Chapter 1 — Introduction

As we make use of technologies to enhance our wesperform feats that were
not possible on our own, these systems being usedaatinuously improved upon
to have more intelligence, be efficient in perfangithe given tasks, and also
reducing the resource costs in the developmentradtenance processes.

One particular area that is currently growing iterest is the field of robotics. The
scope of this field encompasses a large range smfipdines, as the systems and
techniques that are developed can be used to ass@inprehending and automating
the activities that have previously required hunmearventions. Although traditional
applications of robots have been focused on noctiveaand repetitive tasks, there
has been a push towards developing interactiveesystthat can adapt their
behaviour depending on immediate and historicaradtions with the users and the
environment. This process is carried out througtboard sensors or external sensor
systems that can relay a specific set of statdheenvironment depending on the
type of sensors used and how they are used (Dudin&in, 2000).

The interactive systems provide a platform for timplementation of a wide
variety of algorithms and techniques, as the sesnawe typically constructed to be
generic devices for capturing the data while trecessing algorithms differ between
applications. The price of these sensors and the aintegration has also become
an important issue to allow not just the reseamstitutes, but hobbyists and
scientists of different disciplines to expand iatod take from the field of mobile
robotics.

1.1 Mobile robotics

The majority of robotic systems that are currentbed in today's world have
predefined tasks they carry out at specific locetjothus the interactions require
physically moving the object of interest within ttenge of the robotic systems. This
can restrict the type of tasks it can perform, esby if mobility is restricted.
Although restricted mobility can provide benefitsck as predictability, controlled
scenarios, and safety, the ability to manoeuvrewall the interactive tasks to be
carried out in a much wider variety of locationgyieh greatly increases the type of
tasks the robots can be assigned. The primary fimsknobile robots typically
involves the replacement of biological systemsadaycout repetitive, strenuous, or
hazardous tasks either fully autonomously or wiltipl manual intervention from a
remote location (Buhmann et al., 1995; Burgardlet1®98; Horchler et al., 2003;
Mayer, 2001; Sibley et al., 2002; Tucakov et 8917; Yamauchi et al., 1998; Zlatev
& Balkenius, 2001).

The techniques and algorithms that are used demendhe tasks and the
availabilities of the sensors included with the melpobot systems, which may be
specifically designed for the task, or generic sen¢hat are used in a certain way to
enhance the capabilities of the robots. The dewveop of the robot itself, the sensor
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usage, and the algorithms for processing the sgrdada are all integral part of the
system which can be developed in parallel or sépigrabefore being combined
together. Due to the cross-over between differpptieations where the sensors and
algorithms can be re-used, many algorithms are |dped independently for
different purposes and are later integrated withrtfobile robot system (Hu & Gan,
2005; Rajendran & Huber, 2004; Shen et al., 1998).

The flexibility in being able to attach multiple mponents means the physical
configuration of the mobile robot can differ sigoéntly between systems. This also
includes consideration to the placement of the semsory components such as the
locomotive components, housing of the processing providing power to run the
mechanical components, as well as the overalldfiziee robot, which all depend on
the tasks set for the robot and the resourcestbatvailable to construct the robot.

An alternative approach is to define the taskstmseoving the configuration of an
existing mobile robot platform (Eklundh et al.,, )9 This approach is more
common, as the cost of developing a dedicated myst®ften not plausible until the
capabilities of the robot has been fully definesh iterchangeable design allows
portions of the system to be modified to suit gafar tasks without the need to
replace the common components, thus allowing exyarial development to be
carried out with ease.

The specific tasks carried out by the mobile rotemt be split into four major
phases. These are the observation of the envirdninyethe sensors, the processing
of the sensor data to interpret the current stftéise robot and the surroundings, the
adaptation of the internal states with regard ®gbal of the system, and finally the
response by the mobile robot to interact with theinment. Each of these phases
can be further broken down into more specific psses that are the focus for
researchers within the field of robotics. Figur#& tlustrates the phase cycle, where
the decisions made by the robot are dependant encthlrent and historical
information, as well as the overarching purposdhef system. This generic cycle
represents the high level flow of process for itéive or closed-loop systems.
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Figure 1.1: Process cycle for a mobile robot.
The double lined categories represent the compsneott

constraints of the system, while the solid linetkgaries represent
the processes and communication between them.
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1.2 Simultaneous localisation and mapping

A commonly seen theme throughout mobile roboticthésnotion of recognising
the pose changes of the robot (Borenstein et 8871Kleinberg, 1994; Zimmer,
1995), as well as merging and comprehension ofisterical sensory information to
form a model of the environment (Debevec, 1996;ulH®£97). The two tasks are
strongly coupled since the pose changes are typidatermined by the changes in
the perspective of the scene structure while the coastruction requires the precise
pose changes to be combined with the sensor readibgut the surroundings
(Betge-Brezetz et al., 1995; Burgard et al., 1396 Csorba, 1997).

The localisation aspect can range significantly;$teh as by simply maintaining
mechanical estimates of the position changes tora melativistic model that encode
the poses with respect to the surroundings. THeyata relate its pose to the actions
being performed allows the task to be carried dumnaltiple locations and be
differentiated. Although it is possible to operatiéhout knowing the current location
of the robot, assuming or fixing the location caatrict its capabilities, especially if
the robot is to interact with a dynamic environment

The techniques that are used for localisation viathin two basic categories,
where one makes use of the domain knowledge aheubtomotive behaviour and
configuration (Kelly & Murray, 1994; Ostrowski, 199 called open loop, while the
other, called closed-loop, makes use of the senfe@gback about the current state
of the environment and the robot. The first appho@ccommonly seen in situations
where the environment and the robot system is mellelled or as an assistance
measure to monitor the difference between antiegbattion and the actual actions.

The second approach is one that has attracted resehrch interest, as there is an
enormous number of ways to combine various sersatgo interpret the state of the
surroundings to disambiguate the current pose efrtdbot (Huang et al., 2005;
Ishiguro & Tsuji, 1996; Jensfelt, 2001). These teghes typically involve
triangulation processes using distinctive obseoveti probability based approaches
to indicate the confidence in the various statesu@iet & Perona, 1995; Bulata &
Devy, 1996; Chin & Dyer, 1986; Davison et al., 20Dellaert et al, 1999; Fox et al.,
2001; Thrun, 2000; Thrun et al., 2001), or correlatprocess between multiple
expected and measured models of the environmehar{é&let al., 1994; Eliazar &
Parr, 2003; Mandelbaum, 1995; Wijk et al., 1997).

To be able to perform the correlation, as well asd able to inform the other
systems of the state of the environment, a vinnatel of the environment can be
constructed to allow the maintenance of historgahsory information at various
poses. The construction of these models or maps @ft/olves a number of sensors
with varying modality to observe the surrounding®tigh multiple view points. The
process consists of interpreting the sensor meamunts to reconstruct the
environment by extracting the distinguishable conmgris and overlaying the
measurements from multiple view points to disamaiguand accurately locate the
objects into the model. (Roy & Dudek, 2001; Thrii898).

The interpretation of the sensor signals and thegmation of multiple
measurements are often synonymous to many non-fobetd research, as the
technology behind the algorithm can easily be aitanged with slightly different
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objectives. These include fundamental algorithmshsas search and clustering
techniques to more specific algorithms like objeatking and energy minimisation
algorithms to find optimal solutions.
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Figure 1.2: Interactions between localisation ammghping.
The difference between the open and closed-loopoappes, as
well as the interactions with the mapping can lense

As figure 1.2 shows, the two components of Sim@tars Localisation and
Mapping (SLAM) are dependant on each other to pl®wlisambiguation by the
sharing of information and the use of the senshng. integration between the two
areas typically involve iteratively processing thensor readings from the two
perspectives and making use of the continual stretuisensor scans of the same
object to gradually decrease the errors in theesagtation. This design allows the
individual components to be developed more indepstigl and merged later on to
improve each other. Since the mobile robot oftemdraexploration component to its
behaviour, the reliability and accuracy of the wamnponents is crucial as any errors
that are introduced can quickly propagate and laasteowball effect on the accuracy
of the internal states.

1.3 Overview

The overarching theme behind this work is on theettggment of techniques and
algorithms for an indoor modelling mobile robotngsiaffordable sensors. The focus
has been placed on the software side for adagtabilithe proposed approaches on
other platforms and disciplines using off-the-shiefrdware that can be easily
integrated. The use of multiple sensors providesardbiguation and alternate
perspective for reliability and accuracy in the migdthat are constructed. However,
the integration and simultaneous processing ofiplelimnodules means that one of
the primary limitations is resource consumption,clihis constantly dealt with in
each of the algorithms.

Each chapter contains introductory and backgroofaimation on the area, while
more specific details of existing work are includatbughout the body of the thesis
when they are directly referred.

This thesis is organised into three sections iHaistg the sequence of
development in the various components of the motmleot platform. Section 1
contains three chapters; locomotion, sensors, ancepsing, which cover the three
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key subcomponents of the platform.

The overview of the system defines the capabiliied limitation of the robot.
This guides the tasks that can be carried out,edlsas configuration knowledge that
can be exploited when designing the algorithmsititatpret the data.

The base localisation technique and the configumatif the sensors involved are
discussed in section 2. Discussion on the conftguraprocess is described in
chapter 5, while chapters 6 and 7 focus on thelikateon technique and the
integration of multiple sensors to achieve higlc@ien pose maintenance.

The focus of this section is in the developmentanfaccurate and fast local
localisation technique. The closed-loop approacilsdeith problems encountered
with traditional dead reckoning approaches, suchslagpage and inappropriate
motion models being used. The improvement in theu@acy and reliability in the
local localisation implementation means it can beduto enhance global localisation
techniques. The proposed approach allows for retlbaeden on meeting the correct
criteria of finding multiple distinguishable featsrto correct the pose, such as when
exploring new areas, as well as reducing the frequ®f pose corrections to reset
drifting errors.

While implementing the above techniques, severdhted problems were
encountered and resolved, such as the noise redsaind synchronisation between
multiple features. The noise reduction filters thave been developed use the
camera characteristics to distinguish betweenrttended sensor reading and noise.
The majority of these filters are thus applicabieother fields which make use of
image streams.

The feature synchronisation plays an important ioléhe accuracy of many
models that are used to translate the discreteoseeadings. Rather than reducing
the level of precision that is derived for the teatpose, the sub-unit characteristics
are determined, which allows simpler interactionween features, as well as
maintaining the continuity in the sensor readings.

Lastly, section 3 covers the mapping aspect of tygem and the high level
interpretations of the environment through the ienagnsors. Chapter 8 covers the
basics of the mapping process while chapter 9 doires the mapping algorithm
used to construct the model of the environment.p@ra 10 and 11 introduces
various strategies to enhance both the localisainthmapping processes through the
use of high level constructs to improve the efficie of the sensor measurement
interpretations.

In this section, the focus shifts towards a fast meaningful interpretation of the
sensor readings. The fast carving algorithm, tagretvith the orientation dependant
range finders to map interaction, removes the #ittah on the scan frequency. This
also allows the precision used in the grid mapddrereased and the use of other
modules simultaneously due to the reduced procgésad.

The algorithms dealing with the high level intetat®n of the sensor data have
mostly been customised for the purpose of enhantiveg attributes that are
maintained in the map. This includes the criten a&onsiderations for feature
recognition for identifying and tracking surfaceubdaries, the grouping of such
features to improve the pose triangulation, andgaising the presence of dynamic
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objects to notify the map of possible changes.

The image processing algorithms observe the clarsiits of objects seen
through the cameras to select the appropriate sagnpbints and the maintenance
strategies while being mindful of the processiraplo

Several other techniques are proposed, but arertlymot fully integrated with
the other modules. This includes a landmark detectlgorithm to observe the
change in floor texture patterns, surface segmentats an alternative approach to
the surface boundary detection, and some optimisapproaches to the mapping
process.

Finally, the thesis is concluded with a summary gederal discussion on the
project in chapter 12. A more detailed list of e¢dnitions is also described here.

“ '4’:' - - nﬂti“__

The base includes the battery and the locomotivgpcments.

The mobile robot platform used throughout this @cbjstarted off as a simple
base, as shown in figure 1.3, which has now deeeldpto a multi-tiered module
and sensor carrier, as shown in figure 1.4. Theemental attachment of the various
modules and sensors are discussed throughoutehis.th

Fiure 1.4: Current mobil root pltform.
The current implementation includes five sensor umheslthat were
incrementally added to enhance the robot's capiabili
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Section 1 — Platform

“Like the symbiosis between the mind and the biby,
platform provides the constraint and means for the
algorithms to operate.”

A common approach to developing mobile robots isnedoby clearly
distinguishing between specific modules that taliee f a specific task. In most
cases, one is developed after the other with sawalbunts of constraints and
optimisation being applied during the integratioogess. This style of approach
allows for incremental development with solutionsspecific tasks. However, some
of the components cause interference or do notvaitw simple integration due to
the lack of foresight. This characteristic is diffiet for purpose built robot systems,
which are very efficient and capable in using thisteng devices, but typically come
complete and do not allow additional components tduie high level of coupling
between the various components. This can limitath@ptability as it becomes very
difficult to add or derive new capabilities for th@bot system (Brooks, 1991).

The platform which has been used for this projeatasigned to be an extensible
and simple interfaced system to be developed iremental phases to allow the
development and addition of extra modules as umdéugte student projects
(Arnold, 2004; Fonseca, 2007; Nagchaudhuri, 2008)s requirement causes the
physical size of the robot to increase over timadditional modules are attached.
Fortunately, due to the nature of most projectshaaodule mainly focus on one
type of sensor to allow clean distinction of thadtionality of modules and a simple
interface between the processor and the sensors.

The two basic shapes typically used on mobile raystems are rectangles and
circles. Although the decision in selecting the pghas typically based on the
locomotive mechanisms, there are additional conaioias such as the compactness,
sensor arrangement, and also the nature of the taslake into consideration. The
rectangular shapes often allow more compactnesstaube shapes of typical
mechanical systems and also provide balanced groom@ct control, thus it is often
used for outdoor systems where ground coverages pdagignificant role in the
robot's functionality. For robots which require Inég degrees of control in motion
such as an omnidirectionally sensing systems, lairawbots are more commonly
employed due to the uniform interface to the emmment for many of the sensors.

Instead of chaining a series of carriage like meslubehind the robot, the
extension modules are typically placed on top aheather in a towering fashion
(Ostrowski et al., 1997). The major benefit of diaining structure is that it allows
the individual modules to control the elevationtlod sensors quite freely, but it can
hinder the motion behaviours from the extra poaftsontact (Borenstein, 1993) and
also the operational direction of the mounted senstaused by obstruction.
Integration between the modules becomes a diffiadk due to the high level of
coupling required to anticipate the locations & tther modules. By stacking each
of the modules on top of each other, there is astemh constraint placed on the
configuration and introduces a much simpler depeag®etween the modules at the
cost of limited positions of the sensors.



With the above in mind, a circular and layeredfplah was built. The footprint of
the robot was made large enough to house a widetyaf additional sensors and
devices which would be included in the future, somall enough to allow operation
in a confined indoor environment. The bottom basasares at 400 mm in diameter
with a height of 130 mm to house the components dio@s not need extensive
external access, such as some circuit boards fomemicating with sensors, the
battery, motors for controlling the wheels, as vaslithe majority of the wheel itself.

One of the other significant physical design cansts was with regards to
whether the robot will be tethered or not. It ighily desirable for a mobile robot to
operate completely untethered to allow more flditibin the environment they can
be used in (Feng et al., 1996). For this to ocaut,A h splash proof / gell-cell lead-
acid battery pack was installed in the base ofrdhet, as well as a laptop computer
mount to allow higher level program designs andi@mgntation to be carried out on
the robot itself. It can also allowing the off-loag of some processing tasks to
external systems in the future due to the simplvarking capability between a
laptop and another computer. The laptop and batenyributed for the majority of
the weight of the robot, which measures at appratehy 7 kilograms with no other
load.

This section covers other physical issues whichegothe mobile robot, as well
as the characteristics of various sensors thaprasent. Chapter 2 covers the issues
of locomotion, chapter 3 focuses on the charadtesiof the currently available
sensors, while chapter 4 will discuss the procgssaues as well as covering the
communication issues between the various modules.



Chapter 2 — Locomotion

The definition of the termobot can vary between sources and environments, but
one of the fundamental qualities of a robot is atslity to interact with the
environment. A common approach is by physical atgons with external systems
through a medium that is typically beyond the r&batbontrol. The components
involved in this type of interaction include howwill change the environment by
touching and manoeuvring itself and the objecthange its pose. This behaviour
has strong links with the study of locomotion, whigeals with the notion of self-
propelled motion to change its pose.

Depending on the deployed environment of the rothat,type of motion and the
mechanical requirements can vary significantly fleaih et al., 2004). Although a
wheeled robot base is commonly seen for terraioteplihere are many other types
like pedal and self-rolling robots (Pratt et al99¥), as well as an equally diverse
range of motion inducers that exist for other mediusuch as propeller and wing
powered robots for underwater and aerial explonatiche popularity of the wheel
based robots on land is mainly due to its simpli¢it the implementation and
modelling the motion, as well as being an efficimtn of motion in terms of power
usage.

The modelling process of a single driving wheeligkehis quite simple, as the
motion is dependent on the direction of the whewl the circumference of the
wheel. Although this simplified model does not ddes issues such as ground and
wheel compaction, traction, lateral slip, and baskl the approximation can be used
to predict and plan the robot's motion with readdmaccuracy. Figure 2.1 illustrates
some of these characteristics that are often ighiorsimplified motion analyses.
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Figure 2.1: Various components of a wheel baseohhative system.
This illustrates many of the wheel characteristicat are often
ignored in motion models, thus leading to inaccie@sand drifting

errors.
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To balance the robot, additional wheels are oftecqu to increase the ground
contact points. These wheels, which are calledocagheels, do not provide any
driving force or steering functionality and are plynthere as support. These are
often freely rotating in any axes, thus are left au most motion modelling
calculations. Unlike the training wheels on a bleythe castor wheels, which can be
seen in figure 2.2, typically do not hinder the imotdue to the constant traversal on
a single plane.
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Figure 2.2: Castor wheel.
The robot's balance is maintained by three castwels located
around the robot.

By increasing the number of driving wheels, theotols able to traverse to a
given point with more control and variety in thettpaThis is achieved through a
combination of forward and backwards traversaldewards motion, as well as
rotations that are centered on artificial pivotrigsj which is sometimes referred to as
the instantaneous center of curvature (ICC). Tlnv®tppoint is derived from the
intersecting point between the rotational axehefwheels, which can be altered by
changing the orientation of one or more steeringeldwith respect to each other, or
by modifying the relative velocities of the wheeis)ich will be described below.

2.1 Differential drive

Differential drive systems are equipped with twonmore driving wheels that are
individually controlled by motors, such that theg klong a common axis. This
allows the center of curvature to occur anywhemn@lthat axis, which allows
rotation to occur by varying the relative motor egie of the wheels. For example, by
setting the velocity of one motor to be the opmosit the other, but at the same
magnitude, the robot will rotate around the midpaihthe two wheels. This type of
motion allows controlled motion in confined locatwithout the risk of collision.

This configuration is one of the simplest and comipamplemented approaches,
that allows for a large variety of motion to oc@and is suited for a smooth terrain
environment with many obstacles. However, due ¢édhilgh sensitivity to the relative
velocity between the wheels, the smallest amoudiftdrence can result in a change
of trajectory. It also relies on a smooth latetgdpage to occur, thus place an extra
emphasis on the synchronisation between the twcelwhend knowing the exact
motions taken by the wheels.
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Figure 2.3: Components of differential drive system
The motion model for a differential drive system hased on
smooth motion around the ICC and constant wheahgaments.
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2.1 Differential drive

The derivation of the components in figure 2.3 t@nachieved through initial
calibration measurements, the wheel velocitieskgndsing the following formulas:

DZW.VL/(VR—VL) (1)
o= (VR—VL)/W (2)
Where D is the distance between the instantaneenisecof curvature, W is the

distance between the wheels,ahd \k are the velocities of the left and right wheels
respectively, an@ being the rotational angle of the motion.

One of the limitations of the differential drivestgm is the inability to move in
the direction along the rotational axes of the vheattempting to move in this
direction requires a combination of rotation andn$iation to occur. One
increasingly popular strategy to overcome this ttnon is the use of
omnidirectional wheels, which can rotate in two pgeerdicular axes while still
allowing the wheel to be driven by a motor. Thibhg between a caster wheel and a
driving wheel can be arranged in such a way toaatlee sum of the motion vectors
between the multiple wheels to direct the motiothefrobot (Feng et al., 1989; Voo,
2000). A typical configuration involves three omingttional wheels arranged in an
equilateral triangle. One of the downside to thss that the freely moving
characteristic can lead to drifting, as most ommeittional wheels do not include
breaks to stop the robot.

2.2 Synchronous drive and steering

To overcome the drifting issue experienced by omedtional wheels while
providing the same manoeuvrability, an ordinary @hsan be used in conjunction
with another motor to control the orientation oé tivheel with respect to the robot
base. This allows the robot to move in any desdidction without the need to
rotate the robot body. Typically, these systems anage of multiple wheels, much
like the omnidirectional wheel arrangement, th& eonstrained in orientation with
each other. This is mostly done for balance, beait also allow arc motions to occur
by using different power outputs for each of theton® spinning the wheels
(Borenstein, 1995).

By combining the ideas of controllable and fixedentation wheels, more
complex manoeuvring systems can be developed suithoge commonly seen on
tricycles and auto mobiles. The center of curvatithese systems lie along the axis
of the fix oriented wheels while the distance te tenter of curvature from the robot
can be controlled by the angle of the steering WHhear a single steering wheel
system, such as on a tricycle, the only parametetralling the location of the pivot
is the orientation of the one wheel. However, folual steered wheel system, such as
the Ackermann or kingpin steering systems implee@gndbn auto mobiles, the
rotation of the two wheels must be proportionaliyitrolled so that all the rotational
axes intersect at one point. That said, it is a4 design a system which relies on
large amount of wheel slippage for rotation. Howetee motions of such systems
are very difficult to anticipate due to irreguldippage, as well as causing large
amount of wearing to the tyres, thus are avoidadost cases.
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2.3 Joint based motion

2.3 Joint based motion

As advancements are made to feedback sensorsretie from the traditional
wheel approach to a more flexible pedal based lotiom systems have started to
appear. This biologically motivated design allowsiam greater flexibility in the
environment it can operate under, but is hindesed more complex motion patterns
that are both self induced and influenced by thmeaite (Quinn et al., 2001). The
system also incurs a much higher material cost ftbexncomplex integration of
motors and joints to make up a leg. The softwaegssing costs also increases
when accounting for the complex motion and terrétims most implementation of
pedal robots are still in their experimental stafye.implementation that resolves
some of the balancing issue is one that makes tismooe than three legs to
constantly maintain balance while allowing othegsléo move around and position
itself for the desired motion.

While the legs provide a flexible means to manoeuearvery similar technique
can be applied to an arm mounted on the robottéwant with the environment. The
kinematics are quite similar the the legs, but sasuon the exact alignment of all of
the components, as the shape of the arm is moreriam than gaits and balance
issues.

2.4 Traversal mode

There are two distinct models to be used when camding the robot to move; a
velocity based command and a trajectory based cominrthough some robots
make use of both types in conjunction with eaclegttlynamically exploring robots
often make use of one or the other based on the ofpenvironment and the
flexibility of the robot's motion for the given tasA velocity based command is
typically used when manually controlling the robot,where the robot's task is to
navigate around without any predefined path. Thisws for a simple reactive
system where the robot must explicitly poll for neviormation which will modify
the current motion (Garnier et al., 1995; ParonktdhiNassal, 1995; Rives et al.,
1993; Ward & Zelinsky, 1997). Although this apprbaioes not need to spend time
planing the path, it can often lead to unnecessariions or not detecting various
targets if the polling is not conducted at the appate interval. The trajectory based
command allows for the robot to explore the worlorenconsistently and accurately,
but does not adapt well to changes in the enviroiras the path of traversal is
required before the command is given. This usuakylts in slower motion, but can
ease the processing load by assuming the planniedsgaee of obstacles.

2.5 Current configuration

Based on the simplicity and the typical operatimyi@nment for the mobile
robot, a differential drive system has been usdthéncurrent implementation. Table
2.1 summarises the characteristics of the varimesiag systems discussed above.

A belt drive system is used to connect the wheelthé motors, such that the
wheel positions could be carefully adjusted to eatly positioned in the middle of
the robot. The wheels measure at 49.5 mm in radibge the foam tyres are 11 mm
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2.5 Current configuration

in thickness. The foam was placed on the whegisdmote smooth motion on most
surface types as it can absorb most of the smatiplsuon the surface. The width of
the wheels measures at 39 mm across at the grawmact point, while the length of
the ground contact area was measured to be 31 nmensohd surface and 36.5 mm
on a softer surface, such as carpet flooring. dtifsrence is due to the softness of
the surface which allowed the castor wheels to sitik the ground. There are three
castor wheels currently present that operate asller iball principle. These wheels
control the minimum elevation, which measures ab 18m on a solid surface, while
it can reach around 11 mm on soft surfaces. Theatbts usually plays an important
role for outdoor robots where small obstacles tlaat scrape and damage the bottom
of the robot must be avoided. This is not as ingrdrfor indoor robots, since the
surface tends to be flat with very few exceptiomghsas small steps between
different surfaces, frames on walkways and cahlesing on the floor. The wheels
were placed near the outer edge of the robotsaB{simm inwards from the edge, to
allow greater control over rotation, as well asréasing the overall balance of the
robot to avoid rocking motions. Figure 2.4 showample blueprint for the robot
base, while figure 2.5 shows the dimensions.

s

Figure 2.4: Sample blueprint for the robot base.
The robot was built from scratch to allow flexitddjustments and

expansion.
16.5mm 11mm
36.5mm
N —— N
T%__/sc,ﬁ T
Hard K 3Tmm
49.5mm 39mm
"I" 11mm
Weight = 7kg T

Figure 2.5: Dimensions of the robot base.
The left image shows the bottom of the robot, theright shows
the wheel in contact with the ground, and the bottgght shows
the dimensions of the actual wheel.
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2.5 Current configuration

Table 2.1: Characteristics of common steering syste

Name Degrees| Typical Motion Common issues
of number of | model
freedom | motors
Differential y,© 2 Simple Caster wheels can introduce motion model
errors.
Synchronous X, YO 2x3 Simple Not suitable on rough surfaces.
Ackermann y 2 Simple Not suitable in confined spaces.
Pedal y 2 Complex The motion of the body is very rough.

The compression of the wheels due to the weiglshioning of the tyres, and the
ground meant that the exact parameter values fiwafd kinematics are very
difficult to achieve, especially on soft surfac&siring the calibration phases, the
ratio of motor axial rotation and the traversedtatises were measured to
approximate the robot motion on a soft carpet flemthat it can be used as a rough
measure for traversing. This configuration allowseay simple base for an indoor
mobile robot with opportunities to develop furthreodules to make improvements
later on. The base can also be replaced in futoptementation if other locomotive
configurations are desired.

Since the primary objective of the robot is to expl the environment
autonomously, the motion model has been set tardpectory based approach, that
is, the command is sent as a distance measureallbvgs for a sophisticated path
planning algorithm to be implemented. The veloatyd acceleration parameters
being loaded to the motor is currently fixed wheamplering autonomously, but can
be modified quite easily to allow variable speedigation in case the robot needs to
travel to a destination quickly. The commands, haueare still kept as distance
measures, so the overall motion of the robot wiél ® cycle of stop-and-go
operations.
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Chapter 3 — Sensors

In order for the robot to successfully operate withe environment, it must sense
and acknowledge the surroundings, as well as psisgethe ability to sense the
states of itself. Being able to receive and utilthese input information allows
greater range of applications for the robot, adldws adaptive behaviours to occur.
The major drawback of closed-loop systems agaipsindoop systems is in the
complexity of interpreting and integrating the semeeadings to the internal state
with minimal errors such that the sensors can meeof the updated states about
the environment and itself to enhance the subseégadrulations.

There is a wide range of sensors that are avaifableegistering many different
types of signals, but unlike simulated environmentsal world sensors are
influenced by environmental conditions, limitatioimsthe sensor range or capacity,
and the characteristics of the device itself, saglthe capture time and sensitivity to
noise (Betke & Gurvits, 1997). In addition to thesasiderations above, other issues
that are often ignored in simulations include thegemal costs, power consumptions,
physical placement constraints, and the generalicapgity for the particular
environment.

The sensors mounted on the mobile robot can bedlyradassified into two
categories in terms of what it senses; internak@enfor measuring the attributes
about itself, and external sensors which interacith other systems, like the
environment, to obtain some information about trenin turn, about the robot. In
the case of external sensors, there is a furtlessification which can be made on
whether the sensor makes use of the ambient sjgradled passive sensors, or emits
signals to the environment to be detected wheetutrns to the sensor, called active
sensors. Both types of sensors have their own ignefuch as low energy
consumption and non-intrusiveness behaviour forsipas sensors, while low
ambiguity and a wider range of operating environisi@me some of the benefits in
using active sensors.

3.1 Internal sensors

Internal sensors are responsible for measuringatirs of the robot itself, thus
play an important role in grounding the other semsadings by specifying the state
of the robot. These sensors are often not as sitegeas the external sensors due to
the controlled manner in which they operate sire®y tlack the interactions with
other systems.

3.1.1 Timer

The most fundamental of all signals feeding in ke trobot is the timing
information from a clock. Whether it is to simpiyne-stamp particular events or to
perform complex synchronisation tasks, the cloagknfothe foundation for ordering
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3.1.1 Timer

the events in some consecutive sequence (Lam@#8)1Most systems often rely
on a single central clock to coordinate the evemis$,extra considerations must be
made when combining multiple clocks, such as dffsatd drifts, that can be

determined through a calibration phase or throughticuous synchronisation in

case of irregular drifts during operation (Lampeit al., 1982; Mattern, 1989;

Mattern et al., 1991; Schwarz & Mattern, 1994).

3.1.2 Rotary encoder

Another commonly used sensor can be found on th®mhdor measuring the
shaft positions using an encoder. This positioniceidr is bundled on most
commercial motors and can be used to determindegeee of rotation of the motor
shaft from some given position. Using this valueijsi possible to anticipate the
motion behaviour or estimate the required motionthe attached components if
attributes such as the circumference and gearsratie known. The accuracy and
reliability of these encoders are quite reasonabteept for rare mechanical failures
from wearing or excessive stress on the rotatiragtshlowever, the reliability of the
system which makes use of the encoder values cayn significantly on the
characteristics of the attached components and@maent they operate in, such as
the quality of the wheels.

3.1.3 Power indicator

A measure that is commonly seen in commercial ptdis the power indicator
based on the remaining battery charge. This infaonas often not considered in
many researches based robots due to the irrelevarthe mechanical or algorithmic
development. The lab environment also provides kmpeans to recharge the
battery or the robot does not consume a large énpogver in a single execution.
For researches that involve specific power outpsush as being able to determine
the precise power output of motors, the informatidiows algorithms to consider
modifying other attributes to counterbalance tHeatfof the reduced battery or to
simply warn the user (Martin & Seiwiorek, 1996; éal., 2000).

3.2 External sensors

While the use of internal sensors provide usefidriation about the state of the
robot, the external sensors involve a much morepbexnprocess to cater for the
broad range of information through interactionshwtite environment. The generic
tasks for these include the validation and tramsladf the sensor signals given the
current environmental conditions. The sensors &sn aategorised by the modality
of the detectable signals, but they can also begoased by the type of information
it generates. Considerations in selecting the patesensors includes the usability
with respect to the characteristics of a typicaéraping environment, reliability,
precision, and the material cost of the devicechitan range significantly between
high and low quality implementation of the sameetyp
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3.2.1 Passive sensors

3.2.1 Passive sensors

Often referred to as inertial sensors, accelerometed gyroscopes are sometimes
fitted to mobile robots that manoeuvre on differaftitudes caused by non-flat
terrains, bumpy motions, as well as the tiltingle# robot body. These sensors play
an important role in tracking the 3D pose changed maintaining the robot's
balance. These sensors can also play a role inniboements by monitoring the
change the robot's state to support the other seeadings.

A similar sensor to the accelerometer is the imctieter, which is used to
determine the current pitch and roll of the robsing the acceleration provided by
gravity. Due to the common occurrence of driftsame sensors, the inclinometer is
commonly used to ground the measurements to avoidnpal hazards from
incorrectly measuring the balance. Similarly, iasteof accumulating the yaw
changes, absolute values of the strength of théh'Bamagnetic fields can be
measured on compass sensors to identify its curogmntation (Duckett &
Nehmzow, 1998). These sensors are prone to eldctraise, thus must be mounted
on an extended arm to stop the metal body andlgutre@nics from influencing the
signal.

3.2.2 Ranging sensors

A more commonly applied sensor in a research enmemt used on mobile
platforms is the ranging finding sensor. Severtietent methods and modalities are
used in identifying the region of open space betwt#e sensor and an obstacle.
These are often used to detect the presence dbstaate in the immediate vicinity
that is visible to the particular sensor, but c#so e used to identify multiple
obstacles as well as the attributes of the objegtexploiting the characteristics of
the type of signal being used.

3.2.2.1 Sonar

The sound navigation and ranging (sonar) sensolongsbeen a popular addition
to mobile robots due to its low cost and simpliodtly operation. A sonar sensor
typically operates by detecting the time of flight the phase shift of the high
frequency chirp they emit, which is detected aftdsounces back to the receiver.
Although its behaviour appears simple, the sensomaffected by many other
contributors, such as the speed of the chirp inntleeium, interference from other
noise sources, operational range, angle of inceleabsorption and reflectivity on
surfaces, echoes, and a cone shaped dispersidme aound signal (Drumbheller,
1987; Dudek et al., 1992; Kleeman, 1999). Figuesbiows sample signal strength
of a sonar chirp at varying angles from the emitiote that the time of flight is
unaffected by the loss in the strength, but thellemlabes can potentially become an
unwanted signal if the threshold is not approplyaset. Some of these issues can be
corrected trivially through the use of multiple sorsensors or by combining the
reading with other types of sensors. There culyestists a wide range of research
dedicated towards making better use of the son@osg in the attempt to achieve
high precision object detection and map constracsigstems such as those found in
biological systems (Araujo & Grupen, 1997; BankQ20Borenstein & Koren, 1995;
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3.2.2.1 Sonar

Borghi & Tosolini, 2007; Cahut et al., 1998; Cho&gKleeman, 1999; Crowley,
1989; Goel & Sukhatme, 2000; Kleeman, 2003; Kleem&anKuc, 1995;
Varveropoulos, 2000; Wijk, 2001).

Sonar amplitude

Strength
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Figure 3.1: Typical sonar signal strength at vagyamgles.
The lobes of the sonar sensor signals can resuldetecting
secondary reflections if the appropriate threshol® not
considered.

3.2.2.2 Radar

While the sonar sensor operates using an acougtialsthe radio detecting and
ranging (radar) sensor operates by using the plwagdrequency characteristics of
radio waves within the electro-magnetic spectrunmi@asure the distance to an
obstacle. The sensor has similar behaviours todh#te sonar sensor, both in the
way it operates and the problems they face, wighetkception of the material cost,
the ability to operate without the need of a demselium to traverse through, the
speed, and the ability to penetrate certain susfambich can provide useful
information about objects that may not be direatlysight (Bahl & Padmanabhan,
2000; Clark & Whyte, 1997; Foessel-Bunting, 2000).

3.2.23 IR

Another type of electro-magnetic wave based sensbich has similar
characteristics to the above is the infra-red (B)ge finder. This type of sensor uses
the reflected light's intensity or a triangulatiprocess to determine the distance to
the obstacle. Due to the wide variety in the reiflety of different surfaces and the
scattering of light from Lambertian surfaces (Or&nNayar, 1995; Poulin &
Fournier, 1990), the signals can sometimes be Bistamt. The low cost device is
often used as a non-contact bumper for obstacledawoe to protect sensitive
equipments (Borenstein, 1989; Kwon & Lee, 1995).

3.2.2.4 LIDAR

Light detection and ranging (LIDAR) is regardedfaes most accurate and reliable
sensor for measuring distances to an obstacleheasldvices emit a very narrow
beam to a well controlled direction. The operatlorenge of these sensors can
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3.2.2.4 LIDAR

extend from a few meters for low powered beamghtmsands of kilometers for

some of the high end sensors used in fields sudstenomy. Although the high

precision is desirable, the sensor comes at a gty cost, which is often a key

deciding factor in research projects. They are plstentially more hazardous than
the sensors above due to the focused beam whicterdan the human eye when
operating in populated areas, especially in indaoplications. Another potential

drawback is the reduced viewing area which carcatfee usability in certain tasks
which require a broad coverage of the area instéadprecise measure of a single
point. To overcome this, some implementations make of other sensors in

conjunction with the laser range finders (Aboshao&héell, 2003; Castellanos et al.,

2001; Diosi & Kleeman, 2004; Dudek et al., 199aydzzar et al., 1997; Kelly, 1994;

Lewis & Johnston, 1977; Lu & Milios, 1997; Neiraadt, 1999).

3.2.2.5 Bump and tactile sensors

While the range finders mentioned above are aligtas of non-contact sensors,
there are also a range of contact based sensdlabde@do detect degrees of contact
with the robot. Often referred to as a tactile senis involves a switch or a pressure
sensor to determine the degree of potential enéngglved in the collision.
Depending on the system, this type of sensor cag wapurpose from simple
obstacle detection to determining the appropriaiees required to grip onto
something with a robotic arm. The range in sengjtivas well as the amount of
sensor points determines the cost involved in implating the tactile sensor, but the
use is typically limited to systems which requisesisitive pressure information or a
very cheap implementation of a collision detecknotkov, 1991).

3.2.3 Camera

With the price of cameras becoming more affordatle, improvements in the
quality, and the development of sophisticated imagecessing algorithms, the
popularity of visual sensors have dramatically éased in recent times (Bigas et al.,
2005; Smith & Brady, 1997). There exist vast repegt of approaches in extracting
useful information by analysing the pictorial d#tat is based on the intensity values
of the reflected electro-magnetic waves and thdtipasof the detecting photo-
sensor. These techniques can range from simpleircdktection to a more complex
feature tracking algorithms using spatial and terapoelationships (Whelan &
Molloy, 2001). The major differences between thmee sensor and the other light
based sensors discussed above are in the passiaityyavhere it makes use of the
ambient light rather than emitting any controlleshin for the sensors to operate, the
large number of simultaneous measurements thatbeamade from the array of
photo-sensors within, and also the directionalimfation that are extracted instead
of the distance information.

The increased number of simultaneous measuremenashieved through the
array of individual photo-sensors that are preseithin the single device. This
characteristic allows for the camera's greateseftenvhich is the ability to capture
the scene structure by taking a snapshot of tles-pikel intensity information in a
single instant. This ability allows the camera sen® identify and track objects
within the scene with ease while providing moreoiniation with regards to the
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3.2.3 Camera

relationships between neighbouring views such agptlesence of shadows, surface
structure from lighting changes, textures and padgtdéor segmentation, and when
combined with other sensors, it too can deterntigedistance to obstacles (Murray
& Little, 2000; Narkhede & Golshani, 2004; Zitni€&kKanade, 2000).

The availability of more data gives rise to morglhssticated algorithms with
aims of one day outperforming the abilities of #os biological systems
(Navalpakkam & Itti, 2005; Soyer et al., 2003). §hdevelopment requires both
hardware and software improvements, as the diditispproximations become
detailed enough to distinguish the most subtlectivaal and intensity information,
while the processing capability increases to allo@re information to be analysed.

The most common visual sensor makes use of thbleispectrum as it best
mimics the human visual system, as well as th&rdost and availability. However,
there exist other sensors that are designed tareafite reflected light in the other
parts of the electro-magnetic spectrum. These tyfesensors are often used in
specialised tasks, such as observing the ambienn#i radiation of an object or to
avoid interference from the visible spectrum.

3.2.4 GPS

The global positioning system (GPS), which was inally intended to be used
for stealth localisation by the military, has be&om popular source of latitude,
longitude, altitude and time information which a&ivered from multiple satellites
orbiting the Earth. Its usage has typically beasuéed on outdoor systems due to the
direct line of sight and the constant density @f thedium of travel that are required.
The satellites transmit their current coordinatenysowhich the system uses to
triangulate the current pose. Due to the wide ayerusing a small number of
satellites, the accuracy that can be achieved isaadchigh as required for robots
operating in confined environments, but can be doetb with other sensors to
derive a multi-scaled pose (Li & Hayashi, 1998).

3.3 Sensor configuration

As extension modules are developed and integratédtihe mobile robot, extra
sensors can be placed to observe the environmémg ddferent modalities and
approaches. In the current implementation, the tratmmsists of six different
modules; the base, IR sensor array module, sonauleofloor tracking module,
directional camera module, and an omnidirectiomahera module (Baker & Nayar,
1998; Spacek, 2005). The base, as described eenliwists of a cylindrical frame
with space inside for the controller boards, bgttdre motors with their encoders,
and the wheels. The IR sensor array is arrangeal disc which is placed on top of
the base. The sonar module currently sits on tdphefR sensor array at the front of
the robot, while the controller boards for the IRdasonar modules sit towards the
back of the robot on top of the IR array. The colier board also contains the
communication ports, which can be used to relaymands to another computer.
Shielding the controller boards is the laptop mdordllow high level processing in
place of the microprocessors. To the sides of abetrare the floor pointing mounts
and cameras, while the directional camera is ctlyrgslaced on top of the sonar
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3.3 Sensor configuration

module to provide the panning motion by reusingge/o motor used on the sonar
sensor. In future implementations, the directiczahera will be given its dedicated
servo motors for yaw and pitch control. Lastly, tbmnidirectional camera is

mounted on top of the laptop mount to minimise wwepitself as it observes the

surrounding environment.

3.3.1 Encoder

Using the rotational encoders on each of the mptbesratio between the pulse
counts and the distance the robot has traverseddatasmined. This simplified the
complex wheel compression and gearing factors tsuragg constant motion
characteristics during operation. This ratio wasntlused for forward and inverse
kinematic calculations to predict the motions atahphe paths of traversal. This
simple mapping allows the high level programs talde a more consistent unit
rather than having to know the exact pulse requergnio use the device. It is
important to note that this open-loop approachnk/ @an approximation and the
calibration value is never precise or consistembs different environments. With
the existing set-up, the ratio was determined t8®E503 pulses to one meter when
tested on a solid surface with no visible signsligfpage. This value was calculated
by specifying a certain number of pulses to coontthen measuring the traversed
distance. The ratio was then used to verify theeobipulse to distance conversion on
the same surface.

3.3.2 Infra-red module

Within the IR sensor module, the sensors are placeal circular arrangement
around the robot to allow simultaneous measuremamtise perimeter of the robot.
This allows the sensor array to act as a hon-cobtaop sensor to avoid collision as
well as determining the distance to obstaclesdhatclose by. Instead of measuring
the change in intensity or shifts, which is heavilgpendant on the reflective
properties of the obstacle's surface, the currensa, the Sharp GP2D12 ranger
finder as shown in figure 3.2, makes use of a gugettion technique to measure the
distance to the obstacle. The sensor is equippédami emitter and a detector, which
contains a linear charge-coupled device array tecti@nd determine the incidence
angle of the reflected light. Due to the known a@iste between the emitter and the
detector, the distance to the obstacle can beeatkefor a particular angled beam from
the emitter. Figure 3.3 below illustrates this m®&; where D equals the distance
between the emitter and the receiver, &drepresents the angle between the
incidence ray and reflection.

Figure 3.2: The Sharp GP2D12 infra-red sensor neadul
The two lenses are the emitter and the receivéreolR beam.
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3.3.2 Infra-red module
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Figure 3.3: Deriving the distance to an obstackh wie IR sensor.
Triangulation is used to determine the distancevéen the IR
sensor and the object.

This approach requires the obstacle's surface fmladlel to the sensor's face or
the surface must exhibit Lambertian behaviour stlct the emitted beam can
bounce back into the detector, thus can potentibly problematic in certain
environments and orientation as it may miss theachss or incorrectly measure the
distance. However, this technique in measuringdib&ance overcomes some issues
such as interference from ambient light and theigdi®n properties of the obstacles
which can reduce the intensity and result in sigaiftly erroneous readings.

One of the major downside to this approach is tey Vimited range of surface
orientations that are allowed for the surface niaterWith increased distance to the
obstacle, the amount of light entering back tordeeiver decreases dramatically. A
slight misalignment in the surface orientation fessun the object not being observed
until it is quite close to the robot where the talece to the surface orientation is
greater. Figure 3.4 shows the sensor readinggiaugasurface orientations when the
obstacle is placed at 10 cm intervals away fronrohet. The shift in the peak is due
to the alignment of the emitter and receiver, ab agthe non-grainy surface, which
preferred the surface to be tilted slightly towattts receiver.

IR sensitivity against orientation
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Figure 3.4: IR sensor sensitivity against variougase orientations and distances to
the surface.
There is a steep sloping of the sensor readinfpe®rientation is
changed. The peak is not centered due to the amaeny of the
emitter and receiver. The lines represent the ntgtdbetween the
sensor and the surface.
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3.3.2.1 Placement

3.3.2.1 Placement

The module is designed with a capacity of twelves#isors arranged in a ring,
equally spaced at 30 degrees apart, which candmeisdigure 3.5. Due to budgeting
reason, the current system only uses eight, whielpkaced at the 30, 60, 90, 120,
150, 210, 270, and 330 degrees. The arrangemelasigned to anticipate most of
the obstacles to appear as the robot from the ,frahile still allowing some
detection of obstacles behind itself for dynamigeots and when it has to reverse.
Note that cross-talks between the sensors do rmairatue to the large angle of
separation between the sensors.

@o @ @0 & ST T
@30 OG,GO

Figure 3.5: Infra-red sensor mount.
The photo shows three IR sensors that are moumedtotders
spaced 30 degrees apart and 10 cm in from the edgg of the
robot to avoid overlap and ambiguous sensor readmgen the
obstacle is too close.

The sensors are embedded inside the robot by 10@vitimthe operational range
of the sensors in mind. The minimum distance ofraj@n was suggested by the
hardware specification manual, but is actuallydilsance to the back plate to which
the sensors are mounted on. The actual distancetfre sensor to the outer edge of
the robot is measures at 85mm, which allows foightty larger operational range.
This also means that the sensors can potentialeyfgise readings when the obstacle
is almost touching the robot, but since this isastfe operating range for the robot,
obstacles should never get this close to causamiguity.

3.3.2.2 Sensor reading

Most active range finders have limited ranges ttay operate in, whether they
are due to the hardware or the modal charactevishic this particular case, the
limitation is governed by the sensitivity of theache-coupled device arrays and the
reduction of the signal strength over large distand@he hardware specification state
the operational range to be from 100 mm to apprat@hy 800 mm with a beam
width of approximately up to 160mm, but these valuaries from sensor to sensor,
thus a calibration process was carried out on ehtie sensors.
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3.3.2.2 Sensor reading

Using a rough grained black plastic surface, dsgameasurements were taken
for each of the sensors while the obstacle wasegdlat controlled distances away
from the sensors. The average readings for thesease summarised in figure 3.6,
where the deviation tended to remain low and ctesisfor various distances at
around 5 to 10 units as the surface orientation keas parallel to the face of the IR
sensor. The surface material was chosen to findsthallest upper bound on the
distance, due to the scattering and the loss ehsity, thus allowing a reasonably
safe assumption that the obstacle is detectaldecattain distance away before the
signal is lost.

IR sensor reading
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Figure 3.6: Distance measure against each IR ssmsardings.
The relationship is slightly different between difént sensors, thus
require individual calibration.

The distance measures used for figure 3.6 are taenthe center of the robot to
the obstacle to ease the mapping required to cbrivetween each sensor's
coordinate system to the one of the robot at a Etge. The radius of the robot is
200mm, thus anything below that are considerecetm$ide the robot which cannot
occur. It was found that the saturation point & fensor was not a single point, but
covered a small range of distances due possililyet@ensor hardware limitations or
the characteristics of the surface. Variation betwthe different surfaces when the
obstacle was placed at a fixed distance showedla rainge of fluctuation, as shown
in table 3.1, indicating the necessity for supp@tithe measurement by using
alternate sensors.

As the trend indicates, the behaviour after the 208 mark shows an inverse
power like behaviour. Instead of using a complexympamial approximation to
represent this curve, it is also possible to canttee curve into series of linear
transitions between the calibrated points, espgcigith a small enough interval.
This involves iterating the array of calibrationwes until the appropriate interval is
found, then interpolating the two adjacent valuedind the proportional distance
measure for the given sensor reading. Althoughetigethe cost involved in iterating
and interpolating between the two calibrated valtieis process is reasonably fast
for small number of calibration points and can fég@proximates the curve better or
faster than using a single function which models thhole curve quickly or
accurately. To speed up the process, it is alssilplesto consider algorithms such as
a binary search algorithm or by remembering theiptes interval to start the search
due to the continuity in the distance measures é&tvconsecutive data readings.
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3.3.2.2 Sensor reading

Table 3.1: IR sensor reading at 50 cm for varioasenals

Material |IR reading

Plastic 181
Matte paper 184
Glossy paper 190
Silk 198
Cotton 202
Carpet 191
Rubber 190

The pseudo-code for mapping the sensor readingstance measures using the
linear interpolation approach and remembering tie®ipus value is shown below in
algorithm 3.1.

set index=len( calibration_array)-1

function IRSensorValueToDistance( val ue):
while true:
set upper = calibration_data[index]
if val ue <= upper:
set | ower to calibration_data[index +1]
if val ue > | ower:
set wei ght = ( upper — value)/( upper — |ower)
return m ni mum di stance + interval *( index +
wei ght)
else
i ndex++
else
i ndex--

Algorithm 3.1: Linear interpolation mapping fromnser value to distance for the IR
sensors

The calibration phase also involved the measureroktite dispersion angle for
the emitted beam. Due to the spreading of the b&am the emitter and the
scattering which occurs at the obstacle's surfélve, sensors could detect the
obstacles that existed in a cone shaped viewirmy &iace the distance to the object
is measured, this resulted in an arc shaped positior the obstacle. The
approximation to a cone shape is not entirely atewlue to other factors such as the
reflectivity and sensitivity at different incidencangles, but is a reasonable
approximation of the behaviour of the scanned drgahe sensor. By using the
locations of sharp changes in the sensor readsg@s @bstacle was moved in an arc
across the front area of the sensors, the viewngteaof the sensor was determined.
Since the variation on the viewing angle for thdfedent sensors were not
significantly different, at less than 1.5 degret#®y were approximated to the
smallest of the measured viewing angle of 10.5ekgto underestimate the vacancy
to avoid potential collisions.
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3.3.2.3 Motion limit

3.3.2.3 Motion limit

As small obstacles that are very close to the rdibah the blind spots of most
sensors, it is crucial for the robot to avoid alilegvanything to move too close. To
provide the robot with a safe buffer zone, a motiont operation has been included
at the controller board level, which overrides therent motor command with a stop
command if an obstacle is detected within approt@gal50 mm from the outer
edge of the robot. To allow the robot to continigeoperation safely, the motion limit
sets a flag to limit the direction of the subseduanve command. To simplify the
direction of the traversal, if the IR sensors ledasat the front of the robot triggers
the override, the robot then only accepts a baatwantion command or rotations
and the reverse is done for the back sensorsallgjtthe robot was allowed to
perform a rotation at any time, but due to the taldiof extra modules that extended
beyond the circular boundary of the robot, a rotatneant it would cause portions
of the robot to collide with obstacles. To prevéns from happening, the sensors
located at the 30 and 210 degrees positions ar tasstop left turns, while the
sensors at the 150 and 330 degrees positions vgeck to limit right turns. These
sensors were chosen as they can view the adjapace g0 the floor viewing
cameras, which extend out to the side of the rtlyoapproximately 10 cm. Figure
3.7 below illustrates the allowed motions after #emsor has detected an obstacle
within the motion limit area.
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Figure 3.7: Available motion directions after matiamit.
The black dots represent the location of the IRssex} while the
white circles are currently unoccupied.

This approach allows the robot to keep operatingraatically while avoiding

collisions with the environment. A more traditiore&ahergency stop mechanism can
also be included in tele-operation scenarios.

3.3.3 Sonar

Some of the major limitations of the IR sensor u@ the large variety of
reflective surfaces and the short operating rahgeis available for the device. The
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3.3.3 Sonar

sensor often reports varying distance measureschwlgan fluctuate quite
significantly due to the orientation, especiallyl@aiger distances to the object. By
emitting acoustic chirps, the sonar sensors are #blreceive a more consistent
distance measure as the surface types does not thigetime of flight. Although the
measurements are still dependant on the behaviemaound in the environment, such
as the temperature, humidity and air density, talings typically stay consistent
with minimal variation during a single experimentah. The sonar sensors that are
used, the Polaroid 6500 ranging modules (Polad®85; SensComp, 2004), operate
at a frequency of approximately 49 kilohertz, whishoutside the range of most
ambient noise.

3.3.3.1 Placement

Due to the low cost and reasonably consistent pedoce, there are large range
of research that incorporate the sonar sensorseTinelude the investigation of the
acoustic behaviours to sophisticated object logadia techniques by combining
multiple sonar readings. The current module cosg$ttwo sonar sensors mounted
at the front of the robot that are spaced 156 martagnd oriented in the same
direction as shown in figure 3.8. This stereo getallows simple error correction
between the two to identify disparity in the objecturface angle and erroneous
readings from echoes and dispersed signals.

N

Figure 3.8: Sonar modules on tgp of the servo motor
The sonar sensors can be rotated independenthheofrdbot's
orientation, thus allowing greater flexibility ing sensor usage.

Since the two sonar sensors overlap in their afeawerage, the sensors face the
problem of cross-talk between each other. A sirsplation has been implemented to
compensate for this behaviour by setting one oktresor to be a dedicated receiver,
while the other sensor switches between the setdesreive mode (Vilmanis, 2005).
This allows both sensors to use the same chirgewtify the difference between the
times of flight to identify the location of the dhsle. The simple triangulation
technique is illustrated below in figure 3.9, wh&f@F is the time of flight.
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3.3.3.1 Placement

TOFR/ 2 Right sonar
/ Akl
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(Passive)

Figure 3.9: Finding a target using a dual sonaatietur.
Only one sends the chirp to avoid cross-talk betwibe sensors.

3.3.3.2 Operational range

To allow the scanning of different areas withowtihg to rotate the robot, which
can be imprecise due to the interactions with dmawn surface, the sonar sensors
are mounted on a servo motor to control the ortemtaof the sending and receiving
faces. The servo motor which was used, the HiteeAB#S Deluxe, is set with an
rotational range of —60 to +60 degrees with a sirglgree of granularity. The higher
level of precision it is capable of does not prevalgreat deal of extra benefit, as the
width of the sonar chirp is not consistent, nor denaccurately measured. The
maximum and minimum range is set to stop the seaasor from seeing the other
components of the robot located behind itself anavibid the wires getting tangled.

The operational range of the sonar sensors areofledt by the hardware based
limitation on the time taken to switch between seading and receiving modes and
the loss of signal strength when the chirp is samr a long distance. The sonar
sensor must account for the residual ringing wittlie module after sending the
chirp, called the blanking time, which is currentgt to be approximately 2.4
milliseconds. This value can be modified by sendangoverride bit, but since this
value also contributes to the minimum time of ftigihe distances should account for
the ideal distance of the obstacle. To achieve eemaiable measurement, the two
sonar sensors should operate in a similar mantés. Means the object should be
viewable by both sensors, thus the ideal distataréssfrom when the viewing area
of the sensors start to overlap.

The maximum operational range for the sonar modideording to the hardware
specifications, is at just over 10.5m. Howeveramindoor environment with large
number of obstacles, it is unlikely that a sens@asurement from such a long
distance will not be corrupted by noise such a®esland secondary reflections. By
setting the sonar module to anticipate for longaglises, it also means waiting for the
time-out to occur will greatly reduce the samplspeed of the sensor. Although the
detection of obstacles that are far away may natebable, the availability of this
information allows the module to be deployed ineotlenvironments, as well as
giving a rough indicator of vacancy to be used path planning and can avoid
frequent updating of paths. The module is currerdbt to time out after
approximately 30.84 milliseconds, which translai@soughly 5m, as the chirp is
required to traverse back to the receivers.
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3.3.3.2 Operational range

Much like the IR sensor, the sonar sensor alsemuffom the dispersion of the
signal after it is emitted from the device andeet$ off of the obstacle's surface. The
behaviour of the acoustic signal is slightly mooenplicated than the light sensors
due to more ambiguity from secondary waves, mutipéflections from the
increased range, and the wider wave front. A dsdaiinvestigation into the
applicability of sonar characteristics has not beenducted for this project, but
significant attributes such as the dispersion afgyig¢he primary lobe of the sound
wave strength has been measured so the sonar's proyeinent signal can be
determined. To measure this angle, a similar psoteethe IR sensor was carried out,
but using a small grained plastic plate. The roagtface was intended to induce
some scattering to make sure the signal refleciedt to the sensor. Since the type of
material only affects the amplitude of the sigrea,long as the reflected signal was
strong enough to be detected, the absorbency didffect the distance measure. The
experiment showed that the beam was reasonablpwaat 7.5 degrees in each
direction from the perpendicular line to the fat¢he receiver.

3.3.3.3 Sensor reading

The calibration process indicated three distingiars for the sensor operation;
the blanking and blind zone for the passive sebsfore approximately 450mm, a
linear trend in the middle, and the region aftex tut-off point where the sensors
time out. The results of the calibration is sumsedt in figure 3.10. The dividing
point between the first two ranges is the minimatahce the sensor can operate due
to the single emitter approach, which can be ddrivem the viewing angle and the
distance between the receivers. The distance betieereceivers is 120mm, thus
giving the theoretical minimum distance of approaiely 455.7mm. To account for
possible errors, the minimum distance was set toumd value of 500mm. The
maximum value was simply set to when the sensogrsdiout, which then reports an
empty reading.
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Figure 3.10: Time of flight versus distance meagarehe sonar sensors.
The linear trend and the operational range for betkeivers can be
observed.
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3.3.3.3 Sensor reading

Within the valid zone, the linear trend for eachse has been modelled into a
simple linear function to convert the time of fliginto a distance measure. The
relationship is not consistent across differentirmmments, but remains reasonably
accurate unless significant changes occur in tlegabdipg environment, such as the
toggling of the air conditioner. Note that the sengalues correspond to the clock
counts, which is proportional to the time of fligRather than a two step conversion,
the sensor value can be converted directly witifahewing function;

right_distance = 0.135 * right_clock_count — 26.761 3)

left_distance = 0.137 * left_clock_count — 43.209 (4)

The small intercepts are due to slight inaccuraiciestance measures during the
measurement process, but is a negligible amounpaed to the magnitude of the
clock count. Although the object was placed equdiégant from the two sensors, the
slight difference in the coefficient indicated ththe placement was not perfectly
accurate, or the slight delay introduced from tbguencing of the sensor readings.
The linear trend showed very consistent resultgatohg the reliability of the sonar
sensors when used in a consistent environment.cbhsistency between the two
readings plays an important role in error deteciod when encountering smaller or
angled surfaces. This will be explained in furtetails in chapter 8.

3.3.3.4 Tilting

Due to the increase in the likeliness of receivang erroneous signal when
measuring an obstacle that is further away, it@#en be advantageous to limit the
range of the sensor manually. By reducing the tmievalue, it allows faster sensor
re-use and reduces the uncertainty in the sens@sumement. However, this
approach must consider potentially receiving th& tthirp just after the second chirp
is fired after it times out. It is possible to aater this by using multiple frequencies
or by introducing a pause while ignoring all measuents that are beyond the
threshold distance.

An alternative approach to limit the range of tharsis to modify the direction of
the emitted chirp, such that it limits the locasaof the surfaces that can reflect the
signal back to the receiver. A simple implementato$ this technique is to tilt the
face of the receiver, such that it points down voia the reflected signal from a
distant, vertically standing surface. There are alher benefits, such as being able
to detect smaller obstacles near ground level andlmg the detection of obstacles
that are too high for the robot. By tilting justtsensors itself, rather than the sonar
module, the rotational axis of the servo remainssigtent, thus allows for a constant
elevation of the sensors to simplify the calculagio

The approach was tested on a carpet and vinylifigaio note the validity on
different surface types. Operation on the carpeirfshowed more fluctuation in the
viewable angle due to the irregular surface stmgctiout did not show any significant
difference to the overall behaviour. The effectd ameasurements at various tilting
angle for an obstacle placed 2 meters away is suisaadain figure 3.11 and 3.12
respectively. The green area shown in figure 31fbii a parallel scan to the ground
at an elevation of H and viewing angle @f while the blue area shows the tilted
version. Note that the actual distance, D, to idileiface starts to differ if the sensor
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3.3.3.4 Tilting

is rotated beyond its viewing angle. The tiltinggkn @, also causes a larger
ambiguity in the actual distance to the obstaclghcdigh most of the obstacles
encountered by the sonar are large enough sostmueall within the newly created

blind spots, having multiple blind regions and insistencies with other sensors can
become difficult to manage. The flat surface alsans less of the reflected signal
will reach the receiver due to the increase in dngle of incidence against the
obstacle. Although these limitations can help narrtie beam to improve its

precision, the approach also introduces many cainstr on the obstacles it can
observe. In the end, the tilting has not implemertethe current set up.

D.(1 - cos(© + ®))

—ﬂl(— D.(1 - cos(©))
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Figure 3.11: Effects of tilting the sonar.
The solid line bound region shows normal orientgtizhile the
spotted region shows the area covered by tiltirgsensor by an
angle of®, where the source of the signal is the grey circle
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Figure 3.12: Tilting angle versus sensor reading.
The change in the distance to the sonar sensobeabserved by
tilting the receiver.

The applications of the IR and sonar sensors wildiscussed in more detail in
chapter 8 where they are employed for the task appimg the structure of the
environment. The strategies involved in using thesge sensors play an important
role in constructing a useful map for the mobildab as the captured data is
combined with other sensor readings.
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3.3.4 Cameras

3.3.4 Cameras

The last and the most complex type of sensor imduzh the mobile robot is the
series of off-the-shelf USB webcams with chargepted device sensors mounted at
different locations on the robot. The cameras asedusimultaneously and
independently for capturing different aspects & émvironment and from different
perspectives. Currently, there are four camerasnteduon the mobile robot that
make up three different modules. Each module id@mpnted for specific tasks with
some common filter combined with unique parsingpatgms to extract the required
information for the task.

As noted earlier, the visual sensor allows captuoh an enormous amount of
information about the scene and is possible toeptre same data using different
techniques and algorithms to extract different imfation. The specific
implementation of the algorithm depends on the thgkcamera is set to perform.
Restricting the camera to a single perspective lrai the types of information
which can be derived, thus the processed data fileencameras are used in
conjunction with other techniques, such as movirgdamera, providing a modified
view through manual distortions or mirrors, and bamng multiple sensors.

There are two cameras currently being used fotahklk of ground texture based
visual odometry (Clark & Ferrier, 1992; Hutchinsen al., 1996; Marchand &
Chaumette, 2005; Sundareswaran et al., 1994). Hnee@'s placement is well
controlled and is given the task of identifying quné patterns on the ground to be
tracked during consecutive frames while the robalves. The two cameras are
synchronized to provide precise 2D pose informatinaluding rotation. This
implementation, as well as the issues related taliation is discussed in more
detail in chapters 5to 7.

To observe the environment that is being explosesingle camera is mounted at
the front of the robot. This configuration best nunthe visual sensors of most
biological systems as the reflected light from thiestacles are observed in the
direction of the traversal. The camera is also kgpaf panning by being mounted
on a servo motor, which is currently shared bysitwear module. The rotation allows
more precise control over the orientation of thexea over rotating the entire robot.
The details of this module is discussed in chap@rwhere it attempts to identify
landmarks and meaningful regions of interest ingheironment to be integrated to
the rest of the knowledge base that is being bipilfrom the sensors (Astigarraga et
al., 2004; Mata et al., 2002; Nehmzow et al., 2000)

The last module makes use of a reflective domeidtord the incoming rays to
provide an omnidirectional view of the environmegituang & Trivedi, 1998;
Ishiguro, 1998; Nayar, 1997; Yagi, 1999). This mleds mounted at the top of the
robot and allows the simultaneous view of the imiawedsurroundings by using a
natural compression in the density of the captuneage through changes to the
viewing angle per photo-sensor ratio. The use ef dmnidirectional camera is
detailed in chapter 11, where it assists in thenascanalysis using its unique
characteristics to simultaneously view a largeraurding area.
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Chapter 4 — Processing

The degree of successful operation for every mabib®t system depends on the
appropriate processing and analysis of the sendatg, as well as the internal
representation constructed to model the statdseo$urrounding environment. These
form the basis for almost every mobile roboticesesh, as they attempt to improve
the data that are captured from the sensors andsept it in a more precise and
meaningful way. To perform these processing taakwocessing unit is required to
efficiently interpret the sensor data and gendraeappropriate information required
for the given task. It must also consider the rielgyf messages between various
modules to combine the knowledge to improve anceoé the information.

4.1 Processor selection

The key element to carrying out the various taskghé processing unit that is
capable of using the various attributes about tivirenment and converting the data
to a more informative value. Rather than dealinghwihe intricacies of the
processing unit, considerations were made primanilythe ease of use, availability
and extensibility in terms of both development amintenance requirements.

4.1.1 PIC

The simplest type of the processors used on motllets is the micro-controller
that are used directly on the controller board rf@nipulating with the sensor at a
very low level. The PIC micro-controllers are waliited for highly specialised tasks,
as the limited resources and the small set of ¢tipesaallow for well optimized
operations. Although they do not allow for some pter algorithms to be
implemented, especially those requiring large mgnfiootprints, the processor has
an easy learning curve as the chip is commonly tsedighout the course work of
undergraduate students.

4.1.2 Laptop computer

While using a specialised processor for a spetas& allows for a very efficient
processing, it does not provide the flexibility quemed to a generalised processing
unit, such as that in a personal computer. For xgperanental platform, it is
advantageous to include the general purpose piagesevice to simplify the
integration of peripherals and the availabilitysoftware packages due to the device
drivers that are pre-written by the hardware martufers. The large range of
additional components can allow simple and isolagaeriments without the hassle
of defining the complex interfaces, while the azhility of development kits and
libraries allow for accelerated development proa@issn enhancing or extending the
system.
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4.1.2 Laptop computer

Due to the limited space and power available onntlobile platform, it is not
feasible to place a desktop computer on the rdlypical implementations make use
of an on-board laptop computer or a message rejalawice to off-load some of the
non-time critical processing to a nearby computet on the robot. The laptop
computer often acts as the central hub for theouarimodules to simplify the
communication, while providing a greater processiagacity for the robot than the
MIiCroprocessors.

4.1.3 Off-board computer

As mentioned above, an alternative to using a @aptamputer on the robot is to
relay the data gathered by the sensors to and &omore powerful computer
elsewhere. The additional processing power provited scalable computer system
can greatly increase the robot's capabilities. H@wnethis requires the mobile robot
to be equipped with some sort of communication rapiEm to transmit the
messages as well as requiring an extra consideratioallow for the increased
latency in transmitting the messages.

When using an off-board computer to process themeanformation, the benefits
of having a central hub on the robot fade and nkerfaces between the modules and
hardware become a significant issue. This meansdaated controller board with
the appropriate device drivers must be designedbanitl for each sensor, making
this a costly requirement. For this reason, manyedarmental mobile robots make
use of a laptop computer which is also equippeti eitmmunication capabilities to
relay the process intensive and non-time criticadks. This hybrid approach
combines many of the benefits, but must considertrerheads in splitting the task
and also the costs in the actual laptop computarnk are already available.

4.2 Communication approaches

When using a tethered approach to link betweenrdbet and the externally
located processing computer, the mobile robot besowuite constrained in its
motion as the traversal distance and the possifilespcan be severely limited, as
well as potentially blocking the view of the sensmnals. Using a wireless mode for
communication, it is possible to avoid many of #fve issues, but is more prone to
loss of messages. Within the robot itself, the afsthe cable allows fast and reliable
connection between the different modules. Sincetmbshe components on the
robot remain fixed or move in a controlled and j&ble manner, the cables can be
placed so that they do not interfere with the fiorality of the other components.

The commercially packaged devices, such as the amefccome with standard
interfaces which can easily connect to other devit®owever, many of the other
devices require a separate communication devide tattached so the transmission
of data can occur to and from the devices withbathassle of changing a lot of the
hardware if different modules are connected to the future.

When transmitting the data between the differenduhes, it is important to
understand the meaning of the values that are hmisged around. This means a
certain degree of coupling is required, such as#tablishment of protocols and the
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4.2 Communication approaches

use of consistent units. Since each module is r@sgdig processing unit, the raw data
from the sensors can be converted to an appropratausing hard-wired mapping
functions. Where there are multiple processors gmebefore the data is passed
along, it is possible to leave the conversion uhglend to maintain the original data.
This late conversion allows certain modules to $ocno the conversion and leave the
data generating modules to be implemented indepélydaf the whole system. The
layer of processes also allows the reuse of algostor to view the same data
through multiple perspectives which can promote deevation of new pieces of
information. However, the layers can sometimesrdaute to excessive coupling and
redundancy thus is important to consider the iat&$ between the modules with
respect to the given tasks before data is passed on

4.2.1 Processor to sensor communication

The tasks for a given processing unit can vary feosimple sending of pulse
instruction to a motor to a more sophisticated Ueatextraction process. When
commanding the various sensors to operate, theegsocs task is a matter of
converting the high level command, such as “rothgerobot by 45 degrees to the
right” to the appropriate command depending onpite¢ocol being used, usually by
combining multiple simple commands and operations isequence. The process
eventually reaches the low level device, where dbmmand is translated to the
appropriate instruction for the hardware usingkthewn or calibrated attributes.

The high level commands are typically derived aftembining the data from
multiple modules and a decision is made based entalsk, the state of the
environment it has sensed, and the strategieshénag been put in place for the
current situation. The generated commands are plassed on to the appropriate
modules while certain attributes may be filled w dther modules along the way.
Although it is easier to visualise the command etarried out through physical
modules, a significant number of commands are sER internally in software
within the physical devices to reduce the interdiaare transmissions.

Many of the commands that are generated from asideciwhich result in
mechanical changes are motor based, as most sétis®r modules do not require an
explicit high level command to operate. Insteadythre continuously activated and
the latest data is relayed whenever another mochgeires the information. This
allows the sensor modules to quickly react to emritental changes instead of
having to wait for the chain of processes betweedutes before events are handled.

4.2.2 Sensor to processor

When the sensor generates data, the value repsesmne device specific reading
which must be converted to a higher level concspth as the time taken or the
strength of the received signal. Depending on dkk bf the module, the information
can be converted even further to simplify the psscef the subsequent module,
possibly resulting in the loss of some informatthming the conversion process. The
information carried to the central processing medufl present, must collate the
information from various sources thus requires tacdeshareable attributes to be
used.

35



4.2.2 Sensor to processor

Without the multiple layers to convert the datatihe appropriate format, the
central unit is placed with the burden of convertithe data to a uniform
representation. This requires the central unitrtovk the type of data being used for
the other modules, thus requires constant modificaif new modules are
introduced. For this reason, it is advantageoudelegate the conversion of data to
the other processing units and define a globalfonithe other modules to adhere to.
Not having access to the raw data is often nofitecarissue, since the conversion
can often be reversed as long as none of the sl&iati

4.2.3 Compression

When transmitting the data across to a differentlut® or system, the data must
be formatted according to the transmission protoebich can sometimes alter the
original information. This is often the case witlrde volume of data producing
devices, such as video or audio capturing senadrish must be compressed before
being transmitted to another module. This compoesis often necessary due to the
limitations in the communication channel and isieebd by discarding or merging
portions of the data. The criteria for how to coegw the data differs significantly
between protocols, thus post-processing algorittares sometimes required to
recover from the degraded information if expliciintrol of this process is not
available.

4.3 Current set up

Due to the incremental development of the mobileotosome of the modules
have been layered to simplify the interface betwi#enhigh level processing unit
and the low level hardware interfacing modules. twor, sonar and the IR sensors
are all combined through custom built controllelatuts which are equipped with
variants of the PIC micro-controllers to relay t@nmands to activate and control
the attached devices (Bologiannis et al., 2003;-&¢6/0 / PIC-Enc, 2005; PIC-
Servo Board, 2005). The sonar and motor module® hmeen implemented on
separate circuit boards and are connected to the ecoatroller board using ribbon
cables and a RS485 connection, while the IR moruietegrated directly with the
main board. The main controller board collatesdbta from multiple modules and
relays messages to the laptop computer throughi2Z8 R&nnection.

4.3.1 Commands to the low level modules

The main controller board interprets the high lesemmands from the laptop
computer to the appropriate units and measurenfie@ntse other modules. There are
several commands defined in the protocol for varioperations to allow the re-use
of utility functions and to simplify the view frorthe laptop's perspective. These
commands are listed in table 4.1, which show theeatly implemented high level
operations. Note that the units for velocity andederation depend on the variable
characteristics of the robot, such as the weigltt battery level, thus is never
precisely defined. Some of the commands are niisadias the high level decision
process does not include certain operations othare for debugging purposes.
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4.3.1 Commands to the low level modules

Table 4.1: Commands for the controller board.

Command Argument Description

n - Silent: Toggles sending of messages to the laptop.

[ - IR: Activate the IR sensors immediately.

- Chirp: Activate the sonar sensors immediately.

Angle (degree) | Yaw: Rotation of the sonar servo.

Rate (unit) Velocity: Set the maximum speed of the motors.

c

y

m Displacement (mm)M ove: Moves the robot forward. Negative for reverse.
%

a

Rate (unit) Acceleration:; Set the acceleration of the motors.

t Angle (degree) | Turn: Rotates at the center of the robot.

I Displacement (mm)L eft: Moves the left motor forward.

r Displacement (mm)Right: Moves the right motor forward.

e Rate (unit) kft velocity: Set the maximum speed of the left nmoto
g Rate (unit) Riht velocity: Set the maximum speed of the rightonot
f Rate (unit) Ldt acceleration: Set the acceleration of the leftanot

h Rate (unit) Rift acceleration: Set the acceleration of the rigbtan
o] - Sonar: Toggles the activation of sonar sensors.

Due to the simple process that is required to exethie command in software, the
majority of the time consumption occurs while wagtifor the signals to be sent and
received, as well as the readying of the hardwarerduse. Because of this, the
commands are buffered, where the most recent ofdhee command type is kept
and executed when the resources become availabte. tNat buffering too many
commands can lead to overflow errors or significdeilys in processing. Some of
the issues can be avoided using a priority queue,the task of managing the
commands is left to the higher level processorhenlaptop instead of the PIC chip
on the controller board. For operations that hawasequence on other sensor
behaviour, such as changing the pose, the oldermemms cannot simply be
overridden. This can be dealt with by merging theltiple commands, buffering
them infinitely, or by responding to the commandheator that the previous
command has not been acted yet, thus no furthemeom can be sent.

Time consuming operations, such as the motor matienmands, do not have to
wait for the completion of the command before reisgntontrol. Instead, the motor
motion is passed onto the controller board of tlstomand an interrupt driven flag is
checked to note any changes in the state befotérgea new command.

4.3.2 Data from the low level modules

After the commands are carried out by the individievices, the acquired data
are converted digitally and sent back to the maintroller board. This is then
collected together and passed back to the laptoppuoter for higher level processing
using the serial connection as a single messagends modern laptop computers
lack a serial connection interface, a serial-to-U&Bverter has been put in place.
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4.3.2 Data from the low level modules

The use of the converter has not introduced anitdtions to the performance or
required the protocol of the commands to be changed

The data rate of the serial connection betweenrthien controller board and the
laptop computer is currently set at 115200 bitsgg®ond, which is adequate for the
amount of messages being transmitted. The datarrertly transmitted in ASCII
format for simplicity in the debugging process, loates not contribute to a large
overhead in the data size due to the small numbeirsy represented. The current
data format combines the latest sensor data frensdmar sensors, IR sensor array,
motors and the timing information from the centvabrd into one and sends it with
delimiter characters to allow easy parsing of tressage. Figure 4.1 illustrates the
protocol with the size of each attributes in bytdgen using the binary mode.

Time Left motor |Right motor |Sonar servo | Left sonar Right sonar IR
Position Position Position  |Time of flight | Time of flight | Distance
4 4 4 1 2 2 12 x 2

Figure 4.1: Messages protocol for binary mode.
The numbers represent the number of bytes used.

The baud and the content of the message allowapproximately 140 of these
messages to be sent in one second. Since this ¢h mreater than the data
acquisition rate of the devices, no compressionhagiems are implemented. If the
inclusion of additional modules in future implemaindns result in the need for
compression mechanisms, the messages can be @ahwetk to the raw binary
format with well utilized data types for each ofetlvalues. Another plausible
approach would be to split the message and vathi@gensor updates depending on
the requirement or the individual data acquisitspeed of the sensor. This allows
each of the modules to operate at their own spaddeport the new reading when
they become available, rather than reporting ardated value due to having to wait
for slow operating sensors.

4.3.3 Processing on the laptop

The laptop computer acts as a hub for several nesdwds it allows simple
interfacing with many off-the-shelf devices, as mag the custom built controller
boards. Currently, the four webcams and the maimrolter board are connected to
the laptop, all via USB connection. The capturethdeom the devices are parsed
and interpreted individually by the appropriate mled and the extracted
information is passed onto the core processing meodvhich combines the
information to form some knowledge about the envinent, as well as managing the
sequence of events in a proper chronological oferee of the four cameras are
also fitted with microphones, but are not used asandio processing module is
implemented. This is mainly due to the limited imfh@tion an audio data can portray
about the environment. The availability of the authformation is beneficial when
the robot is under voiced control, as it allows tlobot's operator or a speech
recognition module to respond to voiced commandsifon-lookers, as well as the
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4.3.3 Processing on the laptop

implementation of speaker localisation techniquésnvmultiple microphones are
used (Schauer & Gross, 2001). By combining a spsgnthesis module, the robot
was successfully deployed as a tour guide for theeuwsity's open day by manually
controlling the robot from a remote location.

4.3.3.1 Cycle speed

The cycle speed for the main processing modulerdigpgreatly on the amount of
useful information that can be extracted from thileeomodules. To allow consistent
performance, the cycle speed should be set toatlvest common multiple of the
capture rate of all the modules to allow the latdata for any inter-module
dependencies. However, this can result in a soanti bottleneck as it awaits for
synchronisation between the modules. The fluctonatim the sampling intervals
from spikes in the processing load and error hagdihechanisms can contribute to
potential delays, thus causing even further delayke processing of the data. This
approach thus requires extremely high processiegdsm each of the modules, or
perhaps the inclusion of time-out mechanisms toaniae a regular interval.

Another strategy to overcome this issue is to lsetclycle speed high enough to
suit the most time-critical module, then bufferitige latest information from the
other modules or approximating the current infoiorafrom trends seen in the past.
The predictions can introduce some overheads frbe rhaintenance of past
measurements and when determining the actual tréndiscan allow for smoother
transitions of values from slower modules. Notet titas approach can often
introduce errors as the trends cannot accuratedgiqtr the current state of the
environment.

Using the buffered approach, the latest readinghfemch of the modules can
update its buffer entry when ready, possibly witimee-stamp information. Note that
the time-stamp information may not be availabléh® central module, especially if
the updates are initiated by the central modulés Thbecause the information may
not be extracted or be available. The time-stanfigrimation is maintained by the
other module or sent along with the other messatpes the central module requests
the updated information. This information is vital detecting duplicates in case the
updates did not occur at the expected time, whaih cause the prediction based
algorithms to misbehave, and to correctly sequethee messages at the proper
interval.

Since it is desirable for the main cycle to opedightly faster than the fastest
module, such that the data is not skipped, martlgeoinformation being used will be
out of time. This allows the cycle to be delayadtaly while it waits for the values
from the sensors to be updated. At present, theosenformation from the custom
controller board has the fastest data update sp¢eghproximately 35 messages per
second. This does not cause significant issuesinesnformation is lost, as it reports
the state of the environment, which is continudlisis is also because the time-
stamp used by the central module is also sent algiingthe message. The messages
are parsed and stored in a buffer, which is wheeddtest information is maintained.

The webcams, on the other hand, which operatereb@mum speed of 30 frames
per second, requires the continued sequence ofldatéo many algorithms requiring
transitional information between the captured franBy making sure that the speed
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4.3.3.1 Cycle speed

of the central module is slightly faster, it is@lb guarantee that no frame is lost, but
duplicate frames must be detected and removed.prbcess is described in detail in
chapter 5. This differs slightly from the samplitigorem, which is interested in the
reconstruction of the original continuous signaingsinfinite number of samples,
while this approach is only interested in accessigycontinuous stream of frames
(Shannon, 1998). By observing the rate of duplit@mes being detected, the cycle
speed can be dynamically modified to suit the eurpeocessing load.

Although the ideal cycle speed is slightly above fB8mes per second, the
addition of extra modules will eventually cause teduction of the cycle rate to a
much lower value. For this reason, certain moduleeh do not require immediate
interactions with another module can perform soirinthe processing on a separate
processor, such as a designated digital signakpsoc for parsing the image frames.
It may also be feasible to off-load some of the -tiore critical processing to an
external system using wireless communication all&rom the laptop computer in
future implementations.

Since there is only one laptop computer mountedhenmobile robot, there are
hardware limitations in terms of the number of desi that can be physically
attached. The laptop computer and the devices rlyreommunicate through the
USB connection, thus is limited by the number dditable USB ports. Although it is
possible to increase this by using a USB hub, #ialata rate of the USB connection
still remains the same due to the sharing of the [ihis causes the data to be
delayed based on the priority algorithm definedthg operating system and the
bandwidth requirement of the connected devicesmadJaifaster bus can control this,
but care should be taken to arrange the devicds that devices that require high
number bandwidth are not using the same sharedasumnother high bandwidth
devices.

4.3.4 Off-board communication

Although communication to an off-board PC is poesising the built-in wireless
card on the laptop computer, the current systens dud make use of external
processing units to avoid the extra latency and ptexity introduced from
distributing the processing task and to synchrobetveen the multiple processing
units.

One potential use for the off-board computer igge it for a data storage unit for
the captured information. Since the current proeesiscard all of the old sensory
data, it loses the useful scene information whimhiadt become useful for an alternate
processing algorithm developed in the future. Maming the sensor data also allows
manual intervention to view and correct any isswél the automated processes
(Graves et al., 1992).

Another use for the communication mechanism is ititeractive behaviour
mentioned earlier by manually controlling the robbtimes. This allows for a much
simpler model of interaction than having to chafterahe robot to issue special
commands and also avoids the driver from beinguaed in the scene analysis
process.
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4.4 Summary

4.4 Summary

Figure 4.2 summarises the modules, the hardwacktren connections involved
in the current mobile robot platform, where blupresents the hardware and purple
represents the different modules. The green lippsesent the physical connections
between the devices, while the orange lines reptdbe inter-module connections.
As the diagram shows, the design is heavily dorathaby the physical link
requirements, which places a burden on the laptogpater to perform the majority
of the process intensive operations. This will regjmodification in the near future,
such as by developing dedicated localisation hare\wa by off-loading portions of
the mapping module to the controller board. Itlsogossible to simply use a more
powerful laptop computer in the future, which vallow the majority of the system
to remain a generic platform for development of med.

The core module currently coordinates the operatiam the Ilaptop by
maintaining an adaptable scheduler to initiate dtileer modules at the appropriate
intervals, with the exception of the controller mt& This is achieved by observing
the execution times of the scheduled tasks to madl# waiting periods. Due to the
heavy load on the processor, the waiting time moal non-existent and requires
some of the process intensive modules to reducdatserate for it to operate without
skipping some data. Currently, this is done by catythe capture resolution of the
cameras, disabling the functionality of the micropbs and also the archiving
module.

Webcam Webcam
Microphone Microphone Left
motor & wheel

Right
motor & wheel

Left
controller board Right

controller board

Mirror dome Motor

Localisation
Omnivision Controller
\Webeam Controller board

P onar H
Core IR ponay Receiver

Cant USB to Serial Sonar board
apto
ptop converter Emitter

computer X
Receiver

Directional
Archive Servo

Infrared sensor

Webcam
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Figure 4.2: The components within the mobile rayatem.
The blue objects represent the physical compongragyreen lines
represent physical connection between the physicaiponents,
and the purple ovals represent the processing rasdulhile the
orange lines represent the communication betweerptbcessing
modules.

With the processing issues and the mechanical coems involved in the mobile
robot analysed, development of data processingitlgts can be carried out. The
clear definition of the platform allows the groungi of measurements and
algorithms as the two components form a tight dogplto better utilize the
capability of each other.
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Section 2 — Localisation

“Counting steps tell me how far | want to have
moved, but the actual question | need to ask is,
where am | now?”

For almost every mobile robot system, it is a vigjuirement that the robot know
its current location. The locality information carmary in form from absolute
coordinate points based on some pre-defined caatelgxes to a high level concept,
such as “corridor” or “office room”, which allowsto carry out various navigational
and exploration tasks that are appropriate for ithenediate surroundings. By
knowing where the robot is, it is possible to makkermed decisions about where it
has and has not been to, as well as where it neagts This allows to plan paths to
goals and to analyse the environment using theecbperspective (Boudihir et al.,
1998).

Localisation for the robots, which is often referte aspose maintenancean be
described as the process of deriving the spatisitipno and orientation with respect
to some representation of the environment. Thisgs®e is one of the major areas of
research in the field of mobile robotics, as itysla major role in the functionality
and reliability of the interactive system. The digs often combined with other
research areas which focus on the use of speofitssss and scene analysis
techniques to enhance the localisation ability.

The localisation process typically involves the n§@pen or closed-loop control
to accumulate or derive the pose based on the segmdings and knowledge about
the environment. The correlation between the segeperated data and the internal
representation of the environment, whether it belguheoretical or generated from
real sensor readings, allows the pose to the dkvideen they are combined together
(Crowley et al., 1998; Mackenzie & Dudek, 1994; Y\ailal., 2002).

Using theopen loop controbpproach, the robot calculates the current poseda
on predetermined motion models and the motion comas@xecuted by the motors.
This involves the use of forward kinematics and lde®motive characteristics such
as the wheel dimensions and gait patterns (Alexa&d@éaddocks, 1989; Bloch et
al., 1996; Chakarov, 2006; Crowley & Reignier, 1p9®Ithough this approach is
very simple to implement it relies heavily on thee@racy of the motion model, the
consistency of the environment, and the robot'satheristics during the operation,
as no feedback information is provided to the robot

An approach which uses feedback information fromsees, called thelosed-
loop contro|] requires a much more sophisticated algorithmotoectly interpret the
gathered data to derive the current pose of the@trobhis process requires an
understanding of the various sensor behavioursthedappropriate algorithms to
combine the information by correlating with the eimtal representation of the
environment. This allows for the grounding of tleasor readings, such that internal
representation can be extended or improved upasfele 2000; Mark et al., 2002).

The correlation process between the sensor readmgd the internal
representation of the environment can vary sigaifity between the techniques, but
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typically involves the identification of a limitegumber of regions within the scene
deemed as interesting and constrained (Bourque 8ekul998 (b); Bourque et al.,
1998; Harris & Jenkin, 2001; Nayar et al., 1994n & Dudek, 1998; Thompson &
Pick Jr, 1993), such as the appearance (Ben-Arid/a&ag, 1997), to be used as
reference points. The use of the significant fetuwithin the scene allows for a
reduction in the search space when matching therobd scene with the existing
representation, as well as simplifying the corretaprocess when the same feature
is encountered (Bennewitz et al., 2006; Davison @iy, 1998; Se et al., 2002 (a);
Thompson et al., 1993; Zhang et al., 1994). Thectien criteria for these interesting
areas can be derived from pre-determined or adapdttributes which help
distinguish itself amongst the other, repetitivel aminteresting, data (Marsland et
al., 2001).

The field of localisation is sometimes categorig#d two levels of perspectives
and difficulties.Local localisationrefers to the pose maintenance with respect to the
current view of the world to the robot, whidggobal localisationis concerned with
pose maintenance on a larger scale, typically inmgl minimising errors in
correlations between the states produced by tte localisation (Se et al., 2002 (b);
Simmons & Koenig, 1995). Although both areas aremaltely concerned with
identifying the pose of the robot, the differenaeshe scope means different inputs,
algorithms, and considerations are required to eaehitheir respective goals.
Typically, the two areas are used in conjunctiothveach other, in that the global
localisation makes use of the results and dataegadhfrom local localisation to
assist in disambiguating the pose, as sensordiwitied ranges are used.

This ability is often trivial to many biological sgems (Redlick et al., 2001), but
implementation with very limited number of speaeli sensors, the low precision
which can be distinguished, the lack of knowledgeua the environment, as well as
the lack of optimised algorithms integrating theieas sensor readings make this
process a very challenging task for man-made systarhe overall goal is to
construct a system, including both software andwware, which is able to accurately
identify the robot's current location with minimalateriel and processing cost. This
often means using existing and affordable sensorsinimise the equipment costs,
but developing highly specialised algorithms usagnultitude of techniques and
algorithms, and also by fusing the data from mldtgensors. There is also scope for
simulated environments, which focus on the develamnof the algorithms, as well
as the construction of realistic virtual environrsen

Some of the popular implementations of localisaatgorithms include the use of
purposely designed markers such as signs and bdescoknown scene
characteristics, identifying distinguishable featuron the fly, or a pose detecting
device such as a GPS or a compass (Blaer & Alled52Bulusu et al., 2001; Guibas
et al., 1995; Merke et al., 2004; Shen & Hu, 200&rman et al., 1999). These are
often combined with dead reckoning algorithms tlrwdate the current pose, or to
estimate the error rate of the dead reckoning a@ghrqDeans & Herbert, 2000;
Duckett & Nehmzow, 1999; Ghidary et al., 1999; Ktea, 1992).

This section introduces a local localisation teghei using visual odometry in an
unmarked environment using off-the-shelf webcamel Bimbo & Santini, 1994).
This strategy aims to improve the precision of el localisation approach, such
that it can improve the accuracy of the internplesentation of the environment.

Chapter 5 covers the configuration issues in ughg camera on the robot
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platform. In chapter 6, considerations to the featletection process is made for the
specific configuration and task for the camera, levlihapter 7 investigates the
various techniques and validity of multi-cameraugisodometry techniques.
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Chapter 5 — Camera configurations

In recent years, the availability and popularityofffthe-shelf visual sensors have
increased dramatically due to the improvementshi@ picture quality and the
affordability to ordinary home users. This has Ipagitive influences to and from
visual data processing techniques as it has allomeck researchers to develop
vision based systems. Although the performancecasp¢hese low cost devices are
inferior to the high end visual sensors, this gaprapidly decreasing as more
commercial backing for low-cost cameras drivestgofinology forward.

Various different fields within robotics and imageocessing, such as machine
vision, active vision, and feature recognition,ralbte back to the task of using these
photo-sensor arrays to capture the scene strutduse able to identify information
from it. The different areas tend to focus on alkpwtion of the information, which
has lead to very sophisticated algorithms and amtres to be developed for
specialised tasks and environments (Dudek & Juge®800). Although some of the
basic principles implemented in the algorithms barreused in other systems, many
actual implementations are well optimised to imgrdiveir efficiency.

For the task of local localisation, there are savapproaches in existence which
make use of visual sensors (Beauchemin & Barro851€orke, 1994; Davison &
Kita, 2001). Many of these approaches capture ashnoii the scene then apply
filtering algorithms to extract the desirable agpewithin the view (Basri &
Weinshall, 1993). The conversion of the 3D envirenminto a 2D representation
introduces ambiguity due to the lack of depth infation that can be captured.
However, by acknowledging this limitation and uiiig the characteristics that are
naturally present or known, the image processingordhms can be greatly
simplified (Lowe, 1987). It can also decrease thegssing time and the amount of
errors being introduced from the lack of the transiation processes to convert the
data into the desired representation (Black & Amamdl991). This simplification
can be achieved by constraints to the observededcea 2D surface, which may be
difficult to achieve, but also allows for the inase in the accuracy and reliability of
the data as long as the constraint can be maintgkh@n & Schunk, 1981).

A commonly seen use of the above approach is ioptieal mouse, which uses a
specialised image sensor to measure the displateyhéime ground texture from a
predetermined perspective (Ng, 2003). An approabltiwmakes use of a similar
idea, but using a webcam instead of the purposk $ystem, is investigated for
applicability for mobile robot localisation. Contdzased distance measures do exist,
but can be influenced by commonly occurring errlike slippage, inconsistent
wheel odometry on various surfaces, and the wearfitige system. The vision based
approach, on the other hand, allows for a more istamg behaviour on different
surface types as long as the camera to surfacegacation remain known.

The precision which can be achieved by the optiwalise is incredibly high due
to the very short focal distance and the high samgptate of image capturing
process. But the severe constraint on the allowe@ee types limits the usage to a
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Chapter 5 — Camera configurations

very small range of environments (Ng & Carne, 200He use of a webcam can

overcome some of the issues by allowing small waea in height and a larger

viewing area at the cost of the loss in precisioa @creased processing time due to
the additional image processing algorithms requicedandle the increased volume
of data. Figure 5.1 shows a typical set of captuneaiges from a ground pointing

camera at different resolutions taken from 10 covalthe ground.
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Figure 5.1: Snapshots of ground texture at multiptolutions.
The top two are taken of carpet flooring, while tatom two are
of vinyl flooring. The left column were taken atesolution of 320
x 240

5.1 Camera settings

One of the most important constraints placed byptioposed approach is that the
surface being observed must remain flat. To achtleige the camera must be placed
steadily and accurately as this controls the pi@tisshich can be achieved by the
approach. It also indirectly contributes to otrsmues such as the illumination of the
surface as the camera sensor is a passive devasee frate for controlling the
smoothness of the transitions between consecutinages, and the focal distance,
which corresponds to the tolerance in height changeese issues are considered in
more detail from a practical perspective by obsegyvihe camera and robot
characteristics on various realistic ground texgure

5.1.1 Mount position

In most visual processing algorithms that obseeestene from an arbitrary view
point, the transformation processes must conveviden the camera's view and the
coordinate system used to represent the environmermalibration process and
feedback sensors can be used to detect the chamgbe camera's orientation,
known asego motionto derive the necessary transformation matrixigeaas et al.,
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5.1.1 Mount position

1992, Chum et al., 2005). However, a well contobllplacement, where the
coordinate axes overlaps with each other, duriegritial mounting stage can avoid
a lengthy transformation process if the cameraigardtion does not change during
execution. This allows for a better utilization tbke calibration process, which will
avoiding a complex self calibration process (Lo2@04).

Translating the observed displacement to the adisplacement of the camera
requires the calculation of the viewing angle cheeastic. This, combined with a
known distance to the ground, allows the propodiaoefficient to be determined
between the two displacements. As the horizontdl\aantical viewing angle differs
for most cameras, both coefficients must be detethby observing the dimensions
of the viewable areas at known distances.

For a typical webcam, the viewing angle is arourtd ahd 30 degrees for
horizontal and vertical directions respectively,etthonly allows for a small viewing
area when the camera is placed close to the groAdidsting the height of the
camera allows the control of the maximum precisamil operational speed of the
robot. Since each pixel size remains constant,in@rthe height allows different
amount of area being captured through aliasingchviesontributes to the precision
that can be achieved. Since the approach religsacking the displacement of the
previously observed ground texture, the same grgattbrn must also exist in the
subsequent frame. Hence, the adjustment of the reahmgight also controls the
maximum operational speed of the robot. Figureb®ldw illustrates the relationship
between the various attributes involved, while feg®.3 shows the relationship in
mapping the observed displacement to actual displaat. @ and I3 represent the
distance that is viewable in the image, while Mresents the difference in the
distance between the camera and the ground tonobtaand 3. H represents the
height of the camera, W represents the width optiogected imageD represents the
viewing angle, while | represents the positionred point of interest on the projected
image.

HA:M*DA/(DB—DA) (5)
HB:M*DB/(DB—DA) (6)
0 =2 *tan(Ds — Da) / (2 * M)) (7)
1< 1<
He e Ha

/ K Da ,\ ™M
[ 3 A
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Figure 5.2: Deriving the viewing angle and distabheeveen the camera and the
ground.
The attributes of the configuration can be deritbgcknowing the
dimension of the image that is viewable at twoedd#ht camera
positions with known disparity between them.
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Figure 5.3: Deriving the translation coefficierarin pixel coordinates to ground
coordinates.
The outer lines represent the limits of the viewarga while the
double line represents the location of the poinhtdrest.

A key factor that must also be considered is thecgssing load of the visual
odometry algorithm. Although this issue should lmnsidered for almost every
software component, it is also influenced by thgsptal settings, such as the search
area for the texture patterns when the viewing afe@nges and the necessary
modification of the feature size to account for ghange in the level of detail when
the camera mount height is changed. To optimisectpabilities of the robot, a
careful balance between the operational speed,ispecrequirement, and the
processing capacity must be made to utilise thdadola resources for the given task.

Since the assumption that the camera height wghe@ to the surface remains
consistent can be invalidated from bumps and s|dpesderived displacement can
drift from the actual displacement. Simple solus@an be put in place to reduce this
effect, such as by using soft tyres to absorb thalsdoumps, the use of a transparent
plate and a spacer to push the protruding objemisicbr to move it out of the way
with a sweeper, and the addition of specialisedogsvlike a gyroscope or focus
control on the cameras. However, they do not gueeathe accurate and consistent
performance and can introduce other issues likeegssvith limitation or not being
able to traverse over certain damaging surfacethdrabsence of an accurate height
change correction mechanism, the original cameighhean be used to anticipate
the range of the potential drifts. The equationswean be used to approximate the
errors for a change in height by a particular anhoun

G=2*I*H*tan©/2) /W (8)
AG=2*I1*H+h)*tan@/2) /W - G 9)
AG=G+2*I*h*tan@/2) /W -G (10)

AG=h*@2*1*tan@/2) / W) (11)

where G represents the ground motion, | repregéetsnotion in the image, H
being the distance from the camera to the groéni; the viewing angle, W is the
width of the image, and h is the change in height.
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5.1.1 Mount position

Many of the newer camera models are equipped wébftavare controlled focus
adjuster to allow the focusing of the incoming tiggh the desired location. Since the
distance from the camera to the ground remainsistens, this feature does not
provide a significant enhancement to the visualnoeloy technique. It is, however,
possible to make use of the focus control featommake corrections on the camera
height, since the image being observed will bluewlplaced at an non-ideal height.
This causes the reduction to the overall strengithevintensity transitions within the
image, which can then be used to correct the fdisthnce. The tolerance of the
change in the focal distance is proportional todistance to the object, as shown in
figure 5.4, which is quite short for this type a$wal odometry configuration. In the
left figure, F represents the focal distance an@esents the distance from the lens
to the object.

Change in the projection distance wrt object distance
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Figure 5.4: Focal distance and tolerance.
The left diagram shows the arrangement of the \atisregards to
the object. The right graph illustrates the reladldp between the
distance to the object and the required changé&enptojection’'s
position.

Since most webcams are built with the intentioeagturing an image of a person
seated approximately 1 meter away from the cantleeapperational range typically
do not allow for the camera to observe somethinogctose. The compact designs of
these cameras often limit the lens positions, whiontrol the minimum focal
distance and thus the minimum camera height. Theshold is quite significant in
some cameras, which can sometimes have a minimwtande of tens of
centimeters.

5.1.2 Lighting

The passive nature of the cameras means that theeds not able to operate in
the absence of a light source. Although the comdtthat the height of the camera
stays constant indirectly means no obstacles a&ctti obstruct the view, with the
exception of flat obstacles on the surface, thissdwot stop shadows from extending
into the view to modify the appearance of the textfhe main contributor to this is
the robot and the camera itself, as the typicalianidight sources at located well
above the robot, which causes the camera to catsa@ow directly into the viewing
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5.1.2 Lighting

area. Figure 5.5 shows a snapshot of a view whpoeteon of the image is darkened
by the shadows from the camera.

Figure 5.5: Snapshot of the viewing area with arttiout shadows.
There is a clear change in the colour where shadogvsisible but
do not correspond to boundaries that belong tatheal surface.

A simple strategy to overcome this issue is to gie®an additional light source
with the camera that provides consistent illumoratio avoid ambient light changes.
Before the light source was used, various charnatits of the light had to be
considered, including the direction, the shapehef beam, the brightness, and the
colour of the light.

When considering the direction of the light, it wasted that lighting provided
from the side allowed for a stronger contrast talisplayed due to the rough surface
structure, as shown in figure 5.6. This enhancemantthe surface texture
characteristics can allow for more uncommon feattoebe observed, but is limited
to when the same surface is observed from the daymiesource direction. This
characteristics means that for a short intervalinme which does not involve the
rotation of the light source, a light source frohe tside would provide greater
benefit. However, for the feature to remain comsistin between frames over a
longer period of time, such as for the purposeapituring landmarks, the light must
provide consistent illumination of the surface fralifferent perspectives. It is also
worth noting that the design for the older opticeduse focuses more on the surface
roughness rather than the actual colour patterthefsurface. This is changing in
recent times, where some of the newer models take account of both the
roughness and colour patterns to allow operati@m@n flat surfaces.

Figure 5.6: lllumination of the same carpet surfaoen multiple directions.
The left, middle, and right image shows the carpeing
illuminated from the left, top, and right respeetix
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5.1.2 Lighting

Based on the same requirements as above, the sa@pearance are required to
remain consistent for the particular shaped beanishused. Using a narrow beam,
it is possible to end up with bright streaks ortsppossibly with other interference
patterns being displayed from unwanted overlappafigsecondary reflections.
Sample snapshots of different types of beans caseée in figure 5.7. To overcome
these problems, the light had to be dispersed gvacioss the whole view. The
initial approach consisted of using a circular arcd light emitting diodes (LED)
around the camera, but this resulted in spots amgeaue to the difficulty in
controlling the intensity. An alternate approachusing a bright light source and a
scattering surface was implemented next. The setamsists of the bright light
source located above the camera shining onto ectefé surface, which was made
from a crumpled aluminium foil to scatter the lightenly. The scattering provided
by the Lambertian like surface allowed the lighue configuration to remain
compact rather than the last implementation, whigs to move the light source
away to disperse the light.

Figure 5.7: Various shaped beams of light.
Top left shows a narrow directed bean from the,stdp right
shows a wider beam by using secondary reflecticore fa mirror,
bottom left shows a well scattered light to allowifarm
distribution of the illumination, while bottom riglshows a spot
light placed along side the camera.

While investigating the use of LEDs for illuminatio various colours were
considered, which can be seen in figure 5.8.4bimetimes beneficial to make use of
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5.1.2 Lighting

a particular light colour when extracting a knovatotired component amongst other
components. However, without any prior knowledgehaf ground texture, or when
no typical colour can be dynamically determineayvmting a white light source can
allow for a consistently performing texture extraotprocess. As the webcam is able
to capture multiple colours simultaneously, thesirig can also be done at a later
stage within software. It also allows the interazol based analyses to be carried out
in future implementations, as well as making sueeimformation is lost due to
unexpected surfaces absorbing the particular wagtdie However, using the three
colour component increases the processing load,isatgpically compressed to a
grey scale image in many image processing appiegtiespecially when interested
in shapes rather than colours.

gure 5.8: Snapshot of coloured light sources.
The left, middle, and right image shows the -carpeting
illuminated by white, red, and green light respesdi.

The last consideration which was made with regaodthe light source is the
brightness of the light. Due to the limited randeirdensity readings that can be
captured by the camera, as well as the reliancdh@mxposure time, the brightness
of the light source must be controlled to maxinttse intensity variance observed in
the view. Some light sources can allow the brigbsn® be controlled, but others
require physical masks to dampen the intensityt iisitoo bright. This can be
achieved by placing a semi-transparent material theelight source, which can also
assist in scattering the light. As previously meméd, it is also possible to move the
light source away from the surface, but this isewftlimited by the physical
constraints on where the light source can be athcinstead of modifying the
intensity of the light source, the exposure timiirsg of the camera was investigated
in more detail.

5.1.3 Exposure time

By controlling the exposure time of the cameralldws different amount of light
to be captured to modify the apparent intensitysMmzameras and their drivers are
bundled with automatic exposure control to adjbst shutter speed and gain to suit
the ambient light present in the environment. Tittisr is often applied by using the
average intensity of the whole view to shift anteteh the intensity to allow for
varying light conditions. However, this shifting uses inconsistencies in the
apparent intensity of objects under varying lightoconditions, thus must be reversed
when attempting to use the intensity as an idemigasure. The exposure time also
has the effect of causing motion blur when it istsgh, which can be problematic
when analysing views of moving objects and whenekgosure is set high due to
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5.1.3 Exposure time

low level of ambient light.

By setting the exposure time to be very shortait ceduce the effect of motion
blur, but limits the amount of light entering thantera to limit the richness of the
captured texture. This effect can be seen in figuée With the introduction of the
permanent light source, the exposure time can beralted depending on the
flexibility in the brightness level. By setting theightness of the light to be very
high, it also creates a larger variance in the agkintensity, thus must make sure
the light is dispersed evenly as possible. By mbygantrolling the exposure time,
it can be reduced to the point of being able teolesthe most amount of variance in
the ground texture, which can also reduce theateffrom motion blur while still
allowing enough contrast in the ground texture.
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Figure 5.9: Various exposure time at constant Ihnigés.
The exposure time is decreased in the order ofafbptop right,
bottom left, and then bottom right.

With the exposure time being fixed at a constamiesathe camera is unable to
make adjustments when the ambient light conditrenge, such as when shadows
form or the room light being toggled. There is aseubtle flickering that occurs in
indoor operations due to the alternating curredu@ed timing differences between
the room light and the sampling time of the camatthough the timing offset only
causes a very gradual change in the intensitypvtieeall effect of this flickering can
be quite significant, as shown in figure 5.10. ®afte algorithms can be put in place
to detect these conditions, but a simpler soluisto modify the frame rate of the
camera or to physically shield the viewing area@hsilnat the additional light source
becomes the sole provider of the light. Comples#lielding the light is difficult to
achieve since the shield would scrape against itheng, thus a small gap must be
made off the floor. As a side note, this shieldalsubles as a sweeper to remove
light obstacles which may enter within the viewtlod camera.
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5.1.3 Exposure time

Figure 5.10: Flickering caused by ambient light.
Slight changes in the appearance can be noticedvebant
consecutive frames from the room light.

Other than having discrete intensity readings, dameras differ from organic
visual sensors by not having a logarithmic respocdsaracteristic to the light
intensity. This results in a very narrow range riknsities that can be observed at
once. By applying techniques similar to high dymammanging sensors, it is
sometimes possible to compose an image which msasnithe amount of
information by stretching or compressing the ingeeel intensity differences. When
capturing the image with a fixed exposure timefedént amount of light allows
certain portions of the scene to be captured béteer the other. By adjusting the
exposure setting for the same scene, it is posgitdeperimpose and merge multiple
images into one, as shown in figure 5.11. Thisvadltetter utilisation of the given
range of intensities to produce a very informatich image.

Figure 5.11: Merging of the four images from fig&8.
Superimposing and blending of multiple frames aflowhe
interesting portions of the imaged to be combined shown in
one frame.
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Tone mapping techniques such as using the mediae wad using the exposure
time when a certain intensity level is reached loarapplied, but the shifting of the
intensity results in the loss of colour based imfation and also requires multiple
frames to be captured using different exposurangstt Implementing this on a
webcam is a challenging task, since the exposungalds not readability available
on some cameras; it greatly reduces the frameaatkalso requires the elements of
the scene to stay stationary while multiple imagrescaptured.

Implementing this for a mobile robot can potenyiale useful if used in an
environment where large fluctuations in the lightensities occur and where the
focus is on the shape of the features rather tharcalour, such as sign recognition
tasks in an outdoor environment or rooms with wimsloon a sunny day for an
indoor application. For the task of ground textaewving, the lighting conditions are
well controlled, thus this approach has little aqgddility.

5.1.4 Capture rate

The last camera settings to be considered aredaptire rate of the images and
the synchronization issues which arise from the afsmultiple clocks. One of the
key contributors in achieving the high level of @sgon on the optical mouse is in its
extremely fast frame rate, which is typically ovesveral thousand frames per
second. The high rate of data allows for very smaitions to be observed, which
accumulate to a very smooth motion being observad.increase in the processing
load is offset by the small size of the texturengetaptured, at sometimes around 8
by 8 pixels, and the smaller search area due teetheced distance the mouse can be
moved within the shorter time span.

Indirectly, the capturing rate contributes to theximum operational speed, as
this determines whether a pattern stays withinfigld of view in the subsequent
frame. This relationship is illustrated in figurel8, where L is the width of the area
being tracked and W is the width of the capturedgen Ideally, the capturing rate
should be set to the maximum possible setting wiakeng into account of the data
transfer rate between the modules and devicessiflo®thness provided by the high
sample rate allows the transformational changab@édmages to remain small and
also increases the validity of prediction algorithwhich may be implemented
(Faugeras & Robert, 1993).
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Figure 5.12: Effect of sample rates against theaimnal speed.
The motion of the robot is limited by the samplnage of the floor
texture.

55



5.1.4 Capture rate

A potential issue in using multiple componentshe timing difference between
the data capture time and the access time, whitltaase the misalignment between
the scene and the internal representation or disgiphe behaviour of the devices
with manually induced pauses. With the webcams,cédqaturing process and the
reading process are executed independently. Ifeh@ing process is slower than the
capturing process, the extra frames that are aaghtypically override the old data to
only maintain the latest information. If, on théhet hand, the reading process is
faster, the old data will be read in. Ignoring thehaviour can cause loss of critical
information about the scene such as jumps in motibrobjects and incorrect
predictions about the object's behaviour.

These issues can sometimes be addressed with éhefuprecise timers or
semaphores, but can suffer from clock drifts owargl periods and unnecessary
pauses within the process. An alternative appraado observe that the loss of
frames cause unrecoverable errors as the texagking would not be able to see the
features that have exited the field of view, butplicate frame can be easily
detected to avoid the errors being introduced edligtion algorithms. With this in
mind, as long as the cycle speed of the readingegmis faster than the capturing
rate, the tracking can still operate with the sdevel of accuracy at the rate of the
capturing process. To detect the occurrence ofitipdicate frame, the change in the
intensity within the frame can be observed to detee if the image has not been
updated yet. This technique is plausible due toptiesence of random noise, which
causes the image to change even if the cameravelssdre same portion of the
ground.

It is also possible to calculate the clock offsatsl the amount of drift, but this
depends greatly on being able to know the exactgdmin the processing load to
anticipate spikes which can modify the timing. Tdfere, it is more plausible and
reliable to specify the maximum processing loaéntkeriving the minimum cycle
speed of the reading process for the current sagpdite of the camera.

5.2 Image and sensor noise

For many years, the field of image processing aimbtics have progressed in
parallel and under a merged name called machinenvi¥he discipline attempts to
combine the data rich visual sensors, with its fifigninformation extraction and
processing algorithms, to an autonomous and pHyamgent for carrying out real
vision related tasks. As developments are mad®ihn areas, the integration allows
for superior sensor systems to be developed. R#tlaer making use of high end
hardware to perform the image capturing procegsethas been an increase in the
use of a more economical webcam in its place. Tiedity of these cameras is
constantly improving, but due to the manufacturprgcess and the components
being used, they produce lower quality images.

The quality of the image is limited by the charastees of the complimentary
metal oxide silicon chip, which records noisy daliae to the photo-sensor and
transistor arrangements. Many of the older moddbocams make use of plastic
lenses, which purposely blur the image for naturi@rpolation of the textures. This
is done to mask the granularity caused by the kswlution and the poor quality of
the sensors. These contribute to the artefacteetanhage, but by identifying these
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noise characteristics and developing the apprapfilier to remove the effects, the
webcams will be able to provide useful and reliabfermation about the scene.

5.2.1 Lens distortion

Due to the warping introduced by the camera ldmsjmage cast onto the photo-
sensor array tends to be distorted in a radiaépatiThis is caused by the projection
of the Petzval surface to a flat plane. For theasef this causes the compression of
the outer regions of the image. The effect is somext corrected at the driver level
software for some of newer models, but in the atserf the de-warping algorithm,
the distortion characteristic can be determinedliserving a known shape, such as a
grid pattern, throughout the whole view and streighthe image until the calibration
object can be observed without distortion. Thiscpss typically involves the use of
algorithms like the Hough transforms, as shownigure 5.13, to characterise the
features observed within the view (Kalviainen & Winen, 1995; Shaked et al.,
1994).

| Figiljre 5.13: Iﬂ_(;ugh_iransform for calibration.
The straightness of each line is determined thrabgtsharpness of
the meeting points of the faint curves.

The cameras being used in the current system shoemdittle warping due to
the manufacturer's lens distortion correction impatation, but the side effect of
the stretching caused visible signs of blurringtteg outer edges of the image.
Attempting to reduce the blurring by applying stemmg algorithms can result in the
enhancement of noise generated features or a c@stgess involving the
identification and suppression of the de-warpinguced blurring by weighted
adjustments to the intensities.

A useful characteristic to know about the warpiaghe gradual increase in the
distortion and blurring from the center of the iraag the outer edges. This means
that although the distortion is non-linear, thefediénce in the artefacts between
adjacent pixels and consecutive frames is quitdlsiawever, since the effect of
the blurring is not noticeable within the inner fo@m of the image, the outer portion
can simply be cropped out from further analyse® fi@duction in the overall image
size does not cause a significant issue to theavisdometry algorithm other than
reducing the range of acceptable motions. Thiseisabse of the processing cost
involved in searching over a large area, thus @kmall portion of the captured
image is used.
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5.2.2 Sensor noise

Although there are always issues with sensor noite any type of cameras,
webcams are notorious for the low quality imagey ttapture. Although the quality
depends on many other factors such as the colobness, refresh rate and lens
quality, the amount of noise introduced by the pks#nsor contributes to a
significant portion of the problem facing image @ssing tasks. This noise is
generated by the hardware itself and thus cannqiréeented. Instead, filters must
be introduced to suppress the noise level.

When viewing the image as a whole, these noisesarenmediately apparent as
our eyes tend to focus on the larger, semanticrnmdtion portrayed within the
image. However, when attempting to identify andckra particular pattern by
considering the intensity reading at each pixedngjes in the appearance can cause
problems for the image processing algorithms. Tiodlpm is further enhanced by
the highly repetitive texture patterns and the latkariety in the intensity within a
single viewing area.

To identify the contributions from the noise, trerera was exposed to a variety
of different conditions to isolate and charactetise behaviour shown through the
intensity readings. The first measure to be idemtifvas the per pixel based noise
level, which is the noise from the photo-sensorsgmiity, interference from
neighbouring pixels, and any defects, such asdwaton the lens. The measures
that were identified include the minimum, maximumgan, and the standard
deviation of the intensity for each of the pixetsthe camera was exposed to several
different colours. To minimise the neighbouring fmheensor interference from
occurring, the intensity was chosen to be unifoomaill three colour component, as
well as throughout the whole image.

Providing uniform intensity was quite easy to ackidor the two extremities,
since they just required the elimination of thehtiggource for black colour and
saturation by a bright light source for white. Whexposing a grey image to the
camera, the variation in the detected intensitiemfother artefacts was distinctly
visible, thus the data gathered could not be usegmneralise the hardware generated
noise for the grey colour.

To gather the typical intensities, the same views sampled until the mean values
converged to a point where the maximum variationladmot be distinguished on a
pre-determined range. This point can be formahgi the following relationship:

Precision > Al e | (12)
Precision > | (lave* N + lnet) / (N + 1) — have| (13)
Precision > |dhi— lave| / (n + 1) (14)

Wherel .. is the average intensity andis the number of samples. Note that the
change in the mean is maximised when the differéret@een the average and the
next intensity is greatest. This occurs when therage is 0 and the next intensity is
1, and vice versa, thus leading to:

Precision > 1/ (n + 1) (15)

Since the range of the intensity for most moderlowred devices is 2 the
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precision, which is defined as the resolution ia glixel intensity, is 2. This means
the sampling must occur at least 257 times.

Figure 5.14: Noise level when exposed to a pitelchkcene.
Left image shows the maximum error reading, mideliage is the
standard deviation that has been stretched, whéeright image
shows the average intensity reading.

Figure 5.14 illustrates the noise characteristiectected from the above
experiment, while table 5.1 shows the noise charetics of the image, both for the
black scene. The left image in figure 5.14 shows maximum reading, middle
shows the standard deviation, while the right shtvesaverage readings, where all
the values have been stretched to enhance vigildilit interesting behaviour which
was observed was with regards to the saturationt,pas well as the regular pattern
in the noise prone areas. When the camera was exgosthe bright light source,
every pixel was saturated to the point where nctdiations could be observed. From
a noise removal perspective, this is simply an ptor case to be wary of, but from
an image processing perspective, a saturated igieetricky case where there is too
much light present and the intensity characteristiost, thus should be avoided by
carefully setting the exposure rate and notindatinghtness of the light sources.

Table 5.1: Minimum, maximum, mean, and standardadiew of noise at sample
points when observing a black scene.

Colour | Minimum Maximum Mean |Standard Deviation
Red 0 55 15.52 8.23
Green 0 41 14.14 6.81
Blue 0 39 9.89 15.78

The noise characteristics observed when no ligintceowas present showed some
patterns, which is primarily caused by the photeosse arrangement and artefacts
from the compression in the codec. The interestigervation which was made was
that the minimum values that could be observedifost of the pixels were slightly
above zero. This meant that the pixels can noindwsish the intended intensity
range. The pattern also showed the different leg&fuctuation. This information
allows the formation of a location dependant filteaccount for the amount of noise
that is to be expected.

Since there was no light source passing throughethe the obvious regions of
irregularity can be attributed to faulty photo-saiss The amount of noise observed
in these areas were significantly higher than ttieeroregions, thus the use of the
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pixels should be avoided when possible, such asrbgping or interpolating the
neighbouring pixels.

It is also worth noting that some device driverguiee sequential distinguishable
frames to allow for some of the image adjustmeiat @storation processes to take
place. This meant exposing the camera to a pitck stene would halt the camera
until a brighter scene is observed. To test fordharacteristics of the camera under
no light, the calibration process has to be carpet multiple times to allow a
portion of the view to be exposed to the light wlihe remaining region is observing
black.

When performing the above experiment for the varigrey levels, it was noted
that if the obvious scaling effect was ignored abuhe image, which will be
discussed later, and the intensity levels weretdteas the mean of what was
captured, a significant trend was observed withatiheunt of fluctuation seen for the
various intensity levels. This prompted a more farnexperiment involving
measuring the noise level for the full grey-scaege. The intensity levels between
the three colour sensors were kept as close to @aen as possible, but the slight
differences may have contributed to some of therisénsor interference based
noise.

The experiment made use of a grey-scale gradienot® the same attributes as
the earlier. Figure 5.15 shows the noise trendtli@r three different colours at
different intensities. The difference between thended and captured intensity due
to the location within the view did not matter, @@nthe intention was to identify the
general characteristics of the fluctuation in thiemsities.

Noise level in grey scale image

10

(Red)

(Green)

—Poly. (Blue)

Noise (StdDev)

[

Intensity

Figure 5.15: Trend in noise for a given intensity.
The graph on the left illustrates the reduction noise when
observing a brighter colour. The top right imageswsed as the
calibration image.
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Although not all of the intensity was captured, tinend that the noise level
reduces with higher intensity value could be obsénfor all three colour
components. The trend showed that lighting up ttemne or adjusting the camera
setting to capture a brighter scene would resula iless noisy image. However,
careful considerations must be made to not sattinetémage, as mentioned earlier,
as the region will no longer be distinguishabldsltvorth noting that the saturation
point and the range is dependant on the brightaedsgain settings on the camera,
thus these settings should be set appropriatelyhrexposure time being used to
maximise the intensity variation that can be obseérv

Another distinct feature that is apparent in tleadr is the regular wave pattern in
each of the three colours. Although this may appeabe a significant artefact
interfering with the experiment, it is caused by tmardware related noise pattern
encountered earlier for the black image. The efiedlistinctly visible due to the
alignment of the image being captured, where they devel is increased in the
direction.

During these testing processes, it was noted kieahbise does not extend to the
whole range of intensities, but fluctuates close¢ht® intended intensity value. This
behaviour allows for various noise reduction fitéo limit the range of alterations it
makes to the captured intensity, as well as pragidnore capability to derive the
actual intensity.

The consideration of the photo-sensor arrangen{&aams, 1997; Hubel et al.,
2004) are not discussed here, but can potentidibyvamore meaningful noise
characteristics to be identified, such as explgrnire regular noise pattern observed
earlier.

5.2.3 Colour based noise

When analysing the noise level of a pixel, the ého®lour components were
treated independently for the same source of ligike goal was to allow the
characteristics of each colour sensor to respontidasame amount of light being
captured by controlling the light source. Idealhg photo-sensors should not cross-
talk with each other, but the sensors will typigale exposed to a wide range of
intensities in a natural environment. This can leadarying interactions between the
photo-sensors which require analyses.

An initial experiment involved a very rough measofehe noise characteristics
for various colours. This was done by showing aageof the full visible spectrum
to the camera and identifying the individual natbaracteristics at each pixel. Since
each of the pixels was exposed to multiple coletisin proximity it was not able to
give a clean characteristics of the noise datafsingle colour, but an obvious trend
was observed, as shown in figure 5.16 below, betwbhe exposed colour and the
amount of noise for the colour.
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5.2.3 Colour based noise

Figure 5.16: Calibration image and the correspampdiandard deviation in colour.
Left image shows what the camera observed, whdeitght image
shows the relative noise levels.

The trend observed above prompted a more detaflatysas in identifying the
noise characteristics for a given colour. Due ® llnge number of variation in the
possible colours, it was unreasonable to carrytlmitietailed experiment for each of
the 2* colours. To reduce the number of data being cagtuwhile providing
reasonable amount of redundancy to account forr otheses interfering with the
data, the sampling area was reduced to a smaltesqid4 by 14 pixels, such that
multiple intensities could be tested at the same tiWhen positioning the sampling
areas for the camera, the noise prone areas thatde¢ected earlier were avoided.
The locations were specified manually as the vianain the other portions of the
image did not appear to be significantly differemeach other, but a better location
could have been selected using simple minimizagigiorithms. To account for the
interpolation from neighbouring pixels from affewi the sampled square, the 2
border pixels surrounding the square were also lkeptthe same colour. The
arrangement of these sampling areas is shownunefig.17.
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Figure 5.17: Arrangement of sampling squares.
The sampling squares are superimposed over themmaxinoise
image to illustrate reasonably consistent sensaracheristics.

Even with the simultaneous testing for multipleczok at the same time, the
number of colour variations is still too large te bampled individually. Since the
trend observed in the simple experiment showedgalae pattern with varying
colour, the precision used for the colour was ashuced to a quarter for each of the
three colours, which can be interpolated lateilkanf the missing values. The trend,
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5.2.3 Colour based noise

when observed individually for the three coloutsns out to be quite similar to the
one found for the grey-scale experiment, which loarseen in figure 5.18, and did
not show deviation when varying the other colounponents. The trend which was
observed in the simple experiment was most likelysed by the by product of
observing a highly colour variant scene under utagambient lighting conditions
and the different thresholds in the sensitivityredf sensors.

Moise vs intensity for coloured images
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Figure 5.18: Standard deviation in intensity forieas colours.
The trend observed was similar to that of figurb5s.

Since the refractive index of the lenses usuallyedes on the wavelength of the
light, the three waves that are detected do noet lhe same focal length. Whether
this is accounted for by the photo-sensors is uwkndout could contribute to the
variation in the noise levels for the same intgndite to the blurring and dispersion
of the light, especially near the outer edges whigealifference in the focal length is
greater.

5.2.4 Radial intensity shift

When observing the uniform grey image, the captuneaige showed a gradual
darkening as it neared the outer edges of the mgveirea. This effect can be
attributed to the lens characteristics, interfeeeritom reflected rays, and the
increased distance and angle from the incidencke gBgsri & Jacobs, 2000). This
radial intensity shifting behaviour is heavily dedant on the ambient light that is
present and the reflective properties of the oleskrsurface, thus if the light's
characteristics, such as the incidence angle andpbcular properties of the surface
are known, the center point of the this radial effand the amount of necessary
shifting can be determined to smooth out the image.

Since these attributes cannot be known in mostasies) the plausibility of a
generic filter must be carefully analysed in theecthat the adjustment is incorrectly
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5.2.4 Radial intensity shift

aligned and weighted. Figure 5.19 shows a typicalvvof a uniformly coloured

surface with the radial intensity differences. Téi¢ shows the actual image, middle
shows the relative intensities, and the right shtdvesstandard deviation. Since the
difference experienced between the pixel intersiiemost significant between the
center and the outer edge of the image, the crgppincess, as used earlier, can
sometimes be considered as an alternative apptoadduce this effect. The rings
indicate the subtleness of the effect, as well has dliasing of colours that has
occurred from the image compression process andsémsitivity of the photo

|

Figure 5.19: Radial shift characteristics on aamif looking surface.
Left image is the actual image captured by the cammniddle
image shows the stretched image to highlight tifferénce in the
intensity. The right image shows the standard dewia which
clearly shows the formation of bands to group thmilar
intensities.

5.3 Image processing filters

The characteristics that were found during thebcalion phase can be used to
design the filters to correct any noise in theastref images. The effects of the noise
and the conditions under which the artefacts wateduced were considered to
derive several filters.

The filters work on the principle of observing ttaptured intensity for the pixel
of interest, sometimes along with the surroundingelp, and applying a
transformation based on the position, the intenaitg on the change in the intensity
between consecutive frames. By adjusting the pasmiéor these attributes using
the characteristics determined earlier, the undésartefacts can be reduced while
minimising the additional artefacts being introddidey the filter, which commonly
occur with standard image filters.

The evaluation and validation of these filters agey difficult to achieve due to
multiple factors that contribute to the noise. ¢t also difficult to justify the
restoration result amongst many other variablass the assessment process is done
individually for the artefacts the filter attempts reduce. Other than the noise
removal and the restoration of the intended intgnéne other common attribute
considered as part of the evaluation included thwumt of artefacts that are
introduced from incorrect use of the filter, as Mad the speed and memory usage
taken to process the image.
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5.3.1 Range modification

The first filter to be investigated makes use c# thtensity range which was
detected for the three colour values at each pigielally, this range would be a
constant value covering the maximum range possibtethe camera sensor.
However, the observations indicated the potentiesgnce of sensitivity thresholds,
offsets, or precision inconsistencies which magdgsing the reduction in the range.
Since the maximum intensity resulted in a constaténsity reading from the
saturation, this adjustment only concerns the ctarnatics of the minimum intensity
value that could be detected.

In the case of a sensitivity threshold, where valtnat are too low are shifted up
from the minimum value, the average values andstla@dard deviation should
support this and be lower than usual as more ie@motensities are mapped to the
same lowest observed intensity. However, the smalimum value and the much
larger fluctuation experienced at the lower intBaesimeant that the cause of the
noise was most likely not due to the above hypahes

Assuming that the shifting of the minimum valuecsused by an offset, the
available range may have been stretched to allewuh span of the intensity range.
This requires the use of a lookup table for theeifivalue, ), at each pixel and a
scaling function to derive the new intensity, grfr the captured intensity,.

1= (lraw— hrin) / (L = b (16)

The mapped intensity is intended to balance theetltolour components within
the image by stretching the value over the maxirpossible range. Disregarding the
obvious effects from the radial shifting, the startbldeviation for a particular colour
should decrease as the colour scales match up.\lowbe tests indicated that the
scaling of the ranges caused slightly larger flatans in the intensities, which are
shown in table 5.2 for a red dominated, a greeninated, and a blue dominated
colour.

Table 5.2: Stretching the range using the minimotanisity value detected.

Original Scaled

Colour Average| Std. dev, Average Std. dey.
Red | R 8.3 4.0 7.42 4.14
G 73.26 7.58 69.94 7.73

B | 253.29 1.26 253.28 1.26
Green R 64.0 8.57 63.31 8.68
G | 181.06| 13.01 179.7 13.45

B | 111.97| 13.55| 111.33 13.65

Blue |R | 193.98| 14.21| 193.76 14.31
G 44.17 5.71 40.32 5.87

B 18.55 3.55 17.49 3.6
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An alternative use for the minimum value was comsad which extends the
offset idea, where the minimum value may be causgdthe shifting of the
representation while the value that is read isemly scaled. To test this approach,
the minimum value was added to the value that weasl,rencouraging a brighter
image. A side effect of this approach is in thdtstg of the range fronfl ,,1) to
[2*] min, 1 + 1 min), Which results in some of the brighter intensitlesing
truncated. The experiment itself was carried outtha same way as the range
stretching test, but like the other, resulted instag a larger fluctuation of the noise.

The findings here indicate that minimum value issimikely caused by internal
noise within the photo-sensor circuitry and oveslapth the incoming light, which
responds to the higher value. This could also lsda effect of avoiding a pitch
black image from being captured which affects sofm@e automated camera setting
control algorithms.

5.3.2 Filter selection

Many of the image processing filters in existeneéirets a generic template for
the algorithm and are typically used across the@eemhage without acknowledging
the side effects. By blindly applying these filteitshas the effect of enhancing or
suppressing certain portions of the image whileoohicing artefacts where the filter
effect is not applicable. Post-processing of tltered image is sometimes carried
out to identify and remove the artefacts. This fiekro combined with the analysis
stage by setting a threshold criterion to corriet wrongly modified regions. This
filter application approach can sometimes be proble due to the dependency on
the initial parameters used to transform the image also on the threshold value
used to distinguish the difference between thednfalse positives.

Instead of using a generic image transformatidarfia customised filter based on
the pixel and colour characteristics can be appbeal/oid the post-processing phase.
This will also allow the appropriate amount of weg to be used to restore the
image according to the current state of the pixels.

5.3.2.1 Spatial filter

One commonly used filter is a neighbour or spdiitr, where the value of the
neighbouring pixel influences the current pixelirterest. In many cases, there is a
constant weight factor used when combining thensitg information, but this can
be modified using the characteristics found eatberontrol the weighting.

Based on a blurring filter, a noise reduction akjpon can be implemented by
interpolating the neighbouring pixels to generataosther transitioned pixel
intensity (Simoncelli, 1996). The discrete pixeteirval means the transitional trend
must be approximated using the surrounding piXEls can sometimes involve
calculating the equivalent to the derivatives byding the difference between the
surrounding intensities and interpolating betwdwsnt to derive the new intensity.
The approximated intensity can be compared to teasored intensity to determine
how correct the approximation is and to see if difeerence was caused by the
sensor generated noise. Since the sensor gena@itedcauses fluctuations around
the actual intensity, the tolerance range, whighlmaset to the standard deviation or
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the maximum and minimum range in the intensity raess earlier, can be used to
distinguish actual changes in the view or noise.

| ig .2: Iurring the ige to reduce noiselgv
Left image shows the original image, while the tiginage has
been spatially blurred using a uniform mask.

A more commonly implemented approach at blurringhis use of a weighted
summation of the neighbouring intensities. A sampiage before and after the
blurring can be seen in figure 5.20. The imageltanleft is the original, while the
right has been passed through a Gaussian filteizef3 by 3 pixels. The weighting
allows the number of neighbouring pixels to be rfiedi when influencing the
current pixel of interest, while the individual \géts can also be modified depending
on how strong the blurring should be. Applying thisrring filter can reduce a large
portion of the fluctuating noise, but at the sameet suppresses the intended inter-
pixel differences, such as edges or spots in tlmescTo avoid combining of
unrelated pixel intensities, the neighbouring mExehn be checked with the current
pixel for similarity (Peters, 1995). The threshaldlues that are used are derived
from the anticipated noise levels, the standardiadiew, for the current pixel
intensity. This can be seen in figure 5.21, whéee ieighbours were blended with
equal weighting if the difference in the intensigs less than the standard deviation
score for that pixel. The left image shown is thginal image and the right image is
after the selective blurring filter has been applie

Figure 5.21: Interpolation based on threshold nl@gels.
The left image shows the original image, while tiglit image has
been filtered with a selective filter which onlyubd if the
neighbours are of similar intensity.

Instead of the noise being used as a thresholdtitbiegth used in the blurring can
be modified to be proportional to the strengthlef hoise. This allows for a more
controlled use of the blurring to reduce the naidgle still retaining some of the
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5.3.2.1 Spatial filter

intended pixel intensity differences.

As these filters make use of the noise charadesidiased on location and
intensity, the memory footprint can end up beingéda especially when multiple
attributes are stored. The use of a lookup tabdes tgpically be faster and more
precise than deriving the values dynamically usanglosely modelled function.
Depending on the size of the table, this can p@tiytause time consuming paging
operations if the access pattern is not well cdleslo Compressing the lookup table
is possible, but this requires an decompressiosekdnen the table is used, which
can cause spikes in the processing load and ca&lsgsdand synchronization issues.
It is possible to balance between the dynamic geioer and loading of pre-
generated values, which is to store the key trezfohidg values in the lookup table
and interpolating between the surrounding pointgdnerate the values in between
when required. This idea was also used for theel®ar reading, and has similarities
to the key frames used in video compression tectasigThe functions used between
the key values can often be made very simple ande nafficient than that
representing the whole range.

In the approaches discussed above, it is impottaconsider the processing load
when using many neighbouring pixels. Although ibfen possible to obtain a more
suited model for the current pixel intensity byreasing the number of neighbours to
consider, the process must be repeated for afleopixels, thus has a dramatic effect
on the processing load. By noting that the scems dot contain large objects with a
predictable intensity structure, using more neiglibodoes not just decrease the
noise, but significantly reduces the fluctuation tbfe intensities, which can
compromise the ability to distinguish between thdures.

It is also worth noting that since the criteria tmmsidering which neighbours to
use is generally determined by a simple shapedl&especial considerations must
be made if the neighbours extends out to an inviaahtion in the image. For
example, when considering the neighbours withimx2Ip of the current pixel, pixels
that lie along the border of the image must make sheir neighbour checking
algorithm is adjusted appropriately. This can same$ involve reducing the number
of neighbours, not including the overflowing pixets even including virtual pixels
at the borders so the algorithm does not need ahging

For the purpose of ground texture servo, the typmage being observed often
does not contain smooth and continuous regionthigsvould not allow significant
features to be tracked across frames. This meansthpatial filter can suppress the
important information on the transition of inteyséven if the occurrence of this is
limited with a threshold, thus is not used wheneolisg the ground textures.

5.3.2.2 Temporal filter

A different type of neighbour involves the time d@imto observe the inter-frame
trends from the same pixel location, which can eensin figure 5.22. Since the
fluctuations from the sensor generated noise améesd on the intended intensity,
combining multiple samples of the same scene allfiwshe suppression of the
majority of the noise if the scene remains statipn@ther than the lack of motion in
both the camera and the scene being the criticplinement for this approach to
work, its use is also limited to regions where ¢hare little to no intensity changes.
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5.3.2.2 Temporal filter

This is because the pixel attempts to portray ithesition between the two different
colours through aliasing and frequently switchesvben the two as the dominant
colour, even if the camera appears to remain caslglstationary.

H+-H+-H+H0H+08
Buffer Length

Figure 5.22: Derivation of time based smoothinggfd.
The colours are sampled across several frames aheraged to
obtain a more consistent intensity.

There are two basic approaches for combining thghbeurs. One involves the
accumulation of multiple frames then processingdbmbined image once enough
have been stored. The other approach, which is powrnon, uses a sliding window
approach, where the previous frames are store@/lysn a circular buffer, and the
weighted sum of the frames within the window is dusEsing the accumulation
approach, the processed number of frames is redogethe number of frames
stored, while the windowed approach requires alangmory allocation to store the
individual frames.

In both these approaches, motions can be quitdegmattic as the intensity at a
particular location can change dramatically. Ttasises the merged pixel to portray
an average intensity which may not reflect any hedf tolours that were actually
present and can also introduce residual objectshriike motion blur. The duration
of this artefact depends on the number of framastdle considered in the filter. To
avoid this problem, a threshold value can be ugdichit the number of frames in the
filter. This value can be derived from the noisaretteristics to distinguish the
change in intensity due to motion or from noise.

By only analysing a single pixel location at a tjrtige noise characteristic is the
only information that can be used to distinguisergcmotion from noise. However,
in the presence of motion, many pixels belonging the same object will
simultaneously experience motion as a cluster.Xfod this, region based motion
constraint or optical flow approaches are usedetea the motion of objects, rather
than using single pixel analysis (Barron et al92;9rani et al., 1994; McCarthy &
Barnes, 2003). This requires an additional higleell processing load, but can
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5.3.2.2 Temporal filter

detect the presence of motion quite accuratelys ttaducing the artefacts being
introduced from the filter. For the ground texttnacking application this idea can be
made simpler, since the distance from the camethet@round remains consistent.
This means, with the exception of flat objects timaive independently to the floor
and perfectly uniform colour, everything in the wienoves together. If motion is
observed anywhere within the image, the bufferathés can be emptied as the other
pixels will also observe motion.

Since the temporal noise reduction filter requites scene to remain stationary, it
is quite limited where it can be applied. When kiag the motion of the ground, the
filter may come in use when the robot is stationamya surface with very limited
texture pattern, such as when required to captuong term landmark. However,
since the majority of the robot's execution invaltae robot being in motion, this
filter would not be applicable for general usage.

5.3.3 Hue colour model

So far, all of the algorithms have made use ofrdkgreen-blue (RGB) scale
information captured by the camera sensor and hi@ated them independently
when being processed. Many of the existing imagegssing approaches make use
of a grey-scale model instead of using the coltair®duce the processing load and
to focus on the shape instead of colour. Thisrsagonable approach to make, since
many scenes are filled with a variety of colourhwito significant links to the
semantic information they portray. When the chromatformation is used, the
target object is usually of a customised colousitaplify the object identification
process or is used as an additional attribute e@oothject of interest. However, the
extra set of relationships provided by the comlamabf colours distinguishes each
pixel and can allow for more reliable correlatidase made. Instead of treating the
colours individually, the data can be combinedddnay new information (Borzenko
et al., 2006, Xu et al., 2006). A simple approakoi map the RGB colour model to
an alternate colour model, where the colours arasomed in terms of the relative or
perceptive values instead of absolute intensiffesd, 1998).

The absolute intensity is very susceptible to amtbtenditions and must often be
accompanied by shifting or scaling to account fffecent environmental conditions.
With a relative colour scale, it is more diffictdt define a particular set of attributes
for a feature, but identifying the presence of djec in the scene is greatly
simplified. The idea of inter-pixel relative intetss has been demonstrated in the
spatial filters, but it is also possible to use #iegle pixel to derive inter-colour
relative values.

When considering the visual perception mechanismialbgical systems, they
possess many properties not directly present inecasn One such property is the
high level perception of colour. Although the caredls on the retina responds to a
particular wavelength, much like the behaviour dfofp-sensors, the data are
combined to form a higher level concept of how ¢bur is perceived. One set of
colour scales which represent the information imilsir ways is the hue based colour
scale.

A commonly used hue based scale uses three dinmsniicdefine a colour. The
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hue defines the relative colour between the regkmyiand blue, and is represented on
a cyclic scale, often visualised like angles inirale. The richness of the colour is
called the saturation and represents the differémmtereen the intensities. The last
attribute is can vary depending on the definitidntlee overall brightness of the
colour, and is called luminance in the HSL scateyalue in the HSV scale, which
use different points of reference with regardshi gaturation. It is worth noting that
a grey-scale image can also makes use of the averansity instead of luminance
or value, but generally end up portraying a simijgoe of information. The formula
for mapping from RGB to the HSL scale is as follows

I max = MaX(lea, lgreen loiue) a7

Imin = MiN(lked, lgreen lbiue) (18)

Luminance = (hax + Imin) / 2 (19)

Saturation = (hax— hnin) / (1 = | (hax+ lmin) — 1 |) (20)
Hue =1t/ 3 * (Igreen— liue) / (Imax — hrin), if 120 = Imas (21)
Hue =1 / 3 * (lowe — hed) / (Inax— ) + 2), if lreen™ e (22)
Hue =n / 3 * ((lrea — lgreen) / (Imax— Imin) + 4), if loive = Imax (23)

where Jq lgeenand hie are the RGB intensities of red, green and blupeas/ely.

The mapping process from the RGB colour scale @dHBL scale can be carried
out dynamically, but it is important to note thdfeliences between the two scales,
such as the non-linear mapping, the special caseyewhue and saturation is
undefined, as well as the cyclic nature of the valae.

One of the successful criteria for many machinewuisechniques is their ability
to mimic the human visual perception system. Siweeperceive the colours as
relative values, many of the objects and the heglell constructs we have to describe
the object uses the hue like colour model to detfi@ecolour attribute. Although the
underlying values used in the hue colour scaldlidoased on an absolute scale, this
alternative colour model allows a different perdpecthat can relate to higher
concepts of colour more easily, thus allowing srheotonversion between what the
robot sees and what it should see.

Using the hue based colour scale; it is possiblextdude certain aspects of the
colour, such as the amount of ambient white ligltich can be used to isolate the
hue of the object. This allows for the removal ibéets like shades and change in the
ambient light intensity (Geusebroek et al., 1999)is will be noted by changes in
the luminance while the hue and saturation valaggm relatively steady.

The shading information that is derived can be ueeaksist the identification of
the object shape, the reflective properties, a$ agethe characteristics of the light
source (Phong, 1975). The removal of these efigeatly simplify the analyses of
the surface by being able to cluster the pixeldhauit being affected by colour
changes from shadows and lighting conditions, wiscespecially useful on curved
or sloped surfaces.

When being used for the ground texture analysis, dffect of shading is
negligible due to the controlled lighting and thesence of obstructions from objects
at different height. Although the alternate measiréhe texture can be advantageous

71
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in adding confidence to a correlation measure,ogsdnot provide any obvious
benefits. This is also due to the undesired clasiteforms on the texture, which
removes the important features such as the roudacsutextures and grey textured
surfaces, not to mention the added computatiomsal.lo

5.3.4 Quantisation blocks

A single image is able to portray an enormous armadfninformation, but it
comes at the expense of requiring a large memastpfimt to store the intensity
information. When it comes to continuous streamsinodges, this problem is
enhanced, both in the processing load and theniae®n load. To overcome the
huge bandwidth and memory usage requirements, @ssipn algorithms have been
put in place to maintain as much of the origindbimation while removing the
redundant and unnecessary component of the imé&gis {991).

When inspecting the images acquired from the web¢cainwas noted that the
images had undergone a moderate amount of compmedse to the distinct pattern
in the artefacts that were observed. Without thecexspecification of the
compression technique used by the camera, thefispstiategy used was quite
difficult to identify. However, the pattern showte same trends as the compression
used for the Moving Pictures Experts Group coded, subsequently based on the
technigues used for the Joint Photographic Expédteup (JPEG) image
compression algorithm. Since many applicationsddgae decoding of the stream to
the driver level software, the constructed imagestnine treated from the artefacts
introduced during the compression phase. Figurg $hdws a zoomed in view of the
captured image where the effects of this comprasaie very distinctive.

The artefact that was observed is the block fornatvhich is commonly seen in
heavily compressed JPEG images. The algorithm ptteto characterise an 8 by 8
pixel block by observing the inner intensity trendsng discrete cosine transforms
and removing the insignificant components by qsamgi the values. Depending on
the amount of compression used, it causes dissoecare patterns around the block
and a blurring of the intensity within the blocki3 block can cause significant bias
when considering the inter-pixel transitions, sastedge detection algorithms.

Observations of the captured image showed thendiste block formation, but
with a dimension of 4 by 4 pixels and a weaker blt@mrmation of 2 by 2 pixels
inside. This was caused by the size of the blodkgoeonsidered and from the
weighting pattern used in the quantization maffixreduce the distinct blocks from
biasing the various algorithms, the pixels surrongdhe border of the square were
blended in with the neighbouring pixels. By obsegvihis trend in the transitions, an
interpolation mask can be derived to focus on g@priate portions of the image.

Since the pixels have been influenced by all ofghxels within the block while
some of the information has been lost, reconstwoctf the original intensity
becomes a very difficult and time consuming procd®s using a lower capture
resolution, it is possible to reduce the numbetheke blocks forming, but reduces
the precision available for the camera. By incregshe resolution, it will introduce
more blocks since the dimensions of the blocks nertie same. However, it is able
to capture the details of the environment and aftmva better smoothing algorithm.
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The evaluation of the appropriate weighting isidifit to achieve due to the
inability to capture the noise-less version of$hene scene. When using the different
resolutions, the lower resolution image was tooregunse and the intensities did not
correlate well due to the large amount of blenditgch had already occurred. Using
the higher resolution showed an interesting behayiovhere the amount of
compression was increased, making the blurringceff@thin the block and the
difference at the borders of the blocks much steonghis effect was caused by the
attempt to maintain similar throughput with theglerr volume of data.

-FigTJ.Fe 5.23: BIok formation frorr; compression.
The codec groups the 4 x 4 squares and blends ttre@ting a
distinctive border between these squares.

Since the significant issue with the block formatiwas with the inter-block
boundaries, the weights in the interpolation wagisidd accordingly to promote
smoothing while retaining most of the original apence. Several weight values
were tested for the merging of the bordering pixeld were judged manually on the
effective and accurate noise removal. Figure 53ws the original image and a
typical Gaussian blur algorithm being applied, whilgure 5.25 shows the various
weights and the resulting image from the customisieal.

3

Figure 5.24: Original image and the result of appya Gaussian blur filter.
Left image is the original, while the right imagashbeen blurred
using a Gaussian filter.
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Figure 5.25: Customised block removal weights &edrésulting images.

The weights used are shown in the small grid abtiteom right of
each image. The top left number is the weight Umtdeen the 4 x
4 squares, while the number in the middle is usetlvéen the
internal 2 x 2 squares.

5.4 Summary

The use of a webcam has allowed easy integratiorvisial processing
capabilities on mobile robot platforms. The low liyaand the lack of dynamic
control over camera attributes can be compensatedy carefully analysing the
characteristics of the camera and the environmem$ ioperating under. These
characteristics can then be applied to the camettangs, configurations, and the
image filters to take advantage of any known camsts to improve its effectiveness
and to restore the image from various artefactsateintroduced by the device.

Many conditions and configuration issues of the veebh were investigated, as
well as image filter algorithms to target specididefacts to be removed. In both
cases, the settings and the use depend greatlizeospecific application and the
available resources. For the task of ground texser®o, the camera settings have
been well defined due to the constraints of théfquia. The image filter algorithms,
however, depends greatly on the processing capabilihe system and the required
level of accuracy.

The majority of the noise encountered by the cameeregligible for the ground
texture servo task. This is due to the charactesisif the ground textures, which
often contains locally unique surface structured textures when viewed from a
close distance. However, there is scope for thersilthat were discussed to be
applied for other webcam applications where imaggoration is more critical.

Due to the limited resources, the selection offilkers to be used had to be done
carefully and to not waste the precious processiyaes and memory usage on a
filter that did not make significant differencesherl various intensity based noise
characteristics required an enormous memory fautpsio they were approximated
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to a polynomial function instead. The spatial asiporal filters which made use of
these characteristics showed some signs of noisg lbemoved, but consumed a
reasonable processing time. Since the ground txtoould still be distinguished

without the filters, these neighbourhood based @ggres were not implemented as
part of the ground texture tracking system.

Since the lighting configuration is known for thkapplication, the radial shifting
characteristics allowed for a significant improvernén evening out the image
intensities. The typical operating surfaces for thebile robot are the carpet and
vinyl flooring, where the reflective properties féif significantly. This meant
controlling the amount of adjustment involved thee uwf the average intensity
difference between the center portion of the image the outer edges of the image.
The current implementation performs this check evE®00 frames to ease the
processing load, which equates to approximatelg @very 30 seconds.

The most significant filter to be included is tremoval of the blocks caused by
the image compression algorithms. Although the wiang values have not been
fully explored, the filter has shown significantpnavement in the image appearance
by removing the artefacts without introducing tooah artefacts of its own from the
blurring.

The configuration process and the filters that Haeen defined form the primary
step of processing image streams from webcamschi&macteristics of the filters can
be used to identify which situations they can bpliad in to improve the analysis
processes on the images.
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Successfully navigating around an environment fékésa trivial task for many
biological systems, but defining the complete psscéom a series of primitive
instructions is a tremendously difficult task. Adtlgh many researches are
influenced by the workings of biological systemskrasowledging the differences can
often lead to a more efficient and precise systdaon@ada & Franzi, 1993).

The use of cameras for navigation attempts to mthmeceyes, but this requires a
significant amount of processing capability, adjbpé® sensitivity, as well as memory
capacity in recognising similarity between obje&s. electronic system is able to
perform consistent and regular actions with higgrees of precision, which can be
made use of to assist this task.

Visual odometry approaches involve identifying tbeation or the change in the
location of features and landmarks in the enviramimend in turn, deriving the
location of itself. This requires three major plgsehich consist of identifying
candidate features within the captured image, ingckheir motions by correlating
with the stored features from a different perspectiand finally establishing the
location of the feature and the mobile robot (Kyoloh, 2007; Lucas & Kanade,
1981).

The area of feature tracking algorithms is welldstd and already consists of
many fundamental techniques (Ritter & Wilson, 1998y & Tomasi, 1994) and
related algorithms (Fleet & Langley, 1995; Isard B3ake, 1998) for achieving
reliable and efficient tracking of points of inteste However, many projects
customise these existing algorithms by analysing phoblem from a particular
perspective. This constrains the parameters indolaethe algorithms, as well as
including other constraints to suit the particutesk.

The proposed approach involves the use of a dowhwainting camera to
measure the displacement of the ground by identifnd tracking patterns across
frames. Using a simple triangulation technique, itin@ion of the ground can be
translated to the motion of the robot since théaneque assumes that the distance
between the camera and the ground remains constm. instantaneous
displacement can then be accumulated to form 2[@ pdermation with respect to
the starting point.

The camera sensor, which is sometimes categorssaddaectional sensor, is able
to associate a direction of the incoming intendiityugh the position of the photo-
sensor, thus often measures its precision chaistaterin terms of degrees. As the
distance between the camera and the observed abhjeetses, the precision of the
observed object decreases since the arc lengthrogomional to the distance.
However, with the proposed camera configuratiois, éhror rate can be set quiet low
due to the small distance to the ground, and mmopeitantly, stays constant.

Before the images are analysed, they are filtersishgu several algorithms
described in chapter 5. By allowing the grounduexto move a significant distance
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around the image, the approach runs the risk obwertering repeated texture
patterns, especially on smooth surfaces. This mehesviewing area and the
maximum speed of the robot should be reduced, wdllolwed the outer edges of the
captured image to be discarded, as per the lertiertib® correction. Two more

artefact removal filters were implemented, whichrevéhe radial shift adjustment
filter and the block formation restoration filter.

The change in the sequence of the filters did hotvsany obvious visible effects,
thus the radial shift was applied first to discg&aoo much shifting from the
original intensity. Since the access patterns effixels are different, the two filters
could not be merged together. However, the blostoration process benefited from
caching some of the merging between the pixeleaak merge is used twice for the
two pixels that are on the border. This can be seahgorithm 6.1 below. Note that
the implementation shown below illustrates the oaghapproach and is not the
optimised algorithm. For this particular algoriththe sequence of positions is well
structured, thus the loops and the conditionalestants can be unwrapped to
improve the performance.

function RemoveQuantisationBlock(image, weight_stro ng,
weight_weak):
set v_cache_array[image.width] ={0... }
set restored_image[image.width, image.height, 3]
for row in O to image.height:
set row_mod =row % 4
seth _cache=0
for col in 0 to image.width:
for rgb in {red, green, blue}:
set value = 4 * image]col, row, rgb]
set weight =4
switch col % 4:
case 3:
if col == image.width-1:
seth _cache =0
break
else:
set h_cache = image[col+1, row , rgb] *
weight_strong
case 0:
set value = value + h_cache
set weight = weight + weight_stro ng
break
case 1:
set h_cache = image[col+1, row, r gb] *
weight_weak
case 2:
set value = value + h_cache
set weight = weight + weight_weak
break
switch row_mod:
case 3:
if row !=image.height-1:
set v_cache_array[col] = image [col, row+1,
rgb] * weight_strong
case 0:
set value = value + v_cache_array [col]
set weight = weight + weight_stro ng
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break

case 1:
set v_cache_array[col] = image[co [+1, row,
rgb] * weight_weak

case 2:
set value = value + v_cache_array [col]
set weight = weight + weight_weak
break

set restored_image[col, row, rgb] = val ue / weight

return restored_image

Algorithm 6.1: Algorithm for quantisation block tir.

When integrating the three algorithms, the charigethe speed and memory
consumption were monitored to allow more capacitihe image analysis phase.

The different phases of visual odometry are ingaséid in more detail to identify
the set of criteria to be used for the localisatechnique. Considerations such as the
effectiveness, accuracy, and processing requirenvegite made when evaluating the
various approaches.

6.1 Feature detection

The first of the three phases is one of the modt stedied area in image
processing as it forms the foundation for most higbel processing tasks. The
difficulty of identifying and extracting the relemé information from a grid of
intensity measures can be as complex as desirgiendimg on the available
equipment, requirements, the reliability of a primformation, and the constraints
that can be placed to assist in simplifying thé&.tas

Although the domain is known, applying too many steaints yields a very
inflexible algorithm that is severely limited in ete it can be applied. To avoid this,
only the generic and crucial domain knowledge gliad, such as the repetitiveness
of the textures, the lack of variety in the intéy$evels and patterns within a single
frame, the constant elevation of the camera, lddepth queues, some availability
of motor commands, and limited motion constraimtsmf the wheel configuration
(Draper et al., 1996).

In addition to the above, an extra constraint teoohuced which assumes that no
rotations can occur between the captured framesthAsmajority of correlation
algorithms tends to exhaustively search the auailadpace or require very
sophisticated dynamic programming algorithms tanprthe search space for the best
correlation, this constraint allows for a signifitaeduction in the search space, as it
narrows down the possible dimensions down to 2.sTh because the
transformations are prohibited due to the fixed/afien (Lowe, 1999; Matas et al.,
2000).

The constraint mentioned above is made possibletalulee fast frame rate, the
pace of the robot, and controlled motions. Thetsinéerval between the capturing of
the frames allows for the transformation of thetdea to remain very small, thus
almost eliminating the rotation that can occur.d@greasing the operational speed of
the robot, it can also reduce the rotation in alamwvay to increasing the frame rate.
The difference between the two strategies inclucksring for non-self powered
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motion when the frame rate is modified, and theicéidn in the operational speed of
the robot does not cause the increase in the mioce®ad.

When considering just the motion of the webcam,cessfully eliminating
transformations and partial translations requihesgrecise control of all motions of
the camera. Since this is an unreasonable constoauphold, the camera should be
placed to minimise the blending of the pixels. Ttés be achieved by placing the
camera away from the rotational point, as the amofitransformations that occur is
greater towards the pivot point. For a differentiave system, the motions of the
robot can be restricted while it remains in thenmairmode of operation. That is, the
robot is propelled by the self induced forces. Tini®rmation, together with the
wheel arrangement, can be used to place the cameafrom the rotational axis of
the wheels. When rotations do occur, it will consisthe combination of translation
and small amount of rotation. The camera placemeglhtbe discussed in further
details in chapter 7.

6.1.1 Lifetime

Another important consideration to make before ithage is analysed is the
effective lifetime of the features. In most feataletection algorithms, the process
involves identifying an object, or attributes ofettobject, that allows it to be
distinguishable from multiple perspectives (Palettal., 2005). This implies that the
feature is to be tracked for a reasonable peridara as it moves around within, and
possibly even out of, the view. The process oftifigng these features requires non-
morphological attributes to be extracted and alequires the presence of a
reasonable candidate to be present in the view.

Since the typical view observed by the ground pogntcamera consists of
repetitive texture patterns, low contrast, and lilméted viewing area, successfully
identifying and tracking a feature is made considgr more difficult. These
conditions mean that for a real time system, tlaéufe identification process must be
very rapid in identifying its uniqueness and beetifve enough to be able to track its
motion in subsequent frames (Davison, 2003). Thpmentributor to the limited
availability of the features is the small elevatiminthe camera and the operational
speed of the robot, which controls the rate of moset of the ground textures.
Although these can be adjusted to reduce the &xtuwtion, the increase in the
height reduces the precision, while slowing of tbieot can conflict with the speed
requirements of the robot. This means the featuagy only be observed in the
immediately subsequent frame and fall outside tlevimg area later. This can
potentially cause issues like incorrect trackingusdng when a non-unique feature
is selected, especially as no confirmation of theking can be provided.

Although the limited lifetime results in frequerd-computation of the feature, it
has several positive side effects, such as redwocgghological transformation of the
feature and the reduction in the search space eagetture will only need to be
tracked once from a confirmed position in the imag@s also means if a feature is
badly chosen and corrupts the localisation prodbssgffect will only contribute to a
very small amount of error as a new feature wilubed in the subsequent frame.

Since the feature does not need to consider margluall transformations, the
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attributes that require consideration only includes amount of longitudinal and
latitudinal shifts, as well as the intensity infation, which may be altered by the
change in the ambient light or from sub-pixel motiorhese attributes can be
considered by specifying the shape and size ofstwch area, as well as the
intensity based information which includes the ratensity and also some derived
patterns from the pixel intensity arrangement, sagimtensity transition strengths.

6.1.2 Score

One of the key criteria in selecting a featurehis ability to identify a region that
remains unique and identifiable even after someedegof transformation (Peters &
Strickland, 1990). An approach which only usesitibensity values is very simple to
implement, but does not allow reliable performamdeen there are changes in the
ambient light, rotations, or sub-pixel motion. Dwwethe constraints placed by the
system, which limits the changes in the ambierttlignd the camera rotation, the
intensity based approach eliminates two of theaissu

By using the intensity values, the inter-pixel imf@tion, and the locations of the
pixels, it is possible to derive many scores whieim be used to assign unique
attributes to the feature. The correlation betwjeshthe intensity values is the most
frequently used approach due to the simplicityit &mply requires the measure of
the sum of the difference between the intensitie®ss the region used for the
feature, which is often accompanied with limitecgache in the location to manage
the search space (Huttenlocher et al., 1993).

Using the inter-pixel information, such as edgesicw are the differences
between the intensities (Harris & Stephens, 198Riréth, 1985; Liao et al., 1997;
Torre & Poggio, 1986; Ziou & Tabbone, 1997), itable to portray the relative
information in case global intensity change ocdtom events such as shades or the
room light changes. Using this measure by itsesdaot allow for the absolute
reference point, thus can potentially correlatehvatsignificantly different texture,
but with a similar arrangement in the pixel intépsihange. This approach can also
be made use of to identify higher level construotshe intensity pattern, such as
edges and corners that are not constrained by uhent perspective (Smith &
Brady, 1997). However, these techniques often reqai larger viewing area to
support the findings of the constructs.

One other frequently used approach is a templatedapproach, where a
particular intensity or frequency pattern is deteed beforehand by specific
arrangement of the intensity or simply by settihg valid bounds. The template is
then used to find the closest matching candidatbeageature. Although determining
a good candidate can be simplified, this approadhires a priori knowledge on the
expected features and potentially very sophisticad@d time consuming pre-
processing of information to convert the data totlie template, together with
dynamic adjustments to account for new surfaces.

Although the feature identification process prirtyariocuses on the unique
region, it is also important to capture the surding information to identify the
context of the feature. The increased area ofd@h&ufe improves the reliability as it
introduces more attributes to the correlation psecdhis also prevents the feature
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from being ineffective when the main unique portigncorrupted or modified
through blurring and sub-pixel motion.

To identify the effectiveness of a feature, a suprscheme was devised to
compare and rank the feature candidates. The uméggeof a feature is influenced
by the attributes discussed above, thus considesatvere made to determine which
approaches and attributes would best suit therierittor a good feature. The
processing time required to assign the score s iaduded, as this plays a crucial
role in real time operation where new featurescarestantly required.

The first and the simplest approach makes use efdifference between the
average intensity, or the standard deviation sdorégentify a region showing the
most fluctuation. The score is derived for threffedent averages, where the first
only considers the region included for the featuhes second considers the pixels
within the search area for the candidates, whigeldist considered the whole image.
The algorithm for the whole view can be seen iroatgm 6.2 below. The features
which were identified through this process depeedvily on the current view and
do not include a unigueness value into the scor@uation. In terms of the
processing load, this approach requires two pdcsdstermine the average intensity
then accumulating the difference for each pixehwithe feature.

function FindStdDevCandidate(image, candidate, feat ure):
set sum[3] = {0, 0, 0}
for row in 0 to candidate.height + feature.heigh t:
for col in O to candidate.width + feature.wid th:
for rgb in {red, green, blue}:
set sum[rgb] = sum[rgb] + image[candida te.x + col,

candidate.y + row, rgb]
set average[3] = {0, 0, 0}
for rgb in {red, green, blue}:
set average[rgb] = sum[rgb] / ((candidate.hei ght +
feature.height) *
(candidate.width + feature.width))
for row in O to candidate.height:
for col in 0 to candidate.width:
setscore =0
for v in O to feature.height:
for v in O to feature.width:
for rgb in {red, green, blue}:
set score = score + abs(image[can didate.x +
col + v, candidate.y + row + v, rgb] —
average[rgb])
if score > feature.score:
set feature.score = score
set feature.x = candidate.x + col
set feature.y = candidate.y + row
return feature

Algorithm 6.2: Feature score based on the diffezdretween the average score.

Using the difference between the neighbouring mitess, the amount of
fluctuation in the differences was accumulatedhes dcore for ranking the feature
candidates. This alternative approach requiresetatuation of both the horizontal
and vertical intensity difference for each pixe$, @ weak difference can lead to
ambiguity in that direction and can cause the festuo slide along the axis. This
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approach allows for a more consistent measure enptlesence of ambient light
changes.

Since this algorithm is interested in accumulating overall fluctuation of the
intensity, the direction of the intensity changel dhe per-pixel information is not
important. This means that the magnitude of théedihce in the intensity can be
accumulated for all the inter-pixel transition psinnstead of iterating over each
pixel. Algorithm 6.3 illustrates this process, vehithe idea of traversing over the
transition point between the pixels is discusséet.la

function FindSumbDifferenceCandidate(image, candidat e, feature):
for row in O to candidate.height:
for col in O to candidate.width:
set score =0
for rgb in {red, green, blue}:
for v in row to feature.height + row:
for h in col to feature.width + col:

set score = score + abs(image[can didate.x +
h, candidate.y + v, rgb] — image [candidate.x
+ h - 1, candidate.y + v, rgb]) +
abs(image[candidate.x + h, candi date.y + v,
rgb] - image[candidate.x + h, ca ndidate.y +
v -1, rgb])

set score = score + abs(image[candid ate.x +

feature.width, candidate.y + v, rgb -

image[candidate.x + col + feature.w idth — 1,

candidate.y + v, rgb])
for h in col to feature.width + col:

set score = score + abs(image[candid ate.x + h,
candidate.y + row + feature.height, rgb] —
image[candidate.x + h, candidate.y + row +

feature.height - 1, rgb])
if score > feature.score:
set feature.score = score
set feature.x = candidate.x + col
set feature.y = candidate.y + row
return feature

Algorithm 6.3: Feature score based on the sumeofltittuation in neighbouring
pixel intensities.

6.1.2.1 Edge map

The process of searching for the ideal featureclfyi involves moving a viewing
window and evaluating the score of the pixels booypdhe window until the search
space has been exhaustively searched or it hasdeeemed that no better feature can
be found. This means most of the regions withinuiesv will be visited multiple
times as it contributes to the feature from diffeerstarting location of the window.
By storing the difference information for the wholgew, it can avoid the re-
processing the transition information calculatetileen the pixel pairs.

This idea is similar to that used in the quantsatblock algorithm, where the
evaluated intensity information is maintained asgdiin the subsequent iteration.
This allows the number of evaluations to be redutecalmost half, since the
buffered values are only encountered twice. Theaaxemory requirement for this is
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6.1.2.1 Edge map

quite small, which only requires an array to stitve vertical transition, as well as a
single buffer to store the latest horizontal trdosivalue.

The difference between the intensity values areueeatly used for many
algorithms, hence it can be beneficial to implemamtefficient way to access this
information. Depending on the type of edges to dnesered, such as the direction,
the number of neighbours to consider, and the aqeaiterns, the storage location of
the intensity differences can be customised condigiu

Many applications which make use of the intensitrnges often neglect or
approximate the aliasing effect and use the pigerdinates to represent the overall
change in intensity experienced at that point. Thitypically done by mapping the
edge scores back to the central point of the pimglich can cause some edge
information to interfere with each other and casoaincreases the misalignment
between the edge location and the actual edgeeisdéne. By isolating the intensity
changes at different locations and storing themaisdply, it can maintain a more
precise representation of the edge information. @uke extra level of redundancy,
this requires a larger memory footprint. As theeedlglues are relative, it is possible
to reduce the memory footprint by allowing iterasoto derive the value at a
particular point. However, this introduces moregassing load which defeats the
purpose of pre-calculating the transition inforroati Figure 6.1 illustrates the
positioning of the edge map.

The current implementation only makes use of thensity difference values in
the immediate neighbours that are accessed in plesisequential scan pattern.
Although this requires one of the dimensions togumack as the other reaches the
end, the dimensions of the image is too small taseadramatic problems with
paging. Instead of arranging the map so that itssthie particular access pattern
involved in the difference approach, offsets anthpa are used to allow other
algorithms to make use of the edge map withouththesle of arranging a complex
lookup pattern to access the values.

Calculating and storing the difference score bdfanel allows for some speed
ups, but this can be further optimized by combiniimg portions that are moved in
and out of the window area to quicken the procésvaluating the new score when
the window shifts. This accumulation of the scoae ©e done at the same time as
the difference evaluation, or on the fly, such dsemthe newly included pixels are
accumulated individually and stored to be used whergroup of pixels are removed
from the window. This process is illustrated visyah figure 6 2 below, where case
1 is the initial process, case 2 is when the windosghifted horizontally, and case 3
is when the stored score at the start of the rdwasight back.
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Horizontal
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Figure 6.1: lllustration of the edge map.
The red squares represent the intensity differdmetsveen the
horizontal neighbours, while the blue squares mEme the
intensity difference between the vertical neighisour
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Figure 6.2: Evaluation of the score by applyingdifeerence in scores as the
window moves.

Case 1 shows the initial point, where all cells trhes evaluated.
Case 2 shows the usual transition where the le&tmolumn is
removed and the cells to the right of the previmgion is added.
Case 3 shows the wrapping between multiple rowsewerting

back to the state at the beginning of the row gpdyang a vertical
version of that seen in case 2. The scores frongthen cells are

thus discarded.
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6.1.2.1 Edge map

This difference approach of the window, as wellths accumulation of the
portions being changed, can lead to decreased gmiogetime due to smaller
computational cost in adjusting the current scatbar than evaluating a new score
by scanning through the entire window. Using ttemdard sequential approach, the
number of accesses to the score of each pixel is:

Widthfeature* Heightfeature* Widthcandida’[e* Heighrcandidate (24)
Using the proposed approach, this can be reduced to

Widthfealure* Height‘ealure+ 2 * Heightandidate* (Widthcandidate* Height‘eature+ Widthealur; (25)

The above can be reduced even further by rotahegirhage or traversing the
candidates vertically. Since the values at eacklmxe visited at least twice, it is
important to cache this value or derive the valegote the accumulation of the
score. Algorithm 6.4 below shows the score evabmatprocess by using the
difference in the scores, while table 6.1 summarike effects of the implementation
compared to a simple approach of summation of itensity and the difference in
the intensity.

function FindMaximumSumCandidate(image, candidate, feature):
set score =0
for row in O to feature.height:
for col in O to feature.width:
set score = score + GetScore(image, candid ate.x + col,
candidate.y + row)
for row in 0 to candidate.height:
if score > feature.score:
set feature.score = score
set feature.x = candidate.x
set feature.y = candidate.y + row
set row_score = score
for col in O to candidate.width — 1:
for v in row to feature.height + row:

set score = score + GetScore(image, can didate.x +
feature.width + col, candidate.y + v) -
GetScore(image, candidate.x + col, can didate.y +
v)

if score > feature.score:
set feature.score = score
set feature.x = candidate.x + col
set feature.y = candidate.y + row
score = row_score
for hin O to feature.width:
set score = score + GetScore(image, candid ate.x + h,
candidate.y + feature.height + row) — Get Score(image,
candidate.x + h, candidate.y + row)
return feature

Algorithm 6.4: Evaluation of score using the difece as the window shifts.

Table 6.1: Execution time of implementing the diéiece algorithm.

Sequential algorithm (ms), Difference algorithm (ms
YIntensity 2.48 1.29
Y Alntensity 3.21 2.04
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6.1.2.2 Uniqueness

6.1.2.2 Uniqueness

The attributes used above focuses primarily oniriterestingness of the feature
with respect to the current view or against somegeaof possible intensity
arrangements. Although this attribute contributethe effectiveness of the feature, a
more important measure to consider is the uniquemésthe feature within the
current and the subsequent or the previous frasmerdling on when the tracking is
done. The uniqueness is a measure of how distenttie feature is, thus requires the
comparison to the other feature candidates.

The brute force approach of comparing the featutie @very single candidate for
the most uniqueness requires §@omparison between the features, where n is the
number of feature candidates. This search spacéearduced with sophisticated
algorithms such as beam search to prune away thedeadidates early on or using
A* like algorithms to rank and prioritise the preseng of good candidates first. For
a search space with differences in the scoresptleeheads in implementing the
algorithms often outweighs the gain in speed. Thaso true when is a low number
of candidates, thus a simpler algorithm is moreliepiple for real-time applications
by restricting the candidates and making assumgtiaoout the features it will
observe.

As the candidates are exhaustively searched, tresthat are accumulated while
portions of the feature are examined can be cordpagainst a threshold value for
early termination. This simple elimination can bdroduced by comparing the
candidates one at a time and maintaining the lwese so far. Since the scores can
be made to be accumulative, the current score dladwiays be better or equal to the
best score achieved so far. If the score becomesewthan the current best
candidate, the search can be terminated for thadidate as the end score will
always be worse than the best one so far.

Another approach is to compare the difference agather candidates to identify
an outlier. The efficiency of this approach greatgpends on the algorithm used to
assign the scores which requires a large rangaloks and the actual presence of
outliers from the clusters that form amongst theres. Using a single score
compresses the clustering problem into a simplamite comparison.

This approach can also make use of the threshdlck far early termination, as
the desired feature will have the largest minimustashce between the scores. If an
evaluated score between a candidate pair is lasstie current threshold value, both
candidates can be discarded as not being the nstisictive score. It is also possible
to make use of other simple clustering algoritheugh as an uniform grid spaced
density approach using bucket sorting, but thissdus guarantee the selection of the
most distinctive feature as it finds the local nma&j thus requires multiple parses to
re-cluster the scores to identify the most disivwecteature.

By observing the trends between multiple framesgtage behaviour, such as the
presence of flickering lights and repetitive paitem the texture can be observed to
influence the uniqueness scores. The approach lsanba used to determine the
general flow of the ground using techniques sucbpdisal flow that can assist in the
disambiguation of similar patterns. The identificatand derivation of these trends
often requires significant amount of resources tnicts constraints on the
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environment the approach can be used. The typiesl vbserved by the cameras
consists of repetitive and non-distinctive intepgiatterns, which make the process
of identifying the trends even more difficult. Tkesre no guarantees in the presence
of trends, while general optical flow approachegsmidoes not work in the presence
of non-distinctive textures due to the small piasta being tracked. Although these
approaches are not included when determining teefbature candidate to use, the
idea is used when tracking the feature, as destiibdetail later. This is due to the
extra constraints that can be enforced as theatktarget is known.

The ability to identify the most unique featuredesirable, but it is not a necessity
as long as the feature can still be tracked usingraconstraints. This implies that the
resource usage and the validity of the uniqueneseesmust be balanced to best
utilise the processing capability.

The approaches above were compared using a constaamgular feature size of
16 by 16 pixels against 64 candidates by sequnshifting the feature window in
a 8 by 8 square. To compare the result againstenaliyorithms, several simple
algorithms were introduced, which included the cttg of the brightest and darkest
features, the most average feature, and also amdypdelected feature. The process
involved averaging the various attributes acrogs ff@mes, which consisted of the
average time taken, the utilisation of the rangeabfies possible which is calculated
by the difference in the minimum and maximum obedrwvalue divided by the
range, and also the uniqueness score, which ipéheentage rank of uniqueness
determined by comparing the distance in the scdries.tests were carried out on
two common ground texture types, a carpet floorang flooring, which contained
less distinctive texture patterns than on carpablél 6.2 below summarises the
results from the experiment.

Table 6.2: Comparison of feature selection algorgh

Carpet Vinyl

Time | Utilisation | Uniqueness Time | Utilisation | Uniqueness

(ms) (%) (%) (ms) | (%) (%)
max(l) 2.33 3.21 91.23 2.27 0.44 97.45
min(Zl) 231 3.26 73.23 2.41 0.41 89.06
mid(Zl) 2.34 3.22 39.03 2.29 0.46 7.83
randgl) 2.38 3.31 49.57 2.33 0.43 51.46
maxE|lx, - lave @) 3.9 1.32 99.67 3.63 0.61 97.54
Max@E|lx.y -l ave view]) 3.81 1.22 96.66 2.61 1.48 95.55
mMaxE|lxy - lave reaturd) 4.09 1.44 97.1 3.01 0.58 88.05
max@|lxy -Ixeiyl + [ky-lxyl)| 3.37 1.26 65.58 3.84 0.56 37.12
Max@E|ly -Ixsiyl * [lxy-Ixy+a]) | 3.43 0.19 57.25 4.43 0.01 93.74

The low utilization scores in all of the algorithnssdue to the limited range of
intensities that are available within the smallwiieg area. This was to be expected
due to the repetitive nature of the ground textuféss means the algorithms which
are based on the relative intensities are affeeted more due to the similarity in the
intensity and the blending which occurs from thasahg.
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The results above show that the naive approaclifes dieatly. However, it was
noted that the majority of the best utilised feateither had the highest or lowest
score. This means the utilisation score can bédurtmproved by tracking the top
and bottom two scores and selecting the one wélgtkater difference.

Using the averaging algorithm indicated high legéluniqueness, but showed
slower performance. Note that the algorithms wemplemented without using the
difference algorithm introduced earlier, thus canteptially be sped up to improve
the performance. The edge score based approachetieoother hand, did not
perform well due to the repetitive nature of thetidee patterns. The lower utilisation
for the product of the edge score is due to themaiger range and the non-linear
distribution of scores.

The low uniqueness score means it would be mofiewifto identify the feature,
as there are more candidates with similar scoresieder, it is important to note that
although the feature selection process may baseritexzia on one attribute, the
feature tracking algorithm used to correlate betwieatures does not have to rely on
the same attribute. The uniqueness is simply onasuore to rank the feature
candidate for selection.

One of the major issues with the edge based appesas the effect of sub-pixel
motion, which can significantly modify the scord@$ie lack of absolute information
can also reduce its effectiveness when shapedpatiee repeated. Although this is
also problematic when the intensity informatioruged, the controlled lighting and
the ability to interpolate absolute values to ap#te intensity changes from sub-
pixel motion means it is more attractive for thpkcation. Since the feature must
be tracked around the view, the use of the viewamga average allows better
portrayal of the feature's effectiveness, thusmplémented as the current feature
selection algorithm.

6.1.3 Shape and size

When specifying the characteristics of the featat&jbutes such as the size and
the shape contribute greatly in controlling theatality, processing requirements, as
well as the ability to make use of any a priori Wiedge about the typical types of
textures it will observe. Using a small feature \doallow faster processing, but
suffers from the reduced variety in the captureténisity, which causes non-
distinctive features to be selected. A larger fegtan the other hand, can allow more
distinct features to be selected due to the adiditioonstraint from the extra pixels.
However, this leads to the increased processinginggent and the additional
memory consumption in maintaining the intensity ang derived values.

Since the feature involves analysing a group oélgixa consideration into how
the pixels should be arrange is required to magaribst of the available pixels for
the feature selection process. The different agarant formed by the pixels can
allow different styled features to be captured sittican cater for certain trends to be
captured more effectively than others. The usesajuare or rectangular shape is the
most common approach due to the sequential acedtesrpand the simplicity in the
implementation. This is also due to the arrangenaérthe pixels in most images
where the pixels are of uniform sized squaresnged densely one after the other.
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Deviation from this shape can include the changether primitive shapes, such as
circles to focus attention to a particular poirthex than a region, or a line if certain
motions can be constrained to only have one unkndwmension. This choice

depends on a priori information about the grounxtures and the orientation

considerations which can affect the placement hachumber of pixels required at a
certain location.

The use of the solid rectangular shape also mage®iusome domain knowledge
about the frequency or the distinctive texturesne direction to another. As well as
the efficient indexing, the density can also assisthe case of when motion blur
occurs by capturing the adjacent information to pensate for the interpolation in
the intensity. The orientation and frequency of thetion blur plays an important
role in the above argument, which is constraineduth the original assumption that
the feature will primarily translate in one axisdathe effect of the blurring will be
limited due to the short exposure time.

When observing the trends of the scores on sonfacas, it was noted that some
portions of the image did not make much of a cbaotron to the scores, especially
when using the edge based scoring techniques.athsté being constrained to
primitive shapes, alternative shapes were desigilmedake advantage of this
observation to determine the effectiveness of nyodifthe shape to suit the texture.

This has lead to the formation of a straight eddedut shape where the central
square portion of the feature is removed. Thisus tb the structure of the carpet
floor, where the bundle of threads that make upgtis®ves are present. The regions
between these bundles show large differences innteasity, whereas the bundled
portion itself does not show any interesting traoss for edge based scores to make
use of. By skipping over these regions throughnatig the hole with the bundled
portion, the processing load should be reducedowrtthindering the effectiveness of
scores. The purpose of this shape was to measereffédctiveness of a customised
shape based on the observed texture, which couleéteemined dynamically.

When implementing the donut shaped approach, ama esdquirement is
introduced to make sure the feature candidatesidecthe view with the optimally
aligned position. This can potentially increase iuenber of candidates depending
on the interval and the size of the unattractigare.

The last shape to be investigated was a scattarddfagmation with uniform
spacing, intended to maintain reasonable efficiethcgugh regular intervals while
increasing the coverage at the cost of the neighiguletails surrounding a pixel.
This drawback means interpolation of neighbourd wit be possible when sub-
pixel motion occurs.

By extending the idea of configuring the featurapto suit the environment, an
approach involving a dynamic analysis of the swfexture pattern is required. The
use of this approach can potentially provide thet hange of scores for a fixed
number of pixels. However, like other dynamic agattes, the periodical evaluation
of the current state and configuration would casigeificant overheads, as well as
relying on the presence of predictable pattercart exploit. This is due to the rapid
changes in the texture caused by the small vieaneg and the frequent motion of
the robot. Instead, the manually configured shapksizes will indicate the validity
and effectiveness of the shape and configuratibibaites to suit the environment.
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They will also allow the switching between thesenfgyurations for particular
textures if desired, as the operating surfaceshefrobot will be limited in the
majority of situations.
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Figure 6.3: Shapes and sizes of the features tbanheestigated.
The highlighted portions show the size and arraregerof the cells
being considered.

Figure 6.3 shows the various shapes and sizesabia tested using the same
benchmark attributes as the previous experimeniéasure the effects on the
algorithms using intensity and the difference ia thtensity as the score. Note that
the time consumption only covers the process dititleng the feature and not the
tracking process, thus should be viewed relativaly, the correlation time will
increase dramatically with an increased numberndalg. The number of candidates
was increased to 256, as the small features wertagh to measure the running time
accurately. Table 6.3 below summarises the findings

The results show that by selecting between the mnaxi and minimum score, as
discussed earlier, the uniqueness score could baaimed very high in most cases.
The algorithms with obvious difference in the ranly have been due to the lack of
variety in the sampling data or a particularly hetch of ground texture. In any
case, the modified feature shapes did not showfisignt signs of improvement, as
the rate of finding the outlier using the proposedring algorithms were already
quite high.

In both experiments, the utilisation score did sledw any obvious relevance to
the uniqueness score. It does, however, show thsilpe relationship between the
effectiveness of the algorithm on different surlacas the uniqueness scores tended
to be slightly lower when the utilisation score wawer. It may be feasible to run
some simulations in the future to investigate aegds which may be present, which
can be used to modify the feature size and shape.

As mentioned earlier, the processing time that massured is only that of the
feature selection process thus should be kept ali aspossible. With this in mind,
the 16 by 16 square shape was selected as thestiegk as it also performed well in
isolating the most distinct feature.
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Table 6.3: Comparison of different feature shapessizes.

Algorithm Carpet Vinyl

Time | Utilization | Uniqueness Time | Utilization | Uniqueness

(ms)| (%) (%) (ms)| (%) (%)
Score maxt|lxy - lave wiew])
8x8 square 2.9§ 5.27 98.07 5.78 0.72 92.23
16x16 square 5.63 1.85 99.65 4.05 1.57 98.97
24x24 square 18.06 0.88 990.84 17,39 1.03 95.78
32x32 square 32.95 0.99 99.79 30.07 0.98 99.43
16x8 rectangle 3.13 3.74 99.54 5.92 0.88 92.58
24x16 rectangle 7.86 1.65 98.78 5.62 1.12 99.18
16x16 — 8X8 donut 3.09 261 99.7 7.56 0.88 99.64
24x24 — 8X8 donut 17.03 1.22 99.65 16,68 0.57 85.59
24x24/2 spaced 3.32 2.19 62.5 3.96 1.76 92.76
32x32/2 spaced 6.97 1.12 99.72 6.37 0.97 99.3
32x32/4 spaced 2.81 2.77 99.86 3.12 0.48 97.94
Score MaXE|lyy —lxe1y] * [lxy=lxy+a])
16x16 square 22.41 1.01 99.41 19149 0.018 99.71
24x16 rectangle 31.88 0.57 99.13 31,86 0.016 89.84
16x16 — 8X8 donut 17.69 1.31 99.77 18.3 0.5 72.58
32x32/2 spaced 20.96 0.85 99.67 20.66  0.029 99.1

With the ideal feature identified, a copy of thgiom is stored until the next frame
is captured. The feature is then searched for withe next frame to determine the
displacement of the feature. The opposite procésfooing the entire frame, then
finding the current feature in the previous frame allow adjustment of the features
until a good match is found, but requires a muctdafootprint and processing time
to be included for the backtracking algorithm.

6.2 Feature tracking

The core of the feature tracking algorithm invoheesimple region alignment
algorithm based on the distance measures betweeattilibutes of the feature and
the current view. Instead of investigating the etd#int measures to consider the
distance, such as the edge strengths and histodkuasg et al., 1999; Pass et al.,
1996), the intensity information was used due $osimplicity, adaptability in case
the texture pattern is slightly modified betweeanies, near consistent locality, as
well as the consistency with the feature selecpoocess. Although the absolute
values are susceptible to shifts from ambient lgji@nges, this effect should be quite
small due to the customised configuration usingsthle light source.

Due to the small time interval between frames, test frequently occurring
changes to the feature is the interpolation effettveen adjacent pixels when sub-
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pixel motions occur. This can invalidate the stofedture information, as the
distinctive pattern may not appear within the viéMie tracking algorithm must
continue to operate even when the typical scorgbefegion alignment fluctuates
and must attempt to differentiate between sub-pixgtion and the incorrect
selection of the feature location.

Instead of simply scanning for the pattern in @dinsequence, the scan pattern
can be controlled to increase the efficiency of #éhgorithm by finding the most
potent candidates quickly. Since the majority ajiea alignment algorithms are
based on a score accumulation approach, this tam dynamic thresholds to be set
for early termination instead of continuing to exatk a badly matching candidate.

6.2.1 Motion prediction

Closed-loop techniques which make use of the feddlvdormation to anticipate
the current state, such as Kalman filters (Kalm&860; Welch & Bishop, 1995),
allow effective modelling of the motions by predhict the likely state of the robot in
the subsequent frames (Crowley, 1995; Ghahrama@B8;1 Guivant, 2002;
Negenborn, 2003; Roumeliotis & Bekey, 1997). Sevati@ibutes can be made use
of to assist in the process, such as dead reckoestignates from the motor
command given to the wheels by knowing the dimersf the wheels, the encoder
feedback counts, the velocity from the wheel rotatand the clock, acceleration
from the change in the velocity, and the locatidbrwbere the feature was captured
within the frame. Some of the measurements aretmaed internally, while others
require extraction from different modules of thebat thus an appropriately
synchronised or time-stamped measurement is rebuice make use of the
information without corrupting the calculation.

Due to the noticeable latency in receiving the eecovalues, the feedback
information from the wheels was not used as patth@imotion prediction algorithm.
The information it can provide, however, reliesaprecise motion model between
the motor rotation and the motion of the robot.sTinvolves a precise knowledge of
the attributes involved in the motion, such as teeel's circumference under
compression, slippage, backlash and the followutinomotion for non-breaking
motors. This is especially problematic in many ratenvironments where these
conditions can vary significantly. The additionadarmation can thus be treated with
a lower weighting to avoid potentially corruptirtgetprediction if they are required.

Since the process between sending the motor comarahthe motion eventually
being carried out by the wheels is reliable, witte texception of overridden
commands, the actual motor command that is genktlatehe high level processes
can be passed onto the motion predictor to aidatgerithm. This information is
especially useful when the search area is large tdua rapid change in the
acceleration.

This implementation involves the use of a commaneug which stores a small
list of sent commands to be able to construct tiiesipated motion of the robot. A
list is required here due to the latency betweerisg the command and observing
the motion. Since the latency can vary dependingthen processing load, the
commands are removed when there is a noticeablegeha the command pattern,
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which is can include the detection of a changéhendirection and when the size of
the queue becomes a larger than a threshold wahieh indicates that the there is
too much delay or a command has been missed onterngieted. One way to

manage the commands within the queue is to comphessommands of the same
direction, which can be simplified by the restrettaariety in the commands that can
be sent. The current implementation caters for hilgisimply using the direction of

the motion to add to the anticipated location.

There are three other attributes used to deterthméocation of the feature in the
subsequent frame. They are the location where ¢htuife was captured, current
velocity and the acceleration vectors that arerdeted in the previous cycle. The
velocity is determined by the change in the rolmsitoon from the last frame, while
the acceleration is calculated from the differemcehe velocity. The short term
dependencies of these values mean the valuesuwzodte quickly. This allows for
quick adaptation to the rapidly changing velocitias well as catering for when
sudden motions occur, while still considering titdrical information to encourage
smooth motion. Note that these values are not temendant, although the frame
rate should remain reasonably consistent due tqtbeess cycle and the capture
rate, which can potentially introduce errors to thetion prediction. Figure 6.4
below illustrates the four components which conti@s to the motion prediction.

Eeatliiellocation

Meker €

IAticipatediiocation

Figure 6.4: lllustration of the vector componentsdicting the robot motion.
The different sources of motion prediction are gggpindividually
to identify where the feature should be searched.

The errors in the prediction that are included ialrifan filters are indirectly
corrected within the two vectors, since the disphaent values are based on the
precise observed motion. The prediction only hasrg small and indirect influence
on the accuracy and more to do with the time comsiom, thus the effects of
incorrect predictions are negligible. The occureerod errors in the prediction is
quite frequent since the robot frequently makesisidjents to its trajectory and also
due to the discrete motion distances that can lsereed. Although the actual
velocity model is more of a sigmoid shape, the $ngediction model still allows
for a good estimation of the robot's motion.

Quantifying the effects of the prediction can beeldn several ways, such as the
rate of a perfect match, average error distancehén prediction, the memory
footprint, and the time taken to execute the neansgattern. Although the most
practical measure would be a time based measwseetd an improvement was made
in the processing time, there is little meaninghaiit a very high rate correct
prediction. A more useful measure, the average gaioe, is determined to illustrate
the overall correctness of the prediction. FiguEeghows a sample histogram of the
error rate of the algorithm when the robot is undperation for approximately 2
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minutes.
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Figure 6.5: Histogram of prediction error rate.
The hit rate shows that the majority of the predicterrors are
quite small.

As figure 6.5 indicates, the successful rate otljoteon is quite high compared to
those where the predictions have failed by a sgamt amount. An interesting
observation is shown where the rate of a prefeadiption is lower than those where
the prediction is off by one pixel width. This iampally the result of an incorrectly
modelled motion, such as where the acceleratiomgd®sm and some sub-pixel
motions that are not accounted for. The other dmuting factor, which will be
described in more detail later, is the lack of ation of the algorithm when no
motion is detected. Nevertheless, the algorithmwshgromising results in
anticipating the current feature location.

6.2.2 Radial scan

The resulting location can then be used as theirgjalocation for the region
alignment. Presuming that the prediction is realynaccurate, the feature is likely
to be found at or around the expected location.tidditional scan pattern involves a
raster sequence, where small coordinate changeappieed to allow simpler and
efficient data access and execution of code. Nwkdue to the unique alignment of
each pixel involved when comparing the two groupspixels, the difference
accumulating approach used in the feature scoreiai@n cannot be applied here.
Since the goal is to find the best fitting posititime scan pattern can be changed to
prioritise the positions that are closer to thedpied location instead.

To arrange the sequence such that the positionchareked in the order of
increasing error distance, a radial scan patteintieduced. This shape must also

94



6.2.2 Radial scan

consider several other factors, such as likelihobdcalar and axial errors in the
prediction, un-modelled environmental influencesid aalso the efficiency of
generating and traversing the non-sequential coatdioffsets. Although the motion
of the robot is used in the prediction, the proipodl aspect of the motion in the two
axes is not included in any adjustments. The dorkaowledge about the motion
patterns of the robot can be used to modify the gedtern to anticipate more drifts
in one axis over the other. Since the robot's milgnanotion is in the longitudinal
direction, the scan pattern can be changed to lgoticl shape, where the longer
portions of the ellipse align with the directiontbe motion. The shape reflects the
tendency for more un-modelled contributors to thigot motion given the direction
of the traversal. These include issues such asoitleng motion due to backlash,
sudden acceleration from compression and decomgness the tyres from bumps
and the change in surface friction, and slippage.

The sequence of the scan must be dynamically cllatggending on the various
state of the robot, which requires consideratiothadditional costs involved. This
generation at every cycle leads to a significanbam of processing load (Eberly,
1999), thus a lookup table is implemented to fijesterate the scan pattern offsets in
a pre-processing stage before the robot startspésation. Since the number of
variation to the pattern can be quite large, this lead to an extremely large memory
footprint and potentially cause paging issues. H@amesince this motion prediction's
primary purpose is to hasten the process of fintlegbest alignment of the feature,
the algorithm is allowed to take short cuts to @ase the efficiency over the
accuracy in the optimal result. With this in miride shape of the scan pattern is
fixed to the most common shape and the coordintisets of this are used for a
simple lookup at runtime. Figure 6.6 illustrates §tan sequence by using the offset
lookup table.

139]131{123|115|104|106|116|128|136

135|114103| 89| 81| 73| 67| 58| 64 | 68| 74 | 86 |100{107]132

122|99|85|63| 53|43 |37 |29 24|26 | 34|40 48| 60| 82| 92117

127198 | 80|57 | 47|33|21|17]|11| 6 | 8 | 12|18 30|44 |54]|75] 93|124

113| 91| 72| 52|39|23|16| 5|3 | 1|2 |4 |13|22]|38]|49]69]|90|108

126|197 | 79|56 |46 32| 20| 15|10 7 |9 |14|19|31]|45]|55]|76] 94|125

121 96|84 |62 | 51|42 |36|28|25|27|35]|41|50]|61|83|95|118

134|112|102| 88| 78|71 |66 | 59| 65| 70| 77 | 87 |101|109|133

138|130{120]111|105/110]|119|129]137

Figure 6.6: lllustration of scan sequence using#dkal scan.
The numbers indicate the search order, which stdrthe center
and expands out in a clock-wise direction.

Due to the limited motion capability, the upper bdwn the distance was used to
restrict the scan pattern size. This allowed tliget$ to be generated during the pre-
processing stage by iterating through all longiattatitudinal pairs and ranking the
resulting distance. The elliptic shape meant thatdymmetry can be exploited to
only generate a quarter of the offsets. Since soffsets have the same distance
measure, the ranking will be fixed in a predefisedquence when they are stored in
the lookup table. Although it is not critical, dsstis carried out in the pre-processing
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stage, the distance measure does not have to beesmoted, as the magnitude is
used to rank the offsets.

Due to the requirement that the pixels within that@ire and the candidate must be
correctly aligned, strategies such as partial nestatannot be used to modify the
scan sequence. However, one possible case wherentty be applicable is when
there is a reasonably high level of correlatiort, there is a slight mismatch in all of
the pixels. This is likely to be caused by sub-pixmtion, thus finding a better
candidate within the immediate neighbours may bsesibte. Rather than using
irregular sequences, which can introduce extraldesecomplexity and overheads,
the scan sequence is left as consistent.

With the sequence now defined, the algorithm resgu&r mechanism to determine
if the target feature has already been found. Siheendicator of this is the exact
correlation in the intensity values, this is unhkéo occur. The algorithm instead
determines when a better candidate cannot be fdumsl.early termination approach
is achieved by maintaining the best correlationrescavhich can be accumulated
during the correlation, such that as soon as tbeesaf the current candidate reaches
past that point, it can be discarded and the namtlidate in the sequence can be
compared.

To measure the performance, the algorithm was coedpa a simple linear scan
pattern with and without using the threshold valliee test was carried out using a
feature size of 16 by 16 pixels, where the seareh was an ellipse with longitudinal
range of 10 pixels and latitudinal range of +4gbsxon a carpet surface and was
averaged out over a period of approximately 1 ne@ntlib compare the efficiency of
both algorithms equally, the same number of passtiwere compared as candidates.
Since the radial scan traverses through 135 diffepesitions, the linear scan was
conducted over a 15 by 9 region. To make sure @gorithms performed
consistently, the robot's speed was reduced to teefeature displacement within 5
pixels. The results of the experiment is summarisddble 6.4 below.

Table 6.4: Processing time in linear and radiahgzatterns with and without early
termination.

Without threshold (ms) | With threshold (ms)
Linear scar 7.866 6.964
Radial scar 10.166 5.624

As the results show, the overhead in the non-seglieffsets is quite large as the
mirrored offsets were generated at runtime. Howdwermplementing the threshold
algorithm, there was a dramatic improvement in phecessing time, as the best
candidates were found very early in the process.

While the effectiveness of the motion predictiomysl a significant role in the
performance improvement of the radial scan, itl$® affected by various surface
textures. In the presence of higher variation i@ sicores, which is related to the
utilisation scores used in the earlier experimeéhg scores are more likely to
accumulate past the threshold value quicker, thymaving the effectiveness of the
algorithm. As the typical ground texture considtsmall amount of fluctuation, it is
important to keep in mind of the relationship betwehe overhead and the number
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of comparisons saved. A possible approach to taénggetn the future may be to make
better use of the colour information, such as usingpmbination of the RGB and
HSL scale (Cumani, 1989).

While using the threshold value has shown to imertive efficiency of the
algorithm, the scan must continue to the end ofgpieal to make sure no better
solution can be found. An alternative to the radan is to apply an extra cost to the
correlation score as the error in the predictionreases. This encourages the
candidates that are far away to fail earlier asidleal match is likely to have been
found already. This also assists in disambiguatiegwveen similar features and
encourages a smoother motion being observed. Qgamportant drawback to this
approach is that if the added cost is too higbait suppress the ideal candidate and
restrict the motions from being registered.

Initial results using an offset value showed thaither biased the correlations too
much or none at all. Due to the rapidly fluctuatimature of the ground textures,
selecting an appropriate offset becomes a diffiagk. Rather than investigating the
optimal weight, which is likely to be derived fraime range of correlation scores that
are being observed for the current surface, thsirgais removed in the current
implementation and will be left for future invesdigon. If two candidates both end
up having the same score, the one closer to tligien is chosen.

6.2.3 Sub-pixel motion

The approaches involving the accumulation of tleallcoordinate and orientation
changes are often criticised for their lack of eworrection mechanism from small
errors that are accumulated over long traversdis. use of external pose indicators,
such as landmarks and measurements from othemnsg;stan assist in re-calibrating
the pose. However, the limited access and avathalbd such techniques, caused by
visibility problems or when exploring new territesi where there are no existing
model to make use of, does not allow the mobileotdb depend on them at all
times.

Often times, the errors are unnoticed by the algms$, thus leading to warped
poses where the robot's internal and actual poadugily becomes significantly
different. By estimating the errors, localisatidgaithms can allow adjustments to
the pose measurements, especially the confidenkesyato flag the subsequent
observations as potentially erroneous. It is alsssile to make some corrections to
the errors by taking other measurements with ttelable sensors to disambiguate
the readings. Many approaches leave this tasketgltibal localisation portion using
landmarks or map correlation techniques to cotrexpose.

In the presence of repetitive textures, blendingtensities from interpolation, as
well as noisy artefacts, the feature tracking atbor is constantly tested for
reliability and accuracy in difficult circumstanc&he proposed algorithm is able to
perform quite effectively even when similar pateeappear by appropriately setting
the feature size, frame rate, exposure time andréo&ing algorithm. However, the
algorithm is frequently troubled by the inabilitg find the exact position of the
feature due to the discrete levels in the featosations (Turkowski, 1990). Although
the algorithm is often able to find the adjacergipon to the actual feature position,
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the small amount of error accumulates to a sigaifi@amount of error over time and
must be reduced before it has a cascading effect.

One approach that is proposed is to store sevepag of the feature which have
been interpolated with its neighbours at variowgpprtions to simulate the effects of
sub-pixel motion. The region alignment algorithnm ¢hen match against the original
feature and the interpolated versions to deterntiee best candidate. This naive
approach dramatically increases the search spacthdofeature, especially when
considering multiple weights to generate the varimterpolated versions. It also has
the potential to introduce more errors from theaduction of implausible and fake
features which may score well, but should not distumatch.

Several improvements can be made to the above agprstarting with the
reduction of the search space by controlling thévation of the sub-pixel motion
checks. By specifying appropriate conditions faggering the sub-pixel motion
check, such as when the predicted location is ihrikgh, which can indicate a
partial match, when the rank of the predictionesyMow, which can be the result of
large amounts of interpolation on highly repetitiegtures, or when the best match is
significantly far away from the anticipated locatjahe number of checks against the
interpolated features can be reduced, as well lpgnlgeprevent false positives in the
feature's location.

Implementing the ranking of the top few matches bandone quite simply by
maintaining the top few matches in a sorted maanerusing an insertion sort like
algorithm of adding from the worst scored candidatend, as the rate of
encountering the best candidate is lower than emedng the almost best
candidates. Since the algorithm only requires dlsmanber of candidates to check
for sub-pixel motion, the other candidates candmeaved from the list. By using the
threshold approach, the value to be compared agaitide the worst candidate in
the list, which will be discarded if a better caate is found.

Another improvement can be made by storing theosmding pixels of the
feature instead of pre-generating the interpolatecsions. This will allow the
generation of interpolated feature with any weiyhen desired. An alternative is to
interpolate the current view instead of the featiwoen the previous frame, as this
will help reduce the memory footprint size. Howevieoth these approaches will
require knowledge about what weights to use or @date similar processing load
issues as before.

Using the group of best matches, an alternativerilgn can be implemented by
merging together the neighbouring matches. Aftee tbp few matches are
determined, the distance between the best matckhansthers can be checked to see
if they lie directly next to each other. If so, theatches can be merged together
depending on the difference in the rank or theesless of the correlation scores. The
weighting used to interpolate them can also berobdetl through the scores to
determine the approximate positions of the feature.

Although these approach caters for a more flexa@eghting of sub-pixel motion,
it can potentially register sub-pixel motion whemen existent. The erroneous
measurements occur quite frequently, as the intem$iaracteristics are naturally
interpolated across neighbouring pixels. This tesalthe neighbours having similar
texture and thus also being ranked high. Insteadnaply merging the highly ranked
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candidates, the newly construct candidate anddhelation score can be compared
to verify the correctness of the merge.

The use of the landmark can allow certain sub-pixefions to be detected as it is
tracked over multiple frames to narrow down theeptal pose. However, due to the
limited view area and the rapidly moving groundtteg, the criteria for a long term
landmark is very difficult to achieve. One of thenditions which can allow long
term landmarks to be found is when the robot's emois very small. When no
motion is observed, the ground texture may haveerguhe a very small movement
which was not registered. However, if the featusera-captured, the very small
motion is lost without any way of recovering from Instead, the feature captured
from the previous frame can be re-used until thallmotions accumulate until the
motion becomes distinctive enough to be registered.

The simplest implementation in obtaining a higheecgsion in the motion
tracking is to make use of a higher camera reswiut start off with. The additional
pixels allows for a more detailed pattern to betwagul, which can simulate the sub-
pixel motion when the granularity is changed. Thilgigonal information does
require more resources to process, while the treasgon and memory copying
process are often the bottle-neck when analysisnslucted on a reduced portion of
the image. This can sometimes cause frames toippeskand introduce delays in
the other processes. As some of the USB camerdstaeapply software enhanced
high resolution capturing and harsh compressioardhgns, this can introduce more
noise when observed at an individual pixel level ptaces more stress on the image
restoration filters that are used.

The current implementation of the various sub-pmetion strategies involves a
combination of some of the approaches discussedeatm provide a more robust
algorithm in detecting the sub-pixel motion andempting to register the actual
motion.

When the feature is chosen, the pixel intensitfeth® feature and the immediate
surrounding pixels are stored. The weights beireglus interpolate them will vary,
thus storing this will allow the tracking algorithtm later determine how the feature
should be viewed. When scanning through the cateBdar the feature motion, the
top three candidates are maintained. The small puralbows the thresholding to
remain efficient while still allowing the candidatéo be combined in both axes. An
additional criterion is used in the merge, whichktriets the second best candidate
and third best candidate to only merge with the basdidate and must merge in the
perpendicular direction to each other. This elirtesathe case of implausible sub-
pixel motions.

To utilise the confidence of the candidate, therelation scores are used to
weight the interpolation. This is done by diving thcore of the best candidate with
the sum of the best and the other candidate. Tleevia then applied to the
coordinate point of the best candidate, as welth&s weight to derive the new
intensity values, which is then correlated and carag against the best candidate.

To check to see if the actual motion was near tkdipted location, the predicted
location and the four adjacent positions are irdkaed using a predefined weight of
0.5 to generate four more candidates that areiatdoded. This acts as a fall back
mechanism in case the ideal location was skipped tiu badly interpolated
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intensities. Due to symmetric weights, it is poksibo efficiently generate the
interpolated values by re-using the merged valaeshie extra candidates. Note that
this algorithm can still be executed even if thetlmandidate was found where it was
predicted to be.

With the components of the tracking algorithm definthe overall accuracy of
the visual odometry can be compared. Table 6.5 shtw results of moving the
robot for 5m in a straight line on a carpet flobo. measure the difference in the
precision, the experiment was carried out for tamera resolutions to determine the
reliability using a higher resolution. Note thatrt@intain the consistency between
the algorithms, the operational speed of the rokas modified. This meant the
difference in the processing load was isolatedh® handling of the image data
stream and not the algorithm itself.

Table 6.5: Precision of the visual odometry usirifipcent sub-pixel motion
correction techniques.

Algorithm Error (%)
Resolution

160 x 120 | 320 x 240
None 55 1.93
Merge top candidates 1.43 1.41
Fixed weight with neighbour 5.2 1.67
Variable weight with neighbour 1.02 0.32
Combined 0.98 0.28

6.3 Motion detection

With the motion of the feature determined, the oeatan be converted to
determine the motion of the robot. The triangulatiapproach allows this
instantaneous motion to be derived and accumulabed, is limited to only
translations due to the lack of rotation.

Since the algorithm uses an accumulative approihehyobot must ground the
coordinate point to some known location. At thisgs, no other sensors or
algorithms have been introduced to take advantdgeeth recognisable landmarks,
thus the starting position of the robot is usethasorigin.

The algorithm currently does not make use of a l&mm feature to calibrate its
pose, thus the accumulative approach is still prondrifting in the tracking and
camera configuration errors that can quickly acdateu To help reduce the
configuration errors, it is important to make freqt calibration measurements to
improve the accuracy of the configuration attrilsus® they converge to the actual
value.
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6.4 Summary

The proposed feature tracking algorithm consideenympractical aspects of
ground texture tracking for visual odometry. In rpiso, it incorporates many
constraints that are based on the environment aedask. This allows efficient
utilisation of the available data and resourcesnjorove the accuracy and efficiency
of the algorithm for real time application. The algle constraints placed are that the
view's proportionality remains the same, the grotexdure contains distinguishable
patterns, and that the operational speed of thet n@mains controlled to allow the
captured texture to show up in the subsequent frame

The various techniques provide a reliable and iefitc approach in tracking
ground textures, which forms the basis for the alisodometry algorithm. The
components that were considered include the sefectiiteria for the feature, the
number and arrangement of the individual pixelg thake up the feature, motion
estimation using feedback information to improve tefficiency of the search,
modified scan patterns to encourage early detectidhe ideal candidate, and also
several algorithms to reduce and recover from sxblpnotions due to the discrete
amount of change the camera can determine.

Although the majority of the testing of the aboypaches were conducted on a
set of known surfaces, preliminary tests showet tth@algorithm can operate quite
well on many other surfaces that are typically seemdoor environments. A more
comprehensible experiment on this is carried owthapter 7, which do not require
the modification of the attributes determined here.

During the testing phases, the tracking showedediufent occurrences of large
jumps away from the predicted area. This behavisas commonly seen when
frames were skipped or when motion blur had occdudge to bumps or jerks of the
robot, especially when using the higher resolutidns meant extra precautions had
to be taken when setting the camera configurattotbates, such as the frame rate
and exposure time to reduce the occurrence optbislem.

The approach investigated the effectiveness ofnglesi non-rotational feature
tracker of ground textures, which has showed primgigesults in observing the pose
changes of the robot. In its current state, thberiiggie has too many limitations to be
used as the sole technique for the mobile roboalikation. To target this, the
technique must be integrated with other approacres modules to improve its
effectiveness and accuracy. The strategies foatleigliscussed in chapter 7.
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There are many different approaches to trackingotiee of a mobile robot. The
approaches can be separated into two broad categuaiere one use of an observer
to monitor the motion of the robot, and the othemp the robot measuring the
motion of the environment with respect to itselheTtwo approaches can differ in
precision, reliability and also on the availabilisince the observer must be placed
within the environment before the mobile robot &ndw its own pose.

To track the pose from the robot's perspective|dbation and orientation can be
derived by monitoring how the robot has moved thgtodead reckoning or aligning
itself against landmarks. The landmarks can be myeely determined or given to
the robot as markers to look out for, but in dostg requires interaction with the
environment before the robot, thus limits the capas in similar ways to having
the observer. By selecting the features dynamictliylaces an extra burden on the
localisation algorithm to identify and re-locateetHandmark from different
perspectives. This can often only allow for locak@ information to be derived and
require multiple landmarks to be viewed simultarsbptio accurately triangulate its
position. The simultaneous tracking and fusing afdiltiple landmark tracking
introduces many new issues on top of the standac#tihg problem.

7.1 Multiple tracker

The use of the tracker introduced in chapter 6 dtesvn promising capabilities
for mobile robot localisation, yet the constraiwtsich improve the efficiency restrict
the detectable motion to simple 2D displacements.ittto be a useful localisation
technique, the rotational motions must also beuraptto allow the robot and world
coordinate axes to be correctly aligned. By intdg a second feature tracker on
the robot, the two detected motions, as well astimstraint between the positions of
the two trackers can be used to determine rotdtaranges. The two motion vectors
that are detected can be used to determine thantasieous center of curvature
(ICC) of the motion, while more than two can intwed redundancy to improve the
accuracy or disambiguate the inconsistencies inl¢bected motions.

Although the introduction of more trackers introdsacmany new capabilities,
extra problems are introduced, such as the ideahtin of the trackers,
synchronization, as well as the extra processiragl.ld0Many of these issues are
discussed and strategies are introduced to congtriacalisation technique capable
of detecting translation and rotation.

7.1.1 Testing and validation

Throughout the development process, the variousritthgns were tested using a
consistent set up, which comprised of a translatioest of traversing forward and
backwards along a guided rail, and a rotational aesund the center of the robot
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using a lazy susan. The purpose of the guides nsaiatain a consistent motion for
the different implementations to be compared. Altjio the motions are not entirely
realistic, it allows the different algorithms torapare their performance evenly as if
under ideal motion conditions. A more realistict tisscarried out later on using the
derived localisation algorithm.

The rail was placed near the center of the robotitfto slide against, but due to
the imperfect set up, it allowed for slight rotaisoto occur. The rotational test was
also not perfect, as the robot had to be lifteghsly for the rotating plate, thus the
amount of ground contact was not normal and theecarmeight parameter had to be
adjusted. With both tests, the placement of thedegiiwas done by manually
observing the robot's motion, which may have cbotgd to some errors in terms of
the expected motions.

The tests were conducted on a flat carpet surfagggua tape measure and a
protractor with 0.5 mm and 0.5 degree of precigiespectively. The forward and
backward test was conducted by moving forward foneter, then reversing along
the same path. The rotational test was done by uriegs the algorithm's
performance over a 360 degree rotation, then rexgethe same amount to get back
at the original orientation. The accumulated poas then compared to the expected
motions to determine the accuracy. This was carogdfor five repetitions each,
then averaged to indicate the consistency of thiemeance.

The purpose of reversing the same path alloweddhmval of any scale based
inaccuracies which many not have been ironed batsb has the effect of traversing
over the same ground pattern, thus potentiallyrstwvg or doubling any effects of
error prone areas. Figure 7.1 illustrates therigstet-up.

—
1m 360

O 1

Figure 7.1: Testing configuration.
The circles represent the robot, the outlined asramdicate the
forward and clockwise motion tests, while the sohdrows
represent the reverse and anti-clockwise motions.

7.1.2 Single camera

Techniques involving the tracking of multiple fe@s are commonly applied in
machine vision, where the extra trackers allow algorithm to focus on several
different entities simultaneously, or to providéetter approximation of the motion
by a voting or interpolation algorithms, such aprapches which use optical flow
(Bretzner & Lindeberg, 1996; Camus & Bulthoff, 19%&ni et al., 1997McCarthy,
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2005). Depending on the criteria of the tasks ajhygroaches and techniques used can
vary significantly to optimise the resource usagd anproving the quality of the
measurements.

Many of the issues with regards to identifying aratking ground textures has
already been considered, thus this portion of therghm can simply make use of
multiple instances of the developed tracker. Sitee processing requirements for
these trackers are slightly more expensive comp#resimple trackers., this can
limit the number of instances being used simultasgp but at the same time, has a
much higher reliability. The right balance betwdba two should ideally be used,
but several criteria must also be considered duheglesign.

When attempting to support the measurements obtther tracker, it is important
for the tracker to be exposed to a very similaretgh motion. This means that the
location viewed by the tracker must be positionxbe to each other, as well as
being away from the center of curvature. Since allsshifting of the viewing
window for the feature is all that is necessarprtoduce a new feature, it is possible
to capture the second feature that is sub-millinsedgvay from the first feature. This
allows the two trackers to capture the motions witihimal difference in the motion
vectors, which can be easily combined without tasske of location dependant pose
changes. However, having closely placed trackarsecghe majority of the texture to
be overlapped with each other, thus the redunda&@sarement is also likely to be
corrupted if the error was due to a bad regiomdistinguishable ground texture. To
increase the reliability, the tracker should theslbcated slightly away from the
other tracker to avoid observing the same bad texithis also increases the chances
of either one encountering the bad texture, butaperoach allows the option of
verifying the measurements when discrepancy occurs.

The commonly used approach for verification is gplement a simple voting
algorithm using odd number of measurements. Sihiedpproach requires many
redundant resources to implement, another commproagh that is used is to make
use of a score for each measurement to indicateatlidity or the confidence. This
type of redundancy mechanism is suited for trackbet are not so reliable by
themselves and require multiple, concurrent treckersupport the measurements.
However, by using a reliable tracker, it reduces tieed to rely on supporting
measurements from the similar ground texture motion

By changing the distance between the trackersdiliion of precision can be
controlled to improve the precision of the derivadtion. Placing the trackers at
extreme ends of the viewable area of the cametanaikimise the distance between
the two trackers, but considerations must be madehe quality of the images
observed at different points within the image ameltlypical motions encountered by
the trackers. Note that increasing the mountinggliteof the camera does not
improve the relative accuracies as the actual mistdbetween the trackers remains
the same.

As noted in chapter 5, although small, the qualitghe image degrades as they
near the outer edge of the viewing area due to imgursince the distance between
the trackers is quite small in comparison to thgidgl distance to the center of
curvature, even a slight mismatch in the scalesreanlt in a large deviation of the
motion measurement. The cropping approach intratieeelier reduces the effect of
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the warping, but limits the available positions floe trackers to be used.

Another critical issue to consider is the impor&an€ synchronisation between the
multiple trackers. When using a single cameras ifjuite simple to obtain a frame
where all of the intensity measurements were talitetine same time. This can be
done by controlling the exposure time and remowng inter-frame interpolations,
which can delay the transmission and cause porbéiise image to be out of sync
with other parts of the image. This sampling prabis typically taken care of by the
camera and the driver to produces a well synchednimmage. However, the same
capturing time does not mean the exact amount dfomavill be registered due to
the discrete amount of motion that can be measured.

Since the combined motion of the trackers is usetdketermine the overall motion
of the robot, the difference can contribute to éadyifts between the actual and
measured motion. This problem is targeted by thb-pixel motion tracker
introduced in chapter 6, but the previous analylits not consider the timing
difference between the detected motions of the&énac

On a related note, the timing difference experidniosetween the sending of the
motor commands, the motors carrying out the motammg the registration of the
motion with the sensors, does not affect the pi@ti®f the current localisation
algorithm. Since the delay only causes a mismatcthé information from other
modules, such as the path planning or mapping msdulhere the information must
be time stamped for appropriate integration witleotsensor data, this issue can be
ignored within the localisation module and dealthwat a later stage. If an
implementation of the localisation algorithm doeguire timing based information,
such as a more precise velocity or acceleration emothis latency must be
considered using techniques such as clock synctatomn with time stamps on
every event.

Due to the motion constraints enforced by the wigeeaffiguration, each portion
of the robot will experience different types of gnol texture motion. This
information can be used to select an appropriatation of the camera. As noted
earlier, the precision can be made higher by irstngathe distance away from the
center of curvature. Since the center of curvab@eon a line connecting the two
wheels for a differential drive system, placing ttzenera at the outer perimeters of
the robot yields the most attractive tracker.

By placing the tracker onto the sides of the rolbgy will experience a
longitudinally dominant motion, even when the robotates. This means that the
subtle latitudinal motions must be accurately reged to differentiate between
rotation and displacement. Trackers placed atrbwt for the back of the robot will
register distinctively different motions during atibn and displacement, thus
simplifying the process when distinguishing betwebe two. Another possible
location is somewhere between the longitudinallatitidinal extremes of the robot.
This will allow a mixture of motions, but since theajority of the motion will cause
a combination of motion in the two axes; this cagate more ambiguity due to a
more jagged motion and interpolations in both akegure 7.2 shows the various
mounting location of the camera, as well as theionotectors that are likely to be
encountered for the corresponding wheel motion.
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Figure 7.2: Camera mounting position and the motetors when rotation and
translation occur.
The camera locations are shown as the olive reldsnghile the
wheel motion and the corresponding observed motawasshown
as colour coded arrows.

When deciding on where to place a component ontobat, many practical
considerations must be made. For example, althplaghng the camera at the front
of the robot can allow the robot to foresee hazasdground up ahead, it can
potentially cause damage to the device if it acdialey collides with obstacles.
Depending on the design of the robot chassis, yt Ibeapossible to place the camera
within the body, thus protecting it from potentiebllision related hazards. The
chassis of the mobile robot used does allow faraera to be mounted inside, where
it can look through a small gap towards the backhef robot, but required the
camera to be mounted quite close to the groundvéadaportions of the chassis
obstructing the view. This meant that the speeith@frobot was severely limited and
also required a camera with a small minimum fogsilathce. Placing the camera at
the back of the robot provides the same range dfomas the front of the robot
while greatly reducing the possibility of collisioas the majority of the motions are
in the forward direction. Figure 7.3 below showsotglgraphs of the cameras
mounted on the robot. The internally placed camsrarovided with a natural
shielding, while the side camera mount providesderwiewing area by stabilising
the camera with adhesives.

S

Figure 7.3: Webcams placed within and on the sidkeorobot.

Left image shows the eyeball camera just behind#ttery, while
the right image shows the configuration of the smdeunted
camera.
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One of the downside that was discovered in platiegcamera at the back of the
robot was that the search area for the feature¢daé increased. Although this may
seem like a small increase in the overall scheméhiogs, it also increases the
likelihood of detecting a false feature due torégetitive patterns.

The benefits of being able to distinctively deterenithe difference between a
translation and a rotation is quite significanttlasse two types of motions form the
majority of the robot's traversal, the other beahgyation, which is disallowed in the
environment. Since the camera mounted on the sidaly able to distinguish the
difference using a small variation in the sidewaddt®ction, the approach falsely
identifies a significant amount of rotation as siation motion and vice versa. As the
results in table 7.1 show, neither of the approgacksulted in anything feasible due
to the lack of distinctive behaviour between theckers within the single camera.
The accuracy of the camera being placed at the blathe robot was exceptionally
bad due to the slight latitudinal motions that weteserved. The experiment was
carried out with the two trackers placed at theesre ends of the image after the
cropping.

Table 7.1: Accuracy of single camera tracking.

Position|  Translation (%) Rotation (%)

Forward |Backward | Clockwise| Anti-clockwise
Side 2.05 1.9 69.2 81.53
Back 53.16 55.53 62.43 0.89

7.1.3 Multiple cameras

An alternate approach to the above is to consigeruse of multiple cameras to
increase the possible arrangement of the trackéis.can increase the precision in
deriving the center of curvature, as the motiorasd Hre detected can be made more
distinctive. The extra camera must consider theesslescribed earlier, as well as
several others including simultaneous access tavibedevices which can possibly
look identical to the media library accessing tlaenera, characteristic differences
between the camera, the extra processing loadhsymezation of the frames being
captured, and the secondary location to placedheeta.

Depending on the library being used to accesséhiees, the simultaneous use of
webcams can be prohibited, such as with the Javhavi@ame library and Video for
Windows. Therefore, it is important to develop Hpplication using an appropriate
language and library to make use of the extra sefke current implementation has
been ported over to C++, and makes use of the @@iheov library which allows
simultaneous access to multiple devices of the sgpee

Although the two cameras may be identical moddig, subtle characteristic
differences, including the lens quality, the respeeness of the photo-sensors, and
the noise ratio, can cause variations to the cagtimage. When the captured data is
mapped to the same representation, it is impot@argpply filters, usually at the
software level, to reduce these inconsistenciets rEguires calibration processes to
identify the camera characteristics, such as timseduced in chapter 5, and inter-
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camera consistency measures by observing the shjeet deatures to note any
differences in the captured frames. Due to thesialgpeffects, this process must be
carried out by taking multiple snapshots of the edeature from slightly different
positions and comparing all pairs to find the bpesitional correlation. Slight
variation in the adjustable characteristics like thount height, exposure time and
colour adjustments can all lead to similar probletings should be properly noted.

Issues with the processing load are one of thedkeiding factor in making use of
extra sensors or devices. If the sensors were adldcdedicated processors for
handling the non-shared data, it is possible tbsatithe extra information quite
efficiently. However, since the processing of thebeam images are done on the
shared processor on board the laptop computerc#ises a significant increase in
the load and potentially slows down the other mesluf the system. The change in
the processing time can be seen in table 7.2. Nue these values should be
observed proportionally, as the conditions betw#aa experiment and those in
earlier chapters are not exactly the same. Choaosiagappropriate settings and
algorithms becomes even more crucial and requoege sacrifices to be made, such
as the reliability or the reduction of the searckaafor the tracker by limiting the
operational speed of the robot.

Table 7.2: Time consumption using one and two camer

Task One (ms)| Two (ms
Initialisation 5.03 9.79
Frame capture 0.17 0.32
Execution 0.12 0.13

A related issue to the registration timing of theotions is the precise
synchronization of the two frames that are usedneethey are combined as one
motion. Since the capturing occurs independentlyhat actual devices, the two
images can capture the scene at slightly diffetemés. The rate of the capturing
typically remains fixed, but can be shifted depagdon the devices and processing
load at the driver level. A simple approach at deieing the capture time difference
can be implemented by capturing the frames wherdesn change is applied to both
the cameras and monitoring the difference. One twaynplement this is to use a
bright light source, where switching the light amdaoff in a dark room will cause
instantaneous change to both observers. When dming is important to set the
exposure time to low and the frame rate as higpossible and to note any delays
caused by extra filters that are active on the camd-or example, when using a
colour balancing filter, the images can be delaggedhey buffer the adjacent frames
to shift the captured intensity values.

Inconsistent intervals in the capture time is a Imuawore difficult attribute to
identify, as it requires regular calibration phagedetect and adjust the access times
of the frames. This can sometimes be achieved img @sprecise and synchronized
clock together with interpolation. This can be pdaxd by external light sources,
such as the flickering of the ambient light, whican be used to calibrate the
capturing intervals. However, dependency on thedermal calibration regulators
simply passes on the responsibility of preciselgpieg the time to another system
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and also introduces some overheads in making use afther system.

After numerous test runs to determine the timirftecence between capturing of
the images, it was noted that the capture times both cameras were
indistinguishable. Although the test was not corhpresive to say it never occurs,
early results showed that the focus should be gdlame other portions of the
algorithm and avoid the overhead of detecting @hjilevents.

When deciding on where to mount the cameras, vitéd to take advantage of
being able to increase the distance between thkeir Since the risk of placing the
camera at the front of the robot remains the samdetlze problem of jagged motion
still exists in placing the cameras that are nognald with the longitudinal or
latitudinal axes, these are once again ignoredol8ging the cameras at the back and
the side of the robot, the back camera is stik abldistinguish the different types of
motion, but allows the camera mounted on the sidgipport the measurement. It is
also possible to allocate each camera a desigraiesl to focus on, such that the
back camera is used to identify rotation firstldaled by translation by the side
camera if a rotation was not detected.

The initial problem with placing the camera on #iwe was that it was unable to
distinguish the difference between translationadl aotational motion. However,
using the second camera allows simple disambiguatiohe two types of motion by
placing the camera on the either side of the rolbbe combination of the two
motions can be thought of as the equivalent toecldeop version of using the wheel
motions. When the two trackers support each oth&stson, the robot motion can be
said to be a translational motion, while if theyftiet with each other, the robot has
undergone a rotation.

As the motions compliment each other, it is impotrfar each tracker to correctly
and precisely measure the motion. This means theaph may require additional
strategies to improve its reliability, possibly ilising multiple trackers within each
camera to allow error corrections to occur befdw motion is combined with the
other camera.

The two camera positions discussed above still sdownattractive results,
especially in the rotational tests. The configunativith the camera set up at the back
of the robot showed occasional signs of erroneoasking, possibly due to the
increased viewing area as the shape of the rad# pattern had to be enlarged.
Using the approach of dedicated motion checking dach of the cameras, the
latitudinal motions that were detected by the baeaknera triggered a rotational
motion to be detected, but also did not displayesirdble algorithm. This approach
also severely limited the types of motions posdliiyle¢he robot as it assumes that the
center of curvature will always be exactly in thenter of the robot. The results of
the experiment, which was conducted in the same wasmythe single camera
approaches, are summarised in table 7.3.

The use of multiple cameras was not able to disptagctive results, but showed
slight improvements in the consistency. Duringeékperiments, it was noted that the
majority of errors were the result of mismatchethim motions that were detected by
the two trackers. This was especially problematiemwrotation was being observed,
as the center of curvature that were being deriviéen did not reflect the true
motion of the robot.
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Table 7.3: Accuracy of multiple camera tracking.

Position Translation (%) Rotation (%)
Forward | Backward | Clockwise | Anti-clockwise
Back-side 22.55 6.61 41.99 3.42
Back-side dedicated 36.84 8.34 32.68 5.28
Side-side 2.88 1.21 82.12 9.2

7.2 Smooth motion

Not being able to precisely register the motioreath tracker is a significantly
issue which must be addressed if the multiple geclare to be merged together to
derive the robot motion. It is possible to elimmahis problem under certain
conditions, such as when the robot always movess@eate distance or the camera
can be moved around precisely while the robot rematationary. However, when
these camera motions cannot be controlled, thepsuh-motions must be calculated
or guessed by using the available information abloettype of motion the robot is
under.

7.2.1 Accumulation

As noted in the single tracker explanation, theuaudation of the sub-pixel
motions will eventually result in a full pixel mofti. It was also noted that delays
between the robot motion and the registration ef thbot were not a significant
issue within this module. Based on the two assumptiit is possible to accumulate
the robot motions until a certain condition is m&hich is when the motions are
processed as a one large pose change. The motidrecgplied in a single phase, or
split into the average motions then applied retectpely. Although this allows the
majority of the sub-pixel motions to accumulatesréhwill still be some motion that
does not accumulate enough during the build upestaje proportionality of this,
however, should be much less than those that daapetmulated depending on the
condition that is used to trigger the batch proogssBefore the appropriate
triggering condition can be determined, the charatics of the algorithm and how
well it fits to the environment must be consider&iyure 7.4 below shows the
motion vector accumulation algorithm, along witle fhose differences it introduces.

Sum

Retrospective avarage

Actual

Figure 7.4: Motion vector accumulation approaches.
The effect of merging multiple motion vectors befdwxeing applied
can be observed by the difference in the final pose
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One of the key issues of the above approach isttieasmaller motions that are
accumulated are compressed and thus loses thavidnality as well as any
sequence information. The sequence in which theomotare detected can play a
vital role, as the coordinate axes used can belignea with the actual pose of the
robot. The extreme case of this is where the motemtors cancel each other out and
misses out on the crucial rotational changes. Oag to reduce this is to specify a
triggering condition so that any large change te thotion direction to the one
currently being accumulated will trigger the acculeted motion to be applied and
reset before the current motion is used.

The simplest implementation for motion vector acalation involves the
triggering condition being a counter, where a fixadmber of measurements are
buffered before they are combined and emptied. Wik allow the localisation
algorithm to stay reasonably up to date. Howevenaed earlier, the approach also
requires an additional triggering condition to avthe introduction of misalignment
errors. By observing the current trend in the nmgtisuch as using the previous
motion or the average of the motion currently slowme the buffer, the amount of
error that will be introduced can be estimated &edmine if the accumulation
should occur or not.

To remove this error further, the exact orientatarthe motion vector must be
compared as well as reducing the motions captuaid)application intervals, such
as by making sure that all motion vectors are &est. Since this constraint can be
difficult to achieve, the accumulation approach maifow for certain amount of
error being introduced. One reasonable approachsistsn of allowing the
accumulation if the motion vector is in the samadyant. This will avoid the case of
the motions cancelling each other out.

Since all of the trackers must be synchronisedapipgroach must enable access to
the other tracker's state of the accumulated motextors, as the emptying must
occur at the same time. It is possible to postpbeeupdates of the pose until all
trackers have applied some of the motions and madld pose retrospectively, but
this causes issues when integrating with other esdif certain guarantees cannot
be made with regards to how long the other modulest wait.

The accumulation algorithm was first tested usiagous number of frames as
the threshold value to trigger the emptying of thdfered motion vectors. The
testing of this involved a slightly different pr@seto before, where the robot was
moved without the use of the physical guides. Biimwved the characteristics of the
approach to be measured in a realistic contexeso the problematic areas of the
algorithm. Although the approach provided reasamabsults when the guides were
used, the algorithm failed to register the subtlegularities in the motions and was
unable to perform adequately under normal modepefation, which is summarised
in table 7.4.

Instead of using just the simple counter as thestiwld for emptying the buffer,
the change in the motion vector orientation wase aigroduced to trigger the buffer
being emptied. Defining the valid range of anglesatiow accumulation can be
difficult, as the changes in the orientation leadlifferences to the actual motion. To
simplify the condition, the accumulation was allalié the direction did not cross
the borders of the quadrant. To allow for a slomation, pure forward or backward
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transitions were flagged as neutral and did ngigar the emptying of the buffer.
Using just the above condition to empty the buifeuld potentially result with
extremely large number of motions being condenstal one if the robot continues
to move in one direction. To maintain the regulaxpgying of the buffer, a count
based threshold was used in combination. The sestithe three approaches and the
algorithm for distributing the accumulated motiongh a buffer size of 8 can be
seen in table 7.5.

Table 7.4: Effect of accumulating the motion vestor

Buffer size| Translation (%) Rotation (%)
Forward |Backward | Clockwise | Anti-clockwise
3.21 0.58 11.43 1.22
4.1 0.59 10.66 0.87
16 3.57 0.3 13 2.76
32 3.83 0.29 10.9 5.2

Table 7.5: Various trigger conditions and distribatalgorithm for the accumulated

motion.
Trigger condition Distribution Translation (%) Rotatio n (%)
Forward |Backward | Clockwise | Anti-clockwise
Quadrant only One 3.71 0.95 12.5] 0.72
Quadrant + neutral One 4,22 0.68 12.6 0.81
Quadrant + neutral + buffer One 3.5 0.44 11.38 0.65
Average 5.67 0.91 9.28 0.58

Note that in both experiments, the large improvenmeithe precision, especially
those of rotation, is the result of applying aelifntial motion model, which will be
explained in detail later on. The change was necggss note the behaviour of this
approach with a more precision error tolerant modsl the dependency on the
motion vector direction was often too great for &xact motion models.

7.2.2 Window

An alternate approach to the batch processing efribtion is to make use of a
sliding window to interpolate the registered mosioand apply a portion of the
motion at each cycle. Unlike the earlier approabis allows for a much quicker
response time for the registering of the motionlevktill allowing it to influence to
subsequent motions as a way of simulating a smoatiaion. Using a uniform
weight in the window leads to a very similar efféztthe buffering approach where
the average of the motion being used. By modifying weight, such that the more
recent motions are weighted greater than olderanstithe immediacy of the motion
registration can be modified to improve the respditme. Figure 7.5 illustrates the
windowed approach, along with the weights for theies in the window.
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Figure 7.5: Windowed interpolation of motion vestor
The motion vectors from consecutive frames are ey down
and combined to smooth the motions. Each squanmesepts an
image frame, the rectangle represents the windod,tle arrows
represent the motion vectors that were observed.

Similarly to the previous approach, the use ofwiredow also suffers from delays
in the registration of the motion. The weightingaisle to reduce this effect, but is
unable to completely remove this without a res&e Imechanism, which can
correctly approximate the current accumulationhe&f sub-pixel motions. A simple
example of this problem is when motion can be olexereven after the robot has
stopped. Although the robot has moved that amdhatdelay can appear unnatural
with incorrect time stamps for the pose and in@aaiotions that did not actually
occur.

As illustrated in figure 7.4, the more merging tlaturs between the motion
vectors, the greater the difference in the rotali@ose it registers. The misalignment
of the starting positions of the sub-motions baiogmbined leads to an accumulation
of pose errors, which is dependant on the propmatieplit of the motion vector. This
is illustrated in figure 7.6 where the differencethe positions can be seen when
dividing the motion vector into two segments. Mnesgents the proportional weight
used to split the motion, x and y represent thezbatal and vertical motion
respectively, andl represents the orientation of the motion. The lggaliustrate that
the errors are reduced when the proportion is as&eé for the first division.
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Figure 7.6: Error in segmenting a motion vector.
Left image shows the components used in the desivaif the
pose, while the right image shows a sample relstignbetween
the horizontal and vertical error with respect e froportional
weight. Note that the error for weight being 0 wbaktually be 0,
as no rotation would occur initially.
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By steeply decreasing the proportion being distatacross the multiple frames,
the accumulated error can be reduced. Using tipsoaph assumes certain amount
of error will be introduced, as the merging of thetion vectors are required to cater
for the sub-pixel motion. The weights can be geteeralynamically, or derived in
the pre-processing stage and stored in a lookup.t&mgure 7.7 shows four weight
distribution functions that were considered for mdow size of 4 where W is the
weight, i is the index, N is the window size, ants Ehe weight factor. The derivation
of the quadratic equation is shown below as an gi@&m

YN W =1 (26)
W =F.W,_, (27)
Equation 26 can be expanded to:
W, +W,+W,+...+W =1 (28)
W, +W,/F+W,/F?+..+W,/FN =1 (29)
N-1
W,=F""> F! (30)
j=0
Substituting equation 30 with equation 27 yields:
W,=F""/> F (31)
j=0
Linear W(i) = 1/N 0.25 | 0.25 | 0.25 | 0.25

N -i
F
Quadratic  w() = N-1_J u 0.047|0.012

F=4
0

F=0.5
0.11

F=4

{ifP3r2
) e 2.68 |1.22
Normal W = ﬁ -—I x10™* x10°
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Figure 7.7: Weight distribution functions for a \@ow size of 4.
The left column is the name, middle column is theriula used to
derive the weight, while the right column visualllustrates the
weight distribution if N is 4.
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Although the windowed approach involves a sliglst@ase to the processing load
to calculate the weighted motion at each frame,bibreefits of using this approach
include the faster registration of motions andithprovements in the accuracy due
to a more consistent motion being modelled. Thensarg of the results for the four
weight functions and several window and weightdasizes can be seen in table 7.6.

Table 7.6: Windowed motion with various weight distitions and sizes.

Distribution |Factor |Size| Translation (%) Rotation (%)
Forward | Backward | Clockwise | Anti-clockwise
Constant 1 4 31 0.86 10.87 1.37
8 3.98 0.88 11.65 1.08
Quadratic 2 4 5.23 1.03 12.2 2.01
8 4.8 0.89 11.9 1.34
16 491 0.91 12.42 1.27
4 4 2.88 0.78 9.72 0.97
8 291 0.87 9.84 0.89
16 3.01 0.8 11.21 1.14
Normal 0.5 4 2.94 0.89 10.02 0.98
8 291 0.79 8.78 1.03
2 4 37.65 1.31 64.84 12.73
8 24.36 1.16 43.64 9.05
Shifted 4 4 2.95 0.92 10.87 0.88

As the behaviour of the linear distribution is vesymilar to that of the
accumulation approach, it showed little differemteéhe performance. Note that the
sum of the distribution does not equal 1 when usihg normal distribution
algorithm. This can be seen especially for the diglactor, as the motions often
ended up being short of the actual amount. Inangathhe window size allowed
closer representation of the full value, but theas could only be observed with a
large factor which did not improve the accuracye Téwer factored implementations
showed attractive results due to the sharp dropvbith lead to very small amounts
of merging between the frames. The quadratic agpesaalso showed improvement
in the accuracy, especially with the higher factdre effects of using a larger sized
window did not show much of an effect when the destwere set larger, except for
the latency issue described earlier. The differeheaveen the shifted and the
quadratic distribution were not significant, butloml the anticipation of the
subsequent motion to improve the transition ofrttegion. The small decrease in the
responsiveness is not a critical issue, but thecagh can potentially be problematic
if too much smoothing occurs from an incorrectdacize.
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7.3 Motion model

7.3 Motion model

When converting from the tracker motions to theotoimotion, various models
can be applied to combine and determine the tramisland rotation undergone by
the robot. Since the fundamental base for locadlisation is to precisely measure
the instantaneous pose changes, the models besugnugst accurately portray the
actual motion the robot has undertaken. This pmocggically involves the
classification of the motion to be either pure $lational or rotational motion, which
leads to the derivation of the rotational pivotmpicalled the ICC. This approach
allows any rotational motion to be simplified tgaint and an angle, which can then
be applied to the robot for that frame. One ofrdgiirements to use this approach is
a very fast frame rate, as all the motions betwbenframes are compressed into a
single motion representation. As well as the cantergng a high frame rate, the
heavy and rigid body of the robot and the contbléet of contact points to the
ground also assist in maintaining a consistentssmdoth motion occurring between
the frames.

Depending on the assumptions made for that framegalvith the model being
used, various constraints are placed on the rolmdiomand the type of errors that
will be introduced. This is due to the non-continsianotion that is captured by the
tracker, as well as any approximations made by smmap algorithm introduced
earlier. This often causes theoretically designediets to behave erratically, thus
factors such as the robot's wheel configuratiors tgpical motions it expects must
be integrated with the sensor inputs for use iem@ning the motion.

7.3.1 Exact motion

Assuming that the motions measured by the trache¥sprecise and consistent
throughout the frame captures, the center of cureatan be derived by identifying
the line of possible location of the point for eaxdhhe trackers, then identifying the
intersection point of the lines. The line itselfnche derived by extending a
perpendicular line from the midpoint of the motwierctor, since the whole motion is
assumed to be consistent and the symmetry corstite@nmotion. Using the derived
point and the distance to the tracker location rtdtational angle can be determined.
A special case is triggered when the two linespellel, which signifies a pure
translational motion. Figure 7.8 below illustrates conceptl] represents the angle
between the starting and ending location of theufeacentered around the ICC.

(XRand.YRand)

/

(XL start » YL stare) (XRatart, YRetare )

(X Lena ;YLend )

oL
Icc

Figure 7.8: Exact motion model.
The precise motion detected by the tracker can &ed uto
determine the ICC and the rotational angle. Thevesrindicate the
tracker motions.
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7.3.1 Exact motion

The derivation of the pivot position for the exawbtion model requires a number
of steps using the starting and final positiondath trackers, starting with the line
equation for the possible location of the pivot:

Slope = (¥nd_ Ystarb / (Xend_ Xstart) (32)
SI0p%e—zrpendicularz - 1 / S|Ope (33)
Intercept = ((¥nd + Ystarr) - S|0p@erpendicular(xend + Xstarb) / 2 (34)

Where Xuan Ysar, Xens, @Nd ¥ng represent the x and y positions of the initial and
final tracker locations. The lines for the two kars can be combined together to
determine the center of curvature:

Slope * X,vet + Intercept= Slope * X,ve + INtercept (35)
Xoivot = (INtercepi— Intercepy / (Slope — Slope) (36)
Yoot = Slopg * Xover + INtercept (37)

Where a and b represent each of the trackers. €heatlon of the rotational
angle can then be carried out:

Radius =V((Xena— Xovo)? + (Yena— Yuo)?) (38)
Sin(e / 2) :\/(((Xend_ >(starbz + (Yend_ Ystan)z) / (2 * RadiUS)) (39)
O = 2 * sim(V((Xena — Xsta)® + (Yena— Yerar)?) / (2 * Radius))) (40)

At this point, it is easy to see the inconsistesni¢ieat can be found, as the angles
that are detected for the trackers may differ betweach of the trackers. Since
multiple parameters are known from the tracker an#tj any excess attributes can be
used as part of error detection and correctiongg®evhich will be discussed later.

Although models that can derive the exact positibthe pivot are often used in
simulations, these approaches do not always trignsiall under realistic conditions,
especially when the motions are measured withigefprecision and granularity. To
reduce the errors, more sensors can be introduzechadel the states of the
environment and the robot, the precision of thessencan be increased, or different
motion models can be made use of to note any instensies.

Although the performance of the tracking algoritiwas quite reasonable when
only considering the single dimension, the syncisation and precision
requirements for 2D motion meant that the motiootmes being combined often
misrepresented the actual motion and resulted imeorrect center of curvature
being used.

7.3.2 Differential motion

Another model that is commonly used in simulati@na constraint based motion
model, where the characteristic of the compondrds ¢auses the robot to move is
assumed to dictate all of the motion of the robbis model is often used to model
the forward and inverse kinematics to measure atidipate the robot motion. The
model simplifies the robot motion by disallowingyairegular motions, such as
external forces, and assuming perfect and considiehaviour of the moving
components. For a differential drive system, thevéosd and backwards motions of
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the two wheels are used to derive the center ofature which has been constrained
to a line joining the rotational axes of the whe&lsing the proportional motion of

the two wheels and the placement of the wheelsydtational point and the angle

can be determined. Figure 7.9 illustrates the caorapts of the approach and the
derivation of the unknown parameters, where the bl represents the left wheel's
motion while the red arc represents the right wheabtion. L and R represent the
motions detected by the left and right tracker, leviD represents the distance
between the trackers.

1 ]
i 1 D 1
. ) , R.D.cos(6)
I 1 R-L
Figure 7.9: Motion model for differential drive $gms.
The proportionality in the left and right motioncters are used to
derive the ICC and the angle of rotation. The asromdicate the
tracker motions.

ICC

The characteristics of this approach can be treetslep the motions detected by
the trackers when the cameras are mounted on des sif the robot. Since the
cameras provide feedback information about thetrotmiion, many of the problems
with dead reckoning can be avoided while allowimgpde calculations to derive the
motion.

It is important for the tracker to be placed prelyisas the configuration of the
camera with respect to the robot motion plays misggnt role in the accuracy of the
approach. This means that the trackers shoulddmeglwhere they form symmetry
along the rotational axes of the wheels. As theiacposition can vary slightly
depending on the surface and the wheels, the #igormust assume certain
constraints and expect certain levels of inaccesaci

The placement of the viewing window for the featuras chosen to be slightly
ahead of the rotational axis, as the majority @& tbbot motion would be in the
forward direction, and does not allow dynamic adaph to reduce the complexity
and the false predictions. Due to the fast frane, the motions of the feature should
remain quite small, thus any adaptive behaviour hale little benefit to the overall
precision. Even if an algorithm was able to detesnthe ideal location for the
tracker, the uniqueness of the ground texture beldivmodify the position of the
tracker to improve the feature tracking process.

The inaccuracies in the measurements lead to sgjeitte incorrect position for
the center of curvature, but the constraints plabgdthe model restricts the
placement of the rotational point, thus forces almsmoother motion. However, if
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7.3.2 Differential motion

the assumptions made by the model is invalidatech ss when the robot slips, the
model will force the irregular motion to be mapgedthe constrained motion, thus
will register an incorrect motion. Although the erkent error tolerance is welcomed
when the reduced precision in the measurement miatesllow the correct motion to
be captured; the severe constraint does not ahadgss realistic motion to be
registered.

Depending on how the 2D tracker motion is madeafséifferent variations of
the differential motion model can be implementedhe Tfirst of these models
combines the longitudinal and latitudinal motiosstlae arc length, thus allows for a
simple translation to the original approach. It pessible to combine the two
displacement values as an angled motion, or a siaqidition of the magnitudes. An
alternate model is to assume that the longitudimaions are simply the by-product
of the rotation, and only the latitudinal motionused to determine the motion of the
tracker. The results of these models can be se¢able 7.7, where no smoothing
algorithms were used.

Table 7.7: Accuracy of differential motion models.

Tracker motion Translation (%) Rotation (%)
Forward |Backward | Clockwise | Anti-clockwise
Arc length 3.21 2.93 13.56 3.22
Latitude + Longitude  11.32 5.31 29.66 5.82
Longitude 2.93 1.31 10.2 1.31

As the above shows, the use of just the longitulieved for much more
attractive results where the subtle latitudinalioret are ignored. The stability of the
robot in typical operating surfaces means the agmiras an attractive alternative to
the exact motion model if motions by external ferde not apply.

7.3.3 Hybrid motion

To overcome the weaknesses of the two models alaokgbrid motion model is
introduced to determine and switch between thea@ate model to suit the motion
detected by the tracker. This requires the detaifedysis of the motion behaviour of
the robot in operation.

The constraint based approach provides a reasorsduyrate model for the
majority of the robot's motion when under normag¢igtion. Using this as the basis,
the situations where the robot performs an irragoiation can be detected and used
to trigger an alternate motion model. Since thekiea is capable of tracking motion
in multiple axes, the proportionality between thetions in each axis can be used.

Under the assumption that the wheels are the golder of the motion, any
sideward motion will be accompanied by a largewlind or backwards motion. The
proportionality between the two depends on the omotheasured by the trackers, as
well as the distance between them. With the trapkered to form symmetry around
the rotational axis, the latitudinal motion will beaximised halfway during the
motion and cancels out by the time the motion ggstered. To remove this effect of
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7.3.3 Hybrid motion

latitudinal motion cancellation, the tracker must@aced such that it does not cross
the rotational axis. This meant that the startingifion for the tracker has to be
placed on or away from the rotational axis and llonathe motion away from it.
Since the maximum displacement of the tracker wéigpect to the rotational axis
depends on many external factors, using a pre-ehtpgeker motion to position the
starting location is a difficult problem. The imititracker location is thus simply
placed directly on the wheel's rotational axishsti@at any natural motion will cause
the tracker to move away from the axis.

To determine the maximum displacement, the sloptheffunction can be used.
This indicates that the latitudinal motion is iresed as the longitudinal motion is
increased because of the high frame rate, whidhigessthe maximum rotation that
can be observed. When two tracker motions are wedblthe interaction between
them must be considered. Figure 7.10 illustrateslatitudinal motion for various
longitudinal motion pairs.

Wheel motion ¥S Latitude

Latitude

Figure 7.10: Latitudinal motion from two tracker tioms.
The relationship between the latitudinal motionegivthe left and
right wheel motion.

The figure above clearly shows that the maximumuldinal motion occurs when
both sides travel at the maximum speed in oppdgigetions. Although it is possible
to derive the exact expected latitudinal motionueal for a given longitudinal
motion, the granularity and errors in the measurégmeoften leads to slight
inconsistencies between the two directions. Thecefbf this is reduced from the
smoothing of the motions introduced above, butisraliable enough to confidently
say that the proportional motion becomes accutastead, a simple lookup table
can be used to determine the expected value, vilndbides an error tolerance value
to assist in determining the correct proportioyalts the current implementation
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limits the maximum longitudinal motion to be 10 @l in either direction, the table
is given a capacity of 100 entries, where eachyestmapped to a 2 by 2 pixel
interval.

Based on the fitting with the table entries, areraldite motion model can be
triggered to process the irregular motion. Thisetgb motion is unlikely to occur as
part of a continuous motion due to the friction sxsai by the wheels, but instead, be
the result of small bumps or slips the robot magegience. Although the tracker is
reliable during normal operation, sudden and irfl@gmotions can throw off the
predictions, blur the image, and invalidate somsuamptions with regards to the
allowed motions. This means that the use of thetexation model is more likely to
make use of inaccurate tracker motions, which n&educe large amounts of errors
to the pose.

Instead of modelling the motion as a rotations ipossible to simplify the motion
as a pure translational motion involving the avarggf the two motion vectors that
are detected. The validity of this approach depegrdatly on the similarity of the
detected motion vectors and the likelihood of tiyjge of motion occurring within
the environment. As well as the likely causes nogretd above, the current set of
sensors and the operational environment allowsskightly easier recovery from
angular errors than displacement errors as the reas@nsors can provide a higher
precision than the range finders when used to whéterthe relationship against the
environment.

The testing of the hybrid motion was quite difficth compare with the other
tests, since it had to test for the accurate negish of irregular motions. Instead of
artificially constructing an experiment that justvolved the irregular motions, the
test involved the same configuration as the previtast to compare their overall
performance against earlier implementations. Tlsalte of the tests can be seen in
table 7.8.

Table 7.8: Accuracy of the hybrid motion model.

Hybrid motion Translation (%) Rotation (%)
Forward |Backward | Clockwise | Anti-clockwise
Differential + exact 2.98 1.83 16.42 6.9
Differential + translation 2.44 1.18 5.32 0.93

The experiment showed that the use of the exadbomatodel did not allow the
accurate portrayal of rotational motions due togheater possibility in the center of
curvature, as well as the dependency on synchmgntbie motions detected between
the two trackers. The switching of the model taanslation model allowed for a
much more precise localisation algorithm, simplyspgcifying a threshold value to
distinguish the different types of motion. Althoutitis is dependant on the surface
types and the types of motions to be encounterethéyobot, it shows promising
results in providing the local pose.

As a final comparison, three motion models are cmeg using the windowed
smoothing algorithm with a quadratic function otttar 4 and size of 4. This is
summarised in table 7.9.
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Table 7.9: Motion model precision using smoothing.

Motion model Translation (%) Rotation (%)
Forward | Backward | Clockwise | Anti-clockwise
Exact 2.88 1.21 88.12 9.2
Differential 2.88 0.78 9.72 0.97
Hybrid motion 1.95 0.41 2.32 0.53

7.4 Error handling

To help prevent the localisation algorithm fromluting erroneous information,
the motions that are detected must be analyse@d@jndted before being applied to
the pose. This process consists of two main commenghe detection and the
correction of errors. The approaches that are tigsied are based on local
information rather than the long termed global emeduction, which allows the
motions to be analysed quickly to reduce the casgaeffect the error may cause. It
also decouples the issue to just the localisatiodute, but can allow separate error
correction processes later on by a different madule

7.4.1 Detection

As noted earlier, the detection of errors can ocaturvarious stages when
analysing the tracker measurements. They are aftgarmined by comparisons
against known constraints and domain knowledgeaip $uspicious measurements.
It is also important to note the difference betwaarerror which can potentially do
significant harm and those that are uncontrollafe they are inherent in the
approaches or the devices used.

The use of the exact motion model allowed for sextea parameters to solve for
the center of curvature. It is possible to derike pivot position using the other
parameters using alternate sets of equations, wda@nlthen be used to compare the
consistency. Due to the precision in the trackeasueements, there will be small
amounts of differences which will have to be digtithed amongst larger
inconsistencies. The two simple checks that cambée are the angular differences
detected from the pivot point and the consistencihe distance between the tracker
positions. Since the robot and the camera remagid, the distance between the
starting positions and the final position where thatures were tracked to should
remain the same.

Knowing the precision limitations of the trackeitsis possible to derive a region
for where the center of curvature may reside. Githext the sub-pixel motion may
not be registered, the tracker measurements magt lmeost, 1 pixel different to the
actual motion. With the potential pivot positionstablished, the motion can be
validated against expected motions with more layehan against a single value.
By adding the tolerance adjustments to the finaltpms, the range of positions for
the x and y values can be determined.
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S|0pe =- (Xnd + Xtolerance_ Xstarr) / (Yend + Ytolerance_ Ystart) (41)

|ntercept = ((gnd + Ytolerance+ Yslarb - S|0pe * ognd + xtolerance+ xstart)) / 2 (42)
Similarly, the adjusted positions for the consteairmotion can be derived.

DiStance = Dacker* (DR + Rtolerancé / ((DL + Ltoleranc; - (DR + Rtoleranc;) (43)

where X, Xenss Ystart @aNd ¥ng refers to the start and end position for X and Y
coordinate points, Kerance Yiolerance Reolerance@Nd Lioierancer€fers to the variations allowed
in the position and measurements.k is the distance between the trackers, while
Dr and D represent the longitudinal motions detected byritfiet and left trackers.
Note that the difference in the slopes of the lingsd to find the center of curvature
has a significant impact on the range of possibations, thus the benefits of
identifying a region for acceptable pivot positiocen be very limited, especially
when the robot does not rotate.

Another way to check for errors using a threshadtlig is at the tracker level,
where the correlation score can be used to determhrether the match meets the
expected score. Since the correlation scores grendant on the type of ground
textures, it is important to modify the threshaddsuit the environment. This can be
implemented by techniques such as monitoring tloeirgl textures or maintaining
the recent correlation scores to observe the trentle scores.

Although the above approach may have potentiateti®eno guarantee that the
expected score appropriate for the current groextlite. This meant any fluctuation
in the scores, such as when sub-pixel motions pceauld flag the motion as
erroneous and would frequently require a sepawidation algorithm.

7.4.1.1 Redundancy

The error detection based on constraints and dok@aiwledge can be quite
effective at times, but it also means a portiontleé measurement's range is
consumed by sentinel values. Another limitation tbé approach is that the
effectiveness of the error detection depends gremtl adhering to the constraints,
which cannot always be guaranteed, and also in kgpthe domain beforehand. A
commonly used work around for this is to make useedundant measurements
which can be used to measure the consistency tbrthe detection and correction
of errors.

Since the tracker is implemented in software, mhii@ng more trackers does not
require significant changes as most of the issws&gh as synchronisation,
consistency and placement, have already been @edidThe decision in selecting
the location is determined by what type of inforimatis required. As mentioned
earlier, the more distant the tracker is to theerththe more unique the detected
motions are, thus a decision must be made betwegsiementing a more
independent tracker or simply providing a backupthe existing tracker. Using a
dedicated backup for an existing tracker can siypts purpose by focusing on
consistency thus can be implemented more effigigththn an implementation with
extra independent trackers. Table 7.10 shows tlm gxocessing time consumed
from introducing one or two more trackers for aggincamera. Note that this only
considers the tracking of the features and domptament any other algorithms that

123



7.4.1.1 Redundancy

may be used to remove the errors.
Table 7.10: Processing time for extra trackers.

Trackers | Initialisation (ms) | Tracking (ms)
2 0.11 0.07
3 0.2 0.16

Due to the sophisticated algorithms that are implated for the tracker, each
additional tracker increases the overall proceskiag by a significant amount. This
increase can potentially cause delays in the dtheng crucial processes, perhaps
even delaying the capturing of the next frame aadsmg a whole frame to be
skipped. This can have disastrous effect on thalikation algorithm, as the incorrect
tracking effects the feedback information used tdicgate future motions. To
reduce the overheads in using the extra trackem)ntques such as sharing of
common or similar attributes between trackers amgtyéring the extra tracker on
demand could also be considered.

7.4.2 Recovery

The second part to the error reduction proceshkdascorrection of the detected
errors. This phase involves the use of various aggres and the available
information to reconstruct the intended measuremdrite types of information that
can be used include the measurements from adjaocamtframes, predictions from
trends and constraints, as well as measurememistfre redundant trackers.

On some occasions, it may also be possible tohgésertoneous measurement as a
guide to identify the cause of the problem to adjtise recovery process
appropriately. Characteristics such as a suddemnedse in the overall intensity
fluctuations, which is likely to be caused by matiblur, or the motion being
reasonably consistent but was voted as being ttiepuhich may be caused by the
precision errors, indicate that the erroneous nreasent does not need to be
discarded completely.

7.4.2.1 Merge

If there are redundant measurements availablejnfioemation can be merged
together into a single value. This can be basedimple averaging or weighted
interpolation, depending on any confidence valhes are available. This, of course,
requires that the values being used have beerefilt®® remove the erroneous values
and are reasonably similar to each other. It isoitgmt to consider the sources of the
information before being combined, as its origited@ines how the value needs to
be converted before they can be combined.

The effects of merging adjacently placed trackers lze seen in table 7.11, which
showed some improvement in the accuracy for alatdos, and reasonable results
for rotation. This is likely due to the infrequerdccurrence of erroneous
measurements, thus introducing more smoothing ¢o ntotion observed by the
camera.
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Table 7.11: Merging of redundant tracker motions.

Trackers| Translation (%) Rotation (%)

Forward | Backward | Clockwise | Anti-clockwise
2 1.96 0.56 2.98 0.73
1.77 0.21 3.43 0.9

Although merging the motions showed attractive ltssuit can potentially
combine erroneous tracking in the absence of erfib remove the problematic
reading first. In this particular case, the redunidsacker was placed close to the
original tracker, thus the tracker motions did rexjuire much alteration before they
were combined.

7.4.2.2 Eliminate

If the measurement is deemed erroneous and caangtdal to derive the intended
motion, the motion must be discarded and recoveyedther means. Since many of
the recovery approaches make use of the histanealsurements, it is desirable that
consecutive measurements are available and beadecAithough this is difficult to
enforce, it is possible to flag the current locatiisn state as being unstable to inform
the other modules to make appropriate adjustmeuntd) that measures can be taken
to avoid using the current pose. This could inclgiiewving the robot down or
reversing, so that the landmarks can be observedn atp correct the pose
retrospectively.

Depending on the consistency of motion and the lawéity of historical
information, it may be possible to predict the eutrposition. Although the idea
seems reasonable, the erroneous measurement taltypcaused by irregular
motion, thus would not fit the anticipated motioattern. However, this approach
does give an instantaneous result if the posegisned immediately.

Combining the newly observed motion and the preslpwbserved motion can
often allow for a better approximation of the matim between. This approach
presumes that the measurements surrounding theeeus one are valid and the
motion is smooth. If consecutive tracking are degmeoneous, the predictions can
be further extended and retrospectively appliedafdonger period. This places a
greater emphasis on the presence of smooth motodsthe accuracy of the
measurements, but may be necessary due to the relsponse time between
informing the other modules to make adjustmentsreduce the error causing
behaviour and in case the irregular motions, suclhwanps, carry on for multiple
frames. Table 7.12 summarises the accuracy of mmgading the prediction and
retrospective error correction approach.

Table 7.12: Accuracy of prediction and retrospexByror correction.

Translation (%) Rotation (%)

Forward |Backward | Clockwise | Anti-clockwise
Retrospective  5.44 1.3 13.31 6.91
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Although the motion of the robot seemed smooth eodsistent, the motions
being tracked often fluctuated, especially wherattohs occurred. This meant the
inter-frame motions are not as consistent, as ooefl by the findings in the
precision algorithm in chapter 6.

A typical use of the redundant trackers is to imm@at a voting mechanism. The
tracker measurements can be compared to identifyiraonsistent measurements,
which can then be flagged for subsequent errorecion mechanism. In order to
implement a voting algorithm, there must be an oddhber of measurements, or a
weighting attached to the measurements to allowndaligguation. However, if the
measurements are significantly different, such #ls the case when the trackers are
placed far apart, the approach is less effectiveetduhe increased range of plausible
motions and the wider variety in the tracking.

A very simple implementation of this is to introduevo more trackers for each of
the original trackers, thus allowing a local votimgechanism before they are
combined. Since the positions of the trackers rdiffgr, it is important to place the
extra trackers appropriately, such that the motibaracteristics can be calculated
easily. One strategy to achieve this is to plaeetiinee trackers along the same axis
as the wheel rotation and vary the distance medsutiee center of the robot. The
voting algorithms that were implemented compareel displacement values and
noted the outlier, followed by either the selectioh the median value or the
averaging of the non-outlier motion vectors. Theutes of this can be seen in table
7.13. The hybrid motion model with the windowed sitiing algorithm, as per the
best performing algorithm was used for this expenm

Table 7.13: Results of voting off outlier

Translation (%) Rotation (%)

Forward |Backward | Clockwise | Anti-clockwise
Median 2.52 0.37 39.04 0.51
Average, 2.42 0.27 46.93 0.38

An interesting observation which was made after lem@nting the voting
algorithm was that the type of motion contributedagly to the performance of the
algorithm. It was able to remove the outlier trackeading very effectively when
errors were introduced, but the majority of theatioinal motions were also deemed
erroneous. The subtle changes were only observied @ifey had accumulated
enough sub-pixel motion, which occurred at difféeremes between the trackers.
Instead of blindly removing the extreme valuesyduld be beneficial to apply a
threshold value to correctly classify an errone@asling before they are discarded.

7.5 Practical considerations

While consideration to the workings of the locdiiga algorithm has been
investigated in detail, several other importantiéssmust be addressed concurrently
for the approach to be of practical use. Some egdhssues are concerned with how
the algorithm is affected by the environment, whsleme deal with the internal
configuration issues that may require adjustments.
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7.5.1 Motion

When transforming the sensor measurements to mlbdaibn, it is important to
establish a well placed reference point for therdimates. As briefly mentioned in
chapters 4 and 6, the information from the sensostnbe mapped to a uniform
coordinate system to be shared by other modules.cbbrdinate space joining the
multiple sensors is typically set relative to tlabat and does not have a strong
preference for a unit to be used. When the robontison is mapped against the
environment, it must be bound to a certain cootdingystem, whether it be
something the observers of the robot can understangbractical for internal
representation. For this reason, the coordinatiesyased by the robot typically uses
the observer's preference of units to reduce theersions when the pose is viewed.

Defining the coordinate axes for the environment ba a difficult task, as the
robot can be activated in an arbitrary position #mere are rarely any indicators
which specify the ideal starting location. When thbot's pose is being combined
with external information, such as when data fromltiple activations are being
compiled or if global pose indicators such as a mass or GPS are used, the
reference point becomes more crucial. Howevereims of local localisation, the
coordinate axis can simply be placed at some arpitpoint, such as the starting
location and use the relative coordinate pointsftben on.

When using only the downwards pointing camerashajldocalisation is a very
difficult task to achieve due to the lack of longrmh features. Overcoming this
requires the use of the other sensors to help tismate between the similar
looking locations, or a distinguishable texturet@at to be present on the ground,
such as the change in the floor material or sigaift markings like stains or cracks.
This is investigated in more details in chapter 11.

Since the localisation algorithm is highly depertdan the precision of the
calibration measurements, even the slightest dexamtfrom the actual value causes
an accumulation of errors, which is difficult toroect in normal situations. This is
often because the robot does not back track the gath and the error in the scale is
accumulated. This can be seen from the inconsigteetween the accuracies of the
forward and backwards values in the experiments.

To minimise this issue, the calibration and testprgcesses must be repeated
numerous times while being careful not to alter plfecement of the cameras. This
process requires significant manual interventiart,i® unavoidable without a secure
placement for the cameras or an automated caborathase during the initialisation
of the robot.

Since this primarily causes scaling errors, itlsogossible to counteract this by
maintaining the motion vectors in memory and apyythe properly scaled version
if and when calibration data becomes availablesiptsfrom long term landmarks
or external pose indicators. This allows the rdiooavoid the initial set up time by
treating the measured motions as proportional galstead. Similarly, the robot can
be encouraged to reverse its motions instead dtingt and making forward
traversals all the time. This will allow canceltatiof scaling errors when the robot
returns to the original location.
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7.5.2 Surfaces

Since the texture of the floor during the experimeas fixed, the algorithm must
be validated on other surfaces the robot could @men. The current configuration of
the robot assumes operation in indoor environménitisthe tests also included some
surface types that were typically seen only outsloor

The range of surfaces that were tested includesethath different reflectivity,
regular and irregular patterns, as well as differevels brightness. To avoid
damaging the robot, surfaces such as grass andwsemnednot conducted. The large
variance in the height would not have met the mmeddions required for the
algorithm, so the results would have been veryns&ient. Measurements taken on
rough surfaces, like brick and concrete includedaniadjustments to the robot so
that the balls used as caster wheels were notckedht This involved placing a
plastic sheet under the caster wheels to roll dngchvwere away from the camera's
views and the path of the foam wheels. These msame of the bumps it would
have normally encountered were avoided, but siheerpbot is not intended to
operate on these types of surfaces, the validitthefvisual odometry can still be
measured from the perspective of a different loglaarface texture.

The testing procedures were kept as the same, whemobot would perform a
forward and backwards traversal test, followed byotational motion test. The
various settings on the robot, such as the camesaign, lighting and tracker
parameters were kept consistent, while the algorithat was used was a hybrid
motion model with a windowed quadratic smoothingtda of 4, with the size also
being 4. As for the error correction algorithm, tivackers per camera were used to
allow merging if the longitudinal motions were witt2 pixels of each other. If there
were inconsistencies between the redundant trackieestracker with the better
correlation score was used. Table 7.14 summaihseesults.

The performance of the visual odometry algorithrovetd reasonable consistency
on many other surface types, including those wdfy\ittle visible differences such
as the table top and tiled floors. The small burapd grooves on these surfaces
provided the uniqueness to be able to distingthgimtlocally. The textures on the
vinyl floors consisted of many small marks, suchdas and scratch marks, which
allowed very distinctive features to be present.

The localisation on timber floors and rubber matsviged interesting results,
where the patterns were quite visible to humans,the tracking algorithm was
unable to distinguish them due to the differencadales to what we recognise as
patterns to what the camera can see. The patteabhsvere present were too large
and repetitive, which caused issues with similaredation scores being evaluated
for different features. A possible strategy to avihiese problems is to increases the
feature sizes dynamically based on the uniquerases of the ground textures, to
control the anticipated motion of the feature lywshg down the robot, or by using
a camera with a much faster capture rate such theatrepeated pattern is not
observable within the search area.
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Table 7.14: Localisation accuracy on different aces.

Surface Sample Translation (%) Rotation (%)
Forward |Backward |Clockwise | Anti-clockwise

Vinyl - 1.87 0.29 2.83 0.58
Table 2.37 0.52 3.08 0.92
Timber - 8.21 1.07 7.18 3.84
Rubber - 17.3 0.28 18.71 6.17
Tile - 1.94 0.2 2.96 0.86
Brick 1.7 0.42 3.21 1.6
Concrete 2.44 0.27 2.69 0.76

Overall, the proposed localisation algorithm perfed well on many of the
typical textures that an indoor operating robot ldancounter. However, operations
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on surfaces with large and repetitive textures memgtiire adjustments to the feature
selection process to cater for the differencebéntéxture patterns.

7.5.3 Extended traversals

The last and the most important test conducted thasperformance of the
approach over a long period of time. The algorithas compared against manual
measurements and dead reckoning algorithms overaversal around the lab
environment, with position measurements taken antiom commands being given
every 500 mm of motion. Slight adjustments to ttheal motion was necessary to
avoid collisions with the office furniture, due the slight inconsistencies in the
wheel motions, such as the dimensions and speadhwaused the robot to stray off
to one side. This is evident in the arced pathrdike the robot, as seen in figure
7.11. Some of the corrections were over-appliedltow the robot to reach the
desired points after the arced motion by guessimg required increase to the
rotation. The result of this experiment was avetagd#t over three runs.

SR
N

Encoder

Figure 7.11: Comparison of extended traversals.
The colour coded paths illustrates the dramaticawgment in the
localisation implementation using only local losalion.

The traversal covered a total distance of 26.5nerevtthe difference between the
encoder based localisation and the proposed visdametry technique can be
observed quite distinctively. Although the errore accumulative, the difference
between the actual motion and those observed biodadisation algorithm is quite
small, making it an effective algorithm to be implented for local pose
maintenance. With the proposed algorithm, it issgae to perform the global
localisation more efficiently and less frequentyg the measurements do not stray
too much to avoid the corrections from unrealisti@mbiguous poses.
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7.6 Summary

The trackers that forms the foundation for the lisation algorithm performs
efficiently and effectively in registering transtatal motion, but is unable to detect
rotations due to the constraints placed by theigardtion and the algorithm. The
translations that are detected by multiple trackarsinstead be combined to identify
the robot's pose through the extra constraint dutced between the placements of
the trackers.

The introduction of multiple trackers considers iiddal issues to correctly
synchronise the multiple motion vectors and useg@propriate motion model to
convert the tracker motion to robot motion. Thecpltaent of the extra trackers had
to consider the distance between each other tetegglistinct motions. This allowed
the narrowing of the possible motions due to therénise motions that could be
observed from the presence of sub-pixel motionstebd of being restricted to a
small viewing area, additional cameras are inclueithcrease the flexibility in the
tracker locations. In doing so, different motiondrts are introduced which allowed
more control over how the tracker motions relatethe robot motion.

To encourage the smooth transition in the motiams better synchronisation
between the trackers, various algorithms were mteg to account for the
granularity in the motion. It was found that usiagvindow to view the previous
frames with a strong weight to the more recent amotallowed for improved
accuracy from the blending of the motion vectors.

To improve the effectiveness of the localisatiogoathm, error detection and
correction mechanisms were also incorporated ih@ algorithm. The use of
threshold values and redundant trackers alloweddore improvement in the overall
accuracy, but issues with resource usage mustdressid to note the overall gain in
the accuracy if an alternate error correction apgindecomes available.

With the visual odometry technique implemented texded for applicability for
the mobile robot, a reliable local pose has beetenaailable for the other modules.
The proposed technique minimised the dependendy atfiter modules, thus can be
improved quite easily with additional sensors algd@hms developed in the future.
This will include an algorithm to map the local pds a global pose.
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Section 3 — Mapping

“The derivation of a useful map requires both direc
and indirect sensory information thus requires a
rapid cycle of refinement.”

The second half of the SLAM paradigm focuses ongdeeration and usage of
the environmental map, which comprises of a virtwepresentation of the
environment that links to the physical world. TlEBows the grounding of the
localisation procedure as it assists with the dldbaalisation problem (Olson,
2000), as well as introducing a historical dataliaske constructed with regards to
the state of the surroundings. The representatiams range from modelling the
physical properties of the environment, such asldbation, and texture, to higher
level representations, such as classifying a regi@pace as an office or a corridor.

Whether the maps are provided beforehand or netptbbile robot must make
use of the available sensors in order to percelwe ¢haracteristics of the
environment. The various sensors and systems alifterent ways to classify the
immediate surroundings, which can later be combaegart of a larger map that
extends beyond the robot's current view. As eaclthefsensors measure certain
attributes in various ways, they require approprisanslation processes when being
merged. This requires careful calibration of eaehssr, as well as appropriately
selected algorithms to model the interaction ofséesor to the environment.

Although some sensor characteristics can be detednduring the calibration
stages, they are often dependant on the actualoanvent and cannot be completely
anticipated. The fluctuation in the measurementsed by these are often tackled by
limiting the operational ranges or combining mué#ipsensor measurements for
disambiguation (Dudek et al., 1995), which can oauvarious stages before the
information is represented in the map. The inaaiasafrom the sensor readings
mean the attributes are often applied as a prababil a particular state (Thrun et
al., 1998).

The attributes that are detected allows the robohake decisions based on the
surroundings, as well as being able to relate ¢agufes to known objects. As many
of the sensors use a specific modality, many ottraparisons can only be achieved
between the same sensors. There is also another adstiming and the visibility
range, which can limit the interactions betweengiesors. By converting the sensor
readings to that which can be related to anothesmé& readings, the sensor
measurements are able to influence each other o g a more informed
representation of the environment.

Storing the attributes, which include any derivefbimation, involves arranging
the information in an easy to access and modifidata structure, as well as placing
constraints on the range and amount of informatigpically by using compression
mechanisms. These implementation issues play @atmate in real time operations,
especially in the presence of high volumes of datdnough key attributes can be
filtered by their respective sensor modules, combirthe information to a uniform
representation requires carefully designed algmstrand a significant processing
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time.

One of the key aspects of SLAM is that the locélisamodule influences the
mapping module, while the mapping module provide=dback information for the
localisation module. The close coupling betweentii® means constant cross-talks
between the modules occur, which is aimed at githdreducing the uncertainty in
the pose and the map. However, the cyclic deperydean also lead to gradual
divergence over time. To overcome this issue, mamgtegies are required to
anticipate, detect, and correct any errors that prapagate by means of calibrating
dynamically.

This section deals with the map construction tegqpes implemented on the
mobile robot and covers the issues ranging fronciefit map usage, merging of
sensor readings, as well as the detection and ingndf land marks and dynamic
objects within the scene (Coombs & Brown, 1993; Ebal., 1998 (a); Stachniss &
Burgard, 2005). Chapter 8 introduces the variouppimg issues and the types of
maps that are available, while chapter 9 introduseseral map construction
techniques using the range finders on the roboap@hn 10 investigates the use of a
forward looking camera to gather the scene infoignatsing a different type of
sensor to the range finders. Finally, the derivatamd integration of higher level
concepts are described in chapter 11.
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Chapter 8 — Representing the environment

The portraying of the environment results from thempilation of the
instantaneous sensory information into a consisimiesentation. As well as being
able to provide relational information between sensor readings, the map can
allow higher level constructs to be derived andvig® historical information for
subsequent sensor measurements to compare agaiese benefits contribute to the
successful and accurate operation of the mobiletras most tasks require more
than just the instantaneous sensory informationga002; Thrun, 2002).

From the perspective of the representation, the mapequired to store the
sensory and derived information with enough desaith that the tasks being carried
out can operate with some certainty and confidezpending on the types of
interactions required to the map, the efficientesstbility and accuracy must be
maintained (Kuipers & Levitt, 1988). This is depantion the data structures being
used to store the attributes, as well as the dlgos to interface between the sensor
readings and the map. The third issue to be comsldis the organisation of the
maps, such that the environment can be viewed fmutiple perspectives. The
isolation of different attributes creates a mongtered representation, due to some
repeated information, but allows for easy distiomms between the attributes and
leaves scope for different map management algositinnthe future.

8.1 Map generation

When sensing the environment, the robot may be s@do several different
forms of input, which range from direct sensor fegd to pre-generated maps by
other systems. Handling the different forms of ingd the unique information they
represent requires various techniques to effegtipebcess and use the information.
This is due to the semantic information (Hild, 20B@ipers & Byun, 1991), capture
time, and the accuracy of the information oftenates how they are processed.

8.1.1 Attributes

In terms of the content of the maps, the typestwibates that are commonly
stored include the likes of the location, occupaneyture, elevation, and measures
of interestingness, which are typically derivedhiranalysing the features within the
map. Since the addition of attributes incurs ept@cessing and memory costs, only
those that are necessary for the particular tasélleulated and maintained.

The most commonly used attribute to be assigndbetentries in the map is the
location of the interesting point. Typically, this assigned from the relative pose
based on the robot's current pose. However, in s@ses, this attribute is registered
as relative positions against landmarks and dcdhaeeé a numeric value assigned to
it.

Another commonly used attribute by mobile robotshis occupancy of an area.
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This is crucial to the functionality to a mobilebat, as it indicates both the areas it
can and cannot explore, and indirectly, the arehad and has not explored. A wide
range of devices that are mounted on the robotvalfor this measure, such as range
finders or even just the pose information by theotoThe occupancy also allows the
other attributes to be attached using the positeomd the semantics of the sensor
readings.

An interesting attribute that is sometimes usedoisthe distinction between
individual objects within the scene. Although thadtribute requires complex
correlation process between the sensor readingsi@r knowledge about the shape
of the objects, this can allow for inter-object athghamic properties to be derived,
together with the ability to focus on a particut@hject of interest. This ability is
crucial in environments where objects are constamibving or when the robot is
required to search or identify a specific objedtisTmay include the detection of
doors and people that move while the robot is olisgithe object or when the robot
returns to note the change in the occupancy cétba.

Each of the sensors exhibit varying behaviours adejog on the environment and
the level of noise and ambiguity expected for teeick. For this reason, it is often
desirable to assign a weighted value or a prolsdibilimodel to indicate the
confidence in the assignment of the attributeshéorhap (Basye et al., 1989). This
value may include the error tolerance of the seneorthe detection of
inconsistencies, such as those derived from coiwalascores between the sensor
reading and one that is expected from the storqal firtze variation in the confidence
allows the scope for various disambiguation teaesqusing historical information
and alternate perspectives from multiple sensors.

When converting analogue data to a digital represiem, there is a limitation to
the level of precision that can be achieved. Tim lio the precision is dependant on
the sampling capability of the sensor, the resouemuirements, and also the
precision requirements for the specific applicatidnis important to note the
precision the map uses with respect to the spetfiks, as this can introduce the
misalignment between the environment and the reptason, similar to the
previously encountered issue with aliasing errors.

8.1.2 Sensor inputs

The most direct input to the robot can be madegu#iie on board sensors to
perceive the current state of the immediate sudimgs. The characteristics of each
sensor determine what information can be derivendiathe environment, as well as
how it will affect the map. In some cases, eaclthefsensor readings must also be
time-stamped due to latency issues or delays inted by batch processing the
sensor inputs.

The communication between the sensor and the ntap ofvolves filters being
applied very early on to reduce the unnecessaryoaents and convert the readings
to a more compact and useful form. This also as&msthe isolation between the
different modules, as they can each parse andcextih@ relevant information.
Although some redundancy may appear, it is posdibleeduce the processing
requirements by carefully applying the filters irs@quence, such that many of the
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processed data is reused. Other strategies usatptove the efficiency include the
use of simple shapes and templates when interaetitty the data, the use of
constraints by knowing the range of possibilitiesfdoehand, and setting the
appropriate update rate of the map, as changeset@nivironment often does not
occur as fast as the sampling rate of most sensors.

When selecting the type of sensors to use, theilitgabf the modality, the
characteristics of the information it captures, dinel reliability plays a significant
role in terms of effectively modelling the enviroant. The sensors must capture the
scene through various environmental conditionscivinnay require interactions with
multiple sensors to accurately interpret the sensadings. The modality dependant
behaviours are sometimes neglected due to the smallints of effect it has, or the
lack of sensors to be able to distinguish the chaang the environmental condition.
As many of the applications for mobile robots hapecific tasks to be carried out,
the range of operating environment are often camstd, thus the adaptive
behaviour can be removed. This is a common andnaeate assumption to be used,
since many experimental platforms are focused oweldping a small set of
algorithms to solve a very specific problem instedidieriving a general purpose
algorithm for all situations. That said, many ok thnvironmental effects can be
modelled through simple scaling, which can be eagpjemented if extra sensor for
detecting the change in conditions are available.

Since many of the sensors are included with thentidan of actively sensing the
conditions of the environment, the particular magiahey use is restricted to those
that are continuously available when desired. Heiines the attributes that can be
determined, but at the same time, the selectiothefappropriate attributes also
depends on the type of map being constructed ancetfuirements for the map. In a
typical case, the unnecessary attributes are dkiiviermation from the sensors,
which simply means they are not produced if theyrat required. This is due to the
careful planning used before the sensor is intedrads each device incurs a cost in
both material and processing wise.

Although it is possible to simply capture the statehe scene according to the
sensor readings, it is often desirable to assigmeasure of importance or
interestingness to various portions of the mapr aftelysing the other attributes of
the map. Although these values can require sigmfiprocessing time to derive and
may not be consistent from different perspectitbgy can be used to identify
landmarks and correlation points for localisation & uniquely classify the area.

8.1.3 External systems

Using the sensors in the natural environment cad ® many unforeseeable
problems that may hinder their performance. Theag imclude issues like changes
in lighting or difference in the reflectivity to eéhcalibration data. The problem is
enhanced when there are no references to idehgfyptcurrence of these events to
modify the sensor usage.

One strategy to overcome this is to interact wittemal systems which can
inform the robot with consistent or grounded measents. A simple example of
this is a calibration feature that is used to rélsetsensor's parameters, but can also
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extend to pre-defined targets such as bar codds evitoded information. These
calibration markers are commonly seen in envirortsieiere constant errors to the
sensor readings occur, or when the computatioraal lnust be kept down. Often
times, this involves careful crafting and placemainthe markers and the integration
of the associated algorithm to identify and corréet current settings using the
difference measure determined from the pose orfdatathe markers.

When templates are used, the variations that codymmtur are usually not
included as part of the constraint. An example lo$ may be a template with a
specific colour or shape, but not both. This allsesne flexibility in the attribute,
which may be slightly different to the expected dige the conditions of the
environment. The variations that are allowed intices the ability to encode
independent information into the marker, such asdhseen in road signs, where the
shape and the positioning of the sign is matchethéyemplate and the arrangement
of the colours on the sign depicts a particulaonmfation using a separate template.
This idea is commonly seen in controlled lab envinents, where encoded markers
are placed around the environment to inform thatioa of the robot.

A slightly different approach that can be usede&séxchange of information from
externally located sensors or systems that canraddke state of the robot or the
environment. These include systems like the GP&e#lance cameras, or another
robot that is operating concurrently (McLurkin, 200These allow dynamic and
adaptive information to be sent to the robot, somet from a fixed pose, and can
often be considered as another sensor measureifigege external systems are
typically equipped with multiple sensors, as wslisgaveral derived attributes of their
own, which can be passed onto the robot to allowtiphei perspectives of the
environment without physically moving around.

Although the set of constraints placed on the esdlesensors usually allow
confident and accurate measures to be made, tlendepcy to the other system can
limit the applicability, especially since the othsystem must be placed in the
appropriate place before the robot can make uskenfi. The use of the calibration
marker is often the easiest to carry out, as tleaybe placed along with the robot.
This is very effective when the robot's operatisnrestricted to a particular area,
where each of the markers can be accurately plec@dorm the robot. As for the
independent system informing the robot, the difficlies in the coordination of the
appropriate information being passed along, as wsllthe additional cost in
developing and maintaining the other system. Hatinganage the other sensors is
often the deciding factor when their use is congideMany real world applications
tend to make use of already existing, yet man-madekers, such as road markings
and room number plates.

8.1.4 Existing maps

Rather than making use of the sensor signals wiocttay an immediate measure
of the environment, it is also possible to make ofea more complete set of
attributes which corresponds to the state of thér@mment at some time in the past
(Zelinsky & Yuta, 1993). These can often be clasdifis pre-constructed maps, since
they contain information about the scene from rmlétiperspectives and often
contain a complete set of attributes that were ireduat the time of the map
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construction. Depending on the purpose of the plexvimap, the level of accuracy
and attributes that are used may differ, as wethadifference in the representation
itself.

When converting the provided map to the format meguby the robot, the
translation of the attributes must be appropriateéyghted by the reliability of the
map, which often depends on the original intentsbrihe map. As the majority of
maps are intended for use by humans, the chastaterihat are shown are typically
incorrect in proportion and contain higher levehcepts which require knowledge of
the context, thus do not directly include a lotrdbrmation that can be used by the
robot. This is typically due to the absolute measuhat are used by the robot. The
higher level concepts can be copied over to thet®lmaps, but they are often not
understood by the robot due to the lack of contétien accurately scaled maps are
available, such as the blue print of a building,sitimportant to filter out the
irrelevant portions of the map that are not requlvg the robot.

One of the more commonly seen occurrences of pmergeed maps is the use of
older maps generated by the same robot in a diffeneecution. The consistency in
the configuration allows for simple integration ween the two maps, which allows
for a highly confident inclusion of the given sdtinformation. This technique is
often used in global localisation algorithms, dymaobject and drifting detection, as
the consistency and also the lack of consistendywdsn the maps allow for the
differences in the maps to be marked as beingtaressting characteristic (Dudek et
al., 1997).

8.2 Map types

The consideration of how the derived attributestarbe stored and maintained
include aspects like the accessibility, memory ocomstion, manipulation speed,
extensibility, as well as the precision or the antaaf detail it can contain. The type
of map that is used has a direct influence on tibernal representation at the low
level, thus close coupling is required to the datacture. As with most applications,
it is the context which defines the data-structurede used, especially due to the
flexibility and resource availability of generalrpose processors to freely allow the
selection of the most appropriate implementatidth@ugh it is possible to make use
of dedicated processors, such as graphic procedserso the highly independent
nature of map components, the fundamental usageddhe different map types
remain the same. With this in mind, various mapesypre discussed along with the
appropriate data-structures that may be used temgnt it.

8.2.1 Grid

Based on the idea of the metric map, a finite w@krcoordinate points can be
used to define a unit of space for the attributebe assigned to. By restricting the
size of these spaces to a consistent amount, Hrebe placed in a grid like manner.
This configuration allows fast random access tdexddhe grid cells and can control
the memory consumption by modifying the size ofdk#. It is quite common to see
a Cartesian coordinate based grid map being uspecrlly when combined with
the occupancy of the cell for robot navigation tad&orenstein & Koren, 1991).
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The memory consumption is often limited in grid maps the majority of the
implementations use a fixed sized array to reptegenmap. The regularity of the
coordinate points allows inter-neighbouring cellmgarisons to be carried out
quickly and allows simple storage of attributes,eash of the cells can directly
maintain a group of different values. One of thec@l issues with this approach is
dealing with increases in the operational rangegher number of attributes while
maintaining an acceptable memory footprint, asdta-structure doesn't often allow
easy expansion, as well as the maintenance ofarasitng portions within the map.

In the event of the robot traversing beyond theailty anticipated range, the map
must undergo various strategies to deal with teemse in the map. The three basic
strategies that are available are shifting, extamdiand scaling. The shifting
approach involves the removal of unwanted portminge map to make way for the
new area to be mapped. This allows for the memaooypfint to remain consistent
and typically only requires a simple change touhderlying data structure, such as
the changing of the offset value. This strateggasimonly used when only certain
portions of the environment is needed in the maghsas the immediate
surroundings, since the discarded portions are eas® used to represent the new
area.

When shifting the map, there are two basic strategp maintain the same grid
structure, such that the neighbourhood relatiorsshipd the same memory footprint
are maintained. The first of the approaches invalwgying the cell contents across,
such that the coordinate point with respect todh& structure is consistent. With
this approach, an offset value from the origin leé tmnap to the grid itself may be
necessary for better utilisation of the array. $Beond approach involves the use an
offset value with respect to the grid itself toicate where the new reference point is
for the data inside the array. This approach tylyicaakes use of a circular counting
technique, such that the same memory location eansed for multiple indexes
without the need for shuffling of the contents.

The copying process for a 2D grid map is typic#dliggered by the whole row or
column being eliminated, thus each of the cellshm perpendicular direction must
be shifted by the same amount to fill the now vacafis. This means the number of
copy operations can be a significant amount ifdize of the map is large or the is
this is frequent. Although the approach is very ganto implement, the second
approach is more commonly seen due its effectigefmsall map sizes. Since the
shifting that is required is constant for all tlmaining cells, this can be converted
to an offset value to be used when accessing &ylart cell. To re-use the vacant
cells, the indexes to the position in memory cannbapped around, such that the
wrapping is invisible from the perspective of thepruser. Note that this technique is
applicable for cases where the cells being remavedactly one map width apart to
the cells being introduced, as it simply re-uses themory location instead of
allocating more for the new cells.

Although this approach removes the need for the popcess, the introduction of
the extra offset means frequent access to the icetlee map will require repetitive
division operations to wrap the index values aroumtlis drawback is often
neglected and can end up resulting in a reductidhe performance. To reduce this
overhead, an extra constraint can be introducesketing the map size to the power
of 2. This then allows the use of a simple bit maskietermine the wrapped offset,
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as the positions of the bits stays relative to #may positions. Algorithm 8.1
illustrates the circular indexing of the grid celihere the width of the map is a
power of 2, while the height is not. Note the cadeere the position is negative,
which is with respect to the origin of the coordaaxis. This can be ignored if two's
compliment negative values are used with the b&wiseration, as with the w index.
function GetAttribute(map, i, j):
set h = j % map.height
if h<O:
set h = h + map.height
return map[i & (map.width-1), h]

Algorithm 8.1: Circular indexing of grid cells.

The shifting process can potentially consume aifstgmt processing time and
can contribute to the corruption of the attribufethe process is not carried out at
appropriate moments. In typical scenarios, the ttelquose has a higher level of
precision than the one used by the map. This meisthe change in the robot's
pose will require partial shifts of the array elense which can be costly and
introduce large amounts of artefacts through imtlepon. The blurring of the cell
attributes can be avoided by a simple techniquauéiering the pose changes before
the map is updated. The actual buffer size carerddepending on the pace of the
robot and the range of the sensors with respdtiet@ize of the map. However, they
should be multiples of the cell size, which willogd the interpolation issues between
the cells occurring.

Extending the map involves additional memory beafigcated for the new area
and merging the two maps together. This approaadklesa the range issue without
compromising the existing information about the issrvment. However, it can
suffer from the bloating of the memory footprint @artions that are unlikely to be
used in the future will still remain to be just ascessible. A typical grid map
implementation involves a square structure, thues ititcrease in the map size is
proportional to the dimension of the current mdqustcan increase significantly if
motion in multiple axes are equally present. Timsfficiency is often tackled by
restricting the motion of the robot rather than ipalating the map.

The last of the approaches, the scaling, involhescompression of the current
map and a change in the representative scaledareth sizes, such that the memory
footprint remains the same. This technique is wideded in rendering processes by
applying well known algorithms like sub-sampling darvarious interpolation
techniques to remove the uninteresting detailhefdata without removing much of
the interesting or distinctive portions. It is inm@nmt to observe the decompression
time with certain algorithms, as the access timgiss as important as the memory
footprint. The various attributes within the gridlicand the purpose of the map are
often considered to determine the type of compoessilgorithm, but typically
involves a lossy process.

While the cells being updated is important, it gualy important to make sure
that the information carried by the cells beingcdrsled are not completely lost and
the new cells being introduced consider the avaiifalof information that surrounds
the position (Balmelli et al., 1998). For cells tggiremoved, the key contents of the
cells should be carried over to another representabr stored in memory for future
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reference, which may be accessed during an offghoeessing stage. This process
should ideally take place using a number of cdl®re to form a higher level
perspective of the area for compression, thus regubuffer or a viewing window to
analyse the portion being removed.

For the cells being introduced into the map, theteats can be initialised from
three potential sources. The first approach simpgets the cells by assuming the
portion of the environment has not been explored Vhis allows for a safe but
slower approach, as past information from othercesisuch as other maps are not
utilised. This assists in clearly identifying theepence of dynamic objects, as the
lack of influence from the old map will help genteraan unbiased model of the
current surroundings.

The second approach involves the use of another, nvapre the cells are
populated with information generated from the pa@kis hastens the map generation
process, but can potentially introduce errors fromsalignment or mislead the
process in case changes to the environment ochereTis also the issue with the
attributes that are not shared between the mapshwhust be initialised by some
other means.

The third approach is similar to one that is ofsen in video processing
algorithm, where the image is extended beyond dgntaries by replicating the
bordering textures when attempting to predict #adure outside the current view.
Since many man made obstacles, especially thosdotima structures, have regular
shapes, this technique can provide a reasonablelmbthe newly introduced area,
especially if trends like lines can be determinadtifiose that intersect the borders.

To combat the drawbacks of the three approachegealohybrid algorithm can
be implemented which relies on the reinforcementaf attributes. By combining
the cell information from the other map and theghbouring cells, similarities and
irregularities can be identified to weight the adehce in using the provided
attributes. The actual prediction can be derivedhflone or both the sources, while
the confidence weight can shift the attributes frim@ unexplored state. Algorithm
8.2 below shows an implementation of the updategs® of the old and new cells
using the circular indexing where the average efttho approaches above is used.
Only the horizontal shift is shown, as the vertihlift is almost identical in
implementation. The variable another is used toestocompressed form of the cells
being removed.

function HorizontalShift(map, delta_x, another):
if delta_x > 0O:

set to_remove_array[map.height][delta_Xx]
for j in 0 to map.height:

set neighbour = GetAttribute(map, map.x + map.width —
1,j+ map.y)
foriin O to delta_x:
set to_remove_array[j][i] = GetAttribut e(map, i +
map.x, j + map.y)
set other = GetAttribute(another, i + m ap.x +
map.width, j + map.y)
SetAttribute(map, i + map.x + map.width , j + map.y,
(other + neighbour) / 2)
Merge(to_remove_array, another, map.x, map.y, map.buffer,
map.height)
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else:
set delta_x = -delta_x
set to_remove_array[map.height][delta_Xx]
for j in O to map.height:

set neighbour = GetAttribute(map, map.x, j + map.y)

foriin O to delta_x:
set to_remove_array[j][i] = GetAttribut e(map, i +
map.x + map.width, j + map.y)
set other = GetAttribute(another, i + m ap.x -
map.buffer, j + map.y)
SetAttribute(map, i + map.x - map.buffe r,j+
map.y, (other + neighbour) / 2)

Merge(to_remove_array, another, map.x + map.w idth —

map.buffer, map.y, map.buffer, map.height)
Algorithm 8.2: Removal and initialisation of olddnew cells when the map is
shifted horizontally.

The components of the grid map can be seen indiguk, while the algorithm for
moving the robot can be seen in algorithm 8.3.

map.width
ey
y
robot. x 1
8 map.height

map.x N

’I L

kA i

map.buffer map. buffer

map.y robot.y

Figure 8.1: Components of the grid map when the imapifted.
The same notation is used in algorithm 8.3, extmpix, which is
called horizontal.

function Move(map, robot, horizontal, vertical, ano ther):
set robot.x = robot.x + horizontal
set robot.y = robot.y + vertical
set new_x = robot .x - map.x
set new_y =robot .y — map.y
if new_x > map.width:
set delta_x = map.buffer
else if new_x < 0:
set delta_x = -map.buffer
if delta_x !=0:
HorizontalShift(map, delta_x, another)
set map.x = map.x + delta_x
if new_y > map.height:
set delta_y = map.buffer
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else if new_y < 0:

set delta_y = -map.buffer
if delta_y = 0:

VerticalShift(map, delta_y, another)
set map.y = map.y + delta_y

Algorithm 8.3: Pseudo-code for robot motion and rwimg when the map requires
shifting.

One of the distinct problems of this approach & #ny error in the cells along
the border will be carried over to the extendedbsdel form distinctive streaks that do
not correspond to the real world. Although theseipos can later be corrected when
the sensors scan the regions, these unnaturatnsatian cause strange trends to be
observed when high level analysis is carried ouic&a detailed analysis on the
shape and trends of objects are not carried othiststage due to performance
issues, the reliability of the attributes includedthe initialisation must gradually
decrease with distance.

To implement this, a corrosion of the weights idtroed, such that the scores of
the attributes are slowly decreased as they aredmted. It is possible to simply
average the neighbours, lowering the weights hyxedfamount or a percentage, as
shown in figure 8.2. The first approach allows thigjects to spread out, thus
promoting true and false positives and can regaireasonable amount of distance
from the original position before the attributes @eemed irrelevant. By gradually
reducing the weight of the attributes and promotimguncertainty of the attributes,
it provides some level of consistency with the adrd cells and allows control over
how much it should rely on the existing attribut&nce the precision of the
occupancy can be unreliable at times, the sizbeféference row or column can be
increased for a better indication of the statédhefdpace near the map's boundary.

B Occupancy
Figure 8.2: Corrosion of attributes in the initsaiion of newly introduced cells.

The intensity of the cells is the proportional weigised for the
attributes.

Introduced rows

Note that when shifting is required in both axeswtaneously, the operations for
both directions must occur simultaneously to avbidsing of attributes by
sequentially extending from one axis then another.

By allowing the robot's position with respect te tihhap to change, the map can no
longer be modified through a fixed template of sensteractions, such as fixed
positions for shapes and directions of the sensamss The variation in the position
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introduces aliasing issues, which is also the @dsen rotations occur. However, by

allowing the cell's attributes to rotate with tlobot, it causes dispersion and merging
as the cell is mapped onto a group of cells aft@tion. This also causes problems
with the corner areas of the map, as they enter leaade the map. Instead of

changing the orientation of the map, the directbthe sensor scans can be modified
and the aliasing issue can be dealt with in similays to that of the sub-cell sized

motions.

Due to the similarity of the grid map and rastepdrics, many image processing
algorithms can be applied to enhance the perforsnanthe maintenance of the map.
This will be discussed in further details in chaj@e

8.2.2 Quad tree

Instead of using uniformly spaced grid cells, ifpisssible to combine different
sized and shaped cells to better utilise each&&bmmonly seen example of this is
the quad tree, where the size of the cell is detethby density of the information to
be represented (Balmelli et al., 1999). The stmectusplitting and merging of the
cells allow for effective compression of informatjdout the approach can sometimes
be overwhelmed by the modification of the cell agaments (Yang & Lee, 1994).
This can often limit its use during the construetal maps, especially if the cells are
merged and divided frequently to increase the aifecess of the compression.
However, this approach is useful in compressindiguus of the map that are inactive
or may not be of interest, which are problematigiid maps due to the dense and
uniform representation of the surroundings (Cheal.et1995).

8.2.3 Geometric

Based on the group of sensory data, a map carpbesented using a collection of
geometric shapes (Dudek & MacKenzie, 1993). Thpasentation can consist of
constructs such as points, lines, polygons, anidrsle, which combines the sensory
data by some constraint. This often requires aokgtrimitives or templates to be
used to associate the sensor data, but allowsyacesnpact representation of the
environment. The formation of these geometric shage also accompanied by set
of rules to encourage certain shapes to form otlers, such as larger shapes with
lower number of vertices over smaller and compéidaghapes. Once these geometric
representations are formed, manipulation of eactstcoct becomes a simple task.
However, the models are often difficult to deriveedo the limited sensor precision,
variation in the tolerance specified in the temgmland the loss of subtle features
when approximating to one of the pre-specified skap

Although the memory footprint may start off beinguadl, this can potentially
grow as more sensor data is introduced and ofterlagyone other. To overcome this
issue, compression mechanisms are required totdetdaemove redundant shapes,
such as the removal of shapes that overlap. Oneoimajor drawbacks of this
approach is the complexity in identifying relatibiss between the points and
structures, as sequence or neighbourhood informagicmot maintained and would
rely on other structure, such as a tree structarstdare some form of adjacency
information to increase the processing efficier@ytfman, 1984).
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8.2.4 Topology

An alternative approach to using a geometric shgsed mapping is to identify
regions with some form of semantic information (pers, 1978) to describe itself
and to connect between them, such as by using gjrapiitching against patterns, or
apply clustering techniques (Nagatani et al., 1988nolina & Kuipers, 2004). Since
the number of data points is proportional to thenbar of scans and is not
necessarily the measure of relevance or interastggy the sensor readings require
compression to leave behind only those of interest.

As more and more sensory data is converted to #pe the level of complexity in
the map increases and can require additional lagegammarise the map, or at least
a sub-portion of the map. The summary, like theplate shapes and clusters, can be
classified into groups of higher level conceptsaion what is called a topological or
semantic map (Shatkay & Kaelbling, 1997). They espnt the relational and
category labels on components within the map, stsscborridor and room. The map
is typically represented in a graph structure, Whallows for high levels of
compression and also has commonalities with theiaspaerception of humans.
Since these high level constructs often do not leagpatial constraint, the use of a
graph structure is more suited than the grid reprision.

Many of the map types discussed above are ofted us@arallel for specific
tasks. The specialisation allows the individual mdp focus on portraying a
particular information, while the combination wibther maps allows complimenting
information to be derived and stored (Duckett & f8#tf, 2000). To coordinate
between them, effective inter-map messages mudévised to allow changes to one
map to affect another, thus maintaining the syrnmisedion (Thrun & Bucken, 1996).

One commonly seen topological map is a connectiwvigyp, which illustrates the
neighbourhood of significant points, such as dioss between landmarks. Although
the information that is represented is quite simitathat of a grid map, the graph
based approach allows varying levels of detail ketwpoints of interest. This means
the details about how they are connected can bedstbut the information with
regards to the region in between can be discarded.

Figure 8.3 shows a sample connectivity map, sugergad over a floor plan map
to indicate the presence of a path between thesndides important to note that the
links between the nodes is not required to repteenimmediate neighbours like
the grid maps, nor does it indicate a direct liriesight. Instead, the connection
simply states that it is possible to get to theepthode without directly passing
through another node.

One of the most crucial considerations to make whgrlementing a graph based
map is the criteria for creating a node. The amalgs the grid map allows for
various attributes to be considered, such as tleeipancy of a region and the
relationships to the other nodes. This can potinfiarm the basis for the attributes
of the node, as well as deciding whether it is sgagy to create the new node within
the map. Unlike the previous maps, where the omatiips between the grid cells
could be derived with ease from the coordinate esluhe nodes within the graph
must carefully consider the connectivity, suchlas tecessary motions required by
the robot or line of sight, to allow connectiondvibeen the nodes. However, it is
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entirely possible to configure the links such thalifferent measure is used to link
between the nodes, which may include things likeisien points in mazes or
restrictions in the traversable direction, suclwelk one way roads.

ool E]l

E.
|

by =2 7

Figure 8.3:Example connectivity map superimposeat avfloor plan.

The circles in this example represent the nodestagung
information about the region.

Once a new node has been placed into the mapetheof the nodes must be
analysed to determine the appropriateness witlculhent view of the environment.
Depending on the level of precision and memory gonsion required by the nodes,
it may also be feasible to maintain several lapérsemantic maps simultaneously to
allow analysis of the nodes from multiple perspexti This may involve the
removal of redundant or insignificant nodes, orrewe merger between multiple
nodes. When merging is required, some informatidhbe lost from interpolation
and elimination of certain attributes, thus eactdenshould maintain a record of the
number of merging operations it has performed tte itbe amount of errors that
could have been introduced.

The type of map we are most accustomed to is theaisic map, where it
portrays a series of very high level concepts withimal precision and detail of the
other attributes. When constructing a semantic foa@ mobile robot to use, it is
important to note that it is often quite meaninglés the robot itself, as it does not
have the contextual understanding of the attribuliess possible to classify the
attributes using templates or cluster them in simitays to self organising maps, but
are typically only useful to human observers thesformation of topological maps
should be regarded as a secondary functionalitycampression and for human
observers to view later on.

8.3 Map layers

The process of creating the map can be categongedwo types, where one
involves the maintenance of the immediate surrauméenvironment, called the local
map, and the other involves the whole environmieairobot is exposed to, called the
global map.

146



8.3.1 Local map

8.3.1 Local map

The local map typically extends to the area whieeean-board sensors can reach,
which means they are frequently accessed and mlateguto reflect the up to date
readings of the sensors, thus the overall sizhisfmhap is kept small. Since the local
map must interpret the sensor information of midtiypes, it must be equipped with
strategies to convert the various sensor readmgsa uniform representation. This
allows for simple interaction between the senseigure 8.4 below shows a sample
view of the local map, where the red circle is therent location of the robot, blue
areas represent the regions that are deemed tedeffobstacles and the green areas
are areas where there could be obstacles present.

Figure 8.4: Sample view of the local map.
The yellow represents vacancy, which is carvedcheyrobot's body,
the IR sensors and the sonar sensors. The mageptasents
occupancy, which is where the range finder scamimate. The
intensity represents the confidence measure.

Since the map must be able to handle the sens@umaents, it must have the
capacity to modify the map in all directions thes®&'s face. This often leads to the
centering of the robot within the map, since semsoe placed around the robot in all
directions in most configurations. Whenever theotainoves, the map must shift in
the opposite direction to maintain the robot cluséhe center of the map. Note that
it does not have to remain perfectly in the cergerong as there is enough room for
the sensors measurements to affect the map.

Although the use of a geometric map would allowuaate portrayal of the sensor
readings, a grid map allows for an easy base ®wv#rious sensor measurements to
be merged. Since the length of time the local miapssconstant is dependant on the
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speed of the robot, using the geometric map ccesdlt in large number of shapes
being included if the robot does not move around thre scan rate of the sensors are
set very high. Using the grid map allows for fastdom access to the sensor data, as
well as being able to maintain a constant memooypint.

Various strategies in using the range finders doming the local map is discussed
in chapter 9, while techniques using visual senaogsdiscussed in chapters 10 and
11.

8.3.2 Global map

Since the scales of the local map remain the samploration of a large
environment would not allow the robot to maintaimy anformation about how the
current view relates to previously visited areash@ugh the scales and granularity
should depend on the obstacles and the robot'sisigelso important to include the
proportionality of the traversal area by the robidie global map differs from the
local map by maintaining a scaled or compressedspeetive of the entire
environment the robot is interested in. The mapwadifor a global perspective of the
explored environment to allow a large scaled amslyich as path finding (Low et
al., 2002; Masoud & Masoud, 2000), derivation ofnaatic information, and
connectivity.

To control the memory consumption, portions of e must be discarded when
the robot explores a new area outside the boundshefcurrent map. When
determining the compression algorithm, considenatias to what information will
be retained and discarded must be made, as weleapotential introduction of
ambiguities in the connectivity and alignment dwe the change in the scale.
Depending on the compression algorithm and the tcngs to the robot's
operational range, it may be possible to use ddssslgorithm by sacrificing some
processing time using a non-lossy compression ithgoror storing the data to a
permanent memory for off-line processing.

The majority of the global map generation is doheodgh the information
provided by the local map, where periodic updabogurs to fill in the details of the
current surroundings by superimposing the local ma a portion of the global
map (Clemente et al., 2007; Williams, 2001). Altgbuhe primary function of this
will be to fill in the unexplored portions of thdéofpal map, it is also possible to use
the merging phase as a correlation process toatdfre current pose of the robot or
to determine any inconsistencies to flag areasyohuhic properties or even errors
(Schiele & Crowley, 1994; Weil3 et al., 1994). Sigaes for implementing a global
map by combining the local maps are discussedtailde chapter 9.

8.4 Summary

When generating the map, it is important to corrsitie characteristics of the
available information, such that meaningful infotioa is used and maintained. The
selection of the appropriate attribute dependshenspecific task of the robot. For a
navigational robot, the important attributes in@duthe occupancy and dynamic
properties of the obstacles, as well as connegthétween various points the robot
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can manoeuvre. Many other attributes can also bd, usit this depends greatly on
how useful the extra attributes are to the robate Gtrategy that is considered in
chapter 11 is the use of sparse landmarks whighamtained in a separate map
layer.

Although the accuracy and the level of informatibrat can be provided by
artificially crafted markers and external systeras be very desirable, the focus of
the current system is to develop a series of dlyos that can operate independently
of other systems, thus forming a strong foundatamextension and improvement
later on which could include the use of the extesgatems for support.

While keeping the memory footprint low and reducinbe processing
requirements for the map is desirable, maintaimmgftiple layers can assist in
simplifying the communication between other systerAs well as the actual
information being stored, the various layers needansider the arrangement of the
information, the conversion process between therfgyand the maintenance of the
information in terms of how much and how long thiermation should be stored.

With the idea of specialisation in mind for the magers, three different layers
are implemented to simplify the task at each laydrich are the local, global, and
the connectivity maps. The primary focus of thealoand global maps are to
combine the sensor information quickly, which ihiaged through the use of the
grid map, while the connectivity map is used toestagher level concepts to be used
for complex decision making and to allow a moregthle representation to the
observer. This map also maintains some of the infakrmation about the structure
of the environment that may be lost when the sfmaléhe global map becomes too
large.
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Chapter 9 — Carving using range finders

Due to the simple process that is required for #oun representation for the
sensory information to bind to, a 2D Cartesian dowte based grid map is used to
represent the local map of the robot. The highlysgeand memory consuming nature
of this type of map allows an accurate portrayahef environment, while providing
quickly accessible information between differentdtbons within the map. This
characteristic allows for fast modelling of the senreadings while maintaining a
consistent memory footprint.

As the current task for the robot is to model ttracture of the environment, the
emphasis is placed on the occupancy of areas witleirmap where the robot can
observe. Although it is ideal to construct a 3Dresgntation of the environment,
many of the sensors on board are not capable okltmggl this due to the lack of
elevation control on the robot and also on the ingvangle (Katz et al., 2005). For
this reason, the map is constrained to the 2D septation of obstacles, which is
still capable of high level tasks, such as pattifig and segmentation of the scene to
identify sub-components (Shi & Malki, 2000).

One of the key strategies used in this particutgslémentation of map formation
is the idea of a multi-layered representation @& #émvironment. The local map is
used as the initial interface for the raw sensoasueements, while the global map is
derived through the layered superimposition of lheal maps. The range finding
sensors, which are the sonar and IR sensors, asdeoed for the construction of
the local map, which can identify where the obg&sdle using a technique known as
carving (Burgard et al., 1999). The basics of teishnique involve removing the
occupancy of regions that overlap with sensor scans

9.1 Occupancy map

Using the current array of sensors, it is possiblebtain directly or to derive a
wide variety of attributes about the environmeuntlsas the acoustic reflectivity and
texture information. However, many of these are metessary for the majority of
map construction phase, as the map is mainly istiedein the physical occupancy of
regions. The implementation of occupancy maps aaclude simple binary
occupancy levels, a counter based accumulator,poolaabilistic model, which can
be similar to a normalised implementation of theuseulation approach (Martin &
Moravec, 1996; Wijk & Christensen, 2000).

9.1.1 Sensors and attributes

The complete construction of the occupancy mapluasothe use of the majority
of the sensors on the robot, including the IR arteyp sonar sensor modules, a
webcam mounted on top of a servo motor, and anotledrcam as part of the
omnidirectional camera module at the top of thetobhe sensors being used can be
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categorised into two distinct groups. The IR andascsensors are grouped as the
range finders, while the webcams are categorisedirastional sensors, as they

measure the incoming light's intensity at variongles. Since the two categories

behave significantly differently to each other,\thvll be treated separately and any
information that is derived will be merged at sefaime. The considerations for the

directional sensors are discussed in further detaihapters 10 and 11.

One of the effective characteristics of the rangddrs is the ability to determine
the distance to an observed object. This indiregthyws the region before the object
to be marked as vacant, as the range finder reqaidérect line of sight between the
sensor and the object. Note that the signals dgtdatermine the distance to the
surface which could not be penetrated by the sesigoial, thus can sometimes be
misleading. Although the obstacles indicate th@astbat cannot be traversed by the
robot, there is also another attribute relatedaw hazardous the area is. This being
an important attribute for the safe operation eftbbot. The use of this attribute will
be discussed in chapter 11.

Depending on the modality used by the sensors,r aitiebutes, such as the
reflective properties and surface orientation (Asa& Grupen, 1998; Lacroix &
Dudek, 1997) can sometimes be determined indireattych can also be used to
assist the formation of the scene structure. Mdrthese extra attributes will not be
included in the discussion, as they require spesdinsor arrangements or multiple
scanning of the environment to observe the inctersises in the sensor
measurements.

Other attributes that are maintained within thésdeklude the frequency count of
how many times the cell has been modified by thes@escans, the pose of the
sensor which affected the cell, the time stamgeflast access to the cell, and finally
the surface orientation, which will be useful wheemstructing object surfaces from
the combination of the cells. These attributesarein place to allow for a more
robust carving algorithm, such that it minimiseg thffects of erroneous sensor
readings and repeated sensor readings from the gamsgective.

Using the orientation of the robots when the scams made, the surface
orientation can be measured by observing the inograngles of the sensor beams
and noting the range in which the sensor signal sumsessfully reflected. This is
achieved by maintaining an average of the perpefaticlirection to the sensor using
the frequency counter. As the value representagte athis value can cycle around
and also does not have a specific initial value.

When observing the behaviour of the sensors, itmeded that fluctuation in the
sensor readings fell within two distinct categori€ne was where the value
fluctuated by a small amount, possibly due to seasol ambient noise, while the
other was when an erroneous reading was made.i$trecton could be made quite
easily by using a median filter for the IR sensond @ confirmation check for the
sonar sensor.

The implementation of the median filter involvedsanple buffer that was
maintained to filter out the outlier value amongs two adjacent measurements.
This was achieved using a cyclic buffer, which emaged smooth transitions in the
measurements. This approach meant that the IR sewsald misalign when there
was a sudden change in the distance to the oljettthe high rate of scans
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compared to the speed of the robot meant the ewald stay quite small.

As for the sonar sensors, although the arrangerokithe two receivers can
potentially allow for narrowing of the obstaclexdtion through triangulation, the
level of precision that can be achieved does notvdor a reliable distance measure.
Instead, the two measurements are used to ideatify inconsistencies in the
measurement to flag the cases where the orientafitihe object's surface did not
allow for one of the sensors to receive the signalhen an obstacle was not in line
with one of the sensor's viewing area. To implenteist the two measurements had
to be within 700 units of each other, which equateapproximately just under 10
cm.

9.1.2 Carving

The carving process can be implemented using dedéfarent approaches. A
commonly used technique is to only note the presesfcobstacles by initially
assuming that all areas are occupied and remokoggtregions that are traversed by
the sensor signals. The opposite approach of asguatii regions are unoccupied is
also commonly seen, where the locations of theotdjdetected by the sensors are
marked. Other techniques include the formationnaf maps, where one is used for
the vacancy and the other for occupancy, or thebawetion of the two together as
they are mutually exclusive. Another measure thatimmonly used in conjunction
is an uncertainty measure, which is sometimes tagther with the occupancy and
vacancy, such as the difference between the twaesalUsing a single range, it is
possible to represent the three together wherevarédue represents vacancy, a high
value represents occupancy, and the mid point septe uncertainty.

When the sensors are used to carve out an aresh#pe of the region being
affected will depend on the sensor characteriskicsimplified implementations, the
effective area is confined to a straight line egthin a perpendicular direction from
the sensor, such as the case with laser rangedifdéaliner et al., 1997). This leads
to a very fast processing time, as it simply reggis 2D ray tracing to mark the cells
involved. This approach assumes precise informatbnwhere the sensor has
interacted with, thus does not suffer from ambigustsues in terms of where the
sensor signal has reflected from. This behaviotenotioes not portray the actual
behaviour of the sensor signal, as many of thecasvexhibits a dispersion from
both the sensor and the reflected surface. Althauighpossible to treat the shape as
a straight line, appropriate algorithms must belemented to correct any false
flagging of cells as obstacles and better utilleedctual characteristics of the sensor
signals (Pfister et al., 2002).

Using a more realistic model of the sensor sighaps, a sector like shape can be
considered. The angle of the spread is not alwaysistent, but can typically be
approximated during the calibration phase for eaththe devices. Sometimes,
different weighting functions are applied to reflec more realistic shape, but the
weights are generally applied after the sectorbdess established to isolate the cells
that are affected by the scan. Instead of usingeaos it is possible to use a
combination of other primitive shapes to represkeatshape, namely a triangle and a
circle with portions of overlap. The circle, or tlmwnvex hull of the arc, can
sometimes be decomposed into small triangles, wbah potentially increase the
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efficiency due to a simpler mapping of the shapesndary onto the grid map. The
geometric shapes can be decomposed further intdintbe defining the bounding
area. With the outer bounds established, the seeorbe filled with simple and
efficient algorithms (Henrich, 1993). Figure 9.lugtrates two approaches to carving,
where the left shows just the potential positionhaf obstacles, while the right shows
the vacancy, occupancy, as well as the uncerthadgd on how green each cell is.

1/ b W
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Figure 9.1: Occupancy map carving.
The left image shows the potential location of abks from the
range finder scans, while the right image showsvmmancy. The
small ring represents the robot's body.

The availability of the two types of sensors allfmva wider range of information
to be captured, in particular the confirmation loé tsensor readings, as the sensors
behave differently against obstacle surfaces ame lifferent operational ranges.
This can be exploited to encourage the use of HmhlR and sonar devices to
contribute to the carving, rather than simply usihg one with more reliability or
consistency. With the current sensor configuratitwe, sonar sensor beam overlaps
with the IR beam at the front end of the robot lestwthe ranges of approximately
400 to 800mm, as shown in figure 9.2. To maintam difference between the two
types of sensors, the attribute for storing theetiof last access can be maintained
individually for each of the two types of sensoffhis means the sequence of
processing the two sensor modules will not bias nieasurements, as well as
allowing confirmations to be carried out if the &éraf last access is near identical.

7,
~~

Figure 9.2: Range and effective area of the som&iR sensors.
The large arcs represent the sonar scan area, thiilshorter arc
regions represent the IR sensor scan area.
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9.1.2 Carving

Since the robot will approach many of the obstaftem the front, the sonar
sensors should attempt to face forward and thet reitmuld not need to move closer
than little under 800 mm to an obstacle to get sitadce measurement. This, of
course, depends on the reliability of the individsensors at various orientation and
ranges, but can be kept in mind as a simple rul@ltdack on for the navigation
algorithm.

9.2 Local map

As the local map reflects the current surroundinfishe robot, the carving
process must consider the change in the pose ddethgors. The behaviour of the
sensors can differ significantly with both sensaod aletected object's orientation,
thus should influence the appropriateness and weghvhen the sensor scans are
translated onto the map.

9.2.1 Sensor pose

By measuring the difference in the time to the pres sensor scan, it is possible
to modify the weight of the current scan such thaid scans of the same area does
not influence the map as significantly as aftertiwgi for some time to pass. This
rule encourages the robot to move around and expdoge areas before returning to
analyse an already visited region. It also avomdny to use a slow scan frequency
which requires normalisations to avoid local maxiiman forming if the motion is
not consistent. Similarly, using the change inghsition of the robot for the weight
also encourages the robot to move around and absie environment from
multiple perspectives.

Although the two attributes above sound reasondabé&emain contributor to the
ideal operation of the sensors is the correct setiessurface orientation (Grabowski
et al., 2003). This is primarily due to the sensignals being unable to reflect back
to the device if the orientation is not within armaular range, which can cause
incorrect distance measures to be made. By stdhagorientation of the sensors
modifying the cells, it encourages the robot toembs the obstacle from multiple
perspectives (Feder et al., 1999his will eliminate some of the problematic issues
with the approaches proposed earlier where theomat not consistent, such as
when the robot simply moves back and forth agdhesbbject.

To illustrate the effects of the pose based wengjtihree different approaches to
objects are analysed involving the robot movingediy towards the obstacle,
moving parallel to the obstacle's surface, andtirgahe robot around the center to
allow multiple orientations. The three weight fuoot that are used include a simple
counter, a difference in the positions, and a ckffiee in the orientations based
approaches. The interval between the scans is setrsistent to simulate the current
behaviour of the sensors, thus the differenceme tbased approach is not illustrated.
However, the end effect is similar to the distanased approach, with the exception
of the rotation, which is similar in behaviour teetorientation based approach. The
simulation is carried out for 10 scans of encountgr flat surface, a small object,
and an angled surface.
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9.2.1 Sensor pose

When the robot moves towards the object's surfdee,sensor reading adjusts
inversely to flag the overlapping region. Usingime counter, the arc region is
marked as containing the object, which can chandength, but still marks multiple
cells as being consistently and highly likely taxtaon an object. The same occurs for
a small object, thus the two objects are indistisigable and requires an alternate
measure to indicate the true location of the objBaé distance measure resulted in a
similar result as above, as the motion encouragechtcumulation of the scores to
flag several cells as containing the object. Ushegorientation weighted approach;
the cells are almost unmodified by the subsequeartss as the orientation does not
change. This results in very little changes to thap thus does not allow any
confident decisions to be made and awaits for timtrto approach the obstacle
from a different angle. When facing an angled sugfdhe arced portions often do
not overlap with each other, thus the only algonitthat is effective is the negation
of the occupancy when the portions of the arc aypsrlwith a non-arc region. Figure
9.3 below illustrates the three approaches, whieeestore of the counter based
approach has been scaled down to a range of O Thelred regions indicate the
possible locations of the object, while the blugioas indicate the regions of
vacancy.

For the case where the robot moves parallel tmhbject's surface, the cells that
are encountered the most is in fact those whiclslightly in front of the surface.
This behaviour occurs from the fact that the actuaface is reached by a small tip
portion of the arc, which results in a jagged stefédeing modelled. Although this
can later be analysed at a higher level to be atewveto a flat surface, it can
contribute to misalignments of the surface if tbhbat is moving at different speeds.
Depending on whether the vacancy is or is not usednjunction, some of the false
positive objects can be eliminated as they occugpyage that is marked as vacant by
different scans. Note that this can create larges daetween the local maxima
depending on the interval of the scans.

As figure 9.4 shows, the detection of small objgmtsduces a highly desirable
result for two of the approaches, where the scotbeaobstacle is higher than the
rest. Depending on the number and the proximitthefscans, the difference in the
counter values will change, thus a filtering pracesoften required to identify the
local maxima or normalised using the total numidescans.

Although the angle from the sensor to the cell gesnbetween the scans, this is
undetectable by the sensor and the sensor's drientamains in the same direction.
This causes the orientation based weight appraachap the same shape, but with
low level of confidence, thus preventing false pwesiobjects from being formed.
When the approach is applied to a small obstatie, technique is unable to
capitalise on the repeated access of the sameine# the orientation remains the
same. Once again, this approach requires re-s@aohihe area at a later stage when
the orientation of the sensors are changed befoyecanfident measures can be
established. Observing the angular surface resuttetthe same behaviour as the
previous robot motion, but with the local maximanigewider apart.

The last of the scenario, which consists of rotatime robot around the center,
resulted in similar behaviour to the previous césethe flat and small objects,
except with the two weighted approaches being sed@pound. The behaviour for
the angled surface showed that the orientationdbapproach formed the jagged
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9.2.1 Sensor pose

surface behaviour, much like the simple counterebaapproach. Figure 9.5
illustrates the behaviour for the last scenario.

Figure 9.3: Motion towards the object.
The rows represent the different type of obstacieoantered,
while the columns represent the three score acaitmonl

strategies. The left being the simple counter,nthédle being the
position based, and the right being the orientadbiased strategies.

vy W
: - :

v

e

Figure 9.4: Parallel motion to the object.
The rows represent the different type of obstacieoantered,
while the columns represent the three score acatmonl
strategies. The left being the simple counter,nthédle being the
position based, and the right being the orientdbiased strategies.
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9.2.1 Sensor pose
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Figure 9.5: Rotation around the center.
The rows represent the different type of obstaaleoantered,
while the columns represent the three score acationl
strategies. The left being the simple counter,nthédle being the
position based, and the right being the orientdbiased strategies.

In all of the approaches above, the cases wherelijext is detected slightly
before the surface can be corrected by increabimgdan frequency. This means that
the only problematic cases are the counter andtiposbased approaches when
heading straight towards a flat or small objectthas incorrectly marks multiple
cells as being occupied. To avoid this from ocagyrithe robot's motion should
encourage rotation, such that the sensor scanstavarying angles to avoid the
undesired overlaps.

Using the orientation based approach does not atlwev quick detection of
objects, as the robot would not be rotating whiéevérsing to various locations, but
at the same time, does not form false positivess $tiategy can be utilised for the
sonar sensor by constantly rotating the sensorgugie servo motor. It is also
possible to avoid using the sensors located afrtm and back of the robot, thus
eliminating the first scenario from occurring. Thasll allow the position based
approach to operate without the problematic caseinfportant issue to note is that
the real motion of the robot is never perfectlynslational or rotational, thus the
cases with little effect on occupancy detectionl génerally find an obstacle at or
near the local maxima.

9.2.2 Weights

In many experimental trials, robots manoeuvre adouna set path and focus on
covering more distance than repeating scans instme area to improve the
accuracy and attempting to disambiguate faulty omessents. This means many of
the scans are spaced apart while measurements atonad the turning points
sometimes contain more scans. The frequency daddaes thus reflects the speed of
the robot, rather than the complexity or importamméethe region. Although the
increased turning points may indirectly indicate tomplexity of the surroundings,
this would only be applicable if the robot's mosowere based on the presence of
obstacles. The simple rule can be used to norm#ieseooints to discard or scale
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9.2.2 Weights

redundant measurements so the density informatéon e used to distinguish
between an actual object and an erroneous reatiregapproach is typically used in
conjunction with the vacancy counter to removeftiige positive values first, such
that the surfaces that are formed do not includgharcs.

Another commonly used approach is the detectiofocdl maxima by simply
observing the scores between the neighbours. Otreea$sues with this approach is
the difficulty in identifying surfaces, as the nuentof scans dictates how prominent
the object is amongst false positives. This teammig used when specific points of
interest is desired, such as corners, which camsbd in a post-processing phase to
construct a surface by connecting straight linge/éen them. This, of course, places
certain conditions on the types of surfaces itaaserve.

When the scan is carried out in quick successi@sénsors are not given enough
time to move or change its orientation in case skasor signal is incorrectly
reflected. This is also true for the time interwahich can be too small to notice any
dynamic behaviour of the objects. By allowing theerval to become large enough,
the sensor reading can be given a significantly emaright to emphasise the
importance of the particular scan. Rather than kinuging a threshold value to
specify when the next scan can occur, a weightbeadetermined to scale the value
depending on the length of the interval. This isduse the setting of a threshold can
cause an important scan to be missed, as the tiomtan the reflecting angles may
not allow the surface to respond to many orientgticSince the maximum time or
position difference is unbound, the difficulty ligs finding a reasonable range to
spread the weight. This can be easily controlledtlie orientation based approach
due to the cyclic nature by assuming that the s is small enough for one
surface.

Using the attributes introduced earlier, the waightunction can allow the scores
to be accumulated more effectively. However, itngportant to note the range, as
well as the non uniform number of scans that argezhout. To counteract this, the
number of scans that have accessed the cell canab#ained, the vacancy and
occupancy can be stored as separate measurese aveight used to apply the
change in the occupancy can be proportioned ukmgurrent value.

The use of the counter allows simple calculatiornthef hit rate for a cell, which
can be used to normalise the scores. By maintainirgggparate measure for the
vacancy and occupancy, the two can be superimposeate any inconsistencies, as
well as being able to maintain the number of acseseparately without it cancelling
each other out. The last approach can be implemidryt@bserving the current value,
then weighting the change as a proportion of tmeareder. This will contain the
value within a known range at all times, but cadl& rapid fluctuations if only one
value is maintained for the occupancy and vacanhuag issue can lead to significant
biasing of the last scan, as any change in whétigeoccupied or vacant will modify
the score dramatically if the observation contredilbe previous observation.

With this in mind, the current implementation usles orientation based weight
by noting the difference in the angles from the kascess and scaling the range
between O and 1. Figure 9.6 below illustrates treagiat function based on the
orientation.
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Figure 9.6: Occupancy and vacancy weight modifcati
The red line illustrates the weights used for aegiwuifference
between the previous and current sensor scan.

To distinguish the difference in the reliability tiveen the two types of range
finders, another weight is introduced to scaledfiect of the sensor readings based
on the typical fluctuations in the measurementth@lgh the fluctuations depend on
the distance to the object, as well as the surtgpes, the reliability can be
generalised in a rough manner by observing theisi@mgy in various environments.
In the current implementation, the sonar sens@gyaen a higher weighting due to
the consistency in operation with a wider rangeswfface orientations. Since the
majority of the fluctuation occurs from the surfagcgentation, which cannot be
determined, the derivation of the most appropriaeeght is difficult to achieve.
Instead, an arbitrary value of 0.15 is currentlgdifor the IR sensor scans and 1 for
the sonar sensors. Using the low scaling coeffigieduces the rate of change in the
scores, thus preventing large fluctuations in tleeupancy score if the cell is
mistakenly observed.

It is also possible to apply weights to the celishin the sector to account for
variations in the sensor behaviour, such as usiaglistance or the angle away from
the perpendicular direction of the sensors. Howethes approach is not pursued
here as the model depends greatly on the refleptigperties of the obstacles, as
well as the sensitivity of the sensors. One sinagléition which could be considered
in future implementation is the use of the standirdation values or the difference
in the distance to the obstacle due to the spHenicéace in the distance measures to
create a region of potential termination of thessenscan instead of the constant
shape. This may require a more controlled calibnagprocess to determine the
appropriate weight functions to be applied to resusomething resembling figure
9.7, where the brighter portion represents a higheighting. Note that the reverse
will be applicable for the vacancy, where the blaeffions will be more likely to be
vacant than the white regions.
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9.2.2 Weights

Figure 9.7: Weight function based on position witthie sector.
The grey scale indicates the weights used, wheite wbpresents
high and black represents low values.

When observing the behaviour of the sensors orowarsurfaces, it was noted
that although a surface may be correctly detecteednwobserved from a particular
orientation, if the sensor's orientation is changedt is too close to being parallel to
the surface, the scans will miss the surface atwdir@n erroneous measurement. By
maintaining the occupancy and vacancy as diffevahies, it is possible to detect
this occurrence by observing that both values mye. h

It is important to note that the false positivedl awiso be flagged as being a real
object due to the potentially large number of caesl To distinguish this, the surface
orientation can be used or a higher level analgais be carried out based on the
connectivity of vacant regions and the proximitychfsters of occupied cells.

Since the surface orientation is gradually derivk, may not be a reliable source
to make use of. Similarly, the change in the distameasurements can be attributed
to many different events, thus the unexpected Isypgsof obstacles cannot be the
solely attributed to incorrect orientation of thensors.

A simple implementation to counter this is to nttat the majority of objects are
continuous, which suggests that the change in tarete measure should remain
small if the same structure is being observed. Téthnique is used for the sonar
sensors, which requires the two readings to belairto each other. As for the IR
sensors, the detection of an erroneous reading $whden increase in the distance
measure remains a difficult task. Rather than rneduthe overall weight of the IR
sensor measurement based on the distance measerepérating range of the
devices is kept small to avoid the possibility etendary reflections that causes
objects to appear behind another. Note that thaanditer is able to remove many
of the noisy readings which are often caused bgémsor and not the obstacles.

By reducing the operating range, it also limits plesitions of the spurious objects
which can often be placed inside real objects. &the sensor scans are carried out
frequently, the boundaries formed by the real dbj@an be used to eliminate the
faulty objects using a filling algorithm to identithe actual objects.

9.3 Carving

The carving process itself must occur very quichd efficiently, especially
when the vacancy must be modified. This is dudéolarge area the sensor scan can
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cover, and the computational cost involved in tla@glation of the geometric shape
to the discrete grid cells. Since the boundariethefsector can be determined from
the distance measure and the viewing angle oféheas, it is possible to determine
if the cell's coordinate point lies within the s@ctgiven the position of the sensor.
This reverse lookup process can be sped up usisighpler boundary, such as a
bounding rectangle, to reduce the search spaash@mking the inclusion of the cell.
Algorithm 9.1 can be employed for the reverse Igogtocess:
function ReverseLookupSector(map, sensor):
for j in 0 to map.height:
set relative_y = j — sensor.y
foriin O to map.width:
set relative_x = i — sensor.x
set distance = V(relative_x 2 + relative_y 2)
if sensor.distance >= distance:
set angle = 2 * (tan 1 (relative_y / relative_x) -
sensor.orientation)
if sensor.view_angle <= angle:
if sensor.distance == distance:
ApplyOccupancy(mapli, j])
else
ApplyVacancy(mapli, j])

Algorithm 9.1: Applying occupancy or vacancy usiegerse lookup.

The idea of converting the sector into a seriesgebmetric shape can be
employed, which can allow for a faster traversath&f shape's boundaries. By first
identifying the boundaries, it is possible to applyilling algorithm with a linear
scan. In a similar fashion to the above algorittime, two lines and the arc can be
traced, while maintaining the minimum and maximuedues for each row, or
column, then simply iterating through the storediges to apply the vacancy.
Algorithm 9.2 illustrates this process. Note that $implicity, the algorithm ignores
some of the boundary conditions and only consitle#scase where the sector is in
the first octant. This eliminates the issue of e¢pd values along the perpendicular
direction to the one being traced due to aliaswigich will be discussed in more
detail later.

function BoundarySector(map, sensor):

set low.x = sensor.distance * cos(sensor.orienta tion —
sensor.view_angle / 2)
set low.y = sensor.distance * sin(sensor.orienta tion —

sensor.view_angle / 2)
set low.slope = low.y / low.x
set low.const = sensor.y — low.slope * sensor.x

set high.x = sensor.distance * cos(sensor.orient ation +
sensor.view_angle / 2)
set high.y = sensor.distance * sin(sensor.orient ation +

sensor.view_angle / 2)
set high.slope = high.y / high.x
set high.const = sensor.y — high.slope * sensor. X
set min = sensor.x
set max = low.x
set min_array[max - min] = { map.height... }
set max_array[max - min] = {0... }
foriin O to low.x:
set j = sensor.y + low.slope * i
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if min_arrayl[i] > j:
min_array[i] =j
foriin O to high.x:
set j = sensor.y + high.slope * i
if max_array[i] < |:
max_array|[i] = |

set r_squared = sensor.distance 2
for j in high.y to low.y:
seti= N(r_squared — (j — sensor.y) 2)

ApplyOccupancy(map[i + sensor.x, j])
if max_array[i-1] < j:
max_array[i-1] = j
for i in min to max:
for j in min_array[i-min] to max_array[i-min]
ApplyVacancy(mapli, j])

Algorithm 9.2: Applying occupancy or vacancy ustmaundary identification and
area filling.

Both algorithms above allow the appropriate griiscd® be found, but it does not
deal with partial coverage from aliasing errors.th¢ same time, it is possible to
improve the line and arc tracing algorithm to ehate some of the redundant
computation involved.

9.3.1 Anti-aliasing

The problem of aliasing is often ignored by manyppiag tasks or reduced by
using a smaller granularity for the cell sizes base the level of precision that can
be achieved by the sensor scans. However, effieietitaliasing approaches can be
implemented to derive the proportional coveragéhefcells using various sampling
techniques (Schilling, 1991). A sample set of ahtsing algorithms are illustrated
in figure 9.8, where the blue border representsateas where the selection can
occur, while the red dots indicate the super-sacthpédl. Certain algorithms, such as
randomised sampling algorithms, are more suitedrfegular or unknown shapes
occupying the cell. However, for regular or knowages, the super-sampling
algorithm can be controlled to exploit the expeatederage of the cell.

Grid Random Poisson disc Jitter
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Figure 9.8: Sample super-sampling algorithms fdraasing.
The red circles represent the cells selected, whédelue square or
circle represent the region in which each of thkected cells

occupy. The random case contains overlapping bduarss, thus
allowing multiple selected cells to be within orledoregion.
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9.3.1 Anti-aliasing

It is important to try and make use of high premisdata when they are available
before applying any anti-aliasing algorithms. Tinisludes values such as the robot's
pose over the apparent position in the map, orsémsor values over the truncated
distance values, as the aliasing can quickly leathé degradation of the map's
quality.

9.3.1.1 Line

Given the line equations, it is quite simple to lement a line tracing algorithm,
which will efficiently trace the cells being intexsed since the slope of the line stays
consistent. Although Bresenham's algorithms ariefit in tracing the line, the
aliasing caused by the cell size is undesirableg&nham, 1965). Wu's algorithm, on
the other hand, allows for sub-pixel precision la@wing, but does not directly
translate to the filling that is required (Wu, 199Figure 9.9 illustrates the
components of the Bresenham's line drawing algorithote the importance of
splitting the problem into mirrored and flipped s®n of the first octant. This
assumption allows the algorithm to be simplified, iarestricts the horizontal and
vertical motion to fall into two distinct cases.

Error = 1:
Error -=1 7E
Y 4= 1 |Error
X+=1 Slope
1 px
Error < 1:
X+=1

Figure 9.9: Components of Bresenham's line draalggrithm.
Top left shows the translation of the coordinatebring it back to
the first octant, top right shows an example lieeng drawn using
Bresenham's algorithm, and the bottom image shbev$wo cases
where one is a horizontal transition and the obieng a diagonal
transition.

Based on the conditions used in Bresenham's aigoyit is possible to devise an
anti-aliasing algorithm using the accumulated ewvaues, or the intercept (Pitteway
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9.3.1.1 Line

& Watkinson, 1980). The two kinds of shapes intetisg the cell can be determined
to be a triangle and a rectangle. The triangle esgts the upper region of the
coverage, while the rectangle extends from theobotvf the triangle to the bottom

of the cell. Since the slope remains consisterdudinout the line, the intersects
defining the points between the triangle and tlotarggle can easily be traced. The
special case, where there is an overflow in thergaict offset to the one above,
results in a portion of the triangle being registefor the upper cell, while the area
of the bottom cell must be reduced to accountHermissing tip of the triangle.

The characteristics of the two basic shapes aiky eltermined through the slope
of the line and the intersecting point. The aredahef triangle always remains the
same, while the area of the rectangle is simplyitiersection offset, as it spans
across the whole cell. Handling the special cadegrev the top of the triangle
requires trimming, involves slightly more work & tvertical intersecting point now
needs to be evaluated. Determining when an overfioeurs is a simple task of
checking for the difference in the rounded dowmlisgct points at the left and right
hand sides of the cell. Using the difference betwt® intercept at the right hand
side and the rounded down value, the area of tiaagle can be derived by
determining the distance from the vertical intetggmnt and combining it with the
slope of the line. Since the algorithm assumes atjper in the first octant, it is
important to inverse the values depending on wilictant it is actually applied to
and which side is within the sector. Figure 9.10sirates the various components
used in the area based anti-aliasing algorithmewhigorithm 9.3 describes the
sequence of operations.

Overflow

tMiExcess

Figure 9.10: Components of the area based anshadjaalgorithm.
Left image shows the simple case where the lirmmain within
one cell, while the image on the right shows theecahere the line
intersects a vertical cell boundary.

function TraceUpperLine(map, xi, yi, xf, yf):
setx = oXio
sety = Lyl
set slope = (yf —yi) / (xf — xi)
set triangle = slope / 2
setendi=1+ X - Xi
set lower =yi-y
set upper = slope * endi
set area = endi * (upper / 2 + lower)
set lower = upper + lower
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set excess = lower - 1
if (excess > 0):
set overflow = excess * 2 / slope / 2
carve(map, X, y, area — overflow)
area = overflow
sety=y+1
set lower = excess
carve(map, X, y, area)
setx=x+1
foriin oxf 1 —xtoO:
set area = lower + triangle
set lower = lower + slope
set excess = lower -1
if (excess > 0):
set overflow = excess * 2 / slope / 2
carve(map, X, y, area — overflow)
set area = overflow
sety=y+1
set lower = excess
carve(map, X, y, area)

setx=x+1
setx = Lxfoog
sety = cyf o

set endi = xf — x
set upper = endi * slope
set endj = yf — cyf
set lower = endj — upper
set area = endi * (upper / 2 + lower)
if lower < O:
set overflow = endj * 2 slope / 2
carve(map, X, y, overflow)
set area = 1 + area — overflow
sety=y-1
carve(map, X, y, area)

Algorithm 9.3: Coverage area with line tracing.

Since the arc is placed at the end of the triangle,not necessary to complete a
triangle shape before traversing the arc to fornboand for the sector. When
executing the algorithm for the other line, it mportant to invert the area that is
derived, since it is now the area above the lia¢ éiXists within the sector.

The end points are processed in a slightly diffeveay, as the area is bounded by
the starting or ending point. This simply requities two shapes to be derived using
the new bounds. The algorithm currently does nosider the case where the cells
are entered multiple times, but will be discussa@rl on during the filling phase,
which will correct any duplication of the areasnrahe overlap. Note that post
correction techniques like this can potentiallyulesn the overflow of values from
the expected range, thus must carefully considerdéta type used to store the
intermediate values.

While optimisation algorithms such as the use pkeeted line segments can be
implemented with ease, the level of precision oftents the usage, as well as the
introduction of overheads in dealing with the edgaditions. Alternate optimisation
algorithms will be discussed later to improve tffeeiency of the operations that are
performed as part of this algorithm.
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Table 9.1: Performance comparison of drawing rantioes of length 500 units.

Algorithm Time (ms)
Line |Complete
Bresenham 0.0029 86.48
Wu 0.0037, 168.78
Super-sampling (256 random) 2.28 173.16
Super-sampling (256 grid) 32.26 201.88
Area based anti-alias 0.0059 140.94

The results in table 9.1 show that the proposedoagh performs reasonably well
compared to the other algorithms. The first columpresents the time used in the
traversal, while the second column includes theetiosed to modify the cell
attributes. Since the anti-aliasing algorithms eéraes more cells than Bresenham's
algorithm, the overhead is increased in the praphadgorithm as the slope of the line
in the first octant equivalent approaches 1.

9.3.1.2 Arc

With the two lines traversed, the two open endthefsector can be joined by an
arc with similar intentions to the lines. Travegsithe cells on an arc is slightly more
complicated than the line, as the vertical andzZuomtial shifts changes proportionally.
Using the circle drawing algorithm like Bresenhaailsws for the whole pixel to be
found, but it does not allow the exact area covdrgdhe traversal (Bresenham,
1977; Van Aken & Novak, 1985).

Determining the area of occupancy can be done usegeral different
approaches, which can be categorised into two tyfies first is the exact approach,
where the precise area within the arc is evalubjedetermining the horizontal and
vertical intersection points and using various getim shapes to derive the bounded
area. The second category is the approximate agpraehere certain amount of
error is allowed by replacing the arc shape witsimpler shape that allows faster
processing.

The first of the exact approach involves splittingd deriving the areas of
different geometric shapes within the cell. Thd's€elccupancy can be represented as
the combination of a rectangle, a triangle, anddtvex hull of the arc, which is
bound by the radius of the sector and the two seiging points. Only the simple
case where the arc intersecting the top and boadfaime same cell will be discussed,
as the complex case where there is a horizontaisiatt is just an extension using
one more primitive shape. The area of the rectacatebe derived using the smaller
of the two intersects, while the area of the intnngle can be evaluated using the
difference between the intersecting points. Towdethe area of the convex hull of
the arc, the area of the triangle portion can liraated from the area of the sector.
The process and formula for evaluating this areab@aseen in figure 9.11 below. R
is the distance from the center of the circle ®ititersect point of the cell, D is the
distance between the two intersects anid the angle between the two radii.
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Figure 9.11: Cell coverage derivation using exaw{s.
The green lines show the radii, the red curve éslibund of the
circle, while the blue line joins the two intersetd form a triangle
with the radii.

The second of the exact approach uses the integragpiproach by either applying
a double integral or splitting the area into sewibke before and evaluating the area
of each component. Using the double integral amtrothe area can be evaluated by
assuming unit elevation of the surface. The equoationly require the coordinate
values of the cell, thus is only complicated by direle formula to bound the arc.
The derivation for the double integral can be foumfigure 9.12 below. This process
can be visualised as taking the integral over ticecaregion, then subtracting the
rectangular area outside the cell.
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Figure 9.12: Cell coverage using double integral.
The green lines show the radius of the circle ddred curve is
the bounds of the circle. The blue areas repredentportions
where the integration is evaluated over.
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9.3.1.2 Arc

Although some of the computation can be reusedethee distinct bottlenecks
when evaluating the inverse trigopnometric functiansl the square roots. Although
there are obvious signs of slowness, the approaghegide an accurate and
consistent time performance. The processing timéhitwo approaches can be seen
in table 9.2 below, where the arcs from sector$ wiradius of 500 with a viewing
angle of 45 degrees were traced from 1000 differ@miomly selected positions.

Table 9.2: Performance of the two exact arc drawiggrithm.

Algorithm  |Time (ms)
Geometric 0.39

Double integra 0.23

Note that both of the above approaches requirghallintercept points to be
evaluated. This involves a series of calculatiotwben the starting and ending
points to determine the x and y pairs for every lelindaries. It is beneficial to keep
the previous intercept buffered, much like thatveman chapter 6 or to calculate all
intercepts first, then use those to iterate throtigh arc. However, the most time
consuming component of the approaches are thentigetric function calls,
especially the inverse functions.

To improve the speed of the algorithm, several aypration algorithms are
considered. The evaluation of these approachesstemd the accuracy, processing
speed, as well as the appropriateness of the assmspr constraints placed to
achieve the simplification.

The first approach involves the use of the Bresertarc drawing algorithm,
where the error value is accumulated until it oesvé. The absence or occurrence of
the overflow determines whether a vertical traosithas occurred or there was a
diagonal transition. Triggering of the overflow, s is also the amount of error that
has accumulated, depends on the cell sizes, tmistdmg this can allow for a more
precise tracing of the arc. Although the cell'srabteristics are determined by other
constraints in the whole mapping module, virtudlscean be generated temporarily
to allow arbitrary precision for the purpose of lenaéing to the desired accuracy.

A critical decision to be made here is the levelpodcision to be used for the
virtual cells. Putting this in the context of a gihéc rendering scenario, each of the
RGB colour uses 8 bits to distinguish a particelalour. Therefore, the level of anti-
alias precision required would b& &f the occupancy of the pixel, assuming the cell
occupancy is directly proportional to the intens@jnce there are two dimensions to
the pixel, the granularity required for each axesild be 2. With this in mind, the
Bresenham's circle drawing algorithm can be usettawerse the 16 virtual cells
within the single cell, as illustrated in figurel9. As the traversal is made, the virtual
cell positions within the cell can be used to acolate the overall cell occupancy.
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9.3.1.2 Arc

Figure 9.13: Arc traversal using Bresenham's dlgorithrough virtual cells.
The curve represents the bounds of the arc, tHe aidis indicate
the boundary cells, while the light cells are atcamulated to
evaluate the area of coverage.

Although the potential for the improvement in effiecy exists, this approach
greatly depends on the chosen precision and tle¢ déd\errors it is allowed to make.
The algorithm is still prone to errors when accustioh of sub-precision values
overflow. That is, using the previous example, wtiemaverage error in each of the
2* cells is more than@®. Based on this, the minimum divisions that areuiegl to
maintain the same level of precision can be derigdce the amount of error in
each virtual sub-cell must be less than the pmratiglivided by the number of
divisions, the minimum value was determined to becision'. The level of
precision that is achieved greatly influences tlfeciency, thus the approach is
limited to certain situations, where the level ok@sion can be set quite low.
Algorithm 9.4 shows a simplified arc traversal filoe first octant using virtual cells.

function ArcTraversalVirtualCell(radius, precision) :
set radius = . (radius * precision) 1
set x = radius
set error =0
set loop = radius / N2
for y in O to loop:
setsum =0
for pin 1 to precision+1:
set add = x % precision
set sum = sum + add
seterror=error+2*y+1

if error > 0:
if add == 0:
carve(x / precision, y / precision, sum /
precision 2)

set sum = p * precision-1
seterror=error—2*x+1
setx=x-1
sety=y+1
carve(x / precision, (y-1) / precision, sum / precision 2)

Algorithm 9.4: Arc traversal using virtual sub-cll
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The basic idea of integration involves splitting fianction into manageable parts
and summing the area of each component. By comigdihe size of these parts, it is
possible to control the accuracy and the speetheaparts approximate the original
function more closely. This technique was appliedthe above approach by
modifying the vertical and horizontal precision,tba similar approach can be
implemented by decomposing the sector into a sefiggangles with varying angles
from the origin of the sector.

This process is based on decreasing the area afaiimex hull of the arc by
splitting the cell into two virtual cells, thus mtucing another intercept to be used
as the vertices of triangle. This allows smalléngles to form within the convex
hull area to better approximate the arc. This pedés illustrated in figure 9.14. The
two perspectives differ in that the approach udimg triangle based at the origin
requires a numerous use of trigonometric functiforsevaluating the area of the
virtual triangles, whereas the introduction of dnmahngles can be achieved quite
easily using the intersection points. As well amgeable to specify a fixed number
of divisions to be made, the process can be caoigdrecursively until the area
converges to the desired precision which is whendtea does not increase by a
certain amount.

appropriate point to divide the cell to best occulpg convex hull. To identify the
best location, the area of the triangles must lzueted to maximise the coverage.
Since the area of the triangle within the sectomaximised when an isosceles
triangle is formed, this assists in identifying thygimal split point, as shown in 9.15.
1 is the angle to the line joining the intersectpgnts, R is the radius, D is the
distance between the intersecting points joining &nd the arc from the mid-point.

In this particular example, the best location fbe tsplit is quite close to the
halfway point. Using this fixed value allows forfaster evaluation with reasonable
accuracy in specifying the required sub-divisiadewever, since this is dependant
on the elevation of the cell from the originatingimd of the sector, the placement of
the optimal sub-division point can vary along the &aversal. Since the arc is
evaluated in the first octant, the approximatiorthe sub-division point to the half-
way point is quite reasonable. Algorithm 9.5 belsimows a simplified sub-division
algorithm with a fixed number of divisions at thafhway point.

function FindArcAreaTriangleDivision(radius, split, x1, yl, x2,
y2):

set lower = y2

set right = V(radius 2?—lower ?)- .x2 .

setsum =0

foriin O to split:
set upper = lower + 1 / split
set left = V(radius ?—upper - .x1 .
set sum = sum + (right + left) / (2 * split)
set lower = upper
set right = left
return sum

Algorithm 9.5: Approximate arc tracing using suligions.
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Figure 9.14: lllustration of subdividing the tridag
The red curve illustrates the bound of the arc,green line and
region shows the base area with no subdivisionpthe line and
region shows the extended area being occupied \witle
subdivision, and the purple region represents ttimerea after
two subdivisions.

Xl‘;xz, D . sin(® - 90) +y—1;y2)

(D . cos(® -90) +

x1+x2, yl+y2
2 2

( )

X1+x2
2

yl+y2
2

R - V(( -%0)" + ( - yo))

(x2, y2)
(x0, y0)

Figure 9.15: Area of coverage at various split {®in
The red represents the bounds of the sector, the Ible is the
radius which bisects the sector, and the greenjtimes the two
intersects of the cell.

One of the characteristics of the above approachhas the value always
converges from one direction, thus will always ésslthan the desired amount. As
observed previously, this amount can be predicbked, doing so efficiently is a
difficult task. The error trend can be modelledagsolynomial function, but doing so
requires more computation and still consists oflgliapproximation errors. The
derivation of the polynomial function itself is d¢lys as this depends on the
characteristics of the sector, thus cannot aclagvigh performance.

Table 9.3 illustrates the two approximation apphascagainst the Bresenham's
arc drawing algorithm to compare their performandé® difference in the accuracy
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is also shown to note the benefits of the algorghmmgainst the precise
implementations.

Table 9.3: Performance of approximate arc drawlggrahms.

Algorithm Time (ms) | Coverage (%)
Bresenham 0.0089 137.29
Virtual cell (8) 0.84 91.17
Virtual cell (16) 0.97 95.83
Virtual cell (256) 1.62 100.04
Split (1) 0.024 98.89
Split (2) 0.035 99.72
Split (4) 0.077 99.93
Split (8) 0.11 99.98
Split (256) 3.53 99.99

The results indicated that the performance of fhgraimate algorithms were
quite reasonable, especially the splitting alganithThe small processing time
overhead of the algorithm showed very attractivailts while maintaining a high
level of accuracy.

Similarly to the line drawing, the end points oé thrc can be evaluated separately
to the arc. Since the anti-aliasing algorithms mtw amount of occupancy in a
particular direction, any cell that overlap duritige three traversals suffers from
excess coverage. This is because the algorithmsnassomplete coverage of one
side of the line or arc. During the traversal, tle#ls that are accessed are marked to
represent the bounds for a filling algorithm. Tisiglone by marking four values for
each row or column, parallel to the direction of filling process. Two of the four
are used for the outer boundaries, while the dtiverare for the inner boundaries.
Figure 9.16 shows the various components of thedny points.

H max
H min
Fill| [T
L max[] -
| L min

Figure 9.16: Tracking 4 boundary values for thinfi algorithm.
The four sector intersects are maintained to deternwhich
regions require modification or filling.
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9.3.1.2 Arc

The purpose of the outer boundaries is to limitgbans when filling, while the
region between the inner boundaries indicates veneth overlap has occurred. If the
regions do not overlap, the cells in between wertetraversed during the definition
of the boundary, thus require the scores to be gdwmas if it was fully covered.
However, if the regions do overlap, the cells itween has been visited twice, thus
must be adjusted to remove the excess coverageeXdess amount, as shown in
figure 9.17, is the size of one cell coverage, ttars be applied quite easily. As for
the end points, they require special treatmentsine cell coverage excludes certain
portions of the cell.

|

Upper
Lower
Overlap

Excess
Figure 9.17: Excess coverage from repeated traversa
The left case shows the modification required atdhgin of the
sector, the middle shows the case where both tperumd lower
bounds of the sector traverse across the sameacellthe right
case illustrates modification required where tihe bound and the
arc bound occur in the same cell.

Since the occupancy is applied to the cells inatte it is difficult to note which
cells, and how much of the cell, contains an obj¢cs possible to mark the adjacent
cells along the arc as potentially containing otgjebut this still does not allow for a
clear indication where the object may lie. For tleason, the other cells that are
visited are all flagged as vacant based on thegotiopal coverage of the cell.

9.3.2 Optimisation

With the anti-aliased carving algorithm definedtimpsation techniques can be
applied to improve its performance even furtherpfesviously mentioned in the arc
drawing algorithm, it is sometimes possible to knthe required precision before
hand. This may come from the granularity of theureefl result, the precision of the
inputs, or a simple constraint defined for the eystto prioritise faster processing
over accuracy. The limited range in precision carcbmbined with other weighting
values to simulate a higher range, thus allowirgytstuts in the carving algorithm.

So far, the algorithms have not specified the dgta to be used for the values.
The anti-aliasing algorithms that make use of tmoetric or square root functions
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operate using floating point precision data ty@essthey have been implemented as
generic functions with a wide range of possibleueal However, with a specific
range of values defined and by using techniquesdbanot rely on these generic
functions, it is possible to make use of fixed pginecision data types for faster
processing. By knowing the range of the valuesbite can be shifted manually to
allow full utilisation of the available bits for ¢hgiven data type. This then allows the
remaining bits to be used to represent the decualales, thus the approach simply
simulates a scaled version of the values so novdaialue is required. Figure 9.18
illustrates several mapping depending on the rahgalues using an unsigned 16 bit
data type.

EEEEEEEEEEEEEEEE

Range: [0, 256)

EEEEEEEEEEEEEEEE

Range: [0, 1)

Integral

{000 CITTITILLLLLTLLN  Fraction
Range: [0, 1/256)
Figure 9.18: Implicit decimal point shifting.
The top example shows 8 bits being used for thetifna
component, the middle shows all 16 bits being ugmd the
fraction, while the bottom case shows the case evinegh order
bits are replaced with low order bits.

The applicability of this approach depends upon fitegjuency of arithmetic
operations, the acceptable range of the valuendmeber of available bits, and the
performance overheads in manually shifting the emliBince the range of the cell
occupancy has an upper limit, the available bits loa used to represent the low
order values. The operations within the carvingcpss are also very frequently
repeated, thus improving the utilisation of thegm®ed approach. The values can
then be limited by powers of two's to improve tiffeceency in shifting the range, as
well as conditional statements. It is possible &ive and use a multiplier or a
constant offset, but this management of valuesdhictes unnecessary overheads and
negates the benefit of using a fixed point data typ

The shifting and the management before each adutittemetic operations depend
on the operator being used. For an addition, theérman range doubles and the two
operands must be aligned correctly. That is, thaiom decimal point must line up,
as the alignment determines the pair of bits beadged. For subtraction, the
maximum range does not change unless dealing witgative operand. Unless the
sign of the value is known, the operands may regsiifting before the subtraction
can occur. Since the behaviour of the algorithiknswn, as well as the signs of any
values that are derived, the operands simply redbe& adjustment for alignment.

For multiplications, the range can increase dragallyi as the implicit decimal
point positions must be added. This often leads<t®ss bits being introduced which
require trimming off, but this happens automaticall the end of the most significant
bits, thus the new range must be anticipated amdoppately shifted before the
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operation. This, however, means that the low oldisr are lost in the process. It is
possible to select how much of each operand ta, ftsflong as the resulting value
does not overflow. Unlike the addition and subimgtthe two operands do not need
to be aligned as each bit is multiplied with thénest operand. That said, it is
advantageous for both operands to have equal gusjtas a biased trimming of just
one operand leads to larger errors in the calamatFigure 9.19 illustrates the
workings of the multiplication process.

0

Range: [0, 4) Range: [0, 16)
>>9 >> 7
OOIIITITITTIIEEE X [OITTTTTTTT
Range: [0, 2048) Range: [0, 2048)
I T ® Integral
Range: [0, 64) B Fraction
Zero

Figure 9.19: lllustration of the multiplication press.
The initial shifting forces a loss in the preciskimnmake room for
the multiplication to occur and fill in the low ad bits from the
multiplication result.

The division operator provides the most challengirgpblem, as there are no clear
and reasonable range defined when two operatorsligded. Another interesting
characteristic is that the divisor must be shiffesn such that the result will contain
enough bits of information rather than filling upthvzero's. This often means a
significant portion of the right operand is dis@ddand the inverse amount is lost
from the result. Unlike with multiplication, whetbe low order bits are populated
after the multiplication, the division does notoall for the filling of the high order
bits through automated shifting during the arithmeiperation. The inaccuracy
introduced by this approach can be ignored if tleigion requirement can be set to
a very low value, or a larger data type can be @isethis operation. Using a larger
data type, the dividend can now be shifted up withtbe loss of information. By
shifting the left operand appropriately, the resah later fit back into the original
size of the data type. Figure 9.20 illustratesdivesion process using a larger data
type before the operation.

I /| [T
Range: [0, 4) Range: [0, 16)
<< 16

RN TTTTTTTTITTTTITT] / EEr

Range: [0, 4) Range: [0, 16)

OO T EEEEEEEERRee, | |20

" W Fraction
Range: [0, 27) Zero

Figure 9.20: Division using a larger data type.
The loss in the low order bits during the divisimeans a larger
data type is used and padded before the divisliastplace.
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These scaled fixed point arithmetic techniques ireqoareful tracking of the
implicit decimal point positions and pre-emptingtioé changes in the range after the
arithmetic operations. Since the shifting operatiare required before many of the
operations, certain blocks of operations can grdtei the overall change in the range
and make the appropriate range shifts early ors ¢&in sometimes cause the loss of
precision, thus must be used with care so anynmétion that is lost does not have a
significant effect on the final result.

Sample code for the shifting technique can be be&w, which is taken from the
line drawing algorithm. To simplify the debuggingpess, the variables are labelled
with the position of the decimal point. Note thatre of the range is not fully
utilised, as operations later on will require thalues to be shifted into the
appropriate multiple.

UINT ui23_x1 = (UINT)(x1 * (1<<23));

UINT ui23_y1 = (UINT)(y1 * (1<<23));

UINT ui23_x2 = (UINT)(x2 * (1<<23));

UINT ui23_y2 = (UINT)(y2 * (1<<23));

UINT ui23_dx = ui23_x1 - ui23_x2;

UINT ui23_dy = ui23_y1 - ui23_y2;

UINT ui30_slope = (UINT)((((ULNG)ui23_dy)<<30) / ui 23_dx);
ULNG ul32_inv = (((ULNG)ui23_dx)<<32) / ui23_dy;

UINT ui30_triangle = ui30_slope>>1;

Since the approach has limited places where ibeaapplied, the implementation
is currently restricted to the sector carving alpon. This meant that the floating
point values needed to be mapped to and from ¥eel fpoint types at the start and
end of the algorithm.

The performance of the optimisation is summarisedable 9.4, which show a
small amount of improvement for the operationsmty be possible to apply the
approach elsewhere, but the difficulty in managthg data means a significant
amount of work is required which may not yield dgnefits due to the overhead in
converting between the floating point numbers, e as when pre-defined function
calls that require floating points are required.

Table 9.4: Performance of manually specifying theiwghal points.

Operation Time (x 10° ms)
Fixed point | Floating point | Shifting
Addition 3.12 4.758 4.086
Subtraction 3.416 5.337 4.492
Multiplication 3.822 7.597 5.226
Division 13.057 27.487 15.584
9.4 Global map

The global map, which is used on top of the locaprntayer, must address four
key issues for implementation. The first is the 6§ attributes to maintain, as the
layer will be interested in a different set of infation to the local map. The second
issue involves the updating of the contents givenlocal map, as the inputs to this
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layer are no longer directly from the sensors. Gbtwsistent interface simplifies the
task, but must consider the current state of badipsrwhen being integrated. The
third issue is in the management of the attributgzresenting the environment,
specifically in terms of compression when the robrplores an area beyond its
initial expectation. The final issue is the usetlod map for a large scale analysis.
This may include connectivity, path finding, or tdetection of anomalies through
superimposition of other maps.

9.4.1 Attributes

While the global map is largely an amalgamationnzny local maps, the
differences in the level of detail and viewing aneast be reflected by the attributes
that are maintained within. Instead of storing tindtiple attributes that make up the
occupancy in the local map, a single value candsal wo represent the occupancy.
This allows a reduction in the number of attributesnaintain, as well as allowing a
firm value to base various high level algorithms on

When combining the inconsistent readings of occapamd vacancy, the regions
with vacancy can be flagged as not containing dngats, even if the occupancy has
also been flagged. Due to the shape of the semgoals, the accumulation of the
occupancy would have resulted from the overlapghénarcs just before the surface.
With this in mind, the transition between a vacant non-vacant cell is used to
identify the location of objects.

The occupancy is used to distinguish the regiorsad already observed, as the
occurrence of the transition between vacancy amupmancy indicates that the
boundary has been observed. This measure allowsidae of the sector to remain
ambiguous until more scans are carried out.

An attribute which has not been well used until newthe surface orientation.
This attribute, when combined amongst other celis) increase the efficiency in
forming continuous surfaces of obstacles, as it gaide and validate the possible
connectivity between adjacent cells. Since the dridgével analysis will deal with the
formation of shapes and patterns, the global mast mlso carry this information to
remove the irregular jumps between layers.

Another attribute to be included is the presenceysfamic obstacles. Since the
map is built up over a significantly longer periofitime than the local map, it is
possible to identify changes within the obstacdetmngement. This includes chairs
and doors being moved around, as well as the preseinpeople that obstruct the
sensors temporarily. These obstacles tends to lbe gpnall in comparison to the
static obstacles, thus the aliasing effect candrirtde localisation of these objects
later on.

The last attribute to be maintained is the abiiitytraverse through the cell. This
attribute is required as the arrangement of theatbjwithin the cell can be lost if the
map is compressed. The details of this attribuiidesdescribed later.
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9.4.2 Update

Being on a separate layer to the local map, theayjlonap can assume many
simplifications provided by the filtering which aos at the lower level. This
includes dealing with noisy sensor readings, umfgize and range of cell attributes,
as well as any cleaning-up from higher level analgsrried out using the local
information. The updating of the global map regsiittee timing, the size and also the
weighting of the attributes to be considered betbessuperimposing can occur.

Although synchronisation between the maps is delgifeexcessive occurrence
results in a large processing load and a reducegopa of the extra layer, as the
environment in the local map is not given enoughetito accumulate. The process
should take place when the local map has builtngqueh information, as well as just
before certain information is discarded due toatea leaving the viewing area of the
map. The first strategy to be considered is a tin@sed approach, where the updates
occur at a specific interval. The second and tappgroaches both involve analysis of
the robot's state in determining the need to upddte simpler approach is done by
analysing the amount of change to the local mapokasrred since the last update,
which can be derived from correlations, as welaasumulating the changes it has
observed. The last approach involves the use odweeinsal accumulator, where the
relative or absolute distance traversed by the trabaised to trigger the update
process.

The timer based approach and the accumulationarigdn approaches have some
common grounds when used with particular settiidee rapidly scanning range
finders poll and update the local map at regulteruals, thus the number of scans is
proportional to any given time period. The diffeceroccurs when the area of each
scan is considered, as the presence of obstadlesedify the rate of area covered
per scan. To make sure no information is lost,tiimer value must be reduced to
consider the robot's maximum velocity. While thakds care of most normal
motions, it is possible for the robot to move baakidgs and forwards suddenly,
possibly trying to escape from a dead end. In 8dna like this, the timing interval
between cells being introduced then being removedeaborder of the map is very
small. Therefore, using just the timer would noffisa as this will require too
frequent updating. Similarly, accumulating the amtonf change is often not enough
to handle these tricky cases, although the aliitgletect dynamic objects with ease
can be quite attractive.

Accumulating the distance traversed behaves sjigtitlerently, in that the maps
would not be updated if the robot remains statipn@inis characteristics means it is
more difficult to detect dynamic objects, as thevement of the robot is required
before the map is updated and analysed. By sedtirmmple threshold for the
absolute distance, this approach would encounteitagiissues to the above. With a
simple modification, the threshold values can ligseach of the four directions to
handle the problematic situations of rapid changése direction.

Depending on the availability of resources, it ésgossible to combine some of
the approaches above to increase the utilisatidtinec@vailable information. The four
way distance threshold approach provides the safegtoach without excessive
updating, thus can form the base condition. Thditpkdo form the global map
without motion can yield greater flexibility in th@ensors used, such as the sonar
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sensor on top of the servo motor, which can swelepge area even while the robot
is stationary. These scans typically allow greatecision than those from motions
by the robot, and can also be used to track the gfadynamic objects with ease. For
this reason, a secondary condition is introducecthvaccumulates the amount of
scans conducted to trigger the update.

Rather than using an area based accumulator, anaangpverage or a simple
counter can allow for a more consistent and efficigerformance, as the viewing
angles of the sensors remains constant. Usingathe allows the map to update
while the robot stops to decide what to do, suchadk finding. Depending on what
portion is updated, it can be advantageous to festét the distance thresholds and
number of scan counter when the update occurgitaesthe unnecessary updates.

The frequent merging of the local map can resuéxoessive copying if clipping
of the uninteresting potions are not done. The Est@pproach is to copy the entire
local map across, which has little overheads inlémenting the algorithm and also
allows more correlations to occur if the alignmentonsidered as a reinforcement
measure to the pose. Although this allows for tleefidence measures to be
increased, many of the cells remains unchanged @lostruction, which should not
affect the confidence value of the global map, #mesunnecessary.

It is possible to flag the cells when they havenbemdified since the last update,
thus allowing for selective updating. However, indually determining whether it
has been modified can consume precious processiieg Since the flagging of the
modified cells occur in groups due to the spaneoissr scans and the density of the
flagged cells are high for areas around the rolbois possible to make use of
template shapes which groups the modified areathodgh the modified cells
around the robot will tend to form a circular pattetraversing this shape can be
quite costly unless a change is made to the coateliscale, such as to polar
coordinates. Instead, assumption that the senstirscan an area consisting of flat
surfaces is used to allow the area to be rectanghlss allowing a simple sequential
iteration of the region. A bounding rectangle cannfiaintained for the sensor scans,
which indicates the recently modified region witkine local map.

The different conditions which trigger the updatsignify the need for analysing
the different portions of the map. When transitidrihe robot is about to lead to the
discarding of a portion of the map, only that pmmtiis required to be updated.
Similarly, when the number of scans has reacheeértin value, it is the areas
around the robot that have been affected by theosewhich require updating. By
distinguishing the two categories, it is possilbeigolate the cells involved and
reduce the processing load. Note that the bordegggns are also affected by the
bounding rectangle, thus typically only covers akportion. Figure 9.21 illustrates
the two regions that are updated under the scameoand motion based conditions.
Currently, the number of scans used for the thidsiseequal to twice the number of
angles the sonar is able to point to, which alldersa rough scan of the complete
viewing area before the update occurs.

The alignment between the robot and the environroentpotentially reduce the
number of processed cells within the bounding regiaif the rectangle is kept at the
same orientation as the obstacles in the scens. possible to improve this by
initially orienting the robot to suit the overatenhd in the obstacle's surfaces, or by
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performing an initial scan to calibrate the initiatientation. The orientation
adjustment should be avoided after the robot reatest producing the map, as it will
require interpolation of the cell attributes toatet the map or a resetting of the map
with the new coordinate system. Since this is gusinall optimisation consideration,
no great emphasis was placed on these techniques.

Down
= Up
Right
Left
Timer

Figure 9.21: Regions within the local map to be borad with the global map.
The colour coded regions correspond to the rectainging copied
over to the global map.

With the portions of the local map selected for atpwy, the cells can be
superimposed over the global map with an appraprigeight to merge the
information together. Since the local map is ineghfor portraying the current state
of the surrounding environment, the global map &hbe greatly influenced by the
local map. However, the attributes should be tekatedividually to allow for
adaptation in its own way.

The occupancy and vacancy values are both veryatnacthe global map, as it
contributes to several other attributes. It is imgat to try and use the up to date
values for the map, as the change in the occupgietys useful information. As
noted earlier, the transition between the vacancdyatcupancy values allows for the
interesting cells to be determined. However, this combination of high occupancy
and high vacancy transition that yields the desinéoirmation about objects. This is
used to identify the regions that will increase ititerestingness value, while the rest
of the regions carved out from the vacancy candeel tio reduce the interestingness.

It is important to allow the transition to be neti; but at the same time, the value
should remain within a set range so they can bepaoed amongst other values
within the map. By allowing the three states tor&eresented using the one value,
where a high interestingness is the boundary tmbjects, low interestingness is a
vacant area, and the midpoint, which representertaiaty, either from not having
visited the cell or when there is confusion witards to the interestingness. To note
the dynamic objects, the interestingness value tvahsition between high and low
very quickly. Another way to look at this is to sidmat the dynamic object is found if
the interestingness moves towards the midpoins @&hows the interestingness value
to be adjusted normally to add confidence aboutsthgcture of the cell, while the
discrepancy in the change to the value can betosadd to the attribute representing
the dynamic state of the cell. With this in mindyeighted averaging can be carried
out such that the newer value is given more pretszle
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In future implementations, it may be possible tkenase of a frequency counter
to observe the number of scans the cell has rete@nd use that to weigh between
the old and new values. In the current implemeoata weight value of 0.75 is used
along with the change in the vacancy of the sumgcells and the occupancy.

Interestingness, = (Occupancy Avacancy + 1) / 2 (44)
Interestingness = Weight * Interestingngss (1 — Weight) * Interestingness (45)

The change in the interestingness results in thdifioation of the dynamic
obstacle attribute, as a rapid change signifiespitesence of a dynamic object,
misalignment caused by the incorrect pose, or @oriact sensor reading. It is
possible to detect the misalignment by observingeluantity of the change in the
interestingness at the boundary between the vagahbccupied regions. This will
be discussed further in chapter 11. Due to ther$lprovided by other modules, the
majority of sensor errors can be ignored. Thosé dieaoccur are often detectable
during a higher level analysis, such as using tmmectivity.

By using the difference in the interestingneshasnodifier, the confidence value
of dynamic content within the cell can be shiftggar down. One thing to keep in
mind is that the change in the occupancy to andnfmacancy increases the
likeliness, while the lack of change should redulce probability that the cell
contains dynamic obstacles. However, since the mewms of these obstacles do not
necessarily occur frequently, it is also plausilbbe simply ignore the case of
reduction in the confidence and allow the valuedntinually increase.

Since this range should be limited, the modificadionust be scaled so it does not
cause any overflow. By using the magnitude of th@nge in the interestingness as a
proportion of the remaining value, the accumulateam be limited to a specific
range. This can be seen in the following formulahewe the non-scaled
interestingness is used to determine the change.

Dynamic = Dynamigy + (1 — Dynamigqa) * | Interestingness, — Interestingness | (46)

As the surface orientation measure is simply a mogiggde to assist the grouping
of cells that represent a surface, this attribat@at as important to maintain with
precision. Due to the heavy reliance on sensor ssdaom a wide range of
orientation, the information carried within the Icélom the local map is often
incomplete and can be misleading. With the sensamsbeing reasonably frequent,
the surface orientation can be modified to a maskepresent the positions of the
neighbouring occupied cells using a binary flagatch of the 8 directions, as shown
in figure 9.22.

Although this mask can be derived by simply obseyvihe arrangement of the
interesting cells within the global map, the suefagrientation can potentially
anticipate where the interesting cell will be leghtthus allowing confirmations and
discrepancies to be evaluated. Although this aiteilis not relied upon in the current
implementation, it is present for potential futuse.

The update process from the local map to the glob@b can be seen in the
following series of diagrams in figure 9.23, whiglow the updates from transitions
and number of scans. The left column illustratesstate of the local map, while the
middle and the right shows the global map befo @&fter the update. The top row
represents the update from transition, while thiobo row is where the robot stays
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stationary and the number of scans is used toerifge update. The interestingness
is shown as blue and the dynamic objects in green.

3 2 ¥
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Figure 9.22: Surface orientation to adjacency mask.
The green numbers represent the bit numbers begygietd, while
the red and blue lines represent the boundari#éisecingle and the
corresponding bit number.

Figure 9.23: Updating of the global map.
Top row shows the case where the number of scansriggered
the update, while the bottom shows the update bieiggered by
transition. The left column is the local map, thildfe column is
before the update, while the right column shows dlabal map
after the update.

182



9.4.3 Scaling

9.4.3 Scaling

As the explored space increases over time, the magi be adjusted to remain
within some finite memory space. Although it is gibte to anticipate the maximum
size of the environment by considering some linoted, such as the battery life and
the placement of obstacles to restrict the robwtzch, they rely heavily on the
specific environment and a significant amount ofmdmm knowledge. The
assumptions also do not provide a way to recovigrey are invalidated, nor do they
allow for a reasonable bound when multiple maps @mbined, as they may
dramatically increase the memory requirement.

A simple approach to bound the maximum size ofglbbal map is to modify the
scale of each cell when the size of the map becdowdarge and compress the
neighbouring cells into one. This approach canfbeient to implement, but suffers
from data losses as portions of the attributedamteduring the merging process. It is
possible to apply a more complex compression dlgariwhich may allow the data
to be retained, such as variations of run lengtboemg or frequency based
algorithms like Hoffman's encoding, but these db camstrain the upper bound to
the memory usage and can also consume valuablegsiag time in maintenance
and de-compression when being accessed. It isdiffscult to combine multiple
attributes for a consistent compression, thus thp may require several layers with
irregular factors to associate the various attabubgether.

A location dependant compression that occur betwbencells means that the
various attributes, such as the occupancy and curtaientation, are merged
together. This allows for quick access to the appate data for each cell, as the
locality is maintained. The merging process betwdenneighbouring cells requires
considerations into the weights for the interpolatof the individual attributes as
well as the direction of the merge. The attributesm be merged together by
approaches like summation, multiplication, averggior by taking the maximum or
the minimum, depending on which is more suitable flee attribute and the
consequence of the resulting value.

For the traversable attribute, the cells must mtiaf it is still possible for the
robot to move through the cell, thus the mergingusth not affect the already
established path. It is important to note thathé path is blocked by the other cell
being merged, the value would not be an accuratasune if the updated value
indicated a blocked path. By prioritising the pa#ing not blocked, this value can
later be modified if the cell is deemed to be naivérsable using a high level
analysis, such as a path finding algorithm. Anotksue to note is the change in the
characteristics if the cell size is too small floe robot to fit inside. In this scenario, it
is important to combine the value instead of sintalying the most preferred one,
since the cell is never traversable by itself. Mying the two values indicates the
probability of both cells being traversable, thaghe approach used while the cell
size is small.

When combining the occupancy values, the importdnatracteristic to note is
whether the combined cells indicate the continaityhe surface. This characteristic
can be used to determine if the robot can travimseigh the cells, as well as any
shape based analysis that may be carried out. 8aing) this information requires a
map based on surface structures, which does naititfit the current model of the
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global map. When the attribute is treated as istargness instead of occupancy, the
information with regards to whether the cell isviesable or not must be used in
parallel.

Whether the cell is traversable or not is quitdiaift to administer, as there are
multiple directions to consider and the variationstale with respect to the robot's
size. There are two scenarios to consider whiclenl@mn whether the cell size is
smaller, as shown in figure 9.24, or larger thanrthbot. If the cell size is larger than
the robot, the cells simply needs to be marked thi¢hdirections it can enter and exit
the cell. The directions are necessary, as cestdas of the cell may be obstructed to
stop the traversal. This is due to the combinadiimoth vacant and occupied cells to

various sides of the cell, thus will modify whethe particular side of the cell is
traversable or not.

Bl Obstacle
Robot

Figure 9.24: Cell intersection flags.
The arrangement of vacant cells, which are shownhat®, allows
the robot to traverse.

For the case where the cell size is smaller thanrtiot, the gaps must be
combined until they occupy a large enough spadettthe robot pass through. The
compression means only a small amount of informatan be maintained to
characterise the obstacles and the available sgdwcee different approaches are
considered to track the vacant cells while the siek builds up to allow the robot to
traverse though them. The first approach is based density measure, where the
proportion of the interestingness is compared ajanvacant area. This approach
allows for a fast algorithm when the scales are ifireaj but does not allow any

information with regards to the arrangement ofwheant areas so the cell could still
be impenetrable.

Another simple approach that is considered asstina¢she vacant areas line up
nicely when the compression is carried out, thuslileg to an AND gate like
behaviour for the vacancy. This approach is quitk efficient like the above, but it
is able to determine, with certainty, that an opeza for the robot to traverse through
exists. The trouble with this approach is when dmenpression is not aligned
properly, it can miss potential gaps as they arelioed with obstacles early on. The
process is illustrated in figure 9.25, where theé cells indicate occupancy while
white cells indicate vacancy.
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Figure 9.25: Prioritising obstruction to identifgtps.
Top row shows the compression algorithm used, wthiiebottom
image shows the compression from the map in figu?Pd to one
that is half in width.

The last approach involves the use of two valuasgaeacked for each side of the
cell to represent the amount of gap on each op#ipendicular sides. The approach
is similar to that of the above, but does not assanbinary state. This allows the
cells to maintain the vacancy until the particusadte is obstructed, as shown in
figure 9.26.
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Figure 9.26: Cell merger with tracking of the vacpalong the edge of the cell.

The arrows in the top image show the values toktradhich
indicates the vacancy in that direction. The botttaft is the

compressed map from figure 9.25, while the bottaghtrshows a
zoomed version of the map with the vacancy.
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Although the approaches above indicate if the rabot enter and exit the cell, it
does not maintain information about the inner catimigy within the cell. This can
cause the robot to misbehave as the path thaametl from the global map can
potentially be blocked when viewed from the locahpm To allow the correct
connectivity information, each cell is requiredn@intain all of the possible paths
between the sides of the cell. The lack of distomcin the location of all the possible
paths can also lead to certain paths being bloek#tsbut recognition unless this too
is maintained. Implementing these requires a sigant increase in the memory
footprint, as well as the processing time to trdeeinner paths whenever the map is
modified. This has a quadratic relationship with #tale, thus is not suitable in the
long run.

It is possible to simplify the approach by findimmer-cell nodes as a form of
compression, but a more plausible approach is toassume that the attribute
indicating possible traversal does not mean tus.tBy allowing modification of the
traversable attribute from path finding algorithras,mentioned earlier, it is possible
to generate a path that can be verified at a highea when viewed by the local
map. If the path is deemed to be blocked, the tsade attribute can simply be
changed. This means that the cells that allow arectibn of traversing should be
marked as potentially traversable, perhaps aslzapiiity value based on the number
of sides that are vacant, such that the path fgqndilgorithm is able to rank the
various paths it generates.

When considering the attribute for dynamic obstdjest the acknowledgement
that a movable object is present is quite usefbe Precise locations of these are
difficult to determine due to the time interval uégd to register the change in the
interestingness. Since the aliasing and the chahgeale also causes the change in
the location, it can be safer for the robot to ntite whole area as containing
dynamic objects. This can then be used later ogréaip together the moveable
components within the scene, or to be wary of wdemerating a path of traversal.

As for the hazardous attribute, which is based aur &tates of unknown, non-
hazardous, potential hazard, and hazardous, theatistate to be prioritised are the
ones that can potentially harm the robot. Whersthtes are combined, the sequence
of states that should be prioritised in order igandous, candidate, unknown, then
finally non-hazardous.

When the surface orientation is left as an angke characteristic is quite different
to the other attributes in that the variation ia trientation cannot simply be merged
and that the value is cyclic. In the case wheretwevalues are similar, it may be
possible to average the two together to cater Her lack of observation from a
particular perspective. However, if the two arepeedicular, it could indicate the
presence of a corner with two faces. As notedexathe surface orientation is not a
crucial component, thus has been greatly simplifedhe bit mask representation
pointing to the position of the neighbouring sugaell. This can be used to allow a
simple OR process between the merging cells tcatdithe direction to traverse in
in order to find the next occupied cell. This prexes illustrated in figure 9.27.

The compression factor plays a significant roledactiding how much of the
information is discarded, how frequent the processequired, and also how
controlled the merger is. The larger the compressaxtor, the more drastic the
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changes it will cause to the state of the globap.nfdnis can introduce ambiguity,
misalignments, and potentially allocate large amafrspace for places where the
robot will not explore. However, this also reduties frequency of the compression
to reduce the processing cost. Although it maydssible to dynamically specify the
compression factor, correctly choosing this vakeguires a reasonable prediction of
how far the map will need to be extended.
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Figure 9.27: Merging of surface orientation mask.
Left image shows the rules used when merging thdaca
orientation masks, while the right image shows aan®le
merging between two masks.

A possible work-around for the unwanted allocatidrspace is to detect that the
robot cannot navigate to a particular part of thegprand shifting the map internally
to allocate more memory to a vacant side. It i® @sssible to split the map with
different scales for each portion, but this canodtice complications when accessing
the map.

The validation of the above strategies are diffiboldo objectively, thus is carried
out through the observation of the map, which carséen in figure 9.28, where the
map is compressed by halving the map in one doectrhe scaling factor was
chosen to simplify the merge process and to avwedsub-cell interpolation. This
also means the attributes are localised if the mapver expanded again with a
different scale factor in the future. The red coloepresents the probability of the
cell being able to be traversed, the green reptege cells containing dynamic
objects, while the blue represents the interesaagrof the cell. Note the cell size is
still too small for the robot, but rather than egenting the eight transition bits, the
probability is shown for visual purposes. The gresgions are present at the ends of
the sectors, which are all the result of slightseennaccuracies.

Figure 9.28: Scaling the global map by a facto?.of
The left image shows the global map before the cesgon, while
the right image shows the compressed version. Hiew lines
from the center indicate the scales and also orclwkide the
compression has occurred.
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The use of the grid map has allowed simplificationthe mapping of the
components in the environment by providing an &fit and consistent
representation to be used between the sensor gsadimd higher level processes.
The lowest level map forms the interface for thesse reading and maintains five
attributes, which are the occupancy, vacancy, nurobscans it has encountered, the
surface orientation, and the sensor orientatiotheflast access. The global map, on
the other hand, uses the state of the local mapdate its four out of five attributes,
which are the interestingness of the cell, surfawentation, presence of a dynamic
object, and the transitions that are allowed ite tell. The last attribute, which
represents the hazardous cells were not discusstiisi chapter. Note that to store
the transitions allowed for a small cell requiresltiple values, while the larger cells
only require one, which is the probability valuend®@ the map grows large enough
such that each cell is bigger than the robot, tightetransition values can be
discarded for the probability value.

The attributes above add to the simple maps seerainy applications. Although
many of the attributes that may be added are spetf the application, the
independent maintenance and analysis of eachuwdtrib important in handling the
specific information they contain.

To improve the efficiency of the carving processiles catering for the aliasing
caused by the use of the grid map, a fast line amddrawing algorithms is
introduced which uses an area based anti-aliasindetermine the bounds of the
sensor scans. An optimisation technique is alsmdioiced by specifying the range
and precision requirement of the attributes.

The update process encourages both the build tipdbcal map to contain more
information and to maintain an up to date globapmghis is done through two
conditions to trigger the update, which occurs tmastrained area for efficiency.

The various weights introduced allow the mapping dule@ to operate
continuously to represent a model for the curre¢atesof the environment without
overwhelming the map with redundant attributes.nBintaining a controlled bound
to the values, it does not require normalisatiohjclv can be dependant on the
trajectory of the robot.

Strategies when the global map expands from extenderersal include the
merging of the attributes, such that each attrilsit@odified to prioritise the safety
of the robot and to encourage the re-measuremeheatgion if ambiguity arises.

As noted earlier, the current implementation dagshmaintain a permanent record
of the local maps as portions are discarded. Howthie data could be useful for
future implementation such that post analysis aacdried out by a more powerful
computer with much more memory capacity.

Another potential place for extension is in the v$eshape and density based
clustering algorithms based on the distributionttd occupancy, vacancy and the
dynamic attributes. These high level concepts alitiw the formation of topological
maps, where the separation of the clusters witlvalbbjects to be segmented and
matched against templates to be given a high tagebr characteristics.
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While the basic map has been constructed usingraghge finders, the other
sensors mounted on the robot can be used to cagtdranalyse different aspects of
the scene to provide an alternate perspective fwove the map. A commonly
integrated sensor that to observe the scene isvih&al sensor, which allows
simultaneous capturing of a region of the scena &st capturing rate to allow
almost a continuous view of the environment. Thailability of large quantities of
data from the single device is attractive from pegspective of hardware cost per
data generated, while the ability to capture thighiteurhood information allows
multitudes of processing algorithms to be develofpedhe extraction and analysis
of the view, such as tracking the motions of specégions of interest and analysing
the inter-feature relationships (Davison, 1998;ZH298).

Although some aspects of the visual sensors werrisised in earlier chapters, the
scenario and the configuration differ significandly the camera is used to observe
the scene looking parallel to the ground. The cancan then observe the scene in a
similar fashion to biological systems, as well dtovang wider interaction
capabilities with the camera due to the large wevarea.

The general flow of process for a vision basedesgstonsists of multiple stages,
as shown in figure 10.1, which illustrates the d&ion of a semantic representation
of the scene defined by the various algorithms tgeédterpret the image.

Figure 10.1: Flow of process in interpreting therse
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The scene is observed by the camera, which prodgupesspective
dependant image. This is then processed to idethtéyobjects of
interest and classified by matching the unique attaristics of the
objects of interest to some knowledge base.
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Many of the approaches introduced earlier to clgarthe image can be applied
here, thus the focus of the analysis is placedherconversion of the image data to a
representation that can be interpreted, as welha®xtraction and handling of any
information that are derived from analysis of tlveeppatterns.

The current approach for using the visual sensobaised on improving the
attributes already found within the local map. Thibws the various sensors to
support each other instead of introducing morebaites that cannot be verified by
other means. There are uses for unique charaatsristbe measured, which will be
discussed in more details in chapter 11. Althougimynof the objects that is in the
view will appear within the local map, the rangetloé visual sensor is much larger
than the range finders that are used. This can yielv challenges in detecting and
using the visual features to improve the map.

10.1 Camera configuration

The camera that is used has a similar characterigii the cameras used for the
localisation module, with the exception of the miom focus distance, which could
be set quite small. The camera was originally usddack the ground texture from a
very low height within the robot's body, until mple cameras were required to track
the ground. The extra range in the viewable digath@es not have a significant
impact to the scene analysis, as the focus ofdhgeca cannot be modified without
manual intervention and the objects in the vietypscally distant from the camera.

One other difference in the camera characteristicthe slight increase in the
radial warping effect caused by the curvature @ tbns. This meant that the
majority of the precision measurements should Ibeechout as close to the center of
the image as possible and minimise the use ofuter cegions.

As mentioned earlier, the camera is currently mediran top of the servo motor,
along with the sonar sensors. This allows for atgrecontrol in scanning of the
scene and an independent viewing orientation tadhet, which allows a particular
point to be continuously viewed while the robot mswaround (Ardaiz et al., 2005;
Taylor et al., 2006). This ability allows for arfesftive tracking of dynamic objects,
as the camera can modify its orientation to mamtae object within the view. The
duplication of the axis of freedom means the canwrmable to observe the scene
from a new perspective by changing the pitch aeddti. This limits the viewing of
tall objects, such as people's faces, unless theereais tilted during the initial
configuration. By tilting the camera up, the camett not be able to interact with
objects that are close to the ground, which catud®c hazardous structures like
stairs.

Tilting the camera also introduces a transformabetween the vertical plane of
the environment and the view, thus requires a nmgpprocess between pixels to
note the corresponding relationship to the scenmuctstre. Although the
transformation process is not a difficult one, it significantly time consuming,
many structures in the environment have a bounihatyextends straight up from the
ground which appear as diagonal lines in a tiltiesvv\When this is viewed through a
grid, the aliasing effect causes the alignment he# tine to become irregular,
depending on how far the view has been rotatedt@duality of the camera sensor.
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By assuming that the line detected is perfectlypeedicular to the ground, it may be
possible to note the misalignment of the image bgeoving the trend in the
intensities. However, the effectiveness can bedred by the change in the lighting
that causes gradients in the edge's textures, dsawesubtle differences in the
interpolation amount such as from the warping amgrecise pose of the camera.

With the camera mounted at the front and on tofhefservo motors, the depth
and length axes are constantly rotated, such thasformations in the intensity
arrangement occur. The transformation of the stredhas prompted for many image
processing algorithms to be developed to identdg-morphing features, such that
the same object can be identified in between maltyews (Lowe, 1999). These
sometimes include tolerances to the slight intgnsitanges, such as those from
changes in the lighting conditions.

By limiting the motions of the camera, some of tin@nsformations can be
eliminated. This can be used to specify a critefionthe feature to reduce the
computational load and increase the reliabilitytlod features that are detected, as
both the inter-pixel trends and the motions witpet to the change in the view can
be anticipated. However, unlike the floor pointoameras, the number of constraints
that can be applied is very limited, thus requisegphisticated algorithms or
additional sensor readings to disambiguate theesaofvarious changes to the view.
The visual sensors are used to support and imptbgestate of the map by
identifying the surfaces and the position of cosnevhere the depth changes
suddenly.

+
Vanishing point

Figure 10.2: Feature motion within the view undemwfard motion by the robot.
The red arrows indicate the motion of static olgext the camera is
moved forwards.

One potential drawback to mounting the camera at ftbnt is the reduced
displacement of the features, as the majority ef tiotion will be a forward or
backward motion by the robot. Figure 10.2 illusteathe motions observed by the
camera at various orientations when the robot mdeesard. A motion along the
depth axis results in the combination of verticatl dorizontal motion within the
view, which causes an increase in the search ardadtures between the frames, as
well as introducing more ambiguity through increhdenmensions of sub-pixel shifts.
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It is possible to increase the viewing area uskhmgy dervo motor, but the inter-
frame information does not provide much useful pio$ermation, as the rotational
point is almost, if not exactly, the same as theafgoint. Since the camera sensors
determine the orientation of the incoming inforromfi the rotation of the image
plane simply shifts the relative orientations. Tisisiseful in tracking the motion of a
dynamic object or when a larger scene needs tochened, as it maintains the
neighbourhood information between the objects nopsfy the correlation process
between the backgrounds for image stitching (Brérowe, 2003).

By facing the camera to a perpendicular directmthe traversal, the forward and
backward motion by the robot will constrain the iootof the view to a horizontally
dominant one. This can lead to a much more relittaleking of features to note
various characteristics about the feature. Sineartaximum rotational angle for the
servo has been set to +60 degrees and the comstogithe differential drive system,
the camera is purposely rotated by 30 degrees to e ideal orientation when the
servo is set at the maximum anti-clockwise rotationfuture implementations, the
camera should be given an individual motor for Ipigmd yaw control, to allow the
sonar sensor to scan the area freely while the reamleserved the sides when
traversing and is able to change its view to fanuslifferent targets when desired.

10.2 Image processing filters

The extraction of the scene structure from the wapt image first involves the
filtering of any noise that may have been introdlby the environment and the
sensor. The major difference between the process lusre and in the floor pointing
cameras is the reduced constraints that can beéedp the observed scene. The
camera sensor requires more filters to remove did@ianal noise and ambiguity in
the information it captures.

As previously, the image that is captured useduheolours that are available at
the maximum frame rate, thus allowing the individasgorithms to select the
components they desire. Using the currently viewalhage, the filters are
implemented to observe both the current view ang tifansition between the
previous frames.

10.2.1 Ambient light

One of the most difficult issues with using a passensor is the reliance on the
ambient light and the need for filters to suppréss variety of changes in the
appearance of the same object. In many image @wiogedasks, the colour
information is quickly discarded and replaced vattape based descriptors, such as
edges and corners. Although this often allows fommbient light independent view
of the scene, it also discards potentially usehdracteristics about the object, as
well as the state of the environment. By succelysfubnitoring the changes in the
ambient lighting conditions, the attributes or ttrteria for the features can be
modified to increase its reliability.

The ambient light changes can occur as gradualddesr change to the scene,
such as from shadows and illumination. As notediezathe exposure rate and the
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colour balance used by the camera can modify thparept light conditions to
regulate the overall brightness of the image. Altitfothis feature can be useful, the
specifics of the adjustments are not always aviailédr use and the enhancements
that are performed does not guarantee that thesityecharacteristics for a particular
object remains the consistent. However, if the owggicamera settings are set to a
fixed value to start off with, the changes to thabéent light conditions could disable
the camera's functionality as the whole image magigear as a saturated white or be
too dark and noisy from unforeseen conditions.

As noted earlier, the goal of the visual sensotigenhance the attributes and
precision of the local map, thus the ability to wamously track a specific feature for
a long period is not as crucial as accurately traghkvith respect to the pose of the
robot. With the exception of dynamic objects, tkatfires that are observed by the
camera does not have to be tracked immediatelpeasbject will still remain in the
same pose when the robot returns to view the ayam.alThis means the object can
still be found again even if the feature is losbwéver, it is still an attractive ability
to be able to track the feature for as long asut, @s the continuity considerations
can be greatly simplified and the changes in thpeagmance can also be monitored to
note the lighting conditions.

The derivation of the thresholds to differentidte tight condition changes and an
actual intensity change depends greatly on thlimittensity, the source of the light
change, and the general trend in the intensity gdndhroughout the image. In an
indoor situation, there are multiple light sourtleat interact with the objects. This
can contribute to the change in the appearance Weenoamera observes the object
from different angles or at different moments. 8irthe images are captured with
very little time interval, the change in the intéyp$rom any gradual changes can be
catered for, as the difference in the intensity @ quite small between the frames.
However, for specular surfaces and large changesheolight, such as from
elimination or addition of light sources, the irgéy change is often too large to be
reliably linked with the previous frame by simpblying on the intensity.

Although the use of shapes and inter-pixel trenais be used to support the
feature identification and tracking process, aeralite colour scale can be used to
isolate the lighting dependant appearance by reptieg the three colours as relative
values.

10.2.2 Hue analysis

In the presence of white based light, the hue vedugains reasonably consistent
under various levels of intensity, even when shddes. This allows for a lighting
independent classification of an object texture snofften used to identify surfaces,
as the gradient caused by the shade typically hsndeRGB based clustering. At
times, it is used in conjunction with the satunati@lues, but this too suffers from
lighting changes and can show gradients alongt atidiace.

One of the difficulties with relying on the hue walis the varying sensitivity at
different saturation levels, which can cause the hu fluctuate dramatically for
colours nearing grey. This makes any shading retndiffecult to achieve on grey
scaled portions, thus the techniques must be adoate these regions. When
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encountering a grey portion of the image, the s&tum value can be used to
determine whether the resulting hue value is ridialp not through a simple weight.
Another problematic area includes glossy surfagésch form sudden fluctuations
in the surface texture and does not maintain tmeeshue value as the intensity
saturates the sensor to be able to measure aragepuoportional colour. To account
for these, the change in the intensity can somstibgetoo rapid to note any trends,
thus must anticipate these false positive interfftgtuations and allow the map to
filter them out. As their position is dependanttba pose of the observer, these can
be identified by the unusual motion pattern comgadoceother features located in the
vicinity.

When considering the weights to apply to the hdaeyat must be accompanied
with another value to weight between. Instead aft jusing the hue scale, the
intensity patterns found on the RGB scale can ladésased to selectively interpolate
between the two ways of observing the scene. Siheerate of change for the
saturation is non-linear, as shown in figure 1@.8)ay also be feasible to simply use
the difference between the maximum and minimummsitg values as the weight.

Saturation vs Intensity

Saturation

1 Imax 0

Figure 10.3: Saturation against minimum and maxinmiensity values.
The rate of change in the saturation depends dmthet minimum
and maximum intensity.

Since the point of interest lies where there am@nges in the image texture, an
edge image can be formed, which combines both tieeamd RGB based edges.
Although it is possible to determine various oradian and positioned edges, the
algorithm will focus on horizontal edges, as th#igva the borders of surfaces that
line up with the map to be determined. When evalgathe RGB edge value, the
average value between the three colours will altber overall differences to be
observed, the maximum difference will only focuswhether an identifiable edge
was present, while the minimum difference will icatie how reliable the edge is
under different lighting. Since the purpose of ¢age is to determine the presence of
the edges and not on being able to rank the edggedlon the overall change in the
intensity, the maximum difference between the thceturs is used. It is also
assumed that the colour of the light source doeddifter greatly from the white
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colour. Is it possible to make use of the secordkodifferential to pin-point the

location where the maximum transition occurs, g will often create a double

edge or the value will not indicate the strengthtted edge. The precision that is
achieved through the discrete sized pixels andlimeing of the intensities also does
not allow accurate selection of the transition pdimus will not be used here.

As for the cyclic nature of the hue value, it ie tininimum distance between the
two hue colours that are used, as they indicate siowar the two values are. Since
this halves the range, it is important to not |t precision of the hue values from
initially mapping the value onto a discrete scalbe transition strength can be
derived through a formula like the following.

hue_edge=1—|1—|hue hue.|/PI| 47
One of the issues in edge based analysis is theliblg in the intensities that
occur from the aliasing. The combination of muliphtensities causes the hue to
change erratically, thus the edge map that is fdrioiéen has a double edge, as
shown in figure 10.4.
RGB edge

Original

Figure 10.4: Sample edge map showing a double edge.
The left shows the original image, top right shativs RGB edge
using the maximum difference in the three colowile the
bottom right shows the hue edge, which has not ledfective in
the office environment due to the lack of multipheies on
furniture.

By combining the RGB edge and the hue edge in wvarways, the intended
locations of the edge can be derived. Figure l10Ustiates several of these
approaches. By multiplying the two edges togetihed]ows the suppression of false
positives, but typically scales the strength of #uges back significantly which
requires normalisation. Through averaging, the watues can allow the reliable
edges to show, but it does not account for thesidifices in the two values and can
often register false positives. By always using lthwer of the two, the majority of
the false edges can be suppressed at the costeofuation in the total number of
features that are found.
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Original ~ RGB edge Hue edge

Average Product Minimum

Figure 10.5: Merging between RGB and hue basedsedge
The top row illustrates the original and the twgedmnages, while
the bottom row illustrates various technigues usedombine the
two edge images.

Since the desired features have distinctive intgnsiifferences with the
neighbours, the early suppression of insignificéeatures will save precious
processing time later on to remove many of the distinctive feature candidates.
The increase of the type Il errors that is intratidrom this should not be a
significant issue, as long as a reasonable numbedges that cover the various
objects within the scene are maintained.

10.2.3 Noise reduction

Linear convolution filters and temporal filters leavbeen commonly used to
reduce the level of noise by interpolating the nsty, but suffers from de-
localisation of features, suppression of infrequergmall objects, as well as blurring
in both spatial and temporal domains.

By knowing the components to look for within theaige, it is possible to use
these constraints to recover from the imprecisinoduced by the filters. These
techniques include finding the maximum correlatgoores when the template is
superimposed over the image at various positioms¢hwcan potentially lead to a
more precise position of the feature being idesdifiwithout the precise knowledge
about the object to look for, or the transformatiloshanges that have occurred
between the frames, this approach does not all@every of the blurring errors.
Instead, the attributes for the constraints arecéfly derived from the stream of
images dynamically by setting approximate boundkrarrowing down to a precise
value over time.

Instead of attempting to blindly remove all intépspatterns humans would
classify as noise, the purpose of the noise realudilters must be kept in mind.
Since it is the correlation between the featuras éine found and those present in the
grid map that is important, the noise reductiotefican actually be applied after the
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features have been found. This allows the filtersimply discard those that are
deemed to be generated from noise. Although inglem the processing load must
be observed such that the management of the feahaleiding false features do not
consume a significant amount of resources.

In terms of features, there are classifications #éina given to distinguish between
tracked features, new features, as well as losurfes, which will be discussed in
detail later. Any noise influencing the trackedtieas can simply make use of
correlation scores to determine what effect thesedias had. Although the initial
correlation to a feature that is being tracked reaffer, the change in the intensity
pattern can be noted to characterise the noise¢hethi was sensor generated, due to
the change in the lighting, or from aliasing angtfipolations that may have blended
the neighbouring pixels.

For the newly introduced features, comparisons higtorical information are not
available to assist in the elimination of falsetéeas. However, it is possible to use
the other features that are currently maintainedacg simultaneously being
introduced to compare the confidence score of gatufe being appropriate. One
thing to note for small features is the difficulty correlating with the grid map, as
they often do not form a part of the scene. Faladisobjects that appear small, these
map to an area outside that of the local map, ¢hasbe ignored until robot is nearer.
With this in mind, the feature should be of a remdie size to allow the inclusion of
neighbours and to utilise the wider range in thegesc

As for the features that are lost, the current em@ntation does not recover from
temporary losses due to fluctuations and obstmcdthough this may cause many
features to be lost, it prevents erroneous feativoes being maintained and removes
the need for anticipating the motions and transétioms of invisible features.

Although the above approaches are all integrateith Wie feature detection
process, there are two filters that are implement#th the specific purpose of
removing the erroneous intensity patterns. As duoed previously, the block
formation due to the video codec can be reducedguttie algorithm introduced
earlier. This allows the edge based algorithms gerate without picking up the
artefacts as edges, as shown in figure 10.6.

r Original

No quantisation block filter Quantisation block filter
F

[ ] J! [ ] JV

[r‘x -

e >

Figure 10.6: RGB edges with and without quantisaelilmck filter.
The top image is the original, bottom row shows R@B image
with and without the quantisation block filter iottuced in chapter
5.
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The second filter that is implemented is dependenthe driver level algorithm
used by the camera, in that it monitors the efféchotion blur that occurs due to the
automated colour adjustments that are enabledyasnsin figure 10.7. By allowing
the driver software to automatically adjust atttésu like the exposure time,
brightness and white colour balances, the camerable to adapt to various
environments without manually modifying the setinfysing some camera drivers,
the current settings can be monitored or manipdlateeal time, but in the absence,
the overall amount of intensity and the edge imzagebe monitored to note a sudden
change in the clarity of the image. Although thes) e done by observing the trend
of the scores for all the features that are trackieel process can be bundled with
other whole image processing tasks, such as thgrgppf the image buffer.

Figure 10.7: Motion blur when the exposure time Iesn set too high under low
lighting conditions.
The blurring, doubling of objects edges, as welthas overlap of
intensities is introduced to complicate the imagalgsis if not
filtered out.

If there is a sudden drop in the overall edge sdondkcating a large change to the
environment or motion blur, the reliability of theature decreases significantly as
the faint streaks and the repeated image thatsibl&ican be incorrectly matched.
Instead of attempting to make use of the blurrygeyahe frame should be tagged as
misleading and the feature tracking algorithms &htake this into consideration.

The threshold for triggering this case dependstlyrean the typical level of
fluctuations, the brightness level, as well asuamcity of the camera. After quick
experimentation, it was observed that the edgeesaman both increase and decrease
when the camera motion is carried out at diffespeteds. This was mainly due to the
aliasing between the neighbouring photo-sensorsnabhdrom the motion blur. The
slow movements specified by both the locomotive ponents and the localisation
module meant only the rotation and the presenceynamic objects would cause
motion blur. To cater for the blurring when the eaenis rotated, the command to
move rotate the camera or the robot triggers atthagptify that the features may be
corrupted by motion blur, thus should not attenptuse the most recent state to
modify any scores. As for the dynamic objects, rthmriesence is assessed in a
separate process, which will be discussed in chajte

When observing an object with closely interlacextuee patterns, the sampling
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rate of the sensor can sometimes cause a non+existitern to emerge. These Moiré
patterns are typically removed by frequency bas#drd or suppressing them
through interpolation, but can be isolated as tipegterns are typically formed from
highly dense regions of intensity fluctuations. S'means that the feature selection
criteria can observe the surrounding intensityttiations to flag that the feature is
not distinctive. Even if the pattern is selectechdsature, the motions of the feature
will not correspond with the anticipated motions. this information can be derived
from the motions of other features and the locabsaalgorithm, these false features
can be eliminated quickly.

The most problematic artefact that is present enctiptured image is the aliasing
and the interpolation of neighbouring pixel inteéies that occur. As observed earlier,
these typically contribute to multiple edge regibesg observed, when there is only
one. Rather than attempting to recover from thierethe feature selection process
can be configured to account for the gradual ttemmsin the intensity measurement.

10.3 Features

The significance of a feature is dependant on igsinduishable attributes, the
portrayal of a significant region within the locahp, and the ability to track its inter-
frame motions after changes in the pose. The apbesathat are typically applied
include the identification of non-morphing charastics or colour based tagging
across a small region of space. These analyses udtethe immediate neighbours to
observe the relative intensities, which are thanmgared to other candidates to select
the most interesting features within the view.

Depending on how reliable the features need tdheeattributes and the selection
criteria can be modified to suit the level of regaient. This often means short-cuts
can be made for short term features when determithie@ most appropriate feature,
as well as the rough elimination of some featuredates to reduce the processing
load. As the constraints to the camera motion icéstthe motions of the features,
only a simple search is required to successfulgniifly the same feature in the
following frame. As noted earlier, the horizontdlges allow the edges of objects to
correspond to the change in the depths that ic@dte by the range finders.

As mentioned earlier, the feature will be determditieough simple RGB and hue
based transitions, but must consider several issoelse able to filter out the
redundant and insignificant features, as well asramse which may appear. Instead
of attempting to determine the most unique featiie,more important to identify a
group of features that correspond to the same pbjdws allowing the
acknowledgement of different surfaces. The reasortlfe simple criteria used to
identify the feature is the level of constraint ttttan be applied to reduce the
complexity of the transformations of the feature.

One of the techniques that is used to improve ftificiency of the feature
identification is in early elimination of previoyslprocessed areas that have not
undergone any change. This approach is achievab$srving the difference in the
intensity over time through a temporal differenitter, which allows the detection of
areas that have changed since the last frame. Wigegamera undergoes a very
small amount of motion, the regions with differenae the intensity are highlighted

199



10.3 Features

as the intensity on one side of the edge shifemtither location. The areas that have
not undergone changes can simply be discardedoasew information will be
derived from it. It is possible to distinguish beem the background to foreground
using this approach, as some distant objects maymow signs of motion. The
detection of dynamic objects are also possibléefbhackground stays stationary as
the outline of the dynamic object can be determinih ease.

When using this filter, it is important to apply appropriate threshold value to
determine if the change in the intensity is dua motion within the view or if it was
generated by sensor noise or Moiré patterns. Thplest approach is to use a single
threshold value, which is taken from the noise abt@ristic determined earlier, but
can also be a more elaborate process such as migst#hre change in the neighbours.
However, since this would require valuable progegdime, a threshold value was
set using the larger standard deviation of 8 uoitshe three colours to suppress the
noise and unmodified regions.

One of the potential issues with this filter, ascdissed earlier, is that under very
slow and gradual motion, the intensity change glitoo subtle to be detected due to
the aliasing and blurring of the intensity betwgerels. However, the low threshold
value used showed it still allowed for the changeappear under normal operation
speed of the robot. Note that this is used to redbe candidates for new features
and will not affect the tracking of existing featar

A sample scene with portions that have been detetdiaving undergone change
between frames is shown in figure 10.8, where rihensity represents the magnitude
of the maximum amount of change in the RGB vallies. majority of the image can
quickly be discarded as they do not introduce chartg the features.

Previous Current
{
'I— - ' —
- -
& Wid h il
Pl 4 ol ARy v ot
Difference

A
y *‘ ‘ |n| .

Figure 10.8: Reduction of candidates through a tealgilter.
The change in the perspective only modifies soméqns of the
image, which is illustrated by the dark areas alibttom row.
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10.3.1 Feature selection

Due to the repetitive nature of some texture pasteusing a small number of
pixels for the texture can be extremely difficuttdaoften leads to incorrect matches
and large fluctuations in the correlation scoreswelver, by selecting a feature that
is too large, the objects within the feature magrge differently and modify the
structure within the feature area. As noted eartle® main point of interest is the
transition region between the intensities, thusirsgdarge number of pixels does not
lead to much enhancement of the feature's religpbHiowever, it is possible to note
the neighbours of the edge transitions to isold@ature from noise (Cafforio et al.,
1997).

Rather than varying the shape of the feature w thre most appropriate one like
earlier, the characteristics of the objects of rese is used to set the criteria for
selecting and maintaining the feature. When anmadyshe image for a feature, it
must involve the pixels covering the boundary toasuge the distinctness of the
transition, the horizontal neighbours of the bougidaxels so the consistency of the
surface can be taken into account, and the pidmiseato measure the continuity of
the edge so it can be distinguished amongst noise.

When the transition point between objects is olerthe horizontal transitions
are typically visible as a combination of two adjac transition values. If a non-
horizontal transition is viewed, the number of fexbeing intersected increases to
create thicker edges, which are illustrated inriggi0.9. Although it is desirable to
encounter the perfectly horizontal transitions, r¢heare frequent cases of
misalignment which may cause a slight slantinghef\tertical lines.

Figure 10.9: Vertical and non-vertical lines intrng the pixels.

The top row shows the object boundary intersectng pixel,
while the bottom row shows two pixels being inteted, thus
blending the appearance of both pixels.

Since the constraint is placed to only monitor icaft lines, which are the
potential boundaries between objects at differeaptld the number of pixels
considered for the boundary is kept small. To antdar the misalignments, four
pixels are used in case the transition occurs agragtiple pixels. When the amount
of difference is being measured, it is importantmonitor the consistency in the
intensity transitions, as different objects mayappear within the window for an
extra edge. Since the intensity of the boundarglpixends to interpolate with the
neighbours, the pixel intensity in between showdbtween the two values. That is,
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the values for the three colour components shaeldbétween those of the outer
pixels and should also slope in the same direction.

Although it is the magnitudes of the transitionatthre typically used, using this
approach requires the maintenance of a signedeliite between the neighbouring
pixels. It is also beneficial to observe the trentisll three colours separately, since
the three colour components can fluctuate at differates. Instead of a rigorous
approach, this can be simplified by determining thigerence between the edge
score of the transition and the difference betw&enleft most and right most pixels
of the window. Since the edge score uses the mminofi the two colour scale
differences, it means the value prioritises the lat an intensity difference. This
means more areas will be deemed to be uniform atidsuwppress some of the
intensity transitions. By using the maximum difiece of the two colour scales, it
sets an upper limit to the difference, thus canubed to determine the overall
transition between the pixels. This weight, whisldefined below, can be applied to
the score of the boundary, as it determines th@qgutionality of the transitions
within the horizontally aligned pixels.

Consistency weighf = max(| RGR1y— RGBu2y |, | Hug1y — Hugs2y |) /
(max(HorizontahRGB,., ;, HorizontalAHue,., ) + max(HorizontahRGB,,, Horizontal (48)
AHuse,) + max(HorizontahRGB,..,, HorizontalAHug,.1,y))

Depending on the filter pattern implemented by t@mera, there may be
consistencies in terms of the proportional charegesben the boundary pixels for the
three colours, but cannot be guaranteed. If Moatéepns are present, the difference
between the three colours can typically fluctughes allowing the removal of the
candidate.

To improve the consistency of the surface arouralibundary, the horizontal
neighbours can be included in the analysis. Thafiignce of finding a surface, and
not just a simple line, lies in the applicability the local map as thin strips may not
be registered by the range finders, thus introdacesnnecessary processing load in
attempting to find a fit on the map. By noting thia¢ boundary is part of a larger
surface, it can easily apply the features with noanafidence and relevance.

Since the relationship between the number of pisélswn and the size of the
actual object is dependant on the distance, iffiewt to effectively determine the
appropriate number of pixels required for the gtarty of the local map
dynamically without introducing dependencies baxkhe local map. Instead, a fixed
number of pixels is used, which is derived basedronbject at a distance of 1m, the
size of the object being 1 cm, and the viewing engf the camera being
approximately 40 degrees, which equates to appiteiyn 5 pixels when using a
capture resolution of 320 x 240 pixels. This vatueans that if the object that is 40
cm away is viewed at, the object must have the sateesity value for 4 mm on
either side, while if the object is 5m away, thgegbneed to be consistent for 5 cm.

The fluctuations in the intensity that are seen tfa@ extra neighbours should
remain small, but must allow for small changes stitdt the noise and subtle
lighting changes still allow the features to beistgged. To account for the various
sources of noise, the edge scores evaluated eealnebe used as it suppresses the
effect of lighting changes using the hue and alyeammbines the RGB intensities.
Since it is the consistency in the intensity tisateiquired, the maximum score of the
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two colour scales will be used. By setting the shdd to only allow the features

with a low score, the neighbouring pixels of theudary will remain consistent.

When combining the scores of the four horizontahsitions, two basic strategies
can be used, which are the use of the maximumrdiftee and the average transition
score. Depending on how flexible the thicknesshef ¢onsistently coloured surface
must be, the algorithm can be interchanged.

To differentiate the difference between an edge ramide, the region above and
below the boundary is observed on top of the hatedloneighbours. This process
allows the continuity of the edge to be monitoredch that the end points of the
edge or gaps in the line can also be observed. tDuthe slope of the edge,
interpolation, and changes in the object structtive,presence of the edge may not
always appear directly or diagonally above the entrredge. In this case, the
boundary can be marked as the end point or thetsean be extended until another
boundary is found or the distance becomes too.large

Although this approach allows for some level of townty between the
boundaries, it is heavily dependant on the thresbhohditions and can behave quite
differently depending on the texture patternsh#re is a slanting of the boundary,
the interpolated intensities will cause some blegdin the horizontal direction.
However, this means the vertical transitions shawtlbe affected for a vertical line
if the difference is measured at the boundaryithalightly away from the horizontal
transition. Instead of rigorously making sure tlag gn the intensity is indeed from
two surfaces meeting, the check is only carriedt@f@ibur vertical boundaries around
the horizontal transition. This results in a fagieycessing of the feature candidates,
but it can also mean the end points to the edgenwilbe detected. Since the exact
height of the edges are not important on the locap, as it only maintains a 2D
model, this is not a significant issue, other tlvéimen determining the continuity,
which will be described later.

Since there are two surfaces to consider, it iscnatial for both sides to remain
consistent. This means the better score of thestdes of the boundary can be used.
This concept also applies to the horizontal neiginbowhich selects the better score
of the two sides. When comparing the transition®vaband below, similar
consideration must be made as the horizontal neigisb but with slight differences
in that the minimum value can also be consideragd dee to the proximity of the
region to the boundary and also the slightly défer purpose it has, as it can
encounter the end of the vertical line. Figure QOillustrates the process of
determining the consistency in the vertical di@cti which uses the minimum
difference between the two pixels. The letters Ateepresent the intensities at the
corresponding pixels.

A B
D Vertical Consistency =
min(|A-C|,|C-E]|,|B-D|,|D-F])
E F

Figure 10.10: Vertical consistency in the edgeasies.
The central boundary indicates the edge of intesast the outer
boundaries represent the vertical boundaries tieat@sidered.
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In terms of the processing requirement for thik tésshould become apparent
that the comparison with the pixels above involaesertical edge, which is not
included in earlier calculations. This means that\ertical edges between the pixels
must also be calculated. If the selection critdoa a feature can be partially
completed using only the transition score and #ighbouring consistencies, some
of the candidates can be eliminated to improvesthelency. Otherwise, the iteration
can be carried out vertically first as it will remuthe buffer size that is required, but
should consider the offsets too.

The use of the three scores can be done increryentdlich can allow early
elimination of candidates, or the scores can bebaosad for a single evaluation
process. This can use a threshold value by sedtirgjuired score or by ranking the
candidates and selecting the better scoring catetiddhe combination of the three
values can be approached in a similar way to tleedmlour scales, but the emphasis
must be placed on the presence of the boundarytbgether two. This can be done
by eliminating some of the candidates early ususj jhe edge transition score or by
applying a greater weight to the surface bounding use of a multiplication does
not allow the distinction between the different m@s, thus cannot be used reliably
here.

Using just the boundary score yields a similar otidn process to the temporal
filter, except those marked from the edges of tlewipus frame. Since the number of
candidates has already been reduced, the bounclang/ is used in conjunction with
the consistency scores in a single process torassigpverall score to the remaining
candidates, as shown in figure 10.11. The coloulingp shows which pixels the
different scores are derived from, where the rgesents the consistency weight,
yellow represents the boundary score, green and ®@esents the horizontal and
vertical consistency scores respectively. The sathosvs the candidates to be ranked
such that further elimination can be made basedhenprocessing capabilities
instead of the characteristics of the current view.

The derivation of the feature score is quite atleypgrocess compared to a more
naive edge strength approaches, thus is impomantake use of buffers to re-use
some of the computations. It is also possible talifgdghe threshold of the temporal
filter to reduce the initial number of candidatéshie processing time is too large.
Other approaches are also introduced to reducec#melidates, such as only
evaluating the score to newly introduced featuitas.important to apply these other
candidate reduction processes beforehand, as ieloamate the candidates much
more efficiently than using the score. Other sgi#® that are incorporated are
described later on.

Although the evaluation of the score depends onynmxels surrounding the
boundary, the attributes that characterise theifeatoes not have to contain as much
information due to the changes that may occur betwbe frames. The important
attributes that can currently be defined are therdioate points, the two surface
intensities bordering the boundary, and the scodhese attributes alone will not
always be able to uniquely distinguish the featarbetween frames, thus additional
considerations will be made.
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Vertical ARGB,, = max(|R,; = Ruy+1 |, |Gxy = Gry+1 |, [Bxy = Buys1 )

Dj Horizontal ARGB,, = MaxX(|R., = Rxs1y |. 1Gxy = Gusryl. [Buy = Busry 1)
Horizontal AHue,, = (1 — |1 - |huey, — hue,iyl /1 1) * (Umax— Imin)
E Vertical AHue,, = (1 — |1 - |hueyy — hue,y1 | /111D * (max— Tmin)

EEED Consistency weightx,y =
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Feature score,, =
Boundary weight * Boundary score,, + Horizontalx, + Vertical,,

Figure 10.11: Derivation of the feature candidaiss.
Top two illustrations are used to determine thdedtince in the
colours. The red region is used to determine tlopgutionality of
the edge strength, the yellow region is used fa bloundary
strength, the green region is used to determinecémsistency of
the surfaces in the horizontal direction, while ttyan region
determines the consistency of the surfaces in ¢higcal direction.

10.3.2 Surface feature

When using an edge based feature detection toifigémieresting regions of the
image, it is important to note that the transitionthe intensity values is often
derived from one object obscuring another in thekgeound. This means that when
the feature is observed from a different perspectilie texture of the background
object can change dramatically and modify the aggrez of the feature region. This
can cause a lowering of the correlation score asllr in an incorrect match
between the stored feature and the current view.

As hinted earlier, the scores of the left and rigitle of the boundary can be
treated independently, such that the changes tosaee of the boundary do not
worsen the scores. By splitting the feature into wemponents, it can potentially
double the number of candidates, unless the uestiag features are removed
quickly and efficiently. Another issue this causeshe reduced number of attributes
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that are assigned to the feature, which can can&ito the ambiguity in
distinguishing the feature.

Due to occlusion, it is more desirable to track thetion of the surface in the
foreground, as the surface boundary for the backgifomay not actually exist.
Although the distinction is quite difficult to deteine, by maintaining the
foreground feature, it can eventually cover thekgemund such that the background
feature will be lost. Until this happens, the boarydof the background will appear
to be attached to the foreground object, thus balltreated as if it is a corner
between the two surfaces. This ambiguity can beovexh by combining other
sources of information, such as the depth quewoes fine local map.

An alternative approach uses the correlation soaréhe better of the two sides,
but maintains both sides in the single feature.sTtocedure can maintain the
tracking of the foreground and background surfag#isout having to duplicate the
feature, as the motion of both sides will remaia same regardless. By monitoring
for a large fluctuation in the score in one sides side can be disregarded from
further calculation. An example of this is if a Ioolary that exists on the background
becomes visible, the foreground feature can nowedad the correlation score on
that side while a new feature can be tracked stgpgrar the background feature.

10.3.3 Density

The large number of potential features that mustdielated and tracked means
the maintenance aspect can consume a significamtranof resource. Depending on
the feature candidate's scoring process, many résatcan be introduced from a
single boundary as multiple snapshots are takea \adry similar view of the same
location. Since there is limited number of pixeéiss possible to find the upper limit
on the number of visible features to limit the daprof features. Even after limiting
the maximum number of features, the image's rasolunhay allow for too many
features to be processed in real time.

The typical strategy for tackling this is to finthet features that are more
constrained, such as corners or a scale and tramsfvariant features (Wang &
Brady, 1995). Although these are quite useful enitfying distinctive features, the
focus of the feature detection here is to deternthwestructure of the environment
and improve the precision of the local map. Simeefeatures are for short term use
only, they do not require the robustness and isiired to focus on successfully
tracing the surface boundaries.

The majority of intensity and edge based featutealion algorithms form highly
dense clusters, as the objects that are in the aewof a reasonable size and
typically have a consistent textured surface. Stheefeatures within the cluster are
often from the same object, their characteristidé bve repeated many times, with
the exception of the slight differences in the dowate point of where it was
observed. By compressing these features into adeimgpresentation, the number of
features that are maintained can be drasticallycedl

Using a detailed clustering analysis to identifg itieal reductions can potentially
require a lengthy processing of the current vidw, fieatures, the state of the local
map, as well as historical information on the tewnd the features. To save on the
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processing time, a simple proximity based filteruged to eliminate some of the
features that are close together. Several attsbfde the filter are considered to
determine the appropriate density and distributibthe features.

The simplest filter to be implemented is a seqa¢rsjuare shaped mask which
eliminates all but one feature within the mask.sTéllows for a significant number
of features to be removed, but since the featuredased on horizontal differences,
a sequence of horizontal features will mean théulsl be two distinct vertical
lines. Eliminating these closely located lines banproblematic if their information
is permanently lost, thus the width of the masktrbaesshrunk down.

The size of this mask has a direct impact on thebar of features that will be
kept, but this depends on the amount of approxonatithat can be made about the
scene structure. The reduction in the candidatesldmot lose significant amounts
of information about the structure of the enviromtpas ideally, the lost information
should be able to be reconstructed without divergioo far from the original
appearance. If the approximate object size is kndhis can be applied much like
the procedure used in the horizontal neighboursatien. Using a rough measure of
height, the size of the mask can be constrained.

The selection of the features to maintain can beedbased on positional,
randomised, or score based algorithms, which alk hdifferent side effects that
require consideration. When using a position bamgproach, the mask must be
applied with an appropriate offset to the image tres features and the expected
position in the mask may not be aligned properlisTapproach also requires the
positioning of each of the masks to be consideesl,the arrangement causes
different number of features to be eliminatedslaiso possible to scan for a feature
within the mask, which is set at a particular positthus allowing a more consistent
number of features.

Using a randomised algorithm to select the featane be effective in situations
where the scene characteristics are unknown, bubftan result in a non-optimal
arrangement of features being selected. Since dfrttee scene characteristics can
be anticipated, such as the presence of vertivas ia more predictive approach can
be used instead.

The score based approach requires some form ofnan& be applied. Since
evaluating the edge score and ordering the feabaregonsume a significant amount
of time, the process must consider a simpler aiteilbo base the score on. This could
be based on the amount of change that was obsémedthe temporal filter to
eliminate the candidates that have similar intessito the surroundings. However,
this process is integrated with the threshold attémporal filter, thus does not need
a separate parse of the image.

The current mask is based on the idea that onleeokéy element to be removed
should be the repeated edges caused by interpolatim the aliasing, and that the
re-construction of the object boundaries requiresasonable number of features in
line to form the boundary shape. This aspect veiltbvered in chapter 11.

The mask, as shown in figure 10.12, is appliedna distinct stages, where one
involves the elimination of the feature candiddiefre the scores are evaluated, and
the other after. The highlighted regions in the iefage are removed first, while the
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second phase on the right filters out the lowerest@ixels. The first filter allows
halving of the feature candidates while allowinggistent coverage of vertical lines.
The toggling of the mask between the lines allovesarof the non-perfectly vertical
lines to be observed, as they may intersect thiedrdal boundary of the masks. The
mask can be problematic if there is a diagonal ilinthe scene which falls perfectly
in the blind region, but since the primary focusisthe detection of vertical or near
vertical lines, this is not applicable here.

max(A, B, C)

Figure 10.12: Feature density reduction mask.
The highlighted cells indicate the cells that awi&ally removed for
consideration. The group of three pixels are tr@mpared to only
maintain the best out of the three.

Note that the use of the filter has a similar penfance benefit to halving the
capture resolution, but selectively eliminating thecessary pixels to maintain the
same level of precision for the features that dsoaia. The small spacing also allows
scope for the features to be joined together byrasgy continuity, which becomes
more difficult with increased spacing between thpgy

The second mask is applied to the group of threelpiby comparing the scores
and discarding all but the highest scored featiitas allows the reduction of
consecutive horizontal edges being formed, exaepdietween the different rows.
Although the consistency scores that are evalualiesv the removal of some of
these features, this filter allows for extra retucbf these redundant features.

Although it is ineffective to implement with thercent set of filters, it is possible
to use a shifting window to move horizontally totetenine the highest scored
feature. This will avoid the misalignment issuesna®n the objects and the mask,
but also re-introduces the double edge problent does not explicitly exclude
adjacent features being selected from differentioim positions.

Two more strategies are introduced to reduce timebeu of feature candidates,
which consider the current group of features arel rite of encountering a new
feature. The first approach distinguishes whetherregion within the image is an
existing feature or a newly introduced feature.n&sed earlier, once the feature has
been found, it does not require a complex analysimaintain the tracking. This
means the regions that overlap with the existireguiees can also be removed from
the list of feature candidates. This can also imhelthe adjacent positions to the
existing features, as they are likely to be a pathe same feature. Since this process
requires the current position of the features,nin feature detection process should
occur after the tracking of current features hagnbe&ompleted. One extra
consideration to make when using this and therfilised above is when the
foreground feature and background feature sepat@itese the newly created feature
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for the background will be away from the foregrodadture, the elimination of one
side is required to monitor a significant changehi@ appearance instead of relying
on the creation of a new feature.

The second strategy involves using the domain kedgg about the speed of the
robot and the change of camera positions, whichribate to how frequently new
features can be introduced into the view. An imgratrtnote to consider is that the
detection of these features is not critical toaperation of the robot, as it is simply
an enhancement to the existing map. With this indna delay between the new
feature detection processes can be introduced wHiteng period can be based on
time, the actual change in the pose of the camrera the localisation module and
the positions of the servo motor, or even by simmunting the number of pixels
that are observed to be different through the tealgiter.

Since the frame rate remains reasonably consistefatying by a set time can be
implemented by simply using a counter on the nundidrames that are captured.
However, this does not perform as efficiently as dther approaches, as there is no
guarantee that the image has changed. Using themaoof the robot and the
camera, it is possible to anticipate approximatebww much of the scene is
introduced into the view, but it is unable to cdtardynamic objects, as well as not
being able to predict the structure of the scermnloea foreground object. Instead of
combining the two approaches, the third approactetécting a large change in the
number of pixels that are found to be differentnirthe temporal filter is used to
trigger the feature detection process.

The threshold value for this must also considerdiwesity filters and the existing
features that will reduce the number of candidatese specifying an upper limit to
the features will allow the algorithm to performaatonsistent rate. With the current
density masks, the maximum number of features ®ya&t ever possible is
approximately width * height / (3 * 2), which eqeatto 12,800 for a capture
resolution of 320 x 240, which is quite large. Degieg on how the features will be
used, the required density can differ greatly. e turrent implementation, the
typical scene structure can be taken into accauptredict the expected number of
vertical lines in a single view. If there are 10swr vertical lines within a the view
with an average height of half the height, thene loa approximately 600 features in
the scene. Based on this value, a threshold vdl6éais used to trigger the feature
detection process if the number of features beiagtained drops below this point.

With the scores determined for the feature candgjdhey can be sorted so those
with a higher score can be maintained. Insteadngiiementing a generic sorting
algorithm, it is important to note that the candédado not have to be in a fully
sorted sequence, as long as the resulting numbferatfres is within a reasonable
range. Since the actual upper limit for the numbkrfeatures is too high to be
managed in real time, a limit is defined to be &vibe threshold used above. With
this in mind, the sorting of the candidates onlguiees a simple split such that the
number of candidates plus the current number dftifea is below 1024 and above
512. Note that these values should be modified mtipg on the type of
environment the robot encounters, as inappropsiatees can trigger too frequent
feature detection or miss out on important viewthefscene.

To determine the top candidates, algorithms simaquick sort or bucket sort
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can be used, but focusing on counting the numbeleshents that are in the group. It
is possible to keep track of the maximum and mimmuaandidate scores to assist in
defining the pivot value, or the bucket size, bus ialso possible to simply make use
of the theoretical upper and lower bounds. Algonith0.1 illustrates the process
using a bucket size of powers of, vhich has been selected based on the level of
precision of the various components of the feasamre. Note that by controlling the
two weights and the level of precision used for llne value, it is possible to map
the scores onto a fixed point decimal number regmtagion like the one used in
chapter 9, which can improve the efficiency of blueket algorithm.
function FilterCandidate(features, candidates, uppe r, lower):
set factor = 24
set bucket[factor]
set precision = 1 / factor
while feature.size < lower && candidates.size > 0:
foriin O to candidates.size:
setindex = . candidates]i].score / precision 1%
factor
add candidates]i] to bucket[index]
clear candidates
foriin O to factor:
if feature.size + bucket[i].size > upper:
set candidates = bucket][i]
clear bucket
set precision = precision / factor
break
else:
for j in O to bucket[i].size:
add bucket][i][j] to features
return features

Algorithm 10.1: Candidate elimination from counbased threshold.

Although the filter above can assume an upper limthe number of features, the
low scoring features that are most likely erroneatss still maintained if the total
number of features within the scene is small. Tovalthe elimination of a badly
matched feature is by slowly decrementing the fe&tiscore by using the inverse of
the correlation score. Once the score is reducdoekow zero, the feature can be
eliminated.

10.3.4 Tracking

To determine the structural information of the scdrom the features, their
motions must be monitored against the changes @ garspective to allow
triangulation of the pose of the feature. The thaglof the same object also assists in
disambiguating other attributes by allowing the eshations to converge to a
constant value. By using the unique attributes thate determined during the
feature identification process, the same objectbmafound in the subsequent frame,
but will likely have undergone small amount of skation and transformation, thus a
correlation score must be evaluated to find thetrikedy match.

Since the distance to the object is reasonablg)alge amount of motion that can
occur in between the frames is quite limited. Tisistrue for when the camera
translates, but can be problematic if a fast rotaticcurs. By limiting the rotation of
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the servo motors to delayed increments, it is jpdesgo limit the range of motion in
between the frames. The operational speed of thetlis currently set to be quite
slow to improve the effectiveness of the localmatalgorithm, thus the search space
for the features can remain quite small.

One of the constraints that is placed on the featig that they are used to detect
vertical lines, but at the same time, it does nistitjuish the vertical intensity
transitions. This means any features that are Ilnogahe mid-height level will lose
its vertical pose as the camera moves around.atfking of these features are
attempted without any vertical intensity change®spnt in the feature, the
continuous surface of the objects will allow thattees to slide up and down with
little changes to the correlation score. Since wsild eventually result in features
overlapping with each other, many of the feature$ guickly disappear before
reliable information about the feature's motion barderived.

To prevent the features from sliding up and dowmay be possible to anticipate
some of the vertical motions by using the curremditoon of the feature within the
view and the pose changes of the robot. Howewsteghe pose changes may not be
available, the constraint may have to be derivemhfhistorical data.

An alternate approach is to simply not worry abauty elevation based
information and only track the horizontal motiontbé feature. This places an extra
emphasis on tracking the surface boundary, agdbkihg will no longer be based on
a specific point along the boundary, but the bomndaelf. This means new features
can also appear above or below existing featurédseasobot moves towards or away
from the boundary. This also means that the erfoosn slight bumps and
misalignment of the camera will be reduced.

When implementing this approach, the image plarmulshbe parallel to the
vertical lines, as any difference in the pitch wébult in the features moving in an
arc across the view when the camera is rotatedhdf camera is tilted, the
transformation of the image to a perpendicular weith respect to the ground can
result in unnecessary interpolation with verticalghbours, thus should be avoided
when possible.

Due to the staggered motion of the servo motorthedslow rotational speed of
the robot, the maximum horizontal motion between filames was observed to be
approximately 8 pixels with a horizontal resolutioh320 pixels, which is used to
limit the search space for each of the featuresceSthe motions of the features are
related to the objects, the motion of one featane loe used to guide the tracking of
the other features. If a rotation occurs, the loorial motions of all the features
should be reasonably consistent, while a translatbould result in groups of
features, especially those along the same horizgusitions within the image,
moving in a similar manner. If the features camabanged in a way such that they
can be accessed according to their horizontal ipasit such as a two-dimensional
array, it is possible to track the displacememnroé of the features along that vertical
line and use that position as the starting posititie search.

Since the commands sent to the motors are cardedwer a period of time, the
direction of the feature motion can also be andéitgd using this information. As with
the motion prediction, the initial search locatiwan be modified to the entire set of
features, as their motions do not differ greatlymarrant an individual prediction,

211



10.3.4 Tracking

such as by using historical information.

Although there are multitudes of algorithms thah dze included to try and
improve the efficiency of the tracking, the overtiedhat are introduced can be far
greater than the benefit they provide. Since thebates that are stored for the
feature is quite simple, the processing time fahef@ature is not a significant load.
Given that the search space only consists of lifipas, the main contributor to the
processing load is the number of the features anthe processing of the individual
features. With this in mind, the predictions to noye the search speed for the
feature location has not been included in the cdiireplementation.

The two surface intensity attributes that are stdog the feature can be used to
determine the correlation score based on the distaneasure of the intensities.
However, since only one side is required to matgdirest the feature, using a single
pixel does not yield a reliable feature tracker. dmunter this, three different
strategies are incorporated to assist in the digambon process, such that the
feature tracker allows for the same surface boynalbe monitored.

The first strategy analyses the surrounding intesssof the feature, such that the
neighbours are checked in a similar fashion toféla¢ure detection process. Instead
of the irregular shape it observed previously,dbmparison is conducted on a small
square region to simplify the computation. The sdbiat is derived is a measure of
consistency based on the pixel intensity of eitside, thus the difference in the
intensity can be re-used as the surface regiorglmiserved shifts. Using a region of
size 3 by 1 pixels and starting the scan from tiacent position to the edge, the
boundary interpolation can be eliminated while wlltg the consistency of the
surface to show. Figure 10.13 illustrates the nedieing compared with respect to
the position of the feature, where the three pixelthe red rectangle is compared
against the feature's colour and added together.

Feature
Position

EEEINEER

Left Right
Consistency Consistency
Figure 10.13: Feature tracking region of compari®vrconsistency in surface.
The blue square represents the location of theifeatvhile the red
rectangles portray the surfaces that make up thedzoy.

Note that this may include pixels that are stilltransition, thus may require
weighted adjustments to the consistency value tkemthe contribution less
significant. The actual score can be evaluatedgusie following formula.

Consistencyl, = 1 — (Boundary weight * | IFeatygdeft — k.., | + (| IFeaturg.left — | (49)
sy | + | IFeaturg.left — L,y | )) / (2 + Boundary weight)

ConsistencyR, = 1 — (Boundary weight * | IFeatusgight — L. | + (| IFeaturg.right — (50)
Ixssy | + | IFeaturg.right — L.y [)) / (2 + Boundary weight)

Consistency, = max(Consistencyly, ConsistencyR) (51)

Using just the above approach, it should be appateat just using the
consistency measure does not allow the actual @oyrégion to be accounted for.
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By storing the intensities at the boundary, thaditgon characteristics remains fixed
between the specific foreground and backgroundngities. Instead of using the
original intensities, the total strength of the bdary can be determined from the
current view by accumulating the average intersitiethe two regions during the
above process. The derivation of the differencesdae need to be as rigorous as the
feature selection process, as there is no guarédmié¢he boundary still exists as the
view may have changed.

TransitionX,y = | (hoy + Lesy + leay) = (eay + ey + xay) | /3 (52)

Since the pixels used to measure the transitiomod@ctually include the pixels at
the boundary, there is no guarantee that the peappssition contains a change in
the intensity or the same transition as the sudmgn pixels. To encourage the
surface boundary existing in the middle of the obse region, this can be included
in the correlation score.

Boundaryy = | key— ky | (53)
Correlation, = Boundary, + Transition, + Consistency, (54)

Even with the proposed technique, the precise ilmcaif the surface boundary
cannot be determined. To derive a more accuratéigosf the feature, the tracking
algorithm must maintain historical camera pose fadure locations such that the
actual position can slowly converge to the desuade.

The last of the three strategies that is introdusdde notion of continual motion,
which is determined from the previous feature meidn the localisation algorithm,
this information is used to specify the startingdtion for the search. The lack of
reduction in the search space means the trackiligtill be successful even if the
prediction is incorrect. One of the characteristitzat make the early termination
attractive is if the scores that are evaluatediigegifferent. However, this means the
surface should be significantly different for theomes to fluctuate to reach the
threshold quickly.

Instead of designing a search sequence alterirgyithlgn, the search space itself
can be reduced to improve the efficiency basederptevious feature motion. Since
the majority of the motions that are detected bélcontinued on from the previous
motion, a smaller window can be placed around thedipted area. This can
potentially mean that the correct feature positiah not be found if the motion
suddenly changes, thus relies on the correlatioresto indicate that the feature was
not found.

The size and placement of the window depends atitot of the feature, as well
as the rate of change, thus maintaining all thési@ies for each of the feature can
amount to a reasonable footprint size. Insteadrtimmum and maximum motions
of all the feature motions are maintained as omkused for all of the features. Since
this value can change between frames due to chandbe motion pattern, an extra
4 pixels are added to the magnitude of the twotilgivalues. Since the maximum
motion has been defined, the two limiting values ba trimmed to this value. Note
that ideally, the maximum motion of the feature iddonot be reached since the
feature tracking should be carried out while thbotois in motion and the servo
motor being stationary to track the feature froamslation and not rotation.

The evaluation of the scores introduced above sedban a single dimensional
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intensity measure, thus must be modified to accéonthe three different colours

that are available. For the correlation score,vileie must indicate how close the
values are, thus the maximum difference shoulddsel .UAs for the boundary score,
it is important to note the presence of the diffiees thus the maximum difference
can be used as well. Note that the hue scale isisest for this analysis, as it deals
with the bordering region of two intensity changshjch can cause large fluctuation
in the hue.

The last issue to consider with regards to theufeatracking is the viewing area,
which is dependant on the radial warping from thmera, as well as the visibility of
the feature in the subsequent frame. Since theporggrom the radial warping is
currently set at an arbitrary amount based on pipat@nt interpolation, the focus is
placed on the visibility aspect. Currently, thetfwa selection requires 12 pixels
horizontally and 3 pixels vertically for each ofetlieatures, while the tracking
requires 4 pixels on either side of the feature 8npixels in each direction as
potential locations of the feature. This meansedlsrould be at least 12 pixels of
buffer region to the side of the frame and a simgle at the top and bottom where
the feature should not be maintained. Using theteeg, a border region of 16 pixels
is placed on the sides, while the top and bottone Heeen trimmed by 8 pixels to
reduce the effect of warping and discourage feattlrat are too high for the robot to
be included.

10.4 Map enhancement

The tracking of the features allows the inter-frabehaviour of the particular
boundary to be monitored with respect to the r@mt camera's pose, thus allowing
the derivation of the boundary position througharigulation. Using the stored
intensities of the surfaces, it is also possibl@agsign textures to the surfaces for a
more complete re-construction of the environmerdadsist in the navigational tasks
for the robot (Seitz & Dyer, 1997).

10.4.1 Depth from motion

As the local map focuses on identifying the loaati@f the objects in the scene,
the features that are tracked can assist in ent@ribe location of the boundary
regions, which will appear as corners or possilsifeatures on a flat surface. This
process can be achieved in two ways, where onelviescahe build up of the
boundary location before being applied to the lamap and the other involving
continuous superimposition with the local map.

Many existing structure from motion approaches &ased on a simple
triangulation algorithm of disambiguating the laoatof the feature, which can be
achieved through two different positions of thetdea and the corresponding camera
pose (Matthies et al., 1988). The technique islamid those used in parallax or
stereo depth mapping techniques (Bleyer & Gel&0(94; Hemayed et at., 1997 (a);
locchi & Konolige, 1998; Irani & Anandan, 1996; Kamet al., 1994; Murray &
Jennings, 1997; Rosselot & Hall, 2004), which regpirecise camera poses and the
feature locations. If other constraints are avé#lal is also possible to derive this
with increased views from different perspectivesid® & Kanade, 1997). Figure
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10.14 illustrates the various components involvethe triangulation process for two
known camera poses.

(x0, y0)

X0 =yl - y2 + tan(®©) . x2 - tan(¢) . x1
tan(e) - tan(¢)
y0 = tan(®) . (x0 - x2) + y2

(x2, y2, a2)
(x1, y1, al)

Figure 10.14: Depth detection from triangulation.
The circle represents the object of interest, itjiet lines represent
the limits of the viewing angle, and the T shapeed show the
projected image and the perpendicular line at tbeter. This
corresponds to the orientation of the pose.and ® are the
orientation of the object of interest in the proget image with
respect to the global coordinates.

Since only one camera is used in this set-up,\itéd to minimise the pose errors
for the cameras. Coupled with the precision ernorthe tracking and the increased
ambiguity of the feature's location with increagbstance, the depth value that is
determined from the tracking will often be inacder# only two poses are used.
Since a large number of poses and the featureigusican be made available
through continual tracking of the feature, it isspible to combine the multiple depth
evaluations to converge the pose to a more accuaiie.

When the multiple measurements are conducted, #asioonsideration to the
carving can be applied, where the change in thentaiion between the tracking is
used to weight how much of an effect it has onltoal map. Since every pair of
feature position with respect to the camera pose ba combined for the
triangulation, the number of pairs increases atalbe of(N? — N) / 2 , where N
is the number of tracking. Given the high frameeydhis can quickly become an
issue, especially because there is no upper boefided except when the feature is
discarded.

Since combining consecutive tracking does not aflmmthe orientations to differ
greatly, it would be more ideal to combine thosa @ire taken with some time apart.
Two different strategies are considered to allow limiting of the memory and
processing requirements while encouraging the figmios that are taken at some
distance apart. The first approach involves maiirtgi a running average, while the
second maintains a selection of feature positiorkeep the outlier features.

The maintenance of the running average involvesguisie initial feature position
as the constant reference point and continuousijuating the feature pose. By
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maintaining a counter, it is possible to accumutagevalues, which can be averaged
at any time. Note that in certain cases, the feaiill remain stationary within the
view, such as when the object is very distant,rdtation of the camera counteracts
the motion of the robot, or when no motion occ@isce this can bias the pose from
the lack of the change in the perspective, thepetitere tracking can simply be
discarded. The approach also depends greatly omacberacy of the reference
position, as this can cause a misalignment of tijech Since the accumulation of
the pose is required for each pose of interestntimber of calculations can become
an issue as the effect of additional poses desaass time.

The second approach attempts to reduce the issaragtie above by reducing the
number of pose evaluations to only those nearniiali position of the feature and
those just before the feature is lost. This canatfyyereduce the number of
evaluations, especially if the positions that amntained are kept small and those
that are stored near the start is separated frasetjust before the feature is lost.
This approach assumes that the motion of the cadma not return to the same
position when it is lost, as the orientation wil Quite similar. It can also discard the
majority of the tracking information in between ttart and end of the feature being
tracked, which can provide many different oriemmatof the same object.

Instead of always selecting the first and last feagitions, it is also possible to
randomly select the candidates or selectively dewillich positions to use based on
the camera pose. Depending on the availability efiory, the complete trace of the
different positions can be stored for each of thatdires to be analysed in detalil.
Since this can result in an enormous amount ofedastemory, a dynamic selection
approach is applied.

For the random selection, the frame number andhtmeber of positions to be
maintained can be used to determine a probabiliiy replacing one of the current
entries. The replacement of the existing storeasitipns can be done randomly or
sequentially, which must consider the special edsere the number of positions is
smaller than the storage size.

The selective approach is slightly more processitensive, but can be designed
to distribute the feature positions by eliminatithgpse that are closely located to
other entries. By summing the difference in themtation between the other entries,
the one carrying the minimum distance can be disdhr It is also possible to
simplify this by maintaining the sorted positionsdaonly using the distance to the
adjacent orientations.

The result of the depth from motion approach isash figure 10.15, where the
surface boundaries are superimposed over the hogpl The reliability of the range
finders meant the two approaches could not be coedpEccurately, but the selective
algorithm did not show any noticeable increasédn@grocessing time, thus is used in
the current implementation.

Note that although the current implementation does consider the vertical
edges, similar strategies can be applied to deternthe height of objects by
observing the upper and lower most features ofethios line, or by introducing the
vertical edges in future implementations.

By using a single image, it does not allow the tdeation of the depth. By
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10.4.1 Depth from motion

combining the camera orientation with the local miaps possible to correlate the
direction of the feature with the occupancy on thap to identify the object's
location.

Figure 10.15: Surface boundary positions superimgpaver the local map.
The blue is used to represent vacancy, green farpancy, and the
red circle is the location of the robot body. Thargte dots
scattered on the left hand side are locations efféatures when
they were mapped onto the map.

When representing the visible feature as a lina oone from the camera, it is
possible to trace its trajectory onto the local mBpis can then perform a similar
occupancy accumulation like the carving, but based pure accumulative value,
since no limit to the distance is used. This preaeas required for the range finders,
because it was not possible to verify that thekirgrof the same object in between
the scans took place. The map itself was usedadste maintain the possible
locations of the objects.

Instead of maintaining another attribute at theallonap, it is possible to simply
add to the occupancy value of the cells that iet#rer are close to the possible
location of the features. The scores can be maldifased on the distance to the line,
which eventually terminates once it encountersliaitat is strongly marked as being
occupied or gradually distributes the weights asxitiends out further, such as by
using a formula like below.

Weight = Occupancy / Distance (55)

The individual carving of the lines can lead toreased processing requirements,
and does not improve upon the previous approactheasracking of the feature is
not well utilised and is dependant on the completerand accuracy of the local map.
With this in mind, the tracking approach is usedhioh calculates the pose of the
feature until they are lost before being appliethtolocal map.

One of the possible issues with this approach igha latency between the
localisation algorithm and the observations madé¢hieycamera. Although the delay
is small, the errors in the robot's pose can rdasulhcorrect feature poses being
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calculated. Since the localisation algorithm itsetfoduces a slight delay to smooth
the motion, an alternate method of synchronisai®mrrequired. In the current
implementation, a constant offset has been dengaag the same technique as the
localisation cameras. Unlike the two manually coladjusted cameras, the
automatic colour adjustment on the camera cause shfficulties when the light
being introduced was too different. Instead, theexas were both directed to a
surface where a small point was illuminated bydlrED. This test showed that the
horizontally viewing camera was delayed by 0 toadnfes depending on the amount
of ambient light present. Since there is a delathenresponse to the motion due to
the smoothing carried out within the localisatioigoaithm, the majority of the
motion is delayed by 1 frame. Using these infororgtithe motion from the
localisation is not delayed any further, as thatlitgg condition of the environment is
often reasonable to keep the delay in the horizonéaving camera low. There is
scope in the future to dynamically adjust this eadiepending on the current settings
for the colour adjustments done by the camera.

The effect of adding the feature pose to the lotap is yet to be fully explored,
but can range from defining a more precise corfi@bgects to joining these feature
points for a surface reconstruction, which can mage of the existing occupancy
values to disambiguate the scene structure. Thevioation of the depth structure
that is derived with the arrangement of the intignsi the captured image can also
lead to unique identification of the object beirggerved (Lowe, 1987).

10.4.2 Texture mapping

An obvious application of the visual sensor is tapnthe textures of the objects
onto the surfaces of the local map (Debevec, 18@gkbert, 1986). As mentioned
earlier, since the flat surface is not tracked dsature, the intensity found on the
side of the feature can be used as a simplifiecesgmtation of the surface texture.
One important issue to note is that the local mapently does not store any
elevation related information. This means manyhef intensities will conflict with
each other as multiple surfaces at different heighh be observed. To counter this,
the map must filter the features such that onlgé¢hiat correspond to a surface that
is found on the local map to be used. This conskputld also be applied to the depth
map, but will be discussed in more detail in chafpie

The height of the object that should be detectedegendant on whether it will
collide with the robot, thus the camera is unablesde the whole object if it is too
close. Instead of attempting to derive the heitji#,purpose of this texture mapping
is observed, which is to assign an extra attriboitéhe cells such that the correlation
can be made more accurately. This means that gsalethe intensity texture that is
assigned is consistently observable for that sarfaic does not matter at what
elevation the intensity is extracted from.

Since the height of the observed objects changeeif are not viewed parallel to
the motion of the camera, the features along the hmight level is chosen for the
texture extraction process. Note that since theitdemask trims half of the features
in one row, the two middle rows are combined torespnt the whole row. The
features can then be used as the bounds for agphgnintensity measure, which can
make use of the adjacent intensities of the feaiisedf, or determined through
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10.4.2 Texture mapping

observing the consistency in the intensities betvibe two features.

The current implementation does not support thentifieation of the actual
surfaces, so the texture is maintained by the feapairs that correspond to the
bounds of the surface. It is possible to assigntéikeure to each of the cells on or
near the line between the two features, but wdlkein large amount of redundant
information unless the camera does not correctl put the surface boundaries.

The texture that is stored is kept at a minimunmthasfeatures cannot distinguish
the difference between a surface boundary and tarpadn a flat surface without
analysing the depth of the feature with respecotter features. This means the
features also acts as boundaries for patternsatbagiresent on the surface, which can
be combined to construct the view of the objeck Thke of the surface texture is left
for future development, as localisation based ometations with the map is not
carried out in this project.

10.5 Summary

The vision processing algorithm used to observestieme requires many different
considerations to those observed by the floor paintameras. The reduction in the
constraints means the features that are trackedddter significantly to those
expected and lead to a less reliable tracking @stime object. Instead of attempting
to perfect the tracking of a selected few featutfes algorithms that are incorporated
attempts track multiple features that are likelyappear in the subsequent few frames
that are directly applicable to the local map.

The detection of the features involves severalescbeing established to identify
characteristics that represent a boundary regidwessn two surfaces of different
textures. This requires multiple colour scales tnimise lighting changes, as well as
comparison with neighbouring pixels to distinguisbtween noise and an actual
surface boundary. During this process, the left agtt surfaces adjacent to the
boundary is distinguished, such that only one serfis required to represent the
boundary.

Several filters are introduced to reduce the featandidates that are deemed
uninteresting or redundant. The strategy is conmtbimigh a range based threshold to
limit the total number of features that are mamedi, as well as controlling the
triggering of identifying new features. This tealume is used to maintain a constant
pool of features that are to be tracked, but haspger bound to guarantee the upper
limit on the execution time.

After the features are tracked by correlating thtensities and determining the
presence of a boundary, they are stored and usestablish the depth measure of
the feature by combining multiple positions of theature at various camera
positions. The triangulation process is aided leyatailability of a large number of
position pairs that assist in reducing the aliasindg measurement errors.

Although there are limitations in the performanttee algorithms showed some
consistency with the measures available on thd loep, thus forms the basis for a
higher level analysis that can be used to imprawvassign extra attributes to the local
map.
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Chapter 11 — High level map analysis

The small group of pixels that indicate a particydattern has so far allowed for
local features to be identified, which results angke number of redundant features
that represent the same object. The large amoumfafmation can be grouped
through by a higher level representation, thus wallg a more informed
enhancement to the existing map and a reductiotihenredundant contributions
(Smith et al., 2006).

Before the higher level concepts can be appliegl,gitoup of features must be
combined using templates and meet certain condition the presence of such
structures. The analysis involves the specificaibsuch constraints, the formation
and maintenance of the group, as well as the e#fedtapplication of the derived
structures to the maps. Based on the current uieeahaps, the focus is placed on
the improvement in the efficiency of the visual ggesing component as well as the
accuracy of the attributes that are assigned tontye

11.1 Feature clusters

The selection of the features is typically donengstheir uniqueness and
arrangement of the textures with respect to theosnding pixels. Given that the
view consists of structures of the scene, an inapbrtharacteristic that ought to be
included in the vision processing is the interdfieatrelationships for those that
belong to the same physical object. This charastiesi can allow for extra
constraints to be used when disambiguating theufeamotions, increase in the
reliability of the tracking, allowing the structlranformation to be used, and
compress the duplicated tracking motions (Rostdbré&mmond, 2005)

The two groups that can be formed using the vise@ures are in one of the
object surface or the surface boundary categofiesse are complimentary to each
other as the object surfaces can be derived inttlirbg reversing the candidates for
the boundary features. While the detection of tnéase can also be done through
joining the surface boundaries, the pattern onstiéace can sometimes hinder the
distinction between a surface boundary and prip@terns on a flat surface. This
distinction is often achieved through sensor fusamu segmentation algorithms,
which observe the proximity and similarity in thetansity or fluctuations of the
intensity at multiple scales (MacLean et al., 199%aron et al., 2001). Another
critical attribute to consider is the proximity thie features, as the physical objects it
views should be joined together as one construct.

The capability of forming feature groups for momuniobjects, such as people and
rotating objects, is a challenging task that oftequires significant amount of
dedicated resources and predefined attributes tmwadown the search space.
Instead, the focus is placed on forming a shapedandity bound groups using the
intensity and intensity transition characteristi€ae structures that are determined
will greatly simplify the merging process with thexal maps, as the structures can
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11.1 Feature clusters

be determined more accurately before they areegppd the map.

11.1.1 Boundary formation

Splitting the image into several distinct composec&n be achieved using the
horizontal boundaries that have been determinetthdyeatures, which represent the
surface boundaries. Using the intensities of thdasas that are attached to the
features, the similarity between the neighbourgafdres can be established.

When combining the features, the direction of therulary and the density of the
features play a significant role in correctly paying the boundary of the actual
object. As the current set of features represest Hbrizontal transitions, the
boundary must extend vertically, and occasionalflyai diagonal direction due to
misalignment issues or irregularly shaped obje&lhough the presence of direct
horizontal neighbours has been reduced using thsitgemask, they may still exist
after the features has moved around within the écam

The detection of a connected vertical sequence tisvial task, which simply
requires a linear traversal between vertically eelpg features. However, this
configuration of features is rarely observed arguines additional consideration for
diagonal transitions, zigzag arrangement of featateng a heavily interpolated and
noisy boundary region, connecting together multgggments that may have been
separated due to obstruction or noise, and alsaodeification of the upper and
lower bounds of the line.

It is possible to consider line detection algorithtike Hough transforms with
restricted range in the slope of the line (Matthwtlal., 1999), but this can be a very
costly operation and does not easily allow thegraBon of other characteristics,
such as the aliasing errors, consistency in theufeaintensity, and proximity
between the features that form the line. To caietHe aliasing errors, each vote for
the line equation can be spread across severdkpsirch that partial votes are given
to those that have a similar line equation. Figiitel illustrates this concept by
incrementing the adjacent line equation entrielsadisof a vote, which can be seen as
the blurring of the curves.

Another technique that can be applied is aimedlatiqy a constraint on the
precision between the line equation parametersciwimvolves determining the
slopes of all the potential feature pairs and argdiyng those as the possible slope of
the line. The selection criteria for the featurdrgpacan include restricting the
horizontal window size and limiting the distancevieen the features, such that
features that are too far apart do not attempbtoline together. If the approach is
used by itself, the aliasing and precision errorthe feature can cause large number
of unique line equations, thus require blurringltke above approach and increasing
the possible slopes by including those that arevel@ifrom the adjacent positions as
well.

Since the lines that are determined are appliesugirout the whole image, the
line based approaches can combine segmented Inudedtly. However, most
approaches make no distinction between the vargw$aces that the feature
represent. The approach is also very sensitivehéodensity of the features and
ignores the characteristics of non-features altwgline being drawn, thus require
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11.1.1 Boundary formation

normalisation to be able to identify multiple lines well as several parses using
different attributes to group the lines.

Original Edge

Hough transform Hough transform with partial voting

Figure 11.1: Partial voting for line detection witough transform.
The top row shows the two sources, where the $ethé original
and the right is the edge image. The bottom leftxshthe standard
Hough transform, while the bottom right shows tesuit of partial
voting. The curves show a slight blur due to actdon minor
misalignments of the edges.

Based on the idea of directly joining of the featyrthey can be traversed
recursively by placing a constraint to the directaf traversal to the same slope as
previously established. If an adjacent featur@éniified, but do not meet the slope
criteria, a new line can be traversed from thahpon.

By severely limiting the angle to those specifidmbwe, the only possible lines
will be a directly vertical line, and two lines thaave a slope of 1. By specifying a
range of angles using the corner points of a Mippueel around the feature's position,
a wider range of line slopes can be accepted. €igar2 illustrates this idea by
incrementally reducing the valid slope range andmaring it with the above.

Figure 11.2: Line slope convergence through iteedine tracing.
The red squares show the starting pixel and thengsguares show
the current pixel being observed. The blue regibows the
possible slopes, which slowly decreases in ardheagreen square
moves downwards.
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11.1.1 Boundary formation

One of the issues with the approach, as can bevgidethe second to last row, is
that the lack of the intercept value being mairgdimeans the lines that are formed
do not necessarily intersect all of the past festuAlthough this can be problematic
if the boundary is perfectly straight, the flexityil can actually be beneficial in
connecting the scattered features together.

Since this approach is based on drawing a line fx@pecific starting feature, it is
quite simple to restrict the features that candmalined. As the line is extended, the
left and right intensity values that are stored barused to determine the similarity
in the surface. The approach that is currently usedsum of the intensity difference
based threshold, but by relying on just the stgrigature, it may form shorter lines
if the starting value was slightly corrupted duartterpolation. To account for this,
the minimum and maximum intensities are storedgtbe line, where the difference
between the minimum and maximum must remain withanthreshold value. This
concept is illustrated in figure 11.3 using a gsegle intensity.
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Figure 11.3: Minimum and maximum difference thrddho
The traversals with different thresholds are illattd by the red
and blue lines.

Due to the reduction of features through variouter, the total number of
features can be quite small when the grouping dhgoris conducted. This means
the density of the features may not be high endagbrm a line of any significant
length. The vertical gaps between these featunesither be skipped by extending
the search area for the next feature to extendoitohy actually observing the
intensities of the pixel that is located at thasipon.

The first approach can be implemented by specifyirey allowed gap size and
extending the triangle shaped search area untdatuffe is found or the limit is
reached. One of the potential issues with thisnsultiple features are present within
the triangle, which can bias the orientation oflthe based on what order the search
area was traversed. By allowing the entire seareh o be searched to form new
lines every time a pair is found, the total numbklines can increase dramatically,
as well as repeating line segments that are ovathp

To control the number of line segments being fouhd, size of the triangle is
trimmed down both vertically and horizontally. Temove the duplicate line
segments that may be formed, any features witlsahee slope of a previously found
feature is disregarded. Figure 11.4 illustratesdbarch area, where the red boxes
indicate those remaining after the vertical andizomtal limits, while the grey
indicates the repeated slopes. Note that theséudher eliminated later on due to
the constraint in the slope range, which is defibgdhe current state of the line. Due
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11.1.1 Boundary formation

to the use of this mask, it is also possible tax@n the slope requirement by simply
eliminating certain regions depending on the rosigipe measure. This could be as
simple as removing one side of the mask basedeosigim of the slope.

Il Start
Proximity
M Repeat
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Figure 11.4: Reduction of the search area for th feature.
The top square represents the current pixel ofesteThe triangle
shape shows the orientation limited pixels, they dpaxes represent
those that repeat the same slope as one earligrthanoutlined
squares represent the pixels within close proximity

If the line segment cannot continue, the mid pointhe valid slopes can be used
to define the characteristic of the line. Sincer¢hmay be many short lines that are
formed, it is important to eliminate these as bengignificant to the scene structure.
The height of these lines also play a role in {glieability to the scene structure, as
lines that are too high may not be viewable byrtirege finders to be included in the
map. Since these lines should extend from the h&iglwable by the range finders,
it is important that they intersect the mid-heitguel within the image. Rather than
eliminating these lines after they have been tisaadrthe direction of the traversal
can be specified, such that the features abovmitievay point extends downwards,
while those that are lower extends upwards. Asetlieatures eventually combine to
indicate the start and end points of the lines ibmly necessary to traverse from half
of the view. A typical scene that is viewed corssist more features in the upper half
of the image, as the majority of objects in thenscare located where they can be
interacted easily by people and the floor textw#sen do not allow features to be
present. This means the line formation can beestaitom the bottom half and
extended upwards.

As the features are traversed, it is possible tmtaia all the intermittent features
or to eliminate them depending on the presenceuttipte lines that converge at the
same feature point. If the features are eliminatkd, line being formed from an
alternate direction which intersects the same poiay be halted. If the features are
maintained, then the number of line segments teatcmed can potentially become
an issue.

A simple approach to handle this is to observe tihatlines can meet, but never
intersect over another, as they represent thecasfstructure. By starting from the
features that are from one end of the image, it pribritise a longer sequence of
features. When a meeting point is encounteredijrtbas terminated if the slope is in
the opposite direction. Since the precise rangsiage is not used, the direction is
categorised into three rough types. If the sigmhef slope is opposite to one that is
already present, the feature is removed from furlivee analysis. Figure 11.5
illustrates the two cases using a simpler seareh ahich only extends to the three
adjacent positions starting from the top.
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Figure 11.5: Feature group elimination for linersegt formation.

The lines originating from the top indicate thetialilines that are
drawn. The other line is then drawn, but encoungeligse with an
opposite slope, thus terminates. In the second pebeara third line
iS introduced.

The increased search area for the next feature srb@npixels in between can
potentially contain irregular intensities, which ynlae the reason for the lack of a
feature to connect the line segments. It is posdiblcompare the intensity of the
non-feature pixels with that used for the line, batlong as the search area is kept
small enough, the small gaps can be noted as woisdstructions and not from
completely different surface boundaries. If theesgzever increased significantly, the
consistency in the intensity and the presencebafiendary is necessary for the pixels
that lie along the path between the features. dl9e possible to simply increase the
number of features if the resource and processisiges can be addressed by other
means.

Once the lines have been defined, the features wlemé traversed can be
combined to represent the surface boundary. Thapgrg allows the individual
features to be influenced by the behaviour of ttteers within the group, which
include the pose, motion, and the interactions withlocal map. By introducing this
reverse influencing, it can run into error propagaissues and too much narrowing
of attributes, which can limit the growth and adaioin of the features. Instead, the
features themselves are maintained separatelyn@ngroup stores several attributes
of its own, including the pose in the scene, cqlsaore, angular position within the
image, a counter, and an id to allow referencingheyindividual features that make
up the group.

Since the features are constantly updated, tharieegroup must also be updated
to account for the change in the features. Wheretisemotion amongst the features,
it is possible to make use of the feature groufpidientify the motions of the other
features to indicate if an unexpected motion océorsonfirmation. Depending on
the reliability of the feature tracking, it may pessible to avoid this task, as it can
consume valuable processing time with little benéfi constant validation is not
carried out, the groups are not used until theyapmdied to the map. This means the
updating of the groups can be delayed until justrieethe features are lost or the
group is used to save on the processing time.

The attributes of the group is updated when ondhef feature members is
removed and its state is merged with the group.vEhges are weighted based on the
counter values of the feature and the line, whscthén added together. The colour is
maintained in a similar fashion, but uses a cosaad equal weight for both sides
of the boundary. The score relates to the numbdeaitires that make up the line,
which, in conjunction with the counter, can be ussda confidence measure when
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the line is applied to the map.

When features are removed, the pose, counter, c@ond score must be updated.
It may be possible to translate the current sthtbeofeature group to the local map,
but this is left until the members of the group ak lost in the current
implementation. When this occurs, the pose anddndéidence measure is applied to
the local map to indicate the presence of an olestat that location. This is
equivalent to the converged pose, which is the sthtvhich the last feature is lost.

When new features are introduced due to the tataiber of features dropping
below a minimum value, the feature group attribuestemporarily copied and the
boundary detection algorithm is applied. As thedirare being formed, the features
observe a change in the id number, which is sim@gquence number, thus requires
adjustments to the feature group reference. Duhirgearrangement of the features,
it is possible for the feature to form a part of liapple boundaries, or multiple
boundaries that merge into one. When the featwepgis split, the attributes can be
copied over to the new line. If multiple featuregps are combined, the attributes
are chosen based on the proximity to the robothesindicates obscuring of the
background boundary by another.

Figure 11.6 illustrates a sample local map, whée houndary poses of the
individual features is shown in purple, the poseedeined by the feature group is
shown in yellow, and the cyan circle located in thildle of the yellow cluster
represents the location of the latest pose detexnloy the feature group. Note that
to three feature groups that are still in the viewe not finished converging, thus are
not included in the map.

Figure 11.6: Feature group based surface bounaessy. p
The improved feature positions are superimposetigome 10.15.
The yellow dots represent the positions of theuleagroup, which
converges to the cyan circle before completelyirexithe view.
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11.1.2 Surface formation

11.1.2 Surface formation

The use of the features allows for the corner goiot the surfaces to be
determined more accurately, which can indirecthyubed to identify the flat surfaces
that are present in between these points. Howéverassumption does not hold all
the time, as it relies on the precise and contisudetection of the surface
boundaries. The features are currently configuredldtermine the boundaries of
constant intensity boundaries, which do not alwagpture all of the vertical
boundaries. This may include segments that blenditim the background, regions
with rapid intensity changes that appear as noisapt being distinctive enough and
is eliminated for other, more prominent, features.

11.1.2.1 Intensity similarity

By using the intensity value as the measure ofisterxy, it is a simple process
to cluster the neighbouring pixels after specifyingrange of similar values.
Depending on what value is used as the referenegrsity to cluster to, the features
can be grouped into multiple groups as the threskalue may overlap with one
another. By parsing the image using various refsrewalues, it is possible to
determine the optimal reference values for a giveashold range to minimise the
overlap or the number of clusters.

One strategy in achieving a reasonable clusterisiggua small number of
iterations is to make use of a histogram to nagetthnds in the intensity distribution
(Novak & Shafer, 1992; Stricker & Swain, 1994). 8sing the maxima as the initial
reference value, a region filling algorithm can used to expand out to those with
similar intensity values. When the groups are fatmusing an intensity based
similarity, the lighting effect can cause graduatensity differences, thus the
similarity measure must be carried out using thensity difference between the
neighbours and not the bounds of the histogranpréugent excessive grouping, the
threshold value must be reduced to minimise thenewus grouping of those with
similar intensities.

To remove the occurrence of multiple associatidhs, pixels can simply be
removed from the histogram once they have beereglato a cluster. Note that this
approach may not allow large clusters to form & thresholds are too small, as it
does not consider the frequency of the neighbouritensities. Since the intensities
of the same surface should be quite similar to edlohr, especially with regards to
the hue values, the histogram can be based oruthedale and also make use of the
adjacent frequency count when determining the mmostmon colour. An alternate
approach to this is by reducing the precision & bue value, which allows for
slightly faster processing but can cause non-optigrauping. To improve the
effectiveness of the grouping, the range of theeslcan be taken into consideration
to stretch out the range or to modify the numbenafhbours to consider for better
utilisation of the available colours.

As noted earlier, the hue scale is not an effectia to identify the surface
colour if the colour is close to a grey scale caldnstead of using the hue scale,
these colours are grouped together by the luminaalkcees if the difference between
the intensities is within a threshold value, whishdetermined from the ambient
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noise level for the camera. Note that since theduade removes the gradual shading
effect from lighting, the threshold should be fiXed the hue groups and adaptive for
the luminance groups.

Once the first cluster has been identified andahasolved removed from the
histogram, the next most frequent hue or intengityup can be selected and a
random pixel from the group can be selected astdmting point for the next region
filling algorithm. The pseudo-code for the groupiatgorithm using the sliding
window is illustrated in algorithm 11.1. Note tloatly the luminance group is shown,
as the hue group formation is done in the same willy the exception of the
wrapping that occurs between the two ends of tteyand the fixed threshold.

function GroupFeatures(image):

set hue_image[image.height][image.width] = { -1. o}
set lum_image[image.height][image.width] = { -1. o}
ConvertToHueLuminance(image, hue_image, lum_imag e)
set lum_histogram[range]

PopulateLuminanceHistogram(lum_image, lum_histog ram)

set group]]
GroupLuminance(group, lum_image, lum_histogram)

function ConvertToHueLuminance(image, hue, luminanc e):
for h in O to image.height:
for win 0 to image.width:

set Imax = max(image[h][w].R, image[h][w]. G,
image[h][w].B)
set Imin = min(image[h][w].R, image[h][w]. G,

image[h][w].B)
if Imax — Imin < ambient noise threshold:
set luminance[h][w] = (Imax + Imin) / 2
else:
if Imax == image[h][w].R:
set hue[h][w] = (image[h][w].G -
image[h][w].B) / (Imax — Imin) / 6 * range
if hue < O:
set hue[h][w] = hue[h][w] + 1
else if Imax == image[h][w].G:
set huelh][w] = (2 + (image[h][w].B -

image[h][w].R) / (Imax — Imin)) / 6 * range
else:
set hue[h][w] = (4 + (image[h][w].R -
image[h][w].G) / (Imax — Imin)) / 6 * range
function PopulateLuminanceHistogram(luminance, hist 0):

for h in 0 to image.height:
for win 0 to image.width:
set value = luminance[h][w]

if value == -1:

continue
set histo[value].pos[histo[value].count].x =w
set histo[value].pos[histo[value].count].y =h
set histo[value].count = histo[value].coun t+1

histo[0].score = histo[0].count + histo[1].count
forvin 1 torange - 1:
histo[v].score = histo[v — 1].score +
histo[v + 1].count — histo[v — 1].count
histo[range — 1].score = histo[range — 2].score -
histo[range — 2]
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for vin O to range:
if histo[v].count == O:
histo[v].score = 0

function GroupLuminance(grp, luminance, histo):
while true:
set maximum =0
setindex =0
for vin O to range:
if histo[v].score > maximum:
maximum = histo[v].score
index = v
if maximum == 0:
break
else:
setx =
histo[index].pos[histo[index].count - 1]. X
sety =
histo[index].pos[histo[index].count - 1]. y
setstack[] ={{x,y}}
while stack.size > 0:
set stack.size = stack.size - 1
set w = stack[stack.size].x
set h = stack[stack.size].y
set val = luminance[h][w]
set luminance[h][w] = -1

set grp[grp.size].pos[grp[grp.size].cou ntl.x =w
set grp[grp.size].pos[grp[grp.size].cou ntl.y =h
set grp[grp.size].count = grp[grp.size] .count +1
setsmall =0

set large = histo[val].count - 1
while small <= large:
set mid = small + (large - small) / 2
if histo[val].pos[mid].y > h:
large = mid - 1
else if histo[val].pos[mid].y < h:
small = mid + 1
else if histo[val].pos[mid].x > w:
large = mid - 1
else if histo[val].pos[mid].x < w:
small = mid + 1
else
small = mid
large = small - 1
histo[val].count = histo[val].count — 1
if histo[val].count == 0:
histo[val].score = 0

else:
histo[val].score = histo[val].score -1
if value > 0:
histo[val - 1].score = histo[val - 1 ].score — 1
if val <range - 1:
histo[val + 1].score = histo[val + 1 ].score — 1
forjin-1to 1:
foriin-1to 1:
set neighbour = luminance[h + j][ W+ ]
if neighbour != -1 && | val - nei ghbour | <

luminance_threshold:
set stack[stack.size].x =w + [
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set stack[stack.size]l.y = h + ]
set stack.size = stack.size + 1
set grp.size = grp.size + 1

Algorithm 11.1: Surface clustering based on sintjan the intensity.

Although the clusters are given a range of intesthat are accepted as being the
same, there are frequent occurrences of noise lastduction that can split two very
closely located clusters. This issue can be handledsimilar way to the boundary
formation process by increasing the search aredhirsimilar colour. Instead of
simply allowing any disjointed pixel to be mergedéther, two extra constraints are
placed to prevent different surfaces from mergoggther.

The first strategy involves making the intensityigarity stricter by reducing the
range of accepted value as the search area isagsxteThis allows the two regions
being combined to contain small amount of varistich as a thin line, and still be
classified as the same surface. The second strategiyves the limiting of the
direction in which the search area is increasedghwis based on the idea that many
indoor structures are decorated with the same thamdeplaced one after the other.
This means extending the search area sidewaysatantlly include surfaces that
belong to other objects. With this in mind, thersbaarea is only extended vertically,
where the allowed colour range is halved for evyarel being extended until the
maximum possible extension, which is currently teeb pixels based on a rough
assumption that the gap of 5 mm is allowed whereesl at a distance of around
Im.

11.1.2.2 Texture pattern

When the surfaces are viewed at different distgna@asous texture patterns may
appear or disappear due to different sampling rageshe camera. When these
texture patterns are visible, it can sometimesgéiga boundary feature to be
established, as the inconsistent intensity prahilite intensity similarity based
surface detection from operating. To successfulbug the pixels that are from the
same surface, techniques such as multiple resofytiemplate based, or intensity
fluctuation based techniques can be applied toachenise the arrangement of the
pixels.

The use of multiple resolutions is done to simutae change in the distance to
the scene by interpolating the neighbouring pixedsich allows the suppression of
rapidly changing intensities. Since the changéeadctual camera resolution can be
a slow process due to the re-initialisation of taenera device, this can be simulated
in software by a sub-sampling algorithm. To finde tappropriate interpolation
strength and size to use, the frame must be predassiltiple times with various
values until the number of segments that are forneed¢hes a desired level. The
settings for the sub-sampling algorithm does natagé result in the ideal surfaces
being determined, as the spacing between the patigan vary from texture to
texture. It is possible to use different resolusiamm different portions of the image,
as with many segmentation algorithms, but thesel t®nconsume a significant
amount of processing time due to the large amolusearch space, so are not carried
out here.
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Instead of attempting to convert the rough textyieeéls into a uniform intensity
region, the intensity pattern itself can be obsgérvdevo of the characteristics that are
common to the majority of non-uniform intensity fawes are the presence of
repeated texture patterns and a very similar rafiuctuation in the intensity. The
detection of these requires a group of pixels tolmerved simultaneously, such that
the correlations can be carried out over a region.

The process of identifying repeated patterns ine®la similar idea to deriving the
correlation scores between texture patterns athbeigring positions. One of the
additional considerations to make is the discardihgregular intensities between
the repeated textures, which means the size opaftern must be modified when
different sized patterns are encountered. As viiéhfeéature tracking algorithm used
for localisation, the evaluation of the correlat®eore can be quite time consuming
due to the various overlap arrangement of the pitehsities.

To simplify some of the processing, it is possitiemake use of templates to
characterise the particular intensity behaviouchsas stripes or meshed patterns,
such that constraints are placed on the expectadgament as well as the distance
at which it must be observed at. The templates dinatused must define the the
intensities or the relative intensity changes iseca shape based pattern is required.

The shapes and sizes of these templates can depethé anticipated structures
in the scene and the resource availability, whiem control how precise and
adaptable the patterns can be. Since the orientatad the density of the texture
pattern can easily be misaligned, the templatesbmarapplied in sequence with
different configurations. Figure 11.7 illustratessample template that has been
designed for detecting vertical stripes. Note tint difference in the intensity is
measured by the magnitude to allow the inversb@phttern to also be detected.

Adjustable width
/ Increments / decrements must have the same sign

\ Increase in height
adds to confidence

Minimal intensity difference within the strip

Figure 11.7: Vertical stripe detection templates.
The two colours represent the two alternating aclotihe dotted
lines represent multiple occurrence of the sameucol

When using these templates, it is ideal to knowJjearn, that the anticipated
texture patterns actually do exist in the sceneghdVit this information, the templates
can potentially be a waste of valuable processimeg.tlt is possible to maintain a
counter to note how frequently the pattern is medcho indicate whether the
template is actively being used, but this doesdeal with the fundamental issue that
these templates must be actively used before theye determined that they do not
suit the particular environment. The counters malsb consider partial matches
unless a threshold can be set for when the temislatatched or not.

One strategy that can be used to counter thisdsreétaxation on the specific

231



11.1.2.2 Texture pattern

arrangement of the intensity transitions within template. By expecting a certain
amount of fluctuation in the intensity within thpesified region, it is able to detect
patterns based on the rate of intensity change theeregion, rather than specifying
the exact arrangement of the intensity differencHsis approach is useful on

randomly arranged or rough textures, such as carpetl rough surfaces under
directional light. When using this approach, itngortant to avoid certain locations
that are known to contain high amounts of change¢he intensity, but is not a

continuous surface. Currently, the only indicator this is the location of the

features and to some extent, the feature candidates

Although the above approach may seem to be reasgrihb sloped view of the
ground texture and the sampling of the surfacerataonable distance away means
the majority of the fluctuation in the intensityncaot be seen or appears like noise.
The repeated textures on other surfaces also reathay be quite large or viewed at a
very close distance, which severely limited theliappility of the real time pattern
based surface recognition, thus is simply not usede current implementation. The
surface construction is also not implemented inctimeent maps, thus may require an
additional layer to indicate the positions and uext separately if future
implementations require surfaces.

The failure to note this type of surface can leadmall amounts of boundary
features being detected in their place, but thdicatrpatterns do not cause any
significant issues when the pose is applied tddbal map. The motion behaviour of
these features are quite distinct in that it offemps rapidly in an inconsistent
manner. These features can be removed either dilmnfine formation phase or by
simply noting the rate of fluctuations in the obsel positions, which often switches
the motion direction very rapidly or falls outsithee search area and results in a very
low correlation score.

11.1.3 Dynamic objects

So far, the vision based analyses has presumedhihatcene remain stationary
between consecutive frames. However, there aren aftany independent objects
within the environment that can move about to cane@ons that do not correspond
to the pose change of the camera. Since the steuatihe scene is analysed through
the different perspectives from known poses, theed®n of dynamic behaviour
must be conducted by either knowing the pose ofd@hture or an approximation of
the object's pose can be made based on consfamvisied by the camera poses.

The first approach can be a useful technique if ghse of the object can be
determined through other means, such as a rangerfior a stereo vision
configuration. Otherwise, the precise pose of theadhic objects cannot be tracked
simultaneously and reverts back to the second approBy using the constraints
provided by the camera pose and sometimes bassdnghe assumptions, such as
the expected size, shape, and velocity of the dinainect, they can be isolated
from the static structures in the view.

When the dynamic objects are observed from a peal pierspective, the entire
object may not appear to have moved dependingetettiure on the surface. Since
the many of the pixels surrounding the boundary mel flagged as having changed,
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segmentation or contour following algorithms can used to define where the
dynamic object lies in the image.

To identify the area of interest, it is firstly imgant to distinguish the change in
the appearance between the camera motion and abggiin. As noted earlier, the
pose of the robot may be slightly out of sync dejoem on the light conditions,
which means the distinction between the two motgirsuld be carried out using the
same camera when possible or delayed until the gate becomes available. One
implementation of this is to observe that portiohshe current features are moving
irregularly compared to the rest. Since the onBoamtion that is available between
the features is the boundary groups, the distindbetween the dynamic object, the
background, and any noise, requires a separateggdo identify the presence and
the grouping of dynamic objects.

A simple case for this is when the camera is knawipe stationary, thus any large
cluster of features that move by more than 1 pigek to interpolation, can be
flagged as being dynamic. When this is carried tus important to observe the
possible latency issue between the camera pos¢eupdd the changing of the view.
This can be achieved by delaying the dynamic olgjetéction by several frames to
make sure that the pose of the camera does nogehahis constraint also allows
simple analysis to determine the direction of thetiam and the bounds of the
dynamic objects. However, since the pose of theadyo objects cannot be
determined precisely without referring to the locaap, the region can only be
flagged as containing non-static objects.

As noted earlier, these features can sometimesdtedlie to the reduced search
area, thus is unable to account for a wide rangmss$ible objects that may appear in
the view. The viewing area also restricts how usthie tracking is unless the facility
to track a particular object is incorporated to sieevo motors. The handling of the
dynamic objects that are detected varies signifigaon the application, ranging
from pose tracking to observing the morphologicald anter-dynamic object
changes. The flagging of the dynamic objects casisi@asin the current
implementation by noting the possible areas thatnct be used later on for
correlation, as well as marking areas of potemtitruction and vacancy depending
on the current pose of the dynamic object. Theiegipbn and implementation of
this will be discussed in more detail later on whising the omnidirectional vision
camera.

11.2 Landmarks

The added benefit of using a wide viewing area iged by the webcam is its
ability to identify a significant pattern that che uniquely identified at a later time.
This can be used as calibration markers to comagt drifting errors, as well as
providing a meaningful reference location to begeyat a higher level map (Sim,
1998). For the ground observing camera, it is irtgydrto involve a large amount of
pixels to determine the uniqueness of the landmahile the side viewing camera
only needs to analyse a small amount of pixelslémtify a unique arrangement of
pixel intensities. This is due to the repetitived athetailed nature of the ground
textures, which requires not only an increased Bizéne area to consider, but the
presence of a significantly different ground tegtto be present.
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11.2.1 Ground landmarks

11.2.1 Ground landmarks

By reusing the images from the localisation modalégrger viewing area can be
observed to determine the uniqueness of the grotextdre with respect to a larger
range of possible ground textures. Because of itmalasity between the floor
textures, the attributes that are used to distsigthe particular texture pattern must
be taken when a different texture pattern comes\r@w. This is due to the weaker
set of constraints that can be applied, espediaié/to transformations from rotation.

The process of identifying the landmark involvesirailar process to the regular
feature tracking, but includes a decision in deteimg if a landmark should be
captured or not. As one of the criteria for thediaark formation is in observing a
large change in the trend of the ground texture, $egmentation algorithms
introduced above can be applied to identify thes@mee of distinctive regions
(Zhang & Kodagoda, 2005).

Due to the clarity of the ground textures from fimeall and fixed distance to the
surface, it is possible to make use of the rat¢her change of intensity, but this
requires an increase in the size of the convollkemels, which can require multiple
parses until the appropriate pattern is found et the rapid rate of changes can be
suppressed using a blurring algorithm such that ahalysis can focus on the
difference in the intensity using a simple and $rkainel (Lindenberg, 1996). The
loss of the precise position of the boundary caadwressed by reverting back to the
original image once the initial filtering of boungtadentification is complete, while
the prevention of larger patterns appearing asugntgpundaries can be solved by
noting the direction of traversal of the robot, lsticat only the first of the change in
the intensity encountered will be flagged as tmeltaark candidate. However, using
this approach can also prevent actual boundaries fbeing detected if false
candidates or corrupted texture pattern is viewsedh as when motion blur occurs.
For this reason, the viewing area for the landntarkdidates is fixed to increase the
chance of detecting the landmark.

The second stage of the landmark detection invalvesassumption that the new
segment being introduced is large enough thatabhsm@cross the viewing area. This
means the change in the appearance will be viattde least two of the outer borders
of the image. By isolating the initial check to th®undaries, it can quickly
determine whether any interesting texture has edtarto view. Since the segment
should occupy a reasonable amount of area, theecoagions of the image are
avoided to suppress small segments that only appélae corner and to wait for the
it to move into a more central position within fin@me. The areas used for the initial
check is shown in figure 11.8 as the red regionsteNhat the region is moved
inwards from the boundary by a small amount to éube distorted areas of the
captured image.

The criteria for flagging the presence of a possiahdmark involve directional
convolution kernels in the parallel direction t@ thdge it runs along to identify the
dividing line that spans across the image. Befoeethird stage of the analysis can be
carried out, the pixels containing a small amouhintensity transition must be
filtered out, while the strong intensity transitiorust be maintained, along with the
surrounding pixels to account for aliasing and tgsanent errors. If an absolute
value is used as the threshold, the algorithm metgad too many or too little
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landmark candidates depending on the type of sairflae robot is traversing over.
Since the measure of uniqueness is based on theveeHdifference between the
surroundings, a running average of the intensiifgidince is maintained to observe a
sudden spike or trough in the value. This is adelsy maintaining two sliding
windows to evaluate the average along side thet pbimterest, as shown in figure
11.9, where the blue and magenta regions représeradjacent textures on the left
and right respectively, the cyan, lavender, anbtliue representing the maximum,
minimum, and the average of the left texture regiehile yellow, pink and orange
represent the same values, but for the right redibe conditions shown to the side
represent the detection criteria for the changbersurface texture.

Figure 11.8: Areas that are initially considereddegment identification.
The red strips represent the regions that are deresd for the
detection of segment boundaries.

Max =
= Min =
m Ave =

(m-m)*2 <mw-m &&(w-u) - (n-u)>0.1
(m-m)*2 <m-m &&(w-u) - (m-m)> 0.1
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| L4 |

>
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Figure 11.9: Conditions to note change in textuatgons.
The red lines on the left image represent the areeaing
considered. The blue and pink rectangles on theigbp shows the
left and right regions being observed, which resiit the Max,
Min and Ave values shown in the middle-right. Tloenparisons on
the bottom right are used to determine if thera ishange in the
surface boundary.
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Instead of complicating the process with valueg like standard deviation and
second derivatives, the minimum and maximum withi window is maintained to
note when the distance between the two changeseslyddin the current
implementation, a threshold value of 50% changel®Esn specified, along with a
minimum threshold of 10% of the maximum range. Tdlisws some elimination of
false flagging if the change is too small, whichynteve been caused by random
noise. As for the average values, the flaggincarsied out if the average value falls
outside the maximum and minimum range. The widtthefwindow has been set to
16 pixels, which equates to approximately 4.6 mnenvhsing a resolution of 320 x
240. This may be too small or large to observe stireetexture patterns, but is a
reasonable amount when observing the typical tegtan the ground.

The assumption that the landmark extends acroswlib& image is used to note
the continuity in the change in the texture by ijmgntwo sides that have both being
flagged as containing the boundary. The pointslmamsed to trace a line between
them to observe whether the change in the grouximreeis consistently present.
Instead of tracing narrow lines between the poithsg, thickness of the line is
increased to include the adjacent pixels. Thisrsdte the aliasing and misalignment
issues, as well as allowing for a small amounti@fibility in the straightness of the
boundary, which may be caused by faded lines qpeld edges.

The line that is traced places a strict constramthe shape of the landmark which
is required to have a straight edge to fall witkine viewing area. This can be
rectified by using a similar tracing algorithm usked the vertical line segments,
where a triangular search area is used to conlntrace though the neighbouring
pixel with a change in the intensity. To account floe start and end points, the
search can be executed simultaneously from botls,dite a means-end search
algorithm. However, since the viewing area is qusiteall and the majority of the
significant dividers between floor segments arepsdausing straight lines, the
flexibility in the curve does not provide much of additional benefit and a simple
line tracing algorithm is used.

During the traversal of the lines, the edge stiemgtall surrounding direction are
summed to indicate whether a strong change innfemsity occurs between the two
points. The average of the edge strength can b tesdetermine if a line can be
drawn which separates the two regions. The equafidine line can be based on the
two end points, which may not be the precise locabf the boundary, but still
allows coverage of the boundary due to the expardgiche line thickness.

Although the lines are only drawn if the end pqaatrs lie on different sides, it is
quite possible that multiple lines can be drawpgeslly along side one another due
to the interpolation that occur at the segment bHaues. By using multiple
neighbouring lines, it is possible to narrow dovae tactual location by using the
scores for the lines, but this is avoided due ® rfisalignment between the line
equation and the actual line. Instead, the liné wie highest average transition score
is kept as the only segment divider. As for detaing whether the line constitutes a
valid landmark or not, the line should be compaagdinst a minimum requirement
to avoid incorrect marking of landmarks. Since #aied analysis on the types of
textures that the robot can encounter require nedde amount of motion before it
is known to the robot, this measure can be baseassamptions or the landmarks
can be ranked to only maintain and use the topidates.
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Using the line equation as the landmark allowsaanuch simpler and reusable
landmark, since using the exact texture patternldvoequire significant amount of
processing to account for the misalignment andstcamation. By compressing the
landmark to a line and maintaining the information the surrounding pixel
intensities, it is able to constrain some of thegattributes of the robot when it is
encountered again. This also allows some flexybiiit where the feature can be
observed by assuming continuity of the line. Sitlce bounds of the line are
unknown, it is left for the post processes to edtand possibly join these landmarks.
The general flow of processes for the landmark diete can be seen in algorithm
11.2.

function FindLandmark(image):
set candidates]]
set window = 16
set short = image.width / 10
set long = image.height / 10 — window
GetCandidates(image, candidates, window, long, s hort)
ApplyBlur(image, candidates)
IntensityDifference(candidates)
ThresholdCandidate(candidates, window)
for i in O to candidates[0].value.size:
candidates[0].pos.x = candidates[0].value][i] +long +
window — 1 candidates[0].pos.y = short
foriin O to candidates[1].value.size:
candidates[1].pos.x = candidates[1].value][i] +long +
window — 1 candidates[1].pos.y = image.heigh t - short
for i in O to candidates[2].value.size:
candidates[2].pos.x = short
candidates[2].pos.y = candidates[2].value][i] +long +
window — 1
foriin O to candidates[3].value.size:
candidates[3].pos.x = image.width - short
candidates[3].pos.y = candidates[3].value][i] +long +
window — 1
set lines|]
TraceLine(image, candidates, lines)
if lines.size == 0:
return null
setbest=0
foriin 1to lines.size:
if lines[best].score < linesJi].score:
set best = |
if lines[best].score > minimum_score:
return lines[best]
else
return null

function GetCandidates(image, candidates, long, sho rt):
for y in short — 2 to short + 3:
for x in long - 3 to image.width — long + 3:

candidates[0].valuely - short + 2][x - lon g+3]=
image[y][x]
candidates[1].valuely - short + 2][x - lon g+3]=

imagely + image.height — 2 * short][x]
fory in long — 3 to image.height - long + 3:
for x in short - 2 to short + 3:
candidates[2].valuely - long + 3][x — shor t+2] =
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image(y][x]
candidates|[3].valuely - long + 3][x - shor
image[y + image.width — 2 * long][x]

function ApplyBlur(image, candidates):
setkernel={{1,2,3,2,1},{2,5,7,5,
9,7,34,{2,5,7,5,2},{1,2,3,2,1}
set total = 89
set valueO[candidates[0].value[0].size]
set valuel[candidates[1].value[0].size]
for x in O to valueO.size:
setsum0 =0
setsuml =0
for j in O to kernel.size:
foriin O to kernel[0].size:
set sum0 = sumO0 + kernel[j][i] *
candidates[0].value[j][x + i]
set suml = suml + kernel[j][i] *
candidates[1].value[j][x + i]
valueO[x] = sumO / total
valuel[x] = sum1l / total
candidates[0].value = valueO
candidates[1].value = valuel
set value2[candidates[2].value.size]
set value3[candidates[3].value.size]
for y in O to value2.size:
setsum2 =0
setsum3 =0
for j in O to kernel.size:
foriin O to kernel[0].size:
set sum2 = sum2 + kernel[j][i] *
candidates[2].value[y + j][i]
set sum3 = sum3 + kernel[j][i] *
candidates[3].value[y + j][i]
value2[y] = sum2 / total
value3[y] = sum3 / total
candidates[2].value = value2
candidates[3].value = value3

function IntensityDifference(candidates):

set diff0[candidates[0].value.size - 2]

set diffl[candidates[1].value.size — 2]

for i in O to candidates[0].value.size — 2:
set diffQ[i] = | candidates[0].value[i + 1] —
candidates|[0].value[i] | + | candidates[0].v
— candidates[0].value[i + 2] |
set diff1[i] = | candidates[1].value[i + 1] -
candidates[1].value]i] | + | candidates[1].v
— candidates[1].value[i + 2] |

candidates[0].value = diff0

candidates[1].value = diffl

set diff2[candidates[2].value.size - 2]

set diff3[candidates[3].value.size — 2]

for i in O to candidates[2].value.size — 2:
set diff2[i] = | candidates[2].value[i + 1] —
candidates[2].value[i] | + | candidates[2].v
— candidates[2].value[i + 2] |
set diff3[i] = | candidates[3].value][i + 1] -
candidates[3].value[i] | + | candidates[3].v
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— candidates[3].value[i + 2] |
candidates[2].value = diff2
candidates[3].value = diff3

function ThresholdCandidate(candidates, window):
set filter[]
set left
set right
for loop in 0 to candidates.size:

foriin O to window:
set value = candidates[loop].valueli]
if left. max < value:
set left. max = value
else if left.min > value
set left.min = min
set left.sum = left.sum + value
set value = candidate[loop].value[i + wind
if right.max < value:
set right.max = value
else if right.min > value
set right.min = min
set right.sum = right.sum + value
set left.diff = left. max — left.min
set ave_left = left.sum / window
set right.diff = right.max — right.min
set ave_right = right.sum / window
if 2 * left.diff < right.diff &&
right.diff — left.diff > 0.1 ||
2 * right.diff < left.diff &&
left.diff — right.diff > 0.1 || ave_left>r
ave_left < right.min || ave_right > left.max
ave_right < left.min:
set filter[loop].posffilter[loop].pos.size
set filter[loop].pos.size = filter[loop].p
set filter[loop].posffilter[loop].pos.size
set filter[loop].pos.size = filter[loop].p
for i in window to candidates[loop].value.siz
set rem_left = candidates[loop].value]i -
set value = candidates[loop].valueli]
set add_right = candidates[loop].value]i +
set start =i — window + 1
if rem_left == left.max:
for jin O to window:
if left. max < candidates[loop].value
set left.max =
candidates[loop].value[start + |
else if rem_left == left.min:
for jin O to window:
if left. min > candidates[loop].value
set left.min =
candidates[loop].value[start + |
if value > left.max:
left.max = value
if value < left.min:
left.min = value
set left.sum = left.sum — rem_left + value
if value == right.max:
for jin O to window:
if right.max < candidates[loop].valu
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11.2.1 Ground landmarks

set right.max = candidates[loop].
else if value == right.min:
for jin O to window:
if right.min > candidates[loop].valu
set right.min = candidates[loop].
if add_right > right.max:
right.max = add_right
if add_right < right.min:
right.min = add_right
set right.sum = right.sum — value + add_ri
set left.diff = left.max — left.min
set ave_left = left.sum / window
set right.diff = right.max — right.min
set ave_right = right.sum / window
if 2 * left.diff < right.diff && right.dif
left.diff > 0.1 || 2 * right.diff < left.
left.diff — right.diff > 0.1 || ave_left
|| ave_left < right.min || ave_right > le
ave_right < left.min;
if filter[loop].posffilter[loop].pos.si
start:
set filter[loop].posffilter[loop].po
start
set filter[loop].pos.size =
filter[loop].pos.size + 1
set filter[loop].posfilter[loop].pos.s
start + 1
set filter[loop].pos.size =
filter[loop].pos.size + 1
for loop in 0 to candidates.size:
candidates[loop].value = filter[loop].pos

function TraceLine(image, candidates, lines):
set cache[2]
for loop1 in O to candidates.size — 1:
set x1 = candidates[loop1].pos.x
set y1 = candidates[loopl].pos.y
for loop2 in loopl + 1 to candidates.size:
set x2 = candidates[loop2].pos.x
set y2 = candidates[loop2].pos.y
set deltax = x2 — x1
set deltay =y2 -yl
set score =0
if | deltay | > | deltax |:
if deltax > 0:
set short =1
else:
set short = -1
set deltax = | deltax |
set deltay = | deltay |
set error = deltay
set x =x1
foryinyltoy2 + 1:
set score = score + GetEdgeScore(ima
cache) + GetEdgeScore(image, vy, X -
GetEdgeScore(image, y, x + 1, cache
set error = error — deltax
if error < 0:
error = error + deltay
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11.2.1 Ground landmarks

set x = x + short
set count = deltay
else:
if deltay > 0:
set short =1
else:
set short = -1
set deltax = | deltax |
set deltay = | deltay |
set error = deltax
sety =yl
for x in x1 to x2 + 1:
set score = score + GetEdgeScore(ima
cache) + GetEdgeScore(image, y - 1,
GetEdgeScore(image, y + 1, x, cache
set error = error — deltay
if error < 0:
error = error + deltax
sety =y + short
set count = deltax
set lines[lines.size].score = score / coun
set lines[lines.size].pos = { x1, y1, x2,
set lines.size = lines.size + 1

function GetEdgeScore(image, v, X, cache):
if cache[0][y][X] == miss:
set cache[0][y][x] = | imagely][x] — image[y]
if cache[O][y][x + 1] == miss:
set cache[0][y][x + 1] = | image[y][x + 1] —

image(y][x] |
if cache[1][y][X] == miss:
set cache[1][y][x] = | image[y][x] — image[y

if cache[1][y + 1][X] == miss:

set cache[1][y + 1][x] =

| imagely + 1][x] — image[y][x] |
return cache[0][y][x] + cache[0][y][x + 1] +
cache[1][y][x] + cache[1][y + 1][X]

gea ya X!
X, cache) +

)

y2}

[x-1]|

— 1] |

Algorithm 11.2: Pseudo-code for landmark detection.

Frequent activation of the above check should motcérried out to avoid the
expensive processing load and also the overloasfinige number of landmarks. To
avoid the same landmark from being detected maltigglhes during the same
transition, a cooling down period is introduced ®re&c landmark has been spotted.
The cool down period involves the waiting until ta@dmark moves outside of the
view before another landmark is looked for agaiimc& the equation of the line is
known, the camera pose can be used to determinmitimum distance the robot
must traverse to avoid observing the same landmark.

Based on the general direction of traversal for @araera, which is along a single
axis, the displacement can be accumulated to deteriinthe landmark has moved
out of view without having to continuously track inotion. It is possible that this
technique can result in miscalculating the linetdtian and not waiting long enough,
especially for the case where the line extendfiégnsame direction as the traversal.
However, the inclusion of the same line does natycany negative effect other than
consuming some time to identify the landmark argliiing a separate allocation of
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11.2.1 Ground landmarks

memory if they are not combined. This means thao@g as the cool down period is
made large enough to ease the processing loadJatidmarks can be taken
frequently to encourage the merging and to promadee points in the map where the
pose can be realigned. At the same time, it is mapb to maintain some distance
between the landmarks, in case they require diggumabon.

Another source of delay is introduced to the fregpyeof landmark check. Since a
landmark being captured in a more central positadnthe viewing area is
encouraged, as it increases the number of pixelsgbiaced to determine the
presence of the line as well as avoiding the warfiom the image distortions. This
means if no landmark candidate is found, the grdertlire may move up to half of
the distance between the searched areas befoig dizserved again.

Using the maximum velocity of the robot, the franage, and the viewing area,
the maximum displacement of the landmark can berawhed for it to be outside
the viewing area to the middle of the image, whestaluates to approximately 3.9
frames. This means the landmark check only needsetoarried out once in four
frames, as slightly overshooting the middle ofithage will still allow the landmark
to be visible. Although the robot may almost condliatraverse at its maximum
velocity, using a fixed time interval can resultarot of unnecessary checks for the
landmark. Since the cool down period is calculdtedvoid the repeated observation
of the landmark, the same condition can be usedhwbdandmark is found.

As a side note, an alternate approach of usingptimecorner points of the view to
initiate an intensity based segmentation usingingll algorithm was briefly
considered. This involved the comparison of the tmgepoints between the
boundaries, but was quickly discarded as processiqgirement was quite high and
it relied heavily on a strong blurring algorithm éwen out intensity fluctuations
between patterns on the ground.

11.2.2 Other landmarks

A more commonly seen example of landmarks beingl isene that identifies
distinct appearances at any elevation, such teaatrangement of these landmarks
can inform the robot of its current pose (Montemefl002; Se et al., 2002). Rather
than focusing on finding recognisable featureecsic type of feature is searched
for to avoid traversing into hazardous locations. this particular application,
collision with solid obstacles and holes the robotild fall down are both hazards
that must be avoided for the safe and continuowsabipon of the robot (Jenkin &
Jepson, 1994).

The majority of the collision aspect can be avoittedugh the range finders, with
the exception of the modules that are mounted hidiich can collide with obstacles
like an archway. However, there is no sensor pagntbwards the ground at the front
of the robot to indicate where it is about to mowveto. Since the default orientation
of the scene viewing camera is to the side of tb®t; it is unable to effectively
inform the robot of the incoming danger. One pdssway to identify the presence
of potential surfaces discontinuity is to mark #héscations on the map if they are
encountered.

The detection of these edges begins with obsefvanzontal, or near horizontal
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lines within the lower portion of the image. Thianceither be based on intensity
changes or through the use of a segmentation #igariSince the texture pattern on
the ground can contain patches with different isités, a strong blurring algorithm
can be applied to even out the intensities. Thiess lcan be detected using similar
approaches to the vertical line detection withtglyg different sets of constraints.
With the line identified, it can be categorisedimine of three based on the altitude
of the obstacle adjacent to the line, which areit@s negative, and neutral
elevation from the normal surface.

If the lines are from objects on top the surfabe,dbjects will appear on the map
constructed by the ranger finders, thus can beadied as being a harmless pattern
on the object. The approximate location of the iméhe map can be found using the
following distance calculation.

Distance to line = Camera hei_g_ht * Vertical res_imlut/ ((Vertical resolution — 2 * Vertical (56)
position) * tan(Viewing angle))

If the line is on the same elevation as the surfageh as those from markings or
boundary between different surfaces, these toobeadiscarded, but the difficulty
lies in disambiguating the difference between tlevations of the surface beyond
the line. As briefly noted earlier, determining thiétude of features through motion
requires features to be tracked while the cameeagds its pose. Due to the low
level of precision and the reduced exposure offélaéure moving towards or away
from the camera, the altitude of features is mdffecdlt to determine.

Since these regions of potentially hazardous ificdlf to analyse using the
forward looking camera, the distinction between andaus and non-hazardous
region can be delayed until another sensor is glvgethe region. Out of the current
array of sensors, the only sensors that can rgliairberve the characteristics on the
ground are the downward looking cameras used t@likation. Using these sensors,
the displacement of the ground before and beyordbtiundary can be measured
separately to note any large discrepancy betweertwh. The robot should remain
on the known surface, thus the motion of the groclieder to the robot will be as
expected, but the motion beyond the bound shotiietiebe smaller or equal to the
other.

Note that due to the fixed focus control of the eeas, the texture of the surface
beyond the boundary may be heavily blurred and nwycontain many features to
be tracked reliably. To counter this, the areahefgurface being tracked beyond the
boundary may need to be increased to allow a nei@bte tracking of the ground
texture. Figure 11.10 illustrates the motion tragkiThe figure on the left is taken
from the left camera, while the right is taken frahe right camera where it is
viewing over an edge.

To be able to carry out this process, the robottmasigate to just before the
boundary and rotate around to observe both sidésedboundary. Since this motion
behaviour will force the navigation behaviour oé ttobot to change, the position of
the line can be stored in memory to be referentéteirobot moves over the region
in the future. Another way to consider this is goare the horizontal line detection
all together and simply carry out the depth detectiround all ground landmarks
that are encountered.
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11.2.2 Other landmarks

Figure 11.10: Regions for displacement comparisamote change in altitude.

The black squares represent the features, whilerédearrows
indicate the motion vector of the features.

Since the localisation module makes use of multiekers for error handling,
this can be utilised to determine the differencehia translations that are detected
between the textures. Unless the position of théufes can be easily modified, the
activation of this must only occur if the boundéstween the different surfaces split
the image so the trackers are observing differarfases. This can be determined
quite simply using the line equation, which inforthe localisation module to not
combine the trackers and to only use the one dléséise robot. One other condition
to keep in mind is to do with the type of motiomitis currently being carried out by
the robot. If the robot is undergoing a rotatiomaition, the motions detected by the
trackers should be different, thus can interferéhhe depth detection process. It is
possible to use the rotational information deriviedm the other camera to
retrospectively correct the motion, but this isssesimplified by restricting the
activation to only when translations occur.

Although this breaks the assumption used in thaligation module that the
distance to the ground does not change, it islestieassue that can be encountered.
Therefore, the localisation module must be modiskghtly when the landmark is in
view to only make use of the one closest to thet.dlb the motion of the other side
is deemed to be significantly different, the typk different motion should be
observed. Since the focus control on the cameraotabe modified with most
webcam models, the blurring of the ground textue cause the feature tracking to
be very inconsistent. However, this is also theeaalsen the material changes to one
that is difficult to distinguish, such as rubberhigh can be common in indoor
environments as flooring dividers.

The technique introduced above contains many flehsted to the reliability of
the boundaries, detection of difference in thetwa®, and issues with blind spots,
thus should not be used as a confident indicatdnaafardous discontinuity in the
surface. It is possible to improve upon the apgdnoath the current set of sensors,
such as by using a larger viewing area for thekingg but should await for a more
specialised sensor to be installed before makimfident decisions as the safety of
the robot is a critical requirement for any mobdeots.
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11.3 Omnidirectional vision

11.3 Omnidirectional vision

The last of the sensors to be considered is theidwractional camera that is
capable of simultaneously observing the surroundémyironment by using a
reflective surface to focus the reflected lighbitite viewing area of the camera. The
camera is mounted at the top of the robot lookipgntio the dome shaped reflective
surface, as shown in figure 11.11.

50mm
L K
26.5mm \J

103mm
/;_ ] 7S

Camera

376.5mm

| — | v — h" "

Figure 11.11: Omnidirectional camera placement.
The semi-circle at the top is the reflective dorhat tallows the
simultaneous viewing of the surroundings as theertantooks up
towards it.

The placement of the camera has been deliberatatie rhigh to reduce the area
of the robot within the view, but at the same titnad to consider the stability of the
mount and to avoid collisions with objects that veutside the viewing area of the
other sensors. With the current configuration, ribi@ot occupies approximately 7%
of the image captured by the camera. On top of imgwhe robot itself, portions of
the image was obstructed from the struts holdirggreflective dome in its place.
This introduced two solid lines that rendered tbeipn of the image to be unusable,
as well as obstructing the continuity of objectst thre behind the struts.

Although many implementations of omnidirectionalmsaas make use of
transparent tubes to hold the camera up, the simet® used due to material
availability and to determine the applicability tfe wider viewing area before
investing in new hardware. For the same reasoncdngera that is used is a very
cheap model with inferior quality compared to thikren cameras used on the robot.
The reflective dome that is used is also from reytardware that has been coated
with reflective paint and differs to the more conmuwmne shaped reflectors.

Another source of the reduction in the usable vigmarea is the rectangular 4 by
3 aspect ratio, which expends a large portion @viewable area on the place holder
for the dome. A snapshot from the omnidirectioraahera is shown in figure 11.12,
where regions that are not useful are highlightgdalred mask. These unusable
regions add up to reduces the utility percentaggpfroximately 35.18%, which can
be slightly improved by balancing the distance leewthe dome and the camera to
reduce the outer unusable area and increasingniee unusable area.
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11.3 Omnidirectional vision

Figure 11.12: Unusable portions of the omnidiretioview.
The red mask shows the regions that must be disdaasd they do
not change or show irregular reflected surfaces.

11.3.1 Analysis

The use of omnidirectional cameras has often beensed on being able to
capture the surrounding environment with minimatdiaare requirement (Winters et
al., 2000). Although the simultaneous snapshothef éntire surroundings can be
quite useful, there are additional consideratidred tequire attention to be able to
extract and process the captured image. The mgsrem characteristics of the
image from omnidirectional camera is the warpingoduced by the reflective
surface, which modifies the compression rate oéciigjthat are at different distance
and altitude to the camera. Depending on the shipiee reflective surface that is
used, the compression ratio can also change imdimear fashion to allow focus on
a specific region.

By knowing the exact shape and placement of tHeatefe surface, it is possible
to derive the transformation matrix required to nthp captured image to a flat
canvas, such that an accurate inter-pixel relatipnsan be determined (Peters et al.,
1996). As the camera and reflective surface cordigpn is often placed in a rigid
formation, a calibration process is often carriatiance using a known pattern, such
as a grid. Figure 11.13 shows a sample snapslestth#t image is unwrapped into a
panoramic representation without any vertical adpests due to the dome surface.
The unwrapped image is sometimes blurred afterwiardtean up the artefacts from
the non-linear mapping.

Figure 11.13: Unwrapping of an omnidirectional iraag
The unwrapped image of the left hand side is showrhe right,
which used a simple linear model based on the rdistaand
orientation from the center of the camera.
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When the mapping is carried out, the inconsistempression rate causes the
captured intensities to be stretched or compreSdssl mapping process is typically
carried out in a per-pixel basis, thus limits tlesalution that can be used for the
converted image without introducing too much acdtefaespecially for interpolated
portions of the image. By using a very high regoluto capture the scene at a slow
rate, which is often the way the system is used; aible to produce a detailed image
for further analysis. However, when the camera ssduto stream a continuous
sequence of frames for an up to date state of dhees the quality of the image
suffers significantly due to the reduction in thepturing resolution and the lack of
noise reduction that is often carried out by fusimgjtiple still shots. As a result, the
information that can be determined from the imagenprecise and can contain large
amount of artefacts from the compression, sensoergéed noise, and motion blur.
This leads to many of the patterns being suppressddhe precision of any features
that are found to be dramatically reduced.

The inaccuracies means the images that are captioedthe omnidirectional
camera should not be used for precise measurenietiteoenvironment's state.
However, the images can be used to identify laegéufes, such as lines and colour
based segments, to address problems like trackidglaralisation (Adorni et al.,
2003; Bishay et al., 1994, Gaspar et al., 2000; edatti et al., 2004; Shakernia et
al., 2003; Vassallo et al., 2002; Winters & Santager, 1999).

Due to the wrapping of the axes parallel to theugdh any lines that may be
present in those directions appear as arcs. Trasée difficult to trace, due to the
low level of precision and the limited distance #ne spans across. By dewarping the
image, some of these arcs can be restored ashstliags, but often results in jagged
lines and also consumes valuable processing timséedd of attempting to make use
of these lines, such as for noting when the robabibut to encounter an obstacle that
is invisible to the other sensors, vertical linkattare in the scene can be found as
lines extending from the middle of the image. Aligb the precise location of these
lines cannot be determined, it is possible to atlg robot with the features on the
local map using the extra level of constraint pded by the increased viewing area
(Brown & Donald, 2000; Cauchois et al., 2003; Frahal., 1998).

Since the visible range of the local map and thaidirectional camera differs
significantly, correlating the edges that are folardl the map can be difficult to
achieve accurately. The limited resources in theect implementation means the
capture resolution must be set to a very low guaditallow the other devices and
algorithms to operate with a higher priority. Tinsakes the identification of lines
more difficult, thus the vertical line based coat&dn is not included in the current
implementation. In future implementation, it may fessible to activate the camera
at the highest resolution, perhaps when the otbesa@s are inactive, to capture a
more reliable image for better correlation with thiber sensor readings. There is
also scope for combining the results from the bampdetection algorithm from the
side looking camera, as it provides a single p@ntthe boundary to allow for a
simple correlation. A prototype of the verticaldimetection is illustrated in figure
11.14 as the radial lines, which are derived fromarged list of Hough transform,
are cast onto the local map to illustrate the daion of vertical lines.
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Figure 11.14: Casting of vertical lines from therodirectional camera.
The lines are selected from the top five lines wheiteed by the
Hough transform, which has been cast onto the lowg as the
right image.

11.3.2 Scene changes

The other type of analysis that can be carriedusirig the images is based on
segments, such as grouping those with similar gities or behaviour (Stocker,
2002). The unique characteristics of the omnidioaetl camera is utilised to observe
the presence of dynamic objects within the scesdt & able to track its motion
without any physical adjustments. Although the lewel of precision and the noise
ratio can be problematic, it is possible to obsdavge objects that appear within the
scene, especially if there is distinctness withm intensity levels. By combining this
with the availability of the streams of sequenitiahges, an analysis on the change in
the scene can be carried out.

The first consideration to make when attemptingliserve the dynamic objects
amongst static objects is with regards to how thilybe detected. Since the motion
of objects should be continuous, even with the vmgrpthe object should appear
near its previous location in between frames. The&ans an object in motion will
produce a pair of regions when two consecutive ésmare compared, where one is
the new location of the object and the other is dltke location of the object. By
making use of a temporal difference filter, it igspible to identify the regions that
change, but must take into account that the subtdgons that occur causes very
small changes to the intensity which may be beltw hoise level threshold.
Reducing the noise level threshold can dramaticaltrease the false positives,
which increases the number of regions to be precessthe next phase.

Since the process is never intended on being aegutas possible to apply a
blurring filter to suppress some of the noise. Bitite detection of the interesting
areas uses a temporal filter, the interpolationc#@ried out with the spatial
neighbours. By using a strong interpolation maskye of the boundaries that may
have existed can be suppressed as a side effestai$y, the size of the mask used
to interpolate the neighbours is kept small to mise the de-localisation of the
intensity boundaries.
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The activation of this check can occur at variomses depending on what is
intended on being observed. Since observing theesadile the robot is in motion
will cause the majority of the scene to changdoés not allow a focused analysis on
the dynamic object. To avoid mistaking the change¢he view as dynamic object
when the robot is in motion, it is possible to malse of the information from the
localisation module. As noted earlier, this carslghtly problematic if the modules
are not synchronised properly, thus requires aebiuff of the motions to make sure
no robot motion occurs when the change in the inlmgbserved.

An alternative check to distinguish between a dyicaobject and the robot
motion is to observe the spread of the regionsar@abbserved as having changed. If
the robot undergoes a motion in a densely occupred, there will be change
detected after the temporal filter across a widegeaof areas within the image.
However, if a dynamic object is present and theotad stationary, the portions that
are changing is localised to one region. Although assumption does not cater for
the presence of multiple dynamic objects, such eoaded room with people, but
allows the decoupling of the modules.

The process begins with filtering out the non-ral@vportions of the image,
which is pre-determined and noted in a lookup taBlece misalignments can occur
from the rocking motion, the filter is increasedsize by one pixel to make sure
irrelevant images are not included. When traversimgugh the pixels of interest,
they are interpolated with the neighbours usingrgd weighting to encourage the
smoothing of the intensities.

Intensity,, = (4 * Intensity, + Intensity.., + Intensity.,, + Intensity,., + Intensity,..) / (57)

Note that the correction of the codec induced actsfis not carried out for this,
as the capture resolution is set too low for treekd to form. Even if the resolution
is increased, the blurring carried out by the abceae remove the visible blocks, as
the weights that are used is much larger thanldeklsemoval algorithm.

The filtered image is then compared with the presirame to note any changes
in the intensity. Due to the lack of a consistégtttl source and the reflective material
that are within the irrelevant portions of the viahe typical intensity level of the
view was lower, which promoted more noise. Howesgrge the blurring algorithm
is able to suppress the majority of these, theentagel threshold is only increased
slightly. Once the pixels that have been notedaagnly changed are identified, the
coordinate points are processed to distinguistcémeera motion to dynamic object
motion. Note that the use of just the temporagéfilvithout the removal of the non-
relevant pixels is not done due to the reflectitret appear on the shiny surfaces,
which can appear as having changed in colour.

By converting the coordinate point of the pixelgptdar coordinates, the accurate
orientation of the pixels can be determined. Howesiace it is only the distribution
of the pixels that is of interest, the coordinaténgs can simply be averaged. If the
average coordinate point is located near the midtithe image, the motion can be
classified as a change in the robot's pose. Otkeruhe pixels that are involved are
noted as being a part of a dynamic object. Theshulel used to distinguish this is
defined roughly by the circumference of the rolvdtjch is not an accurate way of
distinguishing the two types of motions, but iss@@able for this prototype.
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11.3.3 Cluster

With the potential pixels for dynamic objects idéad, these can then be
combined to observe the structure of the dynamjeabtand also eliminate spurious
pixels that are insignificant or were generated rimise. Performing a robust
clustering algorithm often requires multiple ana@yef the same image, which is
often carried out off-line. By specifying constif@nbased on the expected
configuration of the cluster and the domain knogka@bout the typical structure of
the scene, it is possible to reduce the compleaitye able to operate in real time.

The simplest form of clustering involves a proxynénd counter or size based
requirement, where a minimal number for the pixelthe group is specified before
it can be recognised as a cluster. The appareatdizbjects can differ greatly
depending on how far away the object is, as welhasactual size of the dynamic
object, thus it must be made small. By setting tbessmall, it can also register the
artefacts as dynamic objects, which can hinder gedormance and potentially
corrupt the state of the map by incorrectly flagganstatic object as being dynamic.
Since the blurring can potentially spread a simglesy pixel to five pixels, this can
be used as the threshold condition to differen@at@ise from a cluster.

An alternative approach to reducing the noise & ube of a temporal blurring
before the temporal difference filter is appliechisT allows the location of the
intensities to remain stationary and enlarges teasathat are noted when motion
occurs. Although this allows for a slightly morestitictive regions being shown,
there is a small delay introduced in noticing theargge. Depending on the
requirements of the system, the two types of &ltmn be interchanged.

When grouping the different pixels, it is possibdemake use of the intensity
characteristics to add another constraint to thetets that are formed. This can be
used to distinguish the different dynamic objebt imay be simultaneously moving
near each other. This type of analysis is usefuafmore long-term object tracking,
which can note and make use of the different mobehaviours to identify the
separate objects being involved.

Using an intensity based segmentation algorithnis ipossible to extend the
boundary of the dynamic object to include the whalgace. This means the motion
behaviour could also be applied to regions thaindidinitially seem interesting. One
of the issues with extending the area of the dynaobject is the lack of
confirmation on the connectivity of the pixels athlean the similarity between the
intensities. This can result in unrelated regioeg@ marked as being a dynamic
object.

A related issue with the above is the connectibgyween the detected pixels that
originate from the same object. Other than the iptesgaps between the flagged
pixels that are caused by the temporal filter thoéd the dynamic object may be
obstructed by either another object within the scenthe robot itself, such as the
strut holding the reflective dome. For a small gaps issue can be accounted for by
increasing the search area for the adjacent dixelit does not provide a distinction
between multiple objects and an obstructed objéar regions where the
discontinuity occurs from falling below the thre&hoit is possible to observe the
low amount of intensity difference at the pixelgreunding the gap to allow the
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connection. If, however, there is a large diffeeencthe change in intensity it can be
deemed that the boundary of the object has beehedaor it is being obstructed by
a foreground object. Similarly, if the distancevibetn the two pixels is too large, the
pixels are not joined as the analysis currently aunsiders the immediate state of
the scene. The identification of the dynamic objecnly required in the map, where
the cell grids are marked as being static or dynathus the continual tracking and
correct grouping is not a critical requirement.

Once the pixels are marked and grouped together,othect's position and
orientation can be determined. To define the bowfdise dynamic object, the sector
containing the region is used to indicate the dioec of the dynamic object.
Identifying the bounding sector is a simple mattieconverting the pixel's Cartesian
coordinates to polar coordinates and selectingwlteextreme angular values. It is
also possible to identify the strip within the sscivhich corresponds to where the
object may be located by finding the two extremgius values, which will form a
bounding area for the object.

Using the single frame, neither the altitude nastatice to the object can be
determined without domain knowledge. This means diepth must either be
assumed based on how much of the ground is vibiblere reaching the object or
derived from alternate sensor measurements. Shecground texture can differ to
invalidate the segmentation algorithm and the preerg of the dynamic objects does
not always need to extend straight up form the mgothe distance measure that is
derived can be misleading.

To assist the process of determining where therdimabject may be located, an
approximate value is derived from the radial disegras shown in figure 11.15. This
was determined by placing markers on the grourkcth@ivn distances away from the
robot and determining the position within the imageng a capture resolution of 160
x 120 pixels. This value is then combined with dlseupancy map to establish where
the dynamic object may be.
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Figure 11.15: Approximate distance to objects wétspect to radial distance.
The relationship between the distance to the obprud the
positions within the image can be determined farr dbjects on the
ground surface.
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11.3.3 Cluster

On top of this, the vanishing point can be usedirtot the validity of the
approximation by specifying a maximum distancevitich the assumption is valid.
Although the calibration process above points tdistance of approximately 22
pixels from the center, the level of accuracy tbamh be distinguished diminishes
very rapidly, thus should not be used near thisipp&ince the current size of the
local map is limited to a size of approximatelyypBmeters, this distance is used to
ignore the objects that are detected at a furtlstartce than 21 pixels away from the
center. This condition means some dynamic objéasdre off the ground will not
be registered. However, since the local map ordjudes obstacles that are viewable
by the range finders, this is not a significantiess

11.3.4 Negative carving

Based on the approximate location of the dynamjeatpthe equivalent regions
within the maps can be marked to note that theachest that the range finders found
can be separated from the map. Since the portisgausare flagged are only the
boundaries of the dynamic object, this process @anocur directly. Instead, the
focus is placed on marking the cells as contaidyramic objects and modifying the
occupancy and vacancy values to reflect the urniogytan the current location of the
object.

Assuming that the dynamic objects that are deteladsdabove the ground level,
the distance that is measured for the object repteshe upper bound to the actual
distance to the object. Although the sector thatlesived confines the possible
location of the dynamic object, it should not affdwe static objects that lie behind
them. To identify the foremost object within thetee, techniques such as ray tracing
or incremental arc tracing can be done until ocedigells are encountered.

When tracing an arc for the location of the objéicthay be that the dynamic
object has recently moved into that area and tleegancy of the cell may not be
registered. To account for this, two rays are glagéhich are based on the sides of
the sector to identify the edge of the object. Phe is used to identify the closest
object along the rays which indicates the old pmsiobf the object that have now
moved.

Based on the motion direction of the dynamic objda other ray will either be
near another occupied cell or will not find an qued cell. In the latter case, the
other ray does not allow for the end point of tlyaaimic object to be determined,
thus modifications to the map can be misleadinguttiple cells along the line are
modified as containing a dynamic object or theicugmancy score reduced. If,
however, occupied cells are found for both raysr remch other, the region in
between the two cells can be modified such thatymamic attributes are increased
and the occupancy scores decreased. This assuatékehdynamic object is visible
to the range finders and connected, such that elie loetween are occupied cells.
Note that the regions near the maximum radial dcstaare never used as part of this
analysis, as they often represent the altitude@bbject.

The distribution of the pixels along the minimumuecan be tracked by tracing
between the bounds of the sector. To simplify theck, a line can be traced instead
of allowing dynamic adjustments to the path, asahgle between the bounds are
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11.3.4 Negative carving

often very small due to the frame rate and thedpé®bjects. If the dynamic object
has an irregular shape, the line may bend or bgeghus the thickness of the line
is increased to the adjacent pixels like in thedfaark detection algorithm. This is
illustrated in figure 11.16, where the lower sedtoblue successfully identifies the
occupied cell, which is shown in green, and traaetsetween them, which is shown
in cyan.

n H JL_.

M Occupied
B Dynamic
Intersection

Tracing between
intersection points

Figure 11.16: Tracing the dynamic object boundarystirface continuity.
The blue regions are the bounds of the temporaérfiand
clustering that has been cast onto the local mae.gfeen cells are
the intersecting points of the blue region andrdeeregion, which
are the occupied cells in the local map. The tisalebegins and
ends at the green cells, as shown by the cyanesjuar

If the traced cells successfully reach the otheéersected cell, these can be
marked as now vacant. This is done by reducingr tbecupancy value and
increasing their vacancy value. At the same tife,angle of the last access is reset,
such that the subsequent scan can potentially atotiés error if the assumption
about its motion is incorrect.

Since the accuracy and the reliability of neithe tmap nor the omnidirectional
image are not high, the intersection point may aymot be reached at the desired
location. This is accounted for by narrowing thelanbetween the bounds of the
dynamic object. Since the region in-between shaadccupied, the line does not
need to be made thicker while finding the intensectcells in the local map.
However, when the occupancy is being removed fromn region between the
intersection points, the surrounding cells are attuded and a subsequent range
finder measurement is encouraged to observe thiaadsagain for an up to date
view.

Alternative approaches that were attempted use nsiwipler techniques of
reducing the occupancy of the affected region kigas of the arrangement of the
pixels within the boundary. The first approach onmgkes use of the sides of the
sector to form a triangle which extends to the edfj¢he local map and simply
reduces the occupancy of all cells covered. Thiggas®nt of the dynamic attribute
is carried out in a similar fashion, where all loé tcells' attributes is incremented. A
slightly modified implementation assigns a differamight to the attributes based on
the distance from the robot, where the values aceedised linearly from the base of
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11.3.4 Negative carving

the robot to zero at the edges of the map. By usiagadial bounds, the maximum
distance of this can be specified, with the shagedoconverted into a sector, such as
that shown in figure 11.17.

Figure 11.17: Weight distribution for attribute nifochtion after detection of
dynamic objects.
The dark colour represents a low weight, while lbnght colour
represents a higher weight.

Since these approaches make no confirmation wéhother sensor readings, the
local map is over modified from the large numbercefls accessed. Although the
narrow sector limits the number of false flaggirelying on multiple observations of
the dynamic object for confidence or voting is aiective as their motion may not
be continuous.

11.4 Connectivity map

The use of the grid map allows the maintenanceetdiléd and easily accessible
attributes, but does not allow for an effective resentation of sparsely located
attributes, such as high level constructs like maaks, detached objects, and
semantic tags. An example that requires separptegentation is the ground texture
landmarks that contain the line equation, poséhefrobot when the landmark was
captured, and the average intensities of the twlessadjacent to the line. These
attributes and the sequence in which the landmask® derived can allow extra
information to be derived, such as the path ofdrsal and connectivity between
them.

By linking the landmarks together using a graphdtire, it is possible to define
the connectivity between the landmarks. If it imgly the traversal between the
landmarks that is required to connect them, theneotivity map does not provide
useful information, as it does not encourage tleeaighe existing landmarks during
the traversal, nor does it maintain the changélsarmotion commands used between
the landmarks. Since the ability to travel from daedmark to another is always
allowed except when the path is blocked by dynaafifects, this information is
redundant and would not be used. Instead, a sepana is introduced to maintain
the path of traversal of the robot while capturihg connectivity between the pause
points of the robot's traversal. The landmarks tings left to be used for re-
calibration of the robot pose.

The current traversal modes for the robot inclugkes basic types, where one
requires constant manual intervention to specify itidividual motor commands,
while the other makes use of automatically gendratetor commands based on the
immediate proximity of obstacles surrounding thieato The orientation of the robot
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11.4 Connectivity map

is modified based on the most vacant orientatiolerdened from the IR sensor
reading. The traversal distance is randomly chdmgween 50 cm and 2 m, which
can be interrupted when an obstacle reaches tse ttothe robot. In both modes of
traversal, there is a distinct pause between thmommmands, which allows the
localisation algorithm to catch up from the buffgyiof the motion, as well as
allocating some time for the dynamic object detetto occur.

Using the distinct steps in motion, the coordiraets, as well as the occupancy
of the surroundings, can be used as the nodekdarannectivity map. The nodes of
the map can be connected in order of traversal, that occupancy of the
surroundings is used to identify alternate paths tay exist between other nodes.

The measure of the occupancy surrounding the ppoise is derived from the
smallest IR distance from the robot, which is catea to a circle centered at the
robot. The circle represents the amount of spagedhot could freely move around
in, which is compared with other nodes to deterniirane overlaps another. Since
the number of nodes does not get too large forcthveent style of execution, the
check is conducted when the new node is createah tverlap between the circles
occurs, the nodes are added to the list of intdenconnections to expand the
possible paths between the nodes. If, however, mogde completely overlaps
another, which is when the distance between thes)x@smaller than the magnitude
of the difference in the radius, the smaller node be eliminated after copying all
the connections over to the larger node.

Figure 11.18 illustrates the connectivity nodesesumpposed over the global map,
where the yellow lines, which were manually addadicate a connection between
the nodes, shown in green. The motion commands iagued manually with distinct
pause points to adjust the orientation of the robbe overlapping and merging of
the nodes occurred when the robot was rotated ltavahe sonar to scan the
surroundings. Note that since the node is congtduasing the minimal distance to
an obstacle measured by the IR sensor, the nodgsdtly represent an unoccupied
region, with some allowance from sensor errorstamdl spots. This indicates that a
path can be constructed from anywhere within théerto another by moving to the
center of the node before and after traversing éetvdifferent nodes, given that no
moving objects enter in the path. This form of patanning allows a quicker
formation of paths by re-using previously used pattstead of planning new paths
every time the robot travels.

Since the accuracy of the IR sensors is quite logvassumptions are made with
regards to validity of the occupancy around theotplthe connectivity map can
contain erroneous areas that can lead to incopa&tis being constructed. A more
accurate representation of the surroundings carohducted by spinning the robot
by approximately 30 degrees at the pause point®ver the blind spots of the IR
sensor, or rotating the sonar sensor, but has leéeout for future implementation.
An alternative approach is to make use of the caeap of the local map instead of
the IR sensor readings. However, this requiresngtheer radial scan of the map,
waiting for the map to be populated with confiderformation, as well as dealing
with the complexity of applying a threshold to diguish an certain obstacle to a
false positive obstacle.

By implementing a more meaningful and coupled trsale commands, it is
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11.4 Connectivity map

possible to avoid many of the redundant operatwinsn the robot attempts to carry
out the specific tasks they are given, such asviatig a wall or exploring unvisited
areas (Burgard et al., 1997; Whaite & Ferrie, 19%7inultiple goals are defined,
they must specify priorities such that the travisrsi® not interfere with each other
and that the mapping modules be running parallel.

Figure 11.18: Connectivity map superimposed orofape global map.
The pink regions represent vacancy, the green septe
occupancy, and the orange spots represent the nodes the
robot was issued a new motion command. The sizietsrmined
by the IR sensor reading at the time of the comntandg issued.
The yellow lines joining the orange dots were hatrdwn to
illustrate the connectivity between these nodes.

11.5 Summary

The vast types of different interactions the rotmd the sensors can make to the
environment allows for any number of algorithmsb® implemented to assist the
tasks given to the system. Several different tephes and algorithms have been
introduced to assist the robot localisation and ellody of the environment. The
majority of the algorithms focused on the use & thsual information form the
webcams, but also included the use of informatiat tvere directly and indirectly
derived from other types of sensors.

The grouping of the features were carried out bgeolking the similarities and
relationships between the features derived fronptehalO to form object boundaries
that can be easily translated onto the local mageShe application focuses on real
time processing of the information, more robust nsexgtation or clustering
algorithms were avoided and a more specialised pyngu of features were
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implemented. In doing so, some domain knowledgecamdtraints were introduced
to improve the efficiency and effectiveness of algorithms, such as by reducing the
search areas, which resulted in a more consistesg gf boundaries to be found.

The texture based segmentation provides high leseiface continuity
information, which can be used for isolating diffiet portions of the map and
smoothing the boundaries determined by the rang#gefs. The technique that is
introduced focus on fast processing using bothhtiee and luminance scales, which
can potentially be improved by merging the res@itsn multiple resolutions or
adding shape and template based patterns to glaélssifyroup. Although the derived
groups are not included in the current implemeotatithere are scope for this
information to be used to improve the accuracy@nsistency of the local map.

By re-using the image streams from the cameradipgidownwards, landmarks
could be determined based on detecting significaiainges to the texture pattern.
The landmarks are currently based on straight lioesicrease the likelihood of
encountering the landmark again while providing ome drifting error correction.
The approach includes the quick tests to deterthia@resence of texture changes as
well as considerations for the frequency of the ckhéo reduce unnecessary
processing. The landmarks that are stored is dlyremaintained in a simple list
implementation, but should ideally be convertedatmore scalable data structure,
such as a bucket or quad-tree like structure. Wilisallow faster access to the most
appropriate landmark by using some of the knowte stbthe robot.

The use of the omnidirectional camera has manynpiatdenefits, but is hindered
by the resource availability and the small viewerga utilisation that only allow
sub-standard image quality. This limitation medm& &nalysis that were carried out
could not be done with much accuracy and providele lbenefit to the current
system other than the rough measure of identifginegpresence of dynamic objects.
It was noted that by de-activating the other mosluded specifying a higher
resolution to capture the scene, the charactesisticthe scene was much better
perceived. This hints to a potential usage of teeser, which is by selectively
switching between the modules depending on theentigtate of the robot as long as
the overheads in the algorithms remains small &edcbrrect conditions for the
switching can be established.
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The physical platform provided by the mobile robas allowed for a multitude of
algorithms and techniques to be integrated as qdaitie modelling process of the
environment. The focus has been placed in thetirealand simultaneous processing
of multiple sensor readings to construct accuraté @mformative maps. As the
project encompasses a significant portion of theéreemimobile robot system, the
development of the fundamental modules for baseratpns defined the structure
and aspects to target.

The localisation and mapping processes were cawigdusing off-the-shelf
sensors as both integrated and modular componentldw flexibility in the
components that make up the robot depending otakeand resource availability.
Many of the proposed algorithms and techniques theen implemented to couple
with the product of another module, thus they cannberchanged with ease as long
as the fundamental representation of the envirohmerot drastically modified.

By reducing the amount of input data from the ses)smainly the capture
resolution used by the cameras, the proposed modare able to be executed
concurrently on the mounted laptop. The limitedgessing capacity means that the
precision of the map being constructed is redueddch can be catered for by
temporary disabling some of the modules like theadyic object finding, reducing
the number of feature candidates, not considehiegupper half of the side viewing
camera for vertical lines, and limiting the opevatl speed of the robot to reduce the
amount of changes in the scene.

12.1 Contributions

The components of the mobile robot system that e developed undertook
many incremental improvements by observing the dathconstraints provided by
the tasks. Many of the resulting implementations both novel and improved
approaches for real time processing, while some sargle implementation of
existing approaches with slight differences in deafiguration to suit the current
system.

12.1.1 Sensor characteristics

The use of the range finders has been accompapigdnor techniques to reduce
the inconsistency and improve the speed of tranglahe sensor readings to a
uniform representation. This is done by observirag the measurements are made of
natural objects with mostly smooth surfaces.

During the calibration stage of the camera, thes@es noise characteristic is
taken into consideration by observing the fluctuadi in the measured intensity
reading of a known colour. Although some of theseatharacteristics could not be
well utilised for a real time system due to reseuconsumption issues, some of the

258



12.1.1 Sensor characteristics

findings led to generalised algorithms and threshidhat could be defined for
reducing the artefacts that are introduced intdrtirege stream.

The radial warping effect seen in many older camérave been dealt with by
simply cropping the image, while the codec induged like noise has been dealt
with a custom interpolation filter to blend the ders of the blocks. The filters
provide an important role of suppressing artificrehds from appearing and quickly
removing regions that are blurry.

12.1.2 Local localisation

The proposed localisation technique is based oreleing the ground textures
between frames to accumulate the motions obsei@d.is achieved by selecting
the most outlier scored feature and tracking itsionon the subsequent frame. The
search strategy introduces a radial scan pattermuiokly establish the most
appropriate correlation based on previous and sumetions.

The synchronisation between multiple trackers oftiple devices required sub-
pixel motions to be derived, which was achieveaulgh a weight based blending
technique between the detected motions. This alsoduced a slight delay in the
registration of the motion, but drastically redudbd precision errors between the
feature tracking.

The introduction of a hybrid motion model to tratsl the feature motions to the
robot motion allowed both a smooth and unexpectetioms to be accounted for.
The algorithm switches between different levels coinstraints on the motion
characteristics based on the type of motion thabiserved to reflect the validation
of the assumptions used when including the comdtrai

12.1.3 Map construction

The core component to the local map is based ateampancy grid map, which is
used to store multiple attributes that store hosvghd cells were modified, allowing
repeated interactions to the map to change depgratinthe relevance. The most
significant attribute is the sensor orientationueato ignore repeated scans from the
same or similar orientation as the sensor behaviaur differ greatly when the
perspectives change. This allows the samplingtoabe independent of the attributes
that are stored.

The accesses to the map is carried out much likester image to allow simple
inter-cell interactions and well established altornis like anti-aliasing and
compression. The superimposition of the sensorssaam carried out using an area
based anti-aliasing algorithm with various enharesis on the speed of both line
and arc drawing. Some approximations are introduhathg this process, but the
accuracy remains high enough for representatiopgses.

Due to the isolated calculations and the conssaitlgfined during the above
process, optimisation approaches are suggestedy usted point arithmetic
operations during the sensor superimposition staffaough not significant, the
approach showed some improvements in the performpanchich suggests
applicability to other areas with arithmeticallytensive operations and known data
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ranges. The fast processing allows the rapid sagdiiom the sensors to obtain a
more continuous and up to date measure of thelsuitnogs.

The simultaneous use of maps of multiple scaleactseved through periodic
synchronisation from the local map to the globalpm&everal strategies and
considerations have been suggested to efficieqitiate portions of the map and to
translate the various attributes that are mainthifibe maintenance of the attributes
also include the considerations when the robot azegl more than the expected
amount of area. Several strategies are introduzddhmdle the changes to the local
and global maps, such as compression and stateswoéreas that are introduced.

12.1.4 High level visual features

The selection of visual features has been delibgraimade with domain
knowledge constraints to assist in the fast praogss object boundaries that can be
related to the attributes found on the maps. Thterimn for the features has been
configured to focus on vertical boundaries with sietent colour, which are treated
as the meeting point of foreground and backgrouadases. This allows the
background to change without affecting the validityhe feature.

Several filters, including temporal, density, aadking, are included to cut down
the number of feature candidates. This reductitmwalmore complex analyses to be
carried out later using a smaller set of data. &ltfh this issue can be avoided with
reduction in the number of simultaneous procestes filters were necessary to
allow the other modules to be executed simultangarsthe mobile robot.

The grouping of the boundary features using prayimmonstraints allowed for the
feature pose to be converged more rapidly. Thisged many of the precision errors
that are introduced when tracking visual featuresaocamera, as the number of
samples used to triangulate the pose was dramgticateased compared to tracking
a single feature.

By re-using the image streams from the ground texttacking cameras, the
strategies in capturing a long term landmark hasnbatroduced. The approach
focuses on straight line boundaries of texturegpatthanges which allows for the
reduction in the search area and criteria. Theugaqy of the landmark detection is
also considered to allow the robot to move to a@mokbcation before searching for a
different landmark.

Using the omnidirectional camera, a dynamic obgistection algorithm has been
included with the appropriate map modification aigon to mark and reset the
range finder readings. The algorithm involves aperal filter and a distribution
based distinction to distinguish the differencent®ssn a robot motion and a dynamic
object motion. The cluster of pixels are groupegktber to identify the sector around
the robot, which is then superimposed over thel lozg to make the modification.

12.1.5 Connectivity map

To allow for efficient path finding between preveby visited portions of the
environment, a graph based connectivity map i®dhtced to connect between the
point of motion commands issued to the robot. Tihgke implementation includes
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basic vacancy check around the node, as well asegtes for the merging of
multiple nodes to indicate direct and indirect gaththout reverting back to the local
map.

12.2 Future work

The enormous range of scope for the mobile robofjept means the future
direction of the project can vary significantly @epling on the specific interest of
those involved. However, there are several fundéah@omponents that should be
enhanced or improved in the future.

A fundamental component that is missing in the enfrrsystem is a clear
definition of the overall and instantaneous goalclvhdrive the operation of the
robot. Although an arbitrary goal is defined by thdividual user of the robot, there
is no framework for defining tasks and decision mgkprocess in the current
system. This includes navigational (Ahuactzin et H91; Arkin, 1987; Bennewitz,
2004; Buffa et al., 1993; Fiorini & Shiller, 199bloreano & Mondada, 1996; Kim,
2004; Latombe, 1999; Miura et al., 1999; Taylor &dgman, 1998; Thorpe, 1984;
Zelek, 1995; Zimmer, 1996) and specific sensor @stygfocus its attention on
specific points of interest (Huntsberger, 2001)e Titclusion of this type of module
will allow simple transition between different taskvhich make use of the base
operations that have been developed so far.

Another key addition that is required is the inadnsof more hardware for
control, interactions, and sensing of the enviromm@&he inclusion of additional
sensors will allow more sophisticated interactiswgh as orientation from compass
sensors, while the upgrading of existing sensord wailow more precise
measurements to be made. As the project will caetino be incrementally
developed, this aspect will naturally be targetedhe tasks will define the sensors
that are required.

In terms of improving the approaches implementethsahere is a wide range of
areas that could be explored, which include:

» Adaptive and automated calibration processes toesgh environment (Tsai,
1987; Quan, 1996).

* The use of parallel processors for the featureyaisga(Horn, 1988).

* Using a single camera with mirrors for the locdl@a to increase the tracker
distance since the majority of the captured imageasted.

« Converting the map into a 3D representation, a$ agelderiving higher level
understanding of the environment (Leonard & Durfiityte, 1992, Hemayed
et al., 1997; Kang & Szeliski, 1997).

* Including set of scripted commands for handlingeegpd navigational tasks.

* Smoother motion transitions around obstacles (Bsieam & Koren, 1989;
Lengyel et al., 1990).

* Introducing team work between multiple robots tdveahe task (Fox et al.,
2000; Rekleitis et al., 1997; Thrun, 2001).
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* A more objective integration process between thiiphei sensor readings.

With the improvements in the image quality of tenidirectional camera, there
is scope for more integration with other modulesthpps even to the extent of
replacing the other devices or modules, such asottadisation module (Francis et
al., 2006; Spacek & Burbridge, 2007). This wouldralve balancing of the
processing load between the other modules and #welapment of alternate
techniques to compliment or duplicate the behaviduhe other devices.
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