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Personal preface: 

Abstract:  

The end of the 20th Century saw, in Australia, the beginning of Forensic DNA profiling for use 

in criminal investigations and Court proceedings. Compared to modern abilities, DNA 

profiling, when first introduced, had low sensitivity and low powers of discrimination. The 

type of forensic samples that could be targeted were typically body fluids (such as semen, saliva 

or blood) that had abundant (at least by today’s standards) amounts of DNA available. The 

laboratory hardware and the profiling systems improved with time and became more sensitive, 

were able to produce informative results quicker, at less cost and with greater discrimination 

power. These improvements encouraged the forensic community to branch out from the 

standard body fluid samples and by the late 1990s forensic samples were being taken from 

what was termed ‘touch DNA’, tiny amounts of DNA left behind on a surface, not from a body 

fluid, but simply from being transferred when the item was touched. These new samples, 

coupled with the continually increasing sensitivity of DNA profiling, meant that the DNA 

profiles became more complex, in terms of the number of contributors and the quality and 

amount of DNA template. 

While a substantial level of resources had been expended on the improvement to the ability to 

generate a DNA profile, a disproportionately small amount of effort had been put into how best 

to interpret the results. Starting at the turn of the 21st century, a series of methods were 

developed that could be used to interpret DNA profile. There were two main branches of 

interpretation methods that formed, which are commonly referred to as the Likelihood Ratio 

(LR) method (also called the Bayesian method), which dominated in Europe and Australia, and 

the inclusion probability method (also called the Random Man Not Excluded, or the frequentist 

method), which dominated in the USA. In the forensic field today the LR method is generally 

accepted as the superior method and so is the focus of this thesis.  

All LR methods have the same foundation, that is, they seek the ratio of the probability of the 

observed DNA profile (or multiple profiles) given two competing propositions, which typically 

align with a prosecution stance and a defence stance. The probabilities are assigned for each 

proposition by taking a weighted sum of all genotype probabilities that apply under that 

proposition. The simplest form of the Likelihood Ratio method is known as the binary 

approach, which weights the genotype probabilities with either a 1 or a 0, i.e. they are either 

included in the sum or they are not. The binary method typically relies on a subjective 

assessment of the DNA profile by an analyst, who would be utilising a system of rules and 

threshold for interpretation. There are many shortcomings of such a system, such as; the very 

restricted pool of profiles to which it could be applied, the inconsistent application between 

analysts and the waste of much of the information within the DNA profile (i.e. the intensity of 

each piece of information and its molecular size).  

A more elegant approach to weighting the genotypes within the LR approach was termed the 

‘semi-continuous method’. This method weights the genotypes using probabilities associated 

with events that occur during the process of generating the DNA profile. The semi-continuous 

method expanded the types of profiles for which a statistical weighting could be applied and 

was also able to be applied in a more consistent manner. Semi-continuous systems still did not 

utilise much information from the DNA profile other than the presence or absence of 

information and so in that regard still had a limited discrimination powers. 
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This thesis is a compilation of publications that extend the semi-continuous methods of 

developing a LR to what has been termed ‘fully-continuous’. This is achieved by the use of a 

much greater level of information from DNA profiles. In order to utilise peaks heights, models 

have been developed that describe aspects of DNA profile behaviour, that ultimately lead to 

the patterns of peak intensity seen in a profile. These include models and parameters for stutter, 

degradation, saturation, peak height variability within and between regions, drop-out and drop-

in. For complex DNA profile data, the numbers of combinations that these different parameters 

can take exceeds the computational ability that would allow an exact solution based on 

Maximum Likelihood and so a stochastic process using Markov Chain Monte Carlo is 

developed. The creation of a fully continuous DNA profile interpretation model and a 

stochastic implementation was trialled of a range of DNA profiles that vary in number of 

contributors, DNA amounts and degradation levels that might typically be encountered in a 

Forensic Laboratory. 

In addition to the models and systems that allow the deconvolution of complex, mixed DNA 

profiles, this thesis describes extensions to the LR theory that were developed that allowed a 

statistical weighting to be provided for the comparison of any reference to virtually any DNA 

profile. The behaviour of the LR was examined in depth by observing trends in the magnitude 

of the LR in problems created that varied important factors over a range of plausible values. 

These trends were aligned with theoretical expectations to judge the performance of the fully 

continuous system. The system was also extended so that a LR based method could be used to 

search a database of DNA profiles for either a potential contributor, or a potential relative of a 

contributor to an unresolvable DNA profile (something that had previously not been possible 

in the forensic community in Australia). 

Methods were developed for calibrating the system to specific laboratories performance so that 

it provided evidential strengths that were appropriate for the type of data being produced by 

that specific laboratory. As this concept of expert system calibration, and the concept of a fully 

continuous system based on a stochastic process, was relatively new in the field of Forensic 

Biology, some time was spent on validating its performance and instructing others on how they 

could validate the performance of the system. Validation of the developed fully continuous 

system was aligned with published guidelines on validation, produced by international advisory 

bodies on DNA profile interpretation.  

A discussion on how the models for deconvolution and LR development could be extended to 

apply to new situations is provided. Specifically, the deconvolution of DNA profiling data 

derived from the Y-chromosome (called Y-STR profiling) is shown and the extension of both 

deconvolution and LR development to consider a range of contributors within the one analysis 

is given. 

To conclude the thesis the work on DNA profile evaluation is placed into a wider case context. 

This includes a study into the interpretation of the raw electrophoretic data that makes up the 

DNA profile (and preceding the DNA profile evaluation) and a study into how the support for 

an individual’s presence or absence from a DNA sample can be considered in conjunction with 

other case and sample information in order to help address queries of questioned activity. 

  



Page 7 of 344 

 

 

Chapter 1: Introduction  

In the years leading up to 2009, the standard method of DNA profile interpretation around 

Australia involved an analyst (experienced in viewing electropherograms) using their 

experience-based understanding of DNA profile behaviour to pass judgement on whether an 

individual of interest could be a contributor of DNA to a sample. Typically, one of three 

possible opinions would be reached; either the person being compared could be excluded as a 

contributor, or they could not be excluded as a possible contributor or the complexity was such 

that no opinion was given. This final opinion was commonly called ‘inconclusive’, as in ‘it is 

inconclusive as to whether the person could have contributed to the profile’, noting that it is in 

fact always inconclusive as to whether someone contributed to a DNA profile, hence the reason 

for carrying out an interpretation in the first place. If a person was not excluded as a possible 

contributor to the DNA profile, then sometimes it was possible to provide a statistical weighting 

to the opinion. In order for this to occur, the DNA profile had to meet a number of highly 

conservative rules (referred to as thresholds in the parlance of forensic science) that attempted 

to mitigate against any possible misinterpretation or overstating of evidential strength. The 

desire in forensic science is to always bias opinions in favour of falsely stating that a DNA 

donor is not a contributor of DNA to the sample rather falsely stating that a non-donor is a 

contributor of DNA to the sample. This desire saw the cultivation of thresholds that were highly 

wasteful of information in the DNA profile, even when calculating a numerical evidential 

weight. 

 

The issues with this manual method of interpretation can be grouped into three main categories: 

1) The process of applying threshold is binary, i.e. based on the use of a threshold, an 

event is either deemed possible or impossible. In a DNA profile, an example of this 

occurs when considering whether two peaks could come from a common donor. 

Ideally, they should be similar in height but will have been affected by the random 

variations of peak height, inherent in the process of generating a DNA profile. If a 

‘balance threshold’ were applied it would mean that the possibility that they could 

be paired was absolute (the probability being assigned as 1) and would remain so 

for a range of possible peak height values until at some point one peak height 

(relative to the other) falls below the threshold at which point the pairing becomes 

impossible (and is assigned a probability of 0). This phenomenon has been 

described in the forensic community as ‘falling off the cliff’, where a change in the 

smallest increment of some measure leads to a diametrically opposing opinion. This 

is a consequence of applying any threshold and tends to yield a very poor 

description of reality close to the threshold values. In forensic science, the fact that 

opposing views could come from a tiny change in situation was exploited by 

lawyers and the Court as a claimed demonstration of ‘untrustworthiness’ or 

‘unreliability’. 

2) Due to the logic difficulties associated with thresholds, and the desire for 

conservativeness the threshold used meant that much data within the DNA profile 

was wasted. Apart from it being typical to use only the presence or absence of peaks 

in a LR calculation (and not utilising their heights other than the initial, manual, 
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pre-calculation process of exclusion or non-exclusion) it was also typical to ignore 

entire blocks of information (termed ‘loci’ in a DNA profile and referring to one of 

the regions of the DNA targeted by a DNA profiling system) or use approximations 

under the belief that they were always conservative. 

3) Because the initial assessment of exclusion or non-exclusion was largely experience 

based analysts in different laboratories, or different analysts within the same 

laboratory, or even the same analyst at different times, would come to different 

conclusions on the same profile. Even when initially trained in the same manner, if 

one analyst happened to come across an aggressive defence in court that challenged 

their opinion of non-exclusion, then they would be more likely to shy away from a 

non-exclusion opinion in the future. The forensic community tried to rectify the 

situation via a system of thresholds, but found they had to have a balance: Too 

simple and the system would not be applicable to many profiles and following the 

rules would find an analyst in areas of undefendable logic-traps. Too complex and 

they could not be applied in a consistent manner, rendering pointless the very reason 

they were created. 

 

In 2009 one forensic laboratory in Australia came to the realisation that the manner in which 

they had been applying their system of thresholds was not acting conservatively in the way 

they intended. In very short time they altered the manner in which they were carrying out their 

evidence evaluations and reissued reports to the courts in a number of cases. Many other factors 

came into play, however the outcome was that the courts lost faith in the results they were 

given and the biology section of the forensic laboratory was temporarily shut down pending a 

review. In late 2009 a ‘crisis meeting’ was held with attending representatives from each 

forensic biology laboratory around Australia and New Zealand to address the issue. Coming 

out of the crisis meeting were two main points: 

1) Laboratories realised how differently they were evaluating DNA profile evidence. 

This was most clearly demonstrated when an exercise was conducted whereby a 

series of DNA profiles were sent around to each laboratory for assessment, and the 

results later compared and contrasted. 

2) Laboratories realised the need for an Australia-New Zealand statistical specialist 

working group (Stats SWG) with the overarching remit of standardisation and 

education. The formation of this group in 2010 saw John Buckleton as chair and 

Duncan Taylor as vice chair (who then become chair of the group in 2012, until 

2014) 

 

The formation of the Stats SWG was one of the biggest positive moves made towards DNA 

evidence evaluation for many years in Australia, as it allowed free discussion of ideas and 

concepts between laboratories. While, in the short term a more standardised threshold-based 

system was settled on (elements of which are still refer to today), in the longer term the group 

agreed that the best outcome would be to move from threshold-based systems altogether. Work 

was started on a system of DNA evidence interpretation that replaced rules with models, and 

threshold with distributions. Under the guidance of two forensic organisations (Forensic 

Science SA and the Institute of Environmental Science and Research in New Zealand) and the 
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National Institute of Forensic Science in Australia (headed at that time by Alastair Ross), work 

was started on developing a system that could interpret mixed DNA profiles originating from 

two individuals, taking only the most fundamental of profile aspects into account, with the 

potential that it could later extend to more complex problems. Over the next year formulae 

were derived, and systems developed that could address the issue and eventually a system based 

on Markov Chain Monte Carlo was developed. The mathematics was derived in generality, so 

that there was no limit to the profile complexity that could be analysed (save perhaps computing 

power, time and peoples comfort levels). By 2011, a basic working system had been developed 

that passed an initial trial, by testing a series of mixed DNA profiles produced for validation.  

By mid-2012 STRmix™ was introduced into active casework in South Australia and New 

Zealand, with the rest of Australia coming on board over the following few years. 

 

Chapter 1 provides a brief introduction to the basics of DNA profiling (section 1.1) and 

interpretation (section 1.2), which is included so that this thesis can be read as a closed piece 

of work, even for those who are unfamiliar with the general topic. Section 1.3 provides some 

content on the continuous system of DNA profile interpretation that is the core of the thesis.  

 

Chapter 2 elaborates on the models that describe DNA profile behaviour. Once defined (and 

tested) these models can then be combined into a complete system used to describe, 

probabilistically, observed DNA profiles, and more importantly assess the potential 

contribution of nominated individuals to evidence profiles. 

 

Chapter 3 describes the statistic used to evaluate DNA evidence, the likelihood ratio (LR). 

Within the LR there is a vast array of topics that are considered; the way propositions are 

formulated, the parameters within the LR model that contribute to uncertainty, the 

consideration of complexities such as the presence of related individuals in a DNA profile, and 

the exchange between considering a single component of a mixture to the entire mixture. Many 

of these topics were highlighted during the development and testing of STRmix™ and required 

the development and derivation of mathematical descriptions and solutions. 

 

As STRmix™ uses models that describe DNA profile behaviour, it became apparent that the 

system would need to be calibrated to each laboratory process to which it was applied. Chapter 

4 discusses the calibration of a complex MCMC system to the functioning of a laboratory. 

 

Chapter 5 presents a series of works that were required to test the functioning of the MCMC 

system against theoretical expectations, in an effort to demonstrate its ability to provide 

appropriate evidential strength when evaluating individuals’ potential contribution to a mixed 

DNA profile. 
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Chapter 6 demonstrates the extent to which STRmix™ has been successful in achieving 

consistency between analysts and laboratories. 

 

Chapter 7 and 8 present work focussed on the future directions of the system of DNA evidence 

evaluation (chapter 7) and then efforts to improve the data being produced prior to the use of 

STRmix™ and after STRmix™ (chapter 8). 

 

Chapter 9 provides information on the impact that this work has had on the forensic 

community, mainly from its use in the DNA analysis software STRmix™ 
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1.1 An introduction to DNA profiling 

One of the most commonly used forensic science disciplines is forensic biology. Typically, 

when a criminal case is submitted to a forensic biology institution, it is done so with the aim of 

identifying whose DNA is present on an item, which can be used as evidence that someone has 

(or has not) been in contact with an item of probative interest in the case. In order to carry out 

the task of identifying DNA on an exhibit, the exhibit is examined, and samples are taken from 

areas of interest (e.g. the handle of a weapon to identify who may have handled it, the collar of 

a t-shirt to identify who may have worn it, or an intimate swab taken from a victim to identify 

who may have been in contact with them). The sample then has cellular material broken open 

to release DNA (a process known as DNA extraction), the DNA is quantified and then targeted 

segments of the DNA are copied millions of times, with each fragment having a fluorescent 

tag attached, in a process known as polymerase chain reaction (PCR). The amplified DNA 

fragments are separated according to size using a capillary of acrylamide gel, and then detected 

by excitation of the fluorescent tags and detection by a charged couple device camera. The 

greater the number of DNA strands that were present in the initial sample, the more amplified 

PCR fragments will be produced and the greater the detected fluorescent signal. The resulting 

graph of fluorescence over time is referred to as a DNA profile. 

Figure 1 shows a DNA profile from a single individual, created using a commercially available 

PCR kit called GlobalFiler™ (Thermofisher). GlobalFiler™ targets 24 regions of human DNA, 

two of which are associated with determining the sex of an individual and 22 of which are 

highly mutable short tandem repeats (STRs) that are used for individualisation. 
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Fig. 1. A DNA profile shown in the form of an electropherogram (epg) 

 

The horizontal axis represents the molecular weight of the PCR amplified fragment, expressed 

in base pairs. The signal is divided into six horizontal panels, which represent the six types of 

fluorescent tag used during the PCR process (6-FAM, VIC, NED, TAZ, LIZ and SID). The 

vertical axis is measured in relative fluorescent units (rfu) and represents the amount of starting 

DNA in the sample. 

 

Once the fluorescent signal has been captured from the capillary electrophoresis instrument it 

must be interpreted before the information can be evaluated in respect to a criminal matter. The 

interpretation consists of designating areas of fluorescence on the DNA profile into categories. 

Some of these categories are useful in the evaluation as they represent information about the 

DNA that was present on the originally sampled exhibit. Other types of fluorescence are 

artefactual and arise as a consequence of producing the DNA profile. The main types of 

fluorescent signal that are classified are: 
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• Baseline – The level of background noise present in DNA profiles produces by the 

capillary electrophoresis instrument. Baseline is not used in DNA evidence evaluations. 

• Allele – The peaks that represent the STR fragments that have been amplified during 

the PCR process. Alleles are used in all evidence evaluations. 

• Stutter – Artefacts produced during the PCR process, stutters are replication errors that 

lead to small peaks that appear around the ‘parent’ allele. Stutters can be of different 

types commonly named in relation to the position relative to the parent peak i.e. ‘back 

stutter’ (one STR unit less than the parent), ‘forward stutter’ (one STR unit greater than 

the parent) or ‘half-stutter’ (half a STR unit less than the parent). Stutters are used in 

some evidence evaluations (depending on the sophistication of the model being used 

for evaluation). 

• Pull-up – Artefacts due to the overlap of the distribution of wavelength emitted by each 

of the fluorophores used in commercial profiling kits. When many fragments labelled 

with a specific fluorophore are detected by the CCD camera a high intensity peak is 

produced in the corresponding dye lane. Lower intensity peaks are seen in dye lanes 

that correspond to fluorophores with similar excitation wavelengths. Pull-up is not used 

in DNA evidence evaluations 

 

Once a DNA profile has been generated in the laboratory and processed to remove any 

unwanted artefactual signal, it can be used for evaluation. Evaluation is the name given to the 

comparison of the evidence profile to reference DNA profiles, to determine whether the donor 

of the reference could also be a donor of DNA to the evidence. The weight of evidence that is 

calculated to carry out this task is a likelihood ratio, which is explained in many places 

throughout this thesis, and which is introduced in more detail in section 1.2. 
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1.2 The evaluation of DNA profile data using the likelihood ratio 

The standard method of modern DNA profile evaluation is the use of a likelihood ratio (LR). 

The LR considers the probability of obtaining the observed data (O) given two competing 

propositions which align with the prosecution (called Hp) and defence (called Hd). The LR is 

then: 

Pr( | )

Pr( | )

O Hp
LR

O Hd
=   

In order to evaluate this expression, a series of nuisance parameters must be considered. The 

parameter that has the longest recognition are the genotypes of the contributors to the DNA 

profile (call the set of genotypes that could describe the profile S, and there are J of them to 

consider). The LR is then stratified across genotype sets: 

1

1

Pr( | ) Pr( | )

Pr( | ) Pr( | )

J

j j

j

J

j j

j

O S S Hp

LR

O S S Hd

=

=

=




 

where the term Pr( | )jO S  is the probability of obtaining the observed data if genotype set ‘j’ 

describes the genotypes of the underlying contributors (and are often referred to as weights) 

and Pr( | )jS Hx  is the probability of that genotype set, given the proposition (and the 

genotypes of the contributors specified within it). The great challenge to the forensic 

community in DNA profile evaluation is the ability to assign values to the weights. This point 

(and more detail on LRs) is discussed in detail in various chapters of the thesis. 

 

Prior to the advent of modern software systems that can be used to analyse DNA profile data 

(these will be discussed in depth during the thesis) the method of DNA profile interpretation 

and evaluation was a threshold-based system. The use of threshold was mentioned the 

introduction as assigning the values of the weights in the LR as 0 or 1. It is worth briefly 

describing the threshold-based system of DNA profile interpretation because: 

• It sets the scene that led to the development of probability-based DNA profile 

interpretation systems (discussed throughout this thesis) 

• The probability-based DNA profile interpretation systems utilise models that remove 

the need for these thresholds 

• Once the thresholds have been applied to the DNA profile, the resulting ‘filtered’ 

information is then used in the likelihood ratio evaluation 

Figure 1.2.1a shows two regions of a DNA profile that an analyst may wish to interpret. Say 

that the analyst has decided that the profile originates from two individuals and wants to 

‘interpret’ the various genotypes that could give rise to this combination of peaks. This would 

typically occur by the application of a series of thresholds to screen out potential 

combinations of the allele as impossible (more accurately, improbable to the point that they 

were going to be discounted as possible genotype combinations). Panel b in Figure 1.2.1 

shows the application of a peak balance threshold. In this example, consider that the analyst 
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wishes to interpret the genotype of the major contributor. To this end the two tallest peaks at 

each locus are considered as potentially pairing, and belonging to the major DNA donor. If 

their height is within a predefined threshold of acceptable balance this would be an allowed 

pairing and the analyst could then continue to apply additional thresholds. If they fall outside 

the balance threshold, then the analyst would abandon the genotype set being considered. 

Panel 1.2.1c shows the application of a dropout threshold (in blue) and a stutter threshold (in 

green). In later chapters in this thesis these terms will be explained and modelled in great 

detail and so that work is not repeated here. It will suffice to say that both dropout and stutter 

are properties of DNA profiles, for which some behaviour is expected and for which 

thresholds have (in the past) been set. Again the analyst would consider the genotype and the 

combinations of dropout or stutter that the genotype being considered would require in the 

observed data in order to make a decision as to whether this genotype could reasonably 

describe the observed data, and again this may eliminate the genotype set from consideration. 

The final threshold shown in Figure 1.2.1 id panel d which applies a mixture proportion 

threshold (in essence the purpose of this threshold is to ensure that the larger peaks at one 

region would align with the larger peak at another region, as expected by DNA amounts 

being contributor specific and constant across regions). Again this may eliminate or allow 

genotype sets through the interpretation. 

 

At the conclusion of the process the analyst would left with genotype sets that passed all the 

threshold-based rules, and if there were only one of these then it would be possible to 

interpret that component of the profile distinctly from any other. This process of threshold-

based interpretation was very wasteful of information, difficult to apply consistently and 

would often lead to situations where no statistical calculation could be conducted (as too 

many genotype sets were considered as possible).  

 

 

a) DNA profile 

 

b) Application of peak 

balance threshold (red) 

 

c) Application of dropout 

threshold (blue) and stutter 

threshold (green) 
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d) Application of mixture 

proportion threshold 

(yellow) 

Figure 1.2.1: Example of a threshold-based system of DNA profile interpretation  

 

As understanding of DNA profile behaviour and interpretation methods grew over the years, 

it became possible to apply models to profile data, rather than thresholds. For example, 

instead of applying a balance threshold, a shift was made to a sliding scale of probability i.e. 

this level of imbalance is only seen in X% of paired peaks. These models then were refined 

and eventually used in probabilistic genotype interpretation systems. It is the transition from 

the manual, threshold-based systems of DNA profile interpretation to the computerised 

application of statistical models to assign values to the weights in the LR that is the core of 

this thesis and whose aspects are described in detail in the chapters that follow. 
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1.3: The fully continuous Bayesian interpretation method 

Book chapter: ‘Chapter 9: The Continuous Model’, written by Duncan Taylor, Jo-Anne 

Bright and John Buckleton. From the book ‘Forensic DNA Evidence Interpretation’ 

Second edition. Edited by John Buckleton, Jo-Anne Bright, Duncan Taylor. CRC Press. 

2016. – Book cited 291 times 

 

Statement of novelty: This chapter is a new chapter, not present in the original edition 

of the book. The majority of material in this chapter is new, or summarises work carried 

out either solely or in conjunction with colleagues. It has been written in a manner that 

is generally more accessible to individuals who are new to the field of forensic statistics 

than the original description in the scientific papers from which they derive. 

 

My contribution: My contributor was as main author. I initiated the writing of this 

chapter and contributed a majority of the work within.  

Research Design / Data Collection / Writing and Editing = NA / NA / 60% 

 

Additional comments: This chapter is a gentle introduction to the idea of fully 

continuous interpretation systems and briefly summaries many points in other works I 

present within my thesis.  
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1.3 – clarifications 

Point 1: 

In the formula provided in the book chapter (chapter page 278) that reads: 

( | , , )

( | , , )

C p S

C d S

p G H G I
LR

p G H G I
=   

GC refers to the crime scene profile (Genotype of Crime-scene). Gc is therefore a set of 

observed peaks with sizes and heights that are treated as random variables. It is true that the we 

may consider Pr(Gc), and typically the binary or semi-continuous methods will assign a 

probability. However, continuous systems may (and often do) exploit the fact that the 

parameters in both the numerator and denominator of the LR can be a ratio of densities, rather 

than strictly probabilities. Therefore, the initial term I the LR equation on chapter page 278 is 

specified as a density. In later LR equations on page 305 to 307, the similar terms used in the 

LR equation are given as probabilities. This is because if there is a difference in the number of 

contributors then the priors between the two terms are different and probabilities must again 

be used rather than densities. 

 

Point 2: 

On page 286 and 287 three are a number of integral formula (for example): 

Pr( | , ) Pr( )i

M

d O M S M M  

which should be formally written without the subscript under the integral term, for example 

correcting the above formula: 

( , | )ip d O M S M  

 

Point 3: 

The terms Pr( | )xN n H=  specify the prior belief by the party (prosecution or defence) that the 

number of contributors, N, takes any specific value, n, prior to seeing the profile. Typical 

practise in forensic genetics is to assign a probability of 1 to the N taking one value of n (for 

both Hp and Hd so that Pr( | ) Pr( | )p dN n H N n H= = = ) and 0 to all others. This removes the 

need for the summation across number of contributors altogether and the LR given in 9.1 

simplifies to: 

Pr( | , )

Pr( | , )

E N n Hp
LR

E N n Hd

=
=

=
 

And the explicit reference to number of contributors in the formula is dropped as the 

propositions are expected to possess this information (i.e. they are in the form, ‘The DNA has 

originated from the POI and 2 other people’ hence requiring that N = 3), so that the standard 

LR formula is. 
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Pr( | )

Pr( | )

E Hp
LR

E Hd
=  

In this section of the text we now consider a situation where the propositions need not specify 

a specific number of contributors, i.e. they can take the form ‘The POI is (not) a contributor of 

DNA to the sample’. We can then consider two possible treatments of the problem, either a 

single value for N is chosen, but can be different between the two parties so that 

Pr( | ) Pr( | )p dN n H N n H= ⊥ = . We could them write the LR as: 

Pr( | , )

Pr( | , )

E N n Hp
LR

E N m Hd

=
=

=
  ,n m+ +   

Where n and m are used to specify that the two numbers can (but need not necessarily) be 

different. An alternative is to consider a range of values for N. Again, there is no need for the 

range being considered to be the same for the two parties i.e. prosecution may state the DNA 

has originated from 1 to 2 people and the defence may specify it has originated from 1 to 3. I 

agree with the examiner that in a formal sense there is no difference between equations 9.2 and 

9.3. The change in summation indices was more to visually explain to a non-mathematical 

audience the assumptions being made within the formula itself. A formula more formally 

expressed would have been: 

Pr( | , ) Pr( | )

Pr( | , ) Pr( | )

n

n

E N n Hp N n Hp

LR
E N n Hd N n Hd

= =

=
= =




  n +  

Where the difference in ranges would be handled by the Pr( | )xN n H=  terms, e.g. if a uniform 

prior was used for Pr( | )xN n H=  then the example described above would be handled by 

considering: 

 1/ 2 1,2
Pr( | )

0

n
N n Hp

otherwise

 
= = 



 

 1/ 3 1,2,3
Pr( | )

0

n
N n Hd

otherwise

 
= = 



 

Due to software limitations, when a range can be specified for N, it is usual that the same range 

must be used for both parties. 

There may be some instances where the case scenario being put forward could inform this 

probability, i.e. For the DNA profile produced from an intimate swab taken as part of a sexual 

assault where the victim has had no recent previous sexual contact with anyone, there may be 

more probability placed on N = 1or 2 (i.e. the victim, or victim and suspect, respectively). In 

the case of a swab of drug paraphernalia taken from the scene of a share house, there may be 

more probability placed on higher values for N. However, given difficulties in translating these 

situations into numerical values, it is often the case that equal probabilities are used for all 

values of N within the range n (where n is the set of contributor numbers being considered): 
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1
Pr( | ) Pr( | )N n Hp N n Hd= = = =

n
  for all n 

So that the LR is given by: 

Pr( | , )

Pr( | , )

n

n

E N n Hp

LR
E N n Hd





=

=
=




n

n

  n +  

As per eq (9.3). 
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Chapter 2: Models in the fully continuous interpretation system 

The first task when creating a system that can be used to analyse DNA profiles is to describe 

how DNA profiles look and behave in the language of mathematics. During the development 

of STRmix™, before any programming, the most important features of DNA profiles, and how 

they could be described in real world terms, were determined i.e. the amount of template DNA, 

the level of DNA degradation and the efficiency with which the DNA profiling process 

occurred. There is little ability to short-cut this modelling the process, i.e. if peak height 

information is to be used in the analysis then it is a necessity to mathematically describe enough 

behavioural properties of DNA that the majority of peak fluorescence can be described. The 

assumption that is then made, is that any difference between the peak heights that are expected 

(from the models) and those that are observed (in the profile) is due to some system of 

stochastic peak height behaviour, which is then modelled using a peak height variability model. 

 

The sub-sections in this chapter comprise the publications that explain different models used 

to describe DNA profile behaviour. The final publication in the chapter brings the models 

together into an MCMC based system and applies them to forensic problems. People most 

directly associate this last publication with the software STRmix™ as it is the heart of how the 

program works. 

 

The various models used in STRmix™, or any DNA interpretation system, are usually grouped 

into categories; biological models and statistical models and it is worth briefly explaining how 

the two differ. The starting premise is that events occur in nature that are unable to be directly 

observed. Inferences are made that they have occurred because the effect of the event is seen 

in the DNA profiles that are produced. For example, it can be seen that peak heights tend to 

decrease across a DNA profile as molecular weight increases and so it is stated that degradation 

has been ‘seen’. Of course, no degradation has been seen directly occurring (i.e. an analyst has 

not looked down a microscope and seen strands of DNA breaking apart before their eyes, or 

even cast their gaze over the wreckage of some DNA fragments, surmising it must have once 

been whole) but rather what is seen is the manifestation of the degradation in the particular 

type of data that has been generated. The mathematical process used to link the real-world 

event of degradation to the way it manifests itself on the EPG is considered a biological model. 

There is therefore a biological model that exists for every aspect of an EPG being described. 

Having biological models for various real-world events, there may be a desire to ask questions 

of the data, ‘How much DNA is there from each contributor?’, ‘Could Mr X be a contributor 

to this profile?’, ‘Is this profile from 2 or 3 contributors?’, or ‘Is this small peak an allele or 

an artefact?’. These questions are not describing a biological event, but rather seeking some 

information. In order to translate the DNA profile data that has been obtained into answers for 

these questions requires the use of statistical models. For example, a statistical LR model is 

used to address questions of support for nominated individuals being donors to a DNA mixture. 

The statistical model of MCMC is used to glimpse at the posterior distribution of various 

parameters of interest, such as the amount of DNA each contributor has provided, or the 

goodness of fit of various genotypes in describing the peaks observed. As is often the case in 

science there are models within models and the picture can become complex as one seeks finer 
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and finer resolution, however dichotomising models into two types assists in the understanding 

of the whole picture. 

 

Some of the papers in this chapter repeat material from the book chapter in the first chapter. 

The information has been supplied in the reverse order to how it was created. First came the 

more comprehensive mathematical descriptions, given in the papers in this chapter, and 

afterwards a gentler version produced for publication in DNA Evidence Interpretation. 
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2.1: The need to develop models to describe DNA profile behaviour 

Start with the obvious trend that as more DNA is added to a system, then the resulting height 

of peaks on an EPG will be greater. Also, that when individuals possess the same alleles that a 

combination of their DNA result in a relative summation of their individual peaks to a single, 

indecomposable, larger version in the mixture. These concepts were already so well recognised 

prior to the development of STRmix™ that there was no ability to publish work in the area.  

 

Stutter, too, was well recognised. The standard method for obtaining the expected height of the 

stutter was to regress the allelic designation (which is based on its molecular weight, or size) 

against stutter ratio (using data from a large validation study) and then having obtained the 

expected stutter ratio for the allele of interest, multiplying it by the parent peak height to obtain 

the expected stutter peak height. This model was found to work well for some loci and 

mediocrely for others. A simple linear regression model was implemented into the early version 

of STRmix™, noting that a better system did exist. That better system is the subject of the 

publication in section 2.2, which used the underlying sequence of the allele rather that its 

absolute size. This was called the ‘LUS’ model, for Longest Uninterrupted Sequence. The 

model was later refined even further to the ‘multi-LUS’ model, which is described in the paper 

in section 2.5. The multi-LUS model has since been incorporated into STRmix™ and 

validation work found that the statistic used to gauge how well the observed data is being 

described, improved markedly with the change. While reporting the refinement of the stutter 

model in the publication in section 2.5, we also took the opportunity to publish examples of 

how different aspects of DNA profile behaviour could be validates. We had, by this point, 

carried out these tasks a number of times when assisting laboratories with their validations, and 

had developed a number of simple and standardised methods. 

 

Another important feature of DNA profile behaviour is the manner in which DNA degrades. 

In the most basic of descriptions, peaks get less intense as DNA fragment size increases. 

Imagine DNA as a long, wet noodle, the longer the strand the more prone to breakage. The 

simplest model to describe such a downward trend is linear, and this is indeed how degradation 

was initially modelled. The linear description of degradation worked well for the DNA 

profiling kits available at the time STRmix™ was first introduced. These were relatively simple 

(by current standards) profiling kits that had a size range of the DNA fragments produced from 

approximately 100 base pairs to 300 base pairs. In Australia and New Zealand in 2012 and 

2013 (just after STRmix™ was introduced into active casework) there was an agreement by 

the Biology Specialist Advisory Group (a group consisting of senior member of government 

forensic biology laboratories around Australia and New Zealand) to increase the core number 

of loci from 9 to 18. This meant the introduction of new DNA profiling systems that possessed 

approximately double the number of regions (loci) examined. The DNA profile ‘real estate’ in 

the simple profiling systems was already very highly utilised, and so the introduction of more 

loci could only occur by two means, the addition of loci on a new dye channel or the extension 

of the current dye channels out past 300bp. The new kits did both. The consequence of the 

larger fragments was that the linear model of degradation was being extrapolated out to areas 

that hadn’t previously been examined, and it was found lacking in some instances. Investigation 

into degradation models found that as the molecular weight range increased, a better 
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description of the degradation was achieved using an exponential distribution, something that 

is shown in the publication in section 2.3. STRmix™ was updated shortly after the publication 

to utilise the exponential degradation model. 

 

These models of DNA profile behaviour, when combined, give the ability to describe what we 

would expect an electropherogram to look like, if we knew the values of various real-world 

parameters (such as DNA amount or level of degradation) values were. Of course, for evidence 

samples these parameter values are never know, but having models to translate them from 

parameter values to expected profiles allows a system to be developed that can be used to 

interpret DNA profile data, and this is described in the paper in section 2.6.  
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2.2: Stutter 

 

Manuscript: Developing allelic and stutter peak height models for a continuous method of DNA 

interpretation. JA Bright, D Taylor, JM Curran, JS Buckleton. (2013) Forensic Science 

International: Genetics 7 (2), 296-304 – Cited 51 times 

 

Statement of novelty: The idea of using the longest uninterrupted repeat had been previously 

published. This paper extends those works by carrying out a much more in-depth modelling of 

stutter ratio using the LUS system and provides an assessment of the model performance. 

 

My contribution: I was a co-contributor to this work in the modelling and writing of the paper. 

Research Design / Data Collection / Writing and Editing = 25% / 10% / 25% 

 

Additional comments:  
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2.3: Degradation 

 

Manuscript: Degradation of forensic DNA profiles. JA Bright, D Taylor, JM Curran, JS 

Buckleton. (2013) Australian Journal of Forensic Sciences 45 (4), 445-449 – Cited 23 times 

 

Statement of novelty: At the time of publication the work was the first to compare the 

performance of the different models of degradation (linear and exponential) acting on DNA 

profile data. 

 

My contribution: I was a co-contributor to this work in the modelling and writing of the paper. 

Research Design / Data Collection / Writing and Editing = 20% / 5% / 20% 

 

 

Additional comments:  
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2.4: Drop out 

Manuscript: Utilising allelic dropout probabilities estimated by logistic regression in casework. 

J Buckleton, H Kelly, JA Bright, D Taylor, T Tvedebrink, JM Curran. (2014) Forensic Science 

International: Genetics 9, 9-11 – Cited 9 times 

 

Statement of novelty: This work provides a comparison of the performance of several published 

methods for modelling drop-out and a new variant developed and described in the paper. 

 

My contribution: I was a minor contributor to the modelling work carried out and assisted in 

writing the manuscript (in numerical terms approximately 20%). 

Research Design / Data Collection / Writing and Editing = 10% / 5% / 20% 

 

Additional comments: The models of drop-out developed in this paper are not those that were 

ultimately used in STRmix™. This paper is included to complete the picture of DNA profile 

behaviour modelling that is the focus of chapter 2 
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2.5: Saturation, baseline and drop-in 

Manuscript: Validating multiplexes for use in conjunction with modern interpretation 

strategies. D Taylor, JA Bright, C McGovern, C Hefford, T Kalafut, J Buckleton. (2016) 

Forensic Science International: Genetics 20, 6-19 – Cited 7 times 

 

Statement of novelty: The calibration of STRmix™ for a specific laboratories data requires that 

they examine a number of aspects of DNA profile behaviour. While papers and books in the 

past have commented on these behaviours, this paper provides a description of statistical 

models for each behaviour and the means of modelling them. Many of the models described in 

this work replace rules or thresholds that were typically used to interpret DNA profiles 

 

My contribution: I was the main author and did the majority of modelling and analysis that 

went into this manuscript. 

Research Design / Data Collection / Writing and Editing = 60% / 75% / 60% 

 

Additional comments:  
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2.5 – Clarification 

Regarding the dropout model: 

Observed peak heights are indicated as O. When a peak has not been observed above a 

threshold (called an analytical threshold and designated as AT) then this is called a ‘dropout’. 

We consider that O in this instance can take any value up to AT,   ( )| ~ 0,O O AT U AT . O 

is a random variable that has a log-normal distribution: 

( )
2

2

10log ,
c

O LN E
E

 
 
 
 

 

Where ln(10) =  is used to transform between logs in base 10 and base e. The probability of 

dropout is therefore obtained by: 

( )
0

Pr( | ) |

AT

O AT E p o E do =   

In practice this can be achieved by summation over steps in O of 1rfu: 

( ) ( )
1

0

Pr( | ) 0.5 | Pr 1
AT

o

O AT E p o E o O o
−

=

 = +   +  

Note that we apply a transformation from modelling O directly to modelling 10log
O

E

 
 
 

 by: 

2

10log ~ 0,
O c

N
E E

  
  

   
 

The integral required to calculate the probability of dropout using the transformed variable, to 

provide equivalent dropout probability to the untransformed variable, is: 

( )

10log
2 2

2

10

0 0

Pr( | ) | log , | 0,

AT

EAT
c c

O AT E LN o E do N o do
E E

 

 
 
    

 = =   
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2.6: Putting all the models together in a Bayesian framework for profile deconvolution using 

Markov Chain Monte Carlo 

 

Manuscript: The interpretation of single source and mixed DNA profiles. D Taylor, JA Bright, 

J Buckleton. (2013) Forensic Science International: Genetics 7 (5), 516-528 – Cited 75 times 

 

Statement of novelty:  This paper describes the combination of modelling elements from the 

previous papers in this chapter. The method described in based on a Markov Chain Monte 

Carlo and the paper explains how the use of this method ultimately translates to a likelihood 

ratio (being the standard evidential weight used in forensic biology). 

 

My contribution: I was the main author of the paper and equally responsible for theory and 

mathematics that the work is based on. I was the sole individual who programmed the software 

for simulations and analyses carried out. 

Research Design / Data Collection / Writing and Editing = 45% / 60% / 55% 

 

Additional comments:  
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2.6 – clarification 

Point 1: Formal description of the LR: 

I provide a formal description of the LR below (however, I will use O instead of Gc, which is 

consistent with later works): 

We seek the likelihood ratio (across all loci): 

Pr( | )

Pr( | )

Hp
LR

Hd
=

O

O
 

Let there be J different genotype sets (S) of N contributors that can be considered 

 : 1...j J=jS , so that: 

1

1

Pr( | , ) Pr( | )

Pr( | , ) Pr( | )

J

j

J

j

Hp Hp

LR

Hd Hd

=

=

=





j j

j j

O S S

O S S

 

Noting that once genotype sets are specified the probability of the observed data is no longer 

dependant on the hypothesis: 

1

1

Pr( | ) Pr( | )

Pr( | ) Pr( | )

J

j

J

j

Hp

LR

Hd

=

=

=





j j

j j

O S S

O S S

 

Note that J can be very large. For each locus, where there are ‘a’ possible allele a contributor 

can possess 
( 1)

2

a a +
 different genotypes (obtained by the number of pairwise comparisons 

between a elements plus a homozygous genotypes). An N person mixture at L loci will possess 

1

2

LN

a
a
 +  
  
  

 possible genotypes sets, so if we take a modern multiplex that possesses 

approximately 20 loci, each with approximately 15 alleles J > 10124. Many of these will not 

contribute to either one or both of the sums in the LR because: 

1. Pr( | ) 0
j

O S , if the probability of the observed data is so low given genotype set j that 

it is approximately 0 i.e. the genotype set requires so much peak height variability, 

drop-in, drop-out or other improbable DNA profile events. 

2. Pr( | ) 0H =
j

S , if the proposition requires the contribution of DNA from an individual 

whose genotype is not represented in set j. 

It may be useful to think of the sum across j in the LR to be across all genotype sets where: 

Pr( | )Pr( | ) 0H 
j j

O S S  

However, it needs to be realised that the number of non-zero elements that would apply to the 

numerator and denominator could (and usually would) be different due to the second condition 
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above being unique to each proposition. It therefore may be useful to think of J as the number 

of genotype sets for which Pr( | ) 0
j

O S , so that the sum is over the same number of genotype 

sets in numerator and denominator but may still possess some zero elements due to the second 

condition above. 

 

Each genotype set Sj contains N elements (genotypes)  1 ,..., NG G=jS , where a left 

superscript is used to denote a contributor position. Also note the shift from S (to denote a set) 

to G (to denote a genotype). When a genotype set is conditional on a proposition, it can be 

broken down by  , || , ,u j Hp k pHp =jS S S S , where: 

• Sk are the set of known contributors (under both Hp and Hd) to the sample 

• Sp are the set of persons of interest that are contributors under Hp but not Hd and 

• Su,j|Hp are the set unknown individuals from the population so that 
,u j k p N+ + =S S S  

. Note that this term still requires a reference to the genotype set j, as (unlike the known 

contributors or persons of interest) the genotypes of unknown individuals change with 

changing j. 

Note that Sp does not apply to Hd (i.e  , || ,u j Hd kHd =jS S S ). Due to this, Su,j is therefore also 

different under Hp and Hd. I identify this difference by specifying Su,j|Hp and Su,j|Hd for Hp and 

Hd respectively. Note that both Sk and Su,j|Hp can be empty sets, however Sp and Su,j|Hd must 

contain at least one element in a forensic evaluation. Also note that  , | , | ,u j Hd u j Hp p=S S S . This 

gives LR: 

, |

1

, |

1

Pr( | ) Pr( , , | )

Pr( | ) Pr( , | )

J

u j Hp k p

j

J

u j Hd k

j

Hp

LR

Hd

=

=

=





j

j

O S S S S

O S S S

 

If we then consider that we have the reference information for the individuals in Sp and Sk then: 

, |

1

, |

1

Pr( | ) Pr( , , | , , ) Pr( , )

Pr( | ) Pr( , | , , ) Pr( , )

J

u j Hp k p k p k p

j

J

u j Hd k k p k p

j

Hp

LR

Hd

=

=

=





j

j

O S S S S S S S S

O S S S S S S S

 

The probability of the genotypes of individuals in Sp and Sk is independent of proposition and 

so cancels in the numerator and denominator of the LR. Additionally, under Hp individuals in 

Sp and Sk are known to contribute, so that , | , |Pr( , , | , , ) Pr( | , , )u j Hp k p k p u j Hp k pHp Hp=S S S S S S S S

, as Pr( , | , , ) 1k p k p Hp =S S S S , giving LR: 
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, |

1

, |

1

Pr( | ) Pr( | , , )

Pr( | ) Pr( | , , )

J

u j Hp k p

j

J

u j Hd k p

j

Hp

LR

Hd

=

=

=





j

j

O S S S S

O S S S S

 

 

Point 2: Equation 8 on paper page 523 

This equation should read (in line with the previous clarification point): 

, |

1

, |

1

Pr( | , ) Pr( | , , )

Pr( | , ) Pr( | , , )

J

u j Hp k p

j

J

u j Hd k p

j

Hp

LR

Hd

=

=

=





j

j

O S M S S S

O S M S S S

 

 

Point 3: Appendix B 

I provide a replacement to appendix B below (but have replace E, which was used to denote 

evidence, with O, used to denote observed data in order to be more consistent with later works): 

The LR seeks to calculate: 

1

2

Pr( | )

Pr( | )

H
LR

H
=

O

O
 

 

where H1 and H2 specify two propositions, typically those of prosecution and defence.  We can 

consider a number of nuisance variables required to evaluate the probabilities in the LR. The 

most commonly considered variable within forensic genetics is the genotype sets that the 

contributors could possess. These will specify which alleles are expected to be present or absent 

from the profile, but not their expected heights. Introducing genotype sets (Sj) in the LR gives: 

1

2

Pr( | ) Pr( | )

Pr( | ) Pr( | )

j

j

j

H

LR
S H

=





j j

j

O S S

O S
 

 

Note: 

• The Pr( | )
j

O S  does not depend on the hypothesis and so they are removed from the 

conditioned terms. This is because the hypothesis denotes genotypes sets, so both are 

not required. 

• We have not discriminated between genotype sets in the numerator and denominator.  

This is because the probabilities Pr( | )
j

O S  are independent of hypothesis.  

 

 

We now consider parameters that are used to describe the peak height data in a DNA profile. 

They include: 
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• Template DNA amount for each contributor (n), which has prior  0,nt U T  (where 

T represents the upper limit on template amount before a DNA profile will no longer 

be analysed and is termed a saturation level). Let T be the set of N template values. 

• Degradation for each contributor, which has prior  0,nd U D  (where D represents a 

level of degradation above which profiles will generally be considered too low quality 

and will not be analysed). Let D be the set of N degradation values. 

• A PCR replicate efficiency term for each PCR replicate (y), which has prior 

 0,yR U   (note that in practise, if an analysis was carried out and a replicate 

amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be 

considered that one of the replicates is likely to have been the subject of an 

amplification error and should not be included in the analysis). Let R be the set of Y 

replicate amplification efficiency values. 

• An amplification efficiency term for each locus (l), which has prior ( )2 20,lA LN  

(where ln(10) =  is used to transform between logs in base 10 and base e and 
2 is 

determined by laboratory calibration). Let A be the set of L locus amplification 

efficiency values. 

• A peak height variability parameter for each fluorescence type (i), which has prior 

( ),i i ic    (which is determined by laboratory calibration). Let C be the set of I 

peak height variability values. 

Let  , , , ,=M T A R D C , which we term mass parameters. Including these nuisance parameters 

in the LR gives: 

1

2

( | , ) Pr( |, ) Pr(

( | , ) Pr( |, ) Pr(

j

j

p H d

LR
p H d

=





j j

j j

O S S

O S S

M M) M

M M) M
 

 

Which is the form of the LR given in the body of the paper in equation (2). This integral, if M 

was expanded out into individual parameters, is high dimensionality a multidimensional 

integral with 2N + L + Y + I dimensions. 

 

Due to the high dimensionality of the integration required, numerical Monte Carlo integration 

is infeasible. We instead use Markov Chain Monte Carlo (MCMC). MCMC sets up a posterior 

distribution as its limiting distribution. We use the Metropolis-Hastings algorithm so that after 

sufficient run time the Markov chains are sampling from the joint posterior distribution.  

 

The integral could be evaluated separately for the numerator and denominator of the LR. It is 

expected that the posterior distribution for parameters within M would be similar between the 

integrals. The main difference would be that different individuals are specified in the 

propositions and so the prior probabilities for genotype sets will differ i.e. typically the 

prosecution proposition specifies additional contributors of DNA as known individuals and so 

it is expected that a larger number of genotype set prior probabilities would be zero (those that 

did not contain the genotypes of the specified individuals). 
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To do this would mean that for every comparison to a person of interest in a case, a separate 

integration would be required, which has associated time and computer resource costs. To 

overcome this, we use MCMC to evaluate the integral that does not take the two competing 

hypotheses into account. We do so by considering only genotype sets that satisfy conditions 

that the profile has originated from N contributors, the genotypes of some of which are fixed 

(those agreed to be contributors under both propositions). We therefore evaluate the integral: 

( | , ) Pr(
j

p d j
O S M M) M  

The process for a single MCMC iteration is: 

• Draw values for parameters within M by random walk 

• Randomly choose a genotype set at one randomly chosen locus (leaving genotype set 

at all other loci unchanged) by choosing from any of the available genotype sets with 

equal probability, i.e. choose l, where  1,l L . Let there be Jl genotypes at locus l then 

choose jl so that 1,l lj J     

• Evaluate ( | , )Pr(p jO S M M)  

• Accept or reject proposed parameters by Metropolis-Hasting algorithm 

 

 

Note that only one genotype set is proposed within an iteration of the MCMC algorithm (as 

opposed to calculate the sum across all genotype sets at each iteration). Doing so decreases the 

acceptance rate, however this is offset by being able to complete an iteration with much less 

calculation. We found that the time increase due to a lower acceptance rate is less than the 

speedup due to quicker calculation time as there can be multiple genotype sets that have 

similarly high posterior probabilities.  

 

Genotype sets can take only discrete, unordered values. The mean posterior probability for 

genotype set j can be determine by residence time of genotype set j as during the MCMC. The 

residence time of Sj in the MCMC will be directly related to its probability as this is what the 

Metropolis Hastings acceptance/rejection criteria are based on. In other words, residence time 

for genotype set j, rj: 

( | , ) Pr(j

j

r p d  j
O S M M) M  

Note that by choosing genotype sets uniformly across all available sets we use proposed 

distribution q(x) that has been weighted compared to the target distribution  ( )x  for a 

genotype set j at locus l by: 

( )

( )

1

Pr( | )

lq x J
w

x H

 
 
 

= =
l

jS
  

for each 
l

jS  within the model. The choice to do this has the advantage that allele frequencies, 

and hence a population, does not need to be specified in the MCMC. The population, or indeed 

multiple populations, of interest can be chosen at a later time when an LR is required. 

 

We correct for the bias introduced into the by multiplying each of the J posterior elements by 

the weight above within the LR to recover: 
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Chapter 3: The likelihood ratio 

Even when manual systems of DNA profile interpretation were in use, the dominant form of 

reporting DNA profiling results in Australia was the LR. In fact, all but one laboratory in the 

years prior to 2012 (when STRmix™ was adopted) used this form of evaluation. Within the 

framework of reporting the strength of DNA evidence in LR form there are numerous topics 

of discussion that range from almost philosophical, to biological to outright mathematical.  The 

publications within this chapter touch on a few of these topics, namely; the formation of 

propositions under which the findings will be considered, the numerical calculation of the LR 

for complex mixtures, the consideration of relatives of a person of interest and the sensitivity 

of the LR to prior distributions of parameters within the biological and statistical models. 

 

There were different motivations that lead to many of these works and they are given 

throughout the chapter as it progresses. 
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3.1: The formulation of propositions 

The LR requires the formation of two competing scenarios (called hypotheses or propositions 

within Forensic Biology circles) for the evidence. In the early years of DNA profiling, 

proposition formation was generally a relatively straightforward task as the DNA profiles that 

were considered for a numerical evaluation were restricted to such high quality and low 

complexity that the appropriate propositions to use were obvious. For example (and putting 

aside single source profiles, where the choice of propositions is completely obvious at sub-

source level) a typical scenario where a DNA profile of sufficient quality was obtained would 

be an intimate swab from the victim of an alleged rape. The mixture obtained could be 

explained by the victim and suspect and was intense enough that it could be safely assumed all 

data was present (i.e. no dropout could have occurred). The propositions would then be: 

1) The DNA came from the victim and suspect 

2) The DNA came from the victim and an unknown male 

The advent of STRmix™ meant that many more complex profiles could be evaluated, which 

brought with it the question of what propositions were appropriate. For example, imagine the 

same scenario as previously described however there is a single additional weak allele in the 

profile that indicated a third contributor. Further imagine that the victim’s boyfriend (with 

whom she is sexually active) possesses this allele (along with approximately 30% of the 

population). Should the propositions now be: 

1) The DNA came from the victim, boyfriend and suspect 

2) The DNA came from the victim, boyfriend and an unknown male 

It may be believed that there is insufficient information in this third, weak minor component to 

assume the boyfriend. Extend the scenario to one where four weak peaks were present that 

matched the boyfriend, or eight, or 16, etc Common questions that arise in proposition setting 

are: ‘At what arbitrary point is enough to assume?” and ‘should the profile itself even be used 

to determine propositions?’ Leading philosophy on the topic suggests that propositions cannot 

be findings-lead. Instead, propositions should be set on case circumstances. However, if a 

decision has been made, based on case circumstances alone, to assume the presence of the 

boyfriend, and a DNA profile is received that shows no sign of a contribution of DNA by him, 

can the propositions be changed at this point? 

Such vacillations made it appear as though the forensic biology community was still destined 

to be plagued by subjective and inconsistent choices of propositions, some of which would no 

doubt be based on largely arbitrary threshold-based decision. 

An increasingly paced influx of such questions lead to the work presented in this section. This 

paper outlines the existing ‘rules’ of evidence evaluation and builds on them in light of the 

new-found ability to evaluate complex DNA profiles.  
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Manuscript: Helping formulate propositions in forensic DNA analysis. J Buckleton, JA 

Bright, D Taylor, I Evett, T Hicks, G Jackson, JM Curran. (2014) Science & Justice 54 

(4), 258-261 – Cited 7 times 

 

Statement of novelty: The work builds on previous philosophical recommendations on 

proposition development for use in LRs. In particular, it provides insights on how to 

formulate propositions in complex situations 

 

My contribution: I was a roughly equal co-contributor to the theorising and writing of 

the paper. 

Research Design / Data Collection / Writing and Editing = 15%/ NA / 15% 

 

Additional comments:  
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3.2: A new level in the hierarchy of propositions brought about by continuous DNA profile 

interpretation 

It became apparent from the work on proposition setting that there was something missing from 

the current picture. This was magnified as STRmix™ was being programming and references 

were being compared to complex mixtures (particularly when there was some support for them 

being any one of multiple contributors in the mixture). The logic went like this: 

1) A reference profile is to be compared to a mixed evidence profile 

2) There is a priori no reason to restrict comparisons to any particular component of the 

mixture 

3) The more complex the mixture the more ways of comparing references to it and the 

more chance for them to ‘match’ 

4) The LRs for these different ways of comparing the same evidence and reference 

profiles, using the same propositions, were different (except for the most contrived of 

circumstances) 

This raises two problems. First, there are multiple LRs for the comparison of reference and 

evidence profiles, using the same propositions. Second, it is not clear which is the ‘right’ LR? 

Very early versions of STRmix™ simply reported the biggest of the multiple LRs obtained, 

however given the propositions were asking about an individual’s potential contribution of 

DNA to the DNA profile as a whole (not specifying a component of it) and that in many 

instances the POI was excluded from being a contributor to other components of the mixture, 

there appeared to be information that was not being utilised. 

The multiple mixture component situation is similar to the multi-testing problem associated 

with genetic tests for dependencies between loci. Simply put, the more tests that are carried 

out, the more likely it is that an association will be found, just by chance. 

The effect being seen was the result of a previously unrecognised level in the hierarchy of 

propositions, one that sat below the lowest level then recognised. A description of the new, 

lower, hierarchical position and the mathematical process of moving from this level, up to the 

next (and in the process considering the comparison of the reference to all components of the 

DNA mixture) is given in the paper in this section of the thesis. 
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Manuscript: The ‘factor of two’ issue in mixed DNA profiles. D Taylor, JA Bright, J 

Buckleton. (2014) Journal of theoretical biology 363, 300-306 – Cited 7 times 

 

Statement of novelty: This paper builds on the hierarchy of propositions concept and extends 

the theory to explain how it applies to sub-components of DNA profiles within a continuous 

DNA interpretation system.  

 

My contribution: I was main author and main theorist on this work. I carried out the 

simulations that are used in the paper. 

Research Design / Data Collection / Writing and Editing = 85%/ NA / 80% 

 

Additional comments:  
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3.2 – Clarification 

Point 1: clarification on the contributor order nomenclature using a multi-locus example 

Consider a system that yields a posterior distribution for each parameter that is used to describe 

a DNA profile. When presented with a DNA profile that has DNA contributed in unequal 

amounts, then the posterior distributions relating to amount of DNA will be different for each 

contributor. Consider the following example of a DNA profile at two loci: 

 

We can see that at each locus there are high peaks and low peaks, and we might suggest that 

there is a major contributor and a minor contributor of DNA to this sample. We would expect 

that a contributor dependant template parameter would have a distribution with a higher mean 

for the major contributor then the minor contributor.  Consider that in this example the peak 

heights between the two contributors are divergent enough that the probability of a high peak 

partnering with a low peak is effectively 0. Also, consider that the heights of all peaks are such 

that we are satisfied we are seeing all contributor peaks (i.e. there has been no dropout of any 

of the contributor’s alleles).  Under these conditions, at locus 1, we would have acceptable 

genotypes: 

[A,B] and [C,D] 

 And for locus 2 we have 

[E,F], [E,G], [F,G] and [G,G] 

Note that some of these genotypes would correspond to the major contributor and others to the 

minor contributor, but I have not specified any order in the sets given. Also note that template 

DNA amount acts across loci, i.e. the major contributor at one locus, must also be the major 

contributor at another locus (at this stage ignoring situations where degradation has acted to 

different degrees on the two contributors so that the major at low molecular weight loci could 

become the minor at high molecular weight loci). Considering multi-locus genotypes, we 

would therefore not expect a donor of DNA to the sample to have: 

[A,B] & [E,F] 

But could have: 

[A,B] & [E,G] 

It is useful to separate the genotypes that each contributor could have. The table below provides 

this information for the profile above: 
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 Contributor 1 genotypes Contributor 2 genotypes 

Locus 1 [C,D] [A,B] 

Locus 2 [E,F] [E,G], [F,G] and [G,G] 

 

In the table above the ordering is that contributor 1 is the major contributor and contributor 2 

is the minor contributor, although this is not important (i.e. I could have just as readily switched 

the genotypes for the two contributors as long as I maintained the same sets of genotypes at 

both loci for each contributor). 

This introduces the concept of an order in genotype sets. Consider J sets of N genotypes at 

locus l,  1 ,...,l N l

j jG G=l

jS . In the example, there is one genotype set at locus 1: 

    1

1 , , ,C D A B=S  

and three at locus 2: 

    2

1 , , ,E F E G=S  

    2

2 , , ,E F F G=S  

    2

3 , , ,E F G G=S  

The order of genotypes in the set is given by convention that position 1 is the major and position 

2 is the minor. These genotype sets have associated with them posterior distributions for 

parameters. 

 

Consider now that we wish to compare a POI who has genotype [A,B] at locus 1 and [F,G] at 

locus 2. We could compare them to the mixed DNA profile using propositions: 

Hp: The POI is contributor 1 and an unknown is contributor 2 

Hd: Both contributors are unknowns 

As [A,B] does not appear in the list of genotypes for set position 1, and [F,G] does not appear 

in the genotypes for set position 2 and so the LR calculated using the above propositions would 

be 0. However, an LR calculated using the propositions: 

Hp: The POI is contributor 2 and an unknown is contributor 1 

Hd: Both contributors are unknowns 

The we would expect some support for the inclusion of the POI as a donor to the mixture. 

So, we find that not only is the order of genotypes in genotype sets important, but also the 

contributor positions to which references are compared. We term this latter the contributor 

order. We signify contributor order by ,N c , where N is the total number of contributors to the 

evidence DNA profile and c is the contributor order. For a single contributor profile there is a 
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single position with which the POI can be compared and so only one contributor order exists, 

1,1 , where  1

1,1 : (POI )G  and I use   to signify a comparison between a person from the 

proposition (typically POI or an unknown) and a genotype set position. For a two-person profile 

there are two contributor orders 2,1and 2,2 . In the first 2-person contributor order ( 2,1) the 

POI is compared with the genotypes in position one and the unknown (U1 for ‘unknown 1’) is 

compared to the genotypes in position two  1 2

2,1 1: (POI , U )G G  . The order is reversed 

in contributor order two  1 2

2,2 1: (U ,POI )G G  . Note that the genotype set position 

always corresponds to the position that the elements of the contributor order are presented. 

From this point forward, I drop the explicit statement of genotype set position. For three person 

profile there are six orders ( ) 3,1 1 2: POI, U , U , ( ) 3,2 2 1: POI, U , U , ( ) 3,3 1 2: U ,POI, U

, ( ) 3,4 1 2: U , U ,POI , ( ) 3,5 2 1: U ,POI, U  and ( ) 3,6 2 1: U , U ,POI . For an N person 

profile there are N! contributor orders. 
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3.3: Treating parameters in the LR as distributions using highest posterior density 

When STRmix™ was introduced into forensic laboratories, the forensic community grappled 

with the introduction of a new source of variability within the generation of the LR, namely 

the variability due to using a stochastic process such as MCMC. The legal community also had 

difficulty with the idea that each analysis (even of the same DNA profile) would produce a 

different result. For too long had ‘reproducibility’ been synonymous with ‘reliability’. In fact, 

the reproducibility of DNA results had never really existed. Every step of generating a DNA 

profile (the amount of DNA sampled from an item, the amount of DNA recovered from the 

sample, the functioning of the PCR and the functioning of the electrophoresis) is subject to 

stochastic variation. Even the previous methods of LR calculation only gave the same answer 

due to the assumptions and simplifications of the models. There was never any guarantee that 

the LRs from these early systems were producing accurate values, and users were mistaking 

the precision with accuracy. For those readers that are familiar with stochastic systems and 

random number generation, imagine absolute reproducibility could be forced within an MCMC 

system by supplying the same random number seed. All would agree that doing this should not 

be viewed as an improvement. Setting the seed will not have improved accuracy or reliability 

and only achieved reproducibility artificially. Introducing a continuous DNA interpretation 

system did not introduce more uncertainty into the LR assignment, merely removed the illusion 

of stability that the simple systems portrayed. 

 

A natural question arising from the use of MCMC was “how much could the LR vary from run 

MCMC to run?” and “what factors will cause it to vary?”. For some time, the forensic 

community had been accustomed to the idea of accounting for sampling variation in allele 

frequencies by providing a confidence (or credible) interval on the LR. These allele frequencies 

are used to calculate the rarity of a DNA profile, and are based on survey of a population, which 

are finite and so subject to random variation depending on who happened to be included in the 

survey. The method for producing such a credible interval is described in the publication in 

section 2.6 using the highest posterior density (HPD). The variability in the LR produced by 

STRmix™ lead to a body of work that included additional factors (additional to allele sampling 

variation) in the HPD credible interval. Specifically, a method was devised to take into account 

the amount of variability expected from the stochasticity of MCMC by using a resampling 

method based on the effective sample size of the analysis. This work is described in the 

publication in section 3.3. 

 

In the work on LR variability, the genetic model was also extended to include the possibility 

that the true offender (if not the suspect) may be a relative of the suspect. This had been 

considered in the past, but not for the complex, mixture based, LR calculations that were being 

performed in STRmix™. The inclusion of relatives as alternate DNA donors produced a 

‘unified’ LR, which is also reported in the publication in section 3.3 and takes steps towards 

the full Bayesian approach spoken about in chapter 1. To achieve this latter task required that 

mathematics be developed that allowed the consideration of relatives of a suspect contributing 

DNA to a complex mixture. This work is described in the publication in section 3.4. 
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Manuscript: An illustration of the effect of various sources of uncertainty on DNA likelihood 

ratio calculations. D Taylor, JA Bright, J Buckleton, J Curran. (2014) Forensic Science 

International: Genetics 11, 56-63 – Cited 10 times 

 

Statement of novelty: This work explores various parameters used in the LR calculation and 

extends existing theory to show how they can be considered as distributions rather than point 

values (which is how they had been treated up until this point). 

 

My contribution: I was main author, main theorist and carried out all simulation work for this 

paper. 

Research Design / Data Collection / Writing and Editing = 85% / 100% / 70% 

 

Additional comments:  
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3.4: Extending the use of the LR for complex situations 

Most ideas develop from simple beginnings. In this vane, the very early versions of STRmix™ 

had limited functionality compared to the abilities in current versions of the software. Early on 

the two main functions of the program were to deconvolute a DNA profile into a list of potential 

contributing genotypes, with associated weights (that represented a goodness-of-fit for each 

genotype in describing the profile) and secondly to calculate an LR when the deconvolution 

results were compared to a reference DNA profile. A relatively straight forward extension of 

this second function was that if an LR can be calculated for the comparison of a reference to a 

mixed DNA profile, then there was no reason that it couldn’t do so for 10, or 100 or 1 million 

references, one at a time, in an automated fashion. All that was needed was for those reference 

DNA profiles to be listed in a file somewhere that STRmix™ could access. What has just been 

described is a variant on a very common practise in forensic biology known as database 

searching. This is the process of searching a database (local or national) for matching copies 

of an evidence DNA profile that has been generated from an unsolved crime. Equally, database 

searching can be carried out by searching the reference of a known individual to determine 

whether they are associated with any evidence profiles from currently unsolved crimes. The 

standard practise, pre-STRmix™, was that only DNA profiles originating from a single 

individual (or a manually interpreted single contributor’s profile from a mixture) could be 

searched against a database in a simple process of matching arrays of numbers. With 

STRmix™ the additional ability was obtained to assign an LR to each member in the database, 

considering them as a potential contributor of DNA to an unresolvable DNA mixture. Then, 

rather than having a match/no-match criteria for identifying people in the database a sliding 

scale of support for them being a DNA donor is generated. 

This opened a vast number of DNA profiles, from unsolved crimes, to database searching that 

previously could not be used to assist with the solving of the crime. So successful was the idea 

that the New Zealand forensic laboratory (ESR) had the process programmed into their 

laboratory information management system so that the searches could be conducted in an 

automated manner on a day to day basis, without the need for exporting and importing data 

from STRmix™. ESR has shown great success with this feature. At Forensic Science SA the 

process of ‘mixture searching’ was introduced in 2016, which sees unresolvable, mixed DNA 

profiles able to be searched against the state database. There have been instances of three 

contributors to a single DNA mixture all being identified in the one search. Anecdotal 

information also suggests that other Australian state laboratories are using the feature to great 

success. On a national stage database searching and matching still only occurs using single 

contributor profiles and a simple comparison of numerical allele values. Perhaps in the future 

a probabilistic approach could be implemented, which would have enormous benefits. 

Questions of performance and reliability arose from using the database searching functionality. 

One of these was the question of how commonly individuals would yield support for being a 

contributor of DNA to a DNA profile, when in fact they were not DNA donors. In forensic 

biology, this is commonly referred to as ‘adventitious matching’, although the term comes from 

many years ago when comparison outcomes were more binary (i.e. a profile would either match 

or not match another) and the term ‘matching’ doesn’t sit so well in a continuous world and a 

suggestion has been to relabel the phenomenon as obtaining ‘misleading LRs’. Regardless, the 

term is common enough that it is still used today. The first paper in this section describes the 

functionality of database searching in a continuous manner (such as used by STRmix™) and 
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partially addresses the issues of adventitious matching. The topic is explored in more depth in 

chapter 5, where some publications are provided that are specifically focussed on the point. 

 

The second paper in this section demonstrates the mathematics required to consider the support 

the LR provides to a nominated individual being a contributor of DNA to a mixture, if the 

alternative that must be considered is that it is one of their relatives (as opposed to a ‘random’ 

person from the population). This work came about for two reasons. Firstly, with the advent of 

DNA profiling kits that tested 20 or more DNA locations the LR being generated, when 

considering the alternate DNA source as being an unrelated person from the population, were 

in the range of 1020 to 1030. The defence community started to shift the questioning to ask ‘what 

if the person who committed the crime was the sibling/parent/cousin/etc of the accused?’. 

There is a common defence stance in forensic biology known as ‘the brothers defence’ where 

the defendant is legitimately claiming it is their sibling who is the real perpetrator of the crime. 

What was being asked in court was not exactly this scenario, as there was no reason for any 

particular relative to be considered an alternate offender, rather it was a series of what-if 

questions. What the defence community was actually asking for (although they didn’t realise 

it) was for some way to consider that a proportion of the population would be related to the 

defendant and any one of them had, a priori, an equal probability of being the alternate offender 

as any one unrelated person. They were referring to the ‘unified LR’, which was mentioned 

earlier in this chapter.  

As a bi-product of this work all the tools required to carry out another common forensic activity 

known as familial searching were present. Rather than searching a database for a specific 

person’s profile, familial searching looks for any potential relatives of that person. In a 

‘unrelated’ LR the probability of obtaining the evidence is calculated given the two 

propositions: 

1) The DNA came from the POI and others 

2) The DNA came from people other than the POI, all unrelated 

And for the relatives LRs the probability of obtaining the evidence is calculated given: 

3) The DNA came from the POI and others 

4) The DNA came from people other than the POI, one of who was related to the POI 

Then a familial search is just the probability of the evidence given propositions 4 and 2 from 

above. In a similar manner to regular database searching, STRmix™ could then (and eventually 

was) programmed to carry out familial searches on complex unresolvable mixtures. The 

mathematics required for the consideration of relatives, and the manner in which it can be used 

to carry out familial searches is given in the second paper in this chapter. 

 

Due to the complexity and public sensitivities surrounding familial searching it is not carried 

out with the same regularity as standard database searching. A number of laboratories that do 

carry out familial searching, do not wish this to be publicly advertised. In South Australia, 

FSSA has been carrying out familial searches since 2008 and started using STRmix™ to do so 

in 2013. All familial searches have only been carried out on single sourced evidence profiles, 

and one of the searches conducted at FSSA has led to an arrest in SA. The only exception to 
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this is one familial search carried out in SA on a two-person mixed DNA profile from an old 

bone sample of an unidentified deceased child, in the hope that their relative may be in the 

database. The search itself went fine, but did not identify a relative. A relative of the child was 

eventually found, although not through familial searching, but rather good police work. 

  



Page 152 of 344 

 

Manuscript: Searching mixed DNA profiles directly against profile databases. JA 

Bright, D Taylor, J Curran, J Buckleton. (2014) Forensic Science International: Genetics 

9, 102-110 – Cited 18 times 

 

Statement of novelty: Until this point it was generally believed that only single source profiles 

could effectively be searched against a database. This work presents the means by which 

STRmix™ can be used to compare complex and unresolvable mixtures to a database of 

potential contributors. 

 

My contribution: I was a part contributor to the theory and contributor to the writing of the 

manuscript. 

Research Design / Data Collection / Writing and Editing = 20% / 0% / 10% 

 

Additional comments: While not a main contributor of work to this paper, I have included it 

in my thesis for a few reasons: 

1) The mathematics for calculating the LR for the comparison of a reference to a complex 

mixture had not routinely been expanded to do this en masse for an array of references 

in a database. This feature was programmed by me and implemented in STRmix™ 

software in 2012. The paper below (while I was not dominant in its construction), used 

this feature and is the only published demonstration of the power of the technique 

2) The paper highlights one of the important points of impact that STRmix™ has 

provided to the forensic community. Mixture searching is now routinely carried out 

by many forensic laboratories and has resulted in numerous examples of intelligence 

being provided to police that would have otherwise been missed. I go into this in more 

detail in chapter 9. I feel it is therefore important to include this work in the thesis as 

the published demonstration of the technique.  
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Manuscript: Considering relatives when assessing the evidential strength of mixed DNA 

profiles. D Taylor, JA Bright, J Buckleton. (2014) Forensic Science International: Genetics 

13, 259-263 – Cited 4 times 

 

Statement of novelty: This work derives the mathematics that extends the LR theory to 

complex mixtures when considering relatives of a person of interest as a potential contributor. 

This extended the existing theory (which was mostly focussed on single source profiles) and 

provided mathematical derivations to explain the extension. In this work we also demonstrated 

the idea of carrying out familial searches against complex mixtures, using an extension of the 

same theory. 

 

My contribution: Main theorist and writer of the work. 

Research Design / Data Collection / Writing and Editing = 60% / NA / 70% 

 

Additional comments:  
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Supplementary material: Below is an expanded version of the LR2 calculation. 

We wish to calculate: 

''

'

Pr( | , , , ) Pr( | , )
jj R p i d U i d

i j

w G G H S H j'U
S  

Which for the two person scenario in question can be expanded to: 

' ' ' '' 1 2 1 2 ' 2 2 2 2

' '

Pr( | , , , ) Pr( | , ) Pr( | , , , ) Pr( | , )
j j j jj R U p d U d j R U p d U d

j j

w G G G H G H w G G G H G H+   

These terms can be obtained by summing the multiplied element from table 3 so that: 

( )  
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and the LR can be calculated by: 
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Chapter 4: Calibrating the model to specific laboratory performance 

STRmix™ incorporates models that are used to describe DNA profile behaviour. These include 

models for stochastic events such as peak height variability and inter-locus balances. When 

two different processes are used to generate DNA profiles, the profiles will naturally exhibit 

different behaviours (as in they will still be described by the same models, but the parameter 

values within the models will vary). There are two ways of dealing with this fact: 

1) Have these aspects of uncertainty as models within the MCMC, whose parameter values 

are guided from the data being analysed 

2) Carry out calibration testing and fix some parameters for the type of data being analysed 

STRmix™ uses the second of these methods. There are other fully continuous systems in 

existence that work by the first. Anecdotal feedback is that the runtime is greatly increased and 

often there is not enough information in the data provided to inform some parameters, meaning 

the results produced are not always intuitive. 

The standard implementation of STRmix™ in a forensic laboratory is to create a calibration 

set of profiles (typically 100 or more) and run them through a calibration program that aligns 

STRmix™ models to laboratory performance. If a laboratory has more than one workflow (i.e. 

they have situations which mean that DNA samples may be profiled by one of multiple 

different DNA profiling systems) then a calibration is required for each. When STRmix™ was 

introduced questions arose as to how different the processes needed to be in order to justify a 

new calibration set. These questions were initially quite prevalent as early versions of 

STRmix™ had a peak height variability model that utilised a single constant, which aligned it 

to the amount of variability seen in data produced by the laboratory. In 2014 (approximately 2 

years after initial release of STRmix™) the peak height variability model was updated so that 

the constant was now a parameter within the MCMC, that had a prior distribution, produced 

from calibration. This new model architecture allowed the tolerance of the system to peak 

imbalances to shift slightly (and in accordance with the expectations of data produced by the 

laboratory) depending on the data being analysed. This largely addressed questions of whether 

many calibration sets were required for micro-variations in laboratory process. As long as the 

calibration set was created in a way that covered many of those micro-variants of laboratory 

process then the prior distribution for peak height variability would be applicable for a wide 

range of data produced and could be fine-tuned to the specific profiles as required during the 

MCMC. 

Still the question remained ‘How much difference requires recalibration?’. Examples may be: 

• If laboratories had a piece of equipment changed 

• From above, consideration of whether the new equipment was of the same model as the 

old 

• If their equipment was serviced 

• If a component was replaced 

These types of questions led to the work presented in this section. Also, within this work, the 

component-wise MCMC process utilised in the calibration tool (called ‘Model Maker’ that 

made up part of STRmix™) is described.  
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Manuscript: Factors affecting peak height variability for short tandem repeat data. D Taylor, 

J Buckleton, JA Bright. (2016) Forensic Science International: Genetics 21, 126-133 – Cited 

2 times 

 

Statement of novelty: This work provides a description of how the data produced by a 

laboratory can be used to calibrate STRmix™ for its specific performance. This work 

extended the MCMC theory given in section 2.6 to achieve the desired outcome. 

 

My contribution: Main theorist and author of the work. Sole programmer of simulations. 

Research Design / Data Collection / Writing and Editing = 60% / 40% / 70% 

 

Additional comments:  
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4 – Clarification 

Explanation of the model, specifically framing it in the context of a hierarchical Bayesian 

model 

The model used in STRmix is one where we seek the likelihood of genotype sets, given the 

observed data,  
1( | , ) Pr( |, ) Pr(

j

p H d j j
O S SM M) M . Within this integral the M term 

represents parameters: 

• Template DNA amount for each contributor (n), which has prior  0,nt U T  (where 

T represents the upper limit on template amount before a DNA profile will no longer 

be analysed and is termed a saturation level) 

• Degradation for each contributor, which has prior  0,nd U D  (where D represents a 

level of degradation above which profiles will generally be considered too low quality 

and will not be analysed) 

• A PCR replicate efficiency term for each PCR replicate (y), which has prior 

 0,yR U   (note that in practise, if an analysis was carried out and a replicate 

amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be 

considered that one of the replicates is likely to have been the subject of an 

amplification error and should not be included in the analysis) 

• An amplification efficiency term for each locus (l), which has prior ( )2 20,lA LN  

(where ln(10) =  is used to transform between logs in base 10 and base e and 
2 is 

constant, determined by laboratory calibration) 

• A peak height variability parameter for each fluorescence type (i), which has prior 

( ),i i ic    (determined by laboratory calibration, which I discuss below) 

Knowing the values of the parameters in M allows the calculation of Total Allelic Product (T), 

the total amount of fluorescence expected resulting from an allele in a DNA extract, which will 

ultimately get broken into components of fluorescence in an allelic position and its stutter 

positions on the electropherogram (EPG). Calculation of T, for a combination of contributor, 

kit, locus, replicate and allele, is achieved formulaically by: 

( )
, ,

l
n ad m offsetl l l

a n y n y nT t A R X e
− −

=      

The l

nX  term in equation 1 represents a ‘dose’ and takes values of 1 or 2. The dose considers 

that if contributor n is homozygous for allele a at locus l ( 2l

nX = ), then the expected value for 

T will be twice as high than if allele a was one in a heterozygous pair. The offset marks the 

molecular weight at which degradation starts to be applied, i.e. at the offset (and technically 

before it), degradation is not acting to reduce fluorescence. This offset is usually set to be the 

lowest molecular weight peak observed in one or more electropherograms (or some value 

below it). As the PCR occurs, some of the fluorescence that was destined for the allele will 

shift to stutter positions on the EPG. There are a number of stutter types that can occur (back 

stutter, forward stutter, half stutter, double stutter, etc.) and we will define the number of types 

of stutter as I, the stutter ratio of stutter type i, for locus l for allele a as 
,l i

a  and the position of 
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stutter type i relative to the parent peak, a, as i . We can now split the total allelic product into 

components of, respectively, allele and stutter by: 

, ,,

, , ,1

l

a n yl i

a n y l i

a

i

T
E


=

+
 

and 
,

, ,,

,, , 1
i

l l i

a n y al i

l ia n y
a

i

T
E



+
=

+
 

where i , indicates ‘not i’ and hence the allelic component. The total expected height of a peak 

at a locus, replicate and kit combination is then the sum of the stutter and allelic components 

of all individuals that fall on that allelic position: 
, ,

', ', , , ,i

l l i l i

a y a n y a n y
n n i

E E E
+

= +   where a is chosen for each i so that 'ia a+  =  

Doing this for all contributors, alleles, loci, replicates and kits results in Y expected profiles, 

each of which has an observed counterpart, for which each peak height can be compared. Let 

E be the vector of expected peak heights. We assume independence of observed peak heights 

given the expected peak heights (shown in other work) so that 

( ), ,( | , ) ( | ) Pr |l l

a y a y

y l a

p p O E= =j
O S O EM . Differences between observed and 

expected peak heights, ( ), ,Pr |l l

a y a yO E , are modelled by transforming the variable ,

l

a yO  to 

,
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,

log

l

a y

l
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, where: 

( ) ( )
2 2

,
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, , ,

log ~ 0, 1
i

i i il
ia y

l l l
i ia y a y a y

c cO
N

E E O
+

 
    − +           

 
P

P  

Where i
P  is the proportion of peak a that is stutter type i. The right-hand side of equation 5 

signifies modelling using a normal distribution, in the form N[mean,variance]. Note that the c2 

parameters (for either allele or stutter) in the variance term have a prior gamma distribution 

modelled by: 

( ) ( )
2

~ ,i i ic    

Prior distributions for c2 terms and 
2  are determined using a hierarchical Bayes model, run 

on a dataset of C single source DNA profiles. For these profiles a single genotype set (in this 

case of one contributor a genotype set can be considered a genotype, G) exists for each locus 

in each contributor and is provided to the analyses known information. The integral term from 

earlier can then be more simply expressed as ( , )p d O M M , where the genotype set 

probability for each profile is a known constant value and omitted from the analysis. 

We also include an additional parameter within M during the hierarchical Bayesian analysis, 

which a value of 
2  for each profile (whereas in standard DNA profile analysis a fixed value 

for 
2  is used).  
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Let ( )1,..., I =α , ( )1,..., I =β  and V be the set of all variance hyper-parameters 

( ), ,=V α β . We seek posterior distributions for elements of V: 

( , ) ( | ) ( ) ( )p p p pV M | O O M,V M V V|  where: 

( ) ( ) ( ) ( )
2 2 2

1 2
, ,..., | ~ ,i i i i i

C
c c c  O  

The gamma distribution was chosen as it has properties that align with the expectations of the 

variance variables. It is bounded at the lower end by zero, at the upper end by infinity, and 

likely to be asymmetrical.  We model: 

( )2 2 2

1 2, ,..., | ~C Exp   O  

Th exponential distribution was chosen as it has properties that align with the expectations of 

the 
2 variables.  We desire imbalance within the profile between loci to be described by other 

parameters (namely template and degradation) preferentially to locus amplification efficiency. 

In a pristine DNA sample, loci should all amplify approximately equally well. In practise there 

will some locus amplification efficiency differences between loci due to extraneous chemicals 

carried through the DNA extraction process that affect amplification (which some loci are more 

sensitive to than others) and so some level of locus amplification efficiency variance is needed 

but should be minimised. However, if too much variance is seen then this is an indication of a 

poor DNA profile amplification and the profile should be considered unsuitable for analysis. 

As stated, in the standard analysis of DNA profile data we do not have a 
2  parameter. Instead 

a constant value of 
2 1  −=  is used. Within the hierarchical Bayesian analysis we trialled a 

gamma model instead of an exponential model for 
2  terms but found little difference in 

outcome (data not shown) between the mean of the gamma distribution and the mean of the 

exponential distribution and so chose the simpler distribution. 

The process for determining posterior distributions for variance terms is: 

• For each of the C profiles, holding the values within V constant: 

o Draw values for parameters for profile c within Mc by random walk 

o Evaluate ( | , )Pr( , )c c cp O M V M V  

o Accept or reject proposed parameters by Metropolis-Hasting algorithm 

o Repeat X times 

• Holding all values within M constant: 

o Draw values for hyper-parameters within V by random walk 

o Evaluate Pr( ) ( | , )Pr( | )c c c

c

pV O M V M V  

o Accept or reject proposed parameters by Metropolis-Hasting algorithm 

o Repeat X times 

• Repeat outer loops until converged 

Values of X from 1 to 10000 were trialled but were found to make minimal difference to the 

resulting posterior distributions (data not shown). Prior distributions for parameters within V 

are: 
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 1.5,U   

 0,U   

 0,U   

The restriction on the lower bound value for   comes from a desire to limit the shape of the 

gamma distribution to non-exponential curves. In practise, values for  are not obtained below 

this level even when the restriction is not placed on the prior. 
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Chapter 5: Testing the functioning of the models 

Traditional methods of calculating a numerical value for the LR relied on models, simple 

enough to have closed set formula that could be calculated exactly. Typical ‘validations’ of 

software that implemented these models would then consist of calculating, by hand, a series of 

LRs for different scenarios and showing that the software provided the same answer. For the 

first time, with the introduction of STRmix™ forensic laboratories were faced with a stochastic 

system that: 

• produced a different answer each time it was run 

• used formulae that were not closed sets (for the most part being complex multiple 

integrals) 

• produced numbers that couldn’t be reproduced by hand and 

• was designed to analyse DNA profiles that were traditionally considered beyond the 

ability of humans to interpret (prior to STRmix™ the general consensus amongst 

Australian government forensic DNA laboratories was that a mixture of 3 people of 

reasonable quality was the limit to interpretation. Now in 2017, with STRmix™ 

laboratories are analysing complex, low level, mixed DNA profiles originating from 5 

people). 

Questions arose from laboratories such as: 

• How do I know if the system is giving the right answer? 

• How can I check LRs that are too complex to replicate manually? 

• How, as a human, do I assess a system designed to perform beyond my abilities of 

assessment? 

These questions were echoed in defence questions in a number of court challenges to the 

STRmix™ methodology. The court questions tended to centre around themes of ‘how do you 

know the system is reliable?’, or the blunter statement ‘I put it to you that you are doing nothing 

but guessing’. 

 

Up until this point the main body of work that had been published had not focussed on 

validation, but rather defining, and testing models, and proposing extensions to LR 

calculations. When questioned on reliability, the main body of published work to which the 

forensic community could point was the validation section of the paper in section 2.6. A point 

of interest arose from this work, and in particular Figure 6 (from the paper in section 2.6), 

which showed the concordance between manual interpretations and the corresponding LR 

when STRmix™ was used. The forensic community often showed this graph as an example of 

how well the system was performing, with the vast majority of LRs being concordant with 

human interpretation and how much better the system was able to make use of data with LRs 

able to be provided for many more results than previously possible. The law community 

expressed concern with the graph, citing the fact that there were some (very few) instances 

where the continuous system gave contradicting results to the human interpretation and that it 

was able to ‘make up’ numbers even for profiles that, by existing forensic standards, were 

inconclusive. While the forensic community had moved to consider the continuous system the 

new gold standard and, seeing the graph, realised how far the forensic biology community had 
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come, the legal community still considered manual interpretations as the gold standard, and to 

them this graph simply showed that the new system was unreliable. 

 

These driving forces prompted several different bodies of work. One body of work focussed 

on demonstrating how complex systems could be validated, not by scrutinising (or manually 

reproducing) individual results, but rather by considering the trends in the LRs that were 

expected over a range of problems with changing components. This work became the 

publication given in section 5.1. 

 

Another body of work considered how other diagnostics could demonstrate the reliability of 

the LR. Theoretical expectations were derived for exceedance probabilities (the probability of 

choosing an individual from the population, who had not contributed DNA, and them yielding 

at least as much support for inclusion in the DNA mixture as the true donors) and average LR 

size, based on work by Allan Turing. This lead to the publication in section 5.2. 

 

By the time the manuscript in section 5.2 was published, there were a number of continuous or 

semi-continuous DNA interpretation systems in existence (at present the count is 

approximately eight) that were grouped under the title ‘probabilistic genotyping systems’. 

There was growing popularity in forensic DNA laboratories around the world for these systems 

and in response to the popularity, international advisory bodies started working on validation 

guidelines for probabilistic genotyping systems. These included the European based 

International Society of Forensic Genetics (ISFG) and the American based Scientific Working 

Group for DNA Analysis Methods (SWGDAM). The suggestion from some members of these 

groups was that that the Hd true tests (described in 5.2) should make up part of the 

recommended validation. Ultimately it was decided within the group not to make this a 

recommendation due to the impracticality of the size of the tests required. The argument went 

as follows: 

Modern DNA profiling systems produce DNA profiles with frequencies less than 1 in 1020. In 

order to properly test exceedance probabilities or average LRs from random draws of profiles 

from the population would therefore require >1020 draws. No computer had the power or speed 

to complete such a task in a time that would be acceptable. 

In response to this limitation, although it was too late for inclusion in the recommendations 

(which had already been published), work was carried out that demonstrated how importance 

sampling could be applied to bias the choice of profile chosen and then adjust afterwards to 

recover diagnostics of interest. This work led to the publication in section 5.3. Importance 

sampling is now a feature available in STRmix™, if users wish to carry out such testing against 

a deconvolution. 

 

Around the same time, the opinion was voiced that when DNA profiles became weak or peak 

heights became highly variable (as is the case in certain DNA profiling workflows), peak 

heights presented no further information beyond the presence or absence of the peaks 
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themselves. There was a relatively simple way in which this assertion could be tested. 

STRmix™ was provided with the same set of very low level and complex DNA profiles twice, 

once using its full capabilities and once in a modified version of the program that did not use 

peak heights (and working in a way similar to a semi-continuous model). The ability of both 

analyses to provide support for the contribution of the known donors of DNA was then 

compared. This work drove the publication given at the end of this chapter that showed there 

was still information in low-level peaks that could be utilised by a fully continuous DNA profile 

interpretation system. 
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Manuscript: Using continuous DNA interpretation methods to revisit likelihood ratio 

behaviour. D Taylor. (2014) Forensic Science International: Genetics 11, 144-153 – Cited 16 

times 

 

Statement of novelty: This work revisited some old theories on LR behaviour, extended by 

the application of new, continuous DNA interpretation methods to demonstrate their relevance 

in a contemporary setting. 

 

My contribution: Sole author 

Research Design / Data Collection / Writing and Editing = 100% / 100% / 100% 

 

Additional comments:  
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Manuscript: Testing likelihood ratios produced from complex DNA profiles. D Taylor, J 

Buckleton, I Evett. (2015) Forensic Science International: Genetics 16, 165-171 – Cited 8 

times 

 

Statement of novelty: This work took existing theory from statistics and applied the theory to 

complex DNA profiling problems. 

 

My contribution: Main author and sole simulation programmer. Equal contributor to theory. 

Research Design / Data Collection / Writing and Editing = 60% / 100% / 33% 

 

Additional comments:  
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5a – clarification 

The specifications of the computer used to carry out the simulations in the previous paper are: 

• Intel(R) Core(TM) i7-3940XM CPU@3.00GHz 

• 32 GB RAM 

• 64-bit Windows 7 Ultimate 
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Manuscript: Importance sampling allows Hd true tests of highly discriminating DNA profiles. 

D Taylor, J Curran, J Buckleton. (2017) Forensic Science International: Genetics – accepted, 

in press 

 

Statement of novelty: This work extends the work from the previous paper. Again, it took 

existing theory from statistics (in this case importance sampling) and demonstrated the 

application of the theory to complex DNA profiling problems. 

 

My contribution: Main author and sole simulation programmer. Equal contributor to theory. 

Research Design / Data Collection / Writing and Editing = 33% / 100% / 70% 

 

Additional comments: During publication equations 3, 4 and 5 were incorrectly formatted by 

the journal. They should be: 
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5b – Clarification 

Further information on Appendix B 

The effective sample size for importance sampling is the number of independent samples drawn 

from the target distribution to obtain an estimator with the same variance as the importance 

sampler. 

 

A common method used to calculate ESS is given by: 

2
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2

1

Y

i

i

Y

i

i

w
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w

=

=

 
 
 

=




 

 

Consider a simple example, where a simple evidence DNA profile, originates from a single 

contributor and the DNA profile of that contributor can be determined unambiguously (i.e. 

there is only 1 genotype that sensibly describes the evidence profile). This genotype as a 

population frequency of 1 in 1 million. A Monte Carlo simulation is run which randomly 

chooses DNA profiles from the population and compares them to the evidence profile in order 

to calculate an LR using propositions: 

H1) The randomly drawn person is the source of the DNA 

H2) Someone, unrelated to the randomly drawn individual, is the source of the DNA 

We would expect that for every million iterations of the simulation we would obtain 999 999 

profiles that were different to the evidence profile and so gave an LR = 0, and 1 iteration would 

sample a profile that matched the evidence profile and gave an LR of 1 million. Let the number 

of LRs of non-zero that were obtained be Y (in this case Y = 1) and the LR obtained for iteration 

y ( y Y ) be LRy. Let the total number of iterations that the Monte Carlo simulation was run 

for be I (Y I ). The number of zero LRs obtained is then (I – Y). The average LR can be 

calculated by: 

( ) 0

0 1000000

1000000

1

y

y

I Y LR

LR
I

−  +

=

+
=

=



 

Now consider an importance sampling distribution of genotypes that contains only the 

genotype that will give a non-zero LR, therefore in this example containing 1 genotype. The 

weight associated with generating a sample, x, from this genotype from the proposal 

distribution, q(x), rather than the target distribution, (x), is: 
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( )

( )

1

1

1

q x LR
w

x LR

 
 
 

= = =  

Therefore, every iteration the importance sampler will choose the genotype that gives the non-

zero LR, with associated weight LR-1. In this instance there is zero variance in the values 

produced by the importance sampler and so matching of variances does not make sense to 

calculate ESS. If we use the formula above, then for Y samples from the proposed distribution: 

2 2

1

2

2
1

Y

i

i

Y

i

i

Y
w

LR
ESS Y

Y
w

LR

=

=

   
   
   

= = =
 
 
 




 

However, the analyst may wish to know how many iterations their importance sampling would 

be equivalent to, had they sampled directly from the target distribution. Now go back to the 

original derivation and consider the average LR obtained from the simulation using an 

importance sampling scheme were LR . We consider that the importance sampler has run for 

enough iterations that all non-zero genotypes have been sampled from and so as well as the 

average LR we have Y (which is the number of importance samples taken) and the LRs at each 

iteration. The target is to obtain a value of I, so: 

( ) 0 y

y

I Y LR

LR
I

−  +

=


 

With rearrangement becomes: 

y

y

y

y

LR

I LR
LR

= 


  

With the approximation coming from the fact that given adequate draws, the average LR should 

be approximately 1. In the running example being used, we could consider Y importance 

samples so that: 

(1000000)y

y

I LR Y= =  

i.e. each single importance sample yields an average LR that would be expected to take 1 

million samples from the target distribution in order to achieve. 
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Manuscript: Do low template DNA profiles have useful quantitative data? D Taylor, J 

Buckleton. (2015) Forensic Science International: Genetics 16, 13-16 – Cited 7 times 

 

Statement of novelty: This work carried out a comparison of semi-continuous and fully 

continuous DNA profile evaluation for very low level and complex DNA profile to 

demonstrate the fact that there is still information content in peak heights, even at low levels. 

Up until this point there had been no demonstration of this fact and opinions amongst the 

forensic community were divided. 

 

My contribution: Main author and sole simulation programmer. Equal contributor to theory. 

Research Design / Data Collection / Writing and Editing = 50% / 100% / 70% 

 

Additional comments:  

  



Page 219 of 344 

 



Page 220 of 344 

 



Page 221 of 344 

 



Page 222 of 344 

 

  



Page 223 of 344 

 

Chapter 6: Placing the theoretical model into practise 

By 2015, STRmix™ had been in use in most forensic labs around Australia and New Zealand 

for one to three years. The forensic community decided to revisit the question that sparked all 

this work off in the first place, i.e. are different laboratories and analysts getting consistent LRs 

from the same evidence. The last time this had been attempted was during the ‘crisis’ meeting 

of 2009 at which point it was clear that forensic biology laboratories had far to go to reach a 

state of equal justice outcomes. 

A study was set up whereby a series of profiles were sent to forensic laboratories around 

Australia and New Zealand and they were asked to analyse and interpret the profiles 

(comparing reference profiles that were provided as part of the study) and report the LR as they 

would for a normal criminal case. The setup of this study and the findings make up the 

publication in this section. 

The study found a dramatic improvement in the consistency between labs compared to the 2009 

attempt. The biggest source of variation was now the choice of number of contributors. This 

then sparked another arm of work that is discussed in the next chapter. 

 

Another source of variation that was identified from the study was whether the use of peak(s), 

below the analytical (or detection) threshold should be considered when analysts pre-assessed 

the DNA profile to determine the number of contributors. The use of STRmix™ generally 

caused laboratories to drop their analytical threshold so that the additional, low level, peaks 

could be used in evaluations. From this practise, it would have been expected that the presence 

of these sub-threshold peaks to be more of an issue in the pre-STRmix™ days. On review, it 

was found that the presence of sub-threshold peaks were indeed more prevalent pre-STRmix™, 

however, did not have much impact because those profiles that contained data such as this were 

almost always deemed unsuitable for interpretation (in fact the presence of sub threshold peaks 

tended to be one of the decision point in making this determination). With STRmix™ providing 

a means to evaluate so many more DNA profiles than before, the issue was brought to the 

forefront. One option was to continue to consider DNA profiles that possessed sub-threshold 

peaks as not suitable for interpretation, however conceptually it doesn’t sit well that a strong 

and well resolved profile could be evaluated, but the presence of a small ‘blip’ in the baseline 

could render it uninterpretable. The disconnect causing the issue existed between the 

information the analyst was using to interpret the profile and the information being provided 

to STRmix™. The solution developed to address the disconnect was to incorporate a way for 

users to provide prior beliefs in the mixture proportions to STRmix™. This way, if a user saw 

sub threshold peaks that indicated a very low-level contributor may be present, a prior mixture 

proportion could be supplied that indicated a contributor had most of its mass at low levels 

(near 0). This spawned an arm of work that lead to the second publication in this section, which 

explores the prevalence, impact and solutions to sub-threshold data. 
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Manuscript: Investigating a common approach to DNA profile interpretation using 

probabilistic software. S Cooper, C McGovern, JA Bright, D Taylor, J Buckleton. (2015) 

Forensic Science International: Genetics 16, 121-131 – Cited 3 times 

 

Statement of novelty: This work compares the consistency of laboratories using STRmix™ 

around Australian and New Zealand. At the time of publication such a comparison of 

laboratory performance had not previously been done and published in Australia or New 

Zealand. 

 

My contribution: Minor role as author and theorist. Forensic Science SA was one of the 

participant laboratories in the study and I was the coordinator for the SA participants i.e. 

explanation of study, dissemination of material and compilation of results. 

Research Design / Data Collection / Writing and Editing = 10% / 0% / 10% 

 

Additional comments:  
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Manuscript: Does the use of probabilistic genotyping change the way we should view sub-

threshold data? D Taylor, J Buckleton, JA Bright. (2017) Australian Journal of Forensic 

Sciences 49 (1), 78-92 – Cited 1 time 

 

Statement of novelty: This work addresses the issues surrounding the use of a threshold in a 

continuous DNA interpretation system. The exploration of the topic itself came from practical 

issues being faced by those using continuous DNA interpretation systems. A potential 

statistical solution is provided to the presence of sub-threshold information by supplying user-

informed prior beliefs into the analysis. 

 

My contribution: Main author and sole simulation programmer. Equal contributor to theory. 

Research Design / Data Collection / Writing and Editing = 33% / 100% / 50% 

 

Additional comments:  
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Chapter 7: Extending the theory in the future 

Chapter 7 considers how the theories of DNA profile deconvolution and evaluation presented 

in this thesis can be extended into the future. There are two broad groups of such considerations. 

First, are enhancements to the current models, either through refining the existing models (as 

given in chapter 2, for example the refinement of the stutter model described in 2.6, to the LUS 

stutter model described in 2.2, to the multi-LUS model described in 2.5), or modelling new 

factors that affect DNA profile generation or behaviour. There is a trade-off with such 

enhancements between the complexity of the model and the amount of peak height information 

that is explained. If the model is simple then the subtleties of small deviations from expected 

fluorescence will be unnoticed and their ability to distinguish between explanations lost, 

because the effects of multiple real-world events are being described by a single model. 

However, a simple enough model can be recreated by hand, understood by all, and run in 

seconds. 

If the model is complex then the subtleties of the multiple interacting real-world events will be 

explained, and the ability to distinguish between competing explanations at its peak, however 

there are associated costs. One is the cost of comprehensibility. A highly complex system will 

be understood by less people (or just less understood by people), which has the disadvantages 

of the acceptance first by the scientific community and second by the legal community. Also, 

as a system becomes more complex it, by necessity, will take more computing power and 

longer to run. Another potential issue is that as systems become more complex and the number 

of interacting models increases, there is a tendency for systems to become too forgiving, i.e. 

the values of parameters within the models can shift to positions that can describe nonsensical 

data, rather than simply indicating that there is something wrong with the input. As an example, 

there are certain chemicals that, when present in a PCR, will inhibit and retard the amplification 

of DNA fragments, to different degrees for different targeted regions. The result is a DNA 

profile that does not have the expected ‘ski-slope’ pattern with respect to molecular weight. 

STRmix™ could be extended by adding ‘inhibition’ as a model within the system, that would 

allow the peaks within the profile(s) to shift the tolerance of the system to extreme 

amplification efficiencies. But the wider question is whether it is better to fix the biological 

issue of PCR inhibition first, rather than attempting to deal with it statistically. A ‘good data 

in’ ethos is one to which the forensic community fully subscribe and so models have not been 

added that are designed to deal with clearly substandard data. A balance must be struck between 

the benefits and drawback of refining models too far. 

The second broad group of considerations is in the extension of the current theory to apply to 

new situations. There are two areas where publications are provided in this thesis: 

1) The extension of the theory to apply to Y-STR data 

2) The extension of the theory to account for uncertainty in the number of contributors 

While the theory of these two extensions has been explored and published, neither is yet in 

active casework use. The reasons for this lack of application are quite different for the two 

situations and are explained in the following sections. 
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7.1 YSTR extension 

In certain scenarios it is advantageous to target male DNA specifically (most commonly in rape 

scenarios). The type of DNA (that is STRs) tested in Y-chromosome profiling is the same as 

in autosomal profiling kits. Y-STR profiles also have very similar behaviours in that template, 

degradation, stutters and amplification efficiencies should all occur in the same manner. This 

was shown to be true in the publication in this section, where a deconvolution model was 

adapted to deal with Y-STR data and performed to much the same high quality as on autosomal 

data. The motivation behind the paper in this section was not directly to build a deconvolution 

tool for Y-STR data, but rather an attempt to use the knowledge of DNA profile behaviour 

obtained from developing STRmix™ to develop probabilistic interpretation guidelines for Y-

STR profiles. In other words, because no continuous system of DNA profile interpretation 

exists for Y-STRs, laboratories are forced to develop threshold-based guidelines. These suffer 

from all the drawbacks mentioned in the introduction. The paper in this section was an attempt 

to address these issues (partially at least) using continuous theory.  

The broader reason as to why no continuous interpretation exists for Y-STRS is what comes 

after the deconvolution. Because the Y-chromosome is inherited from father to son in an 

unaltered block (apart from when mutation occurs) the classic form of the LR that deals with 

Y-STR data uses whole-profile haplotype frequencies. The problem with this is that modern 

kits possess 20 or more loci and consequently an astronomical number of whole-profile 

haplotype frequencies are required when dealing with mixed samples. So intractable is the 

impasse that unless a locus-by-locus approach can be developed, which performs well under 

the many imperfections present in human populations, complex mixtures of Y-STRs simply 

cannot be evaluated. Work is ongoing to address this issue. 
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Manuscript: Using probabilistic theory to develop interpretation guidelines for Y-STR 

profiles. D Taylor, JA Bright, J Buckleton. (2016) Forensic Science International: Genetics 

21, 22-34 – uncited 

 

Statement of novelty: This work takes existing theory from continuous interpretation of 

Autosomal STR data and applies it to Y-STR profile data to develop guidelines for 

interpretation (in the absence of an existing fully continuous method of analysing Y-STR 

profiles). 

 

My contribution: Main author and sole simulation programmer. Main contributor to theory. 

Research Design / Data Collection / Writing and Editing = 70% / 100% / 60% 

 

Additional comments:  
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7.2 A variable number of contributors 

As profiles become larger in the number of regions targeted and more sensitive, the 

forensic community faces an ever-increasing problem of complexity. As complexity 

increases, it becomes more and more onerous to assign a number of contributors to the 

profile. In the context of assigning a probability to the observed data, given a defence 

or prosecution proposition, the number of contributors is one of the few (if not the last) 

nuisance parameter that users must still place all their belief in a single value derived 

through manual interpretation. With new technology on the horizon (called massively 

parallel sequencing, which is briefly explained later in the thesis) the number of loci 

looks set to increase further, and be supplemented with the underlying DNA sequences, 

adding yet further complexity. The forensic biology community will soon exist in a 

world where the data is simply too complex for a human pre-assessment on any nuisance 

parameters to meaningfully occur. Some argue that this point has already arrived. A 

method is required to treat the number of contributors to a DNA profile as a nuisance 

parameter that can be integrated over within the LR model. The development of treating 

the number of contributors as a nuisance parameter was the theoretical drive for the 

work published in this section of the thesis. There was also a very clear practical drive 

for this work. As the use of STRmix™ increased around Australia and New Zealand 

laboratories during 2012 to 2014, the number and types of DNA profiles being evaluated 

increased greatly from the days of manual interpretation. The mathematics was 

published in peer reviewed scientific journals and showed quite extensive testing and 

validation (many of which are given in this thesis) and direct attack by defence or 

defence experts on the evaluation of the DNA profile data became more and more 

difficult. This caused the nature of defence arguments to shift to two areas: 

1) Conceding the presence of DNA, but disputing the mechanism of transfer which 

lead to its deposition on the item of interest (which is expanded on more in 

chapter 8) 

2) The initial assessment by the analyst of the number of contributors to the DNA 

profile 

Repeated criticisms in court of the choice of the number of contributors made by the 

analyst was the practical drive for the work that lead to the publication in this chapter. 

Despite the work being carried out several years ago, the mathematics for treating the 

number of contributors as a nuisance parameter has not yet been introduced into active 

casework. The reason for this lack of forward movement has largely been due to the 

resistance of the STRmix™ developers to statistical methods that act as ‘black boxes’. 

Since the initial introduction of STRmix™ to the forensic community is has always been 

maintained that the conceptual functioning of the method is teachable, understandable 

by the forensic community and defendable by them when challenged. While there is no 

expectation that non-developing analysts using STRmix™ could derive all formulae in 

use, they know well enough the concepts to understand how the system works and 

importantly can identify when it has failed to work. 

The mathematics behind the ability to choose a range of contributors is complex. The 

analysis requires the comparison of different posterior samples spaces of differing 

dimensions, and these must either be pitted against each other within an analysis (using 
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systems such as Reversible Jump MCMC), or compared afterwards. The workings of 

the calculation risks being black box if not properly implemented and taught. Much 

thought is required regarding the teachable and diagnosable elements of the calculation 

and various diagnostics that could indicate when an analysis has failed to work. This 

thought process is ongoing.  
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Manuscript: Interpreting forensic DNA profiling evidence without specifying the number of 

contributors. D Taylor, JA Bright, J Buckleton. (2014) Forensic Science International: 

Genetics 13, 269-280 – Cited 5 times 

 

Statement of novelty: In this work, an MCMC posterior space comparison between analyses 

of differing dimensions, previously used in astronomy, was modified for use in DNA profiling 

problems. 

 

My contribution: Main author, contributor to theory and sole simulation programmer. 

Research Design / Data Collection / Writing and Editing = 70% / 100% / 60% 

 

Additional comments: Also supplied is the supplementary material, that provides the 

derivation of the mathematics that allows the inter-dimensional parameter space comparison. 
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7.2 Clarification 

Further description of the model in the paper supplementary 

I have reused ‘k’ here as the summation index across unresolved contributors. This has caused 

confusion. I rewrite the derivation for supplementary material below: 

It is useful to start with the general formula for the LR, given in the main body of the text: 

1

1

Pr( | , ) Pr( | ) Pr( | )

Pr( | , ) Pr( | ) Pr( | )

J

n j

J

n j

N n Hp N n Hp

LR

N n Hd N n Hd
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=
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=
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j j
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We then introduce a number of nuisance parameters, which we term mass parameters (M) that 

we integrate over: 

1

1

Pr( | ) Pr( | ) ( | , , ) Pr( )

Pr( | ) Pr( | ) ( | , , ) Pr( )

J

n j

J

n j

N n Hp Hp p N n d

LR

N n Hd Hd p N n d

=

=

= =

=

= =

  

  

j j

j j

S O S M M M

S O S M M M

 

Let ( | , , )Pr( )jw p N n d= = jO S M M M , which we term a weight. When likelihood ratios are 

calculated for a single number of contributors the weights are often displayed as normalised 

values so that they are more easily assessed by analysts. Let the normalising constant be Zn, 

where: 

1

J

n j

j

Z w
=

=  

So that the weights, normalised within a value of n, are: 

,j n j nw Z w=  

The LR can then be written as: 
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For simplicity of the following example, consider that the population model used assumes the 

probability of the genotype of a contributor is independent of the genotypes observed in other 

contributors (often referred to as the ‘product’ or ‘Hardy-Weinberg’ model). This allows the 

probability of a genotype set to be written as the products of the genotypes of the n individuals 

that make up the set,  1 ,..., NG G=jS , so that: 

1

Pr( | ) Pr( | )
n

i

j

i

Hp G Hp
=

=jS  
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Again, for simplicity, consider a situation where the prosecution places all the probability on n 

contributors so that,  Pr( | ) 1N n Hp= =  and defence place all their probability on n’, 

Pr( ' | ) 1N n Hd= = . The LR is then: 

,

1 1

'

' , '

1 1

Pr( | )

Pr( | )

nJ
i

n j n j

j i

nJ
i

n j n j

j i

Z w G Hp

LR

Z w G Hd

= =

= =

=

 

 
 

 

Consider a situation where the DNA profile originates from x clearly resolved contributors, 

and that there is no indication in the profile (by way of peak height imbalance, drop-ins or other 

artefacts) of any more than x contributors of DNA. We can then split the genotype set 

probabilities into the resolved contributors and the remaining contributors needed to make the 

total up to n (under Hp) and n’ (under Hd): 

1 1 1

Pr( | ) Pr( | ) Pr( | )
n x n

i i i

j j j

i i i x

G H G H G H
= = = +

=    

Note that the alignment of contributors between n and n’ i.e. contributor 1 in the set defined by 

Hp aligns with contributor 1 in the set defined by Hd, i.e. | |i i

j jG Hp G Hd= . Within the sum 

across genotype sets the probabilities associated with the resolved contributors appear in every 

genotype set with non-zero value: 

, ,

1 11 1 1

Pr( | ) Pr( | ) Pr( | )
n x nJ J

i i i

j n j j j n j

j ji i i x

w G H G H w G H
= == = = +

  
=   
   

     

Now consider that in this scenario where only x individuals are required to explain the evidence 

profile, that any additional contributors are assigned by the model to contribute approximately 

0 fluorescence to the electropherogram. This has two consequences. Firstly, the weights 

associated with any of the j genotype sets will be approximately equal ( , 1,j n j nw w + ) so that: 

,

1 11 1

Pr( | ) Pr( | )
n nJ J

i i

j n j n j

j ji x i x

w G H w G H
= == + = +

=    

Secondly, the x + 1 to n (or n’) contributors can possess any genotype at any locus. Therefore, 

the sum across all J possible genotype sets must equal 1 (as this is a sum of probabilities of 

genotype sets across all possible genotype sets that can exist): 

1 1

Pr( | ) 1
nJ

i

j

j i x

G H
= = +

=  

So that the LR becomes: 
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i.e. the probabilities associated with additional genotype sets of any additional contributors that 

are required to reasonably explain the profile have little to no impact on the LR. 

Consider now that if there are only x completely resolved profiles (one for each contributor) 

that could describe the evidence profile that J = 1.  
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The most common set of propositions considered in forensic genetics is that under the 

prosecution proposition one POI is nominated as a potential source of DNA, and that this 

person becomes an unknown in the defence proposition, i.e.: 

Hp: The DNA originates from the POI and n - 1 unknown individuals 

Hd: The DNA originates from n’ unknown individuals 

Assume that we are consider a situation where the POI is not excluded from the profile i.e. the 

genotype of the POI (GPOI) aligns with one of the x resolved genotypes in the mixture (for 

simplicity let us say this is when i = 1 in the formulation above). Incorporating knowledge of 

the reference profile of the POI, and that fact that given Hp they are a contributor of DNA to 

the sample, so that: 

1Pr( | , ) 1POIG G Hp =  

Yields an LR where the product over x contributors starts at element 2 in the numerator: 
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If we consider that an average genotype probability is P then: 

1

' ' ' '

x

n n n n

x

n n n n

Z w P Z w
LR

Z w P Z w P

−

 =  

If the number of contributors is the same under Hp and Hd, n = n’, then the LR simplifies to: 

1
LR

P
=  
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If n ≠ n’ then the LR will depend on P, but also the probability associated with the two models, 

as given by the Zn and wn terms. Recall that Znwn represents the integration of the observed data 

over mass parameters: 

, ( | , , )Pr( )n j n jZ w w p N n d= = = jO S M M M  

Within this integral the M term represents a number of parameters: 

• Template DNA amount for each contributor (n), which has prior  0,nt U T  (where 

T represents the upper limit on template amount before a DNA profile will no longer 

be analysed and is termed a saturation level) 

• Degradation for each contributor, which has prior  0,nd U D  (where D represents a 

level of degradation above which profiles will generally be considered too low quality 

and will not be analysed) 

• A PCR replicate efficiency term for each PCR replicate (y), which has prior 

 0,yR U   (note that in practise, if an analysis was carried out and a replicate 

amplification efficiency obtained beyond the approximate bounds [0.1,10] it would be 

considered that one of the replicates is likely to have been the subject of an 

amplification error and should not be included in the analysis) 

• An amplification efficiency term for each locus (l), which has prior ( )2 20,lA LN  

(where ln(10) =  is used to transform between logs in base 10 and base e and 
2 is 

determined by laboratory calibration) 

• A peak height variability parameter for each fluorescence type (i), which has prior 

( ),i i ic    (which is determined by laboratory calibration) 

As priors for template and degradation (and also replicate amplification efficacy, but I do not 

include this parameter for reasons that will soon become apparent) are constants for all values 

of these parameters they can be taken outside the integral term. Let M’ be the set of mass 

parameters without template or degradation so that: 

( ), ( | , , )Pr( ')
n

n j n jZ w w DT p N n d
−

= = = j
O S M M M  

For each contributor used to describe the evidence DNA profile, an additional template and 

degradation term are required. However, when these additional contributors do not contribute 

to the explanation of the profile then it is expected that: 

( | , , )Pr( ') ( | , 1, )Pr( ')p N n d p N n d=  = + j jO S M M M O S M M M  

And so the ratio of Znwn is 
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In the running example this gives an approximate LR of: 
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In summary, the addition of unnecessary contributor(s) will only affect the LR by the additional 

prior probabilities incurred for template and degradation. There will therefore be a tendency to 

favour simpler models under these conditions for that reason, rather than a commonly held 

belief that the favouring of the simpler models would be due to smaller genotype set 

probabilities (resulting from an additional genotype in each genotype set, from the additional 

contributor). 
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7.3: The next generation of profiling technology and the need for next generation modelling 

It was mentioned earlier that new technology promises to provide more data and from more 

STR regions. This technology is called Massively Parallel Sequencing (MPS), or sometimes 

Next Generation Sequencing (NGS). MPS has the ability to sequence multiple regions of DNA 

simultaneously, so that rather than just receiving size information (as is current DNA profiling) 

underlying sequences are also obtained. This technology targets a suite of different DNA 

markers that have different purposes. There are mutational markers (known as Single 

Nucleotide Polymorphisms, SNPs) that can be used to provide probabilistic assignments of 

physical features such as eye colour, hair colour, heights, age and appearance. There are also 

SNPs that are targeted to provide probabilistic assignments to populations of origin. Both of 

these marker types have strong investigative applications to unsolved crimes. 

It is likely, however, that STRs will still be a main focus of identity based profiling for some 

time to come. This due to the fact that there are decades of legacy data (in the millions of 

profiles sitting in databases around the world) that require the same markers to be amplified if 

they are to be searched against. To this end, there is already much work being done in the field 

of sequencing STR markers using this type of new technology. 

With STR data produced by MPS there will still be the need for probabilistic evaluation. While 

the underlying sequence will provide more discrimination power, there will still be 

unresolvable DNA mixtures to which individuals of interest will be compared. The new 

technology will have some similarities in the modelling of STR data as current size-based STR 

DNA profiling i.e. more DNA will lead to higher number of sequenced strands of that region 

(called ‘coverage’ in the parlance of MPS and akin to fluorescence in current STRmix™ 

modelling) and the DNA will still be degraded to varying degrees depending on the 

environment to which it has been exposed. There will also still be stutter and common alleles 

and stutters will still stack to produce a single indistinguishable data point. Loci will likely also 

amplify at different efficiencies. 

However, new issues will arise. Sequencing errors will be a new factor to consider, and a model 

will have to be created that relates fragments of similar sequence to the possibility that they all 

arise from a common allele. There are also mechanics of the current MPS systems that appear 

to normalise the amount of DNA from each region within the sequencing reactions, which will 

affect the modelling of fluorescence currently employed. MPS techniques are also multi-step 

PCR reactions and this may require different modelling of peak height variability. Currently, 

there has not been enough work done to sufficiently model these factors and it is likely that it 

will take some time (years) before the same level of understanding is obtained for MPS derived 

STR profile behaviour as currently exists for current STR profile behaviour.  

It is likely that as the studies are done and data starts to become available that models in existing 

continuous DNA interpretation system such as STRmix™ can be adapted to handle the new 

type of profiles. 
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Chapter 8: Discussion. Where to from here? 

Chapter 8 places the work that has been described in the thesis up to this point in a wider 

context. The introduction of STRmix™ has largely addressed the biggest issue that forensic 

biology had, namely the ability to evaluate the complex DNA profile evidence being 

generated. There are (and always will be) a subset of results, or problem types, that cannot be 

addressed, but these are now very much in the minority compared to a decade ago. 

The adoption of STRmix™ has been generally well received, both with forensic laboratories 

and by the legal community. The largest challenge faced by forensic analysts was the fear of 

the unknown, specifically the apprehension that they would not be able to understand the 

functioning of a complex statistical system (and therefore use and defend it). The biologists 

in the forensic community has underestimated their abilities, they have eagerly embraced the 

new knowledge and often provide insightful question or comments that direct further work 

and investigation. 

From the legal community, the apprehension took a number of forms: 

• that they would not be able to understand DNA evidence now 

• that (specifically defence) could not challenge, nor find sufficient experts to challenge 

the new system 

• that the testifying scientist could no longer be considered an expert 

• of retrospective reanalysis of DNA results in old, closed cases 

Each of these has been tested over the years via Court challenges. As a result of these 

challenges the rules of evidence law and the admissibility of scientific evidence in Australia 

have been changed in the High Court. In 2017, for the most part, the challenges have passed 

from the judicial system in Australia, and the forensic community have come to tolerate and 

embrace the new system of interpretation. 

New issues have arisen in forensic biology, two areas being: 

1) The interpretation of electrophoretic signal obtained prior to its evaluation as DNA 

profile evidence (and subsequent analysis in STRmix™) 

2) The placement of the DNA evidence results obtained by using STRmix™ into a wider 

case context that is of interest to the court 

Examples of each of these directions are given in the following two subsections of chapter 8.  
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8.1: Dealing with data pre-processing 

Prior to analysis in STRmix™, prior to interpreting the data in an EPG to determine the number 

of contributors, someone (or more typically two independent people) have assigned each area 

of raised fluorescence (a peak) on the EPG as either requiring labelling or not. If a peak is 

representative of some modelled reason for the fluorescence, i.e. if it represents an allele 

present in the DNA samples, or is a stutter of the allele (if stutter modelling is present in the 

interpretation system) then the peak will be labelled. If it is a fluorescence caused by some 

mechanism that is not modelled by the interpretation system, for example pull-up, then it 

should not be labelled. During human interpretation of the EPG and the following STRmix™ 

analysis only the labelled information is considered. Whether the peak should be labelled will 

depend on its size, shape and position within the EPG. This description demonstrates that the 

process of labelling or unlabelling fluorescent data is: 

a) Dependent on human judgement and so suffers from the same difficulties of any 

threshold or judgement based system 

b) Highly important as it directly affects the downstream processes 

Adding to the disadvantages of the current system is the fact that it is time consuming for two 

analysts to interpret EPGs, compare and resolve differences. Especially in modern hardware, 

such as the 3500xl capillary electrophoresis instruments, the dynamic range of fluorescence 

over which the instrument can function is so great that some peaks (from some contributors) 

can be highly intense, while others very low. The highly intense peaks cause artefacts to the 

DNA profile in the areas surrounding their position, both within the same dye lane and in other 

dye lanes. The analyst trying to interpret the fluorescent data must then distinguish the low-

level artefacts from the low-level alleles. 

A statistical tool that has come to recent popularity is artificial neural networks (ANN). Their 

particular strength is in pattern recognition and they have been used to great effect in this area, 

demonstrated by their ability to beat human in complex pattern recognition tasks as either part 

of a professional occupation or at game play. ANN therefore seem to be the perfect solution to 

the current problem of classifying fluorescence within an EPG. Further to this, ANNs work 

best when supplied with vast amounts of training data, and so a workflow could be imagined 

where a laboratory using ANNs to read DNA profiles, continually updates the training material 

and hence continually improves on the system in use. Such a model will act as an automatic 

updating system that works on a feedback loop to improve itself. This new area that lead to the 

publication in this section of the thesis. 

Even if the system performs exceptionally (and experience so far is that it does) there will be 

challenges to its use. One of the early challenges will be the acceptance by the scientific and 

legal community. ANNs represent the ultimate in ‘mysterious statistics’ in that they are 

designed to take vast volume of data, teach themselves how to perform a task, often in ways 

that humans will not understand. There will have to be careful implementation of ANNs in a 

way that slowly integrates with current systems. This could be achieved in four stages: 

1) Continue to use two individuals to read EPGs, but have the ANN as a tool that can 

suggest that currently labelled peaks may be artefactual. They are then being used 

simply as an assistant to the human reader, with the humans doing the ultimate decision 

making. Such a system would already greatly improve efficiency in DNA profile 

reading as it will make the reading process faster for the analysts, and is also likely to 
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result in less differences between two reading analysts. There would be the additional 

benefit of getting analysts used to the ANN and building some faith in their ability. 

2) Stage 2 would occur once stage 1 had reached a point where analysts rarely overrode 

the ANN suggestion and when they had become comfortable with the ANN. Stage 2 

would involve removing one of the readers, so that there was one human read and one 

ANN read that were compared. Again, this would further increase efficiency and 

consistency. In this stage that ANN use could migrates from a suggestion tool to the 

main peak detection and classification system. 

3) Once stage 3 had progressed to the stage where the analysts were virtually never 

overriding the ANN peak classification the human reader could be removed. This would 

leave the ANN as the sole means of interpreting fluorescence on an electropherogram. 

The EPG would them be passed to analysts in the usual manner for human 

interpretation, prior to analysis in STRmix™ 

4) The final stage would require the integration of a few pieces of technology. Firstly, the 

ANN would read and classify fluorescence, which in the fully Bayesian manner would 

entail providing a probability for areas on the EPG being any one of the nominated 

categories (allele, stutter, baseline, pull-up, etc). This raw data would then be passed 

directly into a system like STRmix™ where the number of contributors would be 

treated as a nuisance variable and may become a parameter in the model (not requiring 

human pre-assessment). The deconvolution could then progress in an automated 

fashion. The result would be that no human interaction would occur until the stage of 

assessment of the STRmix™ analysis. 

The result of the end of these four stages would be that instead of the analyst being handed a 

series of DNA profiles to read, interpret and analyse, they would be handed the completed 

package that they just needed to review. This would free up the analysts to consider the results 

in a wider case context (the focus of the next section). 

Such a system is some way off, and may never be fully realised. The new DNA profile 

generation technology (as mentioned in section 7.3) is likely to drive the need for some level 

of automation in the manner described above. 
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Manuscript: Teaching artificial intelligence to read electropherograms. D Taylor, D Powers. 

(2016) Forensic Science International: Genetics 25, 10-18 – uncited 

 

Statement of novelty: This work takes the theory of artificial neural networks and applies it to 

the problem of classifying fluorescence in a DNA profile into one of several, user-defined 

categories. 

 

My contribution: Main author and sole simulation programmer. Equal contributor to theory. 

Research Design / Data Collection / Writing and Editing = 50% / 100% / 80% 

 

Additional comments:  
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8.2: Placing the statistical DNA profile evaluations within a wider case context 

Over the years, that the questions being asked in court regarding DNA evidence have shifted 

from “Whose DNA is this?” to “How did it get there?”. In the parlance of the hierarchy of 

propositions (see section 3.2 for an explanation of this concept) the questions were activity 

level rather than being source (or sub-source, or sub-sub-source) level. STRmix™ answers 

questions at sub-source level and so there was a disconnect between the information being 

provided and the questions being asked. 

There is a common misunderstanding that if the questions are about activity that the sub-source 

level work is no longer relevant, hence sweeping away the need for systems such as STRmix™. 

This is not the case. Moving up through the hierarchy of propositions is like building house, 

which must be based on solid foundations. STRmix™ has provided that foundation, and it is 

only through the existence of software that can address the sub-source level propositions, that 

it becomes possible to consider higher-level propositions. 

There are a number of publications that explain the evaluation of forensic findings to help 

address activity level propositions. These include biology-focussed publications. There is a 

movement beginning within Australian forensic biology laboratories to develop the ability to 

numerically assess findings considering activity level propositions to forensic biology in 

Australia. This alone is a good driving force to conduct research in this area, although not the 

motivation behind the published work provided below. The case involves an alleged attempted 

abduction that occurred locally, and for which FSSA analysed key items from both the alleged 

attacker and the alleged victim. There were no signs of DNA from either party on the other’s 

clothing and the DNA analyst was called to testify. In these sorts of cases (i.e. cases where 

there is no DNA support for the allegation) it is not unusual to still be called by the prosecutor, 

who wishes to make the point that just because there was no DNA detected, it doesn’t mean 

the activity didn’t take place. The line of reasoning is a rewording of the old adage “absence 

of evidence is not evidence of absence”, but in reality, absence of evidence is indeed evidence 

of absence (in that the lack of detected DNA will tend to support a scenario of non-contact over 

contact), just not conclusive evidence. So too was the prosecutor’s intent in this case and the 

defendant was ultimately convicted of the alleged crime (presumably based on non-DNA 

evidence). 

Later, on review of the results, it was deemed by the court of appeal that the DNA testimony 

was misleading and the conviction was overturned. This caused some concern locally, as the 

analyst had not misrepresented the DNA findings, and there were dozens of similar cases that 

had been testified to in a similar manner. Work was conducted to put the DNA results in a 

wider case context (in this particular case the DNA results showing an exclusionary result) by 

carrying out a full activity level (and in the paper even went through an offense level) analysis 

was performed. The aims in doing so were three-fold: 

1) To show that the court of appeal had unfairly judged the testimony of the scientist and 

that the issue was a wider misunderstanding of the levels in the hierarchy of 

propositions. 

2) To demonstrate how the data could be evaluated to help address the questions of 

interest. In particular, it was hoped that this work could be a useful example to point to 

when faced with the line of questioning “just because there was no DNA detected, it 

doesn’t mean the activity didn’t take place” 
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3) To promote the practise of considering DNA findings in a wider case context 

Manuscript: The evaluation of exclusionary DNA results: a discussion of issues in R v. 

Drummond. D Taylor. (2016) Law, Probability and Risk 15 (3), 175-197 – uncited 

 

Statement of novelty: This work applies the laws of probability and utilises Bayesian 

Networks to demonstrate the benefits of considering activity level propositions when 

evaluating the DNA results in a wider case context. In particular, this work demonstrates the 

importance of evaluating an exclusionary result. 

 

My contribution: Sole author. 

 

Additional comments:  
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Chapter 9: Impact of the work described in this thesis  

The significance of the work outlined in this thesis can be noted in two ways. The first of these 

is the addition to the forensic biology statistics field in general, and particularly in the area of 

probabilistic genotyping. Many of the works that have been presented in this thesis have 

become the standard papers to cite when discussing aspects of probability-based DNA profile 

interpretation. Evidence of this is that the paper in section 2.6 ‘The interpretation of single 

source and mixed DNA profiles’ has been cited 123 times and the paper in section 2.2 

‘Developing allelic and stutter peak height models for a continuous method of DNA 

interpretation’ has been cited 89 times (as of February 2019). The publication of these methods 

and models came quite early in the sub-field of continuous probabilistic genotype systems and 

as such pioneered many of the ways that these systems should be developed, evaluated and 

implemented. Evidence of this is the heavy referencing of these articles in probabilistic 

genotyping validation and use guidelines published by the American advisory body SWGDAM 

(Scientific Working Group on DNA Analysis Methods) and the European based group ISFG 

(International Society of Forensic Genetics). The method of summarising and interpreting data 

has become a standard method for probabilistic genotyping software assessment, for example 

the scatter plots shown in the paper in section 5 ‘Using continuous DNA interpretation methods 

to revisit likelihood ratio behaviour’ is now routinely used by numerous other groups in their 

assessments. My involvement in the development of the methods and models associated with 

the published works is outlined prior to each paper presented in this thesis. This work has most 

often been carried out in collaborations with colleagues all around the world. 

 

Perhaps the best way to show a tangible impact of the work presented in the publications of 

this thesis is through their implementation in probabilistic genotyping software STRmix™. 

The manner in which STRmix™ came to be developed, and my involvement in that process is 

outlined in the various chapters of this thesis. To summarise; initially the mathematics and 

modelling that was developed for DNA profile analysis (as presented in this thesis, particularly 

chapter 1) was programmed by me (using the java programming language) into the software 

STRmix™. I, John Buckleton and Jo-Ann Bright were then involved in providing training to 

other laboratories (initially Australian, but then later overseas) on the use of this new method 

of profile evaluation. The paradigm shift in the way that profiles were analysed, combined with 

user feedback saw us refine and develop models for STRmix™, which were subsequently 

published and implemented into code (again by myself). As STRmix™ has grown over the 

years the need for dedicated (and professional) programmers became a requirement, and also 

the need for dedicated support staff. As o 2019 approximately 20 people are employed by the 

STRmix™ company and we retain the services of professional programmers full-time for 

development. I am still involved in programming, but this is now mainly to implement the 

science and mathematics additions, while leaving aspects of programming that deal with the 

interface, file manipulations, licensing and auditability to the professionals. 

 

STRmix™ was introduced into active forensic biology casework in 2012 in Forensic Science 

SA and ESR (the two laboratories of the co-developers of the software). Since then the software 
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has become the standard to use on all Australian and New Zealand forensic laboratories and is 

currently (as of February 2019) in approximately 60 forensic laboratories, spanning the United 

States of America, Europe, Middle East and China. Figure 9.1 shows the rate of uptake of the 

STRmix™ software over the past 7 years. 

 

 
Fig 9.1: Graph showing number of laboratories 

using STRmix™ 

 

The biggest uptake of STRmix™ has 

been in the forensic biology laboratories 

in the USA, where now over half of the 

ANAB (standing for ANSI National 

Accreditation Board, where ANSI stands 

for American National Standards 

Institute) are using STRmix™. This 

includes the three federal laboratories 

associated with the FBI, the US Army 

and the Bureau of Alcohol, Tobacco, 

Firearms and Explosives, who have all 

since carried out and published their own 

research using STRmix™. 

STRmix™ is now used routinely in forensic biology and university research projects and cited 

as a standard methods of DNA profile analysis by laboratories all around the world. I have 

personally been invited to laboratories around Australia, Dublin, UK, Northern Ireland, 

America and New Zealand and have been invited to present at workshops on this topic in 

Poland, Japan, New Zealand and around Australia as part of forensic and legal conferences.  

In the last four years the use of STRmix™ has 

reached a level of maturity in the USA that 

(independent of the developers) a yearly 

STRmix™ conference is held (see Fig 9.2) to 

discuss aspects of the software, both 

theoretical and practical. 

 

Additionally, large biotechnology companies 

host Webinar presentations on STRmix™ 

analysis and presentation of evidence in 

court. 

 

It is impossible to gauge the number of 

casework samples that STRmix™ has been 

used to analyse worldwide. At FSSA, since its 

use was introduced in 2012, the number of 

analysed samples is in the order of 20 000. 

Given that FSSA is a relatively small 

laboratory (by forensic biology laboratory 
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standards) one could imagine that the 

worldwide figure would be in the hundreds of 

thousands. 

Figure 9.2: flyer advertising the 2019 STRmix 

workshop 

 

These profile analyses have made up the contents of numerous reports, provided to Police, 

Lawyers, Coroners, Private Investigators and Courts. The number of cases that have been 

influenced by the results of profiles analysed in STRmix™ is unknowable. I have been 

involved in testimony in Courts at the Magistrates, District and Supreme level for matters as 

minor as vandalism and as major as cold-case Homicides. One well-known case of note (for 

which I testified on the mathematics and modelling in STRmix™) is that of the murder of 

Louise Belle in 1983 in South Australia, for which STRmix™ was used and played a part in 

the conviction of Dieter Pfennig, over 30 years later in 2016.  

Another case worth mentioning is that of Clinton Tuite, who was convicted in 2018 of a sexual 

assault in 2007. This case is particularly worth mentioning due to the level of challenge against 

many aspects of the evidence evaluation, including many aspects surrounding the development, 

mathematics, validation, use and validity of STRmix™. This matter spanned over four years 

in court starting in 2014 and due to the relatively new application of probabilistic genotyping 

at the time, it involved numerous voire dires testing the admissibility of different aspects of 

evidence. At its height the appeals reached the Court of Appeal, and the resulted in amendments 

to the Australian laws of forensic expert evidence to account for the new type of evidence being 

admitted into courts [2015 VSCA 148 - CLINTON TUITE V THE QUEEN]. 

As well as the significant contribution to court cases the models and methods within STRmix™ 

have been used for investigations, with the aim of identifying potential offenders. There are 

two aspects in particular where this has been shown. The first relates to a process known as 

‘mixture searching’ (outlined in the article in section 3.4 ‘Searching mixed DNA profiles 

directly against profile databases’). This process of interrogating state or national databases for 

potential contributors to complex mixtures has been implemented in laboratories to varying 

degrees, from implementing the mathematics directly into the IT systems (as in ESR) or, mor 

commonly, using the searching function in STRmix™. At FSSA, the capability to search mixed 

DNA profiles over the years has (as of February 2019) resulted in investigative links being sent 

to SA Police for over 100 cases (with many instances of multiple links in each case) that would 

have otherwise never been possible to provide.  
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Figure 9.3: Promotion of a news article from 

the Advertiser ‘Solving the impossible’ 

February 8, 2019 written by Miles Kemp. 

Imagine is of the convicted offender Patrick 

Perkins 

There is talk of going back through no-

suspect cases examined prior to the 

implementation of mixture-searching in a 

large scale back-capture program, for which 

untold amounts of investigative information 

would be generated. The popularity of the 

mixture searching tool has lead to the 

development of separate software that is 

specifically designed with automated 

searching and auditing capabilities, so that 

they can be carried out in en masse. 

 

In a similar theme of investigative searching, 

the mathematics outlines in the paper 

‘Considering relatives when assessing the 

evidential strength of mixed DNA profiles’ 

in section 3.4 has been implemented to allow 

familial searching to be conducted. The use 

of the familial search function in STRmix™ 

lead to Australia’s first conviction of an 

offender identified through such a search in 

South Australia (for the case of a serial 

stranger rapist). The result was widely 

publicised in the local media (Figure 9.3 

shows a promo for a news article in the 

Advertiser). 

 

The final point to note is the impact that the use of the mathematics and modelling within 

STRmix™ has impacted the general community. The level to which this has occurred is 

difficult to gauge. There will have been immediate impacts to those directly related to criminal 

investigations where STRmix™ has been used to analyse the DNA profile evidence. To the 

people more broadly the impact is felt through the feeling of safer community through better 

justice methods. The best way to demonstrate this is perhaps through the fact that there have 

been numerous articles in various public areas of newspaper, television, public events, or 

newsletters that speak to the improvement in DNA profile evaluation. Below I provide a 

selection of newspaper headlines that directly relate to STRmix™, and the mathematics being 

used therein, for the betterment of the community: 

• MI Authorities Employ New DNA Analysis Software 

• How DNA turns criminal’s own family against them 

• STRmix™ Use Leads to Indiana Murder Conviction 

• New software can do what no human could, helps state police analyze DNA evidence 

• Montreal forensics lab approves STRmix™ use 
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• Crime-Busting Forensic Software STRmix™ Triumphs in U.S. Murder Trial 

• Houston-based Forensic Lab Approves Mixed DNA Profile Forensic Software 

• New Mexico Case Allows Expert Testimony, Affirms STRmix™ Reliability 

• DNA technology used to link convicted killer to another murder victim wasn’t available 

in 2009 

• How new DNA technology led to Jupiter triple homicide arrests 

• Eight More Agencies, Including ATF, Will Use STRmix™ 

• FL Murder Case Reaffirms Reliability of STRmix™ 

• Lost shoe led to landmark DNA ruling - and now, nation's 1st guilty verdict 

• DNA breakthrough: North Adelaide rape suspect arrested 

• ESR technology being used to solve war crimes 

• 'Dream' software boost power of DNA 

 

 

 


