacancy + 1) / 2 (44)

Interestingness = Weight * Interestingnessnew + (1 – Weight) * Interestingnessold (45)
The  change  in  the  interestingness  results  in  the  modification  of  the  dynamic

obstacle  attribute,  as  a  rapid change signifies  the presence of  a dynamic  object,
misalignment  caused by the incorrect  pose,  or  an  incorrect  sensor  reading.  It  is
possible to detect the misalignment by observing large quantity of the change in the
interestingness at the boundary between the vacant and occupied regions. This will
be discussed further in chapter 11. Due to the filters provided by other modules, the
majority of sensor errors can be ignored. Those that do occur are often detectable
during a higher level analysis, such as using the connectivity.

By using the difference in the interestingness as the modifier, the confidence value
of dynamic content within the cell can be shifted up or down. One thing to keep in
mind  is  that  the  change  in  the  occupancy  to  and  from  vacancy  increases  the
likeliness,  while  the  lack  of  change  should  reduce  the  probability  that  the  cell
contains dynamic obstacles. However, since the movements of these obstacles do not
necessarily  occur  frequently,  it  is  also  plausible  to  simply  ignore  the  case  of
reduction in the confidence and allow the value to continually increase.

Since this range should be limited, the modifications must be scaled so it does not
cause any overflow. By using the magnitude of the change in the interestingness as a
proportion of the remaining value, the accumulation can be limited to a specific
range.  This  can  be  seen  in  the  following  formula,  where  the  non-scaled
interestingness is used to determine the change.

Dynamic = Dynamicold + (1 – Dynamicold) * | Interestingnessnew – Interestingnessold | (46)
As the surface orientation measure is simply a rough guide to assist the grouping

of cells that represent a surface, this attribute is not as important to maintain with
precision.  Due  to  the  heavy  reliance  on  sensor  scans  from  a  wide  range  of
orientation,  the  information  carried  within  the  cell  from the  local  map  is  often
incomplete and can be misleading. With the sensor scans being reasonably frequent,
the surface orientation can be modified to a mask to represent the positions of the
neighbouring occupied cells using a binary flag in each of the 8 directions, as shown
in figure 9.22.

Although this mask can be derived by simply observing the arrangement of the
interesting  cells  within  the  global  map,  the  surface  orientation  can  potentially
anticipate where the interesting cell will be located, thus allowing confirmations and
discrepancies to be evaluated. Although this attribute is not relied upon in the current
implementation, it is present for potential future use.

The update process from the local  map to the global map can be seen in the
following series of diagrams in figure 9.23, which show the updates from transitions
and number of scans. The left column illustrates the state of the local map, while the
middle and the right shows the global map before and after the update. The top row
represents the update from transition, while the bottom row is where the robot stays
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stationary and the number of scans is used to trigger the update. The interestingness
is shown as blue and the dynamic objects in green.

Figure 9.22: Surface orientation to adjacency mask.
The green numbers represent the bit numbers being toggled, while
the red and blue lines represent the boundaries of the angle and the
corresponding bit number.

Figure 9.23: Updating of the global map.
Top row shows the case where the number of scans has triggered
the update, while the bottom shows the update being triggered by
transition. The left column is the local map, the middle column is
before the update, while the right column shows the global map
after the update.
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As the explored space increases over time, the  map must  be adjusted to remain
within some finite memory space. Although it is possible to anticipate the maximum
size of the environment by considering some limitations, such as the battery life and
the placement of  obstacles to restrict  the robot's  reach,  they rely heavily on the
specific  environment  and  a  significant  amount  of  domain  knowledge.  The
assumptions also do not provide a way to recover if they are invalidated, nor do they
allow  for  a  reasonable  bound  when  multiple  maps  are combined,  as  they  may
dramatically increase the memory requirement.

A simple approach to bound the maximum size of the global map is to modify the
scale of each cell when the size of the map becomes too large and compress the
neighbouring cells into one. This approach can be efficient to implement, but suffers
from data losses as portions of the attributes are lost during the merging process. It is
possible to apply a more complex compression algorithm which may allow the data
to  be  retained,  such  as  variations  of  run  length  encoding  or  frequency  based
algorithms like Hoffman's encoding, but these do not constrain the upper bound to
the memory usage and can also consume valuable processing time in maintenance
and de-compression when being accessed. It  is also difficult to combine multiple
attributes for a consistent compression, thus the map may require several layers with
irregular factors to associate the various attributes together.

A location dependant compression that occur between the cells means that the
various  attributes,  such  as  the  occupancy  and  surface  orientation,  are  merged
together. This allows for quick access to the appropriate data for each cell, as the
locality is maintained. The merging process between the neighbouring cells requires
considerations into the weights for the interpolation of the individual attributes as
well  as  the  direction  of  the  merge.  The  attributes  can  be  merged  together  by
approaches like summation, multiplication, averaging, or by taking the maximum or
the  minimum,  depending  on  which  is  more  suitable  for  the  attribute  and  the
consequence of the resulting value.

For the traversable attribute, the cells must indicate if it is still possible for the
robot  to  move through  the  cell,  thus  the  merging  should  not  affect  the  already
established path. It is important to note that if the path is blocked by the other cell
being merged, the value would not  be an accurate measure if  the updated value
indicated a blocked path. By prioritising the path being not blocked, this value can
later  be modified  if  the cell  is  deemed to  be not  traversable  using a  high  level
analysis, such as a path finding algorithm. Another issue to note is the change in the
characteristics if the cell size is too small for the robot to fit inside. In this scenario, it
is important to combine the value instead of simply taking the most preferred one,
since the cell is never traversable by itself. Multiplying the two values indicates the
probability of both cells being traversable, thus is the approach used while the cell
size is small.

When combining the occupancy values, the important  characteristic to note is
whether the combined cells indicate the continuity of the surface. This characteristic
can be used to determine if the robot can traverse through the cells, as well as any
shape based analysis that may be carried out. Maintaining this information requires a
map based on surface structures, which does not fit with the current model of the
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global map. When the attribute is treated as interestingness instead of occupancy, the
information with regards to whether the cell is traversable or not must be used in
parallel.

Whether the cell is traversable or not is quite difficult to administer, as there are
multiple directions to consider and the variation in scale with respect to the robot's
size. There are two scenarios to consider which depend on whether the cell size is
smaller, as shown in figure 9.24, or larger than the robot. If the cell size is larger than
the robot, the cells simply needs to be marked with the directions it can enter and exit
the cell. The directions are necessary, as certain sides of the cell may be obstructed to
stop the traversal. This is due to the combination of both vacant and occupied cells to
various sides of the cell, thus will modify whether the particular side of the cell is
traversable or not.

Figure 9.24: Cell intersection flags.
The arrangement of vacant cells, which are shown as white, allows
the robot to traverse.

For  the  case where the cell  size is  smaller  than the robot,  the  gaps  must  be
combined until they occupy a large enough space to let the robot pass through. The
compression  means  only  a  small  amount  of  information  can  be  maintained  to
characterise the obstacles and the available space. Three different approaches are
considered to track the vacant cells while the cell size builds up to allow the robot to
traverse though them. The first approach is based on a density measure, where the
proportion of the interestingness is compared against a vacant area. This approach
allows for a fast algorithm when the scales are modified, but does not allow any
information with regards to the arrangement of the vacant areas so the cell could still
be impenetrable.

Another simple approach that is considered assumes that the vacant areas line up
nicely  when  the  compression  is  carried  out,  thus  leading  to  an  AND gate  like
behaviour for the vacancy. This approach is quick and efficient like the above, but it
is able to determine, with certainty, that an open area for the robot to traverse through
exists.  The  trouble  with  this  approach  is  when  the  compression  is  not  aligned
properly, it can miss potential gaps as they are combined with obstacles early on. The
process is illustrated in figure 9.25, where the red cells indicate occupancy while
white cells indicate vacancy.
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Figure 9.25: Prioritising obstruction to identify paths.
Top row shows the compression algorithm used, while the bottom
image shows the compression from the map in figure 9.24 to one
that is half in width.

The last approach involves the use of two values being tracked for each side of the
cell to represent the amount of gap on each of the perpendicular sides. The approach
is similar to that of the above, but does not assume a binary state. This allows the
cells to maintain the vacancy until  the particular  side is obstructed,  as shown in
figure 9.26.

Figure 9.26: Cell merger with tracking of the vacancy along the edge of the cell.
The  arrows  in  the  top image  show  the  values  to  track,  which
indicates  the  vacancy  in  that  direction.  The  bottom left  is  the
compressed map from figure 9.25, while the bottom right shows a
zoomed version of the map with the vacancy.
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Although the approaches above indicate if the robot can enter and exit the cell, it
does not maintain information about the inner connectivity within the cell. This can
cause the robot to misbehave as the path that is planned from the global map can
potentially  be  blocked  when  viewed  from  the  local  map.  To  allow  the  correct
connectivity information, each cell is required to maintain all of the possible paths
between the sides of the cell. The lack of distinction in the location of all the possible
paths can also lead to certain paths being blocked without recognition unless this too
is  maintained.  Implementing these requires a significant  increase in  the memory
footprint, as well as the processing time to trace the inner paths whenever the map is
modified. This has a quadratic relationship with the scale, thus is not suitable in the
long run.

It is possible to simplify the approach by finding inner-cell nodes as a form of
compression,  but  a  more  plausible  approach  is  to  not  assume  that  the  attribute
indicating possible traversal does not mean it is true. By allowing modification of the
traversable attribute from path finding algorithms, as mentioned earlier, it is possible
to generate a path that can be verified at a higher level when viewed by the local
map. If  the path is deemed to be blocked, the traversable attribute can simply be
changed. This means that the cells that allow any direction of traversing should be
marked as potentially traversable, perhaps as a probability value based on the number
of sides that  are vacant,  such that  the path finding algorithm is able to rank the
various paths it generates.

When considering the attribute for dynamic obstacles, just the acknowledgement
that a movable object is present  is quite useful.  The precise locations of these are
difficult to determine due to the time interval required to register the change in the
interestingness. Since the aliasing and the change of scale also causes the change in
the location,  it  can  be safer  for  the  robot  to  note the whole  area as  containing
dynamic objects. This can then be used later  on to  group together  the moveable
components within the scene, or to be wary of when generating a path of traversal.

As for the hazardous attribute, which is based on four states of unknown, non-
hazardous, potential hazard, and hazardous, the critical state to be prioritised are the
ones that can potentially harm the robot. When the states are combined, the sequence
of states that should be prioritised in order is hazardous, candidate, unknown, then
finally non-hazardous.

When the surface orientation is left as an angle, the characteristic is quite different
to the other attributes in that the variation in the orientation cannot simply be merged
and that the value is cyclic. In the case where the two values are similar, it may be
possible to average the two together to  cater  for  the lack of  observation from a
particular perspective. However, if the two are perpendicular, it could indicate the
presence of a corner with two faces. As noted earlier, the surface orientation is not a
crucial component, thus has been greatly simplified to the bit mask representation
pointing to the position of the neighbouring surface cell. This can be used to allow a
simple OR process between the merging cells to indicate the direction to traverse in
in order to find the next occupied cell. This process is illustrated in figure 9.27.

The compression factor plays  a significant  role in  deciding how much of  the
information  is  discarded,  how  frequent  the  process  is  required,  and  also  how
controlled the merger  is.  The larger the compression factor,  the more drastic the
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changes it will cause to the state of the global map. This can introduce ambiguity,
misalignments, and potentially allocate large amount of space for places where the
robot will not explore. However, this also reduces the frequency of the compression
to reduce the processing cost. Although it may be possible to dynamically specify the
compression factor, correctly choosing this value requires a reasonable prediction of
how far the map will need to be extended.

Figure 9.27: Merging of surface orientation mask.
Left  image  shows  the rules  used  when  merging  the  surface
orientation  masks,  while  the  right  image  shows  an  example
merging between two masks.

A possible work-around for the unwanted allocation of space is to detect that the
robot cannot navigate to a particular part of the map and shifting the map internally
to allocate more memory to a vacant side. It is also possible to split the map with
different scales for each portion, but this can introduce complications when accessing
the map.

The validation of the above strategies are difficult to do objectively, thus is carried
out through the observation of the map, which can be seen in figure 9.28, where the
map is  compressed by halving the map in one direction.  The scaling factor was
chosen to simplify the merge process and to avoid the sub-cell interpolation. This
also means the attributes are localised if  the map is ever expanded again with a
different scale factor in the future. The red colour represents the probability of  the
cell  being able to be traversed, the green represents the cells containing dynamic
objects, while the blue represents the interestingness of the cell. Note the cell size is
still too small for the robot, but rather than representing the eight transition bits, the
probability is shown for visual purposes. The green regions are present at the ends of
the sectors, which are all the result of slight sensor inaccuracies.

Figure 9.28: Scaling the global map by a factor of 2.
The left image shows the global map before the compression, while
the right image shows the compressed version. The yellow lines
from the center  indicate  the  scales  and also  on  which  side  the
compression has occurred.

187



9.5 Summary

9.5 Summary

The  use  of  the  grid  map  has  allowed  simplification  in  the  mapping  of  the
components  in  the  environment by  providing  an  efficient  and  consistent
representation to be used between the sensor readings and higher level processes.
The lowest level map forms the interface for the sensor reading and maintains five
attributes, which are the occupancy, vacancy, number of scans it has encountered, the
surface orientation, and the sensor orientation of the last access. The global map, on
the other hand, uses the state of the local map to update its four out of five attributes,
which are the interestingness of the cell, surface orientation, presence of a dynamic
object, and the transitions that are allowed into the cell.  The last attribute, which
represents the hazardous cells were not discussed in this chapter. Note that to store
the transitions allowed for a small cell requires multiple values, while the larger cells
only require one, which is the probability value. Once the map grows large enough
such  that  each  cell  is  bigger  than  the  robot,  the  eight  transition  values  can  be
discarded for the probability value.

The attributes above add to the simple maps seen in many applications. Although
many  of  the  attributes  that  may  be  added  are  specific  to  the  application,  the
independent maintenance and analysis of each attribute is important in handling the
specific information they contain.

To improve the efficiency of the carving process, while catering for the aliasing
caused  by  the  use  of  the  grid  map,  a  fast  line  and  arc  drawing  algorithms  is
introduced which uses an area based anti-aliasing to determine the bounds of the
sensor scans. An optimisation technique is also introduced by specifying the range
and precision requirement of the attributes.

The update process encourages both the build up of the local map to contain more
information and to maintain an up to date global map. This is done through two
conditions to trigger the update, which occurs to a constrained area for efficiency.

The  various  weights  introduced  allow  the  mapping  module  to  operate
continuously to represent a model for the current state of the environment without
overwhelming the map with redundant attributes. By maintaining a controlled bound
to the values,  it  does not  require  normalisation,  which can be dependant  on the
trajectory of the robot.

Strategies  when  the  global  map  expands  from extended  traversal  include  the
merging of the attributes, such that each attribute is modified to prioritise the safety
of the robot and to encourage the re-measurement of the region if ambiguity arises.

As noted earlier, the current implementation does not maintain a permanent record
of the local maps as portions are discarded. However this data could be useful for
future implementation such that post analysis can be carried out by a more powerful
computer with much more memory capacity.

Another potential place for extension is in the use of shape and density based
clustering algorithms based on the distribution of the occupancy, vacancy and the
dynamic attributes. These high level concepts will allow the formation of topological
maps, where the separation of the clusters will allow objects to be segmented and
matched against templates to be given a high level tag or characteristics.
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While  the  basic  map has  been constructed  using the range  finders,  the  other
sensors mounted on the robot can be used to capture and analyse different aspects of
the scene to  provide an  alternate  perspective  to  improve the map.  A commonly
integrated sensor  that  to  observe  the  scene  is  the  visual  sensor,  which  allows
simultaneous capturing of a region of the scene at  a fast  capturing rate to allow
almost a continuous view of the environment. The availability of large quantities of
data from the single device is attractive from the perspective of hardware cost per
data generated, while the ability to capture the neighbourhood information allows
multitudes of processing algorithms to be developed for the extraction and analysis
of the view, such as tracking the motions of specific regions of interest and analysing
the inter-feature relationships (Davison, 1998; Zhao, 1998).

Although some aspects of the visual sensors were discussed in earlier chapters, the
scenario and the configuration differ significantly as the camera is used to observe
the scene looking parallel to the ground. The camera can then observe the scene in a
similar  fashion  to  biological  systems,  as  well  as  allowing  wider  interaction
capabilities with the camera due to the large viewing area.

The general flow of process for a vision based system consists of multiple stages,
as shown in figure 10.1, which illustrates the derivation of a semantic representation
of the scene defined by the various algorithms used to interpret the image.

Figure 10.1: Flow of process in interpreting the scene.

The scene is observed by the camera, which produces a perspective
dependant image. This is then processed to identify the objects of
interest and classified by matching the unique characteristics of the
objects of interest to some knowledge base.
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Many of the approaches introduced earlier to clean up the image can be applied
here, thus the focus of the analysis is placed on the conversion of the image data to a
representation that can be interpreted, as well as the extraction and handling of any
information that are derived from analysis of the pixel patterns.

The  current  approach  for  using  the  visual  sensor  is based  on  improving  the
attributes already found within the local  map. This allows the various sensors to
support each other instead of introducing more attributes that cannot be verified by
other means. There are uses for unique characteristics to be measured, which will be
discussed in more details in chapter 11. Although many of the objects that is in the
view will appear within the local map, the range of the visual sensor is much larger
than the range finders that are used. This can yield new challenges in detecting and
using the visual features to improve the map.

10.1 Camera configuration

The camera that is used has a similar characteristics to the cameras used for the
localisation module, with the exception of the minimum focus distance, which could
be set quite small. The camera was originally used to track the ground texture from a
very low height within the robot's body, until multiple cameras were required to track
the ground. The extra range in the viewable distance does not have a significant
impact to the scene analysis, as the focus of the camera cannot be modified without
manual intervention and the objects in the view is typically distant from the camera.

One other difference in the camera characteristics is  the slight  increase in the
radial  warping  effect  caused  by  the  curvature  of  the  lens.  This  meant  that  the
majority of the precision measurements should be carried out as close to the center of
the image as possible and minimise the use of the outer regions.

As mentioned earlier, the camera is currently mounted on top of the servo motor,
along with the sonar sensors. This allows for a greater control in scanning of the
scene and an independent viewing orientation to the robot, which allows a particular
point to be continuously viewed while the robot moves around (Ardaiz et al., 2005;
Taylor et al., 2006). This ability allows for an effective tracking of dynamic objects,
as the camera can modify its orientation to maintain the object within the view. The
duplication of the axis of freedom means the camera is unable to observe the scene
from a new perspective by changing the pitch and the roll. This limits the viewing of
tall  objects,  such as  people's  faces,  unless the camera is  tilted  during the initial
configuration. By tilting the camera up, the camera will not be able to interact with
objects that  are close to the ground, which can include hazardous structures like
stairs.

Tilting the camera also introduces a transformation between the vertical plane of
the environment and the view, thus requires a mapping process between pixels to
note  the  corresponding  relationship  to  the  scene  structure.  Although  the
transformation process is not a difficult one, nor is it significantly time consuming,
many structures in the environment have a boundary that extends straight up from the
ground which appear as diagonal lines in a tilted view. When this is viewed through a
grid,  the  aliasing  effect  causes  the  alignment  of  the  line  to  become  irregular,
depending on how far the view has been rotated and the quality of the camera sensor.
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By assuming that the line detected is perfectly perpendicular to the ground, it may be
possible  to  note  the  misalignment  of  the  image by  observing  the  trend  in  the
intensities. However, the effectiveness can be hindered by the change in the lighting
that  causes  gradients  in  the  edge's  textures,  as  well  as  subtle  differences  in  the
interpolation amount such as from the warping and imprecise pose of the camera.

With the camera mounted at the front and on top of the servo motors, the depth
and length axes are constantly rotated,  such that  transformations in the intensity
arrangement occur. The transformation of the structure has prompted for many image
processing algorithms to be developed to identify non-morphing features, such that
the same object can be identified in between multiple views (Lowe, 1999). These
sometimes include tolerances to  the slight  intensity changes, such as those from
changes in the lighting conditions.

By  limiting  the  motions  of  the  camera,  some  of  the  transformations  can  be
eliminated.  This  can be used to  specify a criterion for  the feature to  reduce the
computational load and increase the reliability of the features that are detected, as
both the inter-pixel trends and the motions with respect to the change in the view can
be anticipated. However, unlike the floor pointing cameras, the number of constraints
that  can  be  applied  is  very  limited,  thus  requires  sophisticated  algorithms  or
additional sensor readings to disambiguate the causes of various changes to the view.
The  visual  sensors  are  used  to  support  and  improve  the  state  of  the  map  by
identifying  the  surfaces  and  the  position  of  corners  where  the  depth  changes
suddenly.

Figure 10.2: Feature motion within the view under forward motion by the robot.
The red arrows indicate the motion of static objects as the camera is
moved forwards.

One  potential  drawback  to  mounting  the  camera  at  the  front  is  the  reduced
displacement of the features,  as the majority of  the motion will  be a forward or
backward motion by the robot. Figure 10.2 illustrates the motions observed by the
camera at various orientations when the robot moves forward. A motion along the
depth axis results in the combination of vertical and horizontal motion within the
view, which causes an increase in the search area for features between the frames, as
well as introducing more ambiguity through increased dimensions of sub-pixel shifts.
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It  is possible to increase the viewing area using the servo motor, but the inter-
frame information does not provide much useful pose information, as the rotational
point is almost, if not exactly, the same as the focal point. Since the camera sensors
determine the orientation of  the incoming information,  the rotation of the image
plane simply shifts the relative orientations. This is useful in tracking the motion of a
dynamic object  or  when a larger  scene needs to be scanned,  as it  maintains the
neighbourhood information between the objects to simplify the correlation process
between the backgrounds for image stitching (Brown & Lowe, 2003).

By facing the camera to a perpendicular direction to the traversal, the forward and
backward motion by the robot will constrain the motion of the view to a horizontally
dominant one. This can lead to a much more reliable tracking of features to note
various characteristics about the feature. Since the maximum rotational angle for the
servo has been set to ±60 degrees and the constraints by the differential drive system,
the camera is purposely rotated by 30 degrees to be in an ideal orientation when the
servo is set at the maximum anti-clockwise rotation. In future implementations, the
camera should be given an individual motor for pitch and yaw control, to allow the
sonar  sensor  to  scan  the area  freely  while  the  camera observed  the  sides  when
traversing and is able to change its view to focus on different targets when desired.

10.2 Image processing filters

The extraction of the scene structure from the captured image first involves the
filtering of any noise that may have been introduced by the environment and the
sensor. The major difference between the process used here and in the floor pointing
cameras is the reduced constraints that can be applied to the observed scene. The
camera sensor requires more filters to remove the additional noise and ambiguity in
the information it captures.

As previously, the image that is captured uses the full colours that are available at
the  maximum  frame  rate,  thus  allowing  the  individual  algorithms  to  select  the
components  they  desire.  Using  the  currently  viewable  image,  the  filters  are
implemented  to  observe  both  the  current  view  and  the  transition  between  the
previous frames.

10.2.1 Ambient light

One of the most difficult issues with using a passive sensor is the reliance on the
ambient  light  and the need for  filters  to  suppress  the variety of  changes  in  the
appearance  of  the  same  object.  In  many  image  processing  tasks,  the  colour
information is quickly discarded and replaced with shape based descriptors, such as
edges and corners. Although this often allows for an ambient light independent view
of the scene, it also discards potentially useful characteristics about the object, as
well as the state of the environment. By successfully monitoring the changes in the
ambient  lighting conditions,  the  attributes  or  the  criteria  for  the  features  can be
modified to increase its reliability.

The ambient light changes can occur as gradual or sudden change to the scene,
such as from shadows and illumination. As noted earlier, the exposure rate and the
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colour  balance  used  by the camera can  modify  the  apparent  light  conditions  to
regulate the overall brightness of the image. Although this feature can be useful, the
specifics of the adjustments are not always available for use and the enhancements
that are performed does not guarantee that the intensity characteristics for a particular
object remains the consistent. However, if the various camera settings are set to a
fixed value to start off with, the changes to the ambient light conditions could disable
the camera's functionality as the whole image might appear as a saturated white or be
too dark and noisy from unforeseen conditions.

As noted earlier, the goal of the visual sensor is to enhance the attributes and
precision of the local map, thus the ability to continuously track a specific feature for
a long period is not as crucial as accurately tracking with respect to the pose of the
robot. With the exception of dynamic objects, the features that are observed by the
camera does not have to be tracked immediately, as the object will still remain in the
same pose when the robot returns to view the area again. This means the object can
still be found again even if the feature is lost. However, it is still an attractive ability
to be able to track the feature for as long as it can, as the continuity considerations
can be greatly simplified and the changes in the appearance can also be monitored to
note the lighting conditions.

The derivation of the thresholds to differentiate the light condition changes and an
actual intensity change depends greatly on the initial intensity, the source of the light
change, and the general trend in the intensity change throughout the image. In an
indoor situation, there are multiple light sources that interact with the objects. This
can contribute to the change in the appearance when the camera observes the object
from different angles or at different moments. Since the images are captured with
very little time interval, the change in the intensity from any gradual changes can be
catered for, as the difference in the intensity will be quite small between the frames.
However,  for  specular  surfaces  and  large  changes  to the  light,  such  as  from
elimination or addition of light sources, the intensity change is often too large to be
reliably linked with the previous frame by simply relying on the intensity.

Although the use of  shapes and inter-pixel  trends can be used to support  the
feature identification and tracking process, an alternate colour scale can be used to
isolate the lighting dependant appearance by representing the three colours as relative
values.

10.2.2 Hue analysis

In the presence of white based light, the hue value remains reasonably consistent
under various levels of intensity, even when shades form. This allows for a lighting
independent classification of an object texture and is often used to identify surfaces,
as the gradient caused by the shade typically hinders a RGB based clustering. At
times, it is used in conjunction with the saturation values, but this too suffers from
lighting changes and can show gradients along a flat surface.

One of the difficulties with relying on the hue value is the varying sensitivity at
different  saturation levels,  which can cause the hue to  fluctuate dramatically for
colours nearing grey. This makes any shading removal difficult to achieve on grey
scaled  portions,  thus  the techniques  must  be  avoided  on  these  regions. When

193



10.2.2 Hue analysis

encountering  a  grey  portion  of  the  image,  the  saturation  value  can  be  used  to
determine whether the resulting hue value is reliable or not through a simple weight.
Another problematic area includes glossy surfaces, which form sudden fluctuations
in the surface texture and does not maintain the same hue value as the intensity
saturates the sensor to be able to measure an accurate proportional colour. To account
for these, the change in the intensity can sometimes be too rapid to note any trends,
thus must anticipate these false positive intensity fluctuations and allow the map to
filter them out. As their position is dependant on the pose of the observer, these can
be identified by the unusual motion pattern compared to other features located in the
vicinity.

When considering the weights to apply to the hue value, it must be accompanied
with  another  value  to  weight  between.  Instead  of  just  using  the  hue  scale,  the
intensity patterns found on the RGB scale can also be used to selectively interpolate
between the two ways  of  observing the scene.  Since the rate of  change for  the
saturation is non-linear, as shown in figure 10.3, it may also be feasible to simply use
the difference between the maximum and minimum intensity values as the weight.

Figure 10.3: Saturation against minimum and maximum intensity values.
The rate of change in the saturation depends on both the minimum
and maximum intensity.

Since the point of interest lies where there are changes in the image texture, an
edge image can be formed, which combines both the hue and RGB based edges.
Although it is possible to determine various orientation and positioned edges, the
algorithm will focus on horizontal edges, as they allow the borders of surfaces that
line up with the map to be determined. When evaluating the RGB edge value, the
average value between the three colours will  allow the overall  differences to be
observed, the maximum difference will only focus on whether an identifiable edge
was present, while the minimum difference will  indicate how reliable the edge is
under different lighting. Since the purpose of the edge is to determine the presence of
the edges and not on being able to rank the edges based on the overall change in the
intensity,  the  maximum difference  between  the  three colours  is  used.  It  is  also
assumed that the colour of the light source does not differ greatly from the white
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colour. Is it possible to make use of the second order differential to pin-point the
location where the maximum transition occurs, but this will often create a double
edge or the value will  not indicate the strength of the edge. The precision that is
achieved through the discrete sized pixels and the blurring of the intensities also does
not allow accurate selection of the transition point, thus will not be used here.

As for the cyclic nature of the hue value, it is the minimum distance between the
two hue colours that are used, as they indicate how similar the two values are. Since
this halves the range, it is important to not lose the precision of the hue values from
initially  mapping the value onto  a discrete  scale.  The transition  strength  can be
derived through a formula like the following.

hue_edgei = 1 – | 1 – | huei – huei+1 | / PI | (47)
One of the issues in edge based analysis is the blending in the intensities that

occur from the aliasing. The combination of multiple intensities causes the hue to
change erratically,  thus the edge map that is formed often has a double edge, as
shown in figure 10.4.

Figure 10.4: Sample edge map showing a double edge.
The left shows the original image, top right shows the RGB edge
using  the  maximum  difference  in  the  three  colours,  while  the
bottom right shows the hue edge, which has not been effective in
the  office  environment  due  to  the  lack  of  multiple  hues  on
furniture.

By combining the RGB edge and the hue edge in various ways, the intended
locations  of  the  edge  can  be  derived.  Figure  10.5  illustrates  several  of  these
approaches. By multiplying the two edges together, it allows the suppression of false
positives,  but  typically scales the strength of  the edges back significantly which
requires normalisation.  Through averaging, the two values can allow the reliable
edges to show, but it does not account for the differences in the two values and can
often register false positives. By always using the lower of the two, the majority of
the false edges can be suppressed at the cost of a reduction in the total number of
features that are found.
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Figure 10.5: Merging between RGB and hue based edges.
The top row illustrates the original and the two edge images, while
the bottom row illustrates various techniques used to combine the
two edge images.

Since  the  desired  features  have  distinctive  intensity  differences  with  the
neighbours,  the  early  suppression  of  insignificant  features  will  save  precious
processing time later on to remove many of the non-distinctive feature candidates.
The  increase of  the  type  II  errors  that  is  introduced  from this  should  not  be a
significant issue, as long as a reasonable number of edges that cover the various
objects within the scene are maintained.

10.2.3 Noise reduction

Linear  convolution  filters  and  temporal  filters  have  been  commonly  used  to
reduce  the  level  of  noise  by  interpolating  the  intensity,  but  suffers  from  de-
localisation of features, suppression of infrequent or small objects, as well as blurring
in both spatial and temporal domains.

By knowing the components to look for within the image, it is possible to use
these constraints to recover from the imprecision introduced by the filters. These
techniques include finding the maximum correlation scores when the template is
superimposed over the image at various positions, which can potentially lead to a
more precise position of the feature being identified. Without the precise knowledge
about the object  to  look for,  or  the transformational  changes that  have occurred
between the frames, this approach does not allow recovery of the blurring errors.
Instead, the attributes for the constraints are typically derived from the stream of
images dynamically by setting approximate bounds and narrowing down to a precise
value over time.

Instead  of  attempting  to  blindly  remove  all  intensity  patterns  humans  would
classify as noise, the purpose of the noise reduction filters must be kept in mind.
Since it is the correlation between the features that are found and those present in the
grid map that is important, the noise reduction filter can actually be applied after the
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features have been found. This allows the filters to simply discard those that are
deemed to be generated from noise. Although in doing so, the processing load must
be observed such that the management of the features including false features do not
consume a significant amount of resources.

In terms of features, there are classifications that are given to distinguish between
tracked features, new features, as well as lost features, which will be discussed in
detail  later.  Any noise  influencing the tracked  features  can simply  make use of
correlation scores to determine what effect the noise has had. Although the initial
correlation to a feature that is being tracked may suffer, the change in the intensity
pattern can be noted to characterise the noise, whether it was sensor generated, due to
the change in the lighting, or from aliasing and interpolations that may have blended
the neighbouring pixels.

For the newly introduced features, comparisons with historical information are not
available to assist in the elimination of false features. However, it is possible to use
the  other  features  that  are  currently  maintained  or are  simultaneously  being
introduced to compare the confidence score of the feature being appropriate.  One
thing to note for small features is the difficulty in correlating with the grid map, as
they often do not form a part of the scene. For distant objects that appear small, these
map to an area outside that of the local map, thus can be ignored until robot is nearer.
With this in mind, the feature should be of a reasonable size to allow the inclusion of
neighbours and to utilise the wider range in the score.

As for the features that are lost, the current implementation does not recover from
temporary losses due to fluctuations and obstruction. Although this may cause many
features to be lost, it prevents erroneous features from being maintained and removes
the need for anticipating the motions and transformations of invisible features.

Although  the  above  approaches  are  all  integrated  with  the  feature  detection
process,  there  are  two filters  that  are  implemented with  the  specific  purpose of
removing  the  erroneous  intensity  patterns.  As  introduced  previously,  the  block
formation due to the video codec can be reduced using the algorithm introduced
earlier.  This allows the edge based algorithms to operate without  picking up the
artefacts as edges, as shown in figure 10.6.

Figure 10.6: RGB edges with and without quantisation block filter.
The top image is the original, bottom row shows the RGB image
with and without the quantisation block filter introduced in chapter
5.
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The second filter that is implemented is dependant on the driver level algorithm
used by the camera, in that it monitors the effect of motion blur that occurs due to the
automated colour adjustments that are enabled, as shown in figure 10.7. By allowing
the  driver  software  to  automatically  adjust  attributes  like  the  exposure  time,
brightness  and  white  colour  balances,  the  camera  is able  to  adapt  to  various
environments without manually modifying the settings. Using some camera drivers,
the current settings can be monitored or manipulated in real time, but in the absence,
the overall amount of intensity and the edge image can be monitored to note a sudden
change in the clarity of the image. Although this can be done by observing the trend
of the scores for all the features that are tracked, the process can be bundled with
other whole image processing tasks, such as the copying of the image buffer.

Figure 10.7: Motion blur when the exposure time has been set too high under low
lighting conditions.

The blurring, doubling of objects edges, as well as the overlap of
intensities  is  introduced to  complicate the image analysis  if  not
filtered out.

If there is a sudden drop in the overall edge score, indicating a large change to the
environment or motion blur, the reliability of the feature decreases significantly as
the faint streaks and the repeated image that is visible can be incorrectly matched.
Instead of attempting to make use of the blurry image, the frame should be tagged as
misleading and the feature tracking algorithms should take this into consideration.

The threshold for  triggering this  case depends  greatly on the typical  level  of
fluctuations, the brightness level, as well as the velocity of the camera. After quick
experimentation, it was observed that the edge scores can both increase and decrease
when the camera motion is carried out at different speeds. This was mainly due to the
aliasing between the neighbouring photo-sensors and not from the motion blur. The
slow movements specified by both the locomotive components and the localisation
module meant only the rotation and the presence of dynamic objects would cause
motion blur.  To cater for the blurring when the camera is rotated, the command to
move rotate the camera or the robot triggers a flag to notify that the features may be
corrupted by motion blur, thus should not attempt to use the most recent state to
modify  any  scores. As  for  the  dynamic  objects,  their  presence  is assessed  in  a
separate process, which will be discussed in chapter 11.

When observing an object with closely interlaced texture patterns, the sampling

198



10.2.3 Noise reduction

rate of the sensor can sometimes cause a non-existent pattern to emerge. These Moiré
patterns  are  typically  removed  by  frequency  based  filters  or  suppressing  them
through interpolation, but can be isolated as these patterns are typically formed from
highly dense regions of intensity fluctuations. This means that the feature selection
criteria can observe the surrounding intensity fluctuations to flag that the feature is
not distinctive. Even if the pattern is selected as a feature, the motions of the feature
will not correspond with the anticipated motions. As this information can be derived
from the motions of other features and the localisation algorithm, these false features
can be eliminated quickly.

The most problematic artefact that is present on the captured image is the aliasing
and the interpolation of neighbouring pixel intensities that occur. As observed earlier,
these typically contribute to multiple edge regions being observed, when there is only
one. Rather than attempting to recover from this error, the feature selection process
can be configured to account for the gradual transition in the intensity measurement.

10.3 Features

The significance of a feature is dependant on its distinguishable attributes, the
portrayal of a significant region within the local map, and the ability to track its inter-
frame motions after changes in the pose. The approaches that are typically applied
include the identification of non-morphing characteristics or colour based tagging
across a small region of space. These analyses often use the immediate neighbours to
observe the relative intensities, which are then compared to other candidates to select
the most interesting features within the view.

Depending on how reliable the features need to be, the attributes and the selection
criteria can be modified to suit the level of requirement. This often means short-cuts
can be made for short term features when determining the most appropriate feature,
as well as the rough elimination of some feature candidates to reduce the processing
load. As the constraints to the camera motion restricts the motions of the features,
only a simple search is  required to  successfully identify the same feature in the
following frame. As noted earlier, the horizontal edges allow the edges of objects to
correspond to the change in the depths that is detectable by the range finders.

As mentioned earlier, the feature will be determined through simple RGB and hue
based  transitions,  but  must  consider  several  issues to  be  able  to  filter  out  the
redundant and insignificant features, as well as any noise which may appear. Instead
of attempting to determine the most unique feature, it is more important to identify a
group  of  features  that  correspond  to  the  same  object,  thus  allowing  the
acknowledgement of different surfaces. The reason for the simple criteria used to
identify  the  feature  is  the  level  of  constraint  that  can  be  applied  to  reduce  the
complexity of the transformations of the feature.

One  of  the  techniques  that  is  used  to  improve  the  efficiency  of  the  feature
identification  is  in  early elimination of  previously processed areas that  have not
undergone any change. This approach is achieved by observing the difference in the
intensity over time through a temporal difference filter, which allows the detection of
areas that have changed since the last frame. When the camera undergoes a very
small amount of motion, the regions with differences in the intensity are highlighted
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as the intensity on one side of the edge shifts to another location. The areas that have
not  undergone changes  can simply be discarded,  as no new information will  be
derived from it. It is possible to distinguish between the background to foreground
using this approach, as some distant objects may not show signs of motion.  The
detection of dynamic objects are also possible if the background stays stationary as
the outline of the dynamic object can be determined with ease.

When using this filter, it is important to apply an appropriate threshold value to
determine if the change in the intensity is due to a motion within the view or if it was
generated by sensor noise or Moiré patterns. The simplest approach is to use a single
threshold value, which is taken from the noise characteristic determined earlier, but
can also be a more elaborate process such as observing the change in the neighbours.
However, since this would require valuable processing time, a threshold value was
set using the larger standard deviation of 8 units for the three colours to suppress the
noise and unmodified regions.

One of the potential issues with this filter, as discussed earlier, is that under very
slow and gradual motion, the intensity change will be too subtle to be detected due to
the aliasing and blurring of the intensity between pixels. However, the low threshold
value used showed it still allowed for the changes to appear under normal operation
speed of the robot. Note that this is used to reduce the candidates for new features
and will not affect the tracking of existing features.

A sample scene with portions that have been detected as having undergone change
between frames is shown in figure 10.8, where the intensity represents the magnitude
of the maximum amount of change in the RGB values. The majority of the image can
quickly be discarded as they do not introduce changes to the features.

Figure 10.8: Reduction of candidates through a temporal filter.
The change in the perspective only modifies some portions of the
image, which is illustrated by the dark areas in the bottom row.
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10.3.1 Feature selection

Due to the repetitive nature of some texture patterns, using a small number of
pixels for the texture can be extremely difficult and often leads to incorrect matches
and large fluctuations in the correlation scores. However, by selecting a feature that
is too large, the objects within the feature may change differently and modify the
structure within the feature area. As noted earlier, the main point of interest is the
transition region between the intensities, thus storing large number of pixels does not
lead to much enhancement of the feature's reliability. However, it is possible to note
the neighbours of the edge transitions to isolate a feature from noise (Cafforio et al.,
1997).

Rather than varying the shape of the feature to find the most appropriate one like
earlier, the characteristics  of  the objects of  interest is  used to set  the criteria for
selecting and maintaining the feature. When analysing the image for a feature, it
must involve the pixels covering the boundary to measure the distinctness of the
transition, the horizontal neighbours of the boundary pixels so the consistency of the
surface can be taken into account, and the pixels above to measure the continuity of
the edge so it can be distinguished amongst noise.

When the transition point between objects is observed, the horizontal transitions
are typically visible as a combination of two adjacent transition values. If  a non-
horizontal transition is viewed, the number of pixels being intersected increases to
create thicker edges, which are illustrated in figure 10.9. Although it is desirable to
encounter  the  perfectly  horizontal  transitions,  there  are  frequent  cases  of
misalignment which may cause a slight slanting of the vertical lines.

Figure 10.9: Vertical and non-vertical lines intersecting the pixels.
The  top  row shows the object  boundary intersecting one pixel,
while  the  bottom row shows two pixels  being  intersected,  thus
blending the appearance of both pixels.

Since  the  constraint  is  placed  to  only  monitor  vertical  lines,  which  are  the
potential  boundaries  between  objects  at  different  depth,  the  number  of  pixels
considered for the boundary is kept small. To account for the misalignments, four
pixels are used in case the transition occurs across multiple pixels. When the amount
of difference is being measured, it is important to monitor the consistency in the
intensity transitions, as different objects may also appear within the window for an
extra edge. Since the intensity of the boundary pixels tends to interpolate with the
neighbours, the pixel intensity in between should be between the two values. That is,
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the values for the three colour components should lie between those of the outer
pixels and should also slope in the same direction.

Although it is the magnitudes of the transitions that are typically used, using this
approach requires the maintenance of a signed difference between the neighbouring
pixels. It is also beneficial to observe the trends of all three colours separately, since
the three colour components can fluctuate at different rates. Instead of a rigorous
approach, this can be simplified by determining the difference between the edge
score of the transition and the difference between the left most and right most pixels
of  the window.  Since the edge score uses the minimum of  the two colour scale
differences, it means the value prioritises the lack of an intensity difference. This
means more areas will  be deemed to  be uniform and will  suppress some of  the
intensity transitions. By using the maximum difference of the two colour scales, it
sets  an upper  limit  to  the difference,  thus can be used to  determine the overall
transition between the pixels. This weight, which is defined below, can be applied to
the score  of  the boundary,  as it  determines the proportionality of  the transitions
within the horizontally aligned pixels.

Consistency weightx,y = max(| RGBx-1,y – RGBx+2,y |, | Huex-1,y – Huex+2,y |) /
(max(Horizontal ∆RGBx-1,y, Horizontal ∆Huex-1,y) + max(Horizontal ∆RGBx,y, Horizontal

∆Huex,y) + max(Horizontal ∆RGBx+1,y, Horizontal ∆Huex+1,y)) 
(48)

Depending  on  the  filter  pattern  implemented  by  the  camera,  there  may  be
consistencies in terms of the proportional change between the boundary pixels for the
three colours, but cannot be guaranteed. If Moiré patterns are present, the difference
between the three colours can typically fluctuate, thus allowing the removal of the
candidate.

To improve the consistency of the surface around the boundary, the horizontal
neighbours can be included in the analysis. The significance of finding a surface, and
not just a simple line, lies in the applicability to the local map as thin strips may not
be registered by the range finders, thus introduces an unnecessary processing load in
attempting to find a fit on the map. By noting that the boundary is part of a larger
surface, it can easily apply the features with more confidence and relevance.

Since the relationship between the number of pixels shown and the size of the
actual object is dependant on the distance, it is difficult to effectively determine the
appropriate  number  of  pixels  required  for  the  granularity  of  the  local  map
dynamically without introducing dependencies back to the local map. Instead, a fixed
number of pixels is used, which is derived based on an object at a distance of 1m, the
size  of  the  object  being  1  cm,  and  the  viewing  angle  of  the  camera  being
approximately 40 degrees, which equates to approximately 5 pixels when using a
capture resolution of 320 x 240 pixels. This value means that if the object that is 40
cm away is viewed at, the object must have the same intensity value for 4 mm on
either side, while if the object is 5m away, the object need to be consistent for 5 cm.

The fluctuations in the intensity that  are seen for the extra neighbours should
remain  small,  but  must  allow  for  small  changes  such that  the  noise  and  subtle
lighting changes still allow the features to be registered. To account for the various
sources of noise, the edge scores evaluated earlier can be used as it suppresses the
effect of lighting changes using the hue and already combines the RGB intensities.
Since it is the consistency in the intensity that is required, the maximum score of the
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two colour scales will be used. By setting the threshold to only allow the features
with a low score, the neighbouring pixels of the boundary will remain consistent.
When combining the scores of the four horizontal transitions, two basic strategies
can be used, which are the use of the maximum difference and the average transition
score. Depending on how flexible the thickness of the consistently coloured surface
must be, the algorithm can be interchanged.

To differentiate the difference between an edge and noise, the region above and
below the boundary is observed on top of the horizontal neighbours. This process
allows the continuity of the edge to be monitored, such that the end points of the
edge  or  gaps  in  the  line  can  also  be  observed.  Due  to  the  slope  of  the  edge,
interpolation, and changes in the object structure, the presence of the edge may not
always  appear  directly  or  diagonally  above  the  current  edge.  In  this  case,  the
boundary can be marked as the end point or the search can be extended until another
boundary is found or the distance becomes too large.

Although  this  approach  allows  for  some  level  of  continuity  between  the
boundaries, it is heavily dependant on the threshold conditions and can behave quite
differently depending on the texture patterns.  If there is a slanting of the boundary,
the  interpolated  intensities  will  cause  some blending  in  the  horizontal  direction.
However, this means the vertical transitions should not be affected for a vertical line
if the difference is measured at the boundary that is slightly away from the horizontal
transition. Instead of rigorously making sure the gap in the intensity is indeed from
two surfaces meeting, the check is only carried out to four vertical boundaries around
the horizontal transition. This results in a faster processing of the feature candidates,
but it can also mean the end points to the edge will not be detected. Since the exact
height of the edges are not important on the local map, as it only maintains a 2D
model, this is not a significant issue, other than when determining the continuity,
which will be described later.

Since there are two surfaces to consider, it is not crucial for both sides to remain
consistent. This means the better score of the two sides of the boundary can be used.
This concept also applies to the horizontal neighbours, which selects the better score
of  the  two  sides.  When  comparing  the  transitions  above  and  below,  similar
consideration must be made as the horizontal neighbours, but with slight differences
in that the minimum value can also be considered here due to the proximity of the
region  to  the  boundary and  also  the  slightly  different  purpose  it  has,  as  it  can
encounter  the  end  of  the  vertical  line.  Figure  10.10  illustrates  the  process  of
determining  the  consistency  in  the  vertical  direction,  which  uses  the  minimum
difference between the two pixels. The letters A to F represent the intensities at the
corresponding pixels.

Figure 10.10: Vertical consistency in the edge surfaces.
The central boundary indicates the edge of interest and the outer
boundaries represent the vertical boundaries that are considered.
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In terms of the processing requirement for this task, it should become apparent
that the comparison with the pixels above involves a vertical  edge, which is not
included in earlier calculations. This means that the vertical edges between the pixels
must  also  be  calculated.  If  the  selection  criteria  for  a  feature  can  be  partially
completed using only the transition score and the neighbouring consistencies, some
of the candidates can be eliminated to improve the efficiency. Otherwise, the iteration
can be carried out vertically first as it will reduce the buffer size that is required, but
should consider the offsets too.

The use of the three scores can be done incrementally,  which can allow early
elimination of candidates,  or  the scores can be combined for a single evaluation
process. This can use a threshold value by setting a required score or by ranking the
candidates and selecting the better scoring candidates. The combination of the three
values can be approached in a similar way to the two colour scales, but the emphasis
must be placed on the presence of the boundary over the other two. This can be done
by eliminating some of the candidates early using just the edge transition score or by
applying a greater weight to the surface boundary. The use of a multiplication does
not allow the distinction between the different sources, thus cannot be used reliably
here.

Using just the boundary score yields a similar reduction process to the temporal
filter, except those marked from the edges of the previous frame. Since the number of
candidates has already been reduced, the boundary score is used in conjunction with
the consistency scores in a single process to assign an overall score to the remaining
candidates,  as shown in figure 10.11. The colour coding shows which pixels the
different scores are derived from, where the red represents the consistency weight,
yellow represents the boundary score, green and cyan represents the horizontal and
vertical consistency scores respectively. The score allows the candidates to be ranked
such  that  further  elimination  can  be  made  based  on  the  processing  capabilities
instead of the characteristics of the current view.

The derivation of the feature score is quite a lengthy process compared to a more
naïve edge strength approaches, thus is important to make use of buffers to re-use
some of the computations. It is also possible to modify the threshold of the temporal
filter to reduce the initial number of candidates if the processing time is too large.
Other  approaches  are  also  introduced  to  reduce  the  candidates,  such  as  only
evaluating the score to newly introduced features. It is important to apply these other
candidate reduction processes beforehand, as it can eliminate the candidates much
more  efficiently  than  using  the  score.  Other  strategies  that  are  incorporated  are
described later on.

Although the evaluation of the score depends on many pixels surrounding the
boundary, the attributes that characterise the feature does not have to contain as much
information due to the changes that may occur between the frames. The important
attributes that can currently be defined are the coordinate points, the two surface
intensities bordering the boundary,  and the score.  These attributes alone will  not
always be able to uniquely distinguish the feature in between frames, thus additional
considerations will be made.
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Figure 10.11: Derivation of the feature candidate scores.
Top two illustrations are used to determine the difference in the
colours. The red region is used to determine the proportionality of
the  edge  strength,  the  yellow  region  is  used  for  the  boundary
strength, the green region is used to determine the consistency of
the  surfaces  in  the  horizontal  direction,  while  the cyan  region
determines the consistency of the surfaces in the vertical direction.

10.3.2 Surface feature

When using an edge based feature detection to identify interesting regions of the
image,  it  is  important  to  note  that  the  transition in  the  intensity values  is  often
derived from one object obscuring another in the background. This means that when
the feature is observed from a different perspective, the texture of the background
object can change dramatically and modify the appearance of the feature region. This
can  cause  a  lowering  of  the  correlation  score  and  result  in  an  incorrect  match
between the stored feature and the current view.

As hinted earlier,  the scores of the left  and right side of the boundary can be
treated independently,  such that  the changes to one side of  the boundary do not
worsen the scores. By splitting the feature into two components, it can potentially
double  the  number  of  candidates,  unless  the  uninteresting  features  are  removed
quickly and efficiently. Another issue this causes is the reduced number of attributes
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that  are  assigned  to  the  feature,  which  can  contribute  to  the  ambiguity  in
distinguishing the feature.

Due to occlusion, it is more desirable to track the motion of the surface in the
foreground,  as  the  surface boundary for  the  background  may not  actually  exist.
Although  the  distinction  is  quite  difficult  to  determine,  by  maintaining  the
foreground feature, it can eventually cover the background such that the background
feature will be lost. Until this happens, the boundary of the background will appear
to  be attached to  the foreground object,  thus will  be treated as if  it  is  a corner
between  the  two  surfaces.  This  ambiguity  can  be  removed  by combining  other
sources of information, such as the depth queues from the local map.

An alternative approach uses the correlation score on the better of the two sides,
but  maintains  both  sides  in  the  single  feature.  This  procedure can  maintain  the
tracking of the foreground and background surfaces without having to duplicate the
feature, as the motion of both sides will remain the same regardless. By monitoring
for a large fluctuation in the score in one side, the side can be disregarded from
further calculation. An example of this is if a boundary that exists on the background
becomes visible, the foreground feature can now disregard the correlation score on
that side while a new feature can be tracked separately for the background feature.

10.3.3 Density

The large number of potential features that must be validated and tracked means
the maintenance aspect can consume a significant amount of resource. Depending on
the feature candidate's  scoring  process,  many features  can be introduced from a
single boundary as multiple snapshots are taken of a very similar view of the same
location. Since there is limited number of pixels, it is possible to find the upper limit
on the number of visible features to limit the overlap of features. Even after limiting
the maximum number of features, the image's resolution may allow for too many
features to be processed in real time.

The  typical  strategy  for  tackling  this  is  to  find  the  features  that  are  more
constrained, such as corners or a scale and transform invariant features (Wang &
Brady, 1995). Although these are quite useful in identifying distinctive features, the
focus of the feature detection here is to determine the structure of the environment
and improve the precision of the local map. Since the features are for short term use
only,  they do not  require the robustness and is required to focus on successfully
tracing the surface boundaries.

The majority of intensity and edge based feature detection algorithms form highly
dense  clusters,  as  the objects  that  are  in  the  view are  of  a  reasonable  size and
typically have a consistent textured surface. Since the features within the cluster are
often from the same object, their characteristics will be repeated many times, with
the  exception  of  the  slight  differences  in  the  coordinate  point  of  where  it  was
observed. By compressing these features into a simpler representation, the number of
features that are maintained can be drastically reduced.

Using a detailed clustering analysis to identify the ideal reductions can potentially
require a lengthy processing of the current view, the features, the state of the local
map, as well as historical information on the trends of the features. To save on the
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processing time, a simple proximity based filter is used to eliminate some of the
features that  are close together.  Several  attributes for the filter are considered to
determine the appropriate density and distribution of the features.

The simplest filter to be implemented is a sequential square shaped mask which
eliminates all but one feature within the mask. This allows for a significant number
of features to be removed, but since the features are based on horizontal differences,
a sequence of horizontal features will  mean there should be two distinct vertical
lines. Eliminating these closely located lines can be problematic if their information
is permanently lost, thus the width of the mask must be shrunk down.

The size of this mask has a direct impact on the number of features that will be
kept, but this depends on the amount of approximations that can be made about the
scene structure. The reduction in the candidates should not lose significant amounts
of information about the structure of the environment, as ideally, the lost information
should  be  able  to  be  reconstructed  without  diverging  too  far  from  the  original
appearance. If the approximate object size is known, this can be applied much like
the procedure used in the horizontal neighbours detection. Using a rough measure of
height, the size of the mask can be constrained.

The  selection  of  the  features  to  maintain  can  be  done  based  on  positional,
randomised,  or  score based algorithms, which all  have different  side effects  that
require  consideration.  When using a position based approach,  the mask must  be
applied with an appropriate offset  to the image, as the features and the expected
position in the mask may not be aligned properly. This approach also requires the
positioning  of  each  of  the  masks  to  be  considered,  as  the  arrangement  causes
different number of features to be eliminated. It is also possible to scan for a feature
within the mask, which is set at a particular position, thus allowing a more consistent
number of features.

Using a randomised algorithm to select the feature can be effective in situations
where the scene characteristics are unknown, but can often result in a non-optimal
arrangement of features being selected. Since some of the scene characteristics can
be anticipated, such as the presence of vertical lines, a more predictive approach can
be used instead.

The score based approach requires some form of ranking to be applied.  Since
evaluating the edge score and ordering the features can consume a significant amount
of time, the process must consider a simpler attribute to base the score on. This could
be based on the amount of change that was observed from the temporal filter to
eliminate the candidates that have similar intensities to the surroundings. However,
this process is integrated with the threshold at the temporal filter, thus does not need
a separate parse of the image.

The current mask is based on the idea that one of the key element to be removed
should be the repeated edges caused by interpolation from the aliasing, and that the
re-construction of the object boundaries requires a reasonable number of features in
line to form the boundary shape. This aspect will be covered in chapter 11.

The mask, as shown in figure 10.12, is applied in two distinct stages, where one
involves the elimination of the feature candidates before the scores are evaluated, and
the other after. The highlighted regions in the left image are removed first, while the
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second phase on the right filters out the lower scored pixels. The first filter allows
halving of the feature candidates while allowing consistent coverage of vertical lines.
The toggling of the mask between the lines allows more of the non-perfectly vertical
lines to be observed, as they may intersect the horizontal boundary of the masks. The
mask can be problematic if there is a diagonal line in the scene which falls perfectly
in the blind region, but since the primary focus is on the detection of vertical or near
vertical lines, this is not applicable here.

Figure 10.12: Feature density reduction mask.
The highlighted cells indicate the cells that are initially removed for
consideration. The group of three pixels are then compared to only
maintain the best out of the three.

Note that the use of the filter has a similar performance benefit to halving the
capture resolution, but selectively eliminating the unnecessary pixels to maintain the
same level of precision for the features that do remain. The small spacing also allows
scope for the features to be joined together by assuming continuity, which becomes
more difficult with increased spacing between the gaps.

The second mask is applied to the group of three pixels by comparing the scores
and  discarding  all  but  the  highest  scored  feature.  This  allows  the  reduction  of
consecutive horizontal edges being formed, except in between the different rows.
Although the consistency scores that are evaluated allow the removal of some of
these features, this filter allows for extra reduction of these redundant features.

Although it is ineffective to implement with the current set of filters, it is possible
to  use  a  shifting  window to  move  horizontally to  determine  the  highest  scored
feature. This will avoid the misalignment issues between the objects and the mask,
but  also re-introduces  the double  edge problem if  it  does not explicitly  exclude
adjacent features being selected from different window positions.

Two more strategies are introduced to reduce the number of feature candidates,
which consider the current group of features and the rate of encountering a new
feature. The first approach distinguishes whether the region within the image is an
existing feature or a newly introduced feature. As noted earlier, once the feature has
been found, it does not require a complex analysis to maintain the tracking. This
means the regions that overlap with the existing features can also be removed from
the list  of  feature candidates.  This can also include the adjacent positions to the
existing features, as they are likely to be a part of the same feature. Since this process
requires the current position of the features, the new feature detection process should
occur  after  the  tracking  of  current  features  has  been  completed.  One  extra
consideration  to  make  when  using  this  and  the  filter  used  above  is  when  the
foreground feature and background feature separates. Since the newly created feature
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for the background will be away from the foreground feature, the elimination of one
side is required to monitor a significant change in the appearance instead of relying
on the creation of a new feature.

The second strategy involves using the domain knowledge about the speed of the
robot and the change of camera positions, which contribute to how frequently new
features can be introduced into the view. An important note to consider is that the
detection of these features is not critical to the operation of the robot, as it is simply
an enhancement to the existing map. With this in mind, a delay between the new
feature detection processes can be introduced. The waiting period can be based on
time, the actual change in the pose of the camera from the localisation module and
the positions of the servo motor, or even by simply counting the number of pixels
that are observed to be different through the temporal filter.

Since the frame rate remains reasonably consistent, delaying by a set time can be
implemented by simply using a counter on the number of frames that are captured.
However, this does not perform as efficiently as the other approaches, as there is no
guarantee  that  the  image  has  changed.  Using  the  motions  of  the  robot  and  the
camera,  it  is  possible  to  anticipate  approximately  how  much  of  the  scene  is
introduced into the view, but it is unable to cater for dynamic objects, as well as not
being able to predict the structure of the scene behind a foreground object. Instead of
combining the two approaches, the third approach of detecting a large change in the
number of pixels that are found to be different from the temporal filter is used to
trigger the feature detection process.

The threshold value for this must also consider the density filters and the existing
features that will reduce the number of candidates, since specifying an upper limit to
the features will allow the algorithm to perform at a consistent rate. With the current
density  masks,  the  maximum  number  of  features  that  are  ever  possible  is
approximately  width  *  height  /  (3  *  2),  which  equates  to  12,800 for  a  capture
resolution of 320 x 240, which is quite large. Depending on how the features will be
used,  the  required  density  can  differ  greatly.  In  the  current  implementation,  the
typical scene structure can be taken into account to predict the expected number of
vertical lines in a single view. If there are 10 or so vertical lines within a the view
with an average height of half the height, there can be approximately 600 features in
the scene. Based on this value, a threshold value of 512 is used to trigger the feature
detection process if the number of features being maintained drops below this point.

With the scores determined for the feature candidates, they can be sorted so those
with a higher  score can be maintained. Instead of implementing a generic sorting
algorithm, it is important to note that the candidates do not have to be in a fully
sorted sequence, as long as the resulting number of features is within a reasonable
range.  Since the  actual  upper limit  for  the number of  features is  too high to  be
managed in real time, a limit is defined to be twice the threshold used above. With
this in mind, the sorting of the candidates only requires a simple split such that the
number of candidates plus the current number of features is below 1024 and above
512.  Note  that  these  values  should  be  modified  depending  on  the  type  of
environment the robot encounters, as inappropriate values can trigger too frequent
feature detection or miss out on important views of the scene.

To determine the top candidates, algorithms similar to quick sort or bucket sort
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can be used, but focusing on counting the number of elements that are in the group. It
is possible to keep track of the maximum and minimum candidate scores to assist in
defining the pivot value, or the bucket size, but it is also possible to simply make use
of the theoretical  upper and lower bounds. Algorithm 10.1 illustrates the process
using a bucket size of powers of 2-4,  which has been selected based on the level of
precision of the various components of the feature score. Note that by controlling the
two weights and the level of precision used for the hue value, it is possible to map
the scores onto a fixed point decimal number representation like the one used in
chapter 9, which can improve the efficiency of the bucket algorithm.

function FilterCandidate(features, candidates, uppe r, lower):
   set factor = 2^4
   set bucket[factor]
   set precision = 1 / factor
   while feature.size < lower && candidates.size > 0:
      for i in 0 to candidates.size:
         set index = └ candidates[i].score / precision ┘ %
          factor
         add candidates[i] to bucket[index]
      clear candidates
      for i in 0 to factor:
         if feature.size + bucket[i].size > upper:
            set candidates = bucket[i]
            clear bucket
            set precision = precision / factor
            break
         else:
            for j in 0 to bucket[i].size:
               add bucket[i][j] to features
   return features

Algorithm 10.1: Candidate elimination from counter based threshold.

Although the filter above can assume an upper limit to the number of features, the
low scoring features that are most likely erroneous are still maintained if the total
number of features within the scene is small. To allow the elimination of a badly
matched feature is by slowly decrementing the feature's score by using the inverse of
the correlation score. Once the score is reduced to below zero, the feature can be
eliminated.

10.3.4 Tracking

To determine  the  structural  information  of  the  scene  from the  features,  their
motions  must  be  monitored  against  the  changes  in  the  perspective  to  allow
triangulation of the pose of the feature. The tracking of the same object also assists in
disambiguating  other  attributes  by  allowing  the  observations  to  converge  to  a
constant  value.  By  using  the  unique  attributes  that were  determined  during  the
feature identification process, the same object can be found in the subsequent frame,
but will likely have undergone small amount of translation and transformation, thus a
correlation score must be evaluated to find the most likely match.

Since the distance to the object is reasonably large, the amount of motion that can
occur  in  between the frames is  quite  limited.  This  is  true  for  when the camera
translates, but can be problematic if a fast rotation occurs. By limiting the rotation of
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the servo motors to delayed increments, it is possible to limit the range of motion in
between the frames. The operational speed of the robot is currently set to be quite
slow to improve the effectiveness of the localisation algorithm, thus the search space
for the features can remain quite small.

One of the constraints that is placed on the features is that they are used to detect
vertical  lines,  but  at  the  same time,  it  does not  distinguish the vertical  intensity
transitions. This means any features that are not along the mid-height level will lose
its  vertical  pose  as  the  camera  moves  around.  If  tracking  of  these  features  are
attempted  without  any  vertical  intensity  changes  present  in  the  feature,  the
continuous surface of the objects will allow the features to slide up and down with
little changes to the correlation score. Since this would eventually result in features
overlapping with  each other,  many of  the features will  quickly disappear  before
reliable information about the feature's motion can be derived.

To prevent the features from sliding up and down, it may be possible to anticipate
some of the vertical motions by using the current position of the feature within the
view and the pose changes of the robot. However, since the pose changes may not be
available, the constraint may have to be derived from historical data.

An  alternate  approach  is  to  simply  not  worry  about  any  elevation  based
information and only track the horizontal motion of the feature. This places an extra
emphasis on tracking the surface boundary, as the tracking will no longer be based on
a specific point along the boundary, but the boundary itself. This means new features
can also appear above or below existing features as the robot moves towards or away
from  the  boundary.  This  also  means  that  the  errors  from  slight  bumps  and
misalignment of the camera will be reduced.

When implementing  this  approach,  the image plane should  be parallel  to  the
vertical lines, as any difference in the pitch will result in the features moving in an
arc  across  the  view  when  the  camera  is  rotated.  If  the  camera  is  tilted,  the
transformation of the image to a perpendicular view with respect to the ground can
result in unnecessary interpolation with vertical neighbours, thus should be avoided
when possible.

Due to the staggered motion of the servo motor and the slow rotational speed of
the robot, the maximum horizontal motion between the frames was observed to be
approximately 8 pixels with a horizontal resolution of 320 pixels, which is used to
limit the search space for each of the features. Since the motions of the features are
related to the objects, the motion of one feature can be used to guide the tracking of
the other features.  If  a rotation occurs,  the horizontal  motions of all  the features
should  be  reasonably  consistent,  while  a  translation  should  result  in  groups  of
features,  especially  those  along the  same  horizontal  positions  within  the  image,
moving in a similar manner. If the features can be arranged in a way such that they
can be accessed according to their horizontal positions, such as a two-dimensional
array, it is possible to track the displacement of one of the features along that vertical
line and use that position as the starting position of the search.

Since the commands sent to the motors are carried out over a period of time, the
direction of the feature motion can also be anticipated using this information. As with
the motion prediction, the initial search location can be modified to the entire set of
features, as their motions do not differ greatly to warrant an individual prediction,
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such as by using historical information.

Although  there  are  multitudes  of  algorithms  that  can  be  included  to  try  and
improve the efficiency of the tracking, the overheads that are introduced can be far
greater than the benefit  they provide.  Since the attributes that  are stored for  the
feature is quite simple, the processing time for each feature is not a significant load.
Given that the search space only consists of 17 positions, the main contributor to the
processing load is the number of the features and not the processing of the individual
features.  With  this  in mind,  the predictions to  improve the search  speed for  the
feature location has not been included in the current implementation.

The two surface intensity attributes that are stored for the feature can be used to
determine the correlation score  based on the distance measure of  the intensities.
However, since only one side is required to match against the feature, using a single
pixel  does  not  yield  a  reliable  feature  tracker.  To counter  this,  three  different
strategies are  incorporated  to  assist  in the disambiguation process,  such that  the
feature tracker allows for the same surface boundary to be monitored.

The first strategy analyses the surrounding intensities of the feature, such that the
neighbours are checked in a similar fashion to the feature detection process. Instead
of the irregular shape it observed previously, the comparison is conducted on a small
square region to simplify the computation. The score that is derived is a measure of
consistency based on the pixel  intensity of  either side,  thus the difference in the
intensity can be re-used as the surface region being observed shifts. Using a region of
size 3 by 1 pixels and starting the scan from the adjacent position to the edge, the
boundary interpolation  can  be  eliminated  while  allowing  the  consistency  of  the
surface to show. Figure 10.13 illustrates the region being compared with respect to
the position of the feature, where the three pixels in the red rectangle is compared
against the feature's colour and added together.

Figure 10.13: Feature tracking region of comparison for consistency in surface.
The blue square represents the location of the feature, while the red
rectangles portray the surfaces that make up the boundary.

Note that  this may include pixels  that  are still  in transition,  thus may require
weighted  adjustments  to  the  consistency  value  to  make  the  contribution  less
significant. The actual score can be evaluated using the following formula.

ConsistencyLx,y = 1 – (Boundary weight * | IFeaturex,y.left – Ix-1,y | + ( | IFeaturex,y.left – Ix-

3,y | + | IFeaturex,y.left – Ix-2,y | )) / (2 + Boundary weight) (49)

ConsistencyRx,y = 1 – (Boundary weight * | IFeaturex,y.right – Ix+2,y | + ( | IFeaturex,y.right –
Ix+3,y | + | IFeaturex,y.right – Ix+4,y |)) / (2 + Boundary weight) (50)

Consistencyx,y = max(ConsistencyLx,y, ConsistencyRx,y) (51)
Using  just  the  above  approach,  it  should  be  apparent  that  just  using  the

consistency measure does not allow the actual boundary region to be accounted for.

212



10.3.4 Tracking

By storing the intensities at the boundary, the transition characteristics remains fixed
between the specific  foreground and background intensities.  Instead of using the
original intensities, the total strength of the boundary can be determined from the
current view by accumulating the average intensities of the two regions during the
above process. The derivation of the difference does not need to be as rigorous as the
feature selection process, as there is no guarantee that the boundary still exists as the
view may have changed.

Transitionx,y = | (Ix+2,y + Ix+3,y + Ix+4,y) – (Ix-3,y + Ix-2,y + Ix-1,y) | / 3 (52)
Since the pixels used to measure the transition do not actually include the pixels at

the boundary, there is no guarantee that the proposed position contains a change in
the intensity or  the  same transition  as  the  surrounding pixels.  To  encourage the
surface boundary existing in the middle of the observed region, this can be included
in the correlation score.

Boundaryx,y = | Ix+1,y – Ix,y | (53)

Correlationx,y = Boundaryx,y + Transitionx,y + Consistencyx,y (54)
Even with the proposed technique, the precise location of the surface boundary

cannot be determined. To derive a more accurate position of the feature, the tracking
algorithm must maintain historical camera pose and feature locations such that the
actual position can slowly converge to the desired value.

The last of the three strategies that is introduced is the notion of continual motion,
which is determined from the previous feature motions. In the localisation algorithm,
this information is used to specify the starting location for the search. The lack of
reduction in the search space means the tracking will still be successful even if the
prediction is incorrect.  One of the characteristics that make the early termination
attractive is if the scores that are evaluated is quite different. However, this means the
surface  should  be  significantly  different  for  the  scores  to  fluctuate  to  reach the
threshold quickly.

Instead of designing a search sequence altering algorithm, the search space itself
can be reduced to improve the efficiency based on the previous feature motion. Since
the majority of the motions that are detected will be continued on from the previous
motion,  a  smaller  window  can  be  placed  around  the  predicted  area.  This  can
potentially mean that the correct feature position will  not be found if  the motion
suddenly changes, thus relies on the correlation score to indicate that the feature was
not found.

The size and placement of the window depends on location of the feature, as well
as the rate of change, thus maintaining all these attributes for each of the feature can
amount to a reasonable footprint size. Instead, the minimum and maximum motions
of all the feature motions are maintained as one and used for all of the features. Since
this value can change between frames due to changes to the motion pattern, an extra
4 pixels are added to the magnitude of the two limiting values. Since the maximum
motion has been defined, the two limiting values can be trimmed to this value. Note
that ideally,  the maximum motion of the feature should not be reached since the
feature tracking should be carried out while the robot is in motion and the servo
motor being stationary to track the feature from translation and not rotation.

The evaluation of the scores introduced above is based on a single dimensional
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intensity measure, thus must be modified to account for the three different colours
that are available. For the correlation score, the value must indicate how close the
values are, thus the maximum difference should be used. As for the boundary score,
it is important to note the presence of the difference, thus the maximum difference
can be used as well. Note that the hue scale is not used for this analysis, as it deals
with the bordering region of two intensity changes, which can cause large fluctuation
in the hue.

The last issue to consider with regards to the feature tracking is the viewing area,
which is dependant on the radial warping from the camera, as well as the visibility of
the feature in the subsequent frame. Since the cropping from the radial warping is
currently set at an arbitrary amount based on the apparent interpolation, the focus is
placed on the visibility aspect.  Currently,  the feature selection requires 12 pixels
horizontally  and  3  pixels  vertically  for  each  of  the  features,  while  the  tracking
requires 4 pixels on either  side of  the feature and 8 pixels  in  each direction as
potential locations of the feature. This means there should be at least 12 pixels of
buffer region to the side of the frame and a single row at the top and bottom where
the feature should not be maintained. Using these values, a border region of 16 pixels
is placed on the sides, while the top and bottom have been trimmed by 8 pixels to
reduce the effect of warping and discourage features that are too high for the robot to
be included.

10.4 Map enhancement

The tracking of the features allows the inter-frame behaviour of the particular
boundary to be monitored with respect to the robot and camera's pose, thus allowing
the  derivation  of  the  boundary  position  through  triangulation.  Using  the  stored
intensities of the surfaces, it is also possible to assign textures to the surfaces for a
more complete re-construction of the environment to assist in the navigational tasks
for the robot (Seitz & Dyer, 1997).

10.4.1 Depth from motion

As the local map focuses on identifying the locations of the objects in the scene,
the features that are tracked can assist in enhancing the location of the boundary
regions, which will appear as corners or possibly as features on a flat surface. This
process  can  be  achieved  in  two  ways,  where  one  involves  the  build  up  of  the
boundary location before being applied to the local map and the other involving
continuous superimposition with the local map.

Many  existing  structure  from  motion  approaches  are  based  on  a  simple
triangulation algorithm of disambiguating the location of the feature, which can be
achieved through two different positions of the feature and the corresponding camera
pose (Matthies et al., 1988). The technique is similar to those used in parallax or
stereo depth mapping techniques (Bleyer & Gelautz, 2004; Hemayed et at., 1997 (a);
Iocchi & Konolige, 1998;  Irani & Anandan, 1996;  Kumar et al., 1994;  Murray &
Jennings, 1997; Rosselot & Hall, 2004), which require precise camera poses and the
feature locations. If other constraints are available, it is also possible to derive this
with increased views from different perspectives (Quan & Kanade, 1997). Figure
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10.14 illustrates the various components involved in the triangulation process for two
known camera poses.

Figure 10.14: Depth detection from triangulation.
The circle represents the object of interest, the light lines represent
the limits of the viewing angle, and the T shaped lines show the
projected  image  and  the  perpendicular  line  at  the  center.  This
corresponds  to  the  orientation  of  the  pose.  ϴ  and  Ф  are  the
orientation of  the object  of  interest  in  the projected image with
respect to the global coordinates.

Since only one camera is used in this set-up, it is vital to minimise the pose errors
for the cameras. Coupled with the precision errors in the tracking and the increased
ambiguity of the feature's location with increased distance, the depth value that is
determined from the tracking will  often be inaccurate if only two poses are used.
Since a  large number  of  poses  and the feature  positions  can be made  available
through continual tracking of the feature, it is possible to combine the multiple depth
evaluations to converge the pose to a more accurate value.

When the multiple measurements are conducted, a similar consideration to the
carving can be applied, where the change in the orientation between the tracking is
used to weight how much of an effect it has on the local map. Since every pair of
feature  position  with  respect  to  the  camera  pose  can  be  combined  for  the
triangulation, the number of pairs increases at the rate of (N 2 – N) / 2 , where N
is the number of tracking. Given the high frame rate, this can quickly become an
issue, especially because there is no upper bound defined except when the feature is
discarded.

Since combining consecutive tracking does not allow for the orientations to differ
greatly, it would be more ideal to combine those that are taken with some time apart.
Two different  strategies are considered to  allow the limiting of the memory and
processing requirements while encouraging the use of pairs that are taken at some
distance apart. The first approach involves maintaining a running average, while the
second maintains a selection of feature positions to keep the outlier features.

The maintenance of the running average involves using the initial feature position
as the constant  reference point  and continuously evaluating the feature pose.  By
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maintaining a counter, it is possible to accumulate the values, which can be averaged
at any time. Note that in certain cases, the feature will remain stationary within the
view, such as when the object is very distant, the rotation of the camera counteracts
the motion of the robot, or when no motion occurs. Since this can bias the pose from
the lack of the change in the perspective, these repetitive tracking can simply be
discarded.  The  approach  also  depends  greatly  on  be  accuracy  of  the  reference
position, as this can cause a misalignment of the object. Since the accumulation of
the pose is required for each pose of interest, the number of calculations can become
an issue as the effect of additional poses decreases over time.

The second approach attempts to reduce the issues from the above by reducing the
number of pose evaluations to only those near the initial position of the feature and
those  just  before  the  feature  is  lost.  This  can  greatly  reduce  the  number  of
evaluations, especially if the positions that are maintained are kept small and those
that are stored near the start is separated from those just before the feature is lost.
This approach assumes that the motion of the camera does not return to the same
position when it is lost, as the orientation will be quite similar. It can also discard the
majority of the tracking information in between the start and end of the feature being
tracked, which can provide many different orientation of the same object.

Instead of always selecting the first and last few positions, it is also possible to
randomly select the candidates or selectively decide which positions to use based on
the camera pose. Depending on the availability of memory, the complete trace of the
different positions can be stored for each of the features to be analysed in detail.
Since this can result in an enormous amount of wasted memory, a dynamic selection
approach is applied.

For the random selection, the frame number and the number of positions to be
maintained can be used to determine a probability of it replacing one of the current
entries. The replacement of the existing store of positions can be done randomly or
sequentially, which must consider the special case where the number of positions is
smaller than the storage size.

The selective approach is slightly more processing intensive, but can be designed
to distribute the feature positions by eliminating those that are closely located to
other entries. By summing the difference in the orientation between the other entries,
the  one  carrying  the  minimum distance can  be  discarded.  It  is  also  possible  to
simplify this by maintaining the sorted positions and only using the distance to the
adjacent orientations.

The result of the depth from motion approach is shown in figure 10.15, where the
surface boundaries are superimposed over the local map. The reliability of the range
finders meant the two approaches could not be compared accurately, but the selective
algorithm did not show any noticeable increase in the processing time, thus is used in
the current implementation.

Note  that  although  the  current  implementation  does  not  consider  the  vertical
edges,  similar  strategies  can  be  applied  to  determine  the  height  of  objects  by
observing the upper and lower most features of those in a line, or by introducing the
vertical edges in future implementations.

By using a single image, it  does not allow the identification of the depth. By
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combining the camera orientation with the local map, it is possible to correlate the
direction  of  the  feature  with  the  occupancy on  the  map  to  identify  the  object's
location.

Figure 10.15: Surface boundary positions superimposed over the local map.
The blue is used to represent vacancy, green for occupancy, and the
red  circle  is  the  location  of  the  robot  body.  The  purple  dots
scattered on the left hand side are locations of the features when
they were mapped onto the map.

When representing the visible feature as a line or a cone from the camera, it is
possible to trace its trajectory onto the local map. This can then perform a similar
occupancy accumulation like the carving, but based on a pure accumulative value,
since no limit to the distance is used. This process was required for the range finders,
because it was not possible to verify that the tracking of the same object in between
the  scans  took  place.  The  map  itself  was  used instead  to  maintain  the  possible
locations of the objects.

Instead of maintaining another attribute at the local map, it is possible to simply
add to the occupancy value of the cells that intersect or are close to the possible
location of the features. The scores can be modified based on the distance to the line,
which eventually terminates once it encounters a cell that is strongly marked as being
occupied or gradually distributes the weights as it extends out further, such as by
using a formula like below.

Weight = Occupancy / Distance (55)
The individual carving of the lines can lead to increased processing requirements,

and does not improve upon the previous approach, as the tracking of the feature is
not well utilised and is dependant on the completeness and accuracy of the local map.
With this in mind, the tracking approach is used, which calculates the pose of the
feature until they are lost before being applied to the local map.

One of  the  possible  issues  with  this  approach  is  in the  latency  between  the
localisation algorithm and the observations made by the camera. Although the delay
is small,  the errors in the robot's pose can result in incorrect feature poses being
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calculated. Since the localisation algorithm itself introduces a slight delay to smooth
the  motion, an  alternate  method  of  synchronisation  is  required.  In  the  current
implementation, a constant offset has been derived using the same technique as the
localisation  cameras.  Unlike  the  two  manually  colour  adjusted  cameras,  the
automatic colour adjustment on the camera caused some difficulties when the light
being introduced was too different.  Instead,  the cameras were both directed to a
surface where a small point was illuminated by a red LED. This test showed that the
horizontally viewing camera was delayed by 0 to 3 frames depending on the amount
of ambient light present. Since there is a delay in the response to the motion due to
the  smoothing  carried  out  within  the  localisation  algorithm,  the  majority  of  the
motion  is  delayed  by  1  frame.  Using  these  information,  the  motion  from  the
localisation is not delayed any further, as the lighting condition of the environment is
often reasonable to keep the delay in the horizontal viewing camera low. There is
scope in the future to dynamically adjust this value depending on the current settings
for the colour adjustments done by the camera.

The effect of adding the feature pose to the local map is yet to be fully explored,
but can range from defining a more precise corner of objects to joining these feature
points for a surface reconstruction, which can make use of the existing occupancy
values to disambiguate the scene structure. The combination of the depth structure
that is derived with the arrangement of the intensity in the captured image can also
lead to unique identification of the object being observed (Lowe, 1987).

10.4.2 Texture mapping

An obvious application of the visual sensor is to map the textures of the objects
onto the surfaces of the local map (Debevec, 1996; Heckbert, 1986). As mentioned
earlier, since the flat surface is not tracked as a feature, the intensity found on the
side of the feature can be used as a simplified representation of the surface texture.
One  important  issue  to  note  is  that  the  local  map currently  does  not  store  any
elevation related information. This means many of the intensities will conflict with
each other as multiple surfaces at different heights can be observed. To counter this,
the map must filter the features such that only those that correspond to a surface that
is found on the local map to be used. This concept should also be applied to the depth
map, but will be discussed in more detail in chapter 11.

The height of the object that should be detected is dependant on whether it will
collide with the robot, thus the camera is unable to see the whole object if it is too
close. Instead of attempting to derive the height, the purpose of this texture mapping
is observed, which is to assign an extra attribute to the cells such that the correlation
can be made more accurately. This means that as long as the intensity texture that is
assigned  is  consistently  observable  for  that  surface,  it  does  not  matter  at  what
elevation the intensity is extracted from.

Since the height of the observed objects change if they are not viewed parallel to
the motion of the camera, the features along the mid height level is chosen for the
texture extraction process. Note that since the density mask trims half of the features
in one row,  the two middle rows are combined to represent  the whole row. The
features can then be used as the bounds for applying the intensity measure, which can
make use of  the  adjacent  intensities  of  the  feature itself,  or  determined through
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observing the consistency in the intensities between the two features.

The  current  implementation  does  not  support  the  identification  of  the  actual
surfaces, so the texture is maintained by the feature pairs that  correspond to the
bounds of the surface. It is possible to assign the texture to each of the cells on or
near the line between the two features, but will result in large amount of redundant
information unless the camera does not correctly pick out the surface boundaries.

The texture that is stored is kept at a minimum, as the features cannot distinguish
the difference between a surface boundary and a pattern on a flat surface without
analysing the depth of the feature with respect  to other features.  This means the
features also acts as boundaries for patterns that are present on the surface, which can
be combined to construct the view of the object. The use of the surface texture is left
for future development, as localisation based on correlations with the map is not
carried out in this project.

10.5 Summary

The vision processing algorithm used to observe the scene requires many different
considerations to those observed by the floor pointing cameras. The reduction in the
constraints  means  the  features  that  are  tracked  can differ  significantly  to  those
expected and lead to a less reliable tracking of the same object. Instead of attempting
to perfect the tracking of a selected few features, the algorithms that are incorporated
attempts track multiple features that are likely to appear in the subsequent few frames
that are directly applicable to the local map.

The detection of the features involves several scores being established to identify
characteristics that represent a boundary region between two surfaces of different
textures. This requires multiple colour scales to minimise lighting changes, as well as
comparison with  neighbouring pixels  to  distinguish between noise and an actual
surface boundary.  During this process, the left  and right  surfaces adjacent to the
boundary is distinguished, such that only one surface is required to represent the
boundary.

Several filters are introduced to reduce the feature candidates that are deemed
uninteresting or redundant. The strategy is combined with a range based threshold to
limit  the total  number of  features that  are maintained, as well  as controlling the
triggering of identifying new features. This technique is used to maintain a constant
pool of features that are to be tracked, but has an upper bound to guarantee the upper
limit on the execution time.

After the features are tracked by correlating the intensities and determining the
presence of a boundary, they are stored and used to establish the depth measure of
the  feature  by  combining  multiple  positions  of  the  feature  at  various  camera
positions. The triangulation process is aided by the availability of a large number of
position pairs that assist in reducing the aliasing and measurement errors.

Although there are limitations in the performance, the algorithms showed some
consistency with the measures available on the local map, thus forms the basis for a
higher level analysis that can be used to improve or assign extra attributes to the local
map.
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The small group of pixels that indicate a particular pattern has so far allowed for
local features to be identified, which results in large number of redundant features
that represent the same object.  The large amount of information can be grouped
through  by  a  higher  level  representation,  thus  allowing  a  more  informed
enhancement  to the existing map and a reduction in  the  redundant  contributions
(Smith et al., 2006).

Before the higher level concepts can be applied, the group of features must be
combined using  templates  and meet  certain  conditions for  the  presence  of  such
structures. The analysis involves the specification of such constraints, the formation
and maintenance of the group, as well as the effect and application of the derived
structures to the maps. Based on the current use of the maps, the focus is placed on
the improvement in the efficiency of the visual processing component as well as the
accuracy of the attributes that are assigned to the map.

11.1 Feature clusters

The  selection  of  the  features  is  typically  done  using  their uniqueness  and
arrangement of the textures with respect to the surrounding pixels. Given that the
view consists of structures of the scene, an important characteristic that ought to be
included in  the  vision  processing is  the  inter-feature  relationships for  those that
belong  to  the  same  physical  object.  This  characteristics  can  allow  for  extra
constraints  to  be used when disambiguating the feature  motions,  increase in  the
reliability  of  the  tracking,  allowing  the  structural  information  to  be  used,  and
compress the duplicated tracking motions (Rosten & Drummond, 2005)

The two groups that can be formed using the visual features are in one of the
object surface or the surface boundary categories. These are complimentary to each
other as the object surfaces can be derived indirectly by reversing the candidates for
the boundary features. While the detection of the surface can also be done through
joining the surface boundaries, the pattern on the surface can sometimes hinder the
distinction between a surface boundary and printed patterns on a flat surface. This
distinction is  often  achieved through sensor  fusion and segmentation algorithms,
which observe the proximity and similarity in the intensity or fluctuations of the
intensity at  multiple scales (MacLean et  al.,  1994; Sharon et  al.,  2001).  Another
critical attribute to consider is the proximity of the features, as the physical objects it
views should be joined together as one construct.

The capability of forming feature groups for morphing objects, such as people and
rotating  objects,  is  a  challenging  task  that  often  requires  significant  amount  of
dedicated  resources  and  predefined  attributes  to  narrow  down  the  search  space.
Instead, the focus is placed on forming a shape and density bound groups using the
intensity and intensity transition characteristics. The structures that are determined
will greatly simplify the merging process with the local maps, as the structures can
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be determined more accurately before they are applied to the map.

11.1.1 Boundary formation

Splitting the image into several distinct components can be achieved using the
horizontal boundaries that have been determined by the features, which represent the
surface boundaries.  Using the intensities of  the surfaces that  are attached to  the
features, the similarity between the neighbouring features can be established.

When combining the features, the direction of the boundary and the density of the
features play a significant  role in correctly portraying the boundary of the actual
object.  As  the  current  set  of  features  represent  the  horizontal  transitions,  the
boundary must extend vertically,  and occasionally in a diagonal  direction due to
misalignment issues or irregularly shaped objects. Although the presence of direct
horizontal neighbours has been reduced using the density mask, they may still exist
after the features has moved around within the frame.

The detection of a connected vertical  sequence is a trivial  task,  which simply
requires  a  linear  traversal  between  vertically  adjacent  features.  However,  this
configuration of features is rarely observed and requires additional consideration for
diagonal transitions, zigzag arrangement of features along a heavily interpolated and
noisy boundary region, connecting together multiple segments that may have been
separated due to obstruction or noise, and also the identification of the upper and
lower bounds of the line.

It  is possible to consider line detection algorithms like Hough transforms with
restricted range in the slope of the line (Mattavelli et al., 1999), but this can be a very
costly operation and does not easily allow the integration of other characteristics,
such  as  the  aliasing  errors,  consistency  in  the  feature  intensity,  and  proximity
between the features that form the line. To cater for the aliasing errors, each vote for
the line equation can be spread across several points, such that partial votes are given
to those that  have a similar  line equation.  Figure 11.1 illustrates this concept by
incrementing the adjacent line equation entries as half of a vote, which can be seen as
the blurring of the curves.

Another technique that  can be applied is aimed at  placing a constraint  on the
precision  between  the  line  equation  parameters,  which  involves  determining  the
slopes of all the potential feature pairs and only using those as the possible slope of
the  line.  The  selection  criteria  for  the  feature  pairs  can  include  restricting  the
horizontal  window size and limiting the distance between the features,  such that
features that are too far apart do not attempt to combine together. If the approach is
used by itself, the aliasing and precision errors in the feature can cause large number
of unique line equations, thus require blurring like the above approach and increasing
the possible slopes by including those that are derived from the adjacent positions as
well.

Since the lines that are determined are applied throughout the whole image, the
line  based  approaches  can  combine  segmented  lines  indirectly.  However,  most
approaches  make  no  distinction  between  the  various  surfaces  that  the  feature
represent.  The approach is  also very sensitive to the density of  the features and
ignores the characteristics of non-features along the line being drawn, thus require
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normalisation to be able to identify multiple lines, as well as several parses using
different attributes to group the lines.

Figure 11.1: Partial voting for line detection with Hough transform.
The top row shows the two sources, where the left is the original
and the right is the edge image. The bottom left shows the standard
Hough transform, while the bottom right shows the result of partial
voting.  The curves show a slight  blur  due to account  for minor
misalignments of the edges.

Based  on  the  idea of  directly  joining  of  the  features,  they  can  be  traversed
recursively by placing a constraint to the direction of traversal to the same slope as
previously established. If an adjacent feature is identified, but do not meet the slope
criteria, a new line can be traversed from that point on.

By severely limiting the angle to those specified above, the only possible lines
will be a directly vertical line, and two lines that have a slope of ±1. By specifying a
range of angles using the corner points of a virtual pixel around the feature's position,
a wider range of line slopes can be accepted. Figure 11.2 illustrates this idea by
incrementally reducing the valid slope range and comparing it with the above.

Figure 11.2: Line slope convergence through iterative line tracing.
The red squares show the starting pixel and the green squares show
the  current  pixel  being  observed.  The  blue  region  shows  the
possible slopes, which slowly decreases in area as the green square
moves downwards.
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One of the issues with the approach, as can be seen with the second to last row, is
that the lack of the intercept value being maintained means the lines that are formed
do not necessarily intersect all of the past features. Although this can be problematic
if  the  boundary is  perfectly straight,  the  flexibility  can  actually  be  beneficial  in
connecting the scattered features together.

Since this approach is based on drawing a line from a specific starting feature, it is
quite simple to restrict the features that can be combined. As the line is extended, the
left and right intensity values that are stored can be used to determine the similarity
in the surface. The approach that is currently used is a sum of the intensity difference
based threshold, but by relying on just the starting feature, it may form shorter lines
if the starting value was slightly corrupted due to interpolation. To account for this,
the minimum and maximum intensities are stored along the line, where the difference
between the minimum and maximum must remain within the threshold value. This
concept is illustrated in figure 11.3 using a grey scale intensity.

Figure 11.3: Minimum and maximum difference threshold.
The traversals with different thresholds are illustrated by the red
and blue lines.

Due  to  the  reduction  of  features  through  various  filters,  the  total  number  of
features can be quite small when the grouping algorithm is conducted. This means
the density of the features may not be high enough to form a line of any significant
length. The vertical gaps between these features can either be skipped by extending
the  search  area  for  the  next  feature  to  extend  to,  or  by  actually  observing  the
intensities of the pixel that is located at that position.

The first approach can be implemented by specifying the allowed gap size and
extending the triangle shaped search area until  a  feature is  found or the limit  is
reached. One of the potential issues with this is if multiple features are present within
the triangle, which can bias the orientation of the line based on what order the search
area was traversed. By allowing the entire search area to be searched to form new
lines every time a pair is found, the total number of lines can increase dramatically,
as well as repeating line segments that are overlapped.

To control the number of line segments being found, the size of the triangle is
trimmed  down  both  vertically  and  horizontally.  To  remove  the  duplicate  line
segments that may be formed, any features with the same slope of a previously found
feature is disregarded. Figure 11.4 illustrates the search area, where the red boxes
indicate  those  remaining  after  the vertical  and  horizontal  limits,  while  the  grey
indicates the repeated slopes. Note that these are further eliminated later on due to
the constraint in the slope range, which is defined by the current state of the line. Due
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to the use of this mask, it is also possible to relax on the slope requirement by simply
eliminating certain regions depending on the rough slope measure. This could be as
simple as removing one side of the mask based on the sign of the slope.

Figure 11.4: Reduction of the search area for the next feature.
The top square represents the current pixel of interest. The triangle
shape shows the orientation limited pixels, the grey boxes represent
those that repeat the same slope as one earlier,  and the outlined
squares represent the pixels within close proximity.

If the line segment cannot continue, the mid point of the valid slopes can be used
to define the characteristic of the line. Since there may be many short lines that are
formed, it is important to eliminate these as being insignificant to the scene structure.
The height of these lines also play a role in the applicability to the scene structure, as
lines that are too high may not be viewable by the range finders to be included in the
map. Since these lines should extend from the height viewable by the range finders,
it is important that they intersect the mid-height level within the image. Rather than
eliminating these lines after they have been traversed, the direction of the traversal
can be specified, such that the features above the mid way point extends downwards,
while those that are lower extends upwards. As these features eventually combine to
indicate the start and end points of the line, it is only necessary to traverse from half
of the view. A typical scene that is viewed consists of more features in the upper half
of the image, as the majority of objects in the scene are located where they can be
interacted easily by people and the floor textures often do not allow features to be
present.  This  means the line formation can be started from the bottom half  and
extended upwards.

As the features are traversed, it is possible to maintain all the intermittent features
or to eliminate them depending on the presence of multiple lines that converge at the
same feature point. If  the features are eliminated, the line being formed from an
alternate direction which intersects the same point may be halted. If the features are
maintained, then the number of line segments that are formed can potentially become
an issue.

A simple approach to handle this is to observe that the lines can meet, but never
intersect over another, as they represent the surfaces structure. By starting from the
features that are from one end of the image, it will prioritise a longer sequence of
features. When a meeting point is encountered, the line is terminated if the slope is in
the opposite direction. Since the precise range of slope is not used, the direction is
categorised into three rough types. If the sign of the slope is opposite to one that is
already  present,  the  feature  is  removed  from  further  line  analysis.  Figure  11.5
illustrates the two cases using a simpler search area which only extends to the three
adjacent positions starting from the top.
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Figure 11.5: Feature group elimination for line segment formation.
The lines originating from the top indicate the initial lines that are
drawn. The other line is then drawn, but encounters a line with an
opposite slope, thus terminates. In the second example, a third line
is introduced.

The increased search area for the next feature means the pixels in between can
potentially contain irregular intensities, which may be the reason for the lack of a
feature to connect the line segments. It is possible to compare the intensity of the
non-feature pixels with that used for the line, but as long as the search area is kept
small enough, the small  gaps can be noted as noise or obstructions and not from
completely different surface boundaries. If the size is ever increased significantly, the
consistency in the intensity and the presence of a boundary is necessary for the pixels
that lie along the path between the features. It is also possible to simply increase the
number of features if the resource and processing issues can be addressed by other
means.

Once  the  lines  have  been  defined,  the  features  that were  traversed  can  be
combined to  represent  the  surface boundary.  The grouping allows the individual
features to be influenced by the behaviour of the others within the group, which
include the pose, motion, and the interactions with the local map. By introducing this
reverse influencing, it can run into error propagation issues and too much narrowing
of attributes, which can limit the growth and adaptation of the features. Instead, the
features themselves are maintained separately and the group stores several attributes
of its own, including the pose in the scene, colour, score, angular position within the
image, a counter, and an id to allow referencing by the individual features that make
up the group.

Since the features are constantly updated, the feature group must also be updated
to account for the change in the features. When there is motion amongst the features,
it is possible to make use of the feature group id to identify the motions of the other
features to indicate if an unexpected motion occurs for confirmation. Depending on
the reliability of the feature tracking, it may be possible to avoid this task, as it can
consume valuable processing time with little benefit.  If  constant  validation is not
carried out, the groups are not used until they are applied to the map. This means the
updating of the groups can be delayed until just before the features are lost or the
group is used to save on the processing time.

The  attributes  of  the  group  is  updated  when  one  of  the  feature  members  is
removed and its state is merged with the group. The values are weighted based on the
counter values of the feature and the line, which is then added together. The colour is
maintained in a similar fashion, but uses a constant and equal weight for both sides
of the boundary. The score relates to the number of features that make up the line,
which, in conjunction with the counter, can be used as a confidence measure when

225



11.1.1 Boundary formation

the line is applied to the map.

When features are removed, the pose, counter, colour, and score must be updated.
It may be possible to translate the current state of the feature group to the local map,
but  this  is  left  until  the  members  of  the group  are all  lost  in  the  current
implementation. When this occurs, the pose and the confidence measure is applied to
the  local  map  to  indicate  the  presence  of  an  obstacle  at  that  location.  This  is
equivalent to the converged pose, which is the state at which the last feature is lost.

When new features are introduced due to the total number of features dropping
below a minimum value, the feature group attributes are temporarily copied and the
boundary detection algorithm is applied. As the lines are being formed, the features
observe a change in the id number, which is simply a sequence number, thus requires
adjustments to the feature group reference. During the rearrangement of the features,
it  is  possible  for  the  feature  to  form a part  of  multiple  boundaries,  or  multiple
boundaries that merge into one. When the feature group is split, the attributes can be
copied over to the new line. If multiple feature groups are combined, the attributes
are chosen based on the proximity to the robot, as this indicates obscuring of the
background boundary by another.

Figure  11.6  illustrates  a  sample  local  map,  where  the boundary poses  of  the
individual features is shown in purple, the pose determined by the feature group is
shown in yellow, and the cyan circle located in the middle of the yellow cluster
represents the location of the latest pose determined by the feature group. Note that
to three feature groups that are still in the view have not finished converging, thus are
not included in the map.

Figure 11.6: Feature group based surface boundary pose.
The improved feature positions are superimposed on figure 10.15.
The yellow dots represent the positions of the feature group, which
converges to the cyan circle before completely exiting the view.
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11.1.2 Surface formation

The  use  of  the  features  allows  for  the  corner  points  of  the  surfaces  to  be
determined more accurately, which can indirectly be used to identify the flat surfaces
that are present in between these points. However, this assumption does not hold all
the  time,  as  it  relies  on  the  precise  and  continuous  detection  of  the  surface
boundaries.  The features are currently configured to determine the boundaries of
constant  intensity  boundaries,  which  do  not  always  capture  all  of  the  vertical
boundaries. This may include segments that blend in with the background, regions
with rapid intensity changes that appear as noise, or not being distinctive enough and
is eliminated for other, more prominent, features.

11.1.2.1 Intensity similarity

By using the intensity value as the measure of consistency, it is a simple process
to  cluster  the  neighbouring  pixels  after  specifying a  range  of  similar  values.
Depending on what value is used as the reference intensity to cluster to, the features
can be grouped into multiple groups as the threshold value may overlap with one
another.  By  parsing  the  image  using  various  reference  values,  it  is  possible  to
determine the optimal reference values for a given threshold range to minimise the
overlap or the number of clusters.

One  strategy  in  achieving  a  reasonable  clustering  using  a  small  number  of
iterations is to make use of a histogram to note the trends in the intensity distribution
(Novak & Shafer, 1992; Stricker & Swain, 1994). By using the maxima as the initial
reference value, a region filling algorithm can be used to expand out to those with
similar  intensity  values.  When  the  groups  are  formed  using  an  intensity  based
similarity,  the  lighting  effect  can  cause  gradual  intensity  differences,  thus  the
similarity measure must be carried out using the intensity difference between the
neighbours and not the bounds of the histogram. To prevent excessive grouping, the
threshold value must be reduced to minimise the erroneous grouping of those with
similar intensities.

To  remove  the  occurrence of  multiple  associations,  the  pixels  can  simply  be
removed from the histogram once they have been placed into a cluster. Note that this
approach may not allow large clusters to form if the thresholds are too small, as it
does not consider the frequency of the neighbouring intensities. Since the intensities
of the same surface should be quite similar to each other, especially with regards to
the hue values, the histogram can be based on the hue scale and also make use of the
adjacent frequency count when determining the most common colour. An alternate
approach to this is  by reducing the precision of the hue value, which allows for
slightly  faster  processing  but  can  cause  non-optimal  grouping.  To  improve  the
effectiveness of the grouping, the range of the values can be taken into consideration
to stretch out the range or to modify the number of neighbours to consider for better
utilisation of the available colours.

As noted earlier,  the hue scale is not an effective way to identify the surface
colour if the colour is close to a grey scale colour. Instead of using the hue scale,
these colours are grouped together by the luminance values if the difference between
the intensities is within a threshold value, which is determined from the ambient
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noise level for the camera. Note that since the hue scale removes the gradual shading
effect from lighting, the threshold should be fixed for the hue groups and adaptive for
the luminance groups.

Once the first cluster has been identified and those involved removed from the
histogram,  the next  most  frequent  hue or  intensity  group can be selected  and a
random pixel from the group can be selected as the starting point for the next region
filling  algorithm.  The  pseudo-code  for  the  grouping algorithm using  the  sliding
window is illustrated in algorithm 11.1. Note that only the luminance group is shown,
as the hue group formation is  done in the same way with  the exception of  the
wrapping that occurs between the two ends of the array and the fixed threshold.

function GroupFeatures(image):
   set hue_image[image.height][image.width] = { -1. .. }
   set lum_image[image.height][image.width] = { -1. .. }
   ConvertToHueLuminance(image, hue_image, lum_imag e)
   set lum_histogram[range]
   PopulateLuminanceHistogram(lum_image, lum_histog ram)
   set group[]
   GroupLuminance(group, lum_image, lum_histogram)

function ConvertToHueLuminance(image, hue, luminanc e):
   for h in 0 to image.height:
      for w in 0 to image.width:
         set Imax = max(image[h][w].R, image[h][w]. G,
          image[h][w].B)
         set Imin = min(image[h][w].R, image[h][w]. G,
          image[h][w].B)
         if Imax – Imin < ambient noise threshold:
            set luminance[h][w] = (Imax + Imin) / 2
         else:
            if Imax == image[h][w].R:
               set hue[h][w] = (image[h][w].G -
                image[h][w].B) / (Imax – Imin) / 6 * range
               if hue < 0:
                  set hue[h][w] = hue[h][w] + 1
            else if Imax == image[h][w].G:
               set hue[h][w] = (2 + (image[h][w].B -
                image[h][w].R) / (Imax – Imin)) / 6  * range
            else:
               set hue[h][w] = (4 + (image[h][w].R -
                image[h][w].G) / (Imax – Imin)) / 6  * range

function PopulateLuminanceHistogram(luminance, hist o):
   for h in 0 to image.height:
      for w in 0 to image.width:
         set value = luminance[h][w]
         if value == -1:
            continue
         set histo[value].pos[histo[value].count].x  = w
         set histo[value].pos[histo[value].count].y  = h
         set histo[value].count = histo[value].coun t + 1
   histo[0].score = histo[0].count + histo[1].count
   for v in 1 to range - 1:
      histo[v].score = histo[v – 1].score +
       histo[v + 1].count – histo[v – 1].count
   histo[range – 1].score = histo[range – 2].score –
    histo[range – 2]
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   for v in 0 to range:
      if histo[v].count == 0:
         histo[v].score = 0

function GroupLuminance(grp, luminance, histo):
   while true:
      set maximum = 0
      set index = 0
      for v in 0 to range:
         if histo[v].score > maximum:
            maximum = histo[v].score
            index = v
      if maximum == 0:
         break
      else:
         set x =
          histo[index].pos[histo[index].count - 1]. x
         set y =
          histo[index].pos[histo[index].count - 1]. y
         set stack[] = { { x, y } }
         while stack.size > 0:
            set stack.size = stack.size - 1
            set w = stack[stack.size].x
            set h = stack[stack.size].y
            set val = luminance[h][w]
            set luminance[h][w] = -1
            set grp[grp.size].pos[grp[grp.size].cou nt].x = w
            set grp[grp.size].pos[grp[grp.size].cou nt].y = h
            set grp[grp.size].count = grp[grp.size] .count + 1
            set small = 0
            set large = histo[val].count - 1
            while small <= large:
               set mid = small + (large - small) / 2
               if histo[val].pos[mid].y > h:
                  large = mid - 1
               else if histo[val].pos[mid].y < h:
                  small = mid + 1
               else if histo[val].pos[mid].x > w:
                  large = mid - 1
               else if histo[val].pos[mid].x < w:
                  small = mid + 1
               else
                  small = mid
                  large = small - 1
            histo[val].count = histo[val].count – 1
            if histo[val].count == 0:
               histo[val].score = 0
            else:
               histo[val].score = histo[val].score – 1
            if value > 0:
               histo[val - 1].score = histo[val - 1 ].score – 1
            if val < range - 1:
               histo[val + 1].score = histo[val + 1 ].score – 1
            for j in -1 to 1:
               for i in -1 to 1:
                  set neighbour = luminance[h + j][ w + i]
                  if neighbour != -1 && | val - nei ghbour | <
                   luminance_threshold:
                     set stack[stack.size].x = w + i
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                     set stack[stack.size].y = h + j
                     set stack.size = stack.size + 1
         set grp.size = grp.size + 1

Algorithm 11.1: Surface clustering based on similarity in the intensity.

Although the clusters are given a range of intensities that are accepted as being the
same, there are frequent occurrences of noise and obstruction that can split two very
closely located clusters. This issue can be handled in a similar way to the boundary
formation process by increasing the search area for the similar colour. Instead of
simply allowing any disjointed pixel to be merged together, two extra constraints are
placed to prevent different surfaces from merging together.

The first strategy involves making the intensity similarity stricter by reducing the
range of accepted value as the search area is increased. This allows the two regions
being combined to contain small amount of variety, such as a thin line, and still be
classified  as  the same surface.  The second  strategy involves  the limiting  of  the
direction in which the search area is increased, which is based on the idea that many
indoor structures are decorated with the same theme and placed one after the other.
This means extending the search area sideways can potentially include surfaces that
belong to other objects. With this in mind, the search area is only extended vertically,
where the allowed colour range is halved for every pixel being extended until the
maximum possible extension, which is currently set to 5 pixels based on a rough
assumption that the gap of 5 mm is allowed when observed at a distance of around
1m.

11.1.2.2 Texture pattern

When the surfaces are viewed at different distances, various texture patterns may
appear  or  disappear  due  to  different  sampling  rates by the camera.  When these
texture  patterns  are  visible,  it  can  sometimes  trigger  a  boundary  feature  to  be
established,  as  the  inconsistent  intensity  prohibits  the  intensity  similarity  based
surface detection from operating. To successfully group the pixels that are from the
same surface, techniques such as multiple resolutions, template based, or intensity
fluctuation based techniques can be applied to characterise the arrangement of the
pixels.

The use of multiple resolutions is done to simulate the change in the distance to
the scene by interpolating the neighbouring pixels, which allows the suppression of
rapidly changing intensities. Since the change in the actual camera resolution can be
a slow process due to the re-initialisation of the camera device, this can be simulated
in  software  by  a  sub-sampling algorithm.  To  find  the  appropriate  interpolation
strength and size to use, the frame must be processed multiple times with various
values until  the number of segments that are formed reaches a desired level. The
settings for the sub-sampling algorithm does not always result in the ideal surfaces
being determined,  as  the  spacing between the patterns  can vary from texture  to
texture. It is possible to use different resolutions on different portions of the image,
as  with  many segmentation  algorithms,  but  these  tend  to  consume a  significant
amount of processing time due to the large amount of search space, so are not carried
out here.
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Instead of attempting to convert the rough textured pixels into a uniform intensity
region, the intensity pattern itself can be observed. Two of the characteristics that are
common  to  the  majority  of  non-uniform  intensity  surfaces  are  the  presence  of
repeated texture patterns and a very similar rate of fluctuation in the intensity. The
detection of these requires a group of pixels to be observed simultaneously, such that
the correlations can be carried out over a region.

The process of identifying repeated patterns involves a similar idea to deriving the
correlation scores between texture patterns at  neighbouring positions.  One of the
additional considerations to make is the discarding of irregular intensities between
the repeated textures, which means the size of the pattern must be modified when
different sized patterns are encountered. As with the feature tracking algorithm used
for localisation, the evaluation of the correlation score can be quite time consuming
due to the various overlap arrangement of the pixel intensities.

To simplify some of the processing, it is possible to make use of templates to
characterise the particular intensity behaviour, such as stripes or meshed patterns,
such that constraints are placed on the expected arrangement as well as the distance
at which it must be observed at. The templates that are used must define the the
intensities or the relative intensity changes in case a shape based pattern is required.

The shapes and sizes of these templates can depend on the anticipated structures
in  the scene  and  the  resource  availability,  which  can  control how  precise  and
adaptable the patterns can be. Since the orientation and the density of the texture
pattern can easily be misaligned,  the  templates can be applied  in  sequence with
different  configurations.  Figure  11.7  illustrates  a sample  template  that  has  been
designed for detecting vertical  stripes.  Note that the difference in the intensity is
measured by the magnitude to allow the inverse of the pattern to also be detected.

Figure 11.7: Vertical stripe detection templates.
The two colours represent the two alternating colours. The dotted
lines represent multiple occurrence of the same colour.

When using these templates,  it  is  ideal  to know, or learn,  that  the anticipated
texture patterns actually do exist in the scene. Without this information, the templates
can potentially be a waste of valuable processing time. It is possible to maintain a
counter  to  note  how  frequently  the  pattern  is  matched  to  indicate  whether  the
template is actively being used, but this does not deal with the fundamental issue that
these templates must be actively used before they can be determined that they do not
suit  the  particular  environment.  The counters  must  also  consider  partial  matches
unless a threshold can be set for when the template is matched or not.

One strategy that can be used to counter this is  the relaxation on the specific
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arrangement of the intensity transitions within the template. By expecting a certain
amount of fluctuation in the intensity within the specified region, it is able to detect
patterns based on the rate of intensity change over the region, rather than specifying
the  exact  arrangement  of  the  intensity  differences. This  approach  is  useful  on
randomly arranged  or  rough  textures,  such  as  carpets  and  rough  surfaces  under
directional light. When using this approach, it is important to avoid certain locations
that  are known to  contain high amounts of  change in the intensity,  but  is  not  a
continuous  surface.  Currently,  the  only  indicator  for  this  is  the  location  of  the
features and to some extent, the feature candidates.

Although the above approach may seem to be reasonable, the sloped view of the
ground texture and the sampling of the surface at a reasonable distance away means
the majority of the fluctuation in the intensity can not be seen or appears like noise.
The repeated textures on other surfaces also has to either be quite large or viewed at a
very close distance, which severely limited the applicability of the real time pattern
based surface recognition, thus is simply not used in the current implementation. The
surface construction is also not implemented in the current maps, thus may require an
additional  layer  to  indicate  the  positions  and  texture  separately  if  future
implementations require surfaces.

The failure to note this type of surface can lead to small amounts of boundary
features being detected in their  place,  but  the vertical  patterns do not  cause any
significant issues when the pose is applied to the local map. The motion behaviour of
these features  are  quite distinct  in  that  it  often  jumps rapidly in  an  inconsistent
manner. These features can be removed either during the line formation phase or by
simply noting the rate of fluctuations in the observed positions, which often switches
the motion direction very rapidly or falls outside the search area and results in a very
low correlation score.

11.1.3 Dynamic objects

So far, the vision based analyses has presumed that the scene remain stationary
between consecutive frames.  However,  there are often many independent  objects
within the environment that can move about to cause motions that do not correspond
to the pose change of the camera. Since the structure of the scene is analysed through
the different  perspectives from known poses, the detection of dynamic behaviour
must be conducted by either knowing the pose of the feature or an approximation of
the object's pose can be made based on constraints provided by the camera poses.

The first  approach can be a useful  technique if  the pose of the object  can be
determined  through  other  means,  such  as  a  range  finder  or  a  stereo  vision
configuration. Otherwise, the precise pose of the dynamic objects cannot be tracked
simultaneously and reverts back to the second approach. By using the constraints
provided by the camera pose and sometimes based on simple assumptions, such as
the expected size, shape, and velocity of the dynamic object, they can be isolated
from the static structures in the view.

When the dynamic objects are observed from a per pixel perspective, the entire
object may not appear to have moved depending on the texture on the surface. Since
the many of the pixels surrounding the boundary will be flagged as having changed,
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segmentation  or  contour  following  algorithms  can  be used  to  define  where  the
dynamic object lies in the image.

To identify the area of interest, it is firstly important to distinguish the change in
the appearance between the camera motion and object motion. As noted earlier, the
pose of the robot may be slightly out of sync depending on the light conditions,
which means the distinction between the two motions should be carried out using the
same camera when possible or delayed until the pose data becomes available. One
implementation of this is to observe that portions of the current features are moving
irregularly compared to the rest. Since the only association that is available between
the features is the boundary groups, the distinction between the dynamic object, the
background, and any noise, requires a separate process to identify the presence and
the grouping of dynamic objects.

A simple case for this is when the camera is known to be stationary, thus any large
cluster  of  features that  move by more than 1 pixel, due to interpolation,  can be
flagged as being dynamic. When this is carried out, it is important to observe the
possible latency issue between the camera pose update and the changing of the view.
This can be achieved by delaying the dynamic object detection by several frames to
make sure that the pose of the camera does not change. This constraint also allows
simple  analysis  to  determine the direction  of  the  motion and the bounds  of  the
dynamic  objects.  However,  since  the  pose  of  the  dynamic  objects  cannot  be
determined precisely without  referring  to  the  local map,  the  region  can only be
flagged as containing non-static objects.

As noted earlier, these features can sometimes be lost due to the reduced search
area, thus is unable to account for a wide range of possible objects that may appear in
the view. The viewing area also restricts how useful the tracking is unless the facility
to track a particular object is incorporated to the servo motors. The handling of the
dynamic objects that  are detected varies significantly on the application,  ranging
from  pose  tracking  to  observing  the  morphological  and  inter-dynamic  object
changes.  The  flagging  of  the  dynamic  objects  can  assist  in  the  current
implementation  by  noting  the  possible  areas  that  cannot  be  used  later  on  for
correlation, as well as marking areas of potential obstruction and vacancy depending
on the current pose of the dynamic object. The application and implementation of
this will be discussed in more detail later on when using the omnidirectional vision
camera.

11.2 Landmarks

The added benefit of using a wide viewing area provided by the webcam is its
ability to identify a significant pattern that can be uniquely identified at a later time.
This can be used as calibration markers to correct any drifting errors, as well  as
providing a meaningful reference location to be tagged at a higher level map (Sim,
1998). For the ground observing camera, it is important to involve a large amount of
pixels to determine the uniqueness of the landmark, while the side viewing camera
only needs to analyse a small amount of pixels to identify a unique arrangement of
pixel  intensities.  This  is  due to  the  repetitive and detailed  nature  of  the  ground
textures, which requires not only an increased size in the area to consider, but the
presence of a significantly different ground texture to be present.

233



11.2.1 Ground landmarks

11.2.1 Ground landmarks

By reusing the images from the localisation module, a larger viewing area can be
observed to determine the uniqueness of the ground texture with respect to a larger
range  of  possible  ground  textures. Because  of  the  similarity  between  the  floor
textures, the attributes that are used to distinguish the particular texture pattern must
be taken when a different texture pattern comes into view. This is due to the weaker
set of constraints that can be applied, especially due to transformations from rotation.

The process of identifying the landmark involves a similar process to the regular
feature tracking,  but  includes a decision in  determining if  a  landmark should be
captured or not. As one of the criteria for the landmark formation is in observing a
large  change  in  the  trend  of  the  ground  texture,  the  segmentation  algorithms
introduced  above  can  be  applied  to  identify  the  presence  of  distinctive  regions
(Zhang & Kodagoda, 2005).

Due to the clarity of the ground textures from the small and fixed distance to the
surface, it is possible to make use of the rate in the change of intensity, but this
requires an increase in the size of the convolution kernels, which can require multiple
parses until the appropriate pattern is found. Instead, the rapid rate of changes can be
suppressed  using  a  blurring  algorithm  such  that  the analysis  can  focus  on  the
difference in the intensity using a simple and small kernel (Lindenberg, 1996). The
loss of the precise position of the boundary can be addressed by reverting back to the
original image once the initial filtering of boundary identification is complete, while
the prevention of larger patterns appearing as unique boundaries can be solved by
noting the direction of traversal of the robot, such that only the first of the change in
the intensity encountered will be flagged as the landmark candidate. However, using
this  approach  can  also  prevent  actual  boundaries  from  being  detected  if  false
candidates or corrupted texture pattern is viewed, such as when motion blur occurs.
For this reason, the viewing area for the landmark candidates is fixed to increase the
chance of detecting the landmark.

The second stage of the landmark detection involves the assumption that the new
segment being introduced is large enough that it spans across the viewing area. This
means the change in the appearance will be visible at at least two of the outer borders
of  the  image.  By  isolating  the  initial  check  to  the boundaries,  it  can  quickly
determine whether any interesting texture has entered into view. Since the segment
should occupy a reasonable amount of  area, the corner regions of the image are
avoided to suppress small segments that only appear in the corner and to wait for the
it to move into a more central position within the frame. The areas used for the initial
check  is shown in figure 11.8 as the red regions. Note that  the region is moved
inwards from the boundary by a small amount to avoid the distorted areas of the
captured image.

The criteria for flagging the presence of a possible landmark involve directional
convolution kernels in the parallel direction to the edge it runs along to identify the
dividing line that spans across the image. Before the third stage of the analysis can be
carried out,  the pixels containing a small  amount  of  intensity transition must  be
filtered out, while the strong intensity transition must be maintained, along with the
surrounding pixels to account for aliasing and misalignment errors. If  an absolute
value is  used  as  the threshold,  the  algorithm may detect  too  many or  too  little
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landmark candidates depending on the type of surface the robot is traversing over.
Since the measure of  uniqueness is based on the relative difference between the
surroundings, a running average of the intensity difference is maintained to observe a
sudden spike or trough in the value. This is achieved by maintaining two sliding
windows to evaluate the average along side the point of interest, as shown in figure
11.9, where the blue and magenta regions represent the adjacent textures on the left
and right respectively, the cyan, lavender, and light blue representing the maximum,
minimum, and the average of the left texture region, while yellow, pink and orange
represent the same values, but for the right region. The conditions shown to the side
represent the detection criteria for the change in the surface texture.

Figure 11.8: Areas that are initially considered for segment identification.
The red  strips  represent  the  regions  that  are  considered  for  the
detection of segment boundaries.

Figure 11.9: Conditions to note change in texture patterns.
The red  lines  on  the  left  image  represent  the  areas being
considered. The blue and pink rectangles on the top right shows the
left  and right regions being observed, which results in the Max,
Min and Ave values shown in the middle-right. The comparisons on
the bottom right are used to determine if there is a change in the
surface boundary.
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Instead of complicating the process with values like the standard deviation and
second derivatives, the minimum and maximum within the window is maintained to
note  when  the  distance  between  the  two  changes  suddenly.  In  the  current
implementation, a threshold value of 50% change has been specified, along with a
minimum threshold of 10% of the maximum range. This allows some elimination of
false flagging if the change is too small, which may have been caused by random
noise. As for the average values, the flagging is carried out if the average value falls
outside the maximum and minimum range. The width of the window has been set to
16 pixels, which equates to approximately 4.6 mm when using a resolution of 320 x
240. This may be too small or large to observe some the texture patterns, but is a
reasonable amount when observing the typical textures on the ground.

The assumption that the landmark extends across the whole image is used to note
the continuity in the change in the texture by joining two sides that have both being
flagged as containing the boundary. The points can be used to trace a line between
them to observe whether the change in the ground texture is consistently present.
Instead  of  tracing  narrow  lines  between  the  points, the  thickness  of  the  line  is
increased to include the adjacent pixels. This caters for the aliasing and misalignment
issues, as well as allowing for a small amount of flexibility in the straightness of the
boundary, which may be caused by faded lines or chipped edges.

The line that is traced places a strict constraint on the shape of the landmark which
is  required to  have a  straight  edge to  fall  within  the  viewing  area.  This  can be
rectified by using a similar tracing algorithm used for the vertical line segments,
where a triangular search area is used to continually trace though the neighbouring
pixel with a change in the intensity.  To account for the start  and end points, the
search  can be executed simultaneously from both ends,  like a means-end search
algorithm. However, since the viewing area is quite small and the majority of the
significant  dividers  between  floor  segments  are  shaped  using  straight  lines,  the
flexibility in the curve does not provide much of an additional benefit and a simple
line tracing algorithm is used.

During the traversal of the lines, the edge strength in all surrounding direction are
summed to indicate whether a strong change in the intensity occurs between the two
points. The average of the edge strength can be used to  determine if a line can be
drawn which separates the two regions. The equation of the line can be based on the
two end points, which may not be the precise location of the boundary,  but  still
allows coverage of the boundary due to the expansion of the line thickness.

Although the lines are only drawn if the end point pairs lie on different sides, it is
quite possible that multiple lines can be drawn, especially along side one another due
to  the  interpolation  that  occur  at  the  segment  boundaries.  By  using  multiple
neighbouring lines, it is possible to narrow down the actual location by using the
scores for the lines, but  this is avoided due to the misalignment between the line
equation and the actual line. Instead, the line with the highest average transition score
is kept as the only segment divider. As for determining whether the line constitutes a
valid landmark or not, the line should be compared against a minimum requirement
to avoid incorrect marking of landmarks. Since a detailed analysis on the types of
textures that the robot can encounter requires reasonable amount of motion before it
is known to the robot, this measure can be based on assumptions or the landmarks
can be ranked to only maintain and use the top candidates.
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Using the line equation as the landmark allows for a much simpler and reusable
landmark, since using the exact texture pattern would require significant amount of
processing to account for the misalignment and transformation. By compressing the
landmark  to  a  line  and  maintaining  the  information  on  the  surrounding  pixel
intensities, it is able to constrain some of the pose attributes of the robot when it is
encountered again.  This also allows some flexibility in where the feature can be
observed  by  assuming  continuity  of  the  line. Since  the  bounds  of  the  line  are
unknown, it is left for the post processes to extend and possibly join these landmarks.
The general flow of processes for the landmark detection can be seen in algorithm
11.2.

function FindLandmark(image):
   set candidates[]
   set window = 16
   set short = image.width / 10
   set long = image.height / 10 – window
   GetCandidates(image, candidates, window, long, s hort)
   ApplyBlur(image, candidates)
   IntensityDifference(candidates)
   ThresholdCandidate(candidates, window)
   for i in 0 to candidates[0].value.size:
      candidates[0].pos.x = candidates[0].value[i] + long +
       window – 1 candidates[0].pos.y = short
   for i in 0 to candidates[1].value.size:
      candidates[1].pos.x = candidates[1].value[i] + long +
       window – 1 candidates[1].pos.y = image.heigh t - short
   for i in 0 to candidates[2].value.size:
      candidates[2].pos.x = short
      candidates[2].pos.y = candidates[2].value[i] + long +
       window – 1
   for i in 0 to candidates[3].value.size:
      candidates[3].pos.x = image.width - short
      candidates[3].pos.y = candidates[3].value[i] + long +
       window – 1
   set lines[]
   TraceLine(image, candidates, lines)
   if lines.size == 0:
      return null
   set best = 0
   for i in 1 to lines.size:
      if lines[best].score < lines[i].score:
         set best = I
   if lines[best].score > minimum_score:
      return lines[best]
   else
      return null

function GetCandidates(image, candidates, long, sho rt):
   for y in short – 2 to short + 3:
      for x in long - 3 to image.width – long + 3:
         candidates[0].value[y - short + 2][x - lon g + 3] =
          image[y][x]
         candidates[1].value[y - short + 2][x - lon g + 3] =
          image[y + image.height – 2 * short][x]
   for y in long – 3 to image.height - long + 3:
      for x in short - 2 to short + 3:
         candidates[2].value[y - long + 3][x – shor t + 2] =
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          image[y][x]
         candidates[3].value[y - long + 3][x - shor t + 2] =
          image[y + image.width – 2 * long][x]

function ApplyBlur(image, candidates):
   set kernel = { { 1, 2, 3, 2, 1 }, { 2, 5, 7, 5, 2 }, { 3, 7,
    9, 7, 3 }, { 2, 5, 7, 5, 2 }, { 1, 2, 3, 2, 1 }  }
   set total = 89
   set value0[candidates[0].value[0].size]
   set value1[candidates[1].value[0].size]
   for x in 0 to value0.size:
      set sum0 = 0
      set sum1 = 0
      for j in 0 to kernel.size:
         for i in 0 to kernel[0].size:
            set sum0 = sum0 + kernel[j][i] *
             candidates[0].value[j][x + i]
            set sum1 = sum1 + kernel[j][i] *
             candidates[1].value[j][x + i]
      value0[x] = sum0 / total
      value1[x] = sum1 / total
   candidates[0].value = value0
   candidates[1].value = value1
   set value2[candidates[2].value.size]
   set value3[candidates[3].value.size]
   for y in 0 to value2.size:
      set sum2 = 0
      set sum3 = 0
      for j in 0 to kernel.size:
         for i in 0 to kernel[0].size:
            set sum2 = sum2 + kernel[j][i] *
             candidates[2].value[y + j][i]
            set sum3 = sum3 + kernel[j][i] *
             candidates[3].value[y + j][i]
      value2[y] = sum2 / total
      value3[y] = sum3 / total
   candidates[2].value = value2
   candidates[3].value = value3

function IntensityDifference(candidates):
   set diff0[candidates[0].value.size - 2]
   set diff1[candidates[1].value.size – 2]
   for i in 0 to candidates[0].value.size – 2:
      set diff0[i] = | candidates[0].value[i + 1] –
       candidates[0].value[i] | + | candidates[0].v alue[i + 1]
       – candidates[0].value[i + 2] |
      set diff1[i] = | candidates[1].value[i + 1] -
       candidates[1].value[i] | + | candidates[1].v alue[i + 1]
       – candidates[1].value[i + 2] |
   candidates[0].value = diff0
   candidates[1].value = diff1
   set diff2[candidates[2].value.size - 2]
   set diff3[candidates[3].value.size – 2]
   for i in 0 to candidates[2].value.size – 2:
      set diff2[i] = | candidates[2].value[i + 1] –
       candidates[2].value[i] | + | candidates[2].v alue[i + 1]
       – candidates[2].value[i + 2] |
      set diff3[i] = | candidates[3].value[i + 1] -
       candidates[3].value[i] | + | candidates[3].v alue[i + 1]
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       – candidates[3].value[i + 2] |
   candidates[2].value = diff2
   candidates[3].value = diff3

function ThresholdCandidate(candidates, window):
   set filter[]
   set left
   set right
   for loop in 0 to candidates.size:
      for i in 0 to window:
         set value = candidates[loop].value[i]
         if left.max < value:
            set left.max = value
         else if left.min > value
            set left.min = min
         set left.sum = left.sum + value
         set value = candidate[loop].value[i + wind ow]
         if right.max < value:
            set right.max = value
         else if right.min > value
            set right.min = min
         set right.sum = right.sum + value
      set left.diff = left.max – left.min
      set ave_left = left.sum / window
      set right.diff = right.max – right.min
      set ave_right = right.sum / window
      if 2 * left.diff < right.diff &&
       right.diff – left.diff > 0.1 ||
       2 * right.diff < left.diff &&
       left.diff – right.diff > 0.1 || ave_left > r ight.max ||
       ave_left < right.min || ave_right > left.max  ||
       ave_right < left.min:
         set filter[loop].pos[filter[loop].pos.size ] = 0
         set filter[loop].pos.size = filter[loop].p os.size + 1
         set filter[loop].pos[filter[loop].pos.size ] = 1
         set filter[loop].pos.size = filter[loop].p os.size + 1
      for i in window to candidates[loop].value.siz e – window:
         set rem_left = candidates[loop].value[i - window]
         set value = candidates[loop].value[i]
         set add_right = candidates[loop].value[i +  window]
         set start = i – window + 1
         if rem_left == left.max:
            for j in 0 to window:
               if left.max < candidates[loop].value [start + j]:
                  set left.max =
                   candidates[loop].value[start + j ]
         else if rem_left == left.min:
            for j in 0 to window:
               if left.min > candidates[loop].value [start + j]:
                  set left.min =
                   candidates[loop].value[start + j ]
         if value > left.max:
            left.max = value
         if value < left.min:
            left.min = value
         set left.sum = left.sum – rem_left + value
         if value == right.max:
            for j in 0 to window:
               if right.max < candidates[loop].valu e[i + j]:
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                  set right.max = candidates[loop]. value[i + j]
         else if value == right.min:
            for j in 0 to window:
               if right.min > candidates[loop].valu e[i + j]:
                  set right.min = candidates[loop]. value[i + j]
         if add_right > right.max:
            right.max = add_right
         if add_right < right.min:
            right.min = add_right
         set right.sum = right.sum – value + add_ri ght
         set left.diff = left.max – left.min
         set ave_left = left.sum / window
         set right.diff = right.max – right.min
         set ave_right = right.sum / window
         if 2 * left.diff < right.diff && right.dif f –
          left.diff > 0.1 || 2 * right.diff < left. diff &&
          left.diff – right.diff > 0.1 || ave_left > right.max
          || ave_left < right.min || ave_right > le ft.max ||
          ave_right < left.min:
            if filter[loop].pos[filter[loop].pos.si ze – 1] !=
             start:
               set filter[loop].pos[filter[loop].po s.size] =
                start
               set filter[loop].pos.size =
                filter[loop].pos.size + 1
            set filter[loop].pos[filter[loop].pos.s ize] =
             start + 1
            set filter[loop].pos.size =
             filter[loop].pos.size + 1
   for loop in 0 to candidates.size:
      candidates[loop].value = filter[loop].pos

function TraceLine(image, candidates, lines):
   set cache[2]
   for loop1 in 0 to candidates.size – 1:
      set x1 = candidates[loop1].pos.x
      set y1 = candidates[loop1].pos.y
      for loop2 in loop1 + 1 to candidates.size:
         set x2 = candidates[loop2].pos.x
         set y2 = candidates[loop2].pos.y
         set deltax = x2 – x1
         set deltay = y2 – y1
         set score = 0
         if | deltay | > | deltax |:
            if deltax > 0:
               set short = 1
            else:
               set short = -1
            set deltax = | deltax |
            set deltay = | deltay |
            set error = deltay
            set x = x1
            for y in y1 to y2 + 1:
               set score = score + GetEdgeScore(ima ge, y, x,
                cache) + GetEdgeScore(image, y, x -  1, cache) +
                GetEdgeScore(image, y, x + 1, cache )
               set error = error – deltax
               if error < 0:
                  error = error + deltay
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                  set x = x + short
            set count = deltay
         else:
            if deltay > 0:
               set short = 1
            else:
               set short = -1
            set deltax = | deltax |
            set deltay = | deltay |
            set error = deltax
            set y = y1
            for x in x1 to x2 + 1:
               set score = score + GetEdgeScore(ima ge, y, x,
                cache) + GetEdgeScore(image, y - 1,  x, cache) +
                GetEdgeScore(image, y + 1, x, cache )
               set error = error – deltay
               if error < 0:
                  error = error + deltax
                  set y = y + short
            set count = deltax
         set lines[lines.size].score = score / coun t
         set lines[lines.size].pos = { x1, y1, x2, y2 }
         set lines.size = lines.size + 1

function GetEdgeScore(image, y, x, cache):
   if cache[0][y][x] == miss:
      set cache[0][y][x] = | image[y][x] – image[y] [x – 1] |
   if cache[0][y][x + 1] == miss:
      set cache[0][y][x + 1] = | image[y][x + 1] –
       image[y][x] |
   if cache[1][y][x] == miss:
      set cache[1][y][x] = | image[y][x] – image[y – 1][x] |
   if cache[1][y + 1][x] == miss:
      set cache[1][y + 1][x] =
       | image[y + 1][x] – image[y][x] |
   return cache[0][y][x] + cache[0][y][x + 1] +
    cache[1][y][x] + cache[1][y + 1][x]

Algorithm 11.2: Pseudo-code for landmark detection.

Frequent activation of the above check should not  be carried out to avoid the
expensive processing load and also the overloading of the number of landmarks. To
avoid  the  same  landmark  from  being  detected  multiple  times  during  the  same
transition, a cooling down period is introduced once a landmark has been spotted.
The cool down period involves the waiting until the landmark moves outside of the
view before another landmark is looked for again. Since the equation of the line is
known, the camera pose can be used to determine the minimum distance the robot
must traverse to avoid observing the same landmark.

Based on the general direction of traversal for one camera, which is along a single
axis, the displacement can be accumulated to determine if the landmark has moved
out of view without having to continuously track its motion. It is possible that this
technique can result in miscalculating the line's motion and not waiting long enough,
especially for the case where the line extends in the same direction as the traversal.
However, the inclusion of the same line does not carry any negative effect other than
consuming some time to identify the landmark and requiring a separate allocation of
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memory if they are not combined. This means that as long as the cool down period is
made  large  enough  to  ease  the  processing  load,  the  landmarks  can  be  taken
frequently to encourage the merging and to provide more points in the map where the
pose can be realigned. At the same time, it is important to maintain some distance
between the landmarks, in case they require disambiguation.

Another source of delay is introduced to the frequency of landmark check. Since a
landmark  being  captured  in  a  more  central  position  of  the  viewing  area  is
encouraged,  as  it  increases  the  number  of  pixels  being  traced  to  determine  the
presence of the line as well as avoiding the warping from the image distortions. This
means if no landmark candidate is found, the ground texture may move up to half of
the distance between the searched areas before being observed again.

Using the maximum velocity of the robot, the frame rate, and the viewing area,
the maximum displacement of the landmark can be determined for it to be outside
the viewing area to the middle of the image, which evaluates to approximately 3.9
frames. This means the landmark check only needs to be carried out once in four
frames, as slightly overshooting the middle of the image will still allow the landmark
to be visible.  Although the robot may almost constantly traverse at its maximum
velocity, using a fixed time interval can result in a lot of unnecessary checks for the
landmark. Since the cool down period is calculated to avoid the repeated observation
of the landmark, the same condition can be used when no landmark is found.

As a side note, an alternate approach of using the four corner points of the view to
initiate  an  intensity  based  segmentation  using  filling  algorithm was  briefly
considered.  This  involved  the  comparison  of  the  meeting  points  between  the
boundaries, but was quickly discarded as processing requirement was quite high and
it  relied heavily on a strong blurring algorithm to even out  intensity fluctuations
between patterns on the ground.

11.2.2 Other landmarks

A more commonly seen example of landmarks being used is one that identifies
distinct appearances at any elevation, such that the arrangement of these landmarks
can inform the robot of its current pose (Montemerlo, 2002; Se et al., 2002). Rather
than focusing on finding recognisable features, a specific type of feature is searched
for  to  avoid  traversing  into  hazardous  locations.  In  this  particular  application,
collision with solid obstacles and holes the robot could fall down are both hazards
that must be avoided for the safe and continuous operation of the robot (Jenkin &
Jepson, 1994).

The majority of the collision aspect can be avoided through the range finders, with
the exception of the modules that are mounted high, which can collide with obstacles
like an archway. However, there is no sensor pointing towards the ground at the front
of the robot to indicate where it is about to move on to. Since the default orientation
of the scene viewing camera is to the side of the robot, it is unable to effectively
inform the robot of the incoming danger. One possible way to identify the presence
of potential surfaces discontinuity is to mark these locations on the map if they are
encountered.

The detection of these edges begins with observing horizontal, or near horizontal
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lines within the lower portion of the image. This can either be based on intensity
changes or through the use of a segmentation algorithm. Since the texture pattern on
the ground can contain patches with different intensities, a strong blurring algorithm
can be applied to even out the intensities. These lines can be detected using similar
approaches to the vertical line detection with slightly different sets of constraints.
With the line identified, it can be categorised into one of three based on the altitude
of  the  obstacle  adjacent  to  the  line,  which  are  positive,  negative,  and  neutral
elevation from the normal surface.

If the lines are from objects on top the surface, the objects will appear on the map
constructed by the ranger finders, thus can be discarded as being a harmless pattern
on the object. The approximate location of the line in the map can be found using the
following distance calculation.

Distance to line = Camera height * Vertical resolution / ((Vertical resolution – 2 * Vertical
position) * tan(Viewing angle)) (56)

If the line is on the same elevation as the surface, such as those from markings or
boundary between different surfaces, these too can be discarded, but the difficulty
lies in disambiguating the difference between the elevations of the surface beyond
the line. As briefly noted earlier, determining the altitude of features through motion
requires features to be tracked while the camera changes its pose. Due to the low
level of precision and the reduced exposure of the feature moving towards or away
from the camera, the altitude of features is more difficult to determine.

Since  these  regions  of  potentially  hazardous  is  difficult  to  analyse  using  the
forward  looking  camera,  the  distinction  between  hazardous  and  non-hazardous
region can be delayed until another sensor is observing the region. Out of the current
array of sensors, the only sensors that can reliably observe the characteristics on the
ground are the downward looking cameras used for localisation. Using these sensors,
the displacement of the ground before and beyond the boundary can be measured
separately to note any large discrepancy between the two. The robot should remain
on the known surface, thus the motion of the ground closer to the robot will be as
expected, but the motion beyond the bound should either be smaller or equal to the
other.

Note that due to the fixed focus control of the cameras, the texture of the surface
beyond the boundary may be heavily blurred and may not contain many features to
be tracked reliably. To counter this, the area of the surface being tracked beyond the
boundary may need to be increased to allow a more reliable tracking of the ground
texture. Figure 11.10 illustrates the motion tracking. The figure on the left is taken
from the left  camera, while the right  is  taken from the right  camera where it  is
viewing over an edge.

To be able to carry out this process, the robot must navigate to just before the
boundary and rotate around to observe both sides of the boundary. Since this motion
behaviour will force the navigation behaviour of the robot to change, the position of
the line can be stored in memory to be referenced if the robot moves over the region
in the future. Another way to consider this is to ignore the horizontal line detection
all together and simply carry out the depth detection around all ground landmarks
that are encountered.
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Figure 11.10: Regions for displacement comparison to note change in altitude.
The black  squares  represent  the  features,  while  the red  arrows
indicate the motion vector of the features.

Since the localisation module makes use of multiple trackers for error handling,
this can be utilised to determine the difference in the translations that are detected
between the textures. Unless the position of the features can be easily modified, the
activation of this must only occur if the boundary between the different surfaces split
the image so the trackers are observing different surfaces. This can be determined
quite simply using the line equation, which informs the localisation module to not
combine the trackers and to only use the one closest to the robot. One other condition
to keep in mind is to do with the type of motion that is currently being carried out by
the robot. If the robot is undergoing a rotational motion, the motions detected by the
trackers should be different, thus can interfere with the depth detection process. It is
possible  to  use  the  rotational  information  derived  from  the  other  camera  to
retrospectively  correct  the  motion,  but  this  issue  is  simplified  by  restricting  the
activation to only when translations occur.

Although this  breaks  the assumption used in  the localisation module  that  the
distance to the ground does not change, it is a realistic issue that can be encountered.
Therefore, the localisation module must be modified slightly when the landmark is in
view to only make use of the one closest to the robot. If the motion of the other side
is  deemed  to  be  significantly  different,  the  type  of  different  motion  should  be
observed.  Since  the focus  control  on  the  camera  cannot  be  modified  with  most
webcam models, the blurring of the ground texture can cause the feature tracking to
be very inconsistent. However, this is also the case when the material changes to one
that  is  difficult  to  distinguish,  such as  rubber,  which  can  be common in  indoor
environments as flooring dividers.

The technique introduced above contains many flaws related to the reliability of
the boundaries, detection of difference in the altitude, and issues with blind spots,
thus should not be used as a confident indicator of hazardous discontinuity in the
surface. It is possible to improve upon the approach with the current set of sensors,
such as by using a larger viewing area for the tracking, but should await for a more
specialised sensor to be installed before making confident decisions as the safety of
the robot is a critical requirement for any mobile robots.
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11.3 Omnidirectional vision

The last  of  the sensors to be considered is the omnidirectional  camera that  is
capable  of  simultaneously  observing  the  surrounding environment  by  using  a
reflective surface to focus the reflected light into the viewing area of the camera. The
camera is mounted at the top of the robot looking up into the dome shaped reflective
surface, as shown in figure 11.11.

Figure 11.11: Omnidirectional camera placement.
The semi-circle at the top is the reflective dome that allows the
simultaneous viewing of the surroundings as the camera looks up
towards it.

The placement of the camera has been deliberately made high to reduce the area
of the robot within the view, but at the same time, had to consider the stability of the
mount and to avoid collisions with objects that were outside the viewing area of the
other sensors. With the current configuration, the robot occupies approximately 7%
of the image captured by the camera. On top of viewing the robot itself, portions of
the image was obstructed from the struts holding the reflective dome in its place.
This introduced two solid lines that rendered the portion of the image to be unusable,
as well as obstructing the continuity of objects that are behind the struts.

Although  many  implementations  of  omnidirectional  cameras  make  use  of
transparent  tubes  to  hold  the  camera  up,  the  struts were  used  due  to  material
availability  and  to  determine  the applicability  of  the  wider  viewing  area  before
investing in new hardware. For the same reason, the camera that is used is a very
cheap model with inferior quality compared to the other cameras used on the robot.
The reflective dome that is used is also from recycled hardware that has been coated
with reflective paint and differs to the more common cone shaped reflectors.

Another source of the reduction in the usable viewing area is the rectangular 4 by
3 aspect ratio, which expends a large portion of the viewable area on the place holder
for the dome. A snapshot from the omnidirectional camera is shown in figure 11.12,
where regions that are not useful are highlighted by a red mask. These unusable
regions add up to reduces the utility percentage to approximately 35.18%, which can
be slightly improved by balancing the distance between the dome and the camera to
reduce the outer unusable area and increasing the inner unusable area.
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Figure 11.12: Unusable portions of the omnidirectional view.
The red mask shows the regions that must be discarded as they do
not change or show irregular reflected surfaces.

11.3.1 Analysis

The use of  omnidirectional  cameras  has often been focused on being able to
capture the surrounding environment with minimal hardware requirement (Winters et
al.,  2000).  Although the simultaneous snapshot of  the entire surroundings can be
quite useful, there are additional considerations that require attention to be able to
extract  and process the captured image.  The most  apparent  characteristics  of  the
image  from  omnidirectional  camera  is  the  warping  introduced  by  the  reflective
surface, which modifies the compression rate of objects that are at different distance
and altitude to the camera. Depending on the shape of the reflective surface that is
used, the compression ratio can also change in a non-linear fashion to allow focus on
a specific region.

By knowing the exact shape and placement of the reflective surface, it is possible
to derive the transformation matrix required to map the captured image  to a flat
canvas, such that an accurate inter-pixel relationship can be determined (Peters et al.,
1996). As the camera and reflective surface configuration is often placed in a rigid
formation, a calibration process is often carried out once using a known pattern, such
as a grid. Figure 11.13 shows a sample snapshot after the image is unwrapped into a
panoramic representation without any vertical adjustments due to the dome surface.
The unwrapped image is sometimes blurred afterwards to clean up the artefacts from
the non-linear mapping.

Figure 11.13: Unwrapping of an omnidirectional image.
The unwrapped image of the left hand side is shown on the right,
which  used  a  simple  linear  model  based  on  the  distance  and
orientation from the center of the camera.
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When the mapping is carried out, the inconsistent compression rate causes the
captured intensities to be stretched or compressed. The mapping process is typically
carried out in a per-pixel basis, thus limits the resolution that can be used for the
converted image without introducing too much artefacts, especially for interpolated
portions of the image. By using a very high resolution to capture the scene at a slow
rate, which is often the way the system is used; it is able to produce a detailed image
for  further  analysis.  However,  when  the  camera  is  used to  stream a  continuous
sequence of frames for an up to date state of the scene, the quality of the image
suffers significantly due to the reduction in the capturing resolution and the lack of
noise reduction that is often carried out by fusing multiple still shots. As a result, the
information that can be determined from the image is imprecise and can contain large
amount of artefacts from the compression, sensor generated noise, and motion blur.
This leads to many of the patterns being suppressed and the precision of any features
that are found to be dramatically reduced.

The inaccuracies means the images that are captured from the omnidirectional
camera  should  not  be  used for  precise  measurement  of  the  environment's  state.
However, the images can be used to identify large features, such as lines and colour
based segments, to address problems like tracking and localisation (Adorni et al.,
2003;  Bishay et al., 1994,  Gaspar et al., 2000;  Menegatti et al., 2004;  Shakernia et
al., 2003; Vassallo et al., 2002; Winters & Santos-Victor, 1999).

Due to the wrapping of the axes parallel to the ground, any lines that may be
present in those directions appear as arcs. These can be difficult to trace, due to the
low level of precision and the limited distance the arc spans across. By dewarping the
image, some of these arcs can be restored as straight lines, but often results in jagged
lines and also consumes valuable processing time. Instead of attempting to make use
of these lines, such as for noting when the robot is about to encounter an obstacle that
is invisible to the other sensors, vertical lines that are in the scene can be found as
lines extending from the middle of the image. Although the precise location of these
lines cannot be determined, it is possible to align the robot with the features on the
local map using the extra level of constraint provided by the increased viewing area
(Brown & Donald, 2000; Cauchois et al., 2003; Franz et al., 1998).

Since the visible range of the local map and the omnidirectional camera differs
significantly, correlating the edges that are found and the map can be difficult  to
achieve accurately. The limited resources in the current implementation means the
capture resolution must be set to a very low quality to allow the other devices and
algorithms to operate with a higher priority. This makes the identification of lines
more difficult, thus the vertical line based correlation is not included in the current
implementation. In future implementation, it may be possible to activate the camera
at the highest resolution, perhaps when the other sensors are inactive, to capture a
more reliable image for better correlation with the other sensor readings. There is
also scope for combining the results from the boundary detection algorithm from the
side looking camera, as it provides a single point for the boundary to allow for a
simple correlation.  A prototype of the vertical line detection is  illustrated in figure
11.14 as the radial lines, which are derived from a ranked list of Hough transform,
are cast onto the local map to illustrate the orientation of vertical lines.

247



11.3.1 Analysis

Figure 11.14: Casting of vertical lines from the omnidirectional camera.
The lines are selected from the top five lines determined by the
Hough transform, which has been cast onto the local map as the
right image.

11.3.2 Scene changes

The other type of analysis that can be carried out using the images is based on
segments,  such  as  grouping  those with  similar  intensities  or  behaviour  (Stocker,
2002). The unique characteristics of the omnidirectional camera is utilised to observe
the presence of dynamic objects within the scene, as it is able to track its motion
without any physical adjustments. Although the low level of precision and the noise
ratio can be problematic, it is possible to observe large objects that appear within the
scene, especially if there is distinctness within the intensity levels. By combining this
with the availability of the streams of sequential images, an analysis on the change in
the scene can be carried out.

The first consideration to make when attempting to observe the dynamic objects
amongst static objects is with regards to how they will be detected. Since the motion
of objects should be continuous, even with the warping, the object should appear
near its previous location in between frames. This means an object in motion will
produce a pair of regions when two consecutive frames are compared, where one is
the new location of the object and the other is the old location of the object. By
making use of a temporal difference filter, it is possible to identify the regions that
change, but must take into account that the subtle motions that occur causes very
small  changes  to  the  intensity  which  may  be  below  the  noise  level  threshold.
Reducing the noise  level  threshold  can dramatically increase the false  positives,
which increases the number of regions to be processed in the next phase.

Since the process is never intended on being accurate, it is possible to apply a
blurring filter to suppress some of the noise. Since the detection of the interesting
areas  uses  a  temporal  filter,  the  interpolation  is  carried  out  with  the  spatial
neighbours. By using a strong interpolation mask, some of the boundaries that may
have existed can be suppressed as a side effect. Similarly, the size of the mask used
to interpolate the neighbours is kept  small  to minimise the de-localisation of the
intensity boundaries.
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The activation of this check can occur at  various times depending on what is
intended on being observed. Since observing the scene while the robot is in motion
will cause the majority of the scene to change, it does not allow a focused analysis on
the dynamic object. To avoid mistaking the change in the view as dynamic object
when the robot is in motion, it is possible to make use of the information from the
localisation module. As noted earlier, this can be slightly problematic if the modules
are not synchronised properly, thus requires a buffering of the motions to make sure
no robot motion occurs when the change in the image is observed.

An  alternative check  to  distinguish  between  a  dynamic  object  and  the  robot
motion is to observe the spread of the regions that are observed as having changed. If
the  robot  undergoes  a  motion  in  a  densely  occupied  area,  there  will  be  change
detected after  the temporal filter  across a wide range of areas within the image.
However, if a dynamic object is present and the robot is stationary, the portions that
are changing is localised to one region. Although this assumption does not cater for
the presence of multiple dynamic objects, such as a crowded room with people, but
allows the decoupling of the modules.

The process  begins  with  filtering  out  the  non-relevant  portions  of  the  image,
which is pre-determined and noted in a lookup table. Since misalignments can occur
from the rocking motion, the filter is increased in size by one pixel to make sure
irrelevant images are not included. When traversing through the pixels of interest,
they are interpolated with the neighbours using a large weighting to encourage the
smoothing of the intensities.

Intensityx,y = (4 * Intensityx,y + Intensityx+1,y + Intensityx-1,y + Intensityx,y+1 + Intensityx,y-1) /
8 (57)

Note that the correction of the codec induced artefacts is not carried out for this,
as the capture resolution is set too low for the blocks to form. Even if the resolution
is increased, the blurring carried out by the above can remove the visible blocks, as
the weights that are used is much larger than the block removal algorithm.

The filtered image is then compared with the previous frame to note any changes
in the intensity. Due to the lack of a consistent light source and the reflective material
that are within the irrelevant portions of the view, the typical intensity level of the
view was lower, which promoted more noise. However, since the blurring algorithm
is able to suppress the majority of these, the noise level threshold is only increased
slightly. Once the pixels that have been noted as having changed are identified, the
coordinate points are processed to distinguish the camera motion to dynamic object
motion. Note that the use of just the temporal filter without the removal of the non-
relevant pixels is not done due to the reflections that appear on the shiny surfaces,
which can appear as having changed in colour.

By converting the coordinate point of the pixels to polar coordinates, the accurate
orientation of the pixels can be determined. However, since it is only the distribution
of the pixels that is of interest, the coordinate points can simply be averaged. If the
average coordinate point is located near the middle of the image, the motion can be
classified as a change in the robot's pose. Otherwise, the pixels that are involved are
noted as being a part of a dynamic object. The threshold used to distinguish this is
defined roughly by the circumference of the robot, which is not an accurate way of
distinguishing the two types of motions, but is reasonable for this prototype.
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11.3.3 Cluster

With  the  potential  pixels  for  dynamic  objects  identified,  these  can  then  be
combined to observe the structure of the dynamic object and also eliminate spurious
pixels  that  are  insignificant  or  were  generated  by  noise.  Performing  a  robust
clustering algorithm often requires multiple analysis of the same image, which is
often  carried  out  off-line.  By  specifying  constraints  based  on  the  expected
configuration of the cluster and the domain knowledge about the typical structure of
the scene, it is possible to reduce the complexity to be able to operate in real time.

The simplest form of clustering involves a proximity and counter or size based
requirement, where a minimal number for the pixels in the group is specified before
it  can be recognised as a cluster.  The apparent  size of  objects can differ greatly
depending on how far away the object is, as well as the actual size of the dynamic
object, thus it must be made small. By setting this too small, it can also register the
artefacts  as  dynamic  objects,  which  can  hinder  the  performance  and  potentially
corrupt the state of the map by incorrectly flagging a static object as being dynamic.
Since the blurring can potentially spread a single noisy pixel to five pixels, this can
be used as the threshold condition to differentiate a noise from a cluster.

An alternative approach to reducing the noise is the use of a temporal blurring
before  the  temporal  difference  filter  is  applied.  This  allows  the  location  of  the
intensities to remain stationary and enlarges the areas that are noted when motion
occurs. Although this allows for a slightly more distinctive regions being shown,
there  is  a  small  delay  introduced  in  noticing  the  change.  Depending  on  the
requirements of the system, the two types of filters can be interchanged.

When grouping the different pixels, it is possible to make use of the intensity
characteristics to add another constraint to the clusters that are formed. This can be
used to distinguish the different dynamic objects that may be simultaneously moving
near each other. This type of analysis is useful for a more long-term object tracking,
which can note and make use of the different  motion behaviours to identify the
separate objects being involved.

Using an  intensity based segmentation algorithm,  it is  possible  to  extend the
boundary of the dynamic object to include the whole surface. This means the motion
behaviour could also be applied to regions that did not initially seem interesting. One
of  the  issues  with  extending  the  area  of  the  dynamic  object  is  the  lack  of
confirmation on the connectivity of the pixels other than the similarity between the
intensities. This can result in unrelated regions being marked as being a dynamic
object.

A related issue with the above is the connectivity between the detected pixels that
originate from the same object. Other than the possible gaps between the flagged
pixels that are caused by the temporal filter threshold, the dynamic object may be
obstructed by either another object within the scene or the robot itself, such as the
strut holding the reflective dome. For a small gap, this issue can be accounted for by
increasing the search area for the adjacent pixel, but it does not provide a distinction
between  multiple  objects  and  an  obstructed  object.  For  regions  where  the
discontinuity occurs from falling below the threshold, it is possible to observe the
low amount of intensity difference at the pixels surrounding the gap to allow the
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connection. If, however, there is a large difference in the change in intensity it can be
deemed that the boundary of the object has been reached, or it is being obstructed by
a foreground object. Similarly, if the distance between the two pixels is too large, the
pixels are not joined as the analysis currently only considers the immediate state of
the scene. The identification of the dynamic object is only required in the map, where
the cell grids are marked as being static or dynamic, thus the continual tracking and
correct grouping is not a critical requirement.

Once  the  pixels  are  marked  and  grouped  together,  the  object's  position  and
orientation can be determined. To define the bounds of the dynamic object, the sector
containing  the  region  is  used  to  indicate  the  direction  of  the  dynamic  object.
Identifying the bounding sector is a simple matter of converting the pixel's Cartesian
coordinates to polar coordinates and selecting the two extreme angular values. It is
also possible to identify the strip within the sector which corresponds to where the
object may be located by finding the two extreme radius values, which will form a
bounding area for the object.

Using the single frame,  neither  the  altitude nor  distance to  the  object  can be
determined  without  domain  knowledge.  This  means  the depth  must  either  be
assumed based on how much of the ground is visible before reaching the object or
derived from alternate sensor measurements. Since the ground texture can differ to
invalidate the segmentation algorithm and the placement of the dynamic objects does
not always need to extend straight up form the ground, the distance measure that is
derived can be misleading.

To assist the process of determining where the dynamic object may be located, an
approximate value is derived from the radial distance, as shown in figure 11.15. This
was determined by placing markers on the ground at known distances away from the
robot and determining the position within the image using a capture resolution of 160
x 120 pixels. This value is then combined with the occupancy map to establish where
the dynamic object may be.

Figure 11.15: Approximate distance to objects with respect to radial distance.
The relationship  between  the  distance  to  the  object and  the
positions within the image can be determined for flat objects on the
ground surface.
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On  top  of  this,  the  vanishing  point  can  be  used  to  limit  the  validity  of  the
approximation by specifying a maximum distance for which the assumption is valid.
Although the calibration process above points to a distance of  approximately 22
pixels from the center, the level of accuracy that can be distinguished diminishes
very rapidly, thus should not be used near this point. Since the current size of the
local map is limited to a size of approximately 5 by 5 meters, this distance is used to
ignore the objects that are detected at a further distance than 21 pixels away from the
center. This condition means some dynamic objects that are off the ground will not
be registered. However, since the local map only includes obstacles that are viewable
by the range finders, this is not a significant issue.

11.3.4 Negative carving

Based on the approximate location of the dynamic object, the equivalent regions
within the maps can be marked to note that the obstacles that the range finders found
can be separated from the map. Since the portions that  are flagged are only the
boundaries of the dynamic object, this process cannot occur directly.  Instead, the
focus is placed on marking the cells as containing dynamic objects and modifying the
occupancy and vacancy values to reflect the uncertainty in the current location of the
object.

Assuming that the dynamic objects that are detected lies above the ground level,
the distance that is measured for the object represents the upper bound to the actual
distance  to  the  object.  Although the  sector  that  is derived  confines  the possible
location of the dynamic object, it should not affect the static objects that lie behind
them. To identify the foremost object within the sector, techniques such as ray tracing
or incremental arc tracing can be done until occupied cells are encountered.

When tracing an arc for the location of the object, it may be that the dynamic
object has recently moved into that area and the occupancy of the cell may not be
registered. To account for this, two rays are traced, which are based on the sides of
the sector to identify the edge of the object. The pair is used to identify the closest
object along the rays which indicates the old position of the object that have now
moved.

Based on the motion direction of the dynamic object, the other ray will either be
near another occupied cell or will not find an occupied cell. In the latter case, the
other ray does not allow for the end point of the dynamic object to be determined,
thus modifications to the map can be misleading if multiple cells along the line are
modified  as  containing  a  dynamic  object  or  their  occupancy  score  reduced.  If,
however,  occupied  cells  are  found  for both  rays  near  each  other, the  region  in
between the two cells can be modified such that the dynamic attributes are increased
and the occupancy scores decreased. This assumes that the dynamic object is visible
to the range finders and connected, such that the cells between are occupied cells.
Note that the regions near the maximum radial distance are never used as part of this
analysis, as they often represent the altitude of the object.

The distribution of the pixels along the minimum value can be tracked by tracing
between the bounds of the sector. To simplify the check, a line can be traced instead
of allowing dynamic adjustments to the path, as the angle between the bounds are
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often very small due to the frame rate and the speed of objects. If the dynamic object
has an irregular shape, the line may bend or be jagged, thus the thickness of the line
is increased to the adjacent pixels like in the landmark detection algorithm. This is
illustrated in figure 11.16, where the lower sector in blue successfully identifies the
occupied cell, which is shown in green, and traverses between them, which is shown
in cyan.

Figure 11.16: Tracing the dynamic object boundary for surface continuity.
The blue  regions  are  the  bounds  of  the  temporal  filter  and
clustering that has been cast onto the local map. The green cells are
the intersecting points of the blue region and the red region, which
are the occupied cells in the local map. The traversal begins and
ends at the green cells, as shown by the cyan squares.

If  the  traced  cells  successfully  reach  the  other  intersected  cell,  these  can  be
marked  as  now  vacant.  This  is  done  by  reducing  their  occupancy  value  and
increasing their vacancy value. At the same time, the angle of the last access is reset,
such that the  subsequent scan can potentially correct  this error if  the assumption
about its motion is incorrect.

Since the accuracy and the reliability of neither the map nor the omnidirectional
image are not high, the intersection point may or may not be reached at the desired
location. This is accounted for by narrowing the angle between the bounds of the
dynamic object. Since the region in-between should be occupied, the line does not
need  to  be  made  thicker  while  finding  the  intersection  cells in  the  local  map.
However,  when  the  occupancy  is  being  removed  from  the  region  between  the
intersection points, the surrounding cells are also included and a subsequent range
finder measurement is encouraged to observe the obstacle again for an up to date
view.

Alternative  approaches  that  were  attempted  use  much simpler  techniques  of
reducing the occupancy of the affected region regardless of the arrangement of the
pixels within the boundary. The first approach only makes use of the sides of the
sector to form a triangle which extends to the edge of the local map and simply
reduces the occupancy of all cells covered. The assignment of the dynamic attribute
is carried out in a similar fashion, where all of the cells' attributes is incremented. A
slightly modified implementation assigns a different weight to the attributes based on
the distance from the robot, where the values are decreased linearly from the base of
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the robot to zero at the edges of the map. By using the radial bounds, the maximum
distance of this can be specified, with the shape being converted into a sector, such as
that shown in figure 11.17.

Figure 11.17: Weight distribution for attribute modification after detection of
dynamic objects.

The dark colour represents a low weight, while the bright colour
represents a higher weight.

Since these approaches make no confirmation with the other sensor readings, the
local map is over modified from the large number of cells accessed. Although the
narrow sector limits the number of false flagging, relying on multiple observations of
the dynamic object for confidence or voting is not effective as their motion may not
be continuous.

11.4 Connectivity map

The use of the grid map allows the maintenance of detailed and easily accessible
attributes,  but  does  not  allow for  an  effective  representation  of  sparsely  located
attributes,  such  as  high  level  constructs  like  landmarks,  detached  objects,  and
semantic tags. An example that requires separate representation is the ground texture
landmarks that contain the line equation, pose of the robot when the landmark was
captured, and the average intensities of  the two sides adjacent to the line.  These
attributes and the sequence in which the landmarks were derived can allow extra
information to be derived, such as the path of traversal and connectivity between
them.

By linking the landmarks together using a graph structure, it is possible to define
the connectivity between the landmarks.  If  it  is simply the traversal  between the
landmarks that is required to connect them, the connectivity map does not provide
useful information, as it does not encourage the use of the existing landmarks during
the traversal, nor does it maintain the changes in the motion commands used between
the landmarks. Since the ability to travel from one landmark to another is always
allowed except when the path is blocked by dynamic objects,  this information is
redundant and would not be used. Instead, a separate map is introduced to maintain
the path of traversal of the robot while capturing the connectivity between the pause
points  of  the  robot's  traversal.  The landmarks  are  thus  left  to  be  used  for  re-
calibration of the robot pose.

The current traversal modes for the robot includes two basic types, where one
requires constant  manual  intervention to specify the individual motor commands,
while the other makes use of automatically generated motor commands based on the
immediate proximity of obstacles surrounding the robot. The orientation of the robot
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is modified based on the most vacant orientation determined from the IR sensor
reading. The traversal distance is randomly chosen between 50 cm and 2 m, which
can be interrupted when an obstacle reaches too close to the robot. In both modes of
traversal, there is a distinct pause between the motor commands, which allows the
localisation  algorithm to  catch  up  from the buffering  of  the  motion,  as  well  as
allocating some time for the dynamic object detection to occur.

Using the distinct steps in motion, the coordinate points, as well as the occupancy
of the surroundings, can be used as the nodes for the connectivity map. The nodes of
the  map  can  be  connected  in  order  of  traversal,  but the  occupancy  of  the
surroundings is used to identify alternate paths that may exist between other nodes.

The measure of the occupancy surrounding the pause point is derived from the
smallest IR distance from the robot, which is converted to a circle centered at the
robot. The circle represents the amount of space the robot could freely move around
in, which is compared with other nodes to determine if one overlaps another. Since
the number of nodes does not get too large for the current style of execution, the
check is conducted when the new node is created. If an overlap between the circles
occurs,  the  nodes  are  added to  the  list  of  inter-node  connections  to  expand the
possible  paths  between  the  nodes.  If,  however,  one  node  completely  overlaps
another, which is when the distance between the nodes is smaller than the magnitude
of the difference in the radius, the smaller node can be eliminated after copying all
the connections over to the larger node.

Figure 11.18 illustrates the connectivity nodes superimposed over the global map,
where the yellow lines, which were manually added, indicate a connection between
the nodes, shown in green. The motion commands were issued manually with distinct
pause points to adjust the orientation of the robot. The overlapping and merging of
the  nodes  occurred  when  the  robot  was  rotated  to  allow  the  sonar  to  scan  the
surroundings. Note that since the node is constructed using the minimal distance to
an obstacle measured by the IR sensor, the nodes indirectly represent an unoccupied
region, with some allowance from sensor errors and blind spots. This indicates that a
path can be constructed from anywhere within the node to another by moving to the
center of the node before and after traversing between different nodes, given that no
moving  objects  enter  in  the  path.  This  form of  path planning  allows  a  quicker
formation of paths by re-using previously used paths instead of planning new paths
every time the robot travels.

Since the accuracy of the IR sensors is quite low and assumptions are made with
regards to  validity of  the occupancy around the robot,  the connectivity map can
contain erroneous areas that can lead to incorrect paths being constructed. A more
accurate representation of the surroundings can be conducted by spinning the robot
by approximately 30 degrees at the pause points to cover the blind spots of the IR
sensor, or rotating the sonar sensor, but has been left out for future implementation.
An alternative approach is to make use of the occupancy of the local map instead of
the IR sensor readings. However, this requires a lengthier radial scan of the map,
waiting for the map to be populated with confident information, as well as dealing
with the complexity of applying a threshold to distinguish an certain obstacle to a
false positive obstacle.

By  implementing  a  more  meaningful  and  coupled  traversal  commands,  it  is
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possible to avoid many of the redundant operations when the robot attempts to carry
out the specific tasks they are given, such as following a wall or exploring unvisited
areas (Burgard et al., 1997;  Whaite & Ferrie, 1997). If multiple goals are defined,
they must specify priorities such that the traversals do not interfere with each other
and that the mapping modules be running parallel.

Figure 11.18: Connectivity map superimposed on top of the global map.
The pink  regions  represent  vacancy,  the  green  represents
occupancy,  and the orange spots  represent  the  nodes where  the
robot was issued a new motion command. The size is determined
by the IR sensor reading at the time of the command being issued.
The  yellow  lines  joining  the  orange  dots  were  hand  drawn  to
illustrate the connectivity between these nodes.

11.5 Summary

The vast types of different interactions the robot and the sensors can make to the
environment allows for any number of algorithms to be implemented to assist the
tasks given to the system. Several  different techniques and algorithms have been
introduced to assist the robot localisation and modelling of the environment. The
majority of the algorithms focused on the use of the visual information form the
webcams, but also included the use of information that were directly and indirectly
derived from other types of sensors.

The grouping of the features were carried out by observing the similarities and
relationships between the features derived from chapter 10 to form object boundaries
that can be easily translated onto the local map. Since the application focuses on real
time  processing  of  the  information,  more  robust  segmentation  or  clustering
algorithms  were  avoided  and  a  more  specialised  grouping  of  features  were
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implemented. In doing so, some domain knowledge and constraints were introduced
to improve the efficiency and effectiveness of the algorithms, such as by reducing the
search areas, which resulted in a more consistent pose of boundaries to be found.

The  texture  based  segmentation provides  high  level  surface  continuity
information,  which  can  be  used  for  isolating  different  portions  of  the  map  and
smoothing the boundaries determined by the range finders.  The technique that  is
introduced focus on fast processing using both the hue and luminance scales, which
can potentially be improved by merging the results  from multiple resolutions or
adding shape and template based patterns to classify the group. Although the derived
groups  are  not  included  in  the  current  implementation,  there  are  scope  for  this
information to be used to improve the accuracy and consistency of the local map.

By re-using the image streams from the cameras pointing downwards, landmarks
could be determined based on detecting significant changes to the texture pattern.
The landmarks are currently based on straight lines to increase the likelihood of
encountering the landmark again while providing for some drifting error correction.
The approach includes the quick tests to determine the presence of texture changes as
well  as  considerations  for  the  frequency  of  the  check  to  reduce  unnecessary
processing.  The landmarks that are stored is currently maintained in a simple list
implementation, but should ideally be converted to a more scalable data structure,
such as a bucket or quad-tree like structure. This will allow faster access to the most
appropriate landmark by using some of the known state of the robot.

The use of the omnidirectional camera has many potential benefits, but is hindered
by the resource availability and the small viewing area utilisation that only allow
sub-standard image quality. This limitation meant the analysis that were carried out
could not be done with much accuracy and provided little  benefit  to the current
system other than the rough measure of identifying the presence of dynamic objects.
It  was  noted  that  by  de-activating  the  other  modules  and  specifying  a  higher
resolution to capture the scene,  the characteristics of  the scene was much better
perceived.  This  hints  to  a  potential  usage of  the  sensor,  which  is  by selectively
switching between the modules depending on the current state of the robot as long as
the overheads in the algorithms remains small  and the correct  conditions for the
switching can be established.
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Chapter 12 – Conclusion

The physical platform provided by the mobile robot has allowed for a multitude of
algorithms and techniques to be integrated as part of the modelling process of the
environment. The focus has been placed in the real time and simultaneous processing
of  multiple  sensor  readings  to  construct  accurate  and  informative  maps.  As  the
project  encompasses  a  significant  portion  of  the entire  mobile  robot  system, the
development of the fundamental modules for basic operations defined the structure
and aspects to target.

The  localisation  and  mapping  processes  were  carried out  using  off-the-shelf
sensors  as  both  integrated  and  modular  components  to  allow  flexibility  in  the
components that make up the robot depending on the task and resource availability.
Many of the proposed algorithms and techniques have been implemented to couple
with the product of another module, thus they can be interchanged with ease as long
as the fundamental representation of the environment is not drastically modified.

By  reducing  the  amount  of  input  data  from  the  sensors,  mainly  the  capture
resolution  used  by  the  cameras,  the  proposed  modules are  able  to  be  executed
concurrently on the mounted laptop. The limited processing capacity means that the
precision of  the map being constructed  is  reduced,  which can be catered for  by
temporary disabling some of the modules like the dynamic object finding, reducing
the number of feature candidates, not considering the upper half of the side viewing
camera for vertical lines, and limiting the operational speed of the robot to reduce the
amount of changes in the scene.

12.1 Contributions

The components of the mobile robot system that have been developed undertook
many incremental improvements by observing the data and constraints provided by
the  tasks.  Many of  the  resulting  implementations  are  both  novel  and  improved
approaches  for  real  time  processing,  while  some  are simple  implementation  of
existing approaches with slight differences in the configuration to suit the current
system.

12.1.1 Sensor characteristics

The use of the range finders has been accompanied by minor techniques to reduce
the inconsistency and improve  the speed of  translating  the sensor  readings  to  a
uniform representation. This is done by observing that the measurements are made of
natural objects with mostly smooth surfaces.

During the calibration stage of  the camera,  the sensor's  noise characteristic  is
taken into  consideration  by observing  the  fluctuations  in  the  measured intensity
reading of a known colour. Although some of the noise characteristics could not be
well utilised for a real time system due to resource consumption issues, some of the
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findings  led  to  generalised  algorithms  and  thresholds  that  could  be  defined for
reducing the artefacts that are introduced into the image stream.

The radial warping effect seen in many older cameras have been dealt with by
simply cropping the image, while the codec induced grid like noise has been dealt
with  a custom interpolation filter  to  blend the borders  of  the blocks.  The filters
provide an important role of suppressing artificial trends from appearing and quickly
removing regions that are blurry.

12.1.2 Local localisation

The proposed localisation technique is based on correlating the ground textures
between frames to accumulate the motions observed. This is achieved by selecting
the most outlier scored feature and tracking its motion in the subsequent frame. The
search  strategy  introduces  a  radial  scan  pattern  to quickly  establish  the  most
appropriate correlation based on previous and current motions.

The synchronisation between multiple trackers on multiple devices required sub-
pixel motions to be derived, which was achieved through a weight based blending
technique between the detected motions. This also introduced a slight delay in the
registration of the motion, but drastically reduced the precision errors between the
feature tracking.

The introduction of a hybrid motion model to translate the feature motions to the
robot motion allowed both a smooth and unexpected motions to be accounted for.
The  algorithm  switches  between  different  levels  of  constraints  on  the  motion
characteristics based on the type of motion that is observed to reflect the validation
of the assumptions used when including the constraint.

12.1.3 Map construction

The core component to the local map is based on an occupancy grid map, which is
used to store multiple attributes that store how the grid cells were modified, allowing
repeated interactions to the map to change depending on the relevance. The most
significant attribute is the sensor orientation value to ignore repeated scans from the
same or  similar  orientation  as  the sensor  behaviour can  differ  greatly  when the
perspectives change. This allows the sampling rate to be independent of the attributes
that are stored.

The accesses to the map is carried out much like an raster image to allow simple
inter-cell  interactions  and  well  established  algorithms  like  anti-aliasing  and
compression. The superimposition of the sensor scans are carried out using an area
based anti-aliasing algorithm with various enhancements on the speed of both line
and arc drawing. Some approximations are introduced during this process, but the
accuracy remains high enough for representation purposes.

Due to  the isolated  calculations and the constraints  defined during  the above
process,  optimisation  approaches  are  suggested  using  fixed  point  arithmetic
operations during the sensor  superimposition stage. Although not  significant,  the
approach  showed  some  improvements  in  the  performance,  which  suggests
applicability to other areas with arithmetically intensive operations and known data
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ranges.  The fast processing allows the rapid sampling from the sensors to obtain a
more continuous and up to date measure of the surroundings.

The simultaneous use of maps of multiple scales is achieved through periodic
synchronisation  from  the  local  map  to  the  global  map.  Several  strategies  and
considerations have been suggested to efficiently update portions of the map and to
translate the various attributes that are maintained. The maintenance of the attributes
also  include the considerations when the robot  explores  more than the expected
amount of area. Several strategies are introduced to handle the changes to the local
and global maps, such as compression and states of new areas that are introduced.

12.1.4 High level visual features

The  selection  of  visual  features  has  been  deliberately  made  with  domain
knowledge constraints to assist in the fast processing of object boundaries that can be
related to the attributes found on the maps. The criterion for the features has been
configured to focus on vertical boundaries with consistent colour, which are treated
as  the  meeting  point  of  foreground  and  background  surfaces.  This  allows  the
background to change without affecting the validity of the feature.

Several filters, including temporal, density, and ranking, are included to cut down
the number of feature candidates. This reduction allows more complex analyses to be
carried out later using a smaller set of data. Although this issue can be avoided with
reduction in the number of  simultaneous processes, the filters  were necessary to
allow the other modules to be executed simultaneously on the mobile robot.

The grouping of the boundary features using proximity constraints allowed for the
feature pose to be converged more rapidly. This reduced many of the precision errors
that are introduced when tracking visual  features on a camera, as the number of
samples used to triangulate the pose was dramatically increased compared to tracking
a single feature.

By re-using the image streams from the ground texture tracking cameras,  the
strategies in capturing a  long term landmark  has been introduced.  The approach
focuses on straight line boundaries of texture pattern changes which allows for the
reduction in the search area and criteria. The frequency of the landmark detection is
also considered to allow the robot to move to another location before searching for a
different landmark.

Using the omnidirectional camera, a dynamic object detection algorithm has been
included with  the appropriate map modification  algorithm to mark  and reset  the
range finder readings. The algorithm involves a temporal filter  and a distribution
based distinction to distinguish the difference between a robot motion and a dynamic
object motion. The cluster of pixels are grouped together to identify the sector around
the robot, which is then superimposed over the local map to make the modification.

12.1.5 Connectivity map

To allow for  efficient  path finding between previously visited  portions of  the
environment, a graph based connectivity map is introduced to connect between the
point of motion commands issued to the robot. The simple implementation includes
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basic  vacancy  check  around  the  node,  as  well  as  strategies  for  the  merging  of
multiple nodes to indicate direct and indirect paths without reverting back to the local
map.

12.2 Future work

The enormous  range  of  scope  for  the  mobile  robot  project  means  the  future
direction of the project can vary significantly depending on the specific interest of
those involved. However, there are several fundamental components that should be
enhanced or improved in the future.

A fundamental  component  that  is  missing  in  the  current  system  is  a  clear
definition of the overall  and instantaneous goal which drive the operation of the
robot. Although an arbitrary goal is defined by the individual user of the robot, there
is  no  framework  for  defining  tasks  and  decision  making  process in  the  current
system. This includes navigational (Ahuactzin et al., 1991; Arkin, 1987; Bennewitz,
2004; Buffa et al., 1993; Fiorini & Shiller, 1995; Floreano & Mondada, 1996; Kim,
2004; Latombe, 1999; Miura et al., 1999; Taylor & Kriegman, 1998; Thorpe, 1984;
Zelek,  1995;  Zimmer,  1996)  and  specific  sensor  usage  to  focus  its  attention  on
specific points of interest (Huntsberger, 2001). The inclusion of this type of module
will  allow simple transition between different  tasks which make use of  the base
operations that have been developed so far.

Another  key  addition  that  is  required  is  the  inclusion  of  more  hardware  for
control,  interactions,  and sensing of the environment.  The inclusion of additional
sensors will allow more sophisticated interactions, such as orientation from compass
sensors, while  the  upgrading  of  existing  sensors  will  allow  more  precise
measurements  to  be  made.  As  the  project  will  continue  to  be  incrementally
developed, this aspect will naturally be targeted as the tasks will define the sensors
that are required.

In terms of improving the approaches implemented so far, there is a wide range of
areas that could be explored, which include:

• Adaptive and automated calibration processes to suit each environment (Tsai,
1987; Quan, 1996).

• The use of parallel processors for the feature analysis (Horn, 1988).

• Using a single camera with mirrors for the localisation to increase the tracker
distance since the majority of the captured image is wasted.

• Converting the map into a 3D representation, as well as deriving higher level
understanding of the environment (Leonard & Durrant-Whyte, 1992, Hemayed
et al., 1997; Kang & Szeliski, 1997).

• Including set of scripted commands for handling repeated navigational tasks.

• Smoother  motion  transitions  around  obstacles  (Borenstein  &  Koren,  1989;
Lengyel et al., 1990).

• Introducing team work between multiple robots to solve the task (Fox et al.,
2000; Rekleitis et al., 1997; Thrun, 2001).
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• A more objective integration process between the multiple sensor readings.

With the improvements in the image quality of the omnidirectional camera, there
is  scope for  more integration with  other modules,  perhaps even to  the extent  of
replacing the other devices or modules, such as the localisation module (Francis et
al.,  2006;  Spacek  &  Burbridge,  2007).  This  would  involve  balancing  of  the
processing  load  between  the  other  modules  and  the  development  of  alternate
techniques to compliment or duplicate the behaviour of the other devices.
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