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Abstract 

The manual inspection of the confined spaces within the Australian Collins Class submarine 

tanks for evidence of corrosion, paint delamination and potential defects, is a hazardous, 

time consuming, and expensive process. Automating submarine tank inspections will 

eliminate the prolonged exposure of human inspectors to the hazardous confined spaces of 

the submarine. The robotic platform suitable for this task is a six-legged robot that possesses 

electromagnetic adhesion giving it the ability to climb freely throughout the complex steel 

tank structures of a submarine. 

Coverage path planning algorithms can be used to generate inspection plans, however, in 

complex environments, this a challenging problem. Coverage planning algorithms can be 

generated offline prior to inspection, however, these plans are unable to adapt to changes in 

the environment. An adaptive coverage planner that enables the robot to navigate around 

detected obstacles whilst providing sensory coverage of the newly detected features is 

preferable. An adaptive coverage planner is developed in this thesis to fulfil this requirement 

and enable an autonomous platform to perform a comprehensive inspection of submarine 

tanks.  

This thesis extends the capability of an existing offline sampling-based coverage planner, 

known for generating discrete coverage plans in complex environments, with online path 

replanning strategies to perform adaptively during execution. Two replanning strategies 

were explored, a full replan and plan repair, neither of which have previously been applied 

to adaptively update a current inspection plan to changing conditions using the offline 

coverage planner. 

An examination of the offline sampling-based coverage planner within the representative 

submarine tank scenario was used to determine its effectiveness for online performance. Key 



 

 

 

ii 

results showed that the offline coverage planner was susceptible to significant variable 

planning times for large complex planning problems and was sensitive to minor variations 

in the environment. New methods derived from the analysis were developed to resolve the 

variability of planning times and sensitivity to the environment, consequently led to the 

reduction of planning times from 6 hours to under 10 minutes. The results of these 

improvement indicated that a plan repair strategy was best to adapt the offline coverage 

planner to the online domain.  

Experiments comparing the two replanning strategies revealed that an adaptive sampling-

based coverage planner using a plan repair strategy was the faster approach compared to a 

full replan strategy. The plan repair strategy demonstrated its capability of replanning up to 

92% of the existing tour without significant degradation, completing the replanning 

problems for the representative submarine tank environment 396 times faster, going from 46 

hours to 7.5 minutes.  
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Chapter 1  

Towards Automated Submarine Tank Inspection 

1.1 Motivation 

The sustainability of the Australian Navy’s fleet of Collins Class Submarines is imperative 

for the national security and protection of Australian maritime borders and approaches 

(Figure 1-1; Australian Government: Department of Defence, 2016). To ensure operational 

readiness, each vessel in the fleet is subjected to a rigorous two-year Full-Cycle Docking 

(FCD) maintenance service after ten years of deployment (Coles and Greenfield, 2016). 

During the two-year FCD, manual inspection of the submarine tanks is an important 

component of the maintenance cycle to ensure their structural integrity during the next ten 

years of service.  

The inspection for corrosion inside the submarine tanks is of utmost importance. Corrosion, 

left untreated, is one of the major causes of marine structural failures and vessel 

decommissioning (Gu et al., 2009; De Baere et al., 2013; Heyer et al., 2013). Of all the tanks 

onboard the submarine, the ballast tanks, which take on sea water to allow the vessel to 

submerge and vent the water to surface (Figure 1-2), are highly susceptible to aqueous and 

microbiological corrosion due to the build-up of fouling. These foreign materials wear away 

the protective paint layer used to limit the impact of corrosion during the service life of the 

submarine.  

Considerable time and effort is required to perform the manual inspection of the ballast 

tanks. Many hours are spent cleaning and fumigating to rid the ballast tanks of the biofouling 

and toxins that accumulate over ten years of service before it is deemed suitable for human 

entry. Personnel are required to have certified training and be equipped with the appropriate 

personal protective equipment before entering these spaces (Safe Work Australia, 2017). 
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Figure 1-1: Collins Class Submarine (ASC Pty Ltd, n.d; reproduced with permission). 

    
          (a)             (b) 

Figure 1-2: Submarine ballast tanks are empty when the vessel is surfaced (a) and take in sea water to submerge (b) 

(ASC Pty Ltd, n.d; reproduced with permission). 
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Tank inspections are carefully scheduled as workers cannot be exposed to the exterior noises 

generated by perimeter maintenance whilst conducting a tank inspection. Also, with some 

tanks connected in series, additional spotters are required to ensure the safety of each worker 

inside each confined space. 

The manual inspection of ballast tanks requires significant attention to detail whilst the 

workers are subject to physically and mentally uncomfortable conditions. Accessible via 

small manholes, the confined spaces are tight and comprise multiple T and I frame stiffeners 

and internal pipe networks that make manoeuvring across these steel structures very 

challenging and demanding for the human body. Inspectors must examine all interior 

surfaces for evidence of corrosion, paint delamination and potential defects, and in many 

cases use mirrors to see into areas that their bodies cannot physically fit. Taken together, 

there is a clear need for an alternative approach which reduces the cost, time, and risk to 

workers for such a critical component of the FCD. 

Autonomous robotic platforms provide the opportunities to aid the inspection of buildings 

and structures that, given updated work, health and safety regulations, deem confined spaces 

to be hazardous for humans to inspect (Safe Work Australia, 2017). The advancements in 

compact sensing capabilities, computational hardware and actuator systems has enabled 

robotic systems to perform high resolution inspections that;  

1) digitally reconstruct buildings and structures (Blaer and Allen, 2009; Klingensmith 

et al., 2015), 

2) survey the quality of road surfaces and tunnels (Montero et al., 2015),  

3) inspect defects on power lines (Katrasnik, Pernus and Likar, 2009),  

4) survey ship hulls for foreign devices (Hover et al., 2012), and  

5) map underwater caves and seabeds at greater depths than divers can safely achieve 

(Weidner et al., 2017; Carreras et al., 2018). 

There are significant benefits to automating the inspection process. First, automating 

submarine tank inspection, using an autonomous inspection robot platform, would reduce 

the risks posed to workers by minimising their exposure to the hazardous environment of the 

ballast tank. Second, by supplying the robot with sufficient power, it can work for longer 

periods or at time not convenient for human workers. Third, autonomous inspection can 

proceed irrespective of any perimeter maintenance, enabling the option to reorder the 

scheduling of ballast tank inspection within the FCD. The fourth point, a robot can digitally 
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record and update valuable information about the current status of the tanks that can be used 

as a point of comparison for future FCDs. As the world prepares for the next industrial 

revolution, Industry 4.0, digital records are going to play an integral part in tracking the 

lifecycle of a building or structure (Australian Government: Department of Industry, 

Innovation and Science, 2019).  

Equipping an autonomous robot with appropriate sensors, such as cameras and lidar, will 

enable the robot to objectively record all internal surfaces of the tanks. The information 

gathered by the robot can be used to generate a digital three-dimensional (3D) representation 

of the submarine tank environment with a visual photographic overlay. These digital 

renderings will enable the maintenance engineers to make detailed inspections of the 

surfaces without entering the tanks. 

The tank inspection problem has brought industry and research collaborators together from 

ASC Pty Ltd, Flinders University and the University of Wollongong in a research project 

under the auspices of the ARC Research Training Centre for Naval Design and 

Manufacturing (RTCNDM). The objective of the collaboration was to investigate the 

possibility of deploying an inspection robot to perform an autonomous inspection over all 

interior tank surfaces to eliminate the need for human access into such confined spaces. To 

the research group’s knowledge, the automated inspection of submarine tanks had not been 

achieved with a free-roaming robotic platform, especially not inside the Collins Class 

submarines. The collaboration group was tasked with the development of an autonomous 

inspection platform, with the emphasis placed on the algorithms that support the autonomy.  

1.2 Robotic Platforms for Confined Space Inspection 

Designing a robotic system for performing tasks within a confined space is a challenging 

problem. Given the complexities of each confined space and the respective application, 

robotic systems are usually specifically designed for their designated task. Applications of 

confined space robotics include;  

1) visual inspection of marine and ancient structures (Bibuli et al., 2011; Richardson  

et al., 2013), 

2) abrasive blast cleaning (Lee et al., 2010; Sabre Autonomous Solutions, 2019), 

3) pipe inspection (Wu et al., 2015; Mills et al., 2018), and  

4) maintenance and repair (Dong et al., 2019).  
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Comprehensive surveys by Shukla and Karki (2013) and Botti, Ferrari, and Mora (2017) 

provides an insight into a number of platforms used for a range of confined space inspection 

tasks. This survey confirms the difficulty of designing a platform for the inspection of the 

Collins Class submarine, as there are strict criteria regarding the types of platforms that may 

be suitable. 

Designing a robotic platform for submarine inspection encompasses the mechanical, 

electrical and algorithmic complexities required to solve the specific task. For the submarine 

tank inspection task an appropriate platform is one that;  

1) is sufficiently compact and agile to enter and manoeuvre around the confined steel 

spaces on-board a submarine,  

2) has the ability to inspect a variety of different tank layouts and configurations, 

3) is able to sufficiently carry all the sensory equipment required to perform a thorough 

inspection, such as cameras or lidar for visual inspection and object construction,  

4) requires no modification or installation of additional structures by humans to support 

the use of the autonomous platform,  

5) has the ability to support a tether to ensure electrical power is not just reliant on 

batteries for longer inspections, and  

6) supports data communication within the tether to ensure the robot is always in 

constant communication with the host computer and operator.  

The determining factor of the effectiveness of a given robotic platform, situated within these 

tight confined spaces, is defined by the type of locomotion system implemented. A review 

of suitable locomotion for Collins Class submarines was presented in Pivetta, Lammas and 

Summat et al. (2017). The strict criteria placed on the types of platforms that are suitable to 

be placed inside the Collins Class Submarine tanks excludes the following types of robotic 

platforms from adoption; 

1) Rail-guided platforms, 

2) Unmanned Aerial Vehicles (UAVs), and  

3) wheels or tracked platforms. 

Rail-guided platforms (Figure 1-3; Christensen et al., 2011[a,b]; Nunes et al., 2013) require 

either, temporary or permanent infrastructure, and therefore require human installation.  This 

introduces several design challenges to integrate the associated infrastructure and would 

require removal before recommissioning. Deploying a small UAV is not practical as it would 
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                                        (a)                                                                            (b) 

Figure 1-3: Examples of rail-guided inspection platforms for tank inspection. (a) Autonomous  

Rail-guided Tank Inspection System (ARTIS) (University of Bremen, n.d; reproduced with 

permission). (b) DORIS (Republished with permission of Offshore Technology Conference, from 

Nunes et al., 2013; permission conveyed through Copyright Clearance Center, Inc.).  

not have the capacity to carry a sufficient payload to accommodate all the necessary sensors 

required for both inspection and localisation, nor have sufficient power for long inspections. 

Additionally, as a Global Positioning System (GPS) signal is not accessible within the tanks, 

a UAV would have to rely upon external systems, such as motion capture (How et al., 2008), 

to localise accurately for map registration. Without the capacity to carry a tether for data 

communication, a UAV would have to rely on WiFi which has the potential to be interrupted 

or disconnected and has limited data bandwidth. Constant communication to a host computer 

is essential to track the progress of the robot. Finally, while wheeled or tracked platforms 

would be suitable to carry the required sensory equipment and be connected via a tether for 

data communication and electrical power, the structures within each tank variation can be 

quite different and could pose a challenge for a wheeled platform to manoeuvre around. 

1.2.1 Multi-legged Platforms 

Pivetta et al. (2017) suggested that a suitable platform for submarine tank inspection is one 

that is constrained to move along the tank surfaces and possesses the ability to attach or 

climb over and around the steel frames. The survey indicated that a multi-legged platform 

with electromagnetic adhesion at the ends of each leg fulfils the criteria for a self-contained 

platform that possesses the ability to manoeuvre across uneven surfaces. Despite being 

constrained to move along the surfaces it is inspecting, a multi-legged platform is holonomic, 

having the ability to move freely in any direction over the surface, and with electromagnetic 

feet the platform can carry the required sensory payload and tether. 
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                     (a)                       (b) 

Figure 1-4: Examples of legged platforms. (a) CSIRO Magnapod (CSRIO, 2016; © Copyright 

CSIRO Australia, reproduced with permission). (b) Climbing RObot Caterpillar (CROC; Ward et 

al., 2014; © UTS Centre for Autonomous Systems, reproduced with permission). 

Figure 1-4 illustrates two different examples of multi-legged platforms that possess 

electromagnetic adhesion. Both the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) Magnapod (CSRIO, 2016; Figure 1-4a), designed for ballast tank 

inspection, and the Climbing RObot Caterpillar (CROC; Ward et al., 2014; Figure 1-4b) 

designed for inspection within the Sydney Harbour Bridge, possessed at least three degrees 

of freedom (DOF) per leg to allow enough dexterity to manoeuvre within the respective 

environments. 

In general, multi-legged platforms with at least 3-DOF per leg allows enough dexterity to 

manoeuvre in an uneven environment and enough redundancy in the number of legs that are 

in contact with the surface at any one time. The 3-DOF per leg enables the legs to articulate 

in a large number of possible poses. Both these requirements are essential for a platform to 

manoeuvre in an uneven environment and to allow the platform to climb, particularly in the 

transition from horizontal to vertical surfaces. 

While a multi-legged platform may possess the ability to manoeuvre freely in the confined 

spaces of a ballast tank, it is the electromagnetic adhesion that enables the platform to climb 

within these steel environments. For this submarine inspection task, electromagnetic 

adhesion is preferred over pneumatic adhesion. Pneumatic adhesion has the potential to 

damage the existing surface paint and requires time to create a tight seal to connect to the 

surface reliably and effectively (Silva, Machado and Tar, 2008; Brusell, Andrikopoulos and 

Nikolakopoulos, 2016). Surfaces also need to be clean to ensure air-tight contact. As there 
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is no guarantee all the surfaces can accommodate pneumatic adhesion, it is therefore not 

suitable for this application. The benefit of electromagnetic adhesion is that it has the ability 

to be systemically activated and deactivated, whereas permanent magnets require a force to 

remove them from the metal surface. 

Of the designs reviewed, there was no multi-legged platform that could meet all the 

requirements for immediate deployment inside Collins Class submarine ballast tanks. The 

most amenable platform was the CSIRO Magnapod. However, with a limited sensory 

capability, the Magnapod does not currently possess the autonomous capability to perform 

the required inspection. At the time of writing this thesis, these platforms are still very much 

in the research and development stage and are not commercially available. As a suitable 

platform had been identified, a concept demonstrator was developed based off the findings 

of the review with the sole focus of testing the algorithmic capability required to perform an 

autonomous inspection.  

1.2.2 Concept Demonstrator  

The concept demonstrator that is the testbed for the developed algorithms is based on the 

PhantomX Mark III hexapod robot from Trossen Robotics (Figure 1-5; Trossen Robotics, 

2019). Equipped with 18 Dynamixel AX-18A servo motors, the PhantomX has 18-DOF 

allowing the robot to transverse complex terrain with individual leg control.  

To enable mapping and localisation, the hexapod was fitted with a Velodyne VLP-16  

Puck-LITE lidar. The positioning was additionally aided with an inertial measurement unit 

(IMU). To perform close-up inspections, two of the robot legs are equipped with Basler Dart 

cameras. Both cameras are placed on the central legs on the underside of the tibia joint 

(Figure 1-5b). Placing the cameras on the underside of the tibia joint allows for a greater 

range compared to placing the cameras on the front of the tibia. Having two cameras enables 

the robot flexibility to choose which camera is best to acquire the image, given its current 

position, to avoid having to continually rotate the platform to accommodate just one camera.  

The multi-legged platform also contains a tether to continually supply electrical power and 

provide image data to the host computer during the inspection. The benefit of using a tether 

allows for emergency recovery, whereby if the robot malfunctions, it can be easily located 

and recovered.  

This initial concept demonstrator does not possess the electromagnetic adhesion upon each  
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       (a)                  (b) 

Figure 1-5: Concept demonstrator. (a) The platform is equipped with a Velodyne VLP-16 Puck-

LITE lidar for mapping and does rely on batteries as power is supplied by an electrical tether.  

(b) Close-up of the underside of the central leg where the Basler Dart cameras are located.  

of the feet. The magnetic clamping allows the robot to complete the full inspection task 

inside a submarine tank, yet without the electromagnetic feet the platform would still able to 

thoroughly verify the functionality of the algorithms, which is the main focus of the 

collaboration. Developing electromagnetic feet for the robot is the subject of future work 

and will not be the focus of this thesis. 

1.3 Processes for an Autonomous Inspection Platform 

Software based on algorithms that enable adaptation of actions according to input data is the 

core of autonomy. With a suitable robotic platform in mind, the remaining challenge was to 

implement a set of algorithms that would allow a multi-legged robotic platform to perform 

an autonomous inspection. To enable the robotic platform to perform an autonomous 

inspection, it requires the fundamental processes that allow it to act independently. These 

processes are; 

1) a mapping system,  

2) an inspection planner, and  

3) a motion planner.  

These three concurrent processes rely upon each other and require an appropriate processing 

architecture, herein called the planning architecture, available on the robot platform. This is 

discussed in Section 1.4. The development of each of these three processes were the focus 

of the collaboration.  
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1.3.1 Mapping System 

The mapping system provides the robot with the ability to perceive its environment. The 

algorithms that underlie the sensing process utilise the onboard sensory equipment, such as 

a lidar, to create a model of the environment. From this model, a situational understanding 

of the environment is developed.  

A mapping system is an integral part of the inspection application. The information the 

mapping system generates from the acquired data effectively provides the robot a sense of 

vision and spatial perception that enables several underlying algorithms the ability to process 

what the robot sees and make informed decisions on what to do next. For an inspection 

application, the discovery of new or modified areas in the environment is pivotal to ensure 

that the subsequent processes are able to modify their plans to accommodate new changes. 

1.3.2 Inspection Planner 

When performing an autonomous inspection, the robot requires an inspection plan that 

directs the robot to use the camera to observe all the surfaces within the environment. 

Inspection plans can be generated by using Coverage Path Planning (CPP) algorithms 

(Choset, 2001; Galceran and Carreras, 2013). The term coverage is in relation to how much 

of the surface is observed by the camera. The output of CPP algorithms is a collision-free 

path that enables a robot to traverse within or around the target environment to coverage all 

boundary surfaces. 

CPP is a derivative of path planning, where the objective of path planning is to find a path 

from point A to point B. CPP adds the additional constraint that the robot must move between 

two positions but cover all intended surfaces in-between. In this case, CPP algorithms tend 

to rely on path planning methodologies to formulate a solution. CPP algorithms also are 

capable of concurrently solving the motion plan of the autonomous platform. 

1.3.3 Motion Planner  

A motion planner is responsible for finding a collision-free path through the environment 

that consists of a sequence of actions that enable the robot to physically move between each 

of the planned waypoints. A motion planner differs from a path planner as a path planner 

provides a path that does not encode the mobility constraints of the robotic platform. A 

motion planner, however, does encode the mobility constraints of the platform while 

generating a path for the robot through the environment. As such a motion planner can be 

used as a high-fidelity path planner. 
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Given the chosen platform, the motion planner must consider the complexities of planning 

a multi-legged platform. To achieve the motions required to move freely within the confined 

spaces of a submarine tank, each leg is required to move independently, with respect to the 

placement of the body and the other legs. This process requires the kinematics and kinetics 

to be accurately described. This process is computationally expensive, especially when 

replanning in response to changing conditions during execution (Short and Bandyopadhyay, 

2017). 

1.4 Computing Architectures to Support Inspection Planning Processes 

For a robot to behave intelligently, it requires the fundamental architecture that supports such 

behaviour. In the previous section, the mapping system, inspection planner and motion 

planner were identified as the core components required to perform an autonomous 

inspection. A suitable computing architecture is required to support the three processes to 

allow them to execute concurrently and asynchronously with no outside intervention, that is, 

as an autonomous system. 

There are three distinct planning architectures that can be used to enable a platform to 

perform autonomously there are. These are; 

1) offline,  

2) online, or  

3) combination (Offline and Online).  

These three options are described in the following sections.  

1.4.1 Offline Planning Architecture  

Traditionally, autonomous inspection plans are precomputed before execution. When 

planning is precomputed, it is referred to as offline planning as the plans are not generated 

during execution. A prerequisite of offline planning is that offline planning algorithms 

require a priori knowledge of the environment. Manufacturing robots such as automated 

welding and pick and place machines are suitable examples of robots following a strict 

procedure to ensure the job is completed as planned. 

Figure 1-6 illustrates the offline planning architecture for an inspection planning system 

using the processes discussed in Section 1.3. Given a known map of the environment, an 

offline planning architecture will employ an inspection planner to generate a plan that will 

enable a robot to observe all the surfaces. To move the robot to the desired positions the  
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Figure 1-6: Differences between offline and online planning architectures. (a) An offline planning 

architecture. (b) An online planning architecture. The combination of both an offline and online 

planning architecture creates a combined planning architecture that enables an online planning 

architecture to be initialised with an understanding of the planning problem that was calculated by 

an offline planning architecture before execution. The executive is responsible for guiding the robot 

successfully to achieve its mission. 

motion planner will compute the motions required to enable the robot to move along the 

calculated inspection plan. As previously mentioned, it is common for these two processes 

to be solved concurrently. 

To execute the plan, the motion plan is provided to the robot, and under the executive system, 

will execute the pre-determined motions to allow the robot to achieve the calculated 

inspection plan. As the environment is assumed to be completely known to the robot, a 

mapping system is not explicitly required but can be used to detect changes that inform the 

executive system that a plan has become invalid due to unexpected changes. 

The benefit of an offline planning architecture is that, all being well, the robot will follow a 

precomputed path and complete the task successfully. However, this only remains true if the 

environment and robot dynamic limitations are fully known and remains unchanged during 

execution. Offline planning architectures do not accommodate unforeseen changes. If 

changes occur within the robot’s working environment, the precomputed paths that 
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encounter the changes would be violated, and the execution of the mission will be 

terminated. To overcome changes, an adaptive online planning architecture is required to 

allow for the occurrence of new information to enable the robot to continue with the 

prescribed mission.  

1.4.2 Online Planning Architecture 

An online planning architecture provide a solution to accommodate planning within 

partially known or completely unknown environments. Online planning architectures 

implement online planning algorithms that ensure the robot has the functionality to create a 

plan in real-time that takes into consideration detected obstacles that will encumber the robot 

platform. To overcome changing situations an online planning architecture facilitates 

replanning algorithms enabling the robot to replan without the need for human intervention.  

Online algorithms function to process sensory information over the lifetime of the robot 

mission to ensure the robot reaches the designated goal of the plan, even in the presence of 

an incomplete knowledge of the environment. As such, online algorithms are strongly 

dependant on the onboard sensing capability, such as cameras and lidar, to perceive the 

environment. Perception algorithms, such as Simultaneous Localisation And Mapping 

(SLAM; Cadena et al., 2016) are typically used as mapping systems to identify any new 

information about the environment.  

Applications of online approaches can be to generate 3D renderings of an environment or 

building that has not been digitally rendered previously, such as archaeological surveys of 

ancient structures (Richardson et al., 2013) or to navigate within dynamically changing 

environments like autonomous vehicles (Levinson et al., 2011; Bojarski et al., 2016). The 

benefit employing online planning architectures is that they provide the ability for an 

autonomous platform to always continue with its current mission irrespective to unforeseen 

changes.  

Figure 1-6b illustrates how the introduction of a mapping system enables an online planning 

architecture to adapt the current plan to new information about the environment so 

compromised plans can be resolved. An online planning architecture provides a framework 

that enables the executive to facilitate the transfer of information between integrated 

mapping, inspection and motion planners. The mapping system provides new information 

regarding the status of the environment. This new information enables the inspection and 



CHAPTER 1: TOWARDS AUTOMATED SUBMARINE TANK INSPECTION 

 

 

14 

motion planners to adapt their plans to accommodate changes. 

1.4.3 Combined Planning Architecture  

In situations when an environment is assumed to be fully known before planning but it is 

expected that the current understanding of the environment may change during execution, it 

may be beneficial to initialise an online planning architecture with an initial plan. A 

combined planning architecture allows for the initial generation of offline plans from 

available knowledge of the environment, which an online planning architecture can refine 

when the plan becomes compromised during execution.  

The benefits of this combined planning architecture are; 

1) it minimises the effort required by the online planning algorithms to continually find 

feasible paths through an evolving environment. The cost of continually adapting 

plans in an evolving environment can be an expensive operation as the task 

completion time is non-deterministic. 

2) it allows the role of an online planning architecture to update the existing plans on a 

‘need to’ basis. If the mapping system detects no new information throughout the 

lifetime of the inspection, the initial plan will execute as originally intended. 

However, if new information is available, the online planning approach provides the 

ability to correct the offline plan and allow the robot to overcome unexpected 

changes. 

1.4.4 The Inspection Planning Framework 

The implementation of the combined planning architecture, that combines the best 

functionality of both the offline and online planning architectures, is best suited to the 

inspection planning problem. Submarine tanks are known structures as they have been built 

to rigorous specifications. Therefore, there is sufficient information available to create an 

initial offline inspection plan from accurate CAD (Computer-aided design) data.  

While the main structural components, such as the I-beams, are expected to be where initially 

designed, changes are expected to occur that would invalidate the offline plan. Changes 

could occur due to either;  

1) potential damage to the tanks sustained during service, or  

2) incremental changes in the design over the manufacturing of these vessels, ancillary 

components may not be where they are indicated on the CAD models.  
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Regardless of the cause of the changes, if an autonomous robot is to perform a successful 

inspection, it is critical that these changes are captured and reflected in the final 3D 

renderings.  

Selecting a combined planning architecture as a suitable architecture to accommodate the 

three processes. This architecture created the Inspection Planning Framework (IPF) that will 

be deployed on the concept demonstrator (Figure 1-6). It will be expected that an offline 

inspection plan will be generated from a known model of the environment and then supplied 

to the online planning architecture, programmed as the IPF on the robotic platform, to 

actively update the plan when required, to respond to changes within the environment. The 

IPF was implemented within the Robotic Operating System (ROS; Quigley et al., 2009).  

1.4.5 The Primary Role of Each Process in the IPF  

Given the three processes discussed in Section 1.3 are essential for an autonomous 

inspection, this section explains the roles of the mapping system, the inspection planner and 

the motion planner within the IPF. Each process will be used collectively to adapt an existing 

inspection plan to changing conditions during execution. 

Mapping System Module 

The primary role of the mapping system module is to correlate the scans of the lidar and 

associate them with the known model of the environment to confirm that the perceived 

environment matches the known representation. For all the derived surfaces that do not 

correlate to the known model, the mapping system module will trigger a replanning update 

and inform the inspection planning module of the new surfaces that require observation. 

While the mapping system updates the representation of the environment, the surfaces are 

not deemed to be covered until a high-quality inspection of the surfaces have been taken by 

the onboard cameras.  

Within the IPF, the mapping system module is also responsible for informing the executive 

system of gaps in map. It is expected that the detection of new features will not be 

immediately complete. The detection of features will be partial in nature and therefore will 

create gaps until they are uncovered. If the mapping system determines that gaps exist within 

the map that are not going to be detected along the existing inspection plan, the mapping 

system module can inform the executive system to interrupt the current inspection plan to 

direct the robot to new locations to uncover these surfaces. This process is commonly 

referred to as exploration planning and is combined within the mapping system module to 



CHAPTER 1: TOWARDS AUTOMATED SUBMARINE TANK INSPECTION 

 

 

16 

ensure all surfaces are detected in the environment. Upon detecting the new surfaces that fill 

the gaps, the inspection planner module can adapt the existing inspection plan to cover these 

new regions. 

Inspection Planning Module 

The inspection planning module is the principle path planning process used to direct the 

robot around the environment to acquire high-quality observations of the surfaces using the 

onboard cameras. To create the initial inspection plan, the inspection planning module will 

implement an offline coverage planner. Upon receiving an update from the mapping system 

module that changes have been detected, the inspection planning module will revert to using 

the adaptive coverage planner to assess the changes and adapt the current path to provide 

new viewing locations to observe these changes. 

In the IPF, the inspection planning module will call upon the motion planning module with 

a start and finish position to resolve motion planning queries for a multi-legged robot. The 

motion planning module is required to provide a sequence of actions to create a path between 

two waypoints but is not required to maintain coverage of surfaces when generating the path. 

It is the role of the adaptive coverage planner to ensure coverage is maintained irrespective 

of the generated motion plan. 

Motion Planning Module 

The role of the motion planning module is to instruct the robot to move to the next desired 

location. It resolves any motion planning queries that have been requested by the inspection 

planning module. Like the offline coverage planner, the offline motion planner is responsible 

for providing motion plans for a multi-legged robotic platform to generate the initial offline 

inspection plan. When planning online, an adaptive motion planner is required to overcome 

changes in the environment.  

In the IPF, the motion planning module has the ability to communicate with the inspection 

planning module to inform the inspection planning module if a viewing location was 

achieved. If the motion planning module determines that a viewing location is not reached, 

the inspection planning module can then provide additional positions until the motion 

planning module is satisfied.  
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1.5 Thesis Problem, Scope, Outline and Contributions 

Of the three processes that comprise IPF, this thesis focuses on the development of the 

adaptive coverage planner to enable the inspection planner module to replan an inspection 

plan for an autonomous platform performing an inspection. In the following sections, the 

requirements associated with the inspection planning module are discussed to ensure the 

adaptive coverage planner works effectively within the IPF. With these requirements in 

place, the scope, original contributions and outline of this thesis are presented. 

1.5.1 Submarine Tank Inspection Planning Problem 

For the inspection planning module to be a successful component of the IPF, a list of 

requirements was placed on the development of the adaptive coverage planner. These 

requirements define the submarine tank inspection planning problem (STIPP) criteria. 

Requirement 1: Construct an inspection plan from a known 3D model of the 

environment. 

Requirement 2: The inspection plan should consist of discrete viewing 

positions that enable the robot to stop and photograph desired surfaces. 

Requirement 3: The inspection planning module should implement a 

coverage planner that has the ability to generate an inspection plan for a 

variety of different tank variations without parameterisation of the 

environment. 

Requirement 4: The inspection planning module should assure either 

complete coverage or the highest attainable coverage of the interior tank 

surfaces, including all internal fittings and reinforcement structures. 

Requirement 5: The inspection planning module should generate coverage 

plans that accommodate a multi-legged, high-DOF robotic platform. 

Requirement 6: The inspection planning module should contain an internal 

framework that allows adapting an existing offline inspection plan for 

coverage of newly detected features. 

Requirement 7: The inspection planning module should provide inspection 

plan updates in a timely manner. 
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As previously discussed, the design and layout of the constructed submarine tanks are 

known. Therefore, providing an offline inspection plan using the techniques of CPP 

algorithms should be sufficient to supply the IPF with an initial inspection plan  

(Requirement 1).  

Given the ideal robotic platform possesses holonomic mobility constraints and has the ability 

to stabilise it at any given location to take photographs, the assigned viewing locations 

generated by an inspection planning module are required to be discrete in nature 

(Requirement 2). The collection of discrete viewing locations will aid the creation of a 3D 

rendered model for external examination. This requirement enables the inspections to be 

repeatable and allows the robot to autonomously navigate back to a known location if further 

investigation is required. 

It is imperative that when generating these viewing positions for the robot the positions are 

not generated through any direct parameterisation of the tanks (Requirement 3). Issues 

pertaining to the exact parameters of the tank dimensions is defence classified information 

and not available for public release. Furthermore, direct parameterisation would be 

infeasible. The task to systematically determine the correct viewing locations is challenging 

due to the significant number of tanks, their variable dimensions and layouts. Therefore, the 

algorithms implemented within the inspection planning module are required to 

autonomously generate coverage positions based on inferred metrics rather than using direct 

metrics. 

The inspection planning module should ensure complete coverage is attainable and is of 

sufficient quality that it can create a high-quality digital rendering of the submarine tanks 

(Requirement 4). However, complete coverage may not be achievable as the complex 

geometries of these spaces have the potential to invalidate several positions the robotic 

platform would need to acquire to obtain coverage of the surface. In this case, it is acceptable 

to relax the 100% coverage constraint providing a suitable attempt has been made to cover 

these problematic regions, and if they remain unobservable, ensure that they are duly 

reported. 

The inspection planning module should be accommodating to the type of platform that is 

intended to be used (Requirement 5). As the motion planning of a multi-legged platform is 

an expensive process, the inspection planning module needs to consider the number of times 

the motion planner is used to create an inspection plan. The more calls to the motion planner 
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the more expensive planning is going to become. The approach this thesis takes is to 

minimise the usage of the adaptive motion planner when generating an inspection plan 

instead on relying upon the motion planning module to be made faster. 

As discussed in Section 1.4.5, the inspection planning module is solely responsible for 

facilitating an inspection plan update. Therefore, the inspection planning module has to 

possess the ability to update an inspection plan by determining which segments of the 

existing plan have been completed, which sections are still remaining to be completed, and 

determine which segments are on longer valid due to the changes. Facilitating this update 

also requires the process to replan the compromised segments of the plan. These processes 

require an internal framework that can accommodate the algorithms required to perform an 

online inspection plan update (Requirement 6). 

Of all the requirements, producing an updated plan in a timely manner is the most subjective 

(Requirement 7). As there has been no reports on such a platform, such as the PhantomX, 

performing autonomous inspections within submarine tanks, it is unknown how long an 

inspection plan will take to compute or execute. Without a guide or an indication of a suitable 

time to produce a plan, or even execute the plan in an online context, it might be suitable to 

solve the offline inspection plan first and then determine how it should behave online. 

It is assumed that the guidance system encapsulating the IPF will concurrently replan the 

inspection plan as the robot is performing the inspection. The robot sensing range is 

significantly greater than the body of the robot. Therefore, changes can be detected well 

before the robot can get there and given that this robot will not move quickly as it moves 

through the complex spaces, replanning could be achieved before it arrives at the change.  

A safe logical argument would be to assume that replanning times of over an hour would not 

be suitable. Planning times in the tens of minutes would also not be desirable because if 

many changes were to occur, several hours could be spent with the robot waiting for planning 

updates. Therefore, an appropriate interval would be in the minutes, preferably in less than 

two minutes. One could safely assume that given the slow traversable speed of the platform, 

a one to two minute replan times is ample replanning time while the robot is concurrently 

performing an inspection.  
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1.5.2 Thesis Scope 

Given the STIPP criteria, the scope of this thesis includes the development of a 3D adaptive 

coverage planner that enables an autonomous robot to perform a comprehensive inspection 

within confined spaces. Specifically, the confined spaces of submarine tanks. The algorithm 

includes the ability to replan in real-time when new information that differs from the a priori 

environment presents itself during execution. This thesis will focus predominantly on the 

development and analysis of an adaptive coverage planner and its associated algorithms to 

ensure it can provide timely updates to changing conditions. 

This thesis does not develop a mapping system or provide a solution to solve the adaptive 

motion planning problem for a multi-legged, high-DOF robot. The development of these 

processes is the focus of other colleagues in the project group. Details summarising each of 

these processes can be found in Pivetta et al. (2017) and Short and Bandyopadhyay (2017).  

At the time of completing this thesis, neither the concept demonstrator nor the adaptive 

motion planner was available for real-world testing. Therefore, this thesis focuses primarily 

on the development of an adaptive coverage planner by thoroughly analysing the intrinsic 

behaviour of a designed coverage planner via simulated trials. Furthermore, as access to the 

real-world submarine tank data is strictly classified information, this thesis alternatively 

presents simulations over a synthetically designed submarine tank model that contains 

features akin to what would be expected in the real-world counterparts.  

To ensure the adaptive coverage planner was not solely dependent upon a particular robotic 

platform or the two other IPF modules, it was developed in isolation. To ensure that when 

real-world testing was to occur, integration could occur simply, assumptions that reflect the 

expected interactions between the mapping system, motion planner and robotic platform, 

were placed on the adaptive coverage planner. These assumptions ensured that the STIPP 

criteria would still be satisfied but the results generated by the simulations would not be 

limited to only these properties. Therefore, the findings of this thesis can be applicable to 

wider variety of robotic platforms and planning scenarios. In short, this thesis made the 

following assumptions about the relationships between these systems: 

Assumption 1: The adaptive coverage planner integrates with a mapping 

system that provides mapping updates only when new features are detected in 

the environment.  
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The mapping system does not detect features that have been moved within, or been removed 

from, the environment. As Requirement 4 of the STIPP specifies, the adaptive coverage 

planner has to ensure complete coverage of these new surfaces are obtained. 

Assumption 2: The adaptive coverage planner is not responsible for 

directing the robot to seek out the uncovered regions of the environment that 

are created by partially constructing the environment over time of the 

inspection.  

This responsibility was given to the mapping system to inform the guidance system of these 

information gaps so online planning algorithms can be employed to direct from the current 

inspection plan to detect additional information about any new structures. When the robot 

acquires information about these new features, the mapping system can provide the adaptive 

coverage planner with a map update so the current inspection plan can be updated.  

Assumption 3: The adaptive coverage planner uses a simplified 6-DOF 

robot model to represent the tibia joint that contains the camera for inspection.  

While it is common for path and motion planning to be coupled together and solved as one 

process, to minimise the expense of solving high-fidelity motion planning problems 

associated with a multi-legged platform, a simplified representation of the robot is used to 

solve the inspection plan. The adaptive coverage planner uses the simplified representation 

to provide the high-fidelity motion planner with an approximated plan that is required to be 

solved explicitly. Regardless of the actual paths the motion planner solves, the approximate 

solution given by the adaptive coverage planner still maintains complete coverage. 

As the inspection plan approximates the actual plan, it is evidently not going to be an optimal 

solution. Given the complexity of moving an autonomous robot in a complex environment, 

such as a submarine ballast tank, this thesis is not concerned with the optimality of a solution 

but providing online updates that are feasible and achievable. Furthermore, by choosing a  

6-DOF representation, ensures that the results of this thesis will apply to robotic platforms 

of similar constraints and higher complexity. These assumptions are used to constrain the 

scope to focus on the development of an adaptive coverage planner. The complete list and 

the full details of these assumptions are discussed in Chapter 3 of this thesis.  

1.5.3 Thesis Outline  

To achieve the above stated requirements of STIPP, the thesis is structured as follows:  
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Chapter 2 examines the path and coverage path planning literature to determine if current 

solutions already meets the STIPP criteria. The conclusion of this chapter provides a gap 

statement and provides recommendations to which type of CPP approach is best suited to 

satisfy the STIPP.  

Chapter 3 selects an offline sampling-based coverage planner that presents itself as a 

suitable candidate to solve STIPP. Given that there is no online implementation of the offline 

sampling-based coverage planner that actively adapts an existing plan in partially known 

environments, two replanning strategies commonly used in path planning, a full replan and 

plan repair, are proposed to create the online variant that can satisfy all of the STIPP criteria. 

Potential concerns of the offline coverage planner that may hinder online performance are 

discussed. The assumptions and constraints between the relationships of the IPF modules 

are also discussed to constrain the focus of the thesis to the development and computational 

and algorithmic analysis of the adaptive sampling-based coverage planner.  

Chapter 4 examines the offline sampling-based coverage planner across a series of 

increasingly difficult planning problems to determine if any of the listed concerns present 

themselves in different planning environments. An analysis of the planning data suggests 

sensitivity to environmental changes as well as excessive planning times of large-sized 

planning problems will hinder the online performance of either proposed replanning 

strategy. Both issues needed to be addressed to ensure online planning times are consistent 

and reliable. 

Chapter 5 investigates the planning data from Chapter 4 in further detail to determine the 

cause behind the excessive planning times exhibited in larger sized planning problems. The 

analysis of the planning data aids the design of additional termination conditions that track 

the behaviour of the offline sampling-based coverage planner and to terminate when it is 

unlikely to improve upon the current best-found solution. 

Chapter 6 expands further upon the findings of Chapter 4 and 5 to introduce topological 

curve-skeletons that form a new heuristic that enables the offline sampling-based coverage 

planner to factor the environmental influences. Topological curve-skeletons approximate the 

paths around obstacles to better inform the path planning process.  

Given the analysis of the offline planning data conducted over Chapters 4 to 6, Chapter 7 

presents the first adaptive sampling-based coverage planner that uses a plan repair strategy 
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to provide inspection planning updates. The plan repair strategy uses the algorithmic 

properties of the offline sampling-based coverage planner to create regions of interest to 

segment and preserve as much of the current tour as possible to minimise the replanning 

effort around newly detected features in the environment.  

To determine if the plan repair strategy is indeed the better replanning strategy, Chapter 8 

performs a computational analysis between adaptive sampling-based coverage executing 

both replanning strategies. Therefore, for completeness the adaptive sampling-based 

coverage planner implementing a full replan strategy is also presented. A series of simulated 

experiments examine the computational performance of both strategies to determine which 

is best suited to convert the offline sampling-based coverage planner for online 

implementation. The two heuristics developed in Chapters 5 and 6 are also integrated and 

tested within each adaptive coverage planner.  

Finally, Chapter 9 amalgamates the findings on the proposed heuristics and experiments that 

compare each adaptive coverage planner. The limitations of the developed approaches and 

the assumptions that were placed on this thesis are discussed as future work.  

1.5.4 Original Contributions 

This thesis makes the following five original contributions to the field of coverage path 

planning. 

Contribution 1: The thesis investigated the functionality of the offline sampling-

based coverage planner developed by Englot and Hover (2017)1. The investigation 

determined the suitability of sampling and path planning processes for an online 

implementation (Chapter 4). The analysis of experimental data revealed that major 

issues were present when using large covering set sizes numbering into the 

thousands. These issues made it infeasible for problems of this size to be solved 

appropriately and thus necessitated new directions of development to improve both 

the offline and online planning processes (Contributions 2 and 3) The original 

contribution to knowledge is the analysis and findings of this investigation. This 

investigation examined the offline sampling-based coverage planner in a different 

planning domain under different planning constraints, providing further insight about 

the coverage planner than previously published. 

 
1 A republication of the 2011 paper of the same name (Englot and Hover, 2011). 
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Contribution 2: The investigation in Chapter 4 revealed that the existing offline 

sampling-based coverage planner exhibited significant variability between solutions 

when planning over large covering sets. This thesis explored the cause behind the 

variability and found that it was produced by the equality termination condition and 

approximation Travelling Salesman Problem solutions within the lazy point-to-point 

planner (Chapter 5). To rectify this variability, additional termination conditions 

were developed. These new termination conditions successfully removed the 

majority of the planning time variability due to ineffective iterations, which 

consequently resulted in a significant reduction of planning times across all planning 

problems. These new additional termination conditions enabled both the offline and 

adaptive sampling-based coverage planner to continue using an approximation TSP 

solver to solve large coverage planning problems quickly. 

Contribution 3: The analysis in Chapter 4 also demonstrated the sensitivity of the 

lazy point-to-point planner to the geometry of different environments. Topological 

skeletons were introduced to create the hybrid-heuristic and increase the efficiency 

of the lazy point-to-point planner to better solve the multi-goal planning problem in 

complex spaces (Chapter 6). The hybrid-heuristic generally guided the lazy  

point-to-point planner to a faster convergence on solutions, significantly reducing 

planning times of large complex coverage planning problems in concave planning 

environments.  

Contribution 4: This thesis presents a novel adaptive sampling-based coverage 

planner that is capable of performing inspections from an autonomous platform 

within confined, complex environments (Chapter 7). An adaptive variant of the 

offline sampling-based coverage planner of Englot and Hover (2017) was built by 

extending the planner with the capability to modify the current inspection plan to 

accommodate new changes within the environment (Chapter 3). The thesis 

investigated two replanning strategies, a full replan and a plan repair to extend the 

offline coverage planner into the online domain. The investigation found that the 

adaptive coverage planner, using a plan repair strategy, significantly reduced the 

computational effort required to update an existing inspection plan compared to an 

adaptive coverage planner using a full replan strategy (Chapter 8). 
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Contribution 5: While a plan repair strategy using a region of interest to bound the 

influence of change is not a novel approach to minimising the replanning effort, the 

application of a plan repair strategy to the offline sampling-based coverage planner 

has not, to the author’s knowledge, been attempted previously (Chapters 3 and 7). 

Application of the region of interest based on the sensing capability of the visual 

sensor enabled the planning processes of a state-of-the-art sampling-based coverage 

planner (which has been highlighted as an expensive coverage planner and 

inappropriate for direct online implementation) to perform efficiently online.  

1.6 Chapter Summary 

The motivation behind this thesis is to deploy an autonomous robot to perform an inspection 

of the tanks of the Collins Class submarine to minimise the risk associated with performing 

these inspections manually. Given the complexities of the confined space of the submarine 

tanks, a multi-legged platform was selected as the preferred platform to undertake the 

inspection task.  

To ensure the robot has the capability to perform the inspection task, three different planning 

architectures, offline, online and combined were discussed. The inspection task requires that 

all internal surfaces of the tank are imaged by the robot camera. As it is likely that the 

majority of the surfaces will correlate well with the tank design data, adopting a combined 

approach to planning, where an offline inspection plan is augmented by online planning 

methods would be a suitable solution to ensure complete coverage is maintained. The 

selection of the combined planning architecture formulated the IPF that integrates the 

processes of a mapping system, inspection planner and motion planner together to enable 

the robot to complete the inspection task.  

The focus of the thesis is to develop an adaptive coverage planner that can adapt an existing 

inspection plan to changing conditions. A list of criteria, referred to as the submarine tank 

inspection planning problem was defined to highlight what a successful adaptive coverage 

planner would provide within the IPF. The thesis scope highlighted the assumptions placed 

on the thesis to constrain the focus to be on the development and analysis of the adaptive 

coverage planner. The chapter concluded with an outline of the thesis and a list of the 

original contributions this thesis makes to the body of knowledge. In the next chapter, the 

path planning and CPP literature is reviewed to find a solution to the STIPP. 
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Chapter 2   

Coverage Path Planning for Autonomous Tank 

Inspection Robots: A Literature Review 

2.1 Introduction 

In Chapter 1, a list of criteria was presented that defined the parameters for the solution of 

the submarine tank inspection planning problem (STIPP). The STIPP specifies that an 

adaptive coverage planner is required to achieve full coverage of the submarine tanks. The 

goal of this thesis is to address the STIPP criteria by developing an adaptive coverage 

planner that can provide coverage to new and existing structures to inspect the inside of a 

multiple submarine tanks.  

The STIPP criteria itself addresses three different by interconnected problems. The STIPP 

criteria has an offline, online and foundational components and therefore were categorised 

to address each problem. Requirement 1 was categorised as an offline requirement as it 

requires an initial inspection plan to the constructed from a known model of the environment. 

Requirements 2 to 5 were characterised as foundational requirements because they apply 

regardless of whether the coverage planner is an online or offline process. Requirements 6 

and 7 were categorised as online requirements as they focus on the adaptive behaviour of 

the coverage planner. These three categories set the direction for investigation and therefore 

this chapter explores offline and online path and coverage path planning (CPP) algorithms 

to determine if current techniques are applicable to satisfy the STIPP criteria. After an 

evaluation of the literature, a gap statement is presented that identifies the key areas of focus 

so the goal of the thesis can be achieved. 

While there is a distinction between motion planning and path planning in this thesis, for the 
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purpose of the literature review, path and motion planning is used interchangeably. It is 

common for path planning for robotic systems to solve a motion plan concurrently when 

solving the path planning problem (LaValle, 2006). Unless specified otherwise, the output 

of CPP algorithms listed in this review produce collision-free paths that have considered the 

motion or mobility capability of the platform. However, beyond this chapter, the explicit 

motion planning of a multi-legged platform is handled by the motion planning module in the 

Inspection Planning Framework (IPF) and is not covered in this thesis or literature review. 

How motion planning is incorporated into the adaptive coverage planner that still manages 

to satisfy the STIPP criteria is discussed in further detail in Chapter 3. 

2.2 Review of Path Planning Algorithms  

Path planning or path finding, as it is termed in video gaming literature (Botea et al., 2013), 

is a rich and diverse field containing many methods to solve what seems to be an intuitive 

problem; finding a path for a given entity through an environment from point A to B  

(Figure 2-1). When it comes to path planning there is no single solution that is applicable for 

all applications. Some path planning algorithms focus solely on producing the optimal 

routes, or if time is an issue, other path planning algorithms produce paths in the fastest 

possible manner.  

Choosing or designing an appropriate path planning algorithm is dependent upon:  

1) The application of the path planning algorithm to find the optimal path, or a feasible 

path given the time, or both.  

2) The motion planning constraints placed upon the platform.  

3) The environment in which the planning is undertaken.  

Of the three listed dependencies, how the environment is represented plays an important role 

in determining which planning algorithms are applicable to solve the planning problem 

(Buniyamin et al., 2011). Finding a suitable representation of the environment that can be 

processed by a computer system requires discretisation. As such, paths solved using a 

discretised environment will only ever approximate the true path in ℝ2 and ℝ3. 

Common approaches in path planning to represent the environment are: 

1) To decompose the environment’s traversable space into a graph, to enable  

graph-based search algorithms to find a feasible path through the environment. If the 

information in the graph is complete before planning, the optimal answer can be found. 
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Figure 2-1: Various paths exist through a given environment. The choice of path is dependent 

upon the application. 

2) To not decompose the environment as a graph but to enquire information about the 

environment via sampling. This approach is commonly used by sampling-based path 

planning algorithms that construct paths via sampling the space and determine the 

validity of a given position by performing collision checks against the environment. 

As the environment is sampled, paths generated by these algorithms are not optimal 

but generally faster than graph-based solutions.  

Given that CPP is path planning under coverage constraints, this section provides an 

overview of the common 2D and 3D path planning approaches that generate paths using 

environmental abstracted graphs (Section 2.2.1) and sampling-based methods (Section 

2.2.2). As the focus of this thesis is to develop an adaptive coverage path planner to solve 

STIPP, this section also includes a summary of adaptive path planning methodologies that 

actively replan the current plan within environments that contain static or dynamic entities 

(Section 2.2.3).  

For more detail, the reader is referred to the publications of Choset et al. (2005), LaValle 

(2006) and Latombe (2012) that cover a wide variety of path and motion planning 

algorithms. These publications provide an excellent introduction to the path planning field, 

especially for robotic applications. For the application of path-finding techniques in video 

game literature, the reader is referred to Rabin (2020).  

2.2.1 Graph-based Search over Decomposed Environments 

A common approach to solving the path planning problem is to represent the problem as a 

graph. With the planning problem represented as a graph, traditional graph search algorithms 
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such as Dijkstra’s Algorithm (Dijkstra, 1959) and A* (Hart, Nilsson, and Raphael, 1968) can 

be applied. Providing the graph is complete, both Dijkstra’s Algorithm and A* provide 

optimal solutions to graph search. The difference between each algorithm is that Dijkstra’s 

Algorithm searches through all nodes in the graph to find the optimal solution whilst A* 

requires an admissible heuristic to guide the search to an optimal solution, consequently, 

evaluating fewer nodes than Dijkstra’s Algorithm in the process. Providing the heuristic is 

admissible, that is, it does not overestimate the distance to the goal, A* provides an optimal 

answer faster than Dijkstra’s Algorithm. 

Due to the computational advantages of A* it is considered one of the best graph-based 

search algorithms, popular in a number of applications outside of robotic planning such as 

the video gaming industry, that require path planning to be performed in real time (Cui and 

Shi; 2011; Botea et al., 2013; Rabin, 2015). However, for the effective use of these graph-

search algorithms, a graph must be derived from the environment one wishes to plan upon. 

Graphs from Grids 

One of the simplest forms of creating a graph is to rasterise a 2D environment into a regular, 

equalled sized grid. Each grid space is termed a cell. Cells that contain no obstacles are free 

to traverse while those containing obstacles are not. This approach is termed an approximate 

cellular decomposition (Choset, 2001) as the grid spaces only approximate the features 

within the environment. As the cells are a fixed size, they only approximate the occupancy 

of the obstacles, therefore are likely to overestimate the size of the actual obstacle or feature.  

A graph is formed by linking each cell of the grid to the neighbouring cells. Cells that contain 

obstacles are not included in the graph. In this form, graph search algorithms such as A* can 

find the path through the environment. An example of a 2D grid-based approach to path 

planning is represented in Figure 2-2a. 

Resolution Issues  

The resolution of an approximate grid is an important consideration. The resolution should 

be fine enough that the space is suitably represented. A course resolution will lose accuracy 

of the representation, while a finer cell resolution will create a larger sized graph. 

Significantly large graphs have the following implications:  

1) More memory is required to store the graph. 

2) The longer it takes for graph searching algorithms, such as A*, to find a solution.  
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(a) 

 
(b) 

Figure 2-2: Path planning using approximate cellular representations. (a) A regular sized grid. (b) 

Quadtree. 

Generally speaking, graph search algorithms suffer from dimensionality (Ferguson, Kalra, 

and Stentz, 2006). The larger either the environment or graph becomes, the more challenging 

it is to solve. Therefore, in principle, smaller graphs equate to faster solution times.  

Quadtrees and Octrees 

Quadtrees are useful for reducing the number of cells required to represent 2D environments 

(Samet, 1984). Octrees are the 3D equivalent, but cells are called voxels in 3D spaces 

(Meagher, 1982). Quadtrees decompose cells based on their occupancy. Cells that contain 

obstacles are decomposed down into four equally sized cells of smaller resolutions to 

represent the features more accurately in the environment (Figure 2-2b). Therefore, fewer 

cells representing the free and traversable space saves on memory and decreases search times 

compared to a regularly spaced grid of the same resolution. However, like most data 

structures, the larger the environment the more levels there are in the tree, and the more 
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expensive the searching becomes.  

Completeness and Optimally of Grid-based Approaches 

Providing the resolution of the grid appropriately represents the environment, grid-based 

approaches are resolution-complete such that if a solution exists within the graph, it will be 

found (Latombe, 2012). However, given that these grid representations are only 

approximations of the environment, the optimality of the resultant path is only optimal to 

the resolution of the grid (Karaman and Frizzoli, 2011). The graph search will provide the 

optimal answer for a graph, but the resultant path will not be globally optimal. A finer 

resolution will create a better representation therefore create an answer closer to the global 

optimal, but at the expensive of memory and computation. 

Visibility Graphs 

Visibility graphs have been used to create an abstract graph directly from the geometry of 

the environment (Lozano-Pérez and Wesley, 1979). A graph is formed by connecting line-

of-sight vertices of polyhedral objects within the environment (Figure 2-3a). Finding a path 

through the graph is achieved by connecting the start and finish locations to the nearest 

vertices and solving the graph. The robot is then instructed to move along the path whilst 

keeping a safe distance from the objects.  

Voronoi Diagrams 

An alternative geometric presentation commonly used in 2D path planning applications is 

the use of Voronoi diagrams (Choset et al., 2005). Voronoi diagrams generate edges of the 

graph that are equidistant from every pairs of obstacles in the environment (Figure 2-3b). 

The ability of Voronoi diagrams to generate a graph with edges that create obstacle-free 

paths through the environment make them a popular choice for 2D robotic path planning 

applications as the robot can safely be instructed to move along the edges. A path through 

the Voronoi diagram can be achieved using any graph search algorithm.  

Navigation Meshes 

Navigation meshes (Snook, 2000) are another type of cellular decomposition method that 

represents the free space of complex spaces with irregular shaped cells. Navigation meshes 

are an exact cellular decomposition as they decompose the free space within an environment 

into a set of non-intersecting regions, whose union fills the target environment (Choset, 

2001; Marden and Smith, 2014). Navigation meshes can be represented by any size and   
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(a) 

 
(b) 

 
(c) 

Figure 2-3: Various illustrative examples of different forms of environmental decomposition 

algorithms. (a) A visibility graph uses the objects line-of-sight to form a geometric-based graph. (b) 

A Voronoi graph is generated equidistant between objects in the environment. (c) A navigation 

mesh made from different sized polygons. The graph of the mesh is highlighted in blue. 
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shaped polygon (Figure 2-3c). As a result, navigation meshes can represent the free 

traversable in fewer cells than approximation cellular decompositions. Fewer cells result in 

less memory requirements which can lead to faster path planning solutions over large 

environments, making them a popular choice for video game and robotic applications.  

Commonly, navigation meshes are in the form of a triangular mesh as they are memory 

efficient and easier to work with in ℝ2 and ℝ3 (Yan et al. 2008). Creating the triangular 

mesh from a geometric representation of the environment can be achieved using either the 

Constrained Delaunay Triangulation (Chew, 1989) or Delaunay Triangulation, which is the 

dual graph of the Voronoi diagram (Fortune, 1995). 

As cells of navigation meshes can represent large areas of open free space, solving the graph 

over adjacent cells can lead to sub-optimal paths. Planning to the centre of each cell may 

increase the overall travel distance while planning over the edges of the mesh can create zig-

zag paths that are undesirable movements in practice. To find a better path through these 

cells, path planning over navigation meshes can be separated into two phases: 

1) The first phase solves the initial path using standard graph search algorithms to find 

a set of traversable cells. Solving the initial path is called finding the homotopy class 

of the environment and providing a set of traversable cells is referred to as a channel 

(Kallmann, 2005; Bhattacharya, Kumar, and Likhachev, 2010). 

2) The second phase applies a local planner to find a shorter route through each of the 

cells of the channel. Techniques such as the funnel algorithm (Lee and Preparata, 

1984), string pulling (Johnson, 2006), rubber-banding (Marden and Smith, 2014), 

and Dubins curves (Dubins, 1957; LaValle, 2006) have been applied to solver shorter 

routes over the homotopy class of navigation meshes. 

Recently, Wheare, Lammas, and Sammut (2019) demonstrated the capability of navigation 

meshes for the mission planning of autonomous surface vessels. A Delaunay Triangulation 

created a navigation mesh over a cluttered environment and using a uniform cost search 

algorithm (Russell and Norvig, 2016) to find a channel, the exact paths of the vessel were 

solved using Dubins curves (Figure 2-4). 

In summary, the examples presented in this section use either a geometric representation or 

cellular decompositions to decompose the environment to construct a graph through free 

space that can be used to find either feasible or optimal paths through the environment. 
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Figure 2-4: Dubins curves applied over a channel found over the navigation mesh created by the 

Delaunay Triangulation to find a path that directs the autonomous vessel through the navigational 

buoys (green and red) (Wheare et al., 2019; © 2019 IEEE, reproduced with permission).  

Consideration needs to be given on the size of the graph and the graph search algorithm used, 

as larger-sized graphs become computationally infeasible to find a solution. 

2.2.2 Sampling-based Path Planning  

Sampling-based path planning methods do not require a searchable representation of the 

environment to produce a path (Karaman and Frazzoli, 2011). Path planning is conducted in 

the robot configuration space (LaValle, 2006), where samples that represent a robot's 

configuration are generally sampled at random in the space. Collision with obstacles is 

evaluated for every path segment, a task that is referred to as a collision check. When a 

position is sampled, the validity of the sample is checked against the environment. If valid, 

the position is used to construct paths through the environment. The application of using 

samples to seed paths through an environment, allows sampling-based path planning 

algorithms to work beyond the restrictive and dimensionality issues of graph-based 

representations. 

Popular sampling-based path planning algorithms used in robotic applications are the 

probabilistic roadmap (PRM; Kavraki et al., 1996) and the rapidly exploring random tree 

(RRT; LaValle, 1998). Both planning algorithms provide fast path planning solutions in 

complex 2D and 3D spaces and in higher dimensional spaces for robotic arms and multi-

legged platforms (Short et al, 2016). 
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Classification of Sampling-based Path Planners 

Sampling-based path planners have been classified as either a single-query or multi-query 

planner (LaValle, 2006). A single-query planner resolves path planning queries between 

two specified locations once. These planners calculate paths when required, with no 

preconception of the environment. Multi-query planners on the other hand, precompute a 

topological representation of the environment, termed a roadmap, before resolving path 

planning queries. Providing the environment remains static for each planning query, the 

precomputed roadmap can be queried multiple times to resolve path planning queries 

between any two locations.  

Sampling-based path planners can also be implemented as anytime planners. Generally, path 

planners continue to solve until a solution is complete. Anytime planners, which implement 

anytime algorithms (Zilberstein, 1996), provide approximations to the best solution by 

providing the best solution available after a specified time limit. A better solution can be 

obtained by providing these planners with more time. As a solution can be delivered at any 

time, anytime planners are preferable for online replanning applications, where the delivery 

of a solution can be critical for time-based applications.   

Probabilistic Roadmaps 

The PRM is a multi-query planner that has two distinct phases to generate a path, the 

learning or construction phase and the query phase. The construction phase constructs a 

roadmap of traversable paths between sampled positions while the query phase is used to 

resolve path planning queries. In the learning phase, samples are drawn at random across 

the configuration space to build a roadmap of valid configurations achievable by the robot. 

Samples that collide with objects are rejected. Those samples that are within free space, are 

connected to neighbouring samples by a local planner, which generally connects samples by 

a straight line but can be used to resolve paths with platform constraints of further 

complexity, to build a roadmap of paths (Figure 2-5a). The construction phase concludes 

once a specified number of samples have been drawn.  

To resolve a path planning query using the PRM, any pair of start and finish locations can 

be added to the roadmap and the shortest path can be solved using as Dijkstra’s Algorithm. 

Providing the environment remains static, the PRM can be continually queried to solve path 

planning problems.  
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Rapidly-exploring Random Trees 

As mentioned, the RRT is another popular choice to solve path planning problems in 

ℝ2 and ℝ3. The single-query planner, constructs a path by spawning a tree from the start 

position and iteratively adds random sampling configurations to the tree as it grows towards 

the goal (Figure 2-5b). Like the PRM, each sample drawn is checked for collision and 

removed if invalid. Valid samples are connected to the nearest neighbours of the tree. The 

tree continues to grow towards the goal and terminates with the only path it has found. Due 

to simplicity of sampling free space, the expansion of the RRT occurs quite quickly and 

hence its popularity to solve high-dimensional path planning problems.  

LaValle and Kuffner (2001) extend the capabilities of the RRT to derive trees that can 

accommodate robotic platforms with different mobility constraints. Furthermore, to increase 

the convergence of the RRT, the RRT-Connect algorithm was developed by Kuffner and 

LaValle (2000). RRT-Connect spawns two trees from the start and finish locations and 

biases the sampling of the two trees towards each other and subsequently, once near enough, 

connect them together. Results showed that the RRT-Connect algorithm improved upon 

solution times in environments containing more open regions compared to the traditional 

RRT. 

Completeness and Optimality in Sampling-based Approaches 

Similar to the resolution completeness of cellular approaches, sampling-based approaches, 

such as the RRT and PRM, have been found to be probabilistically complete (Kavraki, 

Kolountzakis, and Latombe, 1998; LaValle and Kuffer, 2001). If a solution can be found, 

the probability of finding an optimal solution converges to one as the number of samples 

approach infinity. However, despite the RRT and PRM notions of probabilistic 

completeness, these sampling-based path planners do not guarantee optimality.  

The uniform random sampling procedures make it unlikely an optimal solution can be 

achieved as sampling does not explicitly capture the connectivity of the environment 

(Elbanhawi and Simic, 2014). Sampling in narrow areas makes it difficult to ensure that the 

environment is suitably covered. Figure 2-5 provides examples to how narrow spaces can be 

missed but how both the PRM and RRT still find feasible solutions. 

Various alternative sampling schemes have been proposed to provide better coverage of the 

environment (Elbanhawi and Simic, 2014). Rodriguez et al. (2008) proposed a sampling  
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(a) 

 
(b) 

Figure 2-5: Examples of sampling-based path planning algorithms, (a) a probabilistic roadmap 

(PRM) and (b) a rapid-exploring random tree (RRT). The shaded red areas highlight narrow 

regions that samples were not generated within. Sampling within these regions may have resulted 

in shorter paths to the goal. 

method that factors the entropy of the environment, to increase the sampling in narrower 

regions and less in open areas. However, as Elbanhawi and Simic, (2014) concluded, the 

effectiveness of different sampling procedures is still an open field of research and no 

proposed sampling method stands out above all others for every planning situation.  

Asymptotically Optimal Sampling-based Path Planners 

To improve upon the optimality of the paths produced by both PRM and RRT, Karaman and 

Frazzoli (2011) presented PRM* and RRT*. These incremental improvement algorithms 

first solve the plan quickly using their respective method and then incrementally add more 

samples around generated solutions to optimise the quality of the path. Given their respective 

improvements procedures, PRM* and RRT* were proven to be asymptotically optimal while 

still retaining the properties of probabilistic completeness (Karaman and Frazzoli, 2011).  
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The incremental nature of the RRT* solution enabled the single-query planner to function 

as an anytime algorithm, such that the RRT* continues to optimise the solution to a specified 

time limit (Karaman et al., 2011). Given the properties of RRT*, it has become a popular 

choice for path planning in real-time applications. The popularity of RRT* has seen several 

extensions to decrease the convergence time of RRT* solutions. Solutions such as; 

1) RRT*-Smart (Islam et al., 2012; Noreen, Khan, and Habib, 2016),  

2) Informed RRT* (Gammell, Srinivasa and Barfoot, 2014),  

3) RRT# (Arslan and Tsiotras, 2013), and  

4) RRTX (Otte and Frazzoli, [2015; 2016]). 

These are just a few of the available variants that increase the efficiency of RRT* in static 

and dynamic environments for robot platforms that contain either holonomic or non-

holonomic mobility constraints. 

RRT* has also been coupled with graph-based path finding techniques in a hierarchical 

planning approach to find the homotopy class of paths through an environment (Brunner, 

Brüggemann, and Schulz, 2013). The initial path was first solved over grid-based 

representation using a graph-based search algorithm to limit the RRT* to find a higher 

quality path through the channel to the goal position.  

Due to the effectiveness and computational efficiencies of sampling-based path planning to 

solve paths quickly in high-dimensional spaces, they continue to remain at the forefront of 

path planning research and development. For further information on sampling-based path 

planners, the reader is referred the comprehensive review by Elbanhawi and Simic, (2014). 

2.2.3 Path Replanning Strategies  

When a precomputed plan becomes compromised during execution, a replanning strategy is 

required to actively revise and modify the current plan to changing conditions. Conditions 

for changing an existing plan could be due to;  

1) a change in the mission objective,  

2) inadequate energy or resources to complete the mission, or 

3) segments of the plan become no longer traversable due to the detection of either static 

or dynamic (moving) objects that impeded movement. 

If any of these events occur during the execution of a plan, the original plan needs to be 

revised to ensure the primary or new goal of the mission is still maintained.  
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When formulating a replanning strategy for an unmanned aerial vehicle (UAV), Wzorek, 

Kvarnström, and Doherty, (2010) discussed three common replanning strategies used to 

rectify a compromised plan to changing conditions. The three replanning strategies proposed 

were to perform either;  

1)  full replan, 

2)  partial replan, or 

3)  plan repair.  

The difference between these strategies is how much of the original plan is intended to be 

replanned. Figure 2-6 provides an illustrative demonstration of the three replanning 

strategies. A full replan strategy discards the entire plan from either the current location or 

the next immediate waypoint in the plan to make way for a new plan to the goal position 

(Figure 2-6b). A partial replan strategy conserves the replanning effort to the immediate 

position preceding the obstruction to the goal position (Figure 2-6c). All path segments 

preceding the last valid waypoint are preserved while the compromised path from the 

obstruction is replaced with a new plan to the final goal. Finally, a plan repair strategy only 

seeks to repair the segments of the plan that are actually impacted by the change in the 

environment that triggered the replan (Figure 2-6d). A plan repair strategy preserves all 

segments of the plan that are not impacted by the change, therefore minimises the replanning 

effort just around the compromised region. 

Of the three approaches, the plan repair strategy presents as the quickest, as the replanning 

effort is focused only around the change as it attempts to minimise the amount of replanning 

required. However, the computational efficiency of the plan repair strategy decreases the 

more replanning of the existing path that is required. While the partial replan and plan repair 

strategies do present as the faster option to replanning than the full replan strategy, they do 

come at the potential loss of path optimality, as these strategies resolve the path replanning 

problem locally instead of globally (Figure 2-6). The trade-off between these methods is 

problem specific. Path planning problems that require immediate resolution would opt to 

perform a plan repair strategy to overcome the immediate changes that compromise the 

existing plan (Bertola and Gonzalez, 2013; Wzorek et al., 2010). However, if time is not an 

issue but possibly the energy consumption of the robot is of concern, a full replan strategy 

may be more appropriate to ensure the new plan is optimised to the requirements of the robot. 
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       (a) 

 
       (b) 

 
       (c) 

 
       (d) 

Figure 2-6: Examples of the three replanning strategies. (a) The new changes obstruct the existing 

path. (b) A full replan strategy replans from the point of detecting an obstacle to the goal position. 

(c) A partial replan strategy creates a new plan from the obstruction to the goal. (d) A plan repair 

strategy only resolves segments of the tour that have been impacted by change.  
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Replanning in Graph-based Approaches 

For graph-based approaches, replanning can be achieved by rerunning A* when new events 

occur that impact the graph. Weights on the edges of the graph, which usually represent the 

distance to neighbouring nodes or the goal, can be updated to reflect the new change and 

solved again. However, continually discarding the current plan for a full replan can be 

expensive, especially when replanning over larger environments (Stentz, 1997). Therefore, 

when planning within partially or completely unknown environments, where information 

about the environment is expected to continuously evolve, it may be more appropriate to 

refine a solution rather than continuously calculating a new solution from scratch. 

HPA* (Hierarchical Path-finding A*; Botea, Muller, and Schaeffer, 2004) and HAA* 

(Hierarchical Annotated A*; Harabor and Botea 2008) are two common approaches that 

have been applied to grid-based representations that incrementally use A* to find paths 

through both large and changing environments. To minimise the computational effort of A*, 

these approaches construct an abstracted graph of the environment by segmenting the larger 

sized grid into smaller clusters. The connection between each cluster creates a high-level 

abstracted graph that represents the connectivity of the environment (Figure 2-7). An initial 

path is solved by first solving the abstract graph using A*. The shortest path solution through 

the abstracted graph identifies which clusters to solve the higher resolution path using A* 

over the grids within each identified cluster. This hierarchical approach to path planning 

allows several instances of A* to solve smaller representations of the environment faster 

than what one instance of A* can achieve over the entire space.  

 

Figure 2-7: An illustration of an abstracted graph that HPA* would produce over the example 

planning environment. Solving a path requires first solving the abstracted graph to identify which 

clusters (6x6 cells) to solve using A*. 
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When changes occur online, the abstract graph can be updated and the respective paths 

though the clusters can be solved again. In practice, as changes are expected, to save on 

computational effort only the immediate clusters along the path need to be resolved. The 

subsequent clusters can be scheduled to be solved when required, if replanning is not 

required sooner.  

The caveat to hierarchical approaches is because the path is solved through an abstracted 

representation of the environment first the resultant path is not globally optimal. This 

becomes the trade-off for solving large environments faster. However, path smoothing 

algorithms can be applied to reduce the length of the approximated paths. The equivalent 

approach for triangular navigation meshes is TRA* (Triangulation Reduction A*; Demyen 

and Buro, 2006). A more detailed discussion surrounding hierarchical approaches can be 

found in Vermette (2011). 

To avoid repeated A* searches for each change in the environment, incremental heuristic 

search algorithms (Koenig et al., 2004), such as LPA* (Lifelong Planning A*; Koenig, 

Likhachev and Furcy, 2004) and D* (Dynamic A*; Stentz, 1997) provide an alternative way 

to solve the replanning problem by constructing new solutions through the reuse of 

information gathered from previous solutions. When a change occurs, incremental heuristic 

search algorithms, minimise the search space by only updating the weights on the edges of 

the graph that are relevant to finding the shortest path.  

Koenig and Likhachev (2002) extend the replanning concepts of LPA* with the navigational 

strategy of D* to create D*-Lite. Unlike LPA*, which maintains the weight of graphs from 

start location to the robot’s current location, D*-Lite maintains the cost from the goal 

location to the current location. Reserving the search direction reduced the time spent 

replanning towards the goal in an unknown or partially known environment. The popularity 

and effectiveness of the D* family of path planners has resulted in continuing advancement 

to improve upon the global optimality of D* paths over discrete environments in both 2D 

(Ferguson and Stentz, 2005) and 3D environments (Casten, Ferguson and Stentz, 2006).  

Given that these algorithms are partial replan algorithms, there are caveats to using these 

methods. As these approaches attempt to preserve as much of the relevant information as 

possible to perform a partial replan, the overheads associated with preserving can become 

quite expensive when; 
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1) large changes occur that invalidate a significant portion of the current plan, or  

2) changes occur quite early in the plan. 

If these events do occur, incremental heuristic search algorithms can be less effective than 

a full replan due to these overheads associated with preserving and cross-checking existing 

solutions. (Koenig et al., 2004). These approaches are best to resolve small changes as the 

preservation of information about the planning problem enhances the ability of these 

algorithms to perform effectively over larger problems.  

Replanning in Sampling-based Approaches 

For sampling-based path planners there are also a series of applicable replanning strategies 

available (Short et al., 2016). Given the computational efficiencies of sampling-based path 

planning approaches, in particular the RRT, when planning under simple mobility 

constraints, in many cases it may just be easier to create a new path than it can be to repair 

an existing one. Automated needle steering for medical applications have sought the benefits 

of refining a path by continually solving multiple RRTs at each time interval and selecting 

the best solution that satisfies the shortest path to the goal (Patil et al., 2014). Sun, Patil, and 

Alterovitz, (2015) proposed High-Frequency Replanning where multiple RRTs were solved 

in parallel to provide more solutions to choose from at the each of replanning phase.  

Like the incremental heuristic search algorithms, replanning by preservation and the reuse 

of previous solutions to guide the construction of a new solution is also common for 

sampling-based planners. The algorithms listed below are examples RRT-based algorithms 

that all seek to reuse previous RRT solutions, or part thereof, to refine or repair existing 

solution: 

1) ERRT (Execution-extended RRT, Bruce and Veloso, 2002),  

2) DRRT (Dynamic RRT, Ferguson, Kalra, and Stentz, 2006), 

3) AD-RRT (Anytime Dynamic RRT, Ferguson and Stentz, 2007), and  

4) MP-RRT (Multipartite RRT; Zucker, Kuffner, and Branicky, 2007)  

As mentioned previously (Section 2.2.2), RRT* is commonly used for anytime applications 

with listed variants RRT# and RRTX being able to sufficiently replan in unknown and 

dynamic environments.  

Recently, Hernández et al. (2019) presented results on replanning with RRT* to generate 

paths for an AUV moving through an unexplored environment. Their work discussed two 
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solutions for replanning with RRT*, other than replanning a new path each time the 

environment changed. The first replanning strategy replanned new paths by pruning out 

edges of an existing RRT* tree that can no longer be traversed due to collision. The second 

replanning strategy seeded a new replanning phase by utilising the last best known RRT* 

solution. The authors found that last best-known solution strategy resulted in a faster solution 

with a better success rate compared to the pruning strategy that was found to be 

computationally more expensive.  

2.2.4 Path Planning Summary 

This review highlighted common approaches to path planning in the context of coverage 

planning. Path planning algorithms such as Genetic Algorithms (Mitchell, 1998), Potential 

Fields (Khatib, 1986), Neutral Networks (Janglová, 2004), Ant Colony Optimisation 

(Dorigo, and Birattari, 2010) which have all been used to solve path planning problems, were 

not covered. These approaches are not particularly common in the coverage path planning 

field nor applicable to meet the STIPP criteria. Due to the main focus of the thesis being 

coverage planning and not path planning, any path planning algorithm that had not been 

thoroughly demonstrated in the coverage planning domain was outside the scope of the 

thesis. However, these approaches are interesting, and the reader is referred to the survey 

papers, Yang et al. (2016), Mac et al. (2016) and Patel et al. (2019) for more information 

about how these approaches have been applied to path planning. 

In summary, when it comes to path planning and replanning, a path planning strategy should 

be selected based on the application. However, consideration must be given to the 

representation of the environment. Grid and graph-based solutions that rely heavily on 

graph-based solvers, such as A* are limited in dimensionality. Their applicability diminishes 

in 3D and over fine discretisation of the environment. Sampling-based approaches which 

have been shown to work well in high-dimensional spaces are limited in their ability to solve 

optimal paths. Incremental improvement algorithms such as PRM* and RRT* exist to 

counter this issue. One conclusion that can be drawn from the review of replanning strategies 

is that they need to ensure the final plan is complete and achievable, so the threats that 

compromise the current plan are avoided within a respectable time.  
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2.3 Review of Coverage Path Planning Algorithms  

The first published attempt at coverage path planning (CPP) was developed by Cao, Huang 

and Hall (1988). Originally defined as region filling, Cao et al. (1988) applied a path 

planning technique that aimed to cover all the free space in a 2D environment for the purpose 

of autonomous lawn mowing. In developing this technique, six key criteria that govern the 

behaviour of a region filling operation were identified. These six criteria are defined as:  

1) The robot must traverse and cover the whole region. 

2) The robot must fill the region without overlapping paths. 

3) The robot must be capable of continuous and sequential operation, without any 

repetition of path. 

4) The robot must avoid all obstacles in a region. 

5) The plan should enable simple motion trajectories (e.g., straight lines or circles). 

6) An optimal path is desired under the available conditions. 

Since defining these criteria, CPP has taken on a more general definition but the premise 

remains the same. Two prominent surveys by Choset (2001) and, Galceran and Carreras 

(2013), define CPP as, the task of determining a path that passes over all points of an area 

or volume of interest while avoiding obstacles. With advances in sensing capability, several 

CPP algorithms listed in these surveys utilise appropriate range and visual sensors to perform 

coverage of a boundary surface. Introducing sensory coverage paths to inspect free space or 

objects within the environment presented new ways to solving the CCP problem. Since 

Cao’s criterion, CPP algorithms have been expanded to work over 2.5D and 3D 

environments in a number of robotic applications. These applications include: 

1) Autonomous vacuum cleaning (Liu, Lin, and Zhu, 2008). 

2) Underwater surveying of maritime structures (Englot and Hover, 2013; Galceran et 

al., 2015; Palomeras et al, 2019). 

3) Tank and bridge inspection (Kalra, Gu, & Meng, 2006; Sehestedt et al., 2013). 

4) Minesweeping (Acer et al., 2003; Dakulovic and Petrovic, 2012). 

5) Agriculture and environmental mapping (Jin and Tang, 2011; Hameed, 2014). 

6) Automated paint distribution (Atkar et al., [2005, 2008]; Yang et al., 2019). 

7) Building surveillance and reconstruction (Cheng, Keller, and Kumar, 2008;  

Yu et al., 2015; Yao, Cai, and Zhu, 2019).  

Like path planning algorithms, CPP algorithms are also implemented for offline and online 
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applications. As previously discussed briefly in Section 1.3.2, offline CPP algorithms solve 

the coverage plan before execution, while online CPP algorithms require perception to gather 

information about the environment to modify the current plan to account for changes within 

the environment. CPP algorithms can also be classified into the same two categories as path 

planners. These algorithms;  

1) derive coverage plans from a decomposition of the environment, similar to the 

approaches presented in Section 2.2.1, and  

2) comprise sampling-based approaches that generate coverage plans through random 

sampling with no explicitly searchable representation of the environment solely from 

the sensing capability and manoeuvring of the robot. 

The main difference between these two techniques is how these coverage plans are 

generated. Typically, coverage planning algorithms decompose the environment into 

simplified regions to acquire coverage over the edges of the plan. Plans that consist of 

continuous trajectories enable the robot to observe all areas of the environment while the 

robot is moving. These methods tend to focus on traversable coverage of free space, ensuring 

that the robot covers all surfaces by passing within sensor range all areas of the environment. 

Sampling based approaches, on the other hand, generate discrete coverage plans that 

typically acquire the coverage on the vertices of the plan. These plans are generally useful 

to stabilize a robot at specific locations to acquire the coverage. A coverage plan is created 

by connecting all these locations together, which collectively provides complete coverage of 

all the surfaces. These methods tend to focus on the coverage of the boundary surfaces of an 

object or environment as opposed to the free space. Given these differences, coverage 

planning algorithms can be further categorised as either continuous coverage planners or 

discrete coverage planners; a taxonomy shared in Almadhoun et al. (2016). Figure 2-8 

highlights the differences between each approach. 

In the literature, inspection path planning and coverage path planning have been used to 

differentiate between discrete and continuous-based coverage path planning respectively. 

However, this does not mean that all inspection path planners acquire coverage on the edges 

of the plan. Whilst the construction of the plan is discrete in nature, the paths formed by 

sampling can be used to create plans that observe or cover the surface while the robot is 

moving. This depends upon the type of inspection that is performed, and the sensors used to 

observe the environment. As such, if coverage of a surface is performed using a lidar, there 
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           Coverage on the vertices of a plan                         Coverage on the edges of a plan 

Figure 2-8: Example between coverage acquired over the edges of a plan by sampling vs coverage 

acquired over the edges of a plan with continuous sweeping trajectories. The red fans indicate the 

coverage of the surface by the robot (blue). 

would be no need to remain static to acquire coverage during the inspection. Conversely, if 

coverage is to be taken with a camera, it may be desirable to have the robot hold position, 

and therefore a set of discrete locations is preferable. While the following sections will 

discuss this difference in further detail, for the purposes of this review, the terms coverage 

path planning and inspection path planning are used interchangeably to represent a complete 

collision-free plan that acquires full coverage of the surfaces or environments the robot is 

intended to inspect.  

The following sections discuss common offline coverage path planning techniques that 

decompose the environment into small decompositions to generate continuous coverage 

plans (Section 2.3.1), and those that use sampling-based approaches to generate discrete 

coverage plans (Section 2.3.2). Online CPP methods that actively replan in unknown and 

partially known environments are discussed in Section 2.3.3. 

2.3.1 Coverage Planning using Environmental Decompositions  

In Choset’s 2001 survey, a taxonomy was presented to categorise CPP methodologies that 

generate continuous coverage plans to ensure complete coverage of the environment was 

achieved. The taxonomy included: 

1. Heuristic and randomized approaches. 

2. Approximate cellular decomposition approaches. 

3. Semi-approximate cellular decomposition approaches. 

4. Exact cellular decomposition approaches. 
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Heuristic and Randomized Approaches 

Heuristic and randomised approaches use predefined robot motions to randomly cover the 

target environment. As these approaches are not deterministic, heuristic and randomised 

approaches are not as effective as complete coverage algorithms, such as cellular 

decompositions, that decompose the target environment to create a coverage plan (Acar at 

al. 2003).  

Approximate and Semi-approximate Cellular Decomposition Approaches 

As discussed previously (Section 2.2.1), approximate cellular decompositions decompose 

the environment into a set of equally sized cells (Choset, 2001). For coverage-based 

problems, the resolution of the cells is generally based upon a footprint of the robot and 

coverage is achieved by the robot passing through all the cells. If the robot or an obstacle 

occupies just a portion of a cell, it is considered fully occupied and hence the approximation 

of the decomposition does not ensure a full cover of the environment. The Wavefront 

algorithm (Zelinsky et al., 1993) and the Spanning-Tree Covering algorithm (Gabriely and 

Rimon, 2002) have been common approaches to solve CPP problems over approximate 

cellular decompositions. In contrast, semi-approximate cellular decompositions decompose 

the environments to cells of a fixed width but no restriction on height (Choset, 2001). 

Coverage within each cell is achieved by using zig-zag motions along the grid lines.  

Exact Cellular Decomposition Approaches 

The most recognised and accepted method to decompose an environment into cells is to use 

exact cellular decomposition approaches. A well-recognised exact cellular decomposition is 

the boustrophedon decomposition (Choset and Pignon, 1998; Choset, 2000). This 

decomposition was developed to reduce the number of cells and travel redundancy produced 

by the trapezoidal decomposition (Latombe, 2012). Coverage of each cell is achieved by 

generating simplistic back-and-forth motions over each cell. Then by solving the travelling 

salesman problem (TSP; Applegate et al. 2011) between cells, the resultant coverage plan 

can be generated. 

Exact cells in the boustrophedon decomposition are created by identifying the critical points 

within the environment (Choset and Pignon, 1998). Choset et al. (2000) extended the 

boustrophedon decomposition to detect critical points using Morse functions (Milnor, 2016). 

Using Morse functions coverage planning could be performed in environments that 

contained non-polygonal objects. Acer et al. (2002) highlights the effectiveness of Morse 
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decompositions, an exact cellular decomposition determined by Morse functions, to solve 

2D and 3D coverage-based applications.  

Cellular and Environment Decompositions for 3D Coverage Planning  

In 3D, CPP shifts from the complete traversable coverage of free space to the complete 

coverage of surfaces and object boundaries. 3D continuous coverage planning algorithms 

are generally applied to robotic platforms that operate above the inspecting surfaces to 

acquire coverage at an offset distance from the surfaces they are inspecting. However, there 

have been 3D solutions that solve traversable coverage problems for agricultural applications 

(Jin and Tang, 2011; Hameed, 2014; Wu et al., 2019). These approaches considered 

environmental factors, such as elevation or terrain slopes, to better represent the planning 

problem to optimise travelling time and energy costs that would have otherwise been ignored 

or approximated in 2D approaches.  

With the complexities surrounding the calculating of continuous trajectories over free-form 

surfaces in  ℝ3 , several 3D continuous coverage planning algorithms decompose the 

environment to a representation of lower dimensions than the robot’s workspace (Galceran 

and Carraras, 2013). Approaches by Atkar et al, (2005; 2008) and Cheng et al. (2008), 

decompose complex 3D structures into their geometric and topological representations to 

ensure continuous uniform coverage can be achieved, for the purposes of autonomous 

building inspection and paint distribution. 

Galceran et al. (2015) developed a continuous coverage path planner that brings together a 

combination of 2D and 3D cellular decomposition approaches to provide coverage for 3D 

marine formations represented in the form of a 2.5D height map. Their process started by 

segmenting the height map into areas of low and high relief. For low relief areas, which were 

assumed to be flat, Morse-based decompositions were used to define the cellular boundaries 

around the high-relief areas so the Boustrophedon decomposition could be used for coverage 

over each cell. For the high relief areas, the height map was decomposed into a set of evenly 

spaced planar segmentations and coverage offset loops, similar to the work of Atkar et al. 

(2002). A complete coverage plan was achieved by combining the solution of the adjacency 

graph formed by neighboring cells of the Morse-based decomposition with the coverage 

offset loops.  

In summary, this section has discussed CPP algorithms that generate continuous coverage 

plans from environmental decompositions. Typically, these techniques mainly focus on 
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decomposing the environment into cells, as seen previously in the path planning review, to 

provide uniform, traversable coverage of the surface rather than just the static inspection of 

a surface. For a comprehensive review of CPP methodologies that generate continuous 

coverage plans from environmental decompositions, the reader is referred to the survey by 

Galceran and Carreras (2013).  

2.3.2 Sampling-based Coverage Path Planning  

View Planning to Generate Coverage Locations  

Sampling-based coverage path planning algorithms sample the robot configuration space to 

generate a discrete set of viewing locations, taking into consideration the constraints of the 

sensor and the robotic platform, to observe the surface boundaries of any given environment. 

The process of sampling viewing locations is commonly referred to as view planning (Scott, 

Roth and Rivest, 2003; Scott 2009). The view planning problem (VPP) is like the art gallery 

problem where the solutions determine the minimum number of guards required to observe 

all surfaces of the gallery. The difference between these approaches is that for the art gallery 

problem the guards are assumed to have an infinite sensing capability, while view planning 

must factor in realistic sensing constraints such as limited field of view and field of depth. 

However, solving this problem is known to be NP-hard and to find viable solutions requires 

approximations to the minimum covering set (Shermer,1992).  

Solving the minimum covering set is known as solving set cover problem (SCP). While the 

SCP has also been defined as an NP-hard problem, heuristic approaches have been 

developed to approximate the minimum set cover (Grossman and Wool, 1997; Vazirani, 

2013).  

To solve the VPP González-Baños and Latombe (1998; 2001) proposed two different 

approximation methods, the first being a fully randomised approach, and the second being a 

dual-sampling method. In the case of the randomised approach, the entire environment is 

sampled at random until the guards can, in combination, observe all surfaces. This approach 

formulates a SCP which can be used to solve the minimum covering set of viewing locations 

that observe the boundary. For this approach, the authors opted to use a greedy approach to 

approximate the SCP. 

Their second approach, the dual-sampling method incorporates the visibility constraints of 

the sensor to only sample within a neighbourhood of the boundary surface that requires 
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observation, instead of randomly sampling across the entire space. To do this, the dual 

sampling method first samples an unobserved primitive of the environment, before randomly 

sampling a set of potential viewing locations from which to observe that selected primitive. 

A covering set of the environment is formed by taking only the viewing location that best 

observed that primitive. This process continues until all primitives of the boundary have 

been observed. By incrementally building a covering set, the explicit solution of the SCP is 

avoided. Since the inception of the dual-sampling method, it has been the basis of several 

sampling-based coverage path planning algorithms, some of which are discussed in this 

review.  

While these approximate methods of solving the VPP introduces overlap between viewing 

locations, the existence of the overlap is required to meet the goal of view planning (Scott, 

Roth and Rivest, 2003). For the purposes of image registration and digital reconstruction of 

the inspecting environment, overlap is necessary for algorithms such as RANSAC (Random 

Sample Consensus; Fischler and Bolles, 1981) to provide a solution that efficiently correlates 

with all the acquired images.  

The above approaches only solve one aspect of generating an inspection plan using a 

sampling-based approach. The second phase is to connect these viewing locations together 

using path planning algorithms to create a single collision-free inspection plan. Methods to 

combine these two principles are classified as either coupled or decoupled approaches. 

Decoupled approaches separate the sampling of viewing locations and the path planning that 

connects these viewing locations together into two distinct steps. Coupled approaches 

combine the processes of sampling and path planning into single step. The sampling of the 

next viewing location is only preformed once a path between the previous viewing locations 

has been established. The following two sections discuss these approaches to construct 

sampling-based inspection plans in both 2D and 3D from fundamental view planning and 

sampling-based path planning techniques. 

Decoupled Coverage Planning by Solving the Multi-goal Planning Problem 

Compared to coupled planning approaches that solve both the sampling and path together in 

one step, decoupled sampling-based coverage path planners are required to solve an 

additional path planning problem that seeks to order the covering set of viewing locations to 

create a single collision-free plan. This problem is commonly referred to as either, the  

multi-goal planning problem (MPP; Wurll and Henrich, 2001) or, more generically the 



CHAPTER 2: FORMULATION OF A SOLUTION FOR THE STIPP 

 

 

52 

robotic task sequencing problem (Alatartsev, Stellmacher and Ortmeier, 2015).  

Solving the MPP commonly relies upon the solution from another NP-hard problem, the 

Travelling Salesman Problem (TSP; Laporte 1992; Applegate et al., 2011). A well-studied 

problem, the TSP seeks to find the shortest path between all cities, visiting every city once 

and finishing at the city it began. However, being an NP-hard problem, approximation 

algorithms and heuristics are used to solve sub-optimal TSP solutions (Helsgaun, 2000; 

Applegate et al., 2003). The Lin-Kernighan heuristic (Lin and Kernighan, 1973) is one of 

the most notable approximation TSP solvers, amongst several other approaches that solve 

the TSP using either genetic algorithms (Potvin, 1996), minimum spanning trees (Graham 

and Hell, 1985), integer programming (Orman and Williams, 2007), ant colony optimisation 

(Dorigo and Gambardella, 1997), or simulated annealing (Kirkpatrick, Gelatt and Vecchi, 

1983).  

Solving the TSP is only one part of solving the MPP. Formulating a graph structure to solve 

the TSP requires the costs between all pairs of goals to be established. This requires the paths 

between all the goals to be solved so a metric can be supplied to TSP solvers to solve the 

MPP. In open areas where connections between all viewing locations can be achieved via a 

straight-line connection, computation of all the paths may be achievable. However, 

calculating the collision-free paths between all goal locations in 3D can be infeasible due to 

any of the following reasons: 

1) The number of goal locations could extend into the hundreds or thousands, the 

operation of solving all paired paths is O(n2).   

2) The environment is a complex space containing many obstacles that make path 

planning difficult.  

3) The motion planning within the constraints of the robotic platform are 

computationally expensive.   

To solve the MPP in these spaces, a lazy approach can be taken (Saha and Latombe, 2003). 

The Saha and Latombe (2003) lazy approach to solving the MPP, iteratively solves the TSP 

over a planning problem that initially assumes all viewing locations are separated by the 

Euclidean distance. Upon solving the shortest path, those edges that are chosen are solved 

by the motion planner and the exact path lengths are updated in the adjacency matrix. The 

solution terminates when no further improvements can be made. The lazy approach solves 

the MPP by assuming that it is cheaper to iteratively solve the TSP than it is to calculate 
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paths, so the attempt to minimise the number of path evaluations was effective for solving 

the MPP for a high-DOF robotic arm. While this path planner is an O(n2) algorithm, the 

authors state failed to achieve this limit in practice (Saha and Latombe, 2003).  

The lazy approach is just one method to solve the MPP. For alternative solutions to solve the 

MPP, the reader is referred to a survey by Alatartsev, Stellmacher and Ortmeier (2015). In 

this review, multiple variants to solving the MPP are presented which include formulating 

the MPP as a generalised TSP problem (Srivastava et al., 1969), where the MPP is solved 

between the clusters of goal locations. This problem is also known as the covering travelling 

salesman problem (Current and Schilling, 1989).  

An early attempt of solving inspection plans in both 2D and 3D using a decoupled sampling-

based coverage planning approach was proposed by Danner and Kavraki (2000). Their 

approached utilised the dual-sampling method proposed by González-Baños and Latombe 

(1998) and utilised path planning approaches to construct an inspection plan by connecting 

these locations into a single continuous collision-free route, akin to the watchman route 

algorithm (Chin and Ntafos, 1986). In 2D, the MPP was solved using a visibility graph. In 

3D, as the visibility graph suffers due to dimensionality, randomly drawn samples were used 

to construct a PRM. Both of these solutions formed a graph that was solved using an 

approximation TSP solver.  

Expanding upon the dual-sampling method and the path planning principles of Danner and 

Kavraki (2000), Englot and Hover (2011, 2017) developed a sampling-based coverage 

planner that used redundant roadmaps to inspect the complex geometries of ship hulls. The 

planning process retains the decoupled approach between sampling and path planning, but 

solves the SCP after the construction of the redundant roadmap. The redundant roadmap 

oversamples the boundary surfaces until each primitive is observed n-number of times, 

where n is the redundancy of the roadmap. Consequently, all valid viewing locations were 

added to the covering set. To solve the MPP, a lazy point-to-point planner (LPP) derived 

from the approach of Saha and Latombe (2003) was used with path planning queries being 

resolved using RRT-Connect rather than a PRM for improved performance.  

While the redundant roadmap retains the tuneable parameter (n) of the dual sampling 

method that decides how many samples are required to view an area of the boundary surface 

and was developed in contrast to the dual sampling method. By solving the SCP after 

sampling had been performed, it resulted in a reduction of the number of ray traces and 
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collisions checks required to determine a valid viewing position in ℝ3 and its resultant 

coverage in comparison to the watchman route algorithm of Danner and Kavraki (2000) 

(Englot and Hover, 2017). However, between the two stages of planning, Englot and Hover 

(2017) noted that solving the MPP was the more expensive process of the decoupled 

approach.  

A different two-phase approach was taken by Bircher et al. (2015). The authors proposed 

the iterative viewpoint resampling inspection planner which maintains the separation of 

sampling and path planning but performs them iteratively, rather than in two distinct steps. 

The motivation behind this approach stems from using a sampling-based coverage approach 

to generate an inspection plan that acquires the coverage over the edges of the plan rather 

than the vertices. The authors suggest that generating a plan for a continuous sensing 

application, the number of viewing locations is not important, but how they are arranged in 

the configurations space is important. This decision removes any need to solve the SCP. 

Their iterative approach samples a set of viewing locations and using a TSP, the process 

continues to optimise the position of the viewing locations to minimise the length of the plan 

until the running time of the algorithm expires. 

Jing et al. (2017a; 2017b) proposed another type of two-phase approach which separates the 

SCP problem from the sampling-phase and solves it concurrently with the MPP. Their 

approach used a Random-Key Genetic Algorithm to solve the Set-Covering-(Generalised)-

TSP to better optimise costs associated with performing an inspection with high-DOF robotic 

platforms. By solving SCP concurrently with the MPP allows for flexibility to optimise the 

solution than a traditional decoupled approach that solved the SCP prior to solving the MPP 

(Chen and Li, 2004). 

Coupled Coverage Planning Approaches  

A shortcoming of the decoupled sampling-based coverage planning approaches is that they 

are predominantly implemented for robotic platforms that possess holonomic capabilities. 

Papadopoulos, Kurniawati, and Patrikalakis (2013) highlights that robotic platforms which 

do not possess holonomic capability, may find it difficult to achieve all the positions 

generated by the sampling process. Furthermore, as the sampling and path planning 

processes are performed independently, the costs associated with generating viewing 

locations and travelling between locations are not considered together for an optimised 

planning process (Wang et al., 2007); an important consideration for robotic platforms that 
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perform inspection under energy and time constraints. As such, coupled approaches that 

combine the sampling and path planning processes exist to overcome the limitations of 

decoupled sampling-based approaches to be applicable for a wider variety of inspection 

tasks and robotic platforms.  

Papadopoulos et al. (2013) proposed the Random Inspection Tree Algorithm (RITA), a 

sampling-based inspection planner that simultaneously computes the viewing locations and 

plans the feasible trajectories for an AUV with non-holonomic constraints. Kafka, Faigl, and 

Váňa (2016) extended RITA to factor visibility constraints performed on a multi-legged 

robot. As the sampling and path planning procedures are executed concurrently, planning 

times for these methods are expensive. 

An approach to reduce the computational expense of coupling sampling and path generation 

is to exploit the fast sampling features of sampling-based path planners like RRTs An 

example such as Bircher et al. (2017), proposed the rapidly exploring random tree of trees 

(RRTOT) to create fast inspection plans using the principles of sampling-based path 

planning. Utilising the properties of RRT*, a feasible inspection plan is found first by 

growing sub-trees over the entirety of the environment, then iteratively refining a path to 

create an admissible inspection plan. A comparison to the work of Papadopoulos et al. 

(2013), despite differences in mobility constraints, found that RRTOT provided significant 

computational advantages for coupled planning approaches and was applicable to the 

mobility constraints of both holonomic and non-holonomic platforms in both 2D and 3D 

environments.  

2.3.3 Online Coverage Path Planning Approaches 

Unlike path planners that seek to incrementally find a path through an unknown environment 

or replan an existing path to accommodate unforeseen disruptions, online coverage path 

planners must achieve the same objective but, additionally ensure complete coverage is 

maintained over all new and existing surfaces. Achieving this objective is dependent on how 

much information about the environment is known prior to inspection. If the environment is 

completely unknown, a path through must be developed in real-time. Otherwise, as seen with 

path replanning strategies, if the environment is assumed to be known, with the potential that 

the environment will be different, the replanning strategies will be required to adapt the 

current plan to overcome the unforeseen circumstances.  

The following sections review online coverage planning methodologies that acquire full 
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coverage to digitally reconstruct unknown and partially known environments. As discussed 

in Section 1.4.2, online planning methodologies heavily rely upon a mapping system to 

construct a representation of the environment that planning algorithms can use to plan upon. 

As mapping is not within the scope of this thesis, this section will not address how mapping 

is performed but how path planning algorithms are used to aid the construction of a map.  

Exploration and Coverage Planning in Unknown Environments  

Generating coverage plans over unknown environments requires the solution to the 

exploration problem. Thrun, Burgard and Fox (2006) defined the exploration problem as the 

problem of how to move a robot through an unknown environment so it can maximise its 

own understanding of the environment. The result of solving the exploration problem, is 

either a partially or complete representation of the previously unknown environment, making 

it suitable to use for underwater exploration (Hernández et al., 2019).  

 Techniques such as Simultaneous Localisation And Mapping (SLAM) are commonly used, 

to simultaneously localise the robotic platform within a map of the environment which the 

algorithm is concurrently constructing. However, SLAM only provides the mechanism by 

which a representation of the environment can be constructed, therefore solving one part of 

the exploration problem, but does not provide the robot with a mechanism to safely explore 

the environment (González-Baños and Latombe, 2002). To plan the robot’s movements 

safely through an unknown environment requires the use of exploration algorithms, such as 

Next-Best-View (NBV; Connolly, 1985). 

NBV algorithms seek to move the robot to unobserved locations within the environment by 

analysing the known free space and then directing the robot to move towards the frontier, 

the region of unexplored space that maximises the new coverage along the path (Banta et al., 

2000; Juliá, Gil, and Reinoso, 2012). These approaches continually construct a plan in real-

time as the robot explores the environment. Each time the robot moves to a new location the 

process repeats until no more frontiers remain or the objective of the mission has been met. 

For path planning applications, exploration algorithms terminate when the goal is met 

regardless of how much of the environment was observed. However, for coverage planning 

applications, the role of exploration algorithms is to generate a feasible path through the 

environment that aids in the discovery of as many surfaces of the unknown environment as 

possible.  
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Fundamentally, the exploration problem and inspection problem can be used to solve the 

same problem, in that both attempt to capture the entirety of the environment. The difference 

between these two problems is the quality of inspection that is required. If all that is required 

is a complete representation of an unknown 2D or 3D environment, solving the exploration 

problem is sufficient. However, if the surfaces also need to be observed by a visual sensor 

for high-fidelity inspection, a coverage planner is typically required to work in tandem with 

an exploration planner to provide sufficient high-quality coverage of the surfaces (Song and 

Jo, 2018).  

Generating a high-quality visual inspection of an unknown environment can be achieved by 

solving each problem in a two-phase approach. An example of a two-phase approach was 

presented in Bircher et al. (2018). The authors approach generated a representation of the 

unknown environment using the receding horizon next best view exploration planner 

(Bircher et al., 2016) before applying the offline iterative viewpoint resampling inspection 

planner (Bircher et al., 2015) to create a high-quality surface rendering of the previously 

unknown environment. A ROS implementation of this online coverage planning approach 

was presented in Papachristos et al. (2019).  

Alternatively, the high-quality visual inspection of an unknown environment can be 

achieved in a single-phase process. These approaches construct a plan that combines the 

paths required for exploration with the paths required to satisfy high-quality coverage of 

discovered surfaces (Acer and Choset, 2002; Heng et al., 2015; Song and Jo, 2018). The 

approach by Acer and Choset (2002) used Morse decompositions to determine critical points 

in an evolving environment in real-time to create new cellular decompositions that can be 

covered uniformly using the cycling algorithm. Song and Jo (2018) employed the sampling-

based coverage planning approaches formulated by Englot and Hover (2017) to create an 

inspection plan that incorporated viewing locations that simultaneously sought to acquire 

maximum coverage of the unknown surfaces and a high-quality inspection of the same 

surfaces.  

Exploration after Coverage Planning  

When the initial environment is assumed to be known before execution, solving the 

exploration problem first is not necessary. Coverage plans can be generated offline and 

executed as demonstrated previously. However, the idealised plans generated by an offline 

planner may not account for positional and sensor-based uncertainty, or generate a plan 
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based on an approximated representation about the environment. These examples could 

result in an inspection that is not sufficiently able to cover the entire environment, resulting 

in gaps in the generated representation of the environment. In these circumstances, 

exploration algorithms can be used post inspection to find new paths to fill these gaps instead 

of recomputing a new coverage plan to cover these regions. Utilising exploration algorithms 

after an offline plan has been executed minimises the planning efforts that online planning 

algorithms are required to perform. Online paths are only required to be generated to fill the 

gaps of the partially known environment rather than for the entire environment, as an online 

only solution would require.  

Blaer and Allen (2009) implemented a two-phase coverage planning approach for a mobile 

platform acquiring coverage to create 3D digital rendering of significantly large buildings. 

The first phase generated an offline coverage plan, using an extended variant of the dual 

sampling algorithm. This algorithm was applied over a 2D floor plan of a 3D structure. After 

the initial inspection was conducted, the collected scans created a voxelised representation 

of the 3D environment. Processing the voxelised representation, highlighted the gaps that 

were then filled in the second phase of planning using an NBV algorithm. 

Hernández et al., (2017) applied the two-phase approach to fill the residual gaps generated 

from a predefined survey of underwater structures. The difference between their approach 

to the one presented by Blaer and Allen (2009) was that the identification and generation of 

new paths to fill the gaps was an automated process that occurred immediately after the 

initial survey was completed. By combining the two processes into a single automated 

mission provided the robot the ability to complete a full inspection without human 

intervention, therefore reducing the time it takes to complete inspection tasks of a partially 

known environment.  

Concurrent Replanning of an Existing Coverage Plan 

An alternative approach to online coverage planning is to rectify the coverage plan 

immediately as new information about the environment is presented to the robot. Similar to 

the previous examples, when the environment is assumed to be known in advance, a robot 

is given a predefined plan to complete the inspection. If unforeseen obstacles are 

encountered throughout the inspection that may hinder the progression of the robot, the 

current plan must be adapted accordingly. However, instead of replanning to overcome the 

obstacle, a coverage plan must also provide sufficient coverage of the obstacle, so that it is 
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present in the final map reconstruction. Unlike exploration approaches that create an 

inspection plan on the fly, these methods use replanning strategies to adapt an existing plan 

to include coverage of newly detected changes within the environment when they become 

present to the robot. Therefore, at the conclusion of the inspection, all surfaces of the 

environment have been covered and the robot would not be required to perform an additional 

inspection phase.  

Galceran et al. (2015) proposes a continuous adaptive coverage planner to overcome new 

features and address position uncertainty when executing a pre-calculated nominal path. 

STOMP (stochastic trajectory optimization for motion planning algorithm; Kalakrishnan et 

al., 2011) is used as a plan repair technique to resolve impeded trajectories due to newly 

detected protruding underwater structures. The iterative coverage planner reshapes a path 

segment of the original path yet to be executed by the AUV to provide a smooth trajectory 

around the feature that maintains the optimal viewing distance for coverage. The term plan 

repair is used in this context because segments of the plan are incrementally considered for 

replanning, even though the entire plan could have been replanned at the conclusion of the 

inspection. 

Nykolaychuk and Ortmeier (2015) also uses a plan repair-like strategy to locally adapt an 

existing plan to reprocess defective areas for surface treatment and quality inspection 

applications. Upon detection of a surface defect, potential fields (Khatib, 1986) are used to 

augment the current plan around the defect. Attractive potentials draw positions of the initial 

path closer to the defect to obtain the coverage that is required. The results found that when 

the defect is detected close to the inspecting tools, the attractive potentials have minimal 

deformation on the inspection plan which ensures full coverage can be maintained. However, 

for defects detected further away, significant deformation of the plan occurred that could not 

ensure full coverage. 

For multi-robot inspections, replanning coverage for a changing environment can be 

achieved by reallocating the new coverage amongst all the robots used for the inspection 

task. Given the presence of new or removed features or the removal of a robot from the 

inspection task, Williams and Burdick (2006) use a plan revision strategy to redistribute the 

remaining unobserved coverage amongst the remaining robots in the planning problem. The 

adaptation of an existing graph structure allows unobserved coverage to be reallocated or 

ignored. 
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2.3.4 Coverage Path Planning Summary  

In summary, this section has provided an overview of CPP algorithms that create single 

continuous collision-free plans to inspect and traverse 2D and 3D environments. As with 

path planning approaches, common CPP approaches can also be divided into cellular and 

sampling-based approaches. For cellular based coverage, the objective is to achieve uniform 

coverage of a surface by either traversing over the surfaces or at an offset distance. Sampling-

based coverage planners that built upon the foundations of view planning are suitable for the 

application of inspection where the robot can acquire high-quality coverage along a path 

comprising discrete locations. Each of these approaches have their benefits and limitations. 

The choice of which approach is most appropriate is determined by the platform and the 

sensor suite available to perform the coverage task. However, Galceran and Carreras (2013) 

conclude in their survey that, as sampling-based coverage approaches provide coverage 

plans for a wide variety of environments, these approaches are considered state-of-the-art in 

coverage planning across complex 3D structures.  

To address the online requirements of the STIPP criteria, approaches to online coverage 

planning in both completely unknown and partially known environments were also explored. 

A review of online techniques that employ exploration algorithms running on autonomous 

platforms to perform coverage planning in unknown environments revealed the following 

approaches:  

1) generate coverage plans simultaneously when exploring the environment, 

2) utilise exploration algorithms after the initial offline coverage plan has been 

completed, and  

3) replan the current plan to include newly detected surfaces.  

Solving the exploration problem, the discovery of new surfaces in a partially explored 

environment, is not covered within the scope of this thesis; the reader is referred to the survey 

by Chen, Li and Kwok (2011) for more examples of established exploration algorithms and 

techniques planning within completely unknown environments. The following section 

discusses how the techniques reviewed in the literature survey relate to the STIPP criteria, 

and thus develop the gap in the literature that is addressed in this thesis.  

2.4 Consolidation of the Literature to Resolve the STIPP  

The purpose of this literature review was to determine which coverage path planning 
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methodologies were applicable to solve the STIPP. These methodologies are derived from 

the principles of path planning and consequently the review into the path planning literature 

which highlighted the importance of the environmental representation. Two common 

planning methodologies were discussed to solve a path by either;  

1) decomposing the environment into graph representation, or  

2) sampling a path in the configuration space. 

The application of these techniques is the basis of similar techniques found in the CPP 

literature. A review into CPP algorithms demonstrated how the representation of the 

environment can be used to generate a variety different coverage plans. From the review, 

cellular decompositions tend to dominate the solution space for coverage plans that rely 

upon the traversable coverage or uniform coverage of a surface. Sampling-based coverage 

planning relies upon the combination of view and path planning techniques, and tend to 

generate sets of discrete view locations to create coverage plans that observe the boundary 

surfaces of 2D and 3D geometries. A simple distinction between these two methodologies 

can be determined by how this coverage is acquired. Continuous coverage planners tend to 

acquire coverage over the edges of a coverage plan, while discrete coverage planners 

acquire coverage on the vertices of a plan.  

To investigate the online criteria of the STIPP, replanning methodologies were explored, in 

both the path planning and CPP literature. When an existing plan becomes compromised, 

path replanning strategies are used to resolve the compromised segments of the plan. Typical 

path replanning strategies will perform either a full replan, partial replan, or a plan repair 

to rectify compromised paths. The important distinction between these strategies is defined 

by how much of the existing plan is preserved during the replanning process.  

When the environment is unknown prior, exploration algorithms are required to continually 

create and revise paths in real-time through the unexplored regions of a changing 

environment until the goal in achieved. For CPP, exploration algorithms can be used in 

tandem with an inspection planner, to explore and provide high-quality coverage of 

unknown environments. When conducting inspections of partially known environments, 

gaps that form in partially constructed representations can be filled in a two-step process 

where an exploration algorithm, configured to actively find paths to areas that have not been 

captured, can be executed after the initial offline plan has been undertaken. Alternatively, to 

avoid the two-step process, newly detected changes in the environment can be replanned 
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into the current inspection plan. These approaches use path replanning strategies to ensure 

the new coverage is included in the final coverage plan.  

Given the STIPP criteria and the reviewed literature, it was decided that discrete sampling-

based CPP methodologies were best suited to satisfying the foundational requirements of 

the STIPP, since sampling-based approaches; 

1) use discrete viewing locations to acquire coverage,  

2) do not directly parameterise the environment to generate coverage,  

3) attempt to attain the highest possible coverage, and  

4) can generate coverage plans for robotic platforms that possess high DOF. 

While there is strong coupling between path and motion planning for continuous CPP 

techniques, constructing a continuous coverage plan may prove to be too computationally 

expensive to generate a plan for multi-legged platforms in complex environments. This is 

particularly the case if these plans need to be revised and adapted in real-time. Furthermore, 

while it is possible to segment a sweeping trajectory with regular intervals, whether it be 

based on distance or time (Galceran et al., 2015), the main issue behind using continuous 

CPP techniques is how these approaches decompose the environment to produce the 

coverage trajectories.  

The applicability of some of these decomposition approaches in a complex environment may 

occlude or exclude narrow and confined spaces. Environmental decompositions, especially 

in the case of 2.5D representations, reduce the dimensionality of the space to make it easier 

to create feasible coverage plans. The approaches that decompose the space could potentially 

compromise the accuracy of the representation of the environment, putting at risk the ability 

of the covering planning algorithm to cover all areas of the environment (Englot and Hover, 

2012). Given that the role of the inspection planning module is to generate a coverage plan 

that attempts to completely cover all the surfaces, regardless of the optimality of the path, 

the best effort should be given to provide high-quality inspection without the risk of 

inadvertently missing coverage due to approximating the representation of the environment. 

Coverage, or lack thereof, acquired by sampling-based approaches is determined by how 

well the robot constraints enable the robot to observe the environment. If the coverage 

planner is unable to find an adequate viewing location to observe a particular region, the loss 

of coverage will not be due to the coverage planner’s approximation of the environment, but 
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an inability of the robot platform to move to a suitable viewing position due to the 

complexities of the environment or the constraints of the robot. As sampling-based 

approaches can satisfy these foundation requirements, it is suitable to employ sampling-

based path and coverage path planning techniques to construct an existing inspection plan to 

satisfy the offline requirement of the STIPP (Requirement 1; Section 1.5.1).   

The only contention to using a sampling-based approach is that it may not meet Requirement 

5. Consideration must be given to the complexities and issues that do arise from using a 

multi-legged platform. Section 2.3.2 discussed how robotic platforms of complex mobility 

constraints, namely non-holonomic platforms, may suffer from the typical two stage 

approach to sampling-based coverage planning. Techniques were developed to couple the 

sampling and paths processes, but they were also proven to be computationally expensive. 

Despite the concept demonstrator possessing holonomic capabilities, given the mobility 

constraints of the multi-legged platform chosen, motion planning will be computationally 

expensive. A benefit of the sampling-based coverage planning approach that uses a 

decoupled approach is that any type of motion or path planner can be used for the second 

phase of planning. Therefore, regarding the IPF, it may be possible to integrate the motion 

planning module within the inspection planning module to resolve path planning queries. 

Furthermore, sampling-based path planning methodologies, such as RRTs, are best used to 

resolve path planning queries for a platform of such complexity. The use of RRTs for 

adaptive path planning is intended to be used on the concept demonstrator (Pivetta et al., 

2017). However, further discussion about the integration of the multi-legged platform into 

the IPF is presented in Chapter 3.  

As the environment of the submarine tanks are known a priori, a complete online solution 

that utilises exploration algorithms is not required. An offline sampling-based coverage 

planner will derive an initial inspection plan from the geometrical representation of the 

known environment. Exploration algorithms would be a necessary component within the 

IPF, however, implementing such an approach is the responsibility of the mapping system 

module (Section 1.5.3). The inspection planning module is responsible for replanning the 

newly detected coverage. It is also not desirable for the inspection to take place over two 

planning phases. Given the complexities associated with planning multi-legged platforms, 

performing the two phases to complete the inspection will result in an extended time to 

complete the inspection.  
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To satisfy the online requirements, a desirable approach to account for new changes would 

be to replan new coverage into the existing inspection plan as it is received, therefore 

minimising the time required to perform a complete inspection. However, for online adaptive 

coverage planning methodologies that adapt an existing plan to provide coverage for new 

features, there are few algorithms that solve either continuous or discrete CPP problems. The 

algorithms that were reviewed were based upon techniques that have already been discussed 

and found to be unsuitable to meet the STIPP criteria. 

2.5 Gap Statement 

To the author’s knowledge at the time of writing this review there were no adaptive 

sampling-based coverage planners developed that concurrently replan new coverage into an 

existing plan. Since there was no current solution available that meets all the requirements 

STIPP, especially the online requirements, a gap in the literature was identified. 

This thesis addresses the gap by developing an adaptive sampling-based coverage planner 

that incorporates a replanning strategy with the offline planning processes to solve the 

STIPP. Since prior knowledge of the environment is available before planning, it is 

appropriate to adapt a discrete offline coverage planner that is capable of solving the initial 

inspection plan over the target environment. To handle the case when the initial plan is 

violated due to changes in the environment, the offline coverage planner can be coupled with 

a path replanning strategy. Such a strategy converts the offline coverage planner into an 

online adaptive coverage planner. 

The thesis herein presents the methodology and findings that formulated the creation of a 

new adaptive coverage planner that addresses the gap in the literature highlighted by the 

STIPP criteria. Emphasis of this thesis is focussed on understanding the intrinsic behaviours 

of a chosen offline coverage planner in a submarine tank-like environment, so the online 

variant that utilises the underlying offline processes can be modified to perform effectively 

when coupled with a replanning strategy. The analysis provides evidence to support the 

choice in replanning strategy chosen to extend the procedures of an offline coverage planner 

to work as an efficient adaptive coverage planner that can provide coverage in partially 

known complex environments. To the author’s knowledge the new adaptive coverage 

planner and subsequent algorithms presented in this thesis to address the gap in the literature 

have not been attempted before or have been implemented for the use within a submarine 

ballast tank.  
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2.6 Chapter Summary  

In this chapter a literature review was presented that focussed on offline and online path and 

CPP approaches, with the goal of discovering if existing approaches had the capability to 

solve the STIPP criteria. The review found that there were no immediate coverage planning 

solutions that completely satisfied the STIPP criteria. Of the techniques that were reviewed, 

it was determined that discrete sampling-based coverage planning algorithms were best 

suited to solve the STIPP. However, as there were no online sampling-based coverage 

planners that could concurrently replan an existing plan, whilst performing an inspection 

through a partially known environment, a gap statement was formulated.  

To address the gap statement, and consequently meet all the foundational, offline and online 

requirements of the STIPP, it was determined that an adaptive coverage planner should be 

developed from an offline sampling-based coverage planner that is capable of generating 

coverage plans within submarine tanks for a multi-legged platform. An approach that is 

adopted for this thesis is to extend the capability of an offline coverage planner with a path 

replanning strategy to create the desired adaptive coverage planner. In the following 

chapter, a solution is formulated to solve the STIPP using this approach. 
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Chapter 3  

Formulation of a Solution for the STIPP 

3.1 Introduction 

Having defined the gap statement in Chapter 2, this chapter presents a formulation of a 

solution for solving the submarine tank inspection planning problem (STIPP; Section 1.5.1). 

The gap statement identified that there are no current online implementations of discrete 

coverage planners that modify an existing plan to account for newly identified features that 

would meet all the criteria specified to solve the STIPP. It was therefore concluded that since 

discrete sample-based coverage planners are met the foundational requirements of the 

STIPP criteria, to address the online requirements of the STIPP, it would be best to adapt an 

offline coverage planner to work in the online domain. 

This chapter explains the selection of an appropriate offline sampling-based coverage 

planner that meets the offline requirements of the STIPP criteria. The offline coverage 

planner is presented in further detail, with its known limitations identified as potential 

concerns for an online implementation. Of these concerns, two were highlighted that will be 

addressed in this thesis. Next, two path replanning strategies are proposed that are suitable 

to adapt the offline coverage planner to work in the online domain. This chapter concludes 

with a discussion about the assumptions placed on the relationships between the mapping 

system, inspection planner and motion planner modules of the Inspection Planning 

Framework (IPF; Section 1.4.4). These assumptions constrain the focus of the thesis to 

exclusively investigate the intrinsic properties of the offline sampling-based coverage 

planner as it is adapted for online implementation. 
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3.2 Selection of an Appropriate Coverage Planner to Solve the STIPP 

Given the STIPP criteria, the sampling-based coverage planner developed by Englot and 

Hover (2011, 2017) that uses redundant roadmaps to provide coverage over a complex 

environment, proved to be the best candidate to solve the offline planning problem and 

provides a suitable base to create an online adaptive variant to solve the STIPP and address 

the gap statement provided in Chapter 2.  

Most importantly, the offline sampling-based coverage planner is a discrete planner that 

generates a series of individual static viewing locations that enables the robot to stabilise at 

a given position to take photographs of the 3D environment (Requirements 1 and 2). As 

discussed in Chapter 2, a discrete coverage planner is better suited to solve the STIPP as 

image consistency is of particular importance. 

Like most discrete coverage planning algorithms, the offline sampling-based coverage 

planner generates coverage based on the constraints of the sensor and not on the explicit 

parameterisation of the environment. Therefore, the coverage planner is capable of being 

applied generically across multiple tank layouts and variations (Requirement 3). The results 

in Englot (2012) highlight the ability of the coverage planner to provide inspection plans 

over various ship hull layouts.  

Given the generic nature of the coverage planner, it will always seek to achieve the highest 

attainable coverage over a complex environment (Requirement 4). The redundant roadmap, 

which is used to acquire the coverage of the boundary surface, continues to sample view 

positions until all primitives of a mesh have been viewed for a redundant number of times. 

To ensure the completeness of the random sampling methodology, Englot and Hover (2012a, 

2013) presented the first probabilistic completeness proof for a sampling-based coverage 

planner. Complete coverage can be assured providing the prison cells are avoided. Prison 

cells are important to consider, especially when planning online, and therefore are discussed 

in further detail later in the thesis (Sections 4.2.2 and 7.2.4).  

The separation of the coverage generation and path planning algorithms make it easier to 

accommodate a multi-legged, high-DOF robot (Requirement 5). While the details of the 

sampling-based coverage planner are discussed in Section 3.3, the motion planning of a 

high-DOF robot can be treated as a separate process, enabling the separation of high-fidelity 

motion planning from the inspection planning module. This thesis distinguishes between 
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path and motion planning for high-DOF robots, by simplifying the constraints used to 

represent the robotic platform. Simplified visibility and mobility constraints are applied to 

the inspection planning module to provide the motion planning module with the paths that 

can then be solved to a higher fidelity. Details surrounding the platform constraints in this 

thesis are discussed in Section 3.6.2.  

The final two requirements of the STIPP focus on the online aspect of creating an online 

adaptive coverage planner. Given the coverage planner is indeed an offline implementation, 

it inherently does not have the immediate capabilities to operate online. However, in Englot 

(2012) it was proposed, as future work, that the planning processes behind the sampling-

based coverage planner could be applied to the online domain, when combined with active 

perception (Bajcsy, 1998). Englot suggested that these planning processes can operate as 

anytime algorithms to modify an existing coverage plan if unexpected events were to occur. 

Knowing that these planning processes could operate as anytime algorithms, makes them 

suitable for online implementation, especially when the timing of planning updates is 

critical. Despite this recommendation, no further suggestions on how to implement this 

extension were provided.  

While the planning processes have been identified as suitable for anytime implementation, 

the modularity of the sampling-based planner provides a framework that lends itself to be 

easily implemented for online adaptation, therefore addressing Requirement 6. As each 

process acts independently to one another, each process can be modified and improved 

without impacting the outcomes of the other. A sampling-based approach that couples the 

two processes may not enable individual modifications of each process to be easily 

achievable. Furthermore, as the computational costs are expected to be expensive for a multi-

legged robot, handling these planning processes independently will aid in reducing the costs 

of replanning a robot of such computational expense. Sections 3.4.3 and 3.6 provide more 

details on how this was achieved. 

The output of the planner also makes it simpler to adapt coverage plans online. The output 

of the coverage planner comprises of a collection of piecewise path segments. These 

piecewise segments can be easily segmented based on either the geometry or influence of 

the changes. The ability to segment a plan at any point enables any of the three replanning 

strategies discussed in Section 2.2.3 to easily modify the current plan (Figure 3-1).  

The remaining challenge is to decide which replanning strategy is most appropriate to satisfy  
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Figure 3-1: Different approaches to replan a piecewise inspection plan to changing conditions. (a) 

The current plan is compromised due to the detection of a new obstacle. (b) Full replan strategy. (c) 

Partial replan strategy. (d) Plan repair strategy. 

the gap statement and hence meet Requirement 7 of the STIPP. While there are online 

implementations that apply the sampling and planning procedures of this sampling-based 

coverage planner in an unknown environment (Song and Jo, [2017, 2018]), to the author’s 

knowledge, there are no extensions that explicitly apply a replanning strategy over the 

offline procedures to replan an already existing plan in partially known environments. 

Therefore, choosing the most appropriate replanning strategy is subject to further 

investigation. The remainder of this thesis focusses on applying the most suitable replanning 

strategy that will enable an online implementation of the offline sampling-based coverage 

planner to deliver planning updates in a timely manner to solve STIPP.  

3.3 Offline Sampling-Based Coverage Path Planning Using Redundant 

Roadmaps 

The offline sampling-based coverage planner solves the coverage problem by solving two 

sub-problems in series. It first solves the coverage sampling problem (CSP) by constructing 

a redundant roadmap to observe the boundary structure. This is followed by solving the 

multi-goal planning problem (MPP) to produce a feasible collision-free inspection plan that 

ensures, within geometric limitations, 100% of the boundary structure is covered. Figure 3-2 

summarises the planning procedures of the offline sampling-based coverage planner 

developed by Englot and Hover (2017).  

In the following sections, the primary components of the offline sampling-based coverage 

planner, the CSP, which includes a description of how the set cover problem (SCP) is used 

and solved, and the MPP are discussed in detail. Figure 3-3 provides illustrative examples 

of the offline sampling-based coverage planner procedures over a representative I-beam  
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Figure 3-2: The state-flow diagram demonstrating the offline sampling-based coverage planning 

algorithm presented (Englot, 2012; reproduced with permission). 

structure that is commonly found in the inside a submarine tank. Figure 3-3 will be referred 

to throughout these sections to provide a visual explanation of each of these procedures. 

From this point onwards in the thesis, the term configuration is used interchangably with the 

terms viewing location and viewing position to represent the 6-DOF position the robot must 

obtain in ℝ3 to achieve the desired calculated coverage of a surface. The details on how the 

offline coverage planner solves coverage plans for a 18-DOF hexapod robot with 6-DOF in 

ℝ3 is discussed in Section 3.6. Furthermore, the terms inspection plan, plan and tour are all 

used interchangably to describe the collection of collision-free paths that connect all the 

configurations in the inspecton plan as a result of solving the MPP.  

3.3.1 Solving the Coverage Sampling Problem  

As illustrated in Figure 3-2, the CSP is responsible for building the redundant roadmap to 

cover the boundary structure. When analysing the probabilistic completeness of the CSP, 

Englot and Hover (2012a) defines the CSP as a set system (𝑃, 𝑄) (Haussler and Welzl, 1987; 

Isler, Kannan, and Daniilidis, 2004). In short, this set system (𝑃, 𝑄) enables a subset of 

primitives in the primitive space (𝑃) to map to a single configuration in the configuration 

space (𝑄) i.e. what primitives, 𝑝𝑖 ⊂ 𝑃, are observable from the configuration, 𝑞𝑗 ∈ 𝑄. An 

illustrative representation of the set system (𝑃, 𝑄) is presented in Figure 3-4. Using a set 

system representation, Englot and Hover (2012a) defined the CSP as follows:  

Definition 1 (Coverage Sampling Problem): Let 𝑃  be a finite set of discrete 

geometric primitives 𝑝𝑖 comprising a structure to be inspected. Let the infinite set 

of 𝑄  be the robot configuration space whose configurations 𝑞𝑗  of 𝑄  map to 

observations of the Euclidean workspace which contains 𝑃. Let integer 𝑘 be the 

number of times each 𝑝𝑖 ∈ 𝑃  must be viewed. Find a set of feasible 

configurations 𝑁 ⊆ 𝑄, that obtains at least 𝑘 distinct views of all 𝑝𝑖 ∈ 𝑃. 
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(a) A redundant roadmap is 

constructed to cover all primitives 

of the mesh a k-redundant number 

of times to solve the coverage 

sampling problem. 

  

(b) The set cover problem reduces 

the redundant roadmap to a 

minimal set of configurations that 

cover each primitive at least once. 

Each configuration in this image is 

colour coded to its respective 

coverage on the surface.  

  

 

(c) The lazy point-to-point planner 

is used to solve multi-goal 

planning problem over the reduced 

redundant roadmap. Colour in this 

image shows the direction of travel 

starting from the green 

configuration. 

 

Figure 3-3: An offline coverage plan solved over a representative 1-metre I-beam structure using 

the offline sampling-based coverage planner. 
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Figure 3-4: The set system (𝑃, 𝑄) and the relationship between the continuous configuration space 

𝑄 and discrete primitive space 𝑃. The set system highlights the mapping of a configuration 𝑞𝑗 to a 

subset of primitives 𝑝𝑖 ⊂ 𝑃. 

In all of Englot and Hover’s publications the boundary structure was constructed from a 

triangular mesh and each triangle of the mesh was considered a primitive. This thesis also 

uses triangular meshes to represent boundary structures of the environment. The use of the 

term primitive ensures the application of this definition can be applied to any structure that 

is represented by a finite set of elements. 

Algorithm 3-1 presents a more detailed account of the CSP process. For completeness, 

Algorithm 3-1 is replicated from the last known publication on the offline sampling-based 

coverage planner, Englot and Hover (2013). Construction of a redundant roadmap begins 

with the initialisation of all the primitives that compromise the boundary structure to be listed 

as unobserved (Line 1). An unobserved primitive that has yet to have its redundancy fulfilled 

is selected at random (Line 4). To observe this primitive, a robot configuration is then 

sampled at random within the local neighbour of primitive (Line 5), akin to the dual sampling 

method (Gonzalez-Banos and Latombe, 1998; González-Baños, 2001) to avoid sampling 

exhaustively in areas of the workspace that may not guarantee coverage of the selected 

primitive.  

Figure 3-5 illustrates how configurations are sampled within a local neighbourhood based 

on the visibility constraints of the sensor. Sampling a configuration within the local 

neighbourhood, of the selected primitive, ensures that the calculated coverage for this 

configuration will observe the primitive with the exception of occlusion by other geometries. 

Once a configuration is sampled, a series of collision and visibility checks are performed to 

verify that the sampled configuration is suitable to obtain the calculated coverage (Line 6).  
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Algorithm 3-1: Coverage Sampling Problem (After Englot and Hover, 2013). 

CoveringSet = BuildRedudantRoadmap(Primitives, Obstacles, Redundancy) 

1: UnobservedPrimitives ← Primitives  

2: CoveringSet ← Ø 

3: while UnobservedPrimitives ≠ Ø do 

4:    Primitive ← ChooseRandamPrimitive(UnobservedPrimitives); 

5:    NewConfig ← SampleFeasibleConfiguration(Primitive,  Obstacles); 

6:    Coverage ← CalculateCoverage(NewConfig, Primitives,  Obstacles); 

7:    NeededSightings ← Coverage ∩ UnobservedPrimitives;  

8:    if NeedSightings ≠ Ø then 

9:       CoveringSet.add(NewConfig, NewSightings); 

10:       for i ∈ NeedSightings do 

11:          NeededSightings[i].incrementRedudancy(); 

12:          if NeededSightings[i].RedundancyCount() = Redundancy then  

13:             UnobservedPrimitives ← UnobservedPrimitives \ NeededSightings[i]; 

14:          end if 

15:       end for 

16:     end if 

17: end while 

18: return CoveringSet 

 

Figure 3-5: Generating configurations. (a) Configurations are drawn within the local neighbourhood 

that are defined by the envelope of the sensor parameters. (b) The coverage is calculated, when the 

sensor parameters are projected onto the surface. (c) The primitive along with neighbouring 

primitives within the field of view of the sensor become observed. (d) Within this envelope the 

redundancy can be met by other samples. 

If the configuration is deemed valid for the robot to achieve and the configuration is able to 

observe at least one primitive on the surface that is required to be seen (Line 7), the 

configuration is added to the covering set 𝑁 (Line 8) and the redundancy of those primitives 

are incremented (Lines 10-11). If any of these primitives have met their redundancy due to 

the new coverage, they are removed from the list of unobserved primitives (Lines 12-13). 

This process continues until the redundancy of all primitives of the boundary surface have 

been met. Figure 3-3a shows the application of the CSP over the representative I-beam 

structure. 

The defining feature of the redundant roadmap is that the redundancy of the roadmap is a 

tuneable parameter that is set by the user. The quality of the final solution can be tailored to 

the desired outcome. Englot and Hover (2017) show that roadmaps created from higher 
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redundancies results in overall inspection tours that contains less configurations and are 

shorter than roadmaps constructed with a lower redundancy, at the expense of longer 

sampling times. In their experiments, diminishing returns on tour quality, both for the 

number of configurations and tour lengths, were observed in redundant roadmaps with 

redundancies greater than ten. Therefore, ten samples per primitive was considered a 

redundant roadmap of high-quality.  

3.3.2 Solving the Set Cover Problem 

The SCP is solved using a polynomial-time greedy approximation algorithm (Chvatal, 1976) 

to reduce the size of the redundant roadmap to a minimum cardinality set (𝑆) that covers 

each primitive of the environment at least once. The greedy algorithm, on each iteration adds 

to 𝑆, the configuration with the largest number of sighted primitives. Solutions obtained 

using the greedy approach are bounded to 𝑙𝑛(𝑚) + 1 of optimality, where 𝑚 is the number 

of primitives in the problem. Given a greedy approximation is a mere approximation of the 

optimal minimal covering set, further redundancy can be removed from 𝑆.  

To further remove redundancy, another pruning procedure was applied over 𝑆. The iterative 

pruning procedure randomly removes any configurations that do not uniquely observe any 

geometric primitives. The removal process continues until all configurations that remain in 

𝑁 view at least one unique geometric primitive. The pruning procedure used by Englot and 

Hover, (2013, 2017) ran in 𝑂(𝑛2𝑚) time, where 𝑛 is the number of observations in the 

planning problem. Figure 3-3b shows the resultant minimal covering set that has been 

reduced by solving the SCP over the redundant roadmap in Figure 3-3a. 

3.3.3 Solving the Multi-goal Planning Problem  

The final stage of the offline sampling-based coverage planner is to solve the MPP to 

produce a single continuous collision-free path that connects the configurations in 𝑆. Englot 

and Hover (2012a) defined the MPP procedure as follows: 

Definition 2 (Multi-goal Planning Problem): Let 𝐺 ⊂  𝑄 be a finite set of robot 

configurations which comprise the set of goals selected for traversal. Find a set of 

feasible paths in 𝑄 that joins all goals into a single connected component. 

To avoid solving all possible path permutations and then finding the optimal solution, a lazy 

point-to-point planner (LPP), inspired by Saha and Latombe, (2003) was used to solve the 

MPP. The adapted variant presented in Englot and Hover (2013) is shown in Algorithm 3-2. 
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Algorithm 3-2: Multi-goal Planning Problem (After Englot and Hover 2013). 

RobotTour = LazyPoint2PointPlanner(𝑆, Obstacles) 

1: AdjMat ← EuclideanDistances(𝑆);  

2: UnclearedEdges ← GetEdgePairs(𝑆); 

3: ClearedEdges ← Ø; 

4: while NewTourCost ≠ PreviousTourCost do 

5:    PreviousTourCost ← NewTourCost; 

6:    NewTourCost ← 0; 

7:    LazyTour ← ComputeTour_TSP(AdjMat); 

8:    for Edgeij ∈ LazyTour do  

9:       if Edgeij ∈ UnclearedEdges then  

10:          FeasiblePathij ← SolvePath_RRT(Edgeij, Obstacles); 

11:          ClearedEdges ← ClearedEdges ∪ Edgeij; 

12:          UnclearedEdges ← UnclearedEdges \ Edgeij; 

13:          AdjMat(i,j) ← PathCost(FeasiblePathij); 

14:       end if 

15:       NewTourCost ← NewTourCost + AdjMat(i,j); 

16:    end for 

17: end while 

18: RobotTour ← LazyTour 

19: return RobotTour 

The LPP solves the complex path planning problem by iteratively solving a Travelling 

Salesman Problem (TSP) to find the shortest tour amongst all configurations to then have 

those edges explicitly solved using a motion planner. The LPP achieves this by firstly 

initialising the adjacency between all configurations to be Euclidean (Line 1). Upon each 

iteration, the TSP solver approximates the shortest tour (Line 7). For each edge selected by 

the TSP solver, if it has not already been resolved in a previous iteration, it is explicitly 

solved using a path planner (Lines 8 - 12). 

The distances received from the edges solved by the path planner are updated in the 

adjacency matrix (Line 13) and collectively form the overall cost of the tour for that iteration 

(Line 15). The LPP continues to iterate through the solution space, updating the adjacency 

between configurations until the TSP solver produces identical solutions in successive 

iterations (Line 4). When this condition is met, the LPP terminates and provides the edges 

of the tour, found in the last iteration, as the final solution. Figure 3-3c shows the result of 

the LPP over the minimal covering set solved by the SCP in Figure 3-3b. 

3.4 Algorithmic Concerns  

While the offline sampling-based coverage planner was identified as the state-of-the-art in 

Galceran and Cararras (2013), there were some concerns that have been identified in the 
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literature that need to be considered or addressed. Concerns arising in the literature are as 

follows; 

1) factoring the uncertainty of the mesh and sensing model,  

2) applicability for decoupled planning processes invalidating robots of restricted 

planning constraints, 

3) complete coverage may not be obtainable in the real world, and  

4) long computational times associated with the LPP.  

These concerns may degrade the performance of the algorithm online. This section discusses 

the listed issues and how they are addressed in the thesis. The conclusion of this section 

highlights the pertinent issues that could potentially hinder the advancement of the offline 

sampling-based coverage planner from being converted to work online.  

3.4.1 Uncertainty of the Mesh, Sensing and Motion Models 

Galceran et at. (2015) highlighted that the offline sampling-based coverage planner does not 

handle uncertainty in the mesh and sensor models when planning. Given that this thesis 

presents simulated results, factoring uncertainty into the early stages of algorithmic 

development was not a priority. Therefore, for the purposes of constraining the scope of the 

thesis to just the development of an adaptive coverage planner, uncertainty of the mesh, 

sensor and motion error is not investigated in this thesis. This work assumes zero sensing or 

motion errors across all mapping, coverage and motion planning modules of the IPF. 

However, while the uncertainty is a serious concern, especially for real-world 

implementation, once an adaptive coverage planner is formulated, the inclusion of 

uncertainty into the planning problem should naturally be the next extension to improve 

upon the quality of the solutions. 

3.4.2 Applicability of a Decoupled Solver for Non-holonomic Robotic Platforms  

As discussed in the literature review (Section 2.3.2), a sampling-based coverage planner 

that separates the coverage and path planning stages runs the risk that the final solution may 

not be applicable for all types of non-holonomic platforms (Papadopoulos et al., 2013; Kafka 

et al., 2016; Bircher et al., 2017). As the adaptive sampling-based coverage planner is not 

designed to couple the sampling and path planning processes, it will be acknowledged that 

it may not be applicable to all robotic platforms.  

While the future capability of the concept demonstrator will be restricted to move only along 
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the surfaces, the robotic platform does possess holonomic capabilities. The individual leg 

control enables the robot to move in all directions. Given that the motion planning of the  

18-DOF platform is not the focus of this thesis, this thesis will assume that the robotic 

platform will possess the mobility capabilities and constraints of an unmanned aerial vehicle 

(UAV) or autonomous underwater vehicles (AUV) that can hover at a desired position. This 

assumption allows it to be possible to simplify the motion planning constraints of the robot 

while ensuring the robot can reach the calculated positions. The details of how this 

assumption is applied within the coverage planner and still ensures coverage plans are 

applicable for an 18-DOF robot is explained in Section 3.6. 

3.4.3 Complex Geometry that Invalidates Complete Coverage 

While complete coverage is desirable, Ellefsen, Lepikson and Albiez (2017) highlight that 

complete coverage, especially in complex environments, is not always achievable. Despite 

the probabilistic completeness of the coverage planner, platform mobility constraints and 

complex geometries could possibly mean that full coverage may not be practically 

achievable. This problem is likely to compound when new features are detected online. 

Partially detected features have the potential to exclude existing structures and impede viable 

positions that acquire coverage.  

This concern was also discussed when presenting the STIPP criteria (Section 1.5.1). 

Requirement 4 requires that the coverage planner achieve the highest attainable coverage 

given the robotic platform constraints and complex geometry. Given that in reality complete 

coverage may not be achievable, it was acceptable to relax the 100% complete coverage 

constraint, provided an attempt had been made to cover the challenging regions, and if they 

cannot be covered appropriately ensure they are reported to the human operator either during 

or after the inspection. The method by which unobservable primitives are captured and 

tracked is explored in this thesis (Section 4.2.3; Section 7.5.2).  

3.4.4 Long Computational Time Associated with LPP 

The final concern raised is that the offline sampling-based coverage planner is 

computationally expensive. Nykolaychuk and Ortmeier (2015) highlight that this offline 

coverage planner would not be feasible to implement in a replanning context due to the time 

taken to construct a new plan. To run this coverage planner effectively online, the long 

solution times must be resolved. For an offline implementation a high execution time for a 

pre-calculated solution is acceptable. However, for a responsive online solution, the response  
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of a coverage planner to produce solutions in a reasonable time is critical.  

Englot and Hover (2017) identified that the LPP contributes significantly to the overall 

planning times. However, no indication was provided regarding the cause. One may assume 

it is due to the O(n2) nature of the LPP. However, Saha and Latombe (2003) claim that their 

implementation never got close to this bound in practice.  

For large planning problems it is appropriate to assume that the larger the covering set, the 

more edges need to be resolved and if the LPP is having difficulty finding a solution in a 

complex space, the motion planner could be called several hundreds of times per planning 

iteration. Therefore, the time it takes to find a solution could accumulate quite significantly 

over a long time. One way to resolve this problem would be minimise the number of calls 

made to the motion planner. However, regardless of the potential reasons that causes the 

LPP to exhibit large computational times, this problem needs to be addressed, if not 

mitigated, to ensure the LPP is capable of performing effectively online.  

3.5 Online Adaptation of the Offline Sampling-based Coverage Planner 

to Resolve the Online Requirements of the STIPP Criteria  

To resolve the gap statement and the online requirements of the STIPP criteria, a replanning 

strategy is required to adapt the offline coverage planner to work online. Three replanning 

strategies were discussed in Section 2.2.3 that are used to resolve compromised paths in 

changing conditions. These strategies were: 

1) a full replan  

2) a partial replan, or 

3) a plan repair. 

Of the three replanning strategies, this thesis will implement only two, the full replan 

strategy and the plan repair strategy. The reason for not deciding to implement a partial 

replan strategy is that the only difference between a partial replan and a full replan is where 

the planning updates occur. Each replanning strategy needs to handle the incremental nature 

of objects forming in the environment as they are detected over time (Figure 3-6). It is 

expected that mapping updates will not be presented as complete features and can occur 

anywhere throughout the environment. As there may be several map updates, not necessarily 

being received in succession, if replanning were to occur immediately the difference between 

the partial replan and full replan would be negligible, especially over plans that contain  
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Figure 3-6: Identifying new features within a partially known environment. (a) A robot (black) has 

three unknown features within the a priori environment. (b) After a full LIDAR scan (red), the 

mapping system detects the partial outline of the three features that do not correlate to the expected 

surfaces (white). (c) The mapping system registers the changes and appends the partial information 

known about these features into the map (green). (d) When the robot moves forward new information 

is gathered about these features. The partial features will become whole once the robot explores more 

of the environment. 

many configurations. A plan repair strategy, on the other hand, preserves as much of the 

uninfluenced segments of the plan regardless of the robot’s current location.  

The construction of the adaptive sampling-based coverage planner aims to preserve the 

decoupled planning processes given that their decoupling is not expected to impact the 

planning of a multi-legged platform (Section 3.2). Furthermore, maintaining the modularity 

of these planning processes makes it easier to create a replanning framework and to isolate 

individual processes for improvements without impacting other procedures.  

While the sampling and path planning modules are easily modifiable to perform as anytime 

algorithms, the constructed frameworks will not rely upon the anytime implementation to 

perform an online plan update. The construction of the online framework in this work will 

produce full and complete plan updates. Therefore, the full extent of each adaptive coverage 

planner can be analysed to determine the better approach. Once this can be established, these 

algorithms can be implemented as anytime algorithms to speed up the process of the 

planning updates. However, this is the subject of future work.  



CHAPTER 3: FORMULATION OF A SOLUTION FOR THE STIPP 

 

 

80 

The offline sampling-based coverage planner has not been previously adapted to work as an 

online planner to modify an existing plan in partially known environments. This thesis, 

herein, investigates which of the two replanning strategies is best suited to extend the offline 

sampling-based coverage planner to perform online. The following sections proposes two 

adaptive sampling-based coverage planners that implement a full replan and plan repair 

strategy before discussing how the limitations of the offline coverage planner discussed in 

Section 3.4 will be addressed in this thesis.  

3.5.1 Strategy 1: Full Replan 

A tractable and reliable approach to replanning is to perform a full replan upon detecting 

features in the environment. A full replan will remove all the viewing locations and 

associated paths that are yet to be achieved by the robot to provide a new plan that 

incorporates the coverage of both the new and unobserved regions throughout the 

environment.  

The benefit of performing a full replan, is that this strategy considers the plan globally, 

instead of locally like a plan repair strategy. This creates final plans that have been 

reassessed against the entire geometry of the environment and therefore should be shorter in 

length compared to those generated by a path repair strategy. Given the constraints of the 

target platform, minimising tour length will be beneficial. Furthermore, as the remaining 

tour is removed, there are less overheads associated with the full replan strategy as no 

exhaustive cross checks are required to determine which viewing locations and path 

segments remain preserved and which are required to be replanned. 

Adopting a full replan strategy also ensures the minimal amount of change to adapt the 

offline sampling-based planner to perform adaptively online. As the remaining coverage is 

reassessed, the problem that is supplied to the adaptive coverage planner is essentially an 

offline problem. The sampling and path planning processes remain the same, just the new 

plan starts from the robot’s current location and only plans for the uninspected area of the 

environment.  

When the planning objective is simple and replanning is not frequent, the full replan is an 

effective strategy. However, with uncertainty surrounding the frequency and impact of any 

new features, regular replanning updates of partial surfaces will become expensive 

especially when replanning larger spaces, or small and compact complex environments. If 
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the replanning effort becomes too expensive it may outweigh the benefit of producing shorter 

plans than a plan repair strategy or the ability to simply create an online adaptive planner 

with minimal modifications to the existing architecture.  

Consideration also needs to be given to the type of robotic platform that the adaptive 

coverage planner is replanning for when using a full replan strategy. Generating motion 

plans for the multi-legged platform is expected to be expensive. If existing paths and 

configurations are going to be continually removed and replaced, this will only increase the 

computation time associated with calculating new motion plans online.  

Section 3.6.2 discusses how motion planning is handled in this thesis. However, to minimise 

the computational effort of computing high-fidelity motion planning within the adaptive 

coverage planner, the high-fidelity constraints of the multi-legged platform are replaced 

with simplified constraints. In short, high-fidelity motion planning will be exclusively 

performed by the motion planning module in the IPF after the coverage plan has been 

calculated. The plan produced by the adaptive coverage planner using these simplified 

constraints will provide a proxy plan of traversal for the high-fidelity motion planner to 

solve. Therefore, if the adaptive coverage planner, under a full replan strategy, continually 

replans a completely new plan, the expensive aspect of the overall planning effort will be 

shifted to the motion planning module.  

To be an efficient adaptive coverage planner, it needs to reduce motion planning across the 

IPF. It would be ineffective to reduce the planning times of the adaptive coverage planner 

only to increase the computation of another module. However, if the overall replanning effort 

for the coverage and motion planner could be minimised so the computational load proves 

to be acceptable for online use, implementation of a full replan strategy may be a suitable 

approach to extend the offline sampling-based coverage planner to work adaptively online. 

3.5.2 Strategy 2: Plan Repair 

The second strategy minimises the replanning effort of the CSP and MPP by performing a 

plan repair over segments of the plan that have been impacted by change. Compared to the 

full replan strategy, the plan repair strategy is a riskier approach to implement. There are 

more processes to be considered, as the plan repair strategy segments, replans and merges 

new and current coverage plans together.  
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Figure 3-7: The proposed adaptive sampling-based coverage planner using a path repair strategy 

inside the Inspection Planning Framework (IPF). The adaptive coverage planner generates a region 

of interest (ROI) to segment the current plan into preserved and unpreserved segments. Unpreserved 

segments are replanned to cover the new features and are merged back into the current plan. The 

updated plan is handed to the motion planner to update the respective motion plans for the segments 

of the tour that were replanned. This process continues for each map update until the inspection plan 

is complete. 

Figure 3-7 illustrates how the adaptive sampling-based coverage planner, using a path 

repair strategy, would be incorporated into the IPF. Upon receiving a map update from the 

mapping system, the current plan is segmented by regions of interest (ROIs) that encapsulate 

the influence the new features would have on the existing tour (Figure 3-8). 

All the configurations and paths that exist within these ROIs become candidates for 

replanning while those that are outside the ROIs, are preserved. As the ROIs encapsulate the 

influence that the new features have within the environment, the replanning effort is only 

exclusive to the ROIs. The plan repair strategy proceeds to replan the coverage within the 

ROIs using the offline sampling procedures ensuring that all primitives, new and original, 

are covered before solving the MPP with each ROI.  

Each replanned ROI creates a sub-plan that has been solved to observe the new features and 

provide a feasible path for the robot to traverse around. The final step merges the new  

sub-plans with the preserved portions of the existing plan to form an updated plan. This 

updated plan is then passed to the motion planner where the respective motions of the robot 

are updated. The adaptive coverage planner continues this process for each new change 

supplied by the mapping system until the inspection plan is complete. 
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Figure 3-8: Bounding new features in a region of interest (ROI). (a) When the mapping system 

detects change, a ROI can be produced around each detected feature. (b) When the robot moves 

through the environment and gains more information about the environment, new ROIs encompass 

the new changes. 

The benefit of implementing a plan repair strategy over a full replan strategy is that 

segmenting a plan based on influence will always ensure the size of the problem will scale 

to the size of the amount of change, or the size of the influence, of those changes. Only if 

the changes influence enough of the existing tour, the plan repair strategy will be equivalent, 

if not worse, than replanning the entire environment again. 

While the path repair strategy may present as the faster solution, it can only be considered 

potentially faster during the replanning phase, when the sampling and path planning 

procedures are being used. Smaller coverage problems should replan faster as fewer 

configurations will need to be sampled thus resulting in fewer motion paths that need to be 

evaluated. However, a plan repair strategy has more to consider when formulating a 

solution. Unlike a full replan strategy, a partial replan strategy has to; 

1) determine where the changes occur within the environment, 

2) isolate a suitable ROI that appropriately encapsulates the influence the changes have 

on the existing tour,   

3) segment the current tour so uninfluenced regions are not replanned, 

4) have the ability to replan several unconnected regions within environment, and  

5) ensure the plan is merged correctly and remains a single continuous tour upon 

completion of the update. 

These requirements introduce additional costs to the replanning costs associated with the 

two planning processes of the offline coverage planner. These additional costs, to segment, 

replan and merge, could potentially degrade the computational efficiency that a plan repair 

strategy may provide. Considering a plan repair strategy replans locally, and not globally 
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like the full replan strategy, it has the potential to have a negative impact on tour quality. 

Similar to how the full replan strategy will pass the costs of high-fidelity motion planning 

down to the motion planner in the IPF, if the plan repair strategy significantly increases the 

tour length, the cost of executing the tour may outweigh the benefits of solving it faster. 

However, in the case of a complex submarine tank environment, where there could be up to 

several hundreds to thousands of randomly placed configurations, preservation in 

computation would be a reasonable trade-off for a suitable degradation in tour quality.  

3.5.3 Considerations of Replanning Strategies 

For the robot to perform effectively online, it requires an adaptive coverage planner that can 

provide stable, consistent and timely updates. Given that both adaptive coverage planners 

are directly reliant upon the performance of the existing CSP and MPP algorithms, it is 

important to understand how the offline sampling-based coverage planner performs in the 

target environment. 

As discussed in Section 3.4, there are two primary concerns that were raised about the offline 

sampling and path planning procedures that need to be addressed to ensure they do not 

impact online performance. These concerns were; 

Concern 1) to ensure that all known primitives are accounted for at the conclusion of 

the inspection whether they be observed or not (Section 3.4.3), and  

Concern 2) the LPP is known to consume the most planning time of all processes of 

the coverage planner (Section 3.4.4). 

Of the two concerns, Concern 2 is likely to severely influence online planning times, given 

the reported impact the LPP has already had on offline planning times. Addressing the 

impact of Concern 1 can be achieved quite simply by appropriately tracking which 

primitives have or have not met redundancy. While the adaptive coverage planner that uses 

a plan repair strategy is expected to perform less replanning than a coverage planner using 

full replan strategy, the impact of the LPP will be felt, regardless of which approach is taken. 

Given there are prior results available on the performance of the offline sampling-based 

coverage planner inside a submarine tank, the following chapter performs a benchmark 

experiment to acquire these results. The objectives of the benchmark experiment are:  

Objective 1) Benchmark the performance of the offline sampling-based coverage 

planner within a representative submarine tank environment.
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Objective 2) Determine to what extent the lazy point-to-point planner (LPP) 

influences the planning times within the target environment.  

Objective 3) Discover any other limitations of the sampling-based coverage planner 

that may impact online performance.  

The outcomes of the benchmark experiment aid in determining; 

Outcome 1) whether the offline sampling and planning procedures are capable of 

performing effectively online,  

Outcome 2) provide an indication as to which of the two replanning strategies is better 

suited for online implementation, and  

Outcome 3) provide insight into any potential improvements that could increase the 

performance of the sampling and path planning processes for online implementation. 

In the following section, the extrinsic constraints that would influence both the adaptive and 

offline sampling-based coverage planner are minimised. The focus of this thesis is the 

analysis and development of a generic adaptive sampling-based coverage planner that can 

operate regardless of the type of robotic platform, mapping system or motion planner. 

Constraints are placed upon the interactions between the coverage planner and the other IPF 

modules to limit the impact that these modules have on the intrinsic properties of the generic 

coverage planner so the analysis of the planning modules can be compartmentalised. Solving 

this problem under these constraints is applicable to solve the STIPP. 

3.6 Limiting Computational Effort by Reducing Extrinsic Planning 

Constraints 

There are a number of extrinsic constraints that are placed on both the offline  

sampling-based coverage planner and the online adaptive variant which can significantly 

influence the computation times. These include;  

1) how the robot detects features within the environment (Mapping), 

2) the ability of the robot to move within the environment (Motion planning), 

3) the ability of the camera to observe the surfaces of the environment  

(Visibility constraints) and, 

4) the properties and complexity of the environment.  

Of the listed extrinsic constraints, the constraints placed upon a robot’s manoeuvrability and 

observability have a greater impact upon the algorithm’s performance. A true reflection of 
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the coverage planner capabilities is to minimise the number of manoeuvrability and visibility 

constraints placed on the robot, so the environment is the main extrinsic factor that influences 

the planning problem. Understanding the coverage planner’s response to varying levels of 

environmental complexity allows the intrinsic behaviour of the coverage planner to be the 

focus of the analysis.  

In this thesis, a holistic approach was adopted to evaluate the performance of both the offline 

sampling-based coverage planner and the online adaptive variant. The approach taken 

isolates the coverage planner from the physical realisation of the robot platform or any 

specific mapping system. Removing the explicit properties of the robot from the analysis 

ensures that any improvements made to algorithmic properties of the coverage planner will 

be applicable to robotic platform constraints of any complexity. More importantly, the 

insights will provide a better understanding of which improvements will aid the algorithms 

to perform effectively online, irrespective to the chosen robotic platform.  

The following sections elaborate on the assumptions made in Section 1.5.2 as to how the 

modules of the IPF are connected in this thesis. The relationship between the environment, 

mapping system, and adaptive coverage planner is discussed. Furthermore, an explanation 

is provided for the reduction of the two primary constraints visibility and mobility, which are 

associated with any given robotic platform performing an inspection task. These 

assumptions serve to limit the impact that motion planning and the visibility constraints 

would exert on the performance of the coverage planner.  

3.6.1 Assumptions Placed on the Relationships between the Environment, Mapping 

System and Adaptive Coverage Planner  

As the mapping system and adaptive sampling-based coverage planner were developed 

independently, to ensure these two modules integrate together for implementation of the 

concept demonstrator, a few assumptions were placed on the relationship between the 

environment, mapping system and adaptive coverage planner. The list of assumptions used 

to bind the relationship between the three components were as follows: 

Assumption 1: Newly detected features all exist within the bounds of the original 

environment.  

New features are expected to occlude and prohibit movement through regions of the original 

environment that may have been originally possible to traverse and observe. It is expected 

that the adaptive coverage planner will account for primitives occluded by the new features. 
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How the adaptive coverage planner handles occluded primitives is discussed in  

Sections 4.2.3 and 7.5.2. 

Assumption 2: Changes within the environment are expected to be small in relation 

to the size and complexity of the environment.  

It is reasonable to assume that the environment may deviate from nominal operating 

conditions by no more than 30%. Certain structures within the submarine tanks are either 

added or removed as a part of the inspection and cleaning process. With respect to the size 

of the environment, these changes are expected to be small in nature and may be scattered 

throughout the environment.  

Assumption 3: The mapping system will only introduce new features into the 

environment. Given the nature of online mapping, partial maps are also expected. 

For the purposes of practicality, the inspection planning problem only handles the 

introduction of new features. Moved or removed features require consistent tracking of 

primitive indices by both the mapping and coverage planner to ensure that coverage is 

always maintained. 

As the adaptive coverage planner was developed independently to the mapping system, the 

assumption that only new features would be introduced was sufficient enough to allow these 

modules to interact during real-world experiments without being explicitly coupled together. 

Therefore, the mapping system and coverage planner both maintained complete but 

individual versions of the environment. To ensure primitive indices remained the same 

throughout the inspection, both the mapping system and the coverage planner were 

initialised with the same offline map that was used to create the offline plan. As only new 

changes were added to the map, any new primitives were just appended to the map. 

Therefore, upon detection, the new complete map was then passed from the mapping system 

to coverage planner with a threshold index (𝑚𝑖𝑛𝑑𝑒𝑥) to indicate where the new primitives 

began. This assumption was the basis of how the adaptive coverage planner worked in 

practice. Details to this are explained in Chapter 7.  

While implementing a centralised mapping system that all IPF modules can access is ideal, 

it is not implemented in this work and is a subject for future work. Furthermore, whilst 

modified and removed primitives are not considered in this thesis, the principles behind both 

replanning strategies presented in this thesis will still ensure these primitives that modified 
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or moved primitives would still remain covered at the end of each replanning iteration.  

Assumption 4: No features within the environment are dynamic in nature.  

Any new features are static and will remain static throughout the lifetime of the inspection. 

The robot will be the only moving object in the inspection environment. This assumption 

simplifies the constraints placed on the planning problem. Once the mapping system 

confirms a new feature or original structure is present it will remain true for the lifetime of 

the inspection. 

Assumption 5: The adaptive sampling-based coverage planner will not handle 

mesh, sensor and positional uncertainty. 

Since the mapping system and adaptive coverage planner are separate modules in the IPF, 

it will be the responsibility of the mapping system to factor uncertainty of the mesh. To 

constrain the limits of the thesis, uncertainty of the camera model used for inspection is not 

included in the focus of this thesis. The coverage that is observed by a calculated pose is 

assumed to be reached and acquired. 

Assumption 6: The adaptive sampling-based coverage planner is not responsible 

for uncovering or directing the robot to uncover new surfaces of partially constructed 

features. 

The adaptive coverage planner will only provide an updated inspection plan for detected 

areas of the map that are unobserved. In reality, it is possible that the robot may not detect 

all surfaces of a new feature. The adaptive coverage planner is not responsible for finding a 

path to guide the robot to observe the undetected surfaces of the feature. This functionality 

is handled between the mapping system and guidance system. The mapping system may 

choose to indicate to the guidance system to temporarily halt the inspection plan to 

investigate, via next-best view techniques, to detect the remaining feature surfaces. How the 

mapping system determines the location of partial information and the algorithms involved 

to deviate the robot from the current inspection plan to acquire new information about the 

environment is not covered in this thesis and is subject for future work. Given an offline plan 

is used initially to guide the robot through the environment and that Assumption 1 states that 

all information will be contained within the bounds of the original environment, this thesis 

will assume that all new features can be viewed along the original and updated inspection 

plan. Replanning can occur simultaneously to performing the inspection.  
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Given the sensing range of the LIDAR is significantly greater than the physical size of the 

robotic platform, the robot can detect new features well before the robot is capable of moving 

to those positions. Therefore, this enables the opportunity for replanning to occur in advance. 

While there is a possibility the robot may have to pause and replan immediate features that 

appear within close proximity to the platform, if replanning can be performed fast enough, 

the platform will not pause for each replanning update.  

In summary, the adaptive sampling-based coverage planner is to only cover the new 

information presented to it by the mapping system. The complete coverage of new 

information and the tracking of occluded primitives is the sole focus of the adaptive variant. 

Applying these assumptions on the relationship between the environment, mapping system 

and coverage planner do not invalidate the STIPP criteria but constrain the scope to only 

focus on the adaptive aspect of the thesis that converts the offline sampling-based coverage 

planner to work effectivity online. These assumptions will be more prevalent when 

proposing and testing the adaptive sampling-based planner in Chapters 7 and 8.  

3.6.2 The Separation of High-fidelity Motion Planning from the Coverage Planner  

Motion planning is an inherit cost that is associated with any actuated autonomous robotic 

platform. Calculating an effective solution is dependent on the constraints placed on the 

planning problem. Generally, the more DOF within the planning problem the more 

expensive planning becomes to find a solution. While a multi-legged robot is a suitable 

robotic platform for tank inspection (Section 1.2), the mobility constraints placed on a  

multi-legged, high-DOF robotic platform will incur a significant computational cost when 

planning within a confined environment (Short and Bandyopadhyay, 2017).  

A submarine tank is a highly structured and static environment. The submarine tanks and 

various internal structures prevent surface traversing using standard cycling gaits without 

sufficient ability to tolerate leg slip (Hörger, 2014). Motion planning within these 

environments will require sophisticated algorithms that manipulate each leg independently 

to reach calculated positions. Consequently, the mobility and environmental constraints will 

likely have a significant impact on the time it takes to generate a coverage plan.   

As explained in Section 3.3.3, the offline sampling-based coverage planner explicitly 

couples together path and motion planning. When solving the MPP, the LPP acquires the 

true length of any given path between configurations by solving the motion plan based on 

the robotic platform’s constraints. Given that the LPP has already been identified as the main 
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contributor to the coverage planner’s long planning times (Section 3.4.4), applying the 

mobility constraints of a multi-legged platform, will only increase the LPP planning times. 

To significantly remove the impact of these mobility constraints, a simplification to the 

platform constraints will aid in reducing the impact motion planning will have on the 

coverage planner. 

As this thesis is not concerned with improving the computational efficiencies of motion 

planning for high-DOF robot platforms, it is proposed to defer the high-fidelity motion 

planning of a multi-legged, high-DOF robot, which includes the positioning of the body and 

legs, until after a coverage plan has been developed. Applying simplified planning 

constraints to the coverage planner limits the influence motion planning has on generating a 

coverage plan. Solving the MPP with simplified constraints, enables the LPP to quickly find 

a feasible solution and delay the evaluation of high-fidelity motion planning until the 

coverage planner has developed a solution.  

Motion planning still occurs inside the LPP. However, instead of solving the high-fidelity 

paths, that can be applied directly to a robot upon completion, these resultant paths, solved 

under simplified constraints, provide an ordered proxy tour that a high-fidelity motion 

planner can plan upon once complete. Delaying the evaluation of these paths reduces  

high-fidelity motion planning across the whole system, as it will only have to occur over the 

edges of the final coverage plan instead of over all the edges evaluated by the LPP.  

Postponing the evaluation of the actual motion planning allows for both deliberate offline 

and reactive real-time motion planners to solve the point-to-point planning problem. This 

approach offers greater flexibility and may reduce the penalty of complex motion planning 

within the planning process. Separating the high-fidelity motion planning from the coverage 

planner fits into both the offline and online planning architectures of the IPF. These 

processes can be treated as separate entities and developed independently.  

There are two notable consequences of separating high-fidelity motion planning from the 

coverage planner: 

1) The tour generated by the coverage planner under simplified constraints is an 

estimation of the actual plan. The paths solved by the high-fidelity motion planner 

are likely to be longer in length.  
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2) Planning under simplified constraints opens up the possibility that the robot may not 

be physically able to achieve every viewing location. The ability to achieve all 

configurations is essential because each configuration provides unique coverage of 

the environment. A simplification of the visibility constraints, via the relaxation of 

pose constraints, will aid in making these positions achievable (Section 3.6.3). 

These compromises are made to allow feasible solutions to be produced within a reasonable 

time. Until motion planning inside the LPP is computationally feasible, the separation of 

these two planning modules is acceptable despite the consequences of not comprehensively 

solving the inspection plan. 

To ensure the robot has the best opportunity to achieve all the positions, the simplified 

constraints are constructed by isolating the positioning of the camera from the positioning 

of the entire multi-legged platform. The simplified planning constraints approximate the 

tibia of a 3-DOF robotic leg of an 18-DOF platform that contains the camera needed for 

visual inspection (Figure 3-9). A spherical collision model is used to represent the ankle joint 

and is given 6-DOF with holonomic mobility constraints to adequately position the camera 

in ℝ3. The 6-DOF will represent a pose or robot configuration that consists of a 3D Cartesian 

position and three Euler angles: roll, pitch and yaw. Applying holonomic mobility 

constraints to solve the planning problem allows the results of this thesis to remain applicable 

to any robotic platform that is represented as a 6-DOF holonomic platform, such as UAV’s 

and AUV’s.  

Applying a 6-DOF holonomic robot was taken over by the application of a simplified 

hexapod model as presented in Tonneau et al. (2018). Applying simplified constraints, 

represented the minimal free body collision model that can exist in ℝ3 compared to other 

collision methods like Axis-Aligned Bounding Boxes (AABBs; LaValle, 2006), that will be 

used to represent the environments later in this thesis. Using a simplified and cheaply 

calculated collision model creates a lower bound to solving motion plans using the  

sampling-based coverage planner. It is expected that any representation of the robot greater 

than the spherical model will only increase planning times, but it does make the collision 

constraints easier to solve in an online context.  
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Figure 3-9: A spherical collision model is used to represent the ankle joint of a 3-DOF leg on a 18-

DOF PhantomX robot containing the camera for inspection. The spherical model is given 6-DOF to 

find appropriate viewing locations. PhantomX MKIII model adapted from Trossen Robotics 

(2019). Reproduced with permission. 

3.6.3 Simplifying Visibility Constraints to Enable High-Fidelity Motion Plans to 

Achieve Simplified Viewing Locations  

Finding a valid viewing position requires all DOF and planning constraints to be satisfied 

within an environment. For a multi-legged robot, a valid position ensures the robot is 

statically stable. If any of the planning constraints are not met, the sampled position is 

rejected.  

It is only after the 6-DOF coverage plan has been developed that the positions are evaluated 

to determine if they can be reached by the robot. Therefore, there is a possibility that some 

of the viewing locations may not be achievable when the full 18-DOF solution is generated. 

The coverage planner can generate achievable positions by relaxing the visibility constraints 

of the robot to enable the high-fidelity motion planner a better chance of achieving these 

positions. 

Most images from a camera are rectangular in nature, with an aspect ratio of either 4:3 or 

16:9. Achieving the calculated coverage of a camera explicitly requires constraining the roll, 

pitch and yaw angles. Any modification to the camera pose will result in a different outcome 

(Figure 3-10a). Given the complexity of the planning constraints and the environment, 

calculating a valid static position for a multi-legged platform that satisfies the geometric 

position and three explicit angles of a given camera pose may not be possible. 

If a calculated position cannot be reached during execution, to achieve maximal coverage 

the high-fidelity motion planner may opt to modify the position to attain the best possible  
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Figure 3-10: Representation of the actual and relaxed visibility constraints. (a) Coverage under 

rectangular projection constraints restrict the roll of the camera. (b) Assuming a circular projection 

that underestimates the rectangular projection allows for the calculated coverage to be viewed by any 

roll angle. 

coverage. Modifying the pose under strict visibility constraints may result in areas of the 

surface that are left uncovered. To allow the high-fidelity motion planner the freedom to 

choose which rotational constraints provide the best opportunity for the robot to achieve the 

calculated poses, the visibility constraints supplied to the coverage planner are relaxed.  

The relaxed visibility model assumes that the sensor casts a circular projection onto a surface 

(Figure 3-10b). Applying this circular projection, which underestimates the rectangular 

projection, allows the calculated coverage to be perceived as rotationally invariant whilst the 

actual observation taken by the rectangular projection observes more than calculated. This 

assumption removes the explicit roll angle constraint allowing the high-fidelity motion 

planner to decide which roll, pitch and yaw angles are appropriate, given all the planning 

constraints, to obtain the calculated coverage.  

As the circular projection underestimates the actual coverage of the sensor, more viewing 

locations will be required to cover the surfaces of the environment. The increase in 

configuration density will create more overlap between acquired images than images 

obtained using the actual visibility constraints. Creating more overlap is not of concern, as 

the more overlap between images will assist in the image registration required to digitally 
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reconstruct the environment for external examination (Scott et al., 2003). The consequence 

of using these relaxed constraints is that there will be more configurations in the planning 

problem, therefore increasing the time to sample and plan. In order to minimise the time 

spent calculating configurations, and to accommodate the separation of the high-fidelity 

sensor model from the coverage planner, it is unavoidable that there will be an increase in 

the number of samples a planning problem contains. 

3.6.4 Summary of Assumptions between the Coverage Planner and the Motion and 

Visibility Constraints  

Continuing from the list of assumptions presented in Section 3.6.1, a summary of the 

discussion points presented in Sections 3.6.2 and 3.6.3 create assumptions that bound the 

expectations surrounding the relationship between the extrinsic constraints of a robotic 

platform and the coverage planner.  

Assumption 8: A 6-DOF holonomic assumption is used as a heuristic to 

approximate the motion constraints of an 18-DOF robot with electromagnetic 

adhesion. 

Assumption 9: High-fidelity motion planning will occur after the coverage plan has 

been calculated to reduce the impact on planning times. The sampling-based 

coverage planner will solve motion plans with the simplified constraints of 

Assumption 8. Therefore, the tour provided by the coverage planner approximates 

the actual tour. 

Assumption 10: Visibility constraints are simplified to aid the high-fidelity motion 

planner to achieve the calculated 6-DOF by relaxing the roll constraint of the viewing 

pose. 

Unless specified otherwise, Table 3-1 presents the simplified robotic platform constraints 

used to define the robot platform in the experiments undertaken in this thesis.  

3.7 Chapter Summary  

In the chapter, the offline sampling-based coverage planner of Englot and Hover (2017) 

which utilises redundant roadmaps to generate coverage over complex spaces was chosen 

as the subject for adaptation to solve the STIPP. This chapter discussed the offline  

sampling-based coverage planner in detail before highlighting documented limitations 

about the cover planner. Of the listed concerns discussed, two were identified that could 
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Table 3-1: Visibility and collision model constraints. 

Parameter Value 

Field of View (FOV) ±45° 

Minimum Field of Depth (𝐹𝑂𝐷𝑚𝑖𝑛) 100mm 

Maximum Field of Depth (𝐹𝑂𝐷𝑚𝑎𝑥) 270mm 

Collison sphere radius size:  50mm 

potentially impact online performance. These concerns were:  

Concern 1) to ensure that all known primitives are accounted for at the conclusion of 

the inspection whether they be observed or not, and  

Concern 2) the LPP is known to consume the most planning time of all processes of 

the coverage planner. 

To address the gap statement and to provide a solution to meet all the STIPP requirements, 

two replanning strategies were proposed to create an adaptive sampling-based coverage 

planner. 

1) The first proposal was to use a full replanning strategy. A full replanning strategy 

would require minimal modification to the existing decoupled planning architecture 

as each map update can be treated as an offline planning problem. 

2) The second proposal is to use path repair strategy to segment the space around 

changes to preserve and minimise the amount of computation required to perform an 

update. Only the new feature and influence regions will be replanned using the 

existing sampling techniques and the new paths that form within the regions will be 

merged into the existing plan.  

While it is expected that the full replan strategy will likely be the more computationally 

expensive approach compared to the path repair strategy, given that the path repair strategy 

has additional processes to segment and merge, it may encounter computational overheads 

that may outweigh the benefits. 

As the response of the offline sampling-based planner is unknown in the target environment, 

Chapter 4 investigates the functionality of the offline sampling-based coverage planner over 

a series of planning environments, including a representative tank environment, to determine 
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if any other issues are present that may impact the online performance. From this chapter 

onwards, this thesis will use the assumption placed on the relationships between the 

environment, mapping system, motion planner and coverage planner so a thorough analysis 

of the intrinsic behaviours of the sampling and path planning procedures can be conducted 

within minimal influence of extrinsic constraints. 

 



 

 

 

97 

 

 

 

 

Chapter 4  

Evaluating the Functionality of the Offline 

Sampling-Based Coverage Planner in Preparation 

for Online Planning  

4.1 Introduction 

In Chapter 3, two replanning strategies were proposed to extend the offline sampling-based 

coverage planning of Englot and Hover (2017). The first was a full replan strategy which 

would replan all the remaining uncovered regions of the environment whenever the robot 

encountered change. The second was a plan repair strategy optimised to preserve as much 

of the existing plan as possible and replan only the changed regions.  

As these proposed strategies do not seek to alter the underlying processes of the offline 

sampling-based coverage planner, it is therefore important to understand how the coverage 

sampling problem (CSP) and multi-goal planning problem (MPP) algorithms will perform 

when planning over a submarine tank environment. Therefore, irrespective of the replanning 

strategy implemented, both approaches are directly reliant on the performance of the existing 

offline planning algorithms. To the author’s knowledge, as there were no comparable 

research results available on the performance of the offline sampling-based coverage planner 

with respect to confined space submarine tank inspection, the primary focus of this chapter 

is to investigate the intrinsic functionality of the offline sampling-based coverage planner to 

determine which of the two replanning strategies is better suited to solve the online planning 

problem. This chapter documents an experiment designed to provide data to assist in making 

this decision.  
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The objectives of the experiment were as follows: 

Objective 1) Benchmark the performance of the offline sampling-based coverage 

planner within a representative submarine tank environment. 

This provided insight into how the coverage planner behaves in different planning 

environments.  

Objective 2) Determine to what extent the lazy point-to-point planner (LPP) 

influences the planning times within the target environment.  

In Section 3.4.4, the LPP was listed as a concern due to its long computation times. 

Understanding the impact of the LPP when it solves the submarine tank planning provides 

insight into how to reduce planning times. 

Objective 3) Discover any other limitations of the coverage planner that may impact 

online performance.  

The offline sampling-based coverage planner is applied to four controlled environments to 

assess its performance against controlled variations within the environments. 

4.2 Implementation of the Existing Offline Sampling-based Coverage 

Planner 

The offline sampling-based coverage planner was implemented according to the 

specifications presented in Englot and Hover (2013). However, in preparation for the new 

planning constraints (Section 3.6), testing environments (Section 4.3) and online 

implementation, changes were made to particular open source packages that were used in 

the original implementation (Englot and Hover, 2013).  

Amendments were also made to the offline coverage planner to handle difficult situations 

that arose when developing the existing algorithm. When these problems were not handled, 

it resulted in the coverage planner taking copious amounts of time to complete its intended 

task, if at all. As these situations would undoubtably appear when executing the online 

variant of the offline coverage planner, it was imperative that the CSP and MPP procedures 

contained additional algorithms to capture and handle these situations, so they do not impact 

real-world execution and performance.  

The amendments listed in this section focus on how these algorithms capture these difficult 

situations when generating plans offline. Chapter 7 will discuss how these algorithms are 

amended again for online use. These changes did not alter the original algorithmic properties 
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of the CSP and MPP but enhanced their ability to perform reliably across a variety of 

planning problems. Some of these additions may have been implemented in the existing 

version of the coverage planner presented in Englot and Hover (2013), however, to the 

author’s knowledge were not discussed. For clarity, this section explains how this recreated 

implementation handles; 

1) the sampling of viewing configurations to create a redundant roadmap given the new 

visibility constraints discussed in Section 3.6.3,  

2) the detection and removal of trapped configurations due to prison cell geometries,  

3) how unobservable primitives are removed from the planning problem to avoid being 

continually sampled and recorded to notify the operator during operation,  

4) changes made to the LPP which included, the substitution of a Travelling Salesman 

Problem (TSP) solver to accommodate larger covering sets, and  

5) handling point-to-point paths that exceed the allocated solution time within the LPP. 

The recreated offline sampling-based coverage planner used in the experiment in this 

chapter creates the baseline planner that is the foundation of the online adaptive coverage 

sampling-based coverage planner that is discussed in following chapters. A summary of the 

software packages used to replicate the original implementation is specified in Appendix A. 

4.2.1 Constructing a Redundant Roadmap 

Sampling the viewing configurations to construct a redundant roadmap is procedurally 

undertaken as described by Englot and Hover (2013) (Section 3.3.1; Algorithm 3-1). To 

summarise, creating a redundant roadmap requires the following steps: 

1) Randomly select a primitive that has not met the required sightings (redundancy).  

2) Randomly sample a configuration within the neighbourhood of the selected 

primitive. 

3) Determine that the configuration is collision-free and can be reached by other 

configurations. Section 4.2.2 elaborates further on determining the reachability of a 

configuration.  

4) Calculate coverage of the configuration over the surface.  

5) If the configuration sights at least one primitive that is required to be sighted, add the 

configuration to the redundant roadmap. 

6) Repeat steps 1-5 until all primitives have met redundancy or have been removed from 

the planning problem (Section 4.2.3). 
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For this implementation, configurations are still randomly sampled within a spherical 

coordinate system, 𝑟 (range), 𝜃 (polar angle), 𝜙 (azimuth) before being transformed to the 

world frame based on the normal of the selected primitive (Figure 4-1). Details to this 

rotating from the spherical frame to cartesian frame can be found in (Sadiku, 2014). The 

sampling ranges for 𝑟, 𝜃 and 𝜙 are defined in Equations 4-1 to 4-3 based on the minimum 

and maximum Field of Depth (𝐹𝑂𝐷𝑚𝑖𝑛 and 𝐹𝑂𝐷𝑚𝑎𝑥) and Field of View (𝐹𝑂𝑉𝑎𝑛𝑔𝑙𝑒). 

 𝑟: 𝐹𝑂𝐷𝑚𝑖𝑛 < 𝑟 <  𝐹𝑂𝐷𝑚𝑎𝑥  (4-1) 

 𝜃 ∶ 0 <  𝜃 < 2π (4-2) 

 𝜙 ∶ 0 <  𝜙 < 𝐹𝑂𝑉𝑎𝑛𝑔𝑙𝑒 (rads)  (4-3) 

 

Figure 4-1: Transforming a configuration sampled in the spherical frame to the world frame. (a) A 

configuration is sampled in the spherical frame based on the constraints of the sensor. (b) 

Transformation of the configuration to the world frame can be achieved by rotating and offsetting 

the configuration around a primitive normal in the world frame. (c) The result of the transformation 

angles the configuration to the centre of the selected primitive.  

For static collision checking, OPCODE (Optimal Collision Detection; Terdiman, 2003) 

replaces PQP (Proximity Query Package; Larsen et al., 2000). As the static collision check 

is performed over a spherical robot model (Section 3.6.2), the collision check made between 

the environment model and the robot model is simple and has minimal degradation in 

performance to PQP (Trenkel, Weller, and Zachmann, 2007). 

Capturing the local neighbourhood of primitives surrounding the configuration is achieved 

by using FLANN (Fast Library for Approximate Nearest Neighbours; Muja and Lowe, 

2009) implemented through the PCL (Point Cloud Library; Rusu and Cousins, 2011) as 

implemented previously (Figure 4-2). 𝐹𝑂𝐷𝑚𝑎𝑥  was used as to limit the radial nearest 

neighbour search (Figure 4-2a).  

It was found that creating a nearest neighbour search tree using the Euclidean coordinates of 

the incentre of the triangle, rather than the vertices of the triangle, resulted in significantly  
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(a) 

 
 

 
(b) 

Figure 4-2: Visualisation of how the visibility checks were undertaken. (a) A radial nearest 

neighbour search finds the primitives within the neighbourhood of the configuration based on the 

maximum Field of Depth (FOD) specified. (b) Primitives within the local neighbourhood are pruned 

to the Field of View (FOV) of the sensor.  

faster search results2. As there is only one incentre per triangle, the indices returned by the 

search corresponded to a specific triangle. Creating a search tree of vertices required 

additional checks to ensure that all three vertices were within the neighbourhood to 

determine if a triangle was within the FOV. These additional checks increased planning 

times significantly. The images in Figure 4-2 shows the earlier implementation of visibility 

checks using a nearest neighbour search over the vertices.  

The coverage was calculated by determining the angle of each primitive’s normal vector 𝜌 

against the vector of the sensor’s projection 𝛾 (Figure 4-3). If the resulting angle 𝜉 between 

𝜌 and 𝛾 was less than 𝜙, it was considered to lie within the FOV and was checked for 

occlusion using a ray trace.  

 

Figure 4-3: Calculation of a configuration’s coverage. 

 
2 Improvement courtesy of Lee Ying Wu 
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Ray tracing was only cast to the incentre of the primitive. A ray trace to each vertex of the 

primitive would be a more thorough approach but it would result in more ray traces. Given 

the resolution of the models was 100mm, a single cast was sufficient to determine occlusion. 

OpenSceneGraph (Wang and Qian, 2010) was retained to perform ray tracing. 

4.2.2 Handling Trapped Configurations due to Prison Cells 

When sampling configurations within tight enclosed spaces, there is a possibility that a 

configuration can be generated within an area of the environment that would not allow any 

feasible path the ability to connect the configuration to the plan. This problem has been 

described as the prison cell problem (Englot and Hover, 2012a) and these configurations 

need to be removed from the planning before solving the MPP. To overcome the prison cells, 

Englot and Hover (2012a, 2013) suggests connecting all configurations to a common origin. 

In this work an alternative approach to determining configurations trapped due to prison 

cells is applied. 

In an environment where all objects are known to be fully enclosed, configurations trapped 

within prison cells are avoided by performing an additional check procedure during the 

sampling phase. This procedure casts a ray from the position of the configuration through to 

the environment’s exterior boundary. Counting the number of intersections that each  

ray-trace makes with each object, through to the exterior boundary, determines whether a 

configuration is inside or outside a prison cell geometry (Figure 4-4). The number of 

intersections to determine if a configuration exists in free space is dependent upon the layers 

of the exterior boundary mesh manifold. Configurations in free space inside a double outer-

layer mesh manifold will return an even intersection count. For single-layer mesh manifolds 

the logic is reversed. This procedure is known as the even-odd algorithm (Shimrat, 1962; 

Haines, 1994) but is termed the Trapped Configuration Heuristic (TCH) in this thesis. 

As all the environments are two-layer manifolds with all objects within the environment 

constructed as single layer (no interior surfaces), an even intersection constraint is placed on 

four casted rays traced to the exterior boundary of the environment in the ±𝑥  and ±𝑦 

directions. For a configuration to be considered valid within free space, all four traces must 

return an even count. 
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Figure 4-4: Identifying trapped configurations within prison cells. (a) A basic example of a prison 

cell geometry trapping a configuration inside an object prohibiting a feasible path to other 

configurations. (b) The number of intersections each ray trace makes with interior objects and the 

mesh boundary determines if a configuration is within free space.  

4.2.3 Introducing a Primitive Rejection Limit to Avoid Over-Sampling 

Unobservable Primitives 

In Section 3.4.3, an assertion was formed from a raised concern that it would be acceptable 

to relax the 100% coverage constraint providing the areas that cannot be feasibly covered 

are recorded and reported to the operator. Prison cells or complex geometries have the 

potential to create a situation where primitives contained within or around these geometries 

can never be observed. The robot may not physically be able to fit within these certain areas 

of the environment or structures may completely occlude other structures. As these 

unobservable primitives are unlikely to reach the desired redundancy, a new user parameter, 

the primitive rejection limit, was added to avoid continually sampling these primitives if no 

observations are likely to be obtained. Given the offline coverage planner is aware of how 

many primitives are in the planning problem, keeping a record of any primitives unable to 

meet the required redundancy is trivial.  

The primitive rejection limit assigns a limit for the number of failed attempts a primitive 

receives before it is deemed unobservable. Once a primitive has been deemed unobservable 

it is removed from the unobserved primitives list (Section 3.3.1), added to the unobservable 

primitive list and will no longer be a candidate for sampling for the remainder of the sampling 

process. An unobservable primitive can only be removed from the unobservable primitive 

list if it is indirectly observed by another configuration, regardless of the unobservable 

primitive’s redundancy count. This ensures that all observed primitives are represented in 

the final coverage plan.  

At the conclusion of the sampling process, the unobservable primitive list can be used to 

inform the operator of the unobservable regions within the environment where the robot was 
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unable to acquire coverage. The primitive rejection limit was set at 20 as this number had 

been determined to be a good balance between oversampling an unobservable primitive and 

generating too few samples that falsely reported the primitive as unobservable.  

4.2.4 Substitution of the TSP Solver for Large Covering Sets 

In anticipation that the constraints placed on the planning problems will produce larger 

covering sets to the set sizes presented by Englot (2012) and Englot and Hover (2013), a 

substitution of the TSP solver was made. The Christofides algorithm (Christofides, 1976) 

was substituted with the Quick-Borůvka algorithm (Applegate et al., 2003) to provide the 

Chained Lin-Kernighan algorithm (CLK) with an initial TSP solution. In this thesis this 

pairing is referred to as QB-CLK (Quick-Borůvka CLK). For smaller problems size less than 

10,000 cities, the QB-CLK produces comparable solutions in a shorter time to that of a 

Christofides-CLK pairing (Applegate et al., 2003). As the LPP is an iterative planner, any 

effort to reduce the time to calculate a TSP solution, per iteration, is a benefit.  

This implementation utilises Concorde’s implementation of the QB-CLK TSP (Applegate 

et al., 2003). Englot and Hover (2012b) made a similar change when the Christofides 

algorithm is replaced with Concorde’s Nearest Neighbours TSP solver. No reason was 

supplied or reports of computational deficiencies where mentioned about this change.  

With the expectation of large covering set sizes, the CLK is given two solution times to solve 

the TSP. For covering set sizes of under 600, 0.5 seconds was enough time to find a solution 

without timing out. Covering set sizes greater than this threshold were given one second. In 

practice, smaller set sizes solved quicker than 0.5 seconds and did not require the full 

allocated time before terminating with a solution. The change in threshold allowed larger 

sets more time to stabilise to an answer as the CLK was run once per iteration. All other 

parameters to initialise QB-CLK TSP were left as their defaults.  

4.2.5 Motion Planning and Handling Unachievable Paths 

The RRT-Connect algorithm (Kuffner and LaValle, 1998) remains as the designated  

point-to-point path planner. To prevent computing an RRT path for every chosen edge, a 

direct path between configurations is evaluated first. If the direct path fails to create a valid 

path, an RRT is called to generate a solution. OMPL (Open Motion Planning Library; Sucan, 

Moll and Kavraki, 2012). 

In reality, solving the path for a robot of high-DOF every path would be resolved with an 
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RRT. However, in the case of a minimally constrained robot, such as a robot containing  

6-DOF with holonomic constraints, direct point-to-point path evaluations checks are 

acceptable. Each RRT is given up to 0.5 seconds to solve for a path.  

In the unlikely case a valid path cannot be found in the allotted time, the edge between the 

two configurations is still labelled as an uncleared edge (Algorithm 3-2). To avoid the 

likelihood TSP solver selecting the same edge again in the next iteration the initial estimate 

of the distance is doubled. 

4.3 Planning Scenarios to Evaluate Algorithmic Properties  

Generating offline plans directly over the representative submarine tank environments only 

provide an insight into how the algorithms work in one particular scenario. Since submarine 

tanks are considered to be complex environments, it is a challenging problem to determine 

if the effects on the offline coverage planner are due to environmental influences or the 

algorithmic process. Therefore, to help generalise the functionality of the offline  

sampling-based coverage planner, a set of simpler environments were introduced.  

The planning problems presented have been designed to explore various aspects of the offline 

sampling-based coverage planner. The planning problems used in this chapter include two 

empty box environments (2x2m and 6x6m), two simplified house plans (House and  

House-W) and two representative submarine tanks (Tank and Tank-P4). Each planning set 

comprised a base model that was simpler to solve than that of the paired model.  

Collectively, these planning environments are designed to control properties such as; 

1) the number of primitives, or 

2) the geometry of the space. 

Controlling these properties enables each model set to evaluate a particular algorithmic 

process. Besides the two submarine tank models, which provide an insight into the 

performance of the offline sampling-based coverage planner inside the target environment, 

the additional models examined how the sampling and path planning function under 

controlled geometrical changes.  

For all planning environments presented, the coverage planner was only required to provide 

coverage to the interior surfaces of the environment. The maximum resolution of primitives 

in these mesh models was 100mm. 
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4.3.1 Empty Box Environments  

The two empty box examples 2x2m and 6x6m (Figure 4-5) were used to demonstrate the 

influence of the sampling procedures to a change in environment size when no extensive 

planning was required. It was expected that the planning times would be dominated by the 

time taken to solve the CSP.  

 

Figure 4-5: Planning environments 2x2m with 6x6m. 

With no obstacles present within the environment, the LPP was expected to take no more 

than two planning iterations to provide a solution as no RRTs were required to update any 

paths, given that all configurations are reachable via a direct path to one another. This 

ensures that the minimal amount of effort was required by the LPP to produce a solution. 

The only expected difference between the time it takes to solve the MPP between 2x2m and 

6x6m, would be due to size of the each covering set.  

4.3.2 House Plans Containing a Single Geometrical Change 

Contained within the same 2.0 x 2.0m box as 2x2m, two-similar scaled-down house plans, 

House and House-W introduce further controlled complexity to the problem set (Figure 4-6). 

The walls of the house plans introduced more opportunity for collision and the varying routes 

throughout the environment make path planning a little more challenging. Designed to have 

approximately the same configuration density to control the time it took to solve the CSP, 

the differentiating factor is the inclusion of an additional wall to House-W on the exterior 

border that is intended to impact the LPP. As it was unknown when or where new changes 

would occur and the impact these changes would have on the coverage planner, 

understanding the response of the LPP to small changes in the environment was important 

for online planning. 
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Figure 4-6: Planning environments House and House-W. 

While the additional wall is only a small geometric inclusion with respect the size of the 

environment, it blocks entry into the second doorway and therefore will invalidated several 

path options that were available for House. As a result, the Euclidean assumption that was 

used to estimate the initial connectivity between all configurations, was significantly 

underestimated around the change for House-W than it was for House, resulting in more 

RRTs to rectify the initial estimations. Consequently, planning times for House-W were 

expected to be longer than House. 

4.3.3 Representative Submarine Tank Environments 

The representative submarine tank environments, Tank and Tank-P4 (Figure 4-7) were 

designed to provide a baseline understanding of how the offline sampling-based coverage 

planner solves the target application. These tank models were synthetically designed to 

represent and contain features akin to those expected in real-world models given that 

presentation of and testing on real-world submarine tank data was prohibited (Section 1.5.2). 

These models were designed to focus on coverage planning within smaller tank 

environments.  

Planning within a smaller tank environment posed a difficult problem to solve due to the 

confined spaces between structures. Unlike larger, more open spaces, the tight spaces 

reduced the sampling areas in which maximal coverage, or any coverage, of a surface can 

be obtained. Figure 4-8 shows three different examples of how the valid sampling region 

used to generate viewing locations within the local neighbourhood changes around an  

I-beam. When sampling around complex geometries, several viewing configurations may be  
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Figure 4-7: Planning environments Tank and Tank-P4. 

 

Figure 4-8: Sampling configurations around complex geometries such as I-beams and pipe brackets 

can be challenging in clustered areas. 

rejected due to collision or visibility constraints. In some cases, visibility to a particular 

primitive can be quite restrictive, like the underside of a pipe bracket (Figure 4-8c), and may 

require several viewing positions to cover a small area of a structure.  

The base model Tank contains a basic tank layout of repeating I-beam structures in both the 

horizontal and vertical directions. Tank has dimensions of 3.0m x 2.8m x 3.0m to represent 

a tightly compact and confined environment between I-beam structures. Tank-P4 increased 

the complexity of the problem by overlaying a pipe network over the sides of the base 

environment. Tank-P4 was expected to be the most difficult environment to solve of the 

planning set; the addition of pipes and pipe brackets creates areas of higher primitive 

occlusion resulting in greater covering-set sizes than Tank which also added to the increased 

complexity of generating a plan. Given the visibility constrains placed on the planning 



4.4 BENCHMARKING THE OFFLINE SAMPLING-BASED COVERAGE PLANNER 

 

 

109 

problem (Section 3.6.3), it was expected that covering sets for Tank and Tank-P would be in 

the thousands.  

4.4 Benchmarking the Offline Sampling-based Coverage Planner 

A Monte Carlo experiment was run over 20 random primitive sets to investigate the 

functionality of the offline sampling-based coverage planner. To test for any variability 

within each primitive set, each configuration set was trialled five times (n = 100). The 20 

different sets allow a direct comparison over different coverage distributions while the five 

trials determine the variability of planning times and tour lengths in response to an identical 

primitive set.  

To ensure the comparisons within each primitive set are valid, each of the five trials start 

and finish their tours at the same location. The starting position for each planning problem 

is assigned to the configuration with the highest number of primitives. This location is 

determined by the first configuration selected when solving the set cover problem (SCP). 

For each of the five trials in each random primitive set this location will always be the same. 

To avoid the LPP taking an excessive time to solve a particular MPP, a six-hour time limit 

was imposed on the LPP. If any planning scenario reached the time limit, the answer from 

the current iteration of the LPP is provided as the final answer. 

For each planning scenario a feasible inspection plan is generated from a redundancy-ten 

roadmap using the simplified constraints presented in Section 3.6, Table 3-1. In summary, 

the chosen FOV was ±45° with a sensing range between 100-to-270mm (𝐹𝑂𝐷𝑚𝑖𝑛, 𝐹𝑂𝐷𝑚𝑎𝑥). 

The robot collision sphere encapsulating the end effector has a diameter size of 50mm.  

The offline sampling-based planning planner with amendments (Section 4.2) was 

implemented in C++ and implemented on a 64-bit Intel i7 920 CPU with 8 cores at 2.67GHz 

with 6GB RAM running Ubuntu 16.04 LTS. All data analysis was performed using 

MATLAB 2018b.  

4.4.1 Computational Observations and Results 

Table 4-1 shows the statistical analysis of the overall planning times, covering set sizes and 

final tour lengths for each of the planning scenarios. Table 4-2 provides the computational 

time it took to solve the CSP and the MPP. The CSP time reflects the average time taken to 

sample the redundancy-ten roadmaps and to solve the SCP. The MPP time reflects the time 
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Table 4-1: Overall planning times, configuration set sizes and overall tour lengths for each of the planning scenarios. 

Model Trials Timeouts 
Overall Time (s) Configurations Tour Length (m) 

𝑥̅ SD 𝑀𝑒𝑑𝑖𝑎𝑛 𝐼𝑄𝑅 𝑥̅ SD 𝑀𝑒𝑑𝑖𝑎𝑛 𝐼𝑄𝑅 𝑥̅ SD 𝑥̅ 𝐼𝑄𝑅 

2x2m 100 0 2.88 0.31 2.79 0.25 152.00 2.96 152.00 5.50 21.47 0.27 21.49 0.53 

6x6m 100 2 2,704.35 4,246.76 1,049.51 2,569.38 1,011.05 8.07 1,013.00 13.00 159.46 1.07 159.74 1.64 

House 100 0 14.09 7.39 13.40 10.23 321.80 5.42 321.00 6.50 33.94 0.56 33.93 0.87 

House-W 100 0 7,692.39 1,616.25 7,938.56 2,900.23 325.35 4.90 324.00 7.00 35.72 0.46 35.68 0.60 

Tank 100 14 6,581.49 7,274.07 2,986.16 8,996.53 1,301.76 7.23 1,305.00 12.00 148.99 1.08 148.86 1.15 

Tank-P4* 50 45 20,984.90 2,659.19 21,666.60 1.40 1,654.70 6.79 1,653.50 10.00 175.65 1.26 175.46 1.35 

*Only 5 trials completed within the six-hour time limit 

IQR – Interquartile Range 

 

Table 4-2: Coverage sampling problem (CSP) and multi-goal planning problem (MPP) planning times for each of the planning scenarios. 

Model 
CSP Time (s) MPP Time (s) 

𝑥̅ SD 𝑀𝑒𝑑𝑖𝑎𝑛 IQR 𝑥̅ SD 𝑀𝑒𝑑𝑖𝑎𝑛 𝐼𝑄𝑅 

2x2m 2.55 0.05 2.55 0.06 0.32 0.30 0.23 0.24 

6x6m 21.89 0.69 21.97 0.67 2,682.37 4,246.79 1,027.67 2,569.86 

House 2.60 0.03 2.60 0.03 11.48 7.40 10.80 10.21 

House-W 2.64 0.03 2.64 0.03 7,689.72 1,616.24 7,935.92 2,900.27 

Tank 32.53 0.39 32.63 0.46 5,898.72 6,896.53 2,739.26 6,521.80 

Tank-P4* 65.61 0.85 65.64 0.92 20,919.20 2,659.04 21,600.80 0.60 

* Averaged of 50 trials 

IQR – Interquartile Range 
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taken for the LPP to generate a solution. Therefore, it includes the time taken to create the initial 

adjacency matrix, iteratively solving the TSP and generated paths using the  

RRT-Connect algorithm. The coverage plans for each planning problem pair can be seen in 

Figures 4-9 to 4-11. All planning problems achieved 100% coverage of the internal surfaces 

and no primitive exceeded the primitive rejection limit.  

Given all the results, the first observation made is that there was a clear distinction between the 

smaller and larger planning problems. The smaller planning problems (2x2m, House and 

House-W) all had configuration set sizes no greater than 400 configurations. The larger 

planning problems (6x6m, Tank and Tank-P4) had covering sets into the thousands.  

In comparison to the computational results published by Englot and Hover (2013), only the 

covering sets of the smaller planning problems are equivalent to those generated from 

redundancy-ten roadmaps in Englot’s work. The larger planning problems contained covering 

sets of up to three to eight times greater than those previously published. These results highlight 

that the offline sampling-based coverage planner is capable of generating coverage plans of 

significant size, but it has come at the expense of excessive computational times. 

While a direct comparison cannot be made between these results and the computational results 

of Englot and Hover (2013) due to the significant differences between planning environments 

and planning constraints, the results of Englot (2012) and Englot and Hover (2013) were used 

as a guide to predict the outcomes of these experiments. As a benchmark for the results in this 

experiment, the planning times reported for Englot’s largest planning problem, the USCGA 

Seneca, took no longer than 19 minutes to construct a full plan (Englot and Hover, 2013). The 

resultant coverage plan consisted of over 400 configurations over the 70m structure. However, 

given that the environment sizes in this experiment were significantly smaller, it was not 

expected that any of the planning problems, especially those of similar covering set sizes, would 

exhibit planning times significantly larger than the USCGA Seneca example. 

Table 4-1 clearly shows that only 2x2m and House were solved in under 19 minutes. The other 

planning problems, 6x6m, House-W, Tank and Tank-P all exhibited planning times that 

exceeded 45 minutes. Plans for House-W executed in just over 1.5 hours and for Tank just over 

two hours. The worst performing scenario was Tank-P which averaged a time of six hours. 

Given that 90% of Tank-P4's 50 trials failed within six-hours it was enough to determine that 

50 more trials would not produce a better outcome. While it was expected that Tank and Tank-

P would generate large covering set sizes, there was no expectation that solving these problems  
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2x2m 

 

 

6x6m 

 

 
Direction of Coverage Plan 

Figure 4-9: Generated coverage plans for 2x2m and 6x6m.  
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House 

 

House-W 

 
Direction of Coverage Plan 

Figure 4-10: Generated coverage plans for House and House-W. 
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Tank 

 

Tank-P4 

 
Direction of Coverage Plan 

Figure 4-11: Generated coverage plans for Tank and Tank-P4.  
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with simplified planning constraints would ever reach the six-hour time limit. The six-hour time 

limit was implemented as a practical limitation to stop the simulation from executing too long 

if a problem occurred. If these results were taken as the baseline for an online planner, running 

replanning updates that take six-hours is not at all feasible.  

The main concern expressed about the offline sampling-based coverage planner was large 

computational costs associated with generating coverage plans, in particular the solution times 

of the LPP (Section 3.4.4). An examination of the MPP times in Table 4-2 confirm this concern. 

Besides 2x2m, which solving the MPP accounted for only 11% of the overall time, 6x6m, 

House, House-W, Tank and Tank-P4 all had over 81% to 99% of their computational time 

dedicated to solving the MPP.  

A closer examination of the MPP times revealed that there was a significant variability present 

in the LPP that has negatively impacted overall planning times across all planning scenarios. 

The spread of the variation is captured by the median and interquartile range (IQR) for each 

planning scenario (Tables 4-1 and 4-2). For the larger planning problems there is a significant 

difference between the means and medians. 6x6m has a 27-minute difference between the mean 

and median while just under one hour separates the mean and median for Tank. Tank-P4 has a 

smaller difference between mean and median due to a majority of trials timing out.  

Figures 4-12a, 4-13a and 4-14a plot the distribution of overall planning times for 6x6m, Tank 

and Tank-P4 and highlight that the distributions are positively skewed. 

Table 4-3 shows the coefficient of variation of the overall, CSP and MPP planning times, 

configuration set sizes and resulting tour lengths. These results further illustrate the significant 

variability the LPP had on producing a solution. The results also show that whilst solving the 

CSP does not contribute significantly to the overall planning times, the algorithms that solve 

the CSP do not contribute to variations witnessed within the coverage planner. Given that the 

same planning constraints were supplied, planning times for the CSP were consistently 

repeatable despite the random sampling process and the complexity of the environment.  

The variation observed across all the trials could have been due to the complexity of solving a 

particular primitive set. If a particular primitive set was skewing the overall planning times, it 

would be present across each of the five trials. The overall planning times for the five trials for 

each of the 20 random primitive sets for 6mx6m, Tank and Tank-P4 are shown in  

Figures 4-12b, 4-13b and 4-14b respectively. These figures highlight that the variation in 

planning times exists between different primitive sets and also within the same primitive set.   
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Figure 4-12: Overall planning times for 6x6m.  

(a) Distribution of all planning times. (b) Distribution of planning times within each primitive set. 

 

Figure 4-13: Overall planning times for Tank.  

(a) Distribution of all planning times. (b) Distribution of planning times within each primitive set. 

 

Figure 4-14: Overall planning times for Tank-P4.  

(a) Distribution of all planning times. (b) Distribution of planning times within each primitive set. 
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Figure 4-15: Overall planning times for House-W.  

a) Distribution of all planning times. b) Distribution of planning times within each primitive set. 

Table 4-3: Coefficient of variation across the planning data for all planning scenarios. 

Model 
Overall Time  

(%) 

CSP Time  

(%) 

MPP Time  

(%) 

Configurations  

(%) 

Tour Length 

 (%) 

2x2m 10.63 1.77 92.85 1.95 1.27 

6x6m 157.03 3.13 158.32 0.80 0.67 

House 52.43 1.22 64.43 1.68 1.65 

House-W 21.01 1.22 21.02 1.50 1.28 

Tank 110.52 1.22 111.07 0.56 0.72 

Tank-P4* 12.67 1.29 12.71 0.41 0.71 

*Tank-P4 has a small variation due the 90% of trials timing out 

The five trials in Primitive Set 13 for 6x6m in Figure 4-12b clearly demonstrates the variability 

of planning times between the trials of a primitive set. Primitive Set 13 contains the two trials 

that timed out, two that produced solutions in just under three hours, and another which 

produced a solution in under 30 minutes. The variable behaviour within Primitive Set 13 can 

easily be considered an outlier, or an artefact, of that primitive set. However, the behaviour 

presents itself across Primitive Sets 11 to 16 and is witnessed more clearly in the results of  

Tank (Figure 4-13b) and Tank-P4 (Figure 4-14b). House-W also exhibited variations of up to 

30 minutes within the same primitive set (Primitive Sets 15 and 18), despite having a 

considerably smaller covering set compared to the larger planning problems (Figure 4-15). 

These results suggest that as the covering set size increased, the disparity between results 

increased. Despite most of Tank-P4 trials timing out, there were solutions that solved well 

below the time threshold. These findings are important as they highlight that solutions existed 
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well below what the average was indicating.  

If there was to be any significant variations between the trials of a primitive set, it would be 

expected to be manifested in the overall tour lengths. As each of the 20 primitive sets generated 

the same configuration set across the five trials, the only variation that would be expected was 

a difference in tour length due to the random nature of the RRT solutions. As stipulated in 

Section 4.2.5, if a path cannot be solved via a direct connection, an RRT is invoked to resolve 

the path query. Due to the random expansion of an RRT, the likelihood of generating the exact 

path between the same two configurations is unlikely between different trials. Furthermore, as 

RRT paths are not solved optimally and have the potential to invalidate the triangular equality, 

it is understandable that the same tour order, and therefore tour length, may not be the same 

across all five trials.  

The results in Tables 4-1 and 4-3 indicate there were minimal variation in tour lengths across 

all primitive sets and trials for both the small and large planning problems. The ratio of direct 

paths to RRT paths taken in the final tour solution can be seen in Table 4-4. Despite the 

complexity of Tank and Tank-P4, less than 1% of the final tours consist of RRT paths. 

Configuration sets in these planning problems are compact due to the visibility constraints that 

only allow the robot to observe a small portion of the overall environment. Due to the 

compactness, direct paths are likely to be taken between neighbouring configurations 

Consequently, only a small number of RRTs were required to be used in the final tours. 

However, given that no RRTs were used to solve 2x2m and 6x6m and the variability is still 

present, this eliminates the RRT-Connect algorithm as a potential cause behind the internal 

variation between trials of the primitive set. Therefore, despite the LPP exhibiting variable 

solution times, the variability does not impact the final solution. 

The interesting finding is how little variability there is between the tour lengths for Tank-P4 

despite having the majority of the trials unable to complete within the allocated time. If the LPP 

required more time to solve, a larger disparity between tour lengths would be expected; the tour 

lengths for Tank-P4 suggest this is not the case. An example is seen when examining the tour 

lengths of Primitive Set 4 of Tank-P4 (Figure 4-14b). The only trial to complete within 1.5 

hours, has a tour length of 174.19m. The remaining four trials averaged 174.26m with a 

standard deviation of 0.11. Therefore, 4.5 hours separates 0.07m for the same configuration set 

and this variation in planning could be caused by a difference in RRT paths selected in the final 

tour. It appears that a significant portion of the planning for these trials could have been solved   
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Table 4-4: Ratio of Direct and RRT paths used in the final tour. 

Model 

Average 

number of 

paths in final 

solution 

Final Tour Path Breakdown 

Direct RRT 

# Paths % # Paths % 

2x2m 152.00 152.00 100.00 0.00 0.00 

6x6m 1,011.05 1,011.05 100.00 0.00 0.00 

House 321.80 320.20 99.50 1.60 0.50 

House-W 325.35 322.62 99.16 2.73 0.84 

Tank 1,301.44 1,295.00 99.51 6.44 0.49 

Tank-P4 1,649.00 1,639.35 99.41 9.65 0.59 

within the first 1.5 hours as there is no significant difference in tour lengths that suggest the 

LPP is not converging to a better solution. 

Table 4-5 shows the top and bottom three primitive sets exhibiting the smallest and largest 

difference in planning times between trials. These results indicate, especially for the larger 

planning problems, that the trials which take longer to plan are not guaranteed to be better or 

shorter solutions. The differences between the tour lengths, at either extremity, are so small that 

the minor variation between tour lengths can be due to the difference in the RRT paths solved 

between the tightly clustered covering sets. As mentioned previously, this can cause a slight 

tour reordering. These results indicate that between configuration sets and between trials, tour 

lengths are relatively consistent across each of the trials. Consequently, the variability in 

planning times must be caused by some other influence other than environmental factors.  

Finally, the reason for using controlled planning scenarios was to evaluate specific aspects of 

the offline coverage planner against different environmental features. 2x2m and 6x6m were 

designed to understand how solving the CSP changes the size of the environment whilst limiting 

the influence of the LPP, as no obstacles are present. House and House-W were designed to 

limit the influence of the CSP to witness how the LPP responded to a small change in geometry 

that impacted potential path routes that were available for House. Table 4-6 lists a summary of 

all the expectations placed on the planning models and resultant outcomes from this experiment.  

Of all the expectations, it was surprising to observe that the expectation placed on the LPP to 

terminate 2x2m and 6x6m after two planning iterations was the only exception not to be met. 

As seen in Table 4-7, neither planning problem terminated after two planning iterations and on 

average, evaluated more paths than expected. If the LPP was to terminate after two iterations,   
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Table 4-5: The difference between minimum and maximum within each set shows no correlation 

between longer planning times and shorter tour lengths. 

Model 
Time 

Diff 

P 

Set 
Configs 

Min Trial 

Time (s) 

Max Trial 

Time (s) 

Rel. Time 

Diff. 

Min Trial 

Tour 

Length (m) 

Max Trial 

Tour 

Length (m) 

Rel. Tour 

Length 

 Diff. (m) 

2
x2

m
 

Min 

18 152 2.65 2.70 1.02 21.82 21.74 0.996 

16 148 2.73 2.78 1.02 21.82 21.36 0.979 

20 149 2.56 2.62 1.02 21.82 21.74 0.996 

Max 

7 147 2.70 3.52 1.30 21.74 21.55 0.991 

2 155 2.73 4.34 1.59 21.55 21.82 1.013 

6 152 2.74 4.38 1.60 21.82 21.55 0.988 

6
x6

m
 

Min 

18 998 38.37 277.21 7.23 159.82 159.74 1.000 

20 1002 28.87 277.16 9.60 160.65 160.98 1.002 

9 1019 29.21 300.43 10.29 159.74 160.65 1.006 

Max 

12 995 1,348.92 13,758.40 10.20 159.82 160.98 1.007 

10 1018 464.99 16,740.60 36.00 159.74 160.98 1.008 

13 1017 1,232.18 21,622.80 17.55 160.98 159.82 0.993 

H
o

u
se

 

Min 

13 328 14.72 15.20 1.03 33.39 34.56 1.035 

10 321 4.70 5.69 1.21 33.75 33.60 0.996 

5 321 8.75 10.02 1.14 33.60 33.39 0.994 

Max 

9 326 15.89 33.15 2.09 33.75 34.56 1.024 

4 319 5.32 24.50 4.60 34.56 34.77 1.006 

1 332 14.56 40.01 2.75 33.39 34.77 1.041 

H
o

u
se

-W
 Min 

20 323 8,795.65 8,987.28 1.02 36.06 35.71 0.990 

11 324 6,161.10 6,476.45 1.05 35.99 35.71 0.992 

7 324 6,987.30 7,325.64 1.05 35.33 35.99 1.019 

Max 

6 330 7,741.78 9,164.59 1.18 35.33 35.99 1.019 

18 334 8,165.09 9,972.57 1.22 36.23 35.99 0.994 

15 330 9,081.56 11,056.80 1.22 36.06 35.71 0.990 

T
a

n
k 

Min 

8 1308 785.96 937.73 1.19 148.65 149.35 1.005 

15 1311 425.60 1,328.39 3.12 148.65 147.08 0.989 

19 1300 591.75 2,558.03 4.32 148.65 148.63 1.000 

Max 

3 1311 2,078.32 21,634.10 10.41 148.63 147.01 0.989 

11 1304 1,416.05 21,634.90 15.28 149.35 147.01 0.984 

9 1306 903.01 21,633.30 23.96 147.08 147.01 1.000 

T
a

n
k-

P
4
 Min 

3 1649 21,668.00 21,668.60 1.00 174.08 175.18 1.006 

1 1665 21,666.40 21,667.10 1.00 175.39 174.08 0.993 

10 1653 21,666.00 21,666.70 1.00 175.18 176.66 1.008 

Max 

6 1661 15,838.40 21,667.50 1.37 174.08 178.03 1.023 

5 1651 14,603.70 21,667.30 1.48 174.08 178.03 1.023 

4 1651 5,303.87 21,665.80 4.08 176.66 175.18 0.992 

Diff – Difference 

P Set – Primitive Set 

Configs – Configurations 

Min – Minimum  

Max – Maximum  

Rel - Relative 
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Table 4-6: List of expected outcomes for each model set and the respective result from the experiment. 

Model Set Model Set Expectations 
Expectation 

Met 

2x2m and 

6x6m 

Solving the CSP will take longer for 6x6m than 2x2m. Yes 

The LPP will only take two iterations to solve 2x2m and 6x6m as 

the Euclidean assumption placed on the connectivity will always 

be correct. 

No 

No RRTs are required to be validated to solve the MPP. Yes 

House and 

House-W 

Solving with CSP should be approximately the same despite the 

inclusion of the change in House-W. 
Yes 

The LPP will have to evaluate paths for House-W than House to 

compensate for the change. 
Yes 

All models 
All complex models of each model sets will take longer to solve 

than the base models. 
Yes 

Table 4-7: Number of planning iterations and paths evaluated to solve each planning problem. 

Model 
Planning Iterations Path Evaluations 

𝑥̅ SD 𝑥̅ SD 

2x2m 4.87 4.47 157.73 8.92 

6x6m 5,227.24 8,279.35 1,633.13 176.05 

House 50.06 33.33 563.18 72.84 

House-W 11,440.15 1,973.46 13,438.45 2,276.20 

Tank 5,359.57 5,961.02 4,601.53 824.84 

Tank-P4* 16,928.72 2,151.91 5,814.68 522.23 

it would be expected that the TSP solver would produce identical results. 

While all other expectations were true, a closer examination of the LPP planning data highlights 

some interesting findings. While House-W was expected to take longer than House, House-W 

performed over 12,500 more path evaluations to rectify the one small change that was 

introduced. This equated to as many as 11,000 more planning iterations and provided a reason 

why House-W took so long to solve and highlights how sensitive the LPP can be to small 

variations in environmental geometry. Furthermore, the average difference of four hours 

between planning times Tank and Tank-P can be due to the 1,200 additional paths Tank-P 

evaluated and the subsequent 10,000 additional planning iterations. Keeping in mind that the 
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majority of the trials for Tank-P did not finish in the allocated time, it is interesting that  

House-W evaluated more paths considering it was a smaller covering set and planning 

environment. 

4.4.2 Discussion 

The benchmark experiment has provided valuable insight into how the offline sampling-based 

coverage planner operates across the target and various constructed environments. The 

objectives of this experiment were to; 

Objective 1) Benchmark the performance of the offline sampling-based coverage planner 

within a representative submarine tank environment. 

Objective 2) Determine to what extent the LPP influences the planning times within the 

target environment.  

Objective 3) Discover any other limitations of the coverage planner that may impact 

online performance.  

The findings of this experiment have addressed all three of these objectives. This experiment 

has provided a benchmark of how the recreated implementation of the offline sampling-based 

coverage planner has performed in the target environment (Objective 1). The main findings of 

the benchmark showed: 

1) The covering set sizes of the larger planning problems, in particular Tank and Tank-P, 

are well into the thousands. The covering sets generated in this experiment were 

significantly greater in size than presented originally in Englot (2012) and Englot and 

Hover (2013), highlighting the offline sampling-based coverage planner is capable of 

working well beyond the original implementation.  

2) Significant planning times were observed for these environments. Planning times for 

Tank exceeded two-hours while 90% of the trials for Tank-P terminated due to the  

six-hour limit. These planning times are orders of magnitude greater than the largest 

planning problems presented in Englot (2012) and Englot and Hover (2013).  

This experiment also demonstrated the extent to which the LPP dominated planning times 

(Objective 2). Planning times for House, House-W, 6x6m, Tank and Tank-P all exhibited over 

85% of their computational time solving the MPP. However, a further investigation into 

planning times highlighted a few concerns surrounding the behaviour of the LPP that will 

impact the performance of the LPP in an online situation (Objective 3). The statistical analysis 
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found that the LPP exhibited the following behaviours;  

1) A significant variability between trials of the same covering set and that the variability 

is more apparent in larger covering sets,  

2) small geometrical changes can have a large impact on planning times, and  

3) the LPP did not terminate as expected, as shown the 2x2m and 6x6m examples. 

These results suggest that the LPP is non-deterministic which is an undesirable trait for online 

planning. Minor variations in planning times could be explained by the differences in set size 

and path variation between trials, but the results illustrated in Figures 4-12 to 4-15 show there 

was no correlation of planning time variability to set size or tour length.  

Despite this variability, it did not have an impact on final tour lengths. An analysis of the trials 

across all planning problems revealed that no correlation was present between longer planning 

times thus equating to better tour solutions. This indicates that that planning times can be 

reduced without compromising tour length. The minor variability exhibited in the tour length 

can be attributed to randomness of the RRT paths. 

Other findings of this experiment included: 

1) Solving the CSP made a small contribution to the overall planning times. The simplified 

constraints made sampling cheaper than what it would be for a high-DOF robot. 

2) All planning problems achieved 100% coverage. 

3) The sampling procedures were not found to exhibit any variability in solution times that 

would be concerning for online implementation.  

The importance of these findings isolated the problems of the offline sampling-based coverage 

planner to be directly related to the LPP. The results provided by the CSP suggest that the CSP 

will reliably work in an online situation.  

The issues to take away from this experiment is that the representative tank environments used 

were designed to expose the offline coverage planner to a smaller tank variation containing 

only some of the features expected within these environments. Actual submarine tanks are 

expected to be larger and will contain more features. Therefore, when implemented under  

real-world conditions, the offline coverage planner will naturally produce larger configuration 

sets than what were produced in this experiment. Given that the majority of Tank-4 solutions 

terminated due to the six-hour time limit suggests that this implementation of the offline 
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sampling-based coverage planner is not currently suitable for online implementation. However, 

it was found that the reason for these excessive computational times was due to the LPP.  

For an online implementation the above behaviours exhibited by the LPP create major concerns 

that need to be resolved for the LPP to be successful online. These findings are surprising as 

neither Saha and Latombe (2003), Englot (2012) or Englot and Hover (2012a, 2012b and 2017) 

report any variability in their results. The difference between these results and the results 

published previously, is that the planning environments used in this experiment created 

significantly larger MPPs, up to eight times larger, than those published previously.  

While it was expected that all complex models of each pair would take longer than the base 

models (Section 4.3; Table 4-6), both the planning times and the planning data from the LPP 

suggests that the issue is intrinsic to the algorithms that form the LPP, given that no significant 

variability was evident in the tour lengths. The 2x2m and 6x6m planning problems suggest that 

this may be the case given that neither terminated within two planning iterations as expected. 

Furthermore, the results between House and House-W, demonstrated how vulnerable the LPP 

can be to a minor change in the environment but Tank-P, which on many occasions was 

terminated due to time, evaluated fewer paths on average. Finally, the results of Tank and  

Tank-P demonstrated the LPP’s inability to solve the target application consistently within a 

six-hour time limit. Some trials for Tank-P4 where able to solve the planning problem without 

timing out, indicating that there are underlying intrinsic issues causing this variability that are 

more than just the influence imposed by the environment. All these issues raise questions over 

the LPP applicability in an online setting.  

Given these outcomes, the current LPP implementation is not suitable for any online coverage 

planner regardless of which online replanning strategy is implemented. Confidence in 

consistent and reliable results is important for online planning. If the LPP is to be used online, 

the variability needs to be resolved. In the next chapter, the planning data from the LPP is 

investigated in further detail to determine the cause behind the significant variability that was 

present across all planning problems and why 2x2m and 6x6m did not terminate as expected.  

4.5 Chapter Summary 

To summarise this chapter, the offline sampling-based coverage planner was recreated and 

benchmarked to determine how the coverage planner performed in a representative submarine 

tank environment. The offline coverage planner was recreated to perform the experiments in 
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this thesis, and a series of amendments were implemented to assist the offline sampling-based 

coverage planner to work effectively in complex planning environments. The amendments 

included the introduction of a primitive rejection count to limit the number of times a primitive 

is sampled to avoid oversampling in complex spaces. 

To investigate the intrinsic functionality of the CSP and MPP methods, the simplified motion 

planning and visibility constraints discussed in Chapter 3 were used to reduce the impact of the 

extrinsic influences of a multi-legged, high-DOF platform would have on the planning 

procedures. A series of controlled environments were tested alongside two representative tank 

environments to benchmark the performance of the offline sampling-based coverage planner.  

The main findings of the benchmark experiment demonstrated that; 

1) planning within the representative tank environments is expensive, requiring thousands 

of configurations to solve the CSP,  

2) the LPP dominated all but one planning problem,  

3) the LPP exhibited an unexpected variability across all trials that inhibited the same 

covering set to be solved in a similar time,  

4) the larger the covering set grew in size, the more significant the variability was between 

solution times. 

5) variability was not witnessed in CSP times or the final tour lengths, and 

6) the LPP did not terminate as expected.  

Overall, the experiment achieved its intended objectives by providing information about the 

coverage planner that highlights that the current implementation of the offline sampling-based 

coverage planner, more specifically the LPP, was not suitable for online implementation. Given 

the importance of delivering stable and consistent solutions in an online situation, the next 

chapter investigates the planning data of the LPP to determine the cause of the significant 

variability that is present amongst all trials. 
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Chapter 5  

Minimising the Variability of the LPP for Stable 

Online Solutions 

5.1 Introduction 

The results of the benchmark experiment of Chapter 4 highlighted that the excessive planning 

times and significant variability associated with the lazy point-to-point planner (LPP) need to 

be resolved. The results strongly indicated that the environment had a considerable influence 

on the planning times. However, the variation between identical configuration sets indicated 

the issue was intrinsic to the algorithmic processes inside the LPP. In this chapter, the planning 

data acquired from the LPP during the benchmark experiment was analysed to determine the 

cause of the significant variation present in all planning problems. 

5.2 Removing the O(n2) Complexity as a Factor of Computational 

Variability 

The main concern with using the LPP was the complexity of the algorithm which at worst is 

O(n2). Considering the large configuration set sizes generated over the larger planning 

problems (6x6m, Tank and Tank-P), it could have been likely that the excessive solution times 

may being a consequence of the LPP searching through more of the solution space to find an 

answer.  

Comparing the average number of path evaluations against the average number of total paths 

in the planning problem showed that no planning problem came close to evaluating to the limit 

of O(n2) (Table 5-1), i.e. all possible path combinations. Besides House-W, which evaluated 

25.5% of the total paths, the remaining planning problems evaluated no more than 1.5% of their 

respective solution spaces. Even Tank-P4, which prematurely terminated, only evaluated
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Table 5-1: Lazy point-to-point planner planning data for all planning problems. 

Model 

Average of 

total number 

of paths in 

problem 

(TP) Φ 

Planning iterations (IT) Path evaluations (PE) PE / 

TP 

(%) 𝑥̅ SD Median IQR CV 𝑥̅ SD Median IQR CV 

2x2m 11,480.35 4.87 4.47 4.00 4.00 91.81 157.73 8.92 155.00 13.00 5.65 1.38 

6x6m 510,637.75 5,227.24 8,279.35 2,001.50 5,001.50 158.39 1,633.13 176.05 1,646.00 267.50 10.78 0.32 

House 51,631.25 50.06 33.33 45.00 43.50 66.57 563.18 72.84 574.00 109.50 12.93 1.09 

House-W 52,775.50 11,440.15 1,973.46 11,484.00 3,343.00 17.25 13,438.45 2,276.20 13,578.50 4,216.00 16.94 25.48 

Tank 846,664.55 5,359.57 5,961.02 2,413.00 7,377.00 111.22 4,601.53 824.84 4,492.50 1,205.00 17.93 0.54 

Tank-P4* 1,368,211.30 16,928.72 2,151.91 17,480.00 16.00 12.71 5,814.68 522.23 5,787.50 584.00 8.98 0.42 

* Average taken across 50 trials 
Φ Number of paths in problem is equal to (𝑛 (𝑛 +1) / 2) - 𝑛 where 𝑛 is the number of configurations. A lower diagonal matrix is all that is needed for symmetrical Travelling Salesman 

Problems 

^ Average path evaluations per iteration taken after the first iteration. The first iteration will always evaluate the maximum number of paths in a planning problem 

IQR - Interquartile Range 

CV - Coefficient of Variation  
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a small proportion of the total solution space. This finding ruled out the possibility, that the 

times to solve the multi-goal planning problem (MPP) were not a result of solving the 

solution space to the worst-case complexity, therefore confirming previously made 

observations about the LPP. 

5.3 Variable Planning Iterations  

The statistical analysis shown in Table 5-1 indicated that the planning iterations were highly 

variable. Given that the number of paths evaluated was dependent upon the solutions 

provided by the Travelling Salesman Problem (TSP) solver, suggests that the variability may 

be due to limitations in the TSP solver. 

These limitations are highlighted in the 2x2m and 6x6m examples. In the Section 4.3.1, it 

was hypothesised that both 2x2m and 6x6m would always terminate after two iterations, 

regardless of the covering set size, as the Euclidean assumption would never have to be 

updated. As no RRTs would have been required to resolve any path queries, the resultant 

adjacency matrix remained the same, so it would be expected that the TSP solver would 

provide identical solutions on consecutive iterations. However, as recorded in Table 4-7 and 

in Table 5-1, both planning problems executed a larger number of planning iterations and 

evaluated a larger number of paths than configurations. For 6x6m, this led to planning times 

ranging from 45 minutes up to six hours, executing an additional 5,225 planning iterations 

than expected. Considering no paths were evaluated by an RRT, the variability observed in 

the number of planning iterations for 2x2m and 6x6m suggested that the TSP solver had 

difficulty stabilising a solution and therefore terminating as expected. 

Evidence of the LPP’s inability to stabilise was present in a single trial of the 6x6m, shown 

in Figure 5-1. In this trial, it was expected that the First-Zero Path Evaluation Iteration 

(FZEI) would occur at Iteration 2, however, it occurred at Iteration 9. This result showed 

that the TSP solver did not produce identical solutions in iterations for the same adjacency 

matrix. Due to this unrepeatability the subsequent solutions did not trigger the equality 

termination condition after the second iteration of the LPP (Algorithm 3-2, Line 4). The trial 

presented in Figure 5-1 highlights that the TSP solver continued to analyse alternative paths 

that resulted in new tours being formed that were different to previous iterations. 

Consequently, it caused the LPP to fluctuate between several thousand solutions until the 

TSP solver eventually found two identical tours to terminate the LPP at Iteration 17,056. 
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Summary  

Final TL (IT) 160.58m (17,056) 

BTL (IT) 160.55m (273) 

FZEL (IT) 160.66m (9) 

# TL within 1% of the BTL (% of Total ITs) 17,056 (100%) 

Repeated ITs 28 

Total PEs 1,806 

# PE after the FZEL (% of Total PEs) 531 (29.40%) 

Figure 5-1: Lazy point-to-point planning data for a trial of 6x6m. 

Further analysis of the 6x6m trial in Figure 5-1 uncovered additional behaviours that were 

contrary to expectations. The following behaviours were observed; 

1) The Final Tour Length (FTL) is not the Best Tour Length (BTL) found (160.58 vs 

160.55m). 

2) The LPP did not recognise the BTL and failed to terminate in the subsequent 

iteration. 

3) The FZE Tour Length (FZEL), which was expected to terminate the LPP with the 

BTL, was not equal to the FTL (160.66 mm vs 160.58). 

4) The FZEL was found earlier than the BTL. 

5) The TSP solver produces previously solved solutions but not necessarily in 

consecutive iterations. 

6) As result of not terminating when expected, a significant number of iterations occur 

that do not evaluate new paths, denoted as a Zero Path Evaluation Iterations (ZEIs), 

but produce different tours, i.e. different tour order.  
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The analysis of all the trials indicated that these behaviours were present over all planning 

problems (Tables 5-2, 5-3 and 5-4) and had a greater impact on the larger planning 

problems. Figures 5-2 and 5-3 illustrate the listed behaviours from a single trial of Tank and 

Tank-P4, respectively. The consequences of failing to terminate, resulted in the additional 

time and computational effort spent searching for alternative solutions that did not always 

produce a better result. As path evaluations under simplified constraints were 

computationally efficient, reducing computational effort per iteration, the majority of the 

LPP computation time was due to excessive number of iterations generating TSP solutions. 

A surprising finding was that the FTL was not equal to the BTL. These results presented in 

Table 5-2 show that there was no significant difference between the average FTLs and BTLs 

for all planning problems as all FTLs are within 1% of the BTL. However, the final two 

columns of Table 5-2 indicate the fundamental problem; the TSP fails to detect the BTL as 

the best solution in consecutive iterations therefore forcing the LPP to continue searching 

for new solutions. Despite finding the BTL, the LPP continued to iterate through more 

solutions for no further improvements upon the current best. Several planning problems 

reported that over 50% of their total planning iterations occurred after the BTL had been 

found, and during that time, very few paths were evaluated. Consequently, this contributed 

to the significant number of ZEIs present in the results.  

An interesting and important finding which was central to determining the cause of the 

variability, was the number of planning iterations that returned a ZEI. For the larger 

planning problems, over 50%-90% of planning iterations evaluated no paths (Table 5-3). 

However, as discussed previously, 2x2m and 6x6m should have terminated upon the FZEI.  

When a planning iteration reports a ZEI there are two possibilities; 

Possibility 1) the TSP solver has produced a tour that is identical to a previous tour 

such that all the same paths, in order, have been evaluated in a previous iteration, 

and 

Possibility 2) the TSP solver has produced a tour that is an amalgamation of evaluated 

paths from previous tours that collectively form a new tour. 

For House, House-W, Tank and Tank-P it is not surprising that they exhibited both 

Possibility 1 and 2. Given that paths are only evaluated once and the covering sets are quite 

dense, slight permutations to the tour, as the LPP begins to stabilise, can be expected to 
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Table 5-2: A comparison between best tour length and final tour length highlight there is no significant difference between the two solutions. 

Model 
Average  

FTL (m)* 

Average  

BTL (m)* 

Difference between 

the BTL and FTL  

(x10-3 %)^ 

Number of FTLs 

within 1% of the 

BTLs as % of 

total trials (%)^ 

Average number 

of IT after the 

BTL as a % of 

total IT (%)^ 

Average number 

of PE after the 

BTL as a % of 

total PE (%)^ 𝑥̅ SD 

2x2m 21.47 21.47 0.85  4.29 100.00 59.50 2.14 

6x6m 159.46 159.40 37.74 32.54 100.00 69.12 8.14 

House 33.94 33.94 1.44 4.34 100.00 24.88 1.33 

House-W 35.72 35.70 60.18 134.35 100.00 6.57 5.26 

Tank 148.99 148.93 44.74 51.48 100.00 52.80 9.55 

Tank-P4 175.65 175.52 72.69 42.68 100.00 46.14 5.99 

* Average taken over all trials 

^ Average of the relative difference between values within each trial 

FTL - Final Tour Length IT - Iterations 

BTL - Best Tour Length PE - Path Evaluations 

Table 5-3: The presence of iterations that evaluated no new paths or repeat previous solutions is prevalent throughout every planning problem. 

Model 

Average IT to 

solve 

problem* 

Average 

number of  

ZEIs as a %  

of total IT (%)^ 

Average 

number of IT 

after the FZEI 

as a % of total 

IT (%)^  

Average 

number of PE 

after the FZEI 

as a % of total 

PE (%)^ 

Number of ZETL 

within 1% of the 

BTLs as a % of 

total ZEIs (%)^ 

Number of ZETL 

within 1% of the 

FTLs as a % of 

total ZEIs (%)^ 

Average  

FZEL 

(m)* 

Difference 

between the FZEL 

and FTL (%)^ 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 

2x2m 5.25 28.74 30.33 1.20 100.00 0.00 100.00 0.00 21.47 0.01 0.02 

6x6m 5,253.74 83.15 95.64 20.22 100.00 0.00 100.00 0.00 159.48 0.01 0.04 

House 49.41 21.65 28.48 1.81 100.00 0.00 100.00 0.00 33.94 -0.01 0.01 

House-W 11,350.58 1.05 11.56 9.71 98.25 4.40 98.46 4.12 35.72 0.01 0.18 

Tank 5,349.06 58.24 88.77 28.08 100.00 0.00 100.00 0.00 148.99 -0.01 0.06 

Tank-P4 17,266.08 90.46 99.20 36.07 100.00 0.00 100.00 0.00 175.61 -0.02 0.05 

*Average taken over all trials ZEI - Zero-path evaluation iteration ZETL - Zero-path evaluation tour length FT - Final tour length IT - Iterations 
^Average of the relative difference between each trial FZEI - First ZEI FZEL - First ZETL BTL - Best tour length PE- Path evaluations 
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Summary  

Final TL (IT) 150.65m (17,689) 

BTL (IT) 150.36m (265) 

FZEL (IT) 150.47m (126) 

# TL within 1% of the BTL (% of Total ITs) 16,638 (94.06%) 

Repeated ITs 565 

Total PEs 5,739 

# PE after the FZEL (% of Total PEs) 2,486 (43.32%) 

Figure 5-2: Lazy point-to-point planning data for a trial of Tank. (a) All planning data. (b) A closer 

examination of the planning data. 
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Summary  

Final TL (IT) 174.34m (17502) 

BTL (IT) 174.25m (789) 

FZEL (IT) 174.29m (95) 

# TL within 1% of the BTL (% of Total ITs) 17047 (97.4%) 

Repeated ITs 11 

Total PEs 4890 

# PE after the FZEL (% of Total PEs) 1510 (30.88%) 

Figure 5-3: Lazy point-to-point planning data for a trial of Tank-P4. (a) All planning data. (b) A 

closer examination of the planning data. 
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Table 5-4: The average number of repeated and unique solutions for each planning problem. 

Model 

Average IT 

to solve 

problem* 

Average 

number of 

repetitions as % 

of total IT (%)^ 

Average 

number of 

repeated 

solutions* 

Average 

number of 

unique 

solutions* 

2x2m 5.25 21.18 0.85 1.92 

6x6m 5,253.74 16.64 492.35 4,058.76 

House 49.41 13.83 2.91 40.25 

House-W 11,350.58 0.65 16.69 11,361.37 

Tank 5,349.06 10.93 387.47 4640.45 

Tank-P4 17,266.08 1.38 159.14 16,704.74 

^Average of the relative difference between values within each trial 

*Average taken over all trials 

IT - Iterations 

report a ZEI. The expectation was when a FZEI occurs, as FZIs do not change the adjacency 

matrix, the TSP solver should soon stabilise on a solution and terminate the LPP. However, 

in many trials, their termination did not occur soon after the FZEI and did not terminate with 

the BTL. Again, highlighting the non-deterministic behaviour that the LPP demonstrated in 

the benchmark experiment due to the inability of the TSP solver to stabilise on a solution. 

It became clear that once the LPP encountered the FZEI, the LPP entered a state of minimal 

improvement until a time when two successive iterations were equivalent. It was during this 

period the TSP failed to effectively terminate the LPP resulting in several ZEIs occurring 

across all planning problems. Further analysis into each ZEI for every trial, over all planning 

problems, showed interesting properties of ZEIs. These properties are listed as follows:  

1) The FZEI can occur significantly earlier than the BTL for all planning problems 

besides 2x2m and House (Table 5-3, Column 4).  

2) Tour lengths produced by ZEI (ZETL) are within 1% of the FTL and BTL (Table 

5-3, Columns 6 and 7), thus highlighting that beyond the FZEI the planner is indeed 

in a state of minimal improvement.  

3) ZETLs and FTLs were approximately equivalent, with FZTLs producing marginally 

better results, for House, Tank and Tank-P (Table 5-3, Column 9). This finding again 

highlighting that all the extra computation does not create a better outcome.  

4) Once the LPP enters a state of minimal improvement, the LPP fluctuates between a 

set of reasonable solutions. In the case of the smaller planning problems, the set of 

possible paths are small enough that they will repeat. In the larger planning 

problems, they are large enough to generate a series of unique solutions that it is 

unlikely repeat often (Table 5-4). This behaviour was not expected and highlights the 
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extent to which the TSP solver is influenced by the size of the covering set. 

Given this analysis, it is clear that the state of minimal improvement needs to be resolved 

otherwise the LPP is not suitable for online implementation. If the variability cannot be 

resolved, an alternative MPP planner may be required. The following section describes the 

cause of the behaviours observed by the TSP solver, to determine if replacing the LPP is a 

suitable course of action. 

5.4 Reasons Why the TSP Solver Produced Variable Solutions 

The TSP variability is due to the manner in which the TSP solver is applied in this context. 

As previously discussed in Section 4.2.4, the LPP implements a Quick-Borůvka (QB) and 

Chained Lin-Kernighan (CLK) combination (QB-CLK) to solve the TSP. Both the QB and 

the CLK are approximation algorithms that use heuristics to generate solutions for the TSP. 

(Helsgaun, 2000; Applegate et al., 2003). It is a characteristic of approximation algorithms 

that they cannot guarantee an optimal solution, however a good solution can be found close 

to the optimum (Helsgaun, 2000).  

Generally, to find the optimal solution using tour improvement heuristics, such as the CLK, 

may require the CLK to be run several times with different randomised tours (Helsgaun, 

2000). For planning problems that comprise up to 50 cities, optimal answers could be found 

in the first iteration. For larger planning problems consisting of over 100 cities, the 

probablity of finding the optimal tour decreases to 20-30% and additional trials that 

randomise the initial tour provides a better opportunity of finding the optimal answer 

(Helsgaun, 2000). 

The CLK, improves the chances of finding optimal answers by using ‘kicks’ to slighly 

perturb the tour instead of restarting with a random tour (Applegate et al., 2003), equivalent 

to adding noise to the data to avoid local minima as in the case of machine learning (Burton 

Jr and Mpitsos 1992; Treadgold and Gedeon, 1998). To solve larger TSP problems, the CLK 

is supplied with an initial TSP solution supplied by an approximation tour construction 

algorithm, such as the QB (Helsgaun, 2000). The combination of the QB-CLK enables the 

TSP for set sizes ranging from 10,000 to 100,000 to be solved to near optimality (Applegate 

et al., 2003). 

The current implementation of the LPP does not factor into account that the TSP solutions 
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are sub-optimal. The current equality termination condition requires that solutions are 

consistantly generated by the TSP solver, especially when the adjacency matrix is 

unchanged. The CLK is only given one trial per iteration to find a solution and is therefore 

constrainted to find a solution within a specified time limit. This limits the possiblity that the 

QB-CLK will produce an optimal solution. As a result, the LPP essentially terminates at 

random as the chances of terminating due to the equality termination condition significantly 

decreases as the covering set size becomes larger. 

As Englot (2012) did not solve covering sets to the size of the larger planning problems, 

these behaviours exhibited by the LPP may not have been detected or have not been an issue 

worthy of consideration. Even when Englot and Hover (2012b) substituted the  

Christofides-CLK TSP solver for the Nearest Neighbours-CLK implementation, another 

approximation tour construction algorithm, there were no published reports of this 

substitution causing the LPP to exhibit variable solutions that prevent the LPP from 

terminating. Smaller TSP problems inherently contain smaller path permutations making it 

possible to find the optimal solution in a given QB-CLK iteration. The smaller planning 

problems (2x2m, House and House-W) used in the benchmark experiment, did not exhibit 

significant variability that would have indicated planning times were being impacted by this 

issue. This behaviour could have easily gone unnoticed if not for the 2x2m and 6x6m, which 

demonstrated that the LPP did not terminate as expected, therefore pointing to the influence 

that the TSP solver had on House and House-W. Without this insight, it would have been 

assumed the difference between these two environments would have been due to 

environmental influences.  

In summary, the benchmark experiment has uncovered the source behind the LPP’s 

variability to be the approximation tour construction and tour improvement heuristics that 

were used to solve the TSP. The analysis of the LPP planning data has shown that while the 

smaller planning problems could trigger the equality termination condition due to the  

QB-CLK ability to find optimal solution for smaller size of the problems, the current 

termination condition is not effective for planning problems of larger sizes.  

Despite the evidence suggesting that replacing the QB-CLK with a non-approximation 

solver is a suitable solution to remove the state of minimal improvement, it also showed that 

the QB-CLK functions suitability well to converge the LPP to a set of near-optimal solutions. 

The analysis showed that if the state of minimal improvement is removed, the planning 
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problems could have been solved more quickly. As the effectiveness of the equality 

termination condition is impacted by the QB-CLK, if the termination condition were to be 

relaxed so the LPP terminated upon entering the state of minimal improvement, it would 

ensure the effectiveness of the QB-CLK in both offline and online planning for large 

planning problems. 

5.5 Relaxing the Equality Termination Condition to Compensate for 

Near-Optimal TSP Solutions Generated by Approximation TSP 

Solvers 

To compensate for the variations, additional termination conditions are added to the LPP to 

relax the equality termination condition so the LPP can terminate if consecutive planning 

iterations continue to make no meaningful contribution towards finding a better solution. 

These additional termination conditions do not replace the equality termination condition 

but provide a way to track the status of the LPP and terminate with the best possible solution 

before the planner enters a state of minimal improvement. 

The analysis of the lazy point-to-point planning data (Section 5.3) indicated that the LPP 

entered a state of minimal improvement immediately after the LPP encountered a FZEI, 

whereupon the LPP exhibits two distinct behaviours (Table 5-4): 

1) the LPP oscillates between previously solved solutions in non-consecutive iterations. 

2) the LPP generates a series on new unique solutions without evaluating any new paths. 

In both cases, these behaviours produce several ZEIs that generally do not contribute a 

significant improvement. Based on the results presented in Tables 5-3 and 5-4, the likelihood 

of any significant improvement occurring after encountering the FZEI is low. The additional 

termination conditions were designed to track the status of the LPP and terminate when 

either one of these events occurred.  

As discussed in Section 5.3, an FZEI can be a tour that is constructed from previously 

evaluated paths (Possibility 2). Therefore, as it may be a new solution, termination of the 

planner upon the FZEI, or any subsequent ZEI, does not guarantee the LPP has finished. To 

ensure the LPP is not terminated prematurely, additional time should be given, if only for a 

short period, to find a better tour length than the current BTL. Therefore, the additional 

termination conditions were only activated to track the status of the LPP after the FZEI is 

recorded. At this time, the additional termination conditions are only considered if;  
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1) the original equality termination condition has failed, and  

2) the current iteration has reported a ZEI. 

To enable the use of the additional termination conditions, the LPP was modified to record 

each of the tour lengths at each planning iteration so the convergence into the state of 

minimal improvement can be tracked. By maintaining a record of all solutions, the BTL that 

is found can always be provided as the final solution; an expected outcome of the original 

implementation that was found not to be true. 

Figure 5-4 illustrates the following description of how the additional termination conditions 

were implemented inside the LPP. In the event that the TSP begins to repeat previous 

solutions in non-consecutive iterations, the current tour length (CTL) is first compared 

against all the previously recorded solutions to determine if it has been solved before. If the 

CTL is indeed a repetition of a previous tour, the CTL is compared to the tour length to 

previous tour length (PTL) and if the CTL is less than the PTL, the LPP is terminated and 

the BTL becomes the final solution.  

When the LPP enters a state of minimal improvement, characterised by producing several 

non-repeating ZEIs, the solutions are checked to determine if they are within 1% of the BTL 

found so far. If successive iterations are within 1% of the BTL, the additional termination 

conditions are triggered, and the BTL is presented as the final solution.  

To ensure the LPP does not terminate prematurely when tracking non-repeating ZEI 

solutions, a limit of three successive, non-repeating ZEIs is set. These ZEIs must be less than 

the previous iteration to be sufficient to assert that the TSP solver has stabilised to a solution 

(1% limit counter) and terminate. If at any stage, an iteration returns a tour length better than 

the current BTL, the 1% limit counter is reset. 

While the additional termination conditions are predominantly targeted at the larger 

planning problems, by relaxing the original equality termination condition, the additional 

termination conditions become applicable to any planning problem of any size and 

environment. The additional termination conditions do not require changes to the TSP 

solver, which still provides solutions efficiently, while compensating for the non-optimal 

solutions exhibited by algorithms that approximate the TSP.  

The option of relaxing the constraints is considered a better solution than placing a shorter  
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Figure 5-4: Flowchart of how the additional termination conditions are integrated into the LPP.
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time-limit on the LPP. The benchmark experiment showed that the LPP responded 

differently to each planning environment, making it difficult to correctly infer a suitable time 

that ensured the planner found a feasible solution. By tracking the progress and behaviour 

of the LPP, the additional termination conditions provide an opportunity for the LPP to find 

the best solution before it is terminated.  

5.6 Coverage Planning with the Additional Termination Conditions 

To determine the effectiveness of the additional termination conditions, the benchmark 

experiment in Section 4.4 was performed again with the new conditions added to the LPP. 

To create a new benchmark of the offline-sampling-based coverage planner, the experiment 

was rerun over the same 20 random primitive sets to produce the same covering sets from 

the redundancy-ten roadmaps. Five trials were again applied to each primitive set. By 

running the same trials again, a direct comparison was made between the two experiments. 

For consistency the six-hour time limit was again enforced. 

Pairwise comparisons were used to investigate whether a statistically significant difference 

(p) was present between the trials of the benchmark experiment and the trials using the new 

termination conditions for all planning attributes. For normally distributed planning 

attributes of the benchmark experiment, a parametric Paired Samples T-Test was conducted 

(α = 0.01). For planning attributes of the benchmark experiment that were not normally 

distributed, a non-parametric Sign Test (α = 0.01) was used. Cohen’s d effect size (d; Cohen, 

2013) was recorded for any attributes that demonstrated a statistically significant result. To 

allow an unbiased comparison between each experiment, all trials were conducted on the 

same 64-bit Intel i7 920 CPU, 8 core, 6GB RAM machine running Ubuntu 16.04 LTS as 

used in the benchmark experiment. All data analysis was performed using MATLAB 2018b.  

5.6.1 Computational Observations and Results 

The introduction of the additional termination conditions has aided in stabilising the LPP to 

produce consistent solution times across all planning problems without compromising tour 

quality. The statistical analysis of the overall, CSP and MPP planning times are presented in 

Table 5-5 and the analysis of the LPP planning attributes are presented in Table 5-6.  

Of the 600 trials conducted in this experiment, 85% terminated due to the additional 

termination conditions with 15% being resolved using the equality termination condition 

(Table 5-7). No trials terminated due to the six-hour time limit. Even Tank-P4, which had 
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Table 5-5: Planning times for all planning scenarios using the additional termination conditions. 

 

Table 5-6: Lazy point-to-point planner attributes for all planning scenarios using the additional termination conditions. 

Model 
Tour Length (m) Iterations Path Evaluations 

𝑥̅ SD median IQR 𝑥̅ SD median IQR 𝑥̅ SD median IQR 

2x2m 21.47 0.27 21.49 0.53 2.90 1.20 3.00 1.00 156.40 8.16 154.00 6.00 

6x6m 159.42 1.06 159.72 1.66 31.44 10.99 32.00 13.50 1,363.76 73.36 1,367.00 104.00 

House 33.94 0.56 33.94 0.89 37.86 23.80 35.00 36.00 557.62 72.02 563.50 104.50 

House-W 35.70 0.47 35.68 0.62 10,657.31 1,813.97 10,919.00 3,107.50 12,717.84 2,153.55 12,851.00 3,593.50 

Tank 148.94 1.08 148.81 1.18 319.78 100.36 311.00 146.50 3,594.35 309.96 3,595.50 514.50 

Tank-P4 175.51 1.26 175.29 1.21 265.88 91.83 255.00 124.00 3,988.80 290.25 3,948.50 453.00 

IQR - Interquartile Range 

 

Model Trials 
Overall Time (s) CSP Time (s) MPP Time (s) 

𝑥̅ SD median IQR 𝑥̅ SD median IQR 𝑥̅ SD median IQR 

2x2m 100 2.75 0.10 2.74 0.11 2.55 0.04 2.55 0.06 0.19 0.08 0.18 0.09 

6x6m 100 38.44 5.60 39.11 6.63 21.94 0.74 21.94 0.90 16.41 5.67 16.72 6.95 

House 100 11.62 5.45 10.76 9.00 2.60 0.03 2.60 0.03 9.00 5.46 8.13 9.02 

House-W 100 7,044.92 1,444.96 7,161.66 2,549.36 2.65 0.03 2.65 0.04 7,042.25 1,444.95 7,158.98 2,549.39 

Tank 100 429.56 123.79 419.50 179.78 32.52 0.39 32.52 0.57 396.98 123.71 386.62 180.24 

Tank-P4 100 400.48 115.28 388.26 158.42 65.74 0.91 65.69 1.26 334.65 114.84 321.75 156.56 

CSP - Coverage Sampling Problem  MPP -  Multi-goal Planning Problem       IQR - Interquartile Range 
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Table 5-7: A comparison between the termination conditions between trials of both experiments. 

Model 

Benchmark Experiment 

Termination  

New Termination Conditions 

Experiment 

New Termination 

Breakdown 

Original Time Original New Time 
Repeating 

solutions 
1% of BTL 

2x2m 100 0 57 43 0 41 2 

6x6m 98 2 3 97 0 14 83 

House 100 0 25 75 0 65 10 

House-W 100 0 4 96 0 85 11 

Tank 86 14 1 99 0 10 89 

Tank-P4* 5 45 0 100 0 0 100 

*Only 50 trials where conduced for the benchmark experiment 

BTL – Best tour length 

90% of trials in the benchmark experiment terminate due to the imposed time limit, 

successfully completed all 100 trials. An analysis of Table 5-7 indicates that smaller 

planning problems generally terminated due to non-consecutive repeating solutions while 

trials of the larger planning problems terminated due to generating solutions that contribute 

no further improvement. As these termination conditions were triggered across all planning 

problems, the flexibility of these new conditions to terminate on behaviour rather than on set 

size was clearly evident.  

A relative comparison between the trials in the benchmark experiment and the trials using 

the additional termination conditions have shown a reduction in overall planning times and 

have maintained quality in tour length for all planning problems (Table 5-8). Removing the 

state of minimal improvement reduced the number of planning iterations in the small 

planning problems by 6% – 17% (p < 0.001; Table 5-9) and by 77%– 98% (p < 0.001) in 

the large planning problems. 

The results in Table 5-10 shows that fewer iterations reported ZEIs. The largest was 6x6m 

at 24% but overall, the number of total iterations had reduced from 5,227 to 38 where over 

95% of the 5,227 iterations were ZEIs. Since the additional termination conditions detected 

non-consecutive repeating solutions, fewer iterations returned repeating solutions. At most, 

the solution may repeat three times, but this was due to the termination conditions tracking 

if the repeating solution was less than the previous solution. As a result, the LPP produced 

meaningful solutions per iteration as more planning iterations are unique solutions. With the 

variability significantly reduced across all planning problems, these results better reflect how 

much time these planning problems should take to solve given the constraints applied.  
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Table 5-8: Relative performance and percentage difference between trials using the original and additional termination conditions. 

Model 
Overall Time CSP Time MPP Time Tour Length Iterations Path Evaluations 

RP PD (%) RP PD (%) RP PD (%) RP PD (%) RP PD (%) RP PD (%) 

2x2m 0.96 -3.79 0.999 -0.12 0.84 -16.34 1.0000 0.00 0.83 -16.73 0.99 -0.72 

6x6m 0.16 -84.01 1.002 0.21 0.11 -89.38 0.9997 -0.03 0.11 -89.45 0.84 -15.83 

House 0.88 -12.45 1.000 -0.01 0.85 -14.88 1.0000 0.00 0.83 -16.57 0.99 -0.89 

House-W 0.92 -8.11 1.003 0.29 0.92 -8.11 0.9994 -0.06 0.93 -6.69 0.95 -5.28 

Tank 0.24 -76.30 1.001 0.05 0.23 -77.22 0.9996 -0.04 0.23 -77.38 0.80 -20.13 

Tank-P4* 0.02 -98.04 1.002 0.20 0.02 -98.36 0.9992 -0.08 0.02 -98.39 0.69 -31.20 

*Only the first 50 trials are compared 

CSP - Coverage Sampling Problem  

MPP - Multi-goal Planning Problem 

RP - Average of relative performance between each trial s.t. mean(New./Old) 

PD - Average of percentage differences between each trial s.t. mean((New-Old)./Old)*100 

Table 5-9: Statistical and practical significance between trials using the original and additional termination conditions. 

Model 
Overall Time^ CSP Time# MPP Time^ Tour Length# Iterations^  Path Evaluations^ 

p d p d p d p d p d p d 

2x2m < 0.001 0.65 0.22 - < 0.001 0.67 0.73 - < 0.001 0.69 0.24 - 

6x6m < 0.001 1.25 0.08 - < 0.001 1.25 < 0.001 0.04 < 0.001 1.25 < 0.001 2.16 

House < 0.001 0.39 0.84 - < 0.001 0.39 0.79 - < 0.001 0.43 0.01 0.08 

House-W < 0.001 0.42 0.003 0.25 < 0.001 0.42 < 0.001 0.04 < 0.001 0.41 < 0.001 0.33 

Tank < 0.001 1.66 0.56 - < 0.001 1.66 0.05 0.05 < 0.001 1.66 < 0.001 1.78 

Tank-P4* < 0.001 14.85 0.02 0.65 < 0.001 14.85 < 0.001 0.47 < 0.001 14.86 < 0.001 4.44 

*Only the first 50 trials are compared 

CSP - Coverage Sampling Problem 

MPP - Multi-goal Planning Problem 

^p - Sign test (α < 0.01) 
#p - Paired Samples T-test (α < 0.01) 

d - Cohen’s d effect size 
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Table 5-10: Lazy point-to-point planning data for all planning problems using the additional termination conditions. 

Model 

Average IT  

to solve 

problem* 

Average 

number of IT 

with ZEs as a 

% of total IT  

(%)^ 

Average 

number of IT 

after the FZEI 

as a % of 

total IT (%)^ 

Average 

number of PE 

after the FZEI 

as a % of 

total PE (%)^ 

Average 

number of 

repetitions as a 

% of total IT 

(%)^ 

Average 

number of 

repeated 

solutions* 

Average 

number of 

unique 

solutions* 

2x2m 2.90 14.46 14.68 0.36 18.26 0.63 1.61 

6x6m 31.44 24.72 58.01 5.90 1.95 0.38 31.03 

House 37.86 7.25 10.17 0.63 3.75 1.04 36.46 

House-W 10,657.31 0.14 4.71 4.20 0.05 2.95 10,652.89 

Tank 319.78 6.95 46.55 8.72 0.20 0.45 319.26 

Tank-P4 265.88 8.09 49.89 7.45 0.00 0.00 265.88 

*Average taken over all trials 

^Average of the relative difference between values within each trial 

ZE - Zero path Evaluation IT - Iterations 

FZEI - First Zero path Evaluation Iteration PE - Path Evaluations 
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Reducing the number of planning iterations consequently reduced the number of path 

evaluations. For the smaller planning problems, path evaluations reduced by 0.5% to 5.5%. 

For 2x2m this was not statically significant (p = 0.24) but was for House and House-W it was 

a significant (p < 0.01). For the large planning problems, path evaluations reduced by  

15% to 31% (p < 0.001). The reduction of the number of planning iterations and path 

evaluations iterations resulted in MPP times being reduced across all planning problems. As 

a result, small planning problems solved the MPP 3% to 12.5% faster than before (p < 0.001) 

while the large planning problems reported a 76% to 98% (p < 0.001) improvement.  

The reduction of the MPP time significantly reduced overall planning times across all 

planning problems (p < 0.001). Removing the variability enabled all planning problems to 

be solved consistently. Large planning problems Tank and Tank-P, which originally has 

solutions solved in two to six hours respectively, are now solved in just over seven minutes. 

A remarkable improvement that produces more reasonable planning times that are 

appropriate for online planning given the simplified constraints applied to the planning 

problem. 6x6m also received a significant improvement now solving in 38 seconds instead 

of 45 minutes. House-W only received an 8.11% improvement. Given that the variability 

was mostly removed from the LPP solutions, there are only five iterations of the 10,657 

iterations that do not produce a unique solution suggesting that in the House-W problem the 

main influence is still the environment. 

Finally, the additional termination conditions have allowed the LPP to terminate earlier 

without sacrificing tour quality. The largest difference in tour length from the benchmark 

experiment was 0.8% over all planning problems. While planning problems 6x6m, House-

W, and Tank-P4 all reported a statistically significant result (p < 0.001), only Tank-P4 had a 

practically significant improvement (d = 0.4) which corresponded to the 0.8% reduction in 

path length. The minor reductions in tour length were due to supplying the BTL upon 

termination, a condition that was not guaranteed under the original LPP implementation.  

5.6.2 Discussion  

The analysis of the new benchmark experiment has shown that; 

1) The additional termination conditions have accounted for the variability between 

TSP solutions. Implementing additional termination conditions to track the 

behaviour of the LPP has helped to stabilise the solution times across all planning 

problems. 
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2) Tracking and terminating the LPP when no significant improvements are being made 

ensures the LPP no longer terminates at random. As a result, a considerable number 

of planning iterations that contributed no improvement, have been removed from the 

planning solutions resulting in the significant reduction of MPP and overall planning 

times. Compensating for the TSP variability, especially in larger planning problems, 

allows the LPP to effectively use an approximation TSP solver when solving the 

MPP online.  

3) Employing the additional termination conditions has allowed the LPP to reliably 

solve larger MPPs, which suffered significantly due to variability in the TSP 

solutions. Removing the possibility that the LPP will enter a state of minimal 

improvement allowed planning problems, Tank and Tank-P4, where the majority of 

trials terminated due to a six-hour time limit, to be solved consistently within 7.5 

minutes.  

There are limitations to using these additional terminating conditions. It was initially 

assumed that 2x2m and 6x6m would terminate in two iterations because no corrections to the 

initial Euclidean assumptions were required. However, due to the variability that was 

present, and the additional time given by the additional termination conditions to finding an 

alternative solution, it will not be possible to solve problems like 2x2m and 6x6m in two 

iterations.  

Without sufficient knowledge of the environment and the connectivity between the 

configurations, it is difficult to determine, before solving the MPP, that the initial Euclidean 

assumption placed between these configurations is correct. Additional iterations, beyond the 

FZEI, will always be required when using the additional termination conditions to ensure 

the LPP does not terminate prematurely. 

The results also suggest that terminating upon the FZEI is likely to provide a solution that 

would be within 1% of the BTL (Table 5-10). Table 5-10 highlights that for the larger 

planning problems, upwards of 46% to 58% of the iterations after the FZEI can still cycle 

through solutions attempting to find a better solution. While it could be argued that MPP 

times could be further reduced if the LPP is terminated upon the FZEI, this goes against the 

premise that relaxing the termination condition allows the LPP the flexibility to solve 

problems until no improvements can be found. While a small percentage of iterations are 

still evaluating ZEIs, the results have been significantly reduced to more reasonable times 
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that the extra iterations are no longer the main concern. 

In summary, the additional termination conditions have successfully reduced planning times 

and allowed larger planning problems to be solved within a reasonable time. Relaxing the 

initial termination condition by applying additional termination conditions to compensate 

for the variability of the approximation TSP solver has enabled these TSP solvers to be used 

to solve large MPPs while ensuring the best solution found is always provided.  

5.7 Analysis of the LPP Planning Data for Online Implementation  

Resolving the variability of planning times from the planning solutions ensures the LPP 

provides reliable solutions when run online. However, while the additional termination 

conditions have had a significant impact in reducing planning times, some concerns remain 

around its applicability to be used online. The LPP still dominates overall planning times. 

For Tank and Tank-P4 the MPP accounts for 70% of the overall planning times and for 

House-W, solving the MPP accounts for 99.8%. A closer analysis of the planning data 

highlights two factors that contribute to this behaviour; 

1) there are a significant number of path evaluations needed to solve a given planning 

problem, and  

2) small changes within the environment can have a significant impact on MPP times. 

5.7.1 Path Evaluations and Environmental Changes 

The number of path evaluations required to solve a planning problem is relatively high in 

comparison to others (Table 5-6). Some planning problems evaluate 2 to 3 times more paths 

than what is required to form a solution. This is an expected behaviour of the LPP as it lazily 

evaluates new paths to find a better solution. Therefore, it should be expected that a 

significant proportion of the paths evaluated will not be included in the final tour. However, 

if path planning is to be expensive, evaluating a significant number of paths that will not be 

retained in the final solution will only increase overall planning times. Given the current 

implementation of the LPP, the analysis in Section 5.3 uncovered that the majority of the 

path evaluations for all planning problems occur before the FZEI and therefore cannot be 

removed by the additional termination conditions. 

As discussed in Section 4.2.5, there are two types of paths that can be evaluated;  

1) a direct straight-line path between two configurations, or 

2) an RRT path. 
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If a direct path cannot be formed between two configurations, an RRT is called to resolve 

the planning query. Solving a path using an RRT is more expensive than resolving the 

validity of a direct path as more collision checks are required. In reality, if a robot model 

that represents a multi-legged robot, all paths would be resolved using an RRT and this 

would increase planning times. Given that RRTs are only used in this context to correct 

invalid direct paths, the number of RRTs evaluated in a given planning problem provides 

insight into how influential the environment is on the LPP.  

A statistical analysis of the number and types of paths evaluated along with paths used to 

form the final tour is presented in Figure 5-5 and Table 5-11. As expected, obstacle-filled 

environments, House, House-W, Tank and Tank-P4, all required RRTs to resolve the 

incorrect path assumptions. For House, Tank and Tank-P4, RRTs accounted for 17%-35% 

of the total paths evaluated. Path evaluations for these planning problems are largely 

dominated by direct paths. This finding explains why the planning times for Tank and  

Tank-P4 was within minutes and seconds for House. However, the influence the 

environment had on the LPP was evident in the results for House-W. 

Between House and House-W a small geometric change resulted in House-W taking 606 

times longer to solve. Given the results, House-W, despite its relatively small covering set 

sizes, had the largest computational time (1.9 hours), number of planning iterations (10,657) 

and path evaluations (12,717) of all the planning problems. Overall, House-W still evaluated 

24% of the total paths in the planning problem, a reduction of 1.5% after the new termination 

conditions had been applied.  

The significant increase in planning time between House and House-W was attributed to the 

number of RRT evaluations required to solve the planning problem. More specifically, as 

92% of the 12,717 paths evaluated were RRT solutions suggests that several thousands of 

paths were further apart than initially estimated by the Euclidean assumption. Given all other 

extrinsic factors have been minimised in the planning problem, these results highlight the 

impact the environment has on the LPP.  

Of the 11,906 evaluated RRTs for House-W, the final solutions, on average, only contain  

2 to 3 RRT paths (0.02%). For all the computational effort expended in producing a solution, 

the final plan used very few RRT paths. This observation is present amongst all  

obstacle- filled environments tested in these experiments as 99% of paths within the final 

tours were direct paths. Due to the compactness of the covering sets, this finding comes as  
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Figure 5-5: There are a significant number of RRT paths being evaluated that are not retained in the final solution. 

Table 5-11: Analysis of the number of path types evaluated, taken and retained in the final solution. 

Model 

Average # 

of paths in 

final 

solution 

Average # 

of paths 

evaluated 

Evaluated Path Breakdown Final Plan Path Breakdown Path Retention Rates 

Direct 

(Count / %) 

RRT 

(Count / %) 

Direct 

(Count / %) 

RRT 

(Count / %) 
Direct (%) RRT (%) 

Combined 

(%) 

2x2m 152.00 156.40 156.40 100 0.00 0.00 152.00 100 0.00 0.00 97.19 0.00 97.19 

6x6m 1,011.05 1,363.76 1,363.76 100 0.00 0.00 1,011.05 100 0.00 0.00 74.14 0.00 74.14 

House 321.80 557.62 456.99 82.61 100.63 17.39 320.20 99.50 1.60 0.50 70.07 1.59 57.71 

House-W 325.35 12,717.84 811.82 6.54 11,906.02 93.46 322.62 99.16 2.73 0.84 39.74 0.02 2.56 

Tank 1,301.44 3,594.35 2,322.32 64.97 1,272.03 35.03 1,295.00 99.51 6.44 0.49 55.76 0.51 36.21 

Tank-P4 1,649.00 3,993.89 2,885.17 72.51 1,108.72 27.49 1,639.35 99.41 9.65 0.59 56.82 0.87 41.29 
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no surprise. However, considering the number of RRTs that were required to obtain these 

solutions, reducing these evaluations will consequently reduce overall planning times 

further. 

5.7.2 Impact on Online Replanning Strategies  

In relation to the proposed online replanning strategies presented in Chapter 3, it would be 

expected that implementing a full replan strategy would suffer greatly under the current 

implementation of the LPP as more paths would be required to be evaluated compared to a 

plan repair strategy. As it is unknown as to when, where and what impact any new changes 

will have on the environment, and consequently on the coverage planner, replanning times 

could become quite volatile. Given the impact a singular geometric change had on the 

planning times between House and House-W, having equivalent replanning times that could 

increase from seconds to hours, due to environmental changes, would not be a desirable 

outcome from an online planner. 

To be a more effective adaptive coverage planner, requires a better representation of the 

environment, encoded into the LPP. This improvement will reduce the number of path 

evaluations required to solve a planning problem and subsequently reduce overall planning 

times. The next chapter explores the path retention problem in further detail, providing an 

explanation of the behaviour and presents a novel heuristic that considers environmental 

influences to enable the LPP to plan more efficiently.  

5.8 Chapter Summary  

The benchmark experiment conducted in Chapter 4 demonstrated that the LPP exhibited a 

variability that reduced the probability that the same covering set would produce similar 

planning times. The larger the covering set, the more significant the difference between 

planning times became. In this chapter, the planning data of the LPP was analysed to 

determine the cause behind the variable solution times. 

The analysis of the LPP data determined that the variability observed by the LPP was due to 

the use of an approximation TSP solver coupled with the strict equality termination condition 

placed on the LPP. As there was no guarantee an approximation TSP solver would produce 

the same solution in successive iterations for an unchanged adjacency matrix, the termination 

of the LPP was left to chance. This resulted in many trials of the larger planning problems 

reaching the six-hour time limit imposed on a planning problem. If the LPP was to be used 
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in an online scenario, the variable solution times produced by the TSP solver needed to be 

resolved. 

To compensate for the variable solutions, new termination conditions were added to track 

the behaviour of the LPP and terminate the planner if planning iterations did not 

meaningfully contribute to a better solution than what had currently been found. Rerunning 

the benchmark experiment showed the additional termination conditions were capable of 

stabilising the variability within the LPP resulting in reduced and consistent planning times.  

Finally, the analysis of the new planning data highlighted that the MPP still dominates 

planning times. Despite the source of significant variability has been removed, the LPP still 

exhibits; 

1) vulnerability to small changes within the environment can have a significant impact 

on MPP times, and  

2) evaluates a significant number of paths to solve a given planning problem for which 

most are not retained in the final solution.  

For an efficient online LPP implementation, these issues need to be addressed. Addressing 

these issues of the offline sampling-based coverage planner ensuring they are compensated 

for in an online implementation is investigated in the next chapter. 
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Chapter 6  

Factoring Environmental Influences for Informed 

Path Planning 

6.1 Introduction 

Following on from the findings in Chapter 5, this chapter addresses the concerns about the 

efficiency of the lazy point-to-point planner (LPP) due to environmental changes. After 

compensating for the variability of the approximation Travelling Salesman Problem (TSP) 

solver with the additional termination conditions, the results of the offline sampling-based 

coverage planner were analysed. Two noticeable behaviours were present in the LPP data 

that allowed it to continue dominating planning times. The behaviours raised were;  

1) small changes within the environment had a significant impact on solution times, and  

2) a significant number of path evaluations were needed to solve a given planning 

problem that consequently lead to a significant number of evaluated paths not being 

retained in the final solution.  

As there were minimal robotic constraints placed on the planning problem, the concerns 

were a direct consequence of the inadequate comprehension of the environment by the 

coverage planner. Given that, when replanning online it is unknown as to how, when or 

where changes will occur in the environment, giving the coverage planner a better metric, 

other than the Euclidean assumption to represent the environment, would ensure the LPP 

can efficiently provide tour updates when replanning online. 

This chapter continues to investigate the LPP to determine if a more informative 

representation of the environment, encoded into the LPP, will reduce the number of path 

evaluations required to solve a given planning problem. This chapter explains why the LPP 
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evaluates so many paths, then a new heuristic is presented that improves the efficiency of 

the LPP by that factoring in the environment.  

6.2 Underestimating the Connectivity between Configurations 

Both concerns stated above can be linked to the initial Euclidean assumption placed on the 

connectivity between the configurations. As the coverage planner has no inherit 

understanding of either the environment or the connectivity between configurations, the 

connectivity is initially assumed to be Euclidean. From this assumption, the LPP is guided 

to construct a solution from the bottom up. Information about the environment is inferred 

upon each path evaluation, by the rapidly exploring random tree (RRT), as the LPP iterates 

towards the ‘shortest’ tour before terminating. The initial assumption ensures that any path 

evaluated by a motion planner will always be either equal or longer in length than the 

Euclidean assumption (Equation 6-1).  

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (6-1) 

The shortest path assumption on the connectivity between configurations results in the 

underestimation of several paths within the environment. This underestimation is 

responsible for the increase in the number of path evaluations and low rates of retained paths 

in the final solution as demonstrated in the results for House-W (Section 5.7.1). However, if 

it was not for this basic assumption about the connectivity, the LPP would not be able to 

incrementally achieve quasi-optimal solutions.  

To the LPP, House-W was the most difficult problem to solve, taking 1.9 hours to find a 

solution. In this time the LPP evaluated over 12,700 paths, of which 92% were RRTs (Figure 

5-5 and Table 5-11). In Section 4.3.2 it was predicted that House-W would likely have higher 

computational times than House due to the additional paths required to resolve the 

underestimation around the change. However, the large increase in computational time from 

such a minor environment alteration was not expected. This is especially of note considering 

the representative tank environments contain covering sets 4-5 times the size of House-W 

yet solve significantly faster.  

Figure 6-1 illustrates the evolution of a House-W LPP solution. It indicates that the early 

planning iterations produced a tour with little relation to the environment as many paths 

intersected the walls. Each of these intersections required an RRT to resolve the path query, 

thereby increasing the overall tour length. After 30 minutes, several thousand planning 
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iterations and path evaluations had occurred. Although the tour length at the  

30-minute mark was within 6.9% of the final tour, the LPP continued searching for an 

additional 1.4 hours, evaluating on average 1.1 paths per iteration before stabilising on the 

final solution.  

A simplified example of the underestimation for House-W is presented in Figure 6-2.  

Figure 6-2a shows a possible tour produced from the TSP solver for House-W starting and 

finishing in the same location (magenta). After evaluating all paths (green), one path (red) 

located at the additional wall, is required to be resolved by an RRT. The RRT-computed 

adjacency between these two configurations is now correctly represented but on the next 

iteration the selection of this path segment will have a lower priority due to other unevaluated 

paths that appear closer because of their Euclidean assumption. While the tour in Figure 6-2 

is valid, it is unlikely that the same tour will be chosen by the TSP solver in the next planning 

iteration of the LPP, consequently preventing termination.  

Figure 6-2b highlights all the potential path choices from the starting point that appear closer 

due to the Euclidean assumption. Many of these paths require the distance to be corrected 

by an RRT and consequently decreasing the likelihood of selection on subsequent iterations 

and in the final tour. As there are many candidates within close proximity, all but one new 

path may be evaluated per iteration. As it takes just one path to vary from the previous 

iteration for the termination conditions to fail, the LPP will continue evaluating paths, 

preferring underestimated paths, until a viable set of paths becomes present for the LPP to 

settle on a solution. Figure 6-2 highlights the impact that underestimation has on one 

configuration in the planning problem. In House-W, there are hundreds of configurations in 

the planning problem, and many of them suffer the same issue of having to resolve several 

underestimated paths before the TSP solver can stabilise to a solution.  

House-W demonstrates that it is not necessarily the number of paths that are underestimated 

by the Euclidean assumption but how many paths must be evaluated to solve the multi-goal 

planning problem (MPP). These paths cannot be determined prior to initiating the LPP 

without an understanding of the environment. A suitable heuristic that can infer the 

properties of the environment to provide a better estimation of the connectivity will improve 

the efficiency of the LPP, as fewer path evaluations would be required. The closer the 

estimation is to the actual connectivity between the configurations, the faster the LPP will 

converge to a solution (Figure 6-2c). 
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The colour indicates the direction of the coverage plan 

Figure 6-1: The evolution of a lazy point-to-point planner solution for House-W. 
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(a) A possible shortest path tour with 

one invalid path (red) to the start and 

finish position (magenta). 

 

(b) The Euclidean assumption makes 

many ‘local’ configurations appear 

closer to the start position than what they 

actually are, resulting in many additional 

path evaluations. 

 

(c) From the perspective of the start 

position, a distance will allow start 

position to route to local connections 

and remove the likelihood of connecting 

to the configurations on the other side of 

walls. 

Figure 6-2: A simplified example demonstrating why the Euclidean assumption is an unsuitable 

metric in House-W. The colours in (b) and (c) represent the estimation of the connectivity from the 

perspective of the starting location. 
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6.3 Constructing a Suitable Heuristic 

The number of path evaluations required to solve a planning problem can be reduced, if a 

heuristic that better estimates the connectivity between configurations, was applied before 

planning. Improving the estimation between configurations will remove paths that were 

initially considered to be close under the Euclidean assumption from the immediate solution 

space, thus providing the TSP with a better starting point to solve the MPP. By reducing the 

number of underestimated paths, it is expected that the LPP will converge faster to a solution. 

With fewer paths being evaluated, more evaluated paths will be retained in the final solution 

and that will consequently reduce overall planning times. 

The Euclidean assumption is inexpensive to compute, so any heuristic that replaces it to 

encode information about environment will come at an additional cost. The use of a heuristic 

will be ineffective if the combined costs of calculating the heuristic and solving the MPP is 

equivalent to the cost of solving the MPP with a Euclidean assumption.  

The time to compute a path between configurations is dependent on the complexity of the 

mobility constraints of the robotic platform and the complexity of the environment. 

Therefore, the calculation of the heuristic may not be applicable for all types of planning 

scenarios. If motion planning constraints and environments are simple, the cost of 

calculating the heuristic may outweigh the benefit of applying the heuristic. The heuristic’s 

extended goal is for use in complex environments that would benefit from a reduction in the 

number of path evaluations used to solve a problem. A suitable heuristic must subsidise the 

cost of computing the heuristic to save time evaluating fewer paths, consequently reducing 

overall planning times. A suitable heuristic also needs to be robust enough to process a 

variety of enclosed environments and covering set sizes. As configurations are sampled at 

random, the heuristic needs to be applied after sampling and before path planning to avoid 

coupling the two processes.  

Given the requirements placed on the heuristic to successfully replace the Euclidean 

assumption, it must satisfy the following criteria: 

1) The heuristic must be calculated before solving the MPP. 

2) It must reduce the time taken to solve the MPP by minimising the number of path 

evaluations required to solve a planning problem compared to a Euclidean solution. 

3) It must not be a significant computational expense that increases overall planning 

times, outweighing the benefits of solving the MPP faster.  
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4) It must improve upon, or maintain, a similar tour quality to solutions solved under 

the Euclidean assumption.  

Improving upon or maintaining similar tour quality is application specific and based on 

operator criteria. It could be argued that if there is a minor degradation in tour quality but 

planning times are significantly shorter, providing the longer tour length does not 

significantly increase execution time, the trade-off is acceptable. However, this trade-off is 

dependent on the application, robotic platform, and environment. As the immediate 

application of this research is for a multi-legged, high-DOF robot, all but the most negligible 

increases in tour length will proportionately increase execution time. It is therefore a priority 

to reduce the tour degradation, planning times and tour lengths, when using a new heuristic. 

6.4 Extracting an Informed Graph through Environmental Properties  

To gain a better estimation of the connectivity requires an understanding of the environment. 

Given that explicit parametrisation of the environment is not allowed (Section 1.5.1, 

Requirement 3), an approximation of the environment needs to be inferred before planning. 

This section discusses methods that encode the free-space connectivity of the environment 

into a graph without explicit parametrisation of the environment. The section will conclude 

by proposing a novel approach to path planning that has yet to be applied to the LPP.  

6.4.1 Configuration-based Graphs 

A simple extension to encode information about the environment into the adjacency matrix 

is to create a visibility graph between all configurations. Distances between configurations 

are generated by routing through line-of-sight neighbours. To find the shortest paths between 

all configurations an all-pairs shortest path algorithm such as the Floyd-Warshall algorithm 

(Floyd, 1962) can be used.  

However, there are two limitations to this approach; 

1) As the distance metric is based purely on the line-of-sight, there is no guarantee these 

distances represent the shortest of all possible routes through the environment. The 

graph may overestimate distances between configurations that are close together.  

2) Line-of-sight needs to be guaranteed between all configurations to at least one other 

configuration, otherwise clusters of disconnected configurations will form. If clusters 

do form, another metric needs to be applied to connect these clusters; otherwise the 

adjacency matrix will be incomplete.  
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As the sampling of configurations is performed at random and the development of this 

coverage planner is to be used in complex geometries, line-of-sight between all 

configurations under these constraints cannot be guaranteed. More information about the 

environments is required to create a heuristic that is robust enough to ensure all 

configurations are connected and sufficiently estimated in complex environments. 

6.4.2 Geometric and Topological Graphs that Represent Free Space 

To obtain more information about the environment, the dimensionality of the environment 

may be represented as a 1D backbone using techniques such as the medial axis transform 

(Blum, 1967), a Voronoi diagram, and topological curve-skeletons. The result of these 

techniques is a graph that represents either the topological or the geometric connectivity of 

free space.  

Despite the applicability of the medial axis transform and the Voronoi diagram in 2D, in 3D, 

the medial axis transform translates to a medial surface and Voronoi into a mesh vertex. 

Neither of these transforms are suitable to create either a graph or a distance metric in ℝ3 

without further processing (Cornea, Silver and Min, 2007; Tagliasacchi et al., 2016). 

Topological skeletons, on the other hand, do produce skeletons in ℝ3 within one operation 

and are easily translated into a graph to facilitate their use in complex 3D environments.  

Most approaches to skeletonisation incrementally erode a voxel representation of the 

environment, either objects or free space, until a thin 1D skeleton remains. Figure 6-3 

illustrates an example of a 1D skeleton being formed from a topological thinning algorithm. 

As the skeleton is formed by eroding free space, it is known that any 1D skeleton will 

represent a series of collision-free paths. Such a representation of the environment has been 

shown to be useful when solving complex path planning problems, with examples including: 

1) Routing efficient paths through sensor networks (Bruck, Gao and Jiang, 2007).  

2) Collision-free path trajectories for robot motion planning in unknown environments 

(Thrun, 1998; Choset and Burdick, 2000). 

3) High-level mission planning for autonomous surface vehicles (Wheare, 2018). 

All these examples use a skeleton of the environment to inform a planner of the connectivity 

of the environment before planning. This indicates that a skeleton can be used to approximate 

connectivity between the configurations, and thus be a suitable heuristic for the LPP. 
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Figure 6-3: Evolution of the Lee et al. (1994) thinning algorithm producing a skeleton within a 

rectangular space around a central structure. Each image demonstrates how the space is iteratively 

eroded away from all surfaces (black) until a thin 1D skeleton remains between the sides and the 

centre object (Wheare, 2018, reproduced with permission). 
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The properties of topological and geometrical thinning algorithms have been well described 

in Cornea et al., (2007). An important property of topological skeletons is that they preserve 

connectivity. All topological thinning algorithms perform checks to ensure that the topology 

of the environment remains in the resultant skeleton. This property ensures that if the 

configurations of a covering set can be appropriately connected to the skeleton, the 

properties of a topological thinning algorithm guarantee all configurations are connected 

(Figure 6-4). Therefore, the estimated distances between configurations will be via the 

approximated collision-free paths of the skeleton, which will result in a better estimation of 

configuration connectivity. 

6.4.3 Skeleton-heuristic Proposal  

To resolve computational time issues stemming from the underestimation of the Euclidean 

assumption, it is proposed to use a topological thinning algorithm to create a 1D skeleton 

that will provide the LPP with an estimation of the connectivity before solving the MPP. A 

better estimate of connectivity between configurations will reduce the chance of evaluating 

non-viable paths, therefore resulting in a higher proportion of evaluated paths being selected 

for the final solution.  

 

Figure 6-4: Using a skeleton of the environment will allow a graph to be formed that allows the 

connectivity between configurations to better represent the actual distance, thus aiding the removal 

of unnecessary path evaluations from occurring. The colours are used to represent the connectivity 

of the magenta configuration to the other configurations in the planning problem. Green represents a 

close connection and red represents a distant connection. 
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As the resultant skeleton approximates the actual collision-free paths the robot might take 

through the environment, the skeleton will overestimate distances between configurations. 

Since the connectivity between configurations is better approximated, paths that are further 

away, which may be overestimated, will be assigned a lower priority over paths that are close 

together. As the LPP underestimates all paths to build up to a solution, this overestimation 

of paths opposes the original implementation of the LPP. However, given that it is the 

underestimation that significantly impacts planning times in complex environments, the 

overestimation of distant paths is acceptable, providing the skeleton-heuristic can meet the 

criteria for a suitable heuristic (Section 6.3). To the author’s knowledge, this approach has 

not been applied to an LPP in an attempt to reduce the number of path evaluations needed 

and the time is takes to produce a solution.  

6.5 Constructing an Adjacency Matrix Using the Skeleton-heuristic 

The binary-thinning algorithm used to achieve the proposal is Lee et al. (1994) 3D parallel 

thinning algorithm. Lee’s thinning algorithm is applicable as it produces a 1D skeleton of a 

3D environment that preserves both topological and geometrical properties. Topological 

skeletons always ensure the topology of the environment is preserved, resulting in a skeleton 

that is fully connected.  

The parallel thinning algorithm allows for more information to be held about the 

environment as its spatial information is reduced to a lower dimensionality. If a fully 

topological algorithm was used for the heuristic, it would erode the free space of narrow 

geometries that do not contain topological features (Cornea, 2007). If narrow compact spaces 

are dissolved and these areas contain configurations, using a fully topological algorithm, 

such as Palagyi and Kuba (1999), may decrease the chances of configurations being directly 

connected to the skeleton. 

Conversely, fully geometrical thinning algorithms are known to create many branches as 

they are sensitive to deviations in the surface of the environment. Generally, these extra 

branches need to be pruned (Cornea, 2007), otherwise they could make graph searching 

prohibitively expensive. Therefore, Lee’s thinning algorithm is a suitable candidate to test 

the skeleton-heuristic proposal. This thesis uses Homman’s implementation of Lee’s 3D 

thinning algorithm (Homman, 2007). 
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6.5.1 Connecting Configurations to the Skeleton during the Thinning Process 

Homman’s implementation of Lee et al. (1994) thinning process presents four rules that are 

used to determine if a voxel is removed or is to be a part of the skeleton. These cross-checks 

are applied iteratively over each voxel until a 1D skeleton is formed. A summary of the four 

rules for voxel deletion are: 

Rule 1) The current voxel must be a surface voxel. 

Rule 2) The voxel must not be at the end of a line.  

Rule 3) The deletion of the voxel would not change the Euler characteristic. 

Rule 4) The deletion of a simple voxel does not change the number of connected 

objects. 

These four rules guarantee that the skeleton is fully connected upon completion. More 

information about the Euler characteristic and simple voxels, referred to as ‘points’ in 2D, 

can be found in Lee et al. (1994).  

To construct a graph that includes the distances to all configurations, the configurations must 

be connected to the appropriate skeleton branches. Configurations can be connected via point 

to line, or by using a watershed segmentation (Mangan and Whitaker, 1999; Wheare, 2018). 

Either method provides an estimate as to where along the skeleton is the most appropriate 

place to connect the configurations. However, these approaches entail a two-step process 

that requires; 

1) the calculation of the skeleton, and 

2) the connection of the configurations to the skeleton. 

In an attempt to remove a step between creating the skeleton and the adjacency matrix, an 

alternative approach is proposed. A fifth rule is added to the list of voxel deletion rules above,  

Rule 5) A voxel must not contain the Cartesian position of a configuration.3 

Rules 1-4 ensure that once a voxel is determined to be a part of the skeleton it will not be 

removed. Rule 5 ensures that each branch that begins at the Cartesian position of a 

configuration will remain connected to the final skeleton.  

Figure 6-5 shows the resultant skeletons for House-W of Lee’s thinning algorithm against a 

skeleton created with the amended fifth rule. The skeleton of Figure 6-5b is representative  

 
3 Rule 5 amendment courtesy of James Armitage  
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Figure 6-5: Resultant skeletons (black) of House-W using the (a) traditional Lee et al. thinning 

algorithm without the extra voxel deletion criteria and (b) connecting configurations (yellow) to the 

main skeleton with the extra voxel deletion criteria. As the walls are hollow, a skeleton is also 

generated within them. For clarity, these skeletons are removed from the image.  

of the skeleton proposal in Figure 6-4. Since all configurations are connected into one 

continuous skeleton, an adjacency matrix that represents the connectivity between the 

configurations through the use of skeletons can be used to inform the LPP. 

6.5.2 Computation of the Skeleton-heuristic  

Implementing the skeleton-heuristic requires the mesh representation of the environment to 

be in a voxel format. Min’s Binvox implementation of a mesh-to-voxel converter was used 

to transpose surface mesh models into a voxel format suitable for thinning (Min, 2017; 

Nooruddin and Turk, 2003). To minimise the voxelisation and skeleton computation, 

BinVox was also used to scale down the size of the environment to avoid thinning a  

high-resolution voxel model. Voxelised models were scaled to the desired resolution. i.e. a 

15x20m mesh model that is voxelised to a 20mm resolution will result in a scaled down 

750x1000 voxelised model. 

As the model is scaled down, it is possible for two configurations to share the same voxel, 

in which case, the distance between the two configurations is assigned to be one voxel apart. 

Therefore, when the adjacency matrix has been formed, and the voxel distances are scaled 

to full size, the smallest possible distance between configurations will be the voxel 

resolution. As the smallest distance between two configurations is a voxel, when the 

distances are scaled back to the Euclidean space, no skeleton distance can be equal to the 
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Euclidean distance (Equation 6-2). 

  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  (6-2) 

Further details on the algorithms and packages used to create a skeleton-heuristic can be 

found in Appendix A.  

6.5.3 Limitations to the Proposed Skeleton-heuristic Implementation 

There are few limitations to the proposed implementation: 

1) Configurations cannot be contained within a boundary voxel.  

2) Increasing the resolution increases computational time. 

3) Narrow passageways that are not traversable by the robot can be included in the 

skeleton due to the resolution of the voxels, this creates a branch that will result in 

an underestimated connectivity in particular regions. 

When rasterising a mesh to voxels, the quantisation limits the accuracy of the representation 

of the original mesh boundaries. Therefore, it is difficult to determine if the region within 

one voxel unit of the original boundary is a part of the voxelised area or a wall. Thus, if a 

configuration’s coordinates are within one voxel unit of the original boundary, the 

configuration’s voxel may not be part of the region that is skeletonised. If the configuration 

is not part of the skeleton it will be removed from the planning problem.  

To ensure configurations are all in the correct area after voxelising, they should be at least 

one voxel unit from any boundary. Determining the correct resolution to voxelise complex 

environments is challenging and requires a manual process. As a guide, the resolution should 

be at least half the width of the collision model, or finer than the minimum viewing distance. 

Configurations with distances to the surface under these bounds will not be included in the 

final adjacency matrix and consequently will invalidate a complete coverage solution. Care 

needs to be taken to find the appropriate resolution for each planning environment. Due to 

O(n3) nature of the algorithm, increasing the resolution has a significant impact on 

computation time. In larger environments, especially with environments that have significant 

z-axis, the process will suffer from having a skeleton produced with a finer resolution. 

Finally, there may be circumstances in which a skeleton will not be a suitable distance 

metric. Lee’s thinning algorithm ensures the resultant skeleton will always be connected. If 

even a single line of empty voxels exists between two surfaces, a skeleton will be produced 

within this space. However, while the resolution of the voxels may capture the narrow 
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passageways, these passageways may not be physically possible for the robot to pass through 

the apparent collision-free path. As a result, these distances will reflect what movements can 

be achieved. However, in reality the distances will underestimate the connectivity derived 

through these skeleton branches in a similar fashion as the Euclidean assumption.  

Since the skeleton still informs the TSP of the remaining connectivity of the space, in such 

cases when underestimation occurs due to the skeleton, it is expected that planning times 

will be longer but not as long as a Euclidean solution. A solution that could compensate for 

this issue would be to perform collision checks along the skeleton and update the adjacency 

appropriately for edges of the graph that cannot be achieved. Rerunning any shortest path 

algorithm will resolve the connectivity issue. However, this was not implemented in this 

work as all environments tested did not have this property. 

6.6 Coverage Planning using the Skeleton-heuristic  

To determine the effectiveness of the skeleton-heuristic, the offline benchmark experiment 

performed in Section 5.6, with the additional termination conditions, was repeated. A 

relative comparison between the trials of the termination condition experiment was carried 

out to determine if the new skeleton-heuristic improves upon solution times, planning 

iterations, path evaluations and corresponding impact on tour quality. A Paired Samples T-

Test (α = 0.01) was performed to determine whether a significant statistical (p) and practical 

(d) difference existed between trials.  

As the skeleton-heuristic is introduced to improve the MPP times, the MPP times presented 

in Table 6-1 combine the time to solve the skeleton-heuristic and the time taken for the LPP 

to solve the MPP. Table 6-2 provides the analysis between these two processes. When 

comparing the relative performance and statistical significance between MPP times, both 

MPP times include the time taken to construct the initial condition of the LPP.  

To allow for a fair and valid comparison between the trials of both experiments, all trials 

were conducted on the same 64-bit Intel i7 920 CPU, 8 core, 6GB RAM machine running 

Ubuntu 16.04 LTS as used in the benchmark experiment in Chapters 4 and 5. All the analysis 

was performed in MATLAB 2018b. 

6.6.1 Computational Observations and Results 

Solving the MPP with a skeleton-heuristic has significantly reduced the number of path 
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evaluations required to solve a given planning problem (Table 6-1). All planning problems 

recorded a reduction in path evaluations compared to planning problems solved with a 

Euclidean assumption (p < 0.001, Table 6-4). House-W witnessed a 97% reduction in path 

evaluations (Table 6-3), evaluating 12,361 fewer paths than the Euclidean trials.  

Evaluating fewer paths caused the LPP to require fewer planning iterations to converge 

towards a solution. While all planning problems recorded a reduction of planning iterations, 

obstacle-filled environments House, House-W, Tank, and Tank-P4, benefited significantly 

from evaluating fewer paths as they all record at least an 86% reduction in planning iterations 

(p < 0.001). Non-obstacle filled environments 2x2m and 6x6m recorded smaller benefits of 

5% and 25% respectively with 2x2m recording no statistical significance (p = 0.16) as there 

was only a 1-2 iteration difference from the Euclidean results.  

The significant reduction of planning iterations and path evaluations had a positive effect on 

MPP times. With the exception of 2x2m, which did not receive an overall improvement in 

planning time due to the cost of calculating a skeleton, all other planning problems MPPs 

solved significantly faster than the planning problems which used the Euclidean assumption 

(p < 0.001). Under the Euclidean assumption, solving the MPP accounted for 90% of the 

overall planning time (Table 5-5). The introduction of the skeleton lowered the costs of 

solving the MPP, as the MPP times accounted for up to 50% of the overall planning time. 

For most planning problems, the calculation of the skeleton-heuristic became the most 

dominating process. As expected, thinning the voxelised environment was the most 

expensive process when creating the skeleton (Table 6-2).  

In the case of 2x2m, the combined time of creating the skeleton-heuristic and solving the 

MPP was double the amount of time of solving the same problem with the Euclidean 

assumption. For the other planning problems, solving the MPP with the skeleton-heuristic 

reported better overall planning times (p < 0.001), than the equivalent Euclidean trials  

(Table 6-3). 

Obstacle-filled environments House, House-W, Tank and Tank-P4 produced the greatest 

improvement, with MPP times being reduced by at least 63%. Remarkably, House-W 

recorded a 99.9% improvement. Coverage plans for House-W solved within 5.9 seconds 

using a skeleton-heuristic, as opposed to coverage plans using the Euclidean assumption that 

solved in just under two hours (Table 5-5). However, despite the improved planning times, 

solving the MPP with the skeleton-heuristic came at the expense of tour quality.  
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Table 6-1: Planning times, tour lengths and lazy point-to-point planner attributes for all planning scenarios using the skeleton-heuristic. 

Model Trials 
Overall Time (s) MPP Time* (s) Tour Length (m) Iterations Path Evaluations 

Configurations 
𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 

2x2m 100 5.55 0.05 3.04 0.03 45.34 2.04 2.70 0.73 152.00 2.96 152.00 

6x6m 100 32.87 2.89 10.91 2.76 405.98 7.64 6.79 5.45 1,022.42 13.97 1,011.05 

House 100 4.79 0.10 2.12 0.09 42.03 1.01 2.66 0.83 321.94 5.53 321.80 

House-W 100 5.91 0.39 3.18 0.39 46.23 1.20 3.20 1.47 327.06 5.81 325.35 

Tank 100 106.48 6.36 73.71 6.31 274.28 4.64 15.34 10.17 1,347.94 20.72 1,301.76 

Tank-P4 100 155.61 9.19 89.28 9.19 326.68 5.13 33.16 13.52 1,797.23 46.65 1,649.00 

MPP - Multi-goal Planning Problem  

*MPP Time includes the time to create the skeleton and distance metric. A breakdown of the skeleton and MPP solution time can be found in Table 6-2 

Table 6-2: Analysis of the time taken to create the skeleton-heuristic and the resultant time to solve the multi-goal planning problem (MPP). 

Model 
MPP 

Time (s) 

Calculating the Skeleton-heuristic 
Solving the MPP 

Voxelisation Thinning 

𝑥̅  

(x10-3s) 

SD  

(x10-3s) 
TT (%) 𝑥̅ (s) SD (s) TT (%) M (s) SD (s) TT (%) 

2x2m 3.04 2.79 0.15 0.09 2.49 0.02 81.88 0.55 0.02 18.03 

6x6m 10.91 11.73 0.86 0.11 7.17 0.10 68.86 3.73 2.78 31.03 

House 2.12 2.37 0.14 0.11 1.59 0.04 75.17 0.53 0.08 24.72 

House-W 3.18 2.34 0.08 0.07 1.58 0.04 50.23 1.60 0.38 49.70 

Tank 73.71 9.76 0.67 0.01 63.50 0.30 86.70 10.20 6.33 13.29 

Tank-P4 89.28 13.59 0.97 0.02 66.59 0.37 75.31 22.68 9.11 24.67 

TT - Time Taken as a percentage of MPP time  
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Table 6-3: Relative performance and percentage difference between trials using the Euclidean assumption and the skeleton-heuristic. 

Model 
Overall Time MPP Time Tour Length Iterations Path Evaluations 

RP PD % RP PD % RP PD % RP PD % RP PD % 

2x2m 2.02 101.84 18.23 1,722.99 2.11 111.18 1.05 5.40 0.97 -2.58 

6x6m 0.87 -12.64 0.81 -19.10 2.55 154.66 0.25 -74.85 0.75 -24.82 

House 0.52 -48.40 0.36 -63.87 1.24 23.84 0.11 -89.10 0.59 -41.35 

House-W 0.0009 -99.91 0.0005 -99.95 1.29 29.49 0.0003 -99.97 0.03 -97.35 

Tank 0.27 -72.91 0.21 -79.34 1.84 84.16 0.05 -94.86 0.38 -62.22 

Tank-P4 0.41 -58.88 0.29 -70.94 1.87 86.63 0.13 -86.59 0.45 -54.79 

RP - Average of relative performance between each trial s.t. mean(New./Old)  

PD - Average of percentage differences between each trial s.t. mean((New-Old)./Old)*100 

MPP - Multi-goal Planning Problem 

 

Table 6-4: Statistical and practical significance between trials using the Euclidean assumption and the skeleton-heuristic. 

Model 
Overall Time MPP Time Tour Length Iterations Path Evaluations 

p d p d p d p D p d 

2x2m <0.001 37.58 <0.001 51.24 <0.001 20.61 0.16 - <0.001 0.79 

6x6m <0.001 1.31 <0.001 1.30 <0.001 56.70 <0.001 3.00 <0.001 7.82 

House <0.001 2.46 <0.001 2.48 <0.001 10.27 <0.001 2.86 <0.001 6.08 

House-W <0.001 9.74 <0.001 9.74 <0.001 12.60 <0.001 11.74 <0.001 11.48 

Tank <0.001 4.96 <0.001 4.97 <0.001 43.81 <0.001 5.51 <0.001 13.59 

Tank-P4 <0.001 4.09 <0.001 4.10 <0.001 47.12 <0.001 4.56 <0.001 12.77 

MPP - Multi-goal Planning Problem 
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Tour lengths using the skeleton-heuristic were significantly longer than solutions solved 

using a Euclidean assumption (p < 0.001, d > 0.8, Table 6-4). Tour lengths for non-obstacle 

filled environments 2x2m and 6x6m were over twice as long as the original tour, while 

obstacle-filled environments solutions vary. House and House-W are 23% to 30% longer 

while Tank and Tank-P4 tour lengths increased upwards of 84% to 87%.  

Figures 6-6 and 6-7 compare the resultant tours solved using Euclidean and skeleton based 

metrics for 2x2m and House-W respectively. The tours solved using the skeleton-heuristic 

produced tours that were markedly different to tours solved using the Euclidean assumption. 

Path segments within areas where no obstacles were present are longer than their Euclidean 

counterparts. This is clearly witnessed in Figure 6-6 as the resultant tour generated for 2x2m. 

These results highlight a serious issue with the estimation of the skeleton-heuristic within 

open areas.  

6.6.2 Discussion 

The introduction of the skeleton-heuristic has successfully reduced the time it took to solve 

the MPP by reducing the number of path evaluations required to solve a given planning 

problem. The results show that the skeleton-heuristic reduced MPP times enough to 

subsidise the calculation of the skeleton-heuristic within the planning procedures. However, 

the reduction of the MPP times using the skeleton-heuristic came at a cost to the tour quality, 

therefore invalidating the Criteria (4) for a suitable replacement to the initial Euclidean 

assumption.  

It could be argued that the 99.9% improvement in overall planning times for House-W is an 

acceptable trade-off for a 29.5% increase in tour length. However, for the representative tank 

models, a 58% to 72% reduction in planning times for an 84% to 87% increase in tour length 

may outweigh the costs of calculating a plan faster when executing the tour in reality. A 

clear argument against the use of the skeleton-heuristic is how ineffective it was for non-

obstacle filled environments, 2x2m and 6x6m. The time to calculate the skeleton increased 

overall planning times for 2x2m and increased tour length for both planning problems. 

Ultimately, the trade-off between path length and the time to execute a coverage plan is; 

1) subjective to the operator and task at hand, 

2) the robotic platform used for the inspection task, and  

3) the type of environment the plan is executed in.  
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2x2m Overall Time Tour Length 

Skeleton 5.55s 43.61m 

Euclidean 2.67s  21.74m 

Percentage Difference 107.87% 100.60% 

Figure 6-6: The final tour generated by the lazy point-to-point planner initialised with a skeleton-

heuristic and Euclidean assumption for 2x2m. The skeleton-heuristic increased planning times and 

tour length for 2x2m due to the calculation of the heuristic and the overestimation of local 

connectivity respectively.  

 

House-W Overall Time Tour Length 

Skeleton 0005.91s 45.68m 

Euclidean 4028.91s  36.03m 

Percentage Difference 00-99.85% 26.78% 

Figure 6-7: The final tour generated by the lazy point-to-point planner initialised with a skeleton-

heuristic and Euclidean assumption for House-W. The skeleton-heuristic reduced planning times for 

House-W but due to the overestimation of local connectivity tour lengths were longer than tours 

solved under the Euclidean assumption.  
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However, given that the intended robotic platform is not expected to move quickly through 

the tank environments, a significant increase in tour length will disproportionately increase 

the time it takes to perform the coverage task. In relation to online planning, for a heuristic 

to decrease coverage planning times to only increase the time it takes to execute the plan, it 

is not a suitable approach. While the LPP does not in any way solve plans to optimality, it 

should strive to provide a feasible solution that will reduce planning times and overall tour 

lengths.  

The resultant tours of 2x2m and House-W in Figures 6-6 and 6-7 provide a visual 

representation of where the inflated tour lengths come from. A visual comparison between 

tour segments within obstacle free areas, show that there are noticeably longer routes through 

these areas compared to the solutions solved with a Euclidean assumption. The cause of 

these longer routes was the skeleton-heuristic overestimating connectivity within these local 

areas.  

Simplified examples, demonstrating the overestimation in local areas for non-obstacle and 

obstacle-filled environments, are illustrated in Figure 6-8. Configurations that are adjacent 

are not guaranteed to be appropriately approximated using the skeleton-heuristic. As the 

skeleton will converge to the topological and geometrical centre of the environment, there is 

no guarantee that the branches of adjacent configurations will connect together in subsequent 

iterations to form the shortest path between them (Figure 6-8a).  

Skeleton branches are determined by; 

1) the order and direction in which the thinning is applied, and/or  

2) the rotation of the environment (Cornea, 2007; Wheare, 2018).  

The additional rule to the Lee’s thinning algorithm (Section 6.5.1) does not attempt to alter 

the direction of these branches to ensure local connectivity is connected correctly. It merely 

serves as a process to connect the configuration to the skeleton by creating their own 

branches in the thinning process. As a result, adjacent configurations can appear distant and 

branches in the thinning process. As a result, adjacent configurations can appear distant and 

distant configurations may appear closer (Figure 6-8b). Figure 6-9 provides some examples 

of adjacent configurations having their distances overestimated due to the branches created 

by the thinning process for 2x2m and House-W.  
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Figure 6-8: Example scenarios of the overestimation in non-obstacle filled and obstacle filled 

environments. (a) The representative skeletons of each environment with attached configuration 

branches. (b) The estimated distances recorded by the skeleton can overestimate local connectivity 

between configurations. (c) A line-of-sight check between configurations restores the Euclidean 

assumption for configurations not separated by an obstacle. This creates a hybrid distance metric that 

better approximates the connectivity between the configurations within various types of 

environments.  
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Figure 6-9: Examples of skeleton branches overestimating connectivity between adjacent 

configurations (red) for (a) 2x2m and (b) House-W. 

The overestimation within local areas gives a false representation of the connectivity and 

consequently has a negative impact on the TSP solver attempting to formulate a solution. As 

all the paths are overestimated, upon evaluating this first set of paths, all the evaluated paths 

become shorter than the skeleton distance. From the perspective of the TSP solver, in the 

next iteration, the planning problem presents a tour that is significantly shorter than any other 

alternative and is likely to be taken as the best tour available. The skeleton-heuristic, within 

local areas, has the reverse effect to what the Euclidean does, as the shorter paths become 

highly prioritised for the next iteration. Excluding the minor variability that is still present 

in TSP solutions, all planning problems evaluate approximately the same number of paths 

as configurations in the problem (Table 6-1).  

The results suggest that the more open space an environment contains, the worse the 

degradation of tour quality will become. Tank and Tank-P4 reported an 84% to 86% increase 

in tour lengths over the Euclidean. Figure 6-10 shows the resultant skeleton for Tank. As all 

the branches of the skeleton converged to the centre, more configurations within the open 

space were overestimated. 

This analysis concludes that using an unrefined skeleton to inform the LPP about the 

connectivity between configurations is not appropriate due to overestimation between local 

connectivity. The purpose of the skeleton was to place a lower priority on paths that are 

further away. It was expected that the skeleton-heuristic may overestimate paths.  
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(a) 

 

 

 

(b) 

Figure 6-10: The open space of Tank creates overestimation of the skeleton. (a) The resultant 

skeleton of Tank. (b) The centeredness of the skeleton in open space promotes overestimation due to 

the skeleton branches (highlighted in red). 

  

Centralised skeleton 

Overestimated connectivity 
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Overestimating paths that were further away was acceptable as the focus of this heuristic 

was to reduce the likelihood of these paths being evaluated in the TSP solution. However, 

since tours are generally comprised of paths between local configurations, overestimating 

nearby connections means overestimating the metric most used by the LPP, severely 

degrading effect on local tour quality. 

Providing a better estimation on the connectivity creates a TSP problem that is dominated 

by local connectivity, therefore reducing the number of path evaluations required to solve 

the planning problem. The results show that the skeleton-heuristic is capable of achieving 

all these goals but at the expense of tour quality due to the overestimation in local 

connectivity. Consequently, the effectiveness of the skeleton-heuristic does not meet all the 

criteria as a suitable heuristic to replace the Euclidean as it degrades the tour quality of even 

the simplest planning problems. 

6.7 The Hybrid-heuristic  

A suitable approach to correct the overestimation caused by the skeleton branches was found 

by reinstating the Euclidean distance metric in local areas. After the skeleton was generated, 

a line-of-sight check was made between all configurations. Configurations that did not have 

line-of-sight retained the skeleton distance as an estimate (Figure 6-8c) while those 

configurations that did have line-of-sight had the Euclidean distance reinstated. Combining 

both distance metrics into the same adjacency matrix created a hybrid-heuristic that restored 

the lower bound of the LPP to be Euclidean (Equation 6-3) and remove the overestimation 

that was generated by the skeleton in local areas. 

 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 ≤ 𝐴𝑐𝑡𝑢𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛  (6-3) 

To determine if two configurations should be connected via a direct path, a ray was cast 

between all configurations. If the ray cast between two configurations was free of collisions, 

the skeleton distance is replaced with the lower bound Euclidean distance. This extra line-

of-sight check serves as a cheap approximation to solving an exact motion plan. If a motion 

planner was called for a pair of assumed locally connected configurations, the result of the 

path will not likely exceed the initial Euclidean distance. 

Planning environments similar to 2x2m and 6x6m will receive no benefit from employing 

this hybrid-heuristic as it will create an adjacency matrix identical to the Euclidean 

assumption. Solving the MPP over these environments with the hybrid-heuristic only will 
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increase planning times due to the overhead calculating of the skeleton. It was expected that 

the effectiveness of this hybrid-heuristic will increase somewhat proportionally to the 

quantity and complexity of obstacles and obstructions within the environment. 

6.8 Coverage Planning with the Hybrid-heuristic  

The benchmark experiment was repeated to determine the effectiveness of the hybrid-

heuristic to improve upon the tour length quality and whether it could solve coverage plans 

in similar times to the skeleton-heuristic. A relative pairwise comparison was conducted 

between the trials of this experiment against the results of the benchmark experiment that 

used the additional termination conditions (Section 5.6). A parametric Paired Samples  

T-Test (α = 0.01) was conducted to complement the relative performance and determine if a 

statistically (p) and practically significant result (d) is present between the trials.  

6.8.1 Computational Observations and Results 

Tables 6-5 and 6-6 present the planning data for each of the trials and Tables 6-7 and 6-8 

contain the relative performance and statistical and practical comparisons between trials. An 

analysis of results indicated the hybrid-heuristic had a positive impact on planning times for 

obstacle-filled environments and a negative impact for non obstacle-filled environments. 

As expected, non obstacle-filled environments 2x2m and 6x6m defaulted to a Euclidean-

based solution when using the hybrid-heuristic. All trials experienced longer planning times 

(p < 0.001, Tables 6-6 and 6-7) due to the time it took to generate the hybrid-heuristic. All 

tours were solved with similar path lengths as the benchmark experiment (p = 0.19), taking 

on average the same number of planning iterations (p = 0.31) and path evaluations to solve 

the planning problem (p = 0.10). The minor variation present in the tour lengths, which are 

under 1%, can be attributed to the variability of the TSP solver and the additional termination 

conditions (Sections 5.4 and 0).  

Obstacle-filled environments, House, House-W, Tank and Tank-P4 all reported a positive 

result to using the hybrid-heuristic. The number of path evaluations and planning iterations 

were significantly reduced across all problems (p < 0.001). Path evaluations were reduced 

by 51.8% and 40.9% for Tank and Tank-P4 respectively. House recorded a 30% reduction 

with House-W, as seen in the skeleton experiment (Section 6.6), reducing by 99.8%. As 

fewer paths were being evaluated, the LPP converged faster. Consequently, planning 

iterations were reduced by 78.5% to 99.8% across these environments.  
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Table 6-5: Planning times, tour lengths and lazy point-to-point planner attributes for all planning scenarios using the hybrid-heuristic. 

Model 
Overall Time (s) MPP Time (s)* Tour Length (m) Iterations Path Evaluations 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 

2x2m 5.22 0.11 2.71 0.10 21.47 0.27 3.03 1.33 154.25 6.49 

6x6m 46.71 5.39 24.75 5.51 159.42 1.06 32.76 10.68 1,368.24 68.10 

House 5.29 0.38 2.61 0.38 33.94 0.56 5.09 1.86 337.32 15.75 

House-W 12.52 3.66 9.79 3.66 35.70 0.47 7.90 3.63 356.27 20.33 

Tank 138.76 11.69 106.03 11.67 148.94 1.06 30.38 9.53 1,718.84 73.17 

Tank-P4 201.21 12.68 134.91 12.69 175.08 1.30 47.04 10.25 2,347.25 68.26 

*Includes the time to create the initial estimate and solve the MPP MPP - Multi-goal Planning Problem 

 

Table 6-6: Analysis of the time taken to create the hybrid-heuristic and the resultant time to solve the multi-goal planning problem (MPP). 

Model 
MPP 

Time (s) 

Hybrid-heuristic* Solving the MPP 

𝑥̅ (s) SD (s) TT % 𝑥̅ (s) SD (s) TT % 

2x2m 2.71 2.49 0.03 92.25 0.21 0.10 7.75 

6x6m 24.75 7.16 0.08 30.88 17.57 5.51 69.12 

House 2.61 1.59 0.04 61.88 1.02 0.37 38.12 

House-W 9.79 1.58 0.04 18.56 8.21 3.66 81.44 

Tank 106.03 63.56 0.36 60.71 42.46 11.69 39.29 

Tank-P4 134.91 66.59 0.39 49.80 68.31 12.70 50.20 

*Includes voxelization, thinning and path finding  
MPP - Multi-goal Planning Problem 

TT - Time Taken as a percentage of MPP time 
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Table 6-7: Relative performance and percentage difference between trials using the Euclidean assumption and the hybrid-heuristic. 

Model 
Overall Time MPP Time Tour Length Iterations Path Evaluations 

RP PD % RP PD % RP PD % RP PD % RP PD % 

2x2m 1.90 89.74 16.15 1515.41 0.99998 -0.002 1.16 16.19 0.99 -1.20 

6x6m 1.24 23.86 1.81 81.21 0.99999 -0.001 1.24 24.00 1.00 0.44 

House 0.56 -43.78 0.43 -56.90 1.00003 0.003 0.21 -78.52 0.61 -38.58 

House-W 0.002 -99.82 0.004 -99.86 1.00017 0.017 0.001 -99.93 0.03 -97.12 

Tank 0.35 -64.90 0.29 -70.53 1.00004 0.004 0.10 -89.75 0.48 -51.85 

Tank-P4 0.53 -46.82 0.44 -56.07 1.00021 0.021 0.19 -80.80 0.59 -40.95 

MPP - Multi-goal Planning Problem 

RP - Average of relative performance between each trial. 

PD - Average of percentage differences between each trial. 

 

Table 6-8: Statistical and practical significance between trials using the Euclidean assumption and the hybrid-heuristic. 

Model 
Overall Time MPP Time Tour Length Iterations  Path Evaluations 

p d p d p d p d p d 

2x2m <0.001 23.49 <0.001 28.07 0.19 - 0.44 - 0.01 - 

6x6m <0.001 1.50 <0.001 1.49 0.40 - 0.31 - 0.10 - 

House <0.001 2.17 <0.001 2.19 0.78 - <0.001 2.55 <0.001 5.02 

House-W <0.001 9.71 <0.001 9.71 0.06 - <0.001 11.72 <0.001 11.37 

Tank <0.001 4.29 <0.001 4.30 0.77 - <0.001 5.27 <0.001 9.79 

Tank-P4 <0.001 3.25 <0.001 3.25 <0.001 0.029 <0.001 4.43 <0.001 9.01 

MPP - Multi-goal Planning Problem p - Paired samples t-test (α < 0.01) d - Cohen’s d effect size 
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As a result of evaluating fewer paths, the number of paths retained in the final solution for 

obstacle-filled environments increased. Tank and Tank-P4 retained 70% to 75% of 

calculated paths respectively while House and House-W retained 91.3% to 95.4% (Figure 

6-11; Table 6-9). Compared to the analysis performed over the trials solved using the 

Euclidean assumption (Figure 5-5; Table 5-11), fewer RRTs were being evaluated across all 

obstacle-filled environments. No planning problem recorded more than 3% of the total paths 

evaluated to be RRTs. As a result, upwards of 96.8% of path evaluations were solved as 

direct paths. The fact that so few RRT paths were being evaluated and a higher rate of paths 

evaluated were being retained strongly indicates that the hybrid-heuristic better informs the 

LPP about the connectivity of the environment of paths before planning.  

Correcting the overestimation within local areas enabled the LPP to solve tour lengths for 

all obstacle-filled environments within 1% of the Euclidean trials. Besides Tank-P4, no 

statistical significance was found between the tour lengths (p = 0.06). While Tank-P4 

reported a statistical significance (p < 0.001), the 0.02% increase in tour length was not 

practically significant (d = 0.029). Again, the slight variation can be a result of the reported 

variability of TSP solver generating solutions for larger planning problems or the 

randomness of the RRT paths chosen in the final solution.  

Given that fewer paths are being evaluated in the obstacle-filled environments planning 

problems, similar to the results of the skeleton-heuristic, it has resulted in faster MPP 

solution times (p < 0.001) and overall planning times compared to the Euclidean trials  

(p < 0.001). Overall planning times for Tank and Tank-P4 improved by 64.9% and 46.8% 

respectively, and for House and House-W improvements of 43.8% and 99.8% were recorded 

respectively. 

As the same covering sets were used, creating the hybrid-heuristic had similar computational 

times to the skeleton creation (Table 6-6). The computation of the hybrid-heuristic’s line-

of-sight checks were negligible on planning times. Therefore, the creation of the hybrid-

heuristic had no additional impact on overall planning times when compared to creation 

times of the skeleton-heuristic. 

The minor differences in planning times between using the skeleton-heuristic and the hybrid-

heuristic was due to slightly longer MPP times. As the connectivity was better represented, 

it required slightly more path evaluations to solve the planning problem. While the results 

indicated that planning times increased by approximately 50% for Tank and Tank-P4 and 
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Figure 6-11: The introduction of the hybrid-heuristic increases the number of paths being retained in the final solution. 

Table 6-9: Analysis of the number of path types evaluated, taken and retained in the final solution for trials solved under the hybrid-heuristic. 

Model 

Average # 

of paths in 

final 

solution 

Average 

# of 

paths 

evaluated 

Evaluated Path Breakdown Final Plan Path Breakdown Calculated Path Retention 

Direct 

(Count / %) 

RRT 

(Count / %) 

Direct 

(Count / %) 

RRT 

(Count / %) 
Direct (%) RRT (%) 

Combined 

(%) 

2x2m 152.00 154.25 154.25 100.00 0.00 0.00 152.00 100.00 0.00 0.00 98.54 0.00 98.54 

6x6m 1,011.05 1,368.24 1,368.24 100.00 0.00 0.00 1,011.05 100.00 0.00 0.00 73.89 0.00 73.89 

House 321.80 337.32 332.53 98.62 4.79 1.38 320.25 99.52 1.55 0.48 96.31 32.36 95.40 

House-W 325.35 356.27 348.75 97.92 7.52 2.08 322.88 99.24 2.47 0.76 92.58 32.85 91.32 

Tank 1,301.85 1,718.84 1,679.62 97.72 39.22 2.28 1,295.58 99.52 6.27 0.48 77.14 15.99 75.74 

Tank-P4 1,649.00 2,347.25 2,272.66 96.83 74.59 3.17 1,640.18 99.47 8.82 0.53 72.17 11.82 70.25 
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upwards of 200% for House, they equated to no more than a few extra minutes to obtain a 

tour length of similar quality of the Euclidean trials. This is considered to be a suitable 

compromise that is acceptable in this case, given the significant reduction in the number of 

path evaluations, MPP times and overall planning times. 

Finally, a notable beneficiary of the hybrid-heuristic is House-W. Originally, solving the 

MPP for House-W using a Euclidean assumption saw 93.5% of the 12,717 paths evaluations 

being resolved by RRTs (Figure 5-5; Table 5-11). Only 0.02% of these evaluated RRTs 

using the Euclidean assumption were used in the final tour. When solving the MPP for 

House-W using the hybrid-heuristic, 2% of the 356 paths evaluated were RRTs, with 32% 

of these being retained in the final tour (Figure 6-11; Table 6-9). For both the Euclidean and 

hybrid-heuristic estimations of the connectivity, House-W used approximately the same 

number of direct and RRTs paths in the final solution. Evaluating fewer RRTs has led to a 

99.8% improvement in overall and MPP times, with less than 1% degradation in tour quality. 

6.8.2 Discussion  

The results of this experiment demonstrate that for the given planning problems, the hybrid-

heuristic has successfully managed to reduce planning times by minimising the number of 

path evaluations required to solve a planning problem and produce quality solutions 

equivalent to the coverage plans solved under the Euclidean assumption. Introducing an 

additional line-of-sight check to restore the Euclidean assumption in local areas that were 

overestimated by the skeleton enables the hybrid-heuristic to satisfy all the criteria for a 

suitable replacement (Section 6.3). 

Using a skeleton provided enough information about the environment such that the 

connectivity of the configurations could guide the LPP to converge to solutions faster than 

using the Euclidean assumption. The LPP became more efficient as fewer paths were being 

evaluated, resulting in more paths being retained in the final solution. As the connectivity 

was better represented, fewer RRTs were evaluated across all planning problems. The LPP 

evaluates fewer RRTs, which suggested that the TSP solver was not choosing the edges it 

would have under a Euclidean assumption. As a result, larger planning problems, Tank and 

Tank-P4, solved in under four minutes and House-W, which was previously the hardest 

planning problem, solved in 12.5 seconds (Table 6-5).  

Despite substantial improvement in planning times for obstacle-filled environments, the 
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experiment demonstrated that using a skeleton to formulate an understanding of the 

environment is not applicable for all environment types. Non-obstacle filled environments, 

2x2m and 6x6m, did not receive any computational improvement using the hybrid-heuristic. 

While planning times increased compared to the trials using the skeleton-heuristic, the 

hybrid-heuristic removed the overestimation in areas of local connectivity by reinstating the 

Euclidean assumption where applicable. This produces a better outcome compared to using 

the skeleton-heuristic that resulted in shorter planning times but significantly longer tour 

lengths. While the hybrid-heuristic may not be applicable for most simplistic environments, 

it has made fast planning times in complex environments possible.  

6.9 Application of the Hybrid-heuristic over a Life-like Office Space 

To demonstrate the applicability of using topological skeletons in complex spaces beyond 

the planning environments tested over the last three chapters, the hybrid-heuristic was tested 

over a life-like office floor plan. The 70x40x2m office floor, has several rooms, wide-open 

spaces and long corridors that will underestimate many paths, causing great difficulty for the 

LPP under the Euclidean assumption to stabilise quickly to a solution.  

The robot constraints placed on this planning problem, applied a spherical 6-DOF holonomic 

robot platform to represent UAV platform to perform the inspection. A 300mm sphere was 

used as the collision model and the viewing constraints set to range a of 0.5-1.0m with a 

Field of View (FOV) of ±70°. The 70x40x2m office space was voxelised to a 70mm 

resolution. The additional termination conditions were applied to both LPPs. To witness the 

benefits of applying the hybrid-heuristic across a significantly large and complex 

environment, no time limit was applied to the planning problems.  

The statistical analysis of the planning data acquired over the trials presented in Tables 6-10 

to 6.12 show the positive impact the hybrid-heuristic has on the LPP. Figure 6-12 illustrates 

the resultant skeleton over office space and tour for the LPP using the hybrid-heuristic. 

Coverage plans that took on average 1.1 days to solve under a Euclidean assumption took 

approximately 8.8 minutes to solve using the hybrid-heuristic. Of the 8.8 minutes needed to 

solve the MPP with the hybrid-heuristic, 36% of the overall time was spent generating the 

skeleton. Due to time taken for the LPP under the Euclidean assumption to find a solution, 

only five trials were required to determine that the Euclidean LPP would not solve the 

planning problem faster than the hybrid-heuristic.   
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Table 6-10: Statistical analysis of the planning times between Euclidean and hybrid-heuristic trials. 

 

 

Table 6-11: Time taken to create the hybrid-heuristic and the resultant time to solve the multi-goal 

planning problem (MPP). 

 

 

Table 6-12: The resultant planning attributes of the lazy point-to-point planner. 

Heuristic 

Tour Length 

(km) 
Planning Iterations  Path Evaluations 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 

Euclidean 1.71 0.1 28.1x103 6.7x103 15.2x103 20.7x103 

Hybrid  1.72 0.1 278.6 124.4 3051.6 354.6 

 

 

  

Heuristic  Trials Configurations 
Overall Time (s) CSP Time (s) MPP Time (s) 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 

Euclidean 5 1429 - 1456 95.6x103 17.4x103 29.8 0.7 95.6x103 17.4x103 

Hybrid  20 1411 - 1465 533.4 147.2 30.7 2.3 502.7^ 147.8 

^MPP time includes calculating the hybrid-heuristic (Table 6-11)  

CSP - Coverage Sampling Problem  

MPP - Multi-goal Planning Problem  

Heuristic 
MPP 

Time (s) 

Hybrid-heuristic* Solving the MPP 

𝑥̅ (s) SD (s) TT (%) 𝑥̅ (s) SD (s) TT (%) 

Hybrid 502.7 168.9 1.9 36.4 333.8 147.6 63.6 

*Includes voxelization, thinning and path finding  

MPP - Multi-goal Planning Problem 

TT - Time Taken as a percentage of MPP time 
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(a) 

 

(b) 

Figure 6-12: Planning with the hybrid-heuristic over a large complex environment. (a) The resultant 

skeleton of the office floor space with connected configurations. (b) The final tour. Grey primitives 

on the floor of the office in (b) are due to anomalies in the mesh model that made these primitives 

unobservable.  
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As expected, solving the LPP using the hybrid-heuristic has resulted in a significant 

reduction in the number of path evaluations and planning iterations (p < 0.001, d > 0.8). 

Overall, between the LPPs, the hybrid-heuristic plans only saw a 0.6% increase in tour 

length. As this is under 1%, the variation could be due to either variation of the LPP or the 

variation of the RRT paths, which would be expected to be significant for the same pair of 

configurations. However, considering the improvement in overall planning times, the tour 

degradation is negligible.  

An interesting finding of this experiment is that neither coverage planner achieved 100% 

coverage of this environment but 92%. Full coverage could not be achieved due to anomalies 

with 3D mesh model that was generated from a modified 2D floorplan. However, given the 

CSP times are equivalent, strongly indicates that the primitive rejection count (Section 4.2.3) 

worked as expected. The CSP did not continue to sample primitives beyond the primitive 

rejection count and subsequently these primitives were recorded as unobservable. The 

primitives that could not be observed are highlighted in grey in Figure 6-12b.  

The importance of these results show that the offline sampling-based coverage planner is 

capable of solving very large and complex planning problems, providing the LPP is supplied 

with a sufficient estimation of the connectivity connecting configurations. The introduction 

of the hybrid-heuristic along with the additional termination conditions has aided the offline 

sampling-based coverage planner to overcome one of the main influences that contribute to 

long computational times, the environment. These experiments provide evidence that the 

improvements developed thus far in this thesis address the two main concerns that were 

identified that would impact adaptive coverage path planner online sufficiently reporting 

unobservable primitives (Section 3.4.3) and long computational times (Section 3.4.4). As 

these improvements have been proven to work offline, these algorithms can be deployed 

online with minimal modification for online use. However, consideration has to be given 

when using the hybrid-heuristic as it is not applicable to all planning scenarios.  

6.10 Applicability of the Offline Planning Results to Online Planning 

Proposals to Solve the STIPP 

Given the results presented in this chapter, the full replan strategy still presents as a safe and 

reliable approach to the online replanning problem. The hybrid-heuristic will aid the LPP in 

handling any geometrical changes that would significantly impact planning times and 
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solutions solved under a Euclidean assumption. However, despite the benefits that the 

hybrid-heuristic would provide, there are concerns with implementing a full replan strategy 

to adapt the offline coverage planner to solve online planning problems. 

Planning times for the representative tank structures are still within a few minutes. Again, 

this is due to the cost of solving the MPP. While the hybrid-heuristic reduces planning times 

by up to 47-60% and the number of path evaluations by 40-50% compared to using the 

Euclidean assumption, a complete replan will still incur a significant cost upon each 

replanning iteration. Even if a full replan was performed under the simplest planning 

constraints, the number of path evaluations required to solve a planning problem would still 

incur a significant cost, despite the possibility of retaining 75% of the path evaluated. Given 

that upwards of 2000 configurations are required to cover the representative tank 

environments, this is a consequence that has to be accepted given;  

1) the type of coverage planner used to solve the planning problem, 

2) the robotic platform constraints placed on the planning problem, and 

3) the complexity of the environment for which the coverage planner is replanning. 

Given the efforts over the previous chapters to minimise the computation of the LPP by 

reducing the number of planning iterations and path evaluations required to solve a planning 

problem, a full replan strategy only seeks to counter these efforts. Given the large number 

of path evaluations that are required to solve the representative tank environments, 

discarding the majority of the tour at each replanning iteration only increases the 

recalculation of the motion plans by a high-fidelity motion planner, whether it is performed 

during or after the solution is generated.  

A full replan may be an appropriate strategy to the replanning problem if;  

1) the planning problem (environment and covering set) is small in size,  

2) minimal replanning updates occur during execution, 

3) the changes significantly invalidate majority of the existing tour, or 

4) high-fidelity motion planning is computationally inexpensive. 

However, given the target environments are expected to be large in size, rules out the 

likelihood of the full replan strategy being the best option to solve the submarine tank 

inspection planning problem (STIPP).  

As discussed in Section 3.5, a suitable online coverage planner needs to minimise the 
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computation of calculating a plan as well as minimising the computation of executing a 

coverage plan over the entire Inspection Planning Framework (IPF). Therefore, given the 

results of the investigations undertaken over the last three chapters into intrinsic behaviour 

of the offline sampling-based coverage planner, the path repair strategy presents itself as 

the better option to implement to solve STIPP. The results have shown that to make the 

sampling and path planning procedures efficient processes online, the planning problem 

supplied to these processes need to have constraints on its size and complexity. The 

improvements to the LPP alone have shown that the LPP can solve smaller planning 

problems quite quickly. 

The path repair strategy proposes to confine the influence of the changes detected within 

the environments to highly localised regions, reducing the computational impact of 

producing a new tour upon each replanning update. Similar to the hybrid-heuristic, the path 

repair strategy will only be a viable solution if it can; 

1) reduce overall planning times enough to compensate for calculating the impact of the 

changes, segmenting the current tour, replanning the changes and merging the 

resultant sub-plans to create a new plan, while  

2) maintaining an acceptable level of tour quality degradation, as the final solution is 

not being solved globally. 

If these conditions can be met, both the sampling and path planning procedures receive the 

benefit of working over smaller planning problems and because only what is needed to be 

replanned is being replanned, it will result in fewer paths required to be solved by both the 

LPP and the high-fidelity motion planner. In the next chapter, the adaptive sampling-based 

coverage planner using a path repair strategy is discussed in further detail. 

6.11 Chapter Summary  

In this chapter, the LPP was investigated further to determine the cause behind why so many 

path evaluations had to occur to solve a given planning problem. The initial Euclidean 

assumption underestimated the connectivity between configurations because it did not factor 

in the environment. This simplistic assumption prevented the LPP to solve efficiently over 

complex environments.  

It was proposed to use the properties of topological curve-skeletons to form an adjacency 

matrix that factored in the influence of the environment on connectivity. A rule amendment 
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to Lee’s 3D parallel thinning algorithm enabled voxels containing the position of 

configurations to be connected to the skeleton during the thinning process. The results of the 

skeleton-heuristic showed that a significant reduction in path evaluations which led to 

shorter planning times compared to the Euclidean trials. However, overestimation of 

distances in local areas of connectivity by the skeleton significantly degraded tour quality.  

An amended skeleton-heuristic that reinstated the Euclidean distance as the minimum lower 

bound in areas of locally connected configurations formed the hybrid-heuristic that mitigated 

the local overestimation. As a result, planning times with the hybrid-heuristic were 

comparable to the skeleton, with the tour quality within 1% of coverage plans being solved 

under the Euclidean assumption. The more informed heuristic achieved the goal of reducing 

planning times by reducing the number of path evaluations needed to solve a planning 

problem. While the hybrid-heuristic was not suitable for use in simple environments, an 

additional experiment of an office space, more closely representing a real-world 

environment, demonstrated the benefits topological skeletons had to offer for solving 

significantly large and complex offline coverage path planning problems.  

Despite the significant reduction in path evaluations and planning times, it was decided that 

a full replan strategy would not be a suitable strategy to implement for an efficient online 

adaptive planner. The following chapter explores the second online adaptive proposal that 

implements the path repair strategy. This strategy bounds new features within regions of 

interest to reduce the computational effort required by the CSP and MPP processes to 

produce a solution. 

 



 

 

 

190 

 

 

 

 

Chapter 7  

Adaptive Sampling-Based Coverage Planning 

using a Plan Repair Strategy 

7.1 Introduction 

In Chapter 3, an adaptive sampling-based coverage planner using a plan repair strategy 

was proposed as an alternative to the full replan strategy to solve the online replanning 

problem. The offline experiments documented in Chapters 4 to 6 have shown that, providing 

there is no significant underestimation of the connectivity between configurations, planning 

can occur faster across smaller planning problems. Algorithmically, smaller planning 

problems will generate shorter solution times. Reducing the number of primitives and 

configurations required to be replanned generates a proportional reduction in the 

computation effort required by both the offline coverage sampling problem (CSP) and the 

multi-goal planning problem (MPP) algorithms. 

In an effort to reduce the computational effort of preforming an online tour update, the plan 

repair strategy focusses exclusively on the newly detected features within the environment 

to determine the extent of the replanning effort. The plan repair strategy uses a segment, 

replan and merge approach to;  

1) segment the current tour using a region of interest (ROI) to encapsulate changes 

within the environment to preserve any configurations and paths not affected by the 

changes, 

2) replan new coverage and paths within the ROI to account for the new changes, and 

3) merge, the new coverage (sub-plan) back into the preserved tour to create a new plan 

that accounts for the new features without having to replan an entirely new plan. 
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These three steps constitute the adaptive sampling-based coverage planner that uses a plan 

repair strategy to minimise the computational effort required by the offline sampling and 

path planning processes to perform an online update. 

The separation allows the replanning effort to only occur within the ROI to reduce the 

number of existing viewing configurations that need to be replanned. Given the robot has a 

limited viewing capability, the inspection task under the current constraints (Section 3.6), 

will have upwards of 1500 viewing locations to cover a representative submarine tank 

environment (Section 4.3.3). Any effort to reduce the planning effort is essential to provide 

timely planning updates.  

Contentions with the plan repair strategy is; 

Question 1) What is the computational impact of segmentation and merging of sub-

plans on the planning times?  

Question 2) What is the potential drop in tour optimality as the sub-plan approach 

does not solve the plan globally?  

The proposed plan repair strategy is only effective if the three processes of segmentation, 

replanning and merging can compute faster than the time required to replan the entire plan 

with minimal tour degradation. Similar to the criteria applied to the hybrid-heuristic (Section 

6.3), it would be counterproductive for the plan repair strategy to decrease the computational 

cost of calculating a plan if it led to an overall increase in execution time. The experiments 

in the previous chapters suggest that a full replan strategy is likely to increase both the 

computational time of creating and executing an updated coverage plan. This chapter 

explores the adaptation of the offline sampling-based coverage planner into and online 

adaptive sampling-based coverage planner by introducing ROIs to aid in partially 

replanning new features into an existing plan. Figure 7-1 provides a visual representation of 

the plan repair strategy that was presented in Figure 3-7. 

7.2 Transitioning from an Offline to Online Planning Problem 

The transition from an offline to an online planning problem requires a reassessment of how 

the planning problem is presented to the coverage planner. New features within the 

environment have the potential to compromise the current plan. Therefore, it is the 

responsibility of the online coverage planner to ensure that all primitives, new and old, 

remain covered and the final plan stays connected a single collision-free tour. Since new  
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Figure 7-1: Conceptual diagrams of the adaptive sampling-based coverage planner implementing a 

region of interest (ROI) to bound the replanning effort to construct the plan repair strategy. (a) The 

offline plan over a known environment. (b) A ROI bounds the new primitives of the map update. (c) 

The original positions are validated against the ROI. (d) The covering sampling problem (CSP) and 

set cover problem (SCP) produce new configurations to cover all primitives in the ROI. (e) The MPP 

produces a new sub-plan that is connected back into the existing plan. (f) The plan is passed to the 

robot and will remain as the only plan until a new map update is provided. 

primitives are expected to be introduced into the planning problem, which may invalidate a 

set of existing configurations, a new relationship between the primitives and configuration 

space is required to accurately represent the online planning problem.  

This section discusses the transition to the online planning domain. It covers; 

1) the introduction of a new set system (𝑀,𝑄) that better represents the relationship 

between the primitive 𝑀 and configuration 𝑄 spaces for an evolving environment,  

2) the generation of a conceptual ROI within both the 𝑀 and 𝑄 spaces to capture the 

appropriate replanning effort required to produce complete coverage plans, and  

3) to address the impact new features will have on replanning problem.  
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7.2.1 Defining a New Set System Relationship 

As discussed in Chapter 3, Englot and Hover (2012a) represented the relationship between 

the primitive space 𝑃 and configuration space 𝑄 for an offline planning problem as a set 

system  (𝑃, 𝑄) . This set system maps configurations 𝑞𝑗  generated in 𝑄  to a subset of 

primitives 𝑝𝑖 in 𝑃. For the online planning problem, the introduction of new primitives into 

the planning problem invalidates set system (𝑃, 𝑄). Therefore, a new set system definition is 

required to accurately represent the online planning problem.  

In the online planning problem, the mapping system supplies the adaptive coverage planner 

with a map update 𝑀. Under the assumption that the mapping system represents detected 

features as primitives, 𝑀  will append the new features 𝑃∗ over the original map 𝑃  s.t. 

 𝑀 = {𝑃 ∪ 𝑃∗}, where 𝑃∗ is the set of all new primitives 𝑝𝑘
∗  that comprise a set of newly 

identified structures s.t. 𝑝𝑘
∗ ∈ 𝑃∗. With the introduction of 𝑃∗, the original set system (𝑃, 𝑄) 

no longer holds true as 𝑃 strictly refers to the original environment and introducing new 

features may cause existing tour configurations to now observe  𝑃∗  or not observe  𝑃 . 

Therefore, a new set system (𝑀, 𝑄) is defined to represent planning in the online domain. As 

the assumption that the outer boundaries of the environment are always known throughout 

the inspection (Section 3.6.1; Assumption 1), 𝑄 in the online planning problem, will remain 

the same. Figure 7-2 illustrates the two set systems (𝑃, 𝑄) and (𝑀, 𝑄) for the offline and 

online planning problems respectively. 

Using 𝑀 to reflect the current status of the environment allows 𝑃 to always represent the 

previous understanding of the environment. As the mapping system is assumed to always 

append new features into the environment (Section 3.6.1; Assumption 3), when the coverage 

planner has replanned the current tour by incorporating new coverage for 𝑃∗, 𝑀 becomes 𝑃 

at the next planning iteration (Figure 7-6). Assigning 𝑀  to 𝑃  at the conclusion of a 

replanning iteration allows the planner to assume that the previous iteration is equivalent to 

an offline plan. This recursive assignment allows features detected in the previous iteration 

to be treated as if it had already existed in the environment. This allows the adaptive 

sampling-based coverage planner to perform the same replanning functions irrespective to 

any previous planning update.  

As the set system relationship between a configuration and the primitives it observes is 

necessary to maintain when replanning online, an additional term 𝑣  is introduced to 

represent 𝑝𝑖 ⊂ 𝑃 that is observed by 𝑞𝑗. A secondary term 𝑣∗ is used as the recalculated 
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Figure 7-2: An updated set system relationship between the configuration space 𝑸 and the primitive 

space 𝑴 for the online system. Each set is represented by a colour. The colours used for each set will 

be used to represent the same set in subsequent figures throughout this chapter. 

coverage of  𝑞𝑗. The importance of 𝑣∗ is discussed in Section 7.4 when validating existing 

configurations against the influence of 𝑃∗. 

7.2.2 Defining a ROI within the Configuration and Primitive Spaces 

A ROI, as depicted in Figure 7-2, will encapsulate the influence 𝑃∗  has on 𝑃  and  𝑄 , 

regardless of the geometric size of 𝑃∗. Within 𝑀, the ROI defines a space 𝑃𝑅𝑂𝐼 that will 

always include 𝑃∗ along with possibility of containing primitives of the existing structure. 

Consequently, within 𝑄, the ROI defines a configuration space 𝑄𝑅𝑂𝐼 that is used as a metric 

to segment the current tour  𝑇4 . Any 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼  become candidates for replanning and  

𝑞𝑗 ∉ 𝑄𝑅𝑂𝐼 are preserved and remain in the tour. The configuration space 𝑄𝑅𝑂𝐼 also defines 

a space in 𝑄 that is used to generate new configurations 𝑞𝑛
∗  that observe 𝑃𝑅𝑂𝐼. With 𝑃∗ being 

fully encapsulated by the ROI, 𝑝𝑘
∗ ∈ 𝑃∗ can only be observed by configurations generated 

 
4 For consistency with the online planning definitions, 𝑇 replaces 𝐺 which was defined in Section 3.3.3 as the 

ordered set of configurations to creates a collision-free tour through 𝑄. 
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within 𝑄𝑅𝑂𝐼.  

A ROI is created by bounding every 𝑝𝑘
∗ ∈ 𝑃∗  within its own ROI (𝑅𝑂𝐼𝑘 ). Each 𝑅𝑂𝐼𝑘  is 

calculated based on the camera’s maximum field of depth (𝐹𝑂𝐷𝑚𝑎𝑥) from the centre of 

each 𝑝𝑘
∗ . In the same way, 𝐹𝑂𝐷𝑚𝑎𝑥 is used to create a subset of 𝑄 to generate samples to 

view 𝑃 , using 𝐹𝑂𝐷𝑚𝑎𝑥  as the metric to segment 𝑇 , ensures that only 𝑞𝑗 ∈ 𝑇  that can 

potentially be affected by 𝑃∗ are subjected to replanning. Equation 7.1 defines 𝑄𝑅𝑂𝐼 as a 

subset of 𝑄 that is used to generate a set of configurations that are within the ROI. The 

function 𝑓𝑥𝑦𝑧 projects elements of a set into the Cartesian space.  

𝑄𝑅𝑂𝐼 ≜ { 𝑄| 𝑑𝑖𝑠𝑡(𝑓𝑥𝑦𝑧(𝑄) − 𝑓𝑥𝑦𝑧(𝑝𝑖
∗)) < 𝐹𝑂𝐷𝑚𝑎𝑥 ∈ ℝ, ∀𝑝𝑘

∗ ∈ 𝑃∗}  (7.1) 

Figure 7-3 illustrates the geometrical representation of a ROI based on Equation 7.1.  

Figure 7-3a shows a 𝑅𝑂𝐼𝑘 being generated around a single primitive based on 𝐹𝑂𝐷𝑚𝑎𝑥 and 

Figure 7-3b illustrates the collective ROI formed though a cluster of individual 𝑅𝑂𝐼𝑘.  

When a map update is supplied, it would be expected that the majority of the new primitives 

will be grouped around the new structures. However, by bounding each 𝑝𝑘
∗  within 𝑅𝑂𝐼𝑘 

allows for geometrically disconnected clusters of 𝑝𝑘
∗ ∈ 𝑃∗ to be treated as separate regions. 

By generating an individual ROI for each primitive, the planner has the ability segment 𝑇 

without having to make any assumptions about the environment. Replanning can occur 

throughout the environment simultaneously with no discrimination to size, shape or location. 

 

Figure 7-3: Generating the region of interest (ROI). (a) A single primitive produces its own ROI 

(𝑅𝑂𝐼𝑘) based on the maximum field of depth (𝐹𝑂𝐷𝑚𝑎𝑥). b) The collective of multiple primitives 

creates the conceptual ROI that is used limit the replanning effort over the environment. 
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Performing an evaluation based on a scale metric allows the solution to be solved generically 

across the space. It is a solution that can be applied to any situation and does not require 

parameterisation of an object or a complete object to perform, making it a suitable metric to 

replan over evolving features within the environment. As the ROI makes no assumptions 

about the environment, this approach adheres to the generic nature of the offline sampling-

based coverage planner.  

The ROI also serves to capture the influence 𝑃∗  has on 𝑃 . The introduction of 𝑃∗  may 

invalidate, via collision or occlusion, the existing coverage 𝑣 of 𝑞𝑗. If 𝑞𝑗 has to be either 

removed or has some portion of its coverage occluded, the primitives it once observed may 

not be observable to other 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼. In the case 𝑞𝑗 is removed from the coverage plan, the 

unique observations made by 𝑞𝑗 will definitely be unobserved by the remaining 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼.  

To guarantee the probabilistic completeness of the final coverage plan, discussed in further 

detail in Section 7.8, any configurations whose 𝑣 is compromised due to 𝑃∗  resulting in 

unobserved primitives, 𝑃#, must be included in 𝑃𝑅𝑂𝐼. Therefore, it is necessary to ensure 

that primitives that may lose their coverage (𝑃#) are included into 𝑃𝑅𝑂𝐼.  

To ensure all these primitives are captured within 𝑃𝑅𝑂𝐼, the coverage 𝑣 of all 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼, 𝑃^ 

(Equation 7.2), are also added to 𝑃𝑅𝑂𝐼 (Equation 7.3). By all adding all 𝑣 of 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼 into 

𝑃𝑅𝑂𝐼 ensures that if configurations are removed, 𝑃# will always be contained in 𝑃𝑅𝑂𝐼. 

𝑃^ ≜ {𝑣 | ∀𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼}           (7.2) 

𝑃𝑅𝑂𝐼 ≜ {𝑃∗ ∪ 𝑃^}         (7.3) 

Since 𝑄𝑅𝑂𝐼 is the maximum influence 𝑃∗ has in 𝑄, not all 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼 will be influenced by 

the presence of 𝑃∗ . Some configurations may lie within viewing distance of 𝑃∗  but not 

observe any 𝑝𝑘
∗ ∈ 𝑃∗. If 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼 do not collide with 𝑃∗, when revaluating their coverage 

𝑣∗ it should be equivalent to 𝑣. As the same coverage is attained, the unique coverage of 

these configurations will ensure they remain in the updated tour 𝑇∗.  

A conceptual example of the influence of 𝑃∗ has on 𝑄 and 𝑃 is presented in Figure 7-4. For 

any given offline tour 𝑇 (Figure 7-4a), the introduction of 𝑃∗ creates a ROI around each  𝑝𝑘
∗ . 

Projecting the geometrical ROI into the 𝑄 captures a set of configurations that are considered 

under the influence of 𝑃∗ (Figure 7-4b). To ensure 𝑃# is observed at the conclusion of each 

sampling phase, 𝑃𝑅𝑂𝐼 is formed to encapsulate both 𝑃^ and 𝑃∗ (Figure 7-4c). 
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Figure 7-4: A conceptual representation of a region of interest (ROI) used to create 𝑄𝑅𝑂𝐼 and 𝑃𝑅𝑂𝐼. 

(b) The introduction of 𝑃∗ creates 𝑄𝑅𝑂𝐼 within 𝑄 to segment 𝑇. (c) After segmenting 𝑇 using 𝑄𝑅𝑂𝐼, 

𝑃𝑅𝑂𝐼 can be found through including all of 𝑄𝑅𝑂𝐼 coverage. The example highlights all 𝑃# within 

𝑃𝑅𝑂𝐼 to ensure all primitives of 𝑃𝑅𝑂𝐼 remain covered. 

7.2.3 Compromised Robot Configuration and Occluded Primitives  

As described in Section 7.2.2, 𝑄𝑅𝑂𝐼 and  𝑃𝑅𝑂𝐼 have been defined as the subsets in 𝑄 and 𝑀 

respectively. Within these sets there potentially exists set of compromised configurations 

and occluded primitives due to the influence of 𝑃∗. To capture the set of configurations that 

can no longer be physically achieved and the primitives that can no longer be observed by 

the robot, two sets, 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷  and 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸  are defined as subsets of 𝑄  and 𝑀 

respectively to keep track of compromised configurations and occluded primitives over the 

lifetime of the inspection. As  𝑃∗ , determines if configurations are unreachable or if 

primitives become occluded, 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷  and 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸  only exist within 𝑄𝑅𝑂𝐼 

and 𝑃𝑅𝑂𝐼, respectively.  

7.2.4 Environmental and Mapping Influenced Prison Cells 

Prison cells encountered when planning offline were assumed to be only caused by 

environmental constraints (Section 4.2.2). Since offline maps of the environment are 

assumed to be of high-quality, no additional constraints are added to the established 

environmental constraints. In the online case, prison cells can also be formed due to mapping 

limitations that occur in addition to the environmental constraints. This creates two types of 

prison cells that can form within the environment, environmental prison cells and mapping 

prison cells.  

Mapping prison cells differ from environmental prison cells. Unlike an environmental 

prison cell that traps valid configurations within the actual geometry of the space, mapping 

prison cells trap primitives due to an insufficient understanding about the geometry of the 

space. As the map evolves over time, new features can completely occlude existing 
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primitives of the original map. In reality, these primitives that become occluded, have always 

been occluded and no longer represent actual observable geometries within the map.  

Figure 7-5 illustrates the differences between environmental and mapping prison cells due 

to online map updates.  

Maintaining a complete map of the environment at all times requires the mapping system to 

remove trapped primitives. However, determining when primitives should be removed in an 

evolving environment is a challenging problem. Without a complete understanding about 

the environment, it is unknown as to whether occluded primitives are due to environmental 

 

Figure 7-5: Evolving structures in the environment create either an environmental or mapping prison 

cell that will invalidate the existence of a path to surrounding configurations outside the cell. As these 

prison cells are difficult to identify during execution, the unobservable primitives trapped by these 

either of these prison cell types will be treated equally by the adaptive coverage planner.  
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or mapping prison cells. Attempting to remove primitives as the map evolves may prove to 

be a difficult exercise to undertake online.  

The worst-case scenario is where the mapping system removing occluded primitives that are 

caused by environmental prison cells. These primitives are strictly unobservable due to 

limitations of the robotic platform and environmental constraints and must remain in the 

final map of the environment. Only when a complete map has been formed, can the removal 

of the occluded or trapped primitives be determined. As a result, the mapping system will 

not remove any primitives during execution. The mapping system will maintain the original 

primitive indexing of the original map and will only introduce new primitives to the planning 

problem (Assumption 3; Section 3.6.1).  

To the adaptive coverage planner, environmental and mapping prison cells result in the 

same outcome. As trapped primitives are still included in the planning problem, they are still 

considered observable and will be required to be sampled. As a result, the coverage planner 

will continue to generate configurations to observe trapped primitives which in reality do 

not exist. Until these primitives are deemed unobservable, configurations generated for these 

primitives are deemed to be valid but will be rejected on the basis of not being feasibly 

reached. This situation is identical to how environmental prison cells influence 

configurations (Section 4.2.2).  

As configurations generated within either prison cell type cannot be feasibly reached, the 

adaptive coverage planner does not need to determine what type of prison cell is the cause 

and can handle these situations identically. Therefore, whilst these prison cells are generated 

due to two different reasons, any trapped configurations or primitives that are removed from 

the planning problem are added to 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷  and 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸  respectively. Sections 

7.4.2, 7.5.2 and 7.6.2 discuss how environmental and mapping prison cells are captured in 

both the sampling and planning phases of the online planning problem. 

To determine if a primitive was excluded from the planning problem due to an environmental 

or mapping prison cell, is evaluated after execution. As 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸 records all unobservable 

primitives, primitives removed by the mapping system, results in only 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸 containing 

unobservable primitives due to environmental prison cells. Since mapping prison cell 

primitives are removed, the actual coverage achieved by the coverage planner can be 

reported.  
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7.3 The Adaptive Sampling-based Coverage Planner 

Figure 7-6 presents the proposed adaptive sampling-based coverage planning architecture. 

The adaptive sampling-based planner consists of three phases; 

1) ROI Validation, 

2) Online CSP, and 

3) Online MPP.  

The ROI Validation phase is responsible for utilising ROIs to determine which 

configurations of the current plan 𝑇 are either preserved or candidates for replanning. The 

Online CSP uses the functionality of the offline CSP and SCP procedures to generate 

coverage for new structures detected by the mapping system. Finally, the Online MPP is 

responsible for replanning and merging the new paths into the current plan using the offline 

MPP algorithm. This iterative algorithmic process allows the robot to continually adapt its 

plan online while preserving as much of the uninfluenced plan as possible without 

compromising coverage.  

By maintaining a decoupled approach between sampling and path planning methods, the 

architecture of the online coverage planner generates a planning problem that is 

indistinguishable to the offline CSP and MPP methods. A redundant roadmap is created 

over a subset of the environment that is yet to be covered and the lazy point-to-point planner 

(LPP) iteratively solves individual sub-plans for each ROI between designated start and 

finishing locations.  

In the following sections, the three phases of the adaptive sampling-based coverage planner 

are discussed.  

Section 7.4: Phase 1) ROI Validation (segmentation) 

Section 7.5: Phase 2) Online CSP (replan coverage) 

Section 7.6: Phase 3) Online MPP (replan paths and merge) 

Each section also highlights amendments made to the offline planning procedures discussed 

in Section 4.2 to enable the functions to perform robustly in an online situation.  
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Figure 7-6: Flowchart representation of the adaptive sampling-based coverage algorithm using a 

plan repair strategy. The adaptive sampling-based coverage planner includes an initial validation 

step that determines if the existing configurations reside inside or outside the region of interest (ROI). 

The separation allows the adaptive coverage planner to only replan regions within ROIs.  

7.4 ROI Validation  

Before the new features are covered by new configurations and added into a new inspection 

plan  𝑇∗ , the current plan 𝑇  needs to be segmented based on the ROI to determine the 

influence of 𝑃∗. The ROI Validation, uses the definition of 𝑄𝑅𝑂𝐼, to iteratively check to 

determine which  𝑞𝑗 ∈ 𝑇  to preserve ( 𝑄𝑉𝐴𝐿𝐼𝐷 ), to revaluate ( 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 ), or remove 

( 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷 ). Figure 7-7 illustrates the ROI Validation procedure, presented in  

Figure 7-6.  

All  𝑞𝑗 ∉ 𝑄𝑅𝑂𝐼 create the preserved configuration set  𝑄𝑉𝐴𝐿𝐼𝐷 . As  𝑄𝑅𝑂𝐼  determines which 

configurations exist outside the influence of 𝑃∗, the elements of the 𝑄𝑉𝐴𝐿𝐼𝐷 are all assumed 

to be free of collision and still observes the same primitives as originally calculated in the 

offline plan. However, as 𝑃∗ introduces new primitives, it may be possible for  𝑞𝑗 ∈  𝑄𝑅𝑂𝐼 

to collide with or observe primitives of 𝑃∗.  
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Figure 7-7: Passing the existing tour through the region of interest (ROI) Validation phase. (a) A 

segment of the current tour. (b) The new primitives (light blue) bounded by the ROI (red). (c) The 

current tour is evaluated to determine the current status in and around the ROI. 

As illustrated in Figures 7-6 and 7-7c, to preserve as many configurations in  𝑇 , each 

 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼 is checked for collision and previous coverage revaluated. The evaluation first 

checks the collision status of the robot to ensure the inspection pose can still be achieved. 

As there is a possibility that 𝑞𝑗 ∈ 𝑄𝑅𝑂𝐼 may observe 𝑃∗, the original 𝑣 is recalculated s.t. 

𝑣∗ = {(𝑝𝑖 ⊆ 𝑣) ∪ (𝑝𝑘
∗  ⊆  𝑃∗)} . Configurations that pass these evaluations are added to 

𝑄𝑉𝐼𝐴𝐵𝐿𝐸  with each 𝑣∗ collectively recorded in 𝑉∗ to determine later if all 𝑃𝑅𝑂𝐼 is covered. 

Configurations that fail validation are added to  𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷  and removed from the 

planning problem. 

After all 𝑞𝑗 ∈ 𝑇  have been evaluated, 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  is checked to determine if all the 

configurations cover all elements of  𝑃𝑅𝑂𝐼 s.t.  = 𝑉∗ 𝑃𝑅𝑂𝐼⁄ , where 𝐶  is the residual 

unobserved primitives not seen by 𝑉∗. If the coverage of 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 is not complete over 𝑃𝑅𝑂𝐼 

(𝐶 ≠  ∅), 𝐶 is passed along with 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  to the Online CSP. If 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  covers all 𝑃𝑅𝑂𝐼 

(𝐶 =  ∅), the requirement for complete coverage is held and no 𝑞𝑛
∗  are required. Therefore, 

the Online CSP is skipped with 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 accepted as the covering set 𝑆∗of 𝑃𝑅𝑂𝐼 and proceeds 

to the Online MPP to revaluate the paths within 𝑄𝑅𝑂𝐼. 
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7.4.1 Computation of the ROI  

To determine if 𝑞𝑗  is an element of 𝑄𝑉𝐴𝐿𝐼𝐷 or 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  relies on whether 𝑞𝑗  is within the 

local neighbourhood of 𝑝𝑘
∗ . To minimise the computation for evaluating each 𝑝𝑘

∗  ∈ 𝑃∗ to 

build 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 , a nearest neighbours check is used to determine if  𝑞𝑗  is within the local 

neighbourhood of 𝑝𝑘
∗  . Since the mapping system only adds new primitives to a planning 

problem (Assumption 3), a threshold index (𝑚𝑖𝑛𝑑𝑒𝑥) is provided to the adaptive coverage 

planner by the mapping system to delineate the entries of the new primitives (𝑃∗) from the 

existing primitives (𝑃) of 𝑀. If any primitive index returned from the nearest-neighbours 

search is higher than 𝑚𝑖𝑛𝑑𝑒𝑥, places the configuration within the ROI and subsequently a 

part of 𝑄𝑉𝐼𝐴𝐵𝐿𝐸. 

The calculation of 𝐶 is performed by reassessing the coverage 𝑣 of 𝑞𝑗 ∈ 𝑇 the beginning of 

each replanning iteration. The adaptive coverage planner initialises all primitives of 𝑀 to 

be unobserved and consequently places them to an unobserved primitive list (Section 4.2.3). 

When validating each  𝑞𝑗 ∈ 𝑇 , primitives of 𝑣  and 𝑣∗  for every  𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷  and  𝑞𝑗 ∈

𝑄𝑉𝐼𝐴𝐵𝐿𝐸 are removed from the unobserved primitive list. The remaining primitives in the 

unobserved primitives list after evaluation become 𝐶. As the remaining primitives in this list 

were not observed by any 𝑞𝑗 ∈ 𝑇, ensures that 𝑃# and primitives 𝑃∗ will always be included 

in 𝐶.  

As this thesis works with large sized meshes, an AVL tree was used to represent the 

unobserved primitive list. Continuous calculation of 𝐶  requires inserting, searching and 

removing elements in list and an AVL tree provided a suitable structure to perform these 

functions quickly and efficiently (Puntambekar, 2009).  

7.4.2 Revaluating the Trapped Configuration Heuristic due to Partial Map Updates 

When planning is conducted offline, any configurations generated inside fully enclosed 

objects or prison cells are removed using the Trapped Configuration Heuristic (TCH) which 

performs a ray-trace to the environment’s exterior boundaries and counts the number of 

intersections against the layers in the mesh manifold (Section 4.2.2, Figure 7-8a). When 

planning online, with an evolving mesh, the TCH is no longer guaranteed to hold.  

Figure 7-8b illustrates a simple example of an incomplete object and how the TCH no longer 

holds for configurations located in free space. To ensure trapped configurations continue to 

be captured, so prison cells are avoided, the intersection test, that requires at least two ray  
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Figure 7-8: Revisiting the trapped configuration problem. (a) A complete environment model can 

handle the strict ray tracing constraint. (b) Relaxing the intersection count constraint enables 

configurations to exist within partially constructed environments. (c) Clustering around the entrances 

of an object can cause the Nearest Neighbours Heuristic to pass despite the robot being physically 

unable to pass through the gap of the object. 

traces to pass, is relaxed. Therefore, reassessing the example in Figure 7-8b, the relaxed 

TCH (R-TCH) allows both configurations to remain valid within the environment. As it is 

indeterminate as to when the feature will be fully constructed, the R-TCH does not hold for 

all cases. Therefore, an additional heuristic is used to determine if a configuration is 

potentially trapped. 

A Nearest Neighbour Heuristic (NNH) is added to examine the direct connectivity between 

potentially trapped configurations and nearby configurations. As generating a motion plan 

between all the immediate neighbours of the potentially trapped configuration would be an 

expensive exercise, a ray trace to the immediate neighbours is used as a proxy. If a direct 

line of sight between two or more configurations is achieved, indicates that a path may exist 

between ‘potentially’ trapped configurations and the configuration in the tour. As the 

environment is not considered when evaluating the NNH, giving the potentially trapped 

configuration upwards of ten neighbours is suitable to determine if the configuration is 

potentially reachable.  
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The development of the NNH was derived from the highly compact covering sets, as seen 

in the benchmark experiments (Section 4.4). The majority of the paths are solved using a 

direct path and given the robot planning constraints, the tank environments are expected to 

produce a covering set into the thousands with closely compact neighbours. However, given 

the nearest neighbours heuristic is a proxy for a motion plan, and no collision checking along 

the approximated path is performed, there is a caveat to this approach. When the structures 

begin to form, the NNH has the potential to pass despite the robot being physically unable 

to pass through the object. In highly compact covering sets, a crowding of configurations 

can occur around the entrances of an object, allowing the naïve nearest neighbours check to 

pass (Figure 7-8c). A trapped configuration that passes these tests in the ROI Validation or 

Online CSP phases creates a prison cell in the Online MPP phase. To compensate for the 

case that both the R-TCH and NNH pass a trapped configuration, the functionality of the 

LPP has been extended to remove these configurations during the path planning phase 

(Section 7.6.2). 

Despite the occasional chance that a trapped configuration is passed the LPP, both R-TCH 

and NNH in tandem, create a suitable and computationally efficient check to determine if a 

configuration is trapped without having to calculate a motion plan. When the new structures 

begin to take shape, more configurations will be captured by these heuristics. Any 

configurations that are trapped are added to 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷  and the unique primitives of 

these configuration remain in 𝐶 to be covered again.  

7.5 Online CSP 

The Online CSP is responsible for creating the covering set 𝑄𝑁𝐸𝑊 to observe 𝐶 (Figure 7-9). 

The random sampling procedure, as utilised in the offline algorithm with an amended 

optimal sampling procedure (Section 7.5.1), is used to generate a redundant roadmap to 

cover 𝐶 instead of 𝑃. The SCP is applied over 𝑄𝑁𝐸𝑊 and 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  to produce a feasible 

covering set  that covers all primitives in  𝑃𝑅𝑂𝐼 . Any members of 𝑄𝑉𝐼𝐴𝐵𝐿𝐸  that are 

discarded from the greedy and pruning procedures for no longer contributing significant or 

unique coverage are added to 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷. 

7.5.1 Optimal Sampling Procedure 

Random sampling is suitable in the online planning situation due to minimal assumptions 

random sampling places upon the environment, therefore, making it suitable to employ over  
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Figure 7-9: Sampling new configurations across the unobserved primitive set 𝐶. A new redundant 

roadmap is generated over the unobserved primitives (blue) within the region of interest (ROI). The 

two existing configurations (yellow) are retained for their unique coverage. A single primitive is 

partially occluded by the new structure (red) and is excluded from the coverage. 

incomplete objects. However, random sampling does not guarantee the configuration 

contains the best quality observation. Randomly sampled configurations can generate 

viewing angles that are oblique to the surfaces. In some circumstances, samples generated 

with oblique angles can be the best attempt to view the complex surfaces. However, when 

sampling is performed over simpler surfaces, a more deterministic sampling process that 

maximises the coverage over these surfaces may be more beneficial. A deterministic 

sampling approach will create regularity in positioning which will aid in maintaining 

consistent image quality. In an inspection task dependant on capturing high-quality images, 

maintaining a level of consistency across all images is the preferred outcome.  

To reduce the number of random samples used to cover the environment, Englot and Hover 

(2012b) segmented the environment into simple and complex surfaces. Sweep paths 

generated from regularly spaced waypoints were used to cover the large flat surfaces from a 

more ideal viewing distance while random sampling was left to cover the remaining complex 

surfaces. However, since the segmentation process differs between environments and the 

sweep paths are 2D projections over the flat surfaces, the sweep path technique is not directly 

applicable to the online planning problem or the target environment. Therefore, instead of 

introducing any additional pre-processing step to enable systematic sampling over particular 

surfaces, the existing sampling process to create the redundant roadmap is modified to first 

seek the creation of an ‘optimal’ viewing position before reverting to random sampling to 

complete the remaining redundancy of a primitive.  

When random sampling configurations within the local neighbourhood, there is a viewing 

position that would be considered the optimal position to view the surface in relation to 
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image quality. Generally, over a flat surface the optimal position is directly above the 

surface, as it allows the full exploitation of the viewing angle across the surface  

(Figure 7-10a). While the optimal position is subjective to the application, a suitability 

placed ‘optimal’ position can remove several random configurations from being selected 

solving the SCP (Figure 7-10b). As the parameters to define the optimal viewing distance is 

based on the intrinsic sensor constraints, no parameterisation or pre-processing of the 

environment is needed to include a check on the optimal viewing location of a selected 

primitive.  

  

Figure 7-10: Optimal Sampling Procedure. (a) Sampling above the surface at the optimal position 

allows for (b) a better observation of the surface than a large percentage of random samples, 

especially below the optimal position.  

A change to the sampling procedure to create the Optimal Sampling Procedure (OSP), 

allows for the optimal position to be sampled first in an attempt the gain the best possible 

coverage of the selected primitive before proceeding to use random samples to view the 

primitive again. If the optimal position is not valid due to collision or occlusion, the 

primitive’s primitive rejection count (Section 4.2.3) is not increased. The primitive rejection 

count is only applied failed random samples.  

When solve the SCP over the redundant roadmap, optimal and random configurations are 

treated equally. As the greedy algorithm is configured to take configurations containing the 

highest number of primitives, if a set of optimal configurations contains more coverage than 

a random configuration viewing the same primitive, it will be accepted into . It is therefore 

assumed that in areas of local planarity, optimal configurations would dominate over random 

samples, and in areas of restrictive geometry, random samples will dominate.  

Another benefit of regularly spaced configurations is that it aids in the production of 

smoother paths. As the sampling and path planning process are separate, the resulting tours 

are disjointed as the piecewise path connections are joined together. The accumulation of 

paths does not produce successive smooth trajectories that would be beneficial for a robot 
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possessing complex motion planning constraints. As a result, the energy consumption and 

motion planning along these trajectories would be more expensive compared to trajectories 

that are noticeably straighter. While, this thesis does not focus on the energy expenditure of 

a coverage plan, promoting the use of optimal positions, where possible, will aid in creating 

coverage plans that are easier to solve for the high-fidelity motion planner.  

7.5.2 Tracking Occluded Primitives over the Lifetime of the Inspection Task 

In Section 4.2.3, a user-defined primitive rejection limit was introduced to limit the number 

of times a primitive can fail being observed before the primitive is deemed to be 

unobservable. Given there is an increased chance of prison cells within an evolving 

environment, the user-defined primitive rejection limit is critical to ensure occluded 

primitives are captured and removed as early in the sampling process as possible. Constant 

sampling over occluded primitives will result in an increase in sampling time that may not 

contribute any further coverage. As the adaptive coverage planner cannot distinguish 

between environmental and mapping prison cells, all primitives exceeding the rejection 

count are added to 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸.  

Once a primitive becomes a part of 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸  after sampling is complete, the primitive will 

no longer be considered a part of , if present within a ROI, in the future planning 

updates. Primitives of 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸 are immediately removed from the unobserved primitive 

list at the beginning each planning iteration. Primitives once added to 𝑃𝑂𝐶𝐶𝐿𝑈𝐷𝐸 can only be 

removed if observed indirectly by another configuration. As the mapping system only adds 

new primitives to the planning problem, it is unlikely that once a primitive is added 

to 𝑃𝑂𝐶𝐶𝑈𝐿𝐷𝐸 it will be observable in future iterations. Ensuring that all occluded primitives 

are maintained over the lifetime of the inspection task will aid in determining the actual 

cause of occlusion when analysed by the mapping system post-inspection.  

7.6 Online MPP 

The final stage of the new adaptive coverage planner is to re-assess the validity of the paths 

within 𝑄𝑅𝑂𝐼  and merge 𝑆∗  into an existing plan using the Online MPP as shown in  

Figure 7-11. The role of the Online MPP determines the preserved paths throughout the 

environment, finds the best location for the new and original configurations to be added back 

into the tour and solve the paths within 𝑄𝑅𝑂𝐼  to produce an updated tour  𝑇∗ . The 

functionality of the Online MPP procedure attempts to reduce the overall computation  
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Figure 7-11: Replanning path segments back into existing plan. (a) The path segment is replanned 

between the entry and exit gates into around the region of interest. (b) The tour and map are updated 

to reflect the new paths and coverage determined in the current iteration. The next iteration will 

exclude the unobserved primitives completely (red) if they are not included within the region of 

interest. 

compared to the full replan strategy by preserving as much of the original tour 𝑇 as possible 

and solving smaller MPPs. 

This problem of reducing the replanning effort is facilitated by breaking 𝑇  into path 

segments. When generating an offline 𝑇, there exists only one path segment from start to 

finish. However, when replanning occurs online, 𝑇  may intersect multiple ROIs. To 

distinguish between paths that are either outside or within the ROI, 𝑇 is divided into multiple 

path segments. Separating 𝑇 into path segments, allows segments outside the ROI to be 

preserved and those intersecting the ROI, to be replanned. That is, 𝑇∗ = {𝐿𝑅 ∪ 𝐿𝑈}, where  

𝐿𝑅 is the set of resolved path segments 𝑙𝑠
𝑅 outside the ROI and 𝐿𝑈 is set of unresolved path 

segments 𝑙𝑠
𝑈 inside the ROI. 

The resolved path segments are constructed from stepping along 𝑇, and adding to 𝑙𝑠
𝑅  all  

𝑞𝑗 ∈  𝑄𝑉𝐴𝐿𝐼𝐷  until 𝑞𝑗  encounters an entry gate  𝑞𝑔
𝐸𝑛𝑡𝑟𝑦

. A 𝑞𝑔
𝐸𝑛𝑡𝑟𝑦

 is the last 𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷 

before entering the ROI, indicating that the path between 𝑞𝑗 ∈  𝑄𝑉𝐴𝐿𝐼𝐷and 𝑞𝑗+1 ∈  𝑄𝑅𝑂𝐼 will 

need to be replanned. Equation 7.3 defines the set of all entry gates 𝑄𝐸𝑛𝑡𝑟𝑦. 

𝑄𝐸𝑛𝑡𝑟𝑦 ≜ {𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷| ( 𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷) ∧ ( 𝑞𝑗+1 ∈ 𝑄𝑅𝑂𝐼), ∀𝑞𝑗 ∈ 𝑇}        (7.3) 

Conversely, the path from 𝑞𝑗−1 ∈  𝑄𝑅𝑂𝐼 to 𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷will indicate the departure of the ROI 

and will create an exit gate 𝑞𝑔
𝐸𝑥𝑖𝑡. New 𝑙𝑠

𝑅 will begin construction again upon encountering 

the next 𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷 in 𝑇. Equation 7.4 defines the set of all exit gates 𝑄𝐸𝑥𝑖𝑡. 

𝑄𝐸𝑥𝑖𝑡 ≜ {𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷| ( 𝑞𝑗−1 ∈ 𝑄𝑅𝑂𝐼) ∧ ( 𝑞𝑗 ∈ 𝑄𝑉𝐴𝐿𝐼𝐷), ∀𝑞𝑗 ∈ 𝑇}  (7.4) 
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Unresolved path segments are constructed from the pairing of ROI entry and exit gates and 

serve as a path segment to plan into  𝑇∗ subsets 𝑠𝑎 ⊂ 𝑆∗. Equation 7.5 defines the set of all 

unresolved path segments 𝐿𝑈. 

𝐿𝑈 ≜ {𝑄𝐸𝑛𝑡𝑟𝑦 ⋃  𝑠𝑎 ⊂ 𝑆∗ ⋃  𝑄𝐸𝑥𝑖𝑡}                 (7.5) 

Elements of 𝑆∗ are sorted into each 𝑙𝑠
𝑈 by evaluating the point-to-line distances between each 

element of 𝑆∗  between each pair of  𝑞𝑔
𝐸𝑛𝑡𝑟𝑦

 and  𝑞𝑔
𝐸𝑥𝑖𝑡 . When all  𝑙𝑠

𝑈 ∈ 𝐿𝑈   are created, 

each 𝑙𝑠
𝑈 ∈ 𝐿𝑈 creates an unordered ROI sub-plan that can be solved by the LPP. Assuming 

these sub-plans are sufficiently small in size, will reduce computation of the problem 

compared to solving the MPP across the whole space which would be carried out in the full 

replan case.  

In the case where  𝑞𝑗+1 ∉ 𝑄𝑅𝑂𝐼  resulting in no 𝑄𝐸𝑛𝑡𝑟𝑦 and  𝑄𝐸𝑥𝑖𝑡 , all elements of 𝑆∗  are 

collectively solved as a singular sub-plan between the last and second 𝑄𝑉𝐴𝐿𝐼𝐷  in 𝑇. An 

example of this situation occurs when the new surfaces and the ROI do not intersect 𝑇. While 

a rare occurrence, especially in highly clustered coverage sets, providing this extra clause 

ensures the new coverage is always added into the plan. 

As the path segments of 𝑇 are solved in tour-order, upon solving for each 𝑙𝑠
𝑈 ∈ 𝐿𝑈 the result 

can be merged together with 𝐿𝑅 to form 𝑇∗. The updated solution is provided to the motion 

planner to update the new paths before being supplied to the robot. 

Before the next 𝑀 is supplied, the current 𝑀 ⟶ 𝑃 and 𝑇∗ ⟶ 𝑇. This allows the planning 

iteration to replan knowing everything beforehand has been resolved. This process continues 

until the robot has completed the tour and no further map updates are provided. 

7.6.1 Solving Each ROI Sub-plan 

To ensure the TSP solver finds a solution between specified start and finish positions, each 

sub-plan is solved using an algorithm for finding the shortest Hamiltonian path by 

introducing a dummy city to constrain the TSP solution (Applegate et al., 2011). Forcing the 

TSP to start and end at different endpoints has also been known as the Travelling Salesman 

Sub-problem (Englot and Hover, 2012b) or Shortest Sequencing Problem (Alatartsev, 

Stellmacher, and Ortmeier, 2015). Solving the Travelling Salesman Sub-problem has a few 

different solutions. Englot and Hover (2012b) ensures the entry and exit terminals of the 

sweep path appear adjacent in the final TSP solution by assigning a zero cost between entry 
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and exit terminals.  

The approach used in this thesis introduces a dummy city, or configuration, to augment the 

adjacency matrix to ensure the start and finishing locations are adjacent in this final 

inspection plan (Figure 7-12; Applegate et al., 2011). A zero cost is assigned to the edges 

connecting the starting and finishing locations with the dummy configuration. To ensure no 

other path is viable to the dummy configuration, a value that is significantly larger than any 

other connection is assigned to all other configurations to the dummy configuration  

(Figure 7-12b(i)).  

In the final solution, the dummy configuration can be removed, placing the start and finish 

position of each sub-plan adjacent to each other (Figure 7-12b(iii)). As the TSP solution is 

assumed to be symmetrical, separating the tour at the dummy configuration allows a TSP 

sub-problem to create a tour starting from 𝑞𝑔
𝐸𝑛𝑡𝑟𝑦

 and ending at 𝑞𝑔
𝐸𝑥𝑖𝑡. 

 

 

Figure 7-12: The Travelling Salesman Sub-Problem. (a) A standard travelling salesman problem 

(TSP) solution starting and finishing at the entry gate. (b) A solution using a dummy configuration 

to solve the TSP sub problem. (b-i) Assigning a zero-edge cost from the start and finish to the dummy 

configuration (black) with a large edge cost from the dummy configuration to all other configurations 

(blue). This value needs to be greater than the largest edge cost in the problem (red) to avoid 

connecting any other configurations to the dummy configuration (b-ii) The final solution forces the 

dummy configuration to be adjacent to the gate pair (orange). (b-iii) Removing the dummy 

configuration orders a TSP Sub-Problem starting and finishing at the gate pair. 
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7.6.2 Enabling the LPP to Remove Trapped Configurations due to Prison Cells  

There is the possibility that the heuristics developed to capture trapped configurations fail 

(Section 7.4.2). When this happens, new paths to this configuration are potentially infeasible. 

Figure 7-13 illustrates a simple example of how no RRT can find a solution through the 

opening of the object to connect to the trapped configuration.  

 

Figure 7-13: Example of a trapped configuration within a partially constructed object. RRTs attempt 

to connect to configurations 1-2 and 2-3 however collision checks on RRT paths on the entry of the 

object (red) impede these paths from connecting to the trapped configuration (2). Configuration 2 is 

deemed to be trapped and is removed from the tour. 

In the LPP, if a configuration is trapped, a viable path to that configuration cannot be formed. 

If a viable path cannot be formed between two configurations for a given planning iteration 

constitutes an invalid tour. An invalid tour in an iterative replanning system will not allow 

the robot to effectively conduct the inspection mission. As these situations are difficult to 

predict, it is acceptable to remove trapped configurations in the path planning stage to allow 

a valid solution to exist providing the removed configurations and the associated coverage 

is reported as unreachable and unobservable respectively. 

The current implementation of the LPP does not remove trapped configurations. While 

majority of the trapped configurations are expected to be captured in the ROI Validation 

stage, a trapped configuration under the current LPP implementation will not produce a 

successful tour; a consequence that is not acceptable for online planning. Therefore, for the 

LPP to be flexible and consistently provide valid tours upon each planning iteration, an 

additional heuristic is added to the LPP to detect and remove trapped configurations. The 

Trapped Configuration Heuristic for Path Planning (TCH-PP) is used to provide the LPP 

with a removal process for trapped configurations so they do not produce invalid tours. 
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The TCH-PP is used to track the number of times a configuration fails to create an RRT 

paths to other configurations. Configurations that are trapped are unable to produce a path 

between the preceding and succeeding configurations in the tour. If a configuration fails to 

create a path to and from its current location in successive iterations, it is considered trapped 

and is removed.  

Removing one trapped configuration is simple and can be removed in the first iteration. 

However, identifying and removing two or more configurations that are trapped within the 

same object requires more planning iterations to track the number of paths between 

configurations that fail. After additional planning iterations, the trapped configurations will 

continue to report failed paths to other external configurations. By cross-checking the failed 

attempts against failure reports from previous iterations, the most commonly failed 

configurations can be identified and removed.  

Removing a configuration from the planning set will constitute an invalid planning iteration 

as the adjacency matrix needs to be reconstructed for the next planning iteration. Instead of 

reinitialising the matrix back to the Euclidean assumption, the adjacency matrix is reformed 

to include all previous solutions. As the planning problem has changed, reformatting the 

adjacency also requires reinitialising the best solution before the next replanning iteration.  

Finally, whenever a configuration is removed it is important that the coverage that it once 

observed properly reflected with respect to the coverage of the overall environment. As the 

sampling process has already occurred for this planning iteration, the unique primitives that 

the trapped configuration observed is added 𝑃𝑂𝐶𝐶𝑈𝐿𝐷𝐸. 

7.7 Representative Concept Demonstration  

Figure 7-14 illustrates conceptual demonstration of the adaptive sampling-based coverage 

planner implementing a plan repair strategy to provide coverage for pipe holder structure 

over an I-beam. Figure 7-14a overlays an offline plan calculated by the offline sampling-

based coverage planner starting and ending at specific endpoints (green and red 

respectively) using the TSP sub-problem solution presented in Section 7.6.1. In  

Figure 7-14b, the pipe holder is introduced as the new feature 𝑃∗ and is bounded within a 

representative cylindrical ROI that approximates the features influence on current tour 𝑇. 
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Figure 7-14: The adaptive sampling-based coverage planner replanning over a representative  

I-Beam structure. (a) Offline plan. (b) Introduction of a new structure bounded within an 

approximated region of interest (ROI). (c) ROI Validation. (d) Online covering sampling problem 

(Online CSP). (e) Online multi-goal planning problem (Online MPP). (f) Updated inspection plan. 

 



7.8 PROBABILISTIC COMPLETENESS OF THE ADAPTIVE SAMPLING-BASED COVERAGE 

PLANNER 

 

215 

Figure 7-14c demonstrates the first stage of the adaptive sampling-based coverage planner 

by performing cross checks over 𝑇 to determine which configurations exist inside (𝑄𝑅𝑂𝐼) or 

outside the ROI (𝑄𝑉𝐴𝐿𝐼𝐷 ). Figure 7-14c also shows the resolved path segments (𝐿𝑅) , 

highlighted in green, which have been preserved outside the ROI. Configurations of 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 

are highlighted in yellow.  

As the new feature is not covered by any original configurations, the Online CSP procedure 

samples new configurations and solves the SCP which combines both 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 and 𝑄𝑁𝐸𝑊 to 

find 𝑆∗ over 𝑃𝑅𝑂𝐼. The result of the Online CSP process is shown in Figure 7-14d with the 

accepted 𝑄𝑁𝐸𝑊 shown in blue and the surviving configurations of 𝑄𝑉𝐼𝐴𝐵𝐿𝐸 highlighted in 

green. Compromised configurations (𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷) are highlighted in red. 

Figure 7-14e demonstrates the Online MPP process. The elements of 𝑆∗  are sorted into 

unresolved path segments ( ) and solved using the MPP between 𝑄𝐸𝑛𝑡𝑟𝑦 and 𝑄𝐸𝑥𝑖𝑡. Each 

unresolved path segment that was solved by the LPP is highlighted as a different colour. In 

this example five path segments were resolved within the one collective ROI that surrounds 

the pipe holder. Figure 7-14f shows the final tour update. 

7.8 Probabilistic Completeness of the Adaptive Sampling-based 

Coverage Planner 

The offline sampling-based coverage planner was proven by Englot and Hover (2012a) to 

be probabilistically complete. Both the sampling and planning procedures were presented 

with failure bounds that coincide with previous proofs given in other sampling-based path 

planning algorithms (Kavraki et al., 1998; LaValle and Kuffner, 2001). All that is required 

is that prison cell geometries are not present in the environment.  

Given the adaptive sampling-based coverage planner is derived directly from the 

fundamental CSP and MPP procedures of the offline coverage planner to solve smaller sub-

problems should ensure the probabilistic completeness of these procedures still hold. 

However, since the adaptive coverage planner has to handle evolving environments and 

segment the plan to reduce the replanning costs, the impact of managing these problems has 

the potential to impact on the completeness of the final solution.  

The first consideration is handling the prison cells. Probabilistic completeness for the offline 

CSP and MPP sub-problems are able to achieve 100% coverage provided prison cells can 
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be avoided (Englot and Hover, 2012a). As discussed in Section 7.2.4, transient prison cells 

are expected to occur, if not frequently, in an online planning scenario. Through a series of 

implemented countermeasures that restrict sampling over occluded primitives (Section 

7.5.2) and remove trapped configurations from the planning problem (Sections 7.4.2 and 

7.6.2), ensure prison cells also do not affect the probabilistic completeness of the adaptive 

sampling-based coverage planner.  

The second consideration is to ensure every configuration and primitive under the influence 

of 𝑃∗ is appropriately captured. The ROI is used to determine which configurations and 

primitives are influenced by  𝑃∗ . Assuming that all of the primitives of 𝑃  that become 

unobserved (𝑃# ) due to 𝑃∗  are candidates for resampling, s.t.  𝑃# ⊂ 𝑃^  (Section 7.2.2), 

ensures that all primitives that do require to be replanned (𝑃#) will not be excluded in the 

resampling process and therefore will remained covered.  

As mentioned in Section 7.5, the Online CSP procedure is a direct utilisation of the offline 

CSP algorithm. Providing the mesh manifold exists in the same dimension as 𝑄 (this work 

is ℝ3) and the mesh density is of sufficient resolution that at least a single primitive can be 

observed, the probabilistic completeness proof as presented in Englot and Hover (2012a) 

holds in this context. The optimal sampling procedure (Section 7.5.1) does not infringe on 

probabilistic completeness as random samples are still required to satisfy primitive 

redundancy.  

Similar to Online CSP, the Online MPP employs the same path planning algorithms to solve 

the MPP. Englot and Hover (2012a) provides a proof of completeness for any MPP algorithm 

that iteratively solves the MPP using an RRT-based solution. Since the RRT has been proven 

to be probabilistically complete by LaValle et al. (2001), enables any MPP algorithm 

utilising an RRT to be probabilistically complete. Since the implementation of the LPP 

retains an RRT-based solution ensures that the probabilistic completeness holds for path 

planning in the conducted by the adaptive sampling-based coverage planner. 

The introduction of a dummy configuration into MPP does not affect the completeness and 

convergence of a solution. Since an RRT is never used to update the costs between the 

dummy configuration and the start and finish locations, the dummy configuration cannot be 

assessed for probabilistic completeness. The dummy configuration serves as a virtual path 

that is only used to ensure the start and finish locations are adjacent in the final solution. As 
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the dummy configuration has no impact on other path solutions and is removed at the 

conclusion of the MPP solution, results in a final solution of only RRT paths.  

The final stage of the Online MPP process merges preserved path segments with newly 

solved sub-plans. Since both the preserved path segments and sub-plans have both been 

proven to be probabilistically complete, the merging of these path segments must create an 

overall solution that is collectively probabilistically complete. Therefore, even with the 

presence of prison cells, which are compensated for in this work, and functions that segment 

the tour using ROIs, the sampling and path planning methods still adhere to probabilistic 

completeness.  

7.9 Chapter Summary  

In this chapter, the adaptive sampling-based coverage planner that uses a ROI to perform a 

plan repair strategy to partially replan segments of the existing tour due to the influences of 

newly introduced features was proposed. When a map update is supplied from the mapping 

system, the three-phase planning procedure produces a ROI around the new features to 

segment the current plan. Regions outside the ROI are preserved whilst regions within the 

ROI are replanned to cover the new features.  

The proposed adaptive sampling-based coverage planner still maintains the same sampling 

and path planning procedures to generate a redundant roadmap replan new path segments 

into an existing tour. By treating each replanning iteration independently ensures that these 

procedures act as if the planning problem present is equivalent to solving smaller offline 

plans. Compared to a full replan strategy, the path replan strategy attempts to reduce the 

planning effort that, for tank environments, have been proven to be expensive environments 

to cover.  

By developing a new adaptive sampling-based coverage planner, this chapter presented a 

new set system (𝑀,𝑄) that better represents the online planning problem. Throughout this 

chapter, certain aspects of the offline sampling-based coverage planner were amended, and 

new procedures were introduced to aid the adaptive sampling-based coverage planner to 

work robustly online. These changes included; 

1) an optimal sampling procedure to enable the sampling procedure to sample optimal 

positions of the surfaces first before resulting to random sampling,  

2) the tracking and handling of occluded primitives during the lifetime of an inspection, 
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the relaxation of the TCH to create the R-TCH that attempts to capture trapped 

configurations within partially constructed structures,  

3) the development of the NNH to aid the R-TCH to capture trapped configurations 

without calculating a motion plan, and 

4) provided the LPP with the TCH-PP so undetected trapped configurations can be 

removed during the path planning phase. 

Finally, the chapter concluded with a demonstration that the adaptive sampling-based 

coverage planner also adheres to probabilistic completeness, providing the ROI 

encapsulates all primitives that may be influenced by the new features. The generic nature 

of the ROI and the preservation of the existing sampling-based coverage and path planning 

methods enabled it to be possible to preserve this important attribute of the offline sampling-

based coverage planner.  

In the next chapter, the performance of the adaptive coverage planner using ROIs is 

compared against an adaptive coverage planner using the full replan strategy to determine 

which of the two replanning strategies is best for the offline sampling-based coverage 

planner. The next chapter will also include a description of the adaptive coverage planner 

using the full replan strategy which formulation is heavily based of the terms presented in 

this chapter. 
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Chapter 8  

Computational Analysis of the Adaptive Sampling-

Based Coverage Planners 

8.1 Introduction  

In the previous chapter, the adaptive sampling-based coverage planner using a plan repair 

strategy was proposed in detail. To minimise the computational effort of performing an 

online tour update, the plan repair strategy uses the visibility constraints of the sensor to 

form a region of interest (ROI) around each new primitive of the map update to determine 

which segments of the current tour are influenced by the new changes. Regions of the 

environment that are under the influence of new changes are subject to replanning and 

merged back into the existing tour. 

The aim of this chapter is to investigate whether the plan repair strategy is a suitable 

approach to extend the offline sampling-based coverage planner as an adaptive online 

implementation. To determine if this strategy is suitable, a series of experiments were 

designed to compare the performance of the plan repair strategy against an adaptive 

sampling-based coverage planner using a full replan strategy. The experiments were 

designed to answer the following questions: 

Question 1) What is the computational impact of segmentation and merging of sub-

plans on the planning times? 

Question 2) What is the potential drop in tour optimality as the sub-plan approach 

does not solve the coverage plan globally? 

Question 3) How does the plan repair strategy scale to the size of the environment 

and size of the detected features? 
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Question 4) What is the replanning limit in which the full replan strategy outperforms 

the plan repair strategy? 

The experimental results obtained in Chapters 4 to 6 suggest that the plan repair strategy 

should outperform the full replan strategy. However, given neither strategy has been applied 

before to convert the offline sampling-based coverage planner to perform adaptively online, 

in this context, it is unknown whether the additional processes to segment and merge enable 

the plan repair strategy to successfully outperform the full replan strategy.  

While the plan repair strategy is expected to outperform the full replan strategy, there is a 

limit that exists where the full replan strategy will outperform the plan repair strategy given 

the additional computation required to segment, replan and merge. This chapter seeks to 

determine where this limit exists for the designed plan repair strategy given the 

environments used for testing. 

Finally, the analysis of the experiments undertaken in this chapter provide an indication as 

to whether the plan repair strategy is capable of satisfying Requirement 7 of the submarine 

tank inspection planning problem (STIPP). As there was no prior research available to 

suggest how either replan strategy will perform within the complex, confined spaces of a 

submarine tank, it was decided at a one to two-minute replanning time would be a suitable 

benchmark to achieve. Currently, offline planning results in previous chapters indicate the 

full replan strategy would be in the order of five to seven minutes.  

For clarity, to distinguish between the two types of adaptive sampling-based coverage 

planners, the adaptive coverage planner executing a plan repair strategy is referred to as 

the AD-P, and the adaptive coverage planner using a full replan strategy is referred to as 

the AD-R.  

8.2 Experiment Methodology 

This section discusses the methodology used to test the two adaptive coverage planners. 

This section covers the following;  

1) the proposal of AD-R, 

2) the experiments that have been designed to analyse the functionality of AD-P against 

AD-R, 

3) the planning environments used in the experiments, 
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4) the initial offline tours used to initialise the online adaptive planners, 

5) determine the appropriate redundancy to create online redundancy roadmaps,  

6) contextualise the output of the adaptive coverage planners with respect to the 

concept demonstrator that was intended to be used in the real-world trials, and  

7) discuss how the additional termination conditions (Chapter 5) and hybrid-heuristic 

(Chapter 6) are integrated within each of the adaptive coverage planners.  

8.2.1 Adaptive Coverage Planning Using a Full Replan Strategy 

To enable an unbiased comparison between adaptive coverage planners, AD-R is also 

designed to execute using the same ROI Validation, Online CSP and Online MPP procedures 

as AD-P. However, as AD-R is not required to preserve any configurations not achieved by 

the robot during execution, there are a few notable changes to the planning process.  

Figure 8-1 presents the AD-R architecture using the new set system (𝑀, 𝑄) representation as 

defined in Section 7.2.1. To ensure inspected areas are not replanned again, the ROI 

Validation phase is only used to verify which configurations 𝑞𝑗, of the current tour 𝑇, have 

been achieved by the robot  𝑄𝑉𝐴𝐿𝐼𝐷 . All remaining configurations and their associated 

coverage are removed 𝑄𝐶𝑂𝑀𝑃𝑅𝑂𝑀𝐼𝑆𝐸𝐷 , to allow unhindered replanning. The primitives  𝑝𝑖 of 

the original environment 𝑃, that become unobserved due to this validation process along 

with all the new primitives 𝑃∗, of the map update 𝑀, are supplied together 𝑈, to the Online 

CSP. The Online CSP performs as intended. A redundant roadmap 𝑄𝑁𝐸𝑊, is created and 

pruned to create a minimal covering set 𝑆∗, by solving the set cover problem (SCP) that 

observes 𝑈.  

As the Online MPP assumes the current position and the final position are always valid 

positions, the Online MPP for a full replan creates a single unresolved path segment 𝑙𝑈, to 

reorder 𝑆∗. The unresolved path segment is solved as a travelling salesman sub-problem 

(Section 6.6.1) using the LPP, with the resultant ordered path segment appended to 𝑄𝑉𝐴𝐿𝐼𝐷 

to create a new tour  𝑇∗ . The AD-R continues this process until the inspection plan is 

complete.  

As the entirety of the coverage plan is replanned beyond the current position of the robot, 

the full replan strategy still adheres to the probabilistic completeness (Englot and Hover, 

2012a; Section 7.8). Unlike AD-P, which requires all primitives and configurations 

influenced by changes to be correctly identified, AD-R requires any primitives that have not  
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Figure 8-1: Flowchart representation of adaptive sampling-based coverage planner using the full 

replan strategy. 

been captured by the robot before this event, to be covered again. Providing configurations 

trapped in prison cells are removed, probabilistic completeness is still maintained. 

8.2.2 Experiment Design  

Three simulated experiments, listed below, were designed to analyse the functionality of 

AD-P to answer the questions listed in Section 8.1. The experiments conducted in this 

chapter are: 

Experiment 1: Size and scalability of AD-P within a controlled environment with 

full map updates (Section 8.3). 

Experiment 2: Adaptive planning within the representative tank environments with 

full map updates (Section 8.4). 

Experiment 3: Coverage planning with partial map updates in the controlled and 

representative tank environments (Section 8.5). 

Experiments 1 and 2 that plan with full map updates, do not simulate the execution of the 
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coverage plan or interact with a mapping system. Map updates are delivered in full at the 

beginning of the trial to simulate the maximum replanning effort over one planning iteration. 

These experiments demonstrate the principles and intrinsic behaviours of AD-P and AD-R 

before being applied to perform iteratively over partial map updates in Experiment 3, where 

the adaptive coverage planners are coupled with a mapping system (Section 8.2.4) to 

simulate the coverage plans. This experiment will provide an indication whether AD-P and 

AD-R can replan under the one to two-minute time limit as stipulated by the STIPP criteria.  

The experiments in this chapter compare the performance of both replanning strategies over 

controlled environments and representative tank environments. Controlled environments are 

again used to analyse the intrinsic behaviour of the new adaptive coverage planners and the 

representative tank environments will provide validation to the previous results. Complexity 

is introduced into these planning problems by incrementally adding more features into the 

environment. The more features that are introduced, the more replanning that is required. 

While Assumption 2 assumes that in a practical scenario only small changes are expected to 

occur inside the submarine tanks, 30% maximum, these experiments will introduce enough 

change within the environment to influence over 50% of the original tours. This will help 

determine if AD-P is capable of replanning faster at higher replan efforts. More details about 

the environments used and the introduced changes are discussed in Section 8.2.3.  

For consistency across all experiments in this thesis, the simplified robotic platform and 

visibility constraints, as discussed in Section 3.6, are again used to minimise the number of 

extrinsic influences on the planning procedures. As the robot platform has been simplified, 

the tours that are produced in these experiments are only representative of what a multi-

legged robot may perform. For robotic platforms that share similar 6-DOF holonomic 

constraints, the results are transferable. 

All experiments in this chapter were conducted on the same 64-bit Intel i7 920 CPU, 8 core, 

6GB RAM machine running Ubuntu 16.04 LTS as in Chapters 4-6. Analysis of the data was 

performed with MATLAB 2018b. Appendix A contains the list of open source packages that 

were used to create both AD-P and AD-R.  

8.2.3 Planning Environments  

Expanding upon 2x2m and 6x6m used in previous chapters, seven controllable box 

environments, increasing in size from 2.0 x 2.0 x 0.2m (2x2m) to 8.0 x 8.0 x0.2m (8x8m), 

are used for Experiments 1 and 3 (Figure 8-2). Complexity inside these environments is 
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controlled by introducing the same single cylindrical feature into the environment, at 

equidistant locations from the sides of the environment and from each other. Figure 8-2c 

shows the order and placement locations of up to nine cylindrical objects that were 

incrementally introduced in full for Experiment 1. The placement of the cylindrical features 

ensured that 100% coverage was obtained. Even in the smallest environment, 2x2m, the new 

features were placed far enough apart to avoid primitive occlusion between objects. 

By introducing the same feature each time, it was expected that for each replanning update, 

the planning times for AD-P should scale approximately linearly. Introducing the same 

feature allowed for more deterministic behaviours to be observed by the adaptive coverage 

planner. The influence of the same feature across the trials of the same planning problem 

should lead to; 

1) the same number of configurations being inside ROI, 

2) the same number of path segments being preserved, 

3) approximately the same sized covering sets being produced for each feature, given 

that the same number of primitives are being added to the planning problem,  

4) approximately the same number of path evaluations to solve multiple MPPs, which 

should therefore lead to, 

5) approximately the same planning times being achieved for each trial for each 

planning problem. 

By restricting the replanning effort by introducing the same features, ensures that the only 

variability that should be observed across the trials is that of the random nature of the 

sampling and path planning procedures. This enables a thorough analysis of AD-P to be 

performed in order to understand the intrinsic behaviour of the AD-P, without the influence 

of irregular partial map updates, which would otherwise make it difficult to compare against 

AD-R. 

It was expected that in the smallest planning environment with the maximum amount of 

change (2x2m_9), AD-P would be required to replan upwards of 85% of the existing tour. 

This would present as the toughest problem for AD-P to solve and it was expected that  

AD-P both planning times and tour quality would be less than AD-R due to solving the 

replanning problem locally. The easiest replanning problem, with respect to how much of 

the tour should be preserved, was expected to be 8x8m_1. Between these two extremes, the 

immediate planning environments would demonstrate the limits of operation for AD-P, 
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highlighting under controlled conditions, where the expected degradation occurs with the 

plan repair strategy. 

Representative tank environments Tank and Tank-P4 (Figure 8-3) were again used to 

analyse how the adaptive coverage planners perform in the target environment. To 

incrementally increase complexity of these environments, the four pipes that exist upon the 

sides of Tank-P4 were incrementally introduced one at a time (Tank-P1, Tank-P2 and  

Tank-P3) until Tank-P4 was created. The introduction of each pipe increased the replanning 

effort, with an expectation that Tank-P4 would influence upwards of 40% to 50% of the 

existing tour, which would be a greater influence than what was expected in the real-world 

(Assumption 2). The specifications of the mesh density and mesh resolution for each 

planning environment is detailed in Table 8-1. 

For conciseness, House and House-W are excluded from the experiments. Results in  

Chapter 6 demonstrated the impact that a small change in geometry had on the lazy point-

to-point planner (LPP). The hybrid-heuristic was developed to overcome the 

underestimation and the results indicated the hybrid-heuristic was sufficient to provide the 

coverage planner with a better approximation of the connectivity. Given House-W only 

introduces one small change, the results from the controlled and representative tank 

environments were deemed suitable enough to analyse AD-P and AD-R. 

8.2.4 Simulated Map Updates and Robot Motion 

For Experiments 1 and 2, no mapping system was required to perform the experiment. 

Therefore, only a single replanning iteration was performed. To replicate a map update, both 

AD-P and AD-R were initialised with a complete map of the environment. To delineate 

between primitives of the original map and the primitives of the new features, a threshold 

(𝑚𝑖𝑛𝑑𝑒𝑥) was provided (Assumption 3; Sections 3.6.1 and 7.4.1).  

For Experiment 3, a mock-mapping system was developed based on the assumptions listed 

in Section 3.6.1, to deliver map updates to each adaptive coverage planner. In practice, the 

mapping system to be implemented on the physical platform is described in further detail in 

Pivetta et al. (2017). However, for this experiment, the simulated robot platform was 

assigned with a one metre sensing capability to emulate the lidar.  

To detect primitives within this sensing range, a mock map system would perform a nearest 

neighbours’ search each time the robot was instructed to move along the inspection plan.  
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Figure 8-2: Controlled simulation environments and update order. (a) The smallest 2x2m 

environment containing five changes (green). (b) The largest planning environment 8x8m with the 

maximum nine changes. (c) The order in which each update will appear in the experiments. The 

green and red dots indicate the designated start and end positions for every plan respectively. 

 

 

Figure 8-3: Tank and the additional pipe network to construct Tank-P4.  

 

Table 8-1: Resolution and primitive counts for controlled and representative environments. 

Controlled Environments Representative Tank Environment 

Model 
Resolution 

(mm) 
Primitives Model  

Resolution 

(mm) 
Primitives 

2x2m 13.1* 58,058 Tank 18.0 273,382 

3x3m 13.5* 108,894 Tank-P1 12.5 +17,732 

4x4m 13.8* 200,448 Tank-P2 8.5 +31,772 

5x5m 14.0* 293,113 Tank-P3 12.5 +17,732 

6x6m 14.0* 410,432 Tank-P4 7.0 +31,336 

7x7m 14.0* 549,450 Total - 371,954 

8x8m 15.8* 586,569    

Cylinder 15.1* 4,550    
* Different resolution used to reduce file size 
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These new primitives were appended to the existing mesh representation of the environment 

to create a new map update (𝑀) in the form of a STL (Stereolithography) file. The STL file 

along with 𝑚𝑖𝑛𝑑𝑒𝑥 were provided to each adaptive planner for each map update. 

To avoid receiving a map update for each detected primitive, a threshold of 100 primitives 

was used to trigger a map update. If the robot arrived at a viewing location and primitives 

have been detected that are under the threshold, a map update was supplied and updated 

before continuing. The 100 primitive threshold was only in place when the robot travelled 

between viewing locations.  

Primitives that become occluded due to prison cell (Section 7.4.2) are not removed from the 

mapping updates. These primitives are recorded in the unobservable primitive list and 

maintained throughout the lifetime of the inspection as discussed in Section 7.5.2. This 

allows primitive indices of a priori mesh to remain consistent during the inspection and 

allows the assumption of only new primitives entering the planning problem to be adhered 

too.  

8.2.5 Initial Offline Tours 

To remain consistent with the results from previous chapters, the same visibility constraints 

are used to initialise the robot model. The viewing range remains between 100-to-270mm 

with a field of view (FOV) of ±45° with the robot end-effector size set to 50mm. Using these 

constraints, the initial offline tours for each environment were created from randomly 

sampled redundancy-ten roadmaps generated by the recreated offline sampling-based 

coverage planner (Section 4.2). The offline tours are solved between designated start and 

finishing locations using the Travelling Salesman Sub-problem described in Section 7.6.1 

(Figure 8-2c). Details of the random offline inspection plans for each environment can be 

found in Table 8-2.  

Experiments conducted within the controlled planning environments are also initialised with 

a pre-determined raster plan. Initialising the adaptive coverage planners with different tour 

types demonstrates the ability of the AD-P to replan any type of offline coverage plan, but 

aid in the analysis to determine under controlled conditions if different behaviours are 

exhibited with a different initial tour. For consistency with generated random plans, the raster 

plans start and finish at the same locations as the random plans. 
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Table 8-2: Offline random and raster coverage plans to initialise the adaptive coverage planners. 

Model 

Random Offline Plan Attributes Raster Planning Attributes 

Configs 

Tour 

Length 

(m) 

Tour time 

(mins)* 
Configs 

Tour 

Length 

(m) 

Tour time  

(mins)* 

2x2m 156 20.34 8.59 142 21.38 8.30 

3x3m 303 42.79    17.23 254 44.36 15.86 

4x4m 491 72.75    28.49 398 75.34 25.82 

5x5m 719 109.71    42.25 574 114.31 38.19 

6x6m 999 155.70    59.25 782 161.29 52.95 

7x7m 1,356 210.60    80.30 1,022 216.27 70.11 

8x8m 1,738 274.89   103.75 1,294 297.25 92.68 

Tank 1,319 139.36    67.19 - - - 

Configs - Configurations CSP - Coverage Sampling Problem MPP - Multi-goal Planning Problem 

 

Pre-determined raster plans were calculated to a minimum of 99.5% coverage. Given the 

visibility constraints, complete coverage of the corners was not achievable by the standard 

raster. These missing primitives were initialised as unobservable primitives (Section 7.5.2) 

at the beginning of a planning iteration and neither adaptive coverage planner was required 

to replan the missing coverage. Adaptive coverage planners initialised with a raster plan are 

denoted with ‘(R)’, such that AD-P is AD-P(R) and AD-R is AD-R(R). The standard 

notation AD-P and AD-R will represent the initialisation of each adaptive coverage planner 

with a random plan.  

The optimal sampling procedure (OSP) presented in Section 7.5.1 was not used to create the 

initial offline tours to ensure random variability between configurations was present. If the 

OSP were to be used in the controlled environments, it would produce a uniform spread of 

configurations throughout the environment making the plans similar to the predetermined 

raster plans. The inclusion of the OSP into the online planning problem is discussed in more 

detail in Section 8.2.7.  

8.2.6 Contextualised Planning Outcome: Tour Time and Relative Computational 

Effort 

To contextualise the results of the simulated experiments to the target robotic platform 

(Section 1.2.2), a cost metric denoted as tour time was calculated from the final tours to 

determine how long the respective tours take to execute. Tour time was calculated using the 

two metrics of the inspection plan, the overall length and the number of configurations that 

comprise the tour. Giving the robot a speed of 0.1m/s to move between locations and two 
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seconds at each viewing location to obtain the coverage, the tour length and the number of 

viewing configurations create the cost metric tour time that approximates, in seconds, how 

long the inspection will take to execute (8-1). 

𝑇𝑜𝑢𝑟 𝑡𝑖𝑚𝑒 = (2.0𝑠 ∗ #𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠) + (𝑇𝑜𝑢𝑟 𝐿𝑒𝑛𝑔𝑡ℎ / 0.1𝑚/𝑠) (s)  (8-1) 

Table 8-2 shows the tour times for offline raster and random tours. While the tour lengths 

are longer for the raster plans, the fewer number of configurations these tours possess create 

tour times that will execute in a shorter time than their respective random tours.  

In Section 3.6.1, Assumption 7 states that replanning was assumed to occur concurrently as 

the robot performs the inspection. Therefore, given this assumption, the overall planning 

time (OPT) of each of the adaptive coverage planners are not included in the tour time 

calculation. Removing the OPT from the tour time calculation allows a comparison to occur 

between the computational effort exhibited by each adaptive coverage planner. It was 

expected that AD-P will be faster than AD-R. However due to AD-P replanning locally, a 

degradation in tour quality was expected. Essentially, there was a trade-off between the time 

it takes to calculate the tour and the effect the tour degradation has on time to complete the 

inspection plan given the constraints provided. This trade-off creates a relative 

computational effort (RCE) that seeks to answer the primary questions of this chapter.  

1) How much longer is the AD-P tour time compared to the tour time of AD-R?  

2) How much longer is the OPT of AD-P compared to OPT of AD-R? 

Equation 8-2 presents the mathematical form of the RCE defined by the two questions.  

𝑅𝐶𝐸 =  (
𝐴𝐷−𝑃 𝑇𝑜𝑢𝑟 𝑇𝑖𝑚𝑒

𝐴𝐷−𝑅 𝑇𝑜𝑢𝑟 𝑇𝑖𝑚𝑒
) (

𝐴𝐷−𝑃 𝑂𝑃𝑇

𝐴𝐷−𝑅 𝑂𝑃𝑇
)⁄        (8-2) 

The RCE aids in the comparison between AD-P and AD-R because it was expected that tour 

degradation may occur however with the computational advantages AD-P should present in 

the smaller replanning situations, the extra tour length may present to be the better option 

given the computational times of AD-R.  

8.2.7 The Selection of a Suitable Redundancy for Online Planning Using the 

Optimal Sampling Procedure to Create the Redundant Roadmaps 

In Section 7.5.1, the OSP was proposed to introduce the option to sample the preferential 

optimal viewing location first before reverting to random samples to complete the redundant 

roadmap. The aim of introducing the OSP was to; 
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1) minimise the number of random configurations to cover flat geometries,  

2) produce more regular higher-quality observations in areas of lower geometric 

complexity, and  

3) maintain a level of consistency between configurations that would assist with the 

motion of the robot with smoother transitions between configurations 

To test the applicability of the OSP as the new sampling procedure to solve the coverage 

sampling problem (CSP), OSP was compared against redundant roadmaps generated using 

a fully random sampling procedure. The smallest and largest planning environment of each 

of the controlled and representative series, with respect to the number of primitives in the 

planning environment, 2x2m, 8x8m_9, Tank and Tank-P4, were used to determine an 

appropriate redundancy level for online planning (Table 8-1). The optimal viewing distance 

was set at 170mm (Table 3-1) with random configurations drawn to the simplified 

constraints discussed that made the initial tours in (Section 8.2.5). To determine the 

effectiveness of the OSP, each redundant roadmap was trialled 20 times over increasingly 

larger redundant roadmap sizes. Figures 8-4 to 8-7 present the results of these trials.  

For smaller redundancies sizes (1 to 5), the covering set sizes produced by the OSP for the 

controlled planning environments (2x2m and 8x8m) were 6.4% to 16.9% smaller than 

randomly drawn redundant roadmaps. The representative tank environments were  

2.5% to 9.2% smaller than the respective randomly sampled covering sets. Over these 

smaller redundancies, majority of the samples in the OSP generated roadmaps are optimal. 

In the controlled environments, optimal samples dominate the redundant roadmaps upwards 

of 84% to 99%. Complete coverage within these environments could not be achieved due to 

the collision of optimally drawn positions in the corners. Therefore, random samples were 

required to fill the remaining coverage. In more complex geometries, random sampling had 

to occur, therefore, the use of optimal samples decreased to 64% to 78% for Tank and Tank-

P4. Overall, the OSP has provided covering set sizes of fewer configurations in comparison 

to the random sampling procedure at lower redundancies. 

For larger redundancies greater than 10, the covering sets produced by random sampling 

were smaller than the covering set sizes generated by the OSP. Coverage set sizes generated 

by random sampling over all environments were 10% to 20% smaller than OSP sets. The 

disparity between the two sampling methods at higher levels of redundancy is a consequence 

of the OSP and the selection of criteria of the set cover problem (SCP).  
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Figure 8-4: Optimal Sampling Procedure (OSP) over 2x2m. (a) Covering set sizes of varying 

redundancies using the OSP against a fully random roadmap construction. (b) Number of optimal 

and random samples taken in the final tour for a redundant roadmap constructed by the OSP. 

 

Figure 8-5: Optimal Sampling Procedure (OSP) over 8x8m_9. (a) Covering set sizes of varying 

redundancies using the OSP against a fully random roadmap construction. (b) Number of optimal 

and random samples taken in the final tour for a redundant roadmap constructed by the OSP. 
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Figure 8-6: Optimal Sampling Procedure (OSP) over Tank. (a) Covering set sizes of varying 

redundancies using the OSP against a fully random roadmap construction. (b) Number of optimal 

and random samples taken in the final tour for a redundant roadmap constructed by the OSP. 

 

Figure 8-7: Optimal Sampling Procedure (OSP) over Tank-P4. (a) Covering set sizes of varying 

redundancies using the OSP against a fully random roadmap construction. (b) Number of optimal 

and random samples taken in the final tour for a redundant roadmap constructed by the OSP. 
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The SCP selects configurations based on quantity not quality. While the optimal position 

presents as the best position to observe the surface, it is not necessary. The parameters used 

for 𝐹𝑂𝐷𝑚𝑎𝑥 was 220mm and the optimal position being placed at 170mm. Therefore, there 

is a small range above the optimal position that can be sampled that may result in a 

configuration being able to observe more primitives than the optimal (Figure 8-8). 

Consequently, the randomly drawn configurations above the optimal will be added to the set 

cover.  

 

Figure 8-8: Configurations sampled above the optimal viewing location viewing the same primitive 

are likely to be taken in the set cover due to the extra primitives they might observe. 

Over flat geometries, it is highly likely redundancy will be filled by optimal configurations, 

as surrounding optimal configurations also observe locally grouped primitives, before the 

same primitive is likely to be sampled again. Therefore, fewer random samples have the 

opportunity to be sampled above the optimal position. However, the random sampling 

procedure has more opportunity to sample from the entire neighbourhood around the 

primitive, increasing the chances configurations could be drawn above the optimal threshold.  

Given the results from this experiment, it has shown that the OSP is not suitable for 

redundancy-ten roadmaps or higher if minimising the number of configurations in the 

covering set is the main objective. To best utilise the OSP for online planning, redundant 

roadmaps should be constructed from smaller redundancies given that the OSP did produce 

smaller covering set sizes compared to the random sampling procedure. Therefore, given the 

outcomes of this experiment, a redundancy-five roadmap was chosen to efficiently utilise 

the OSP in the online experiments. While it would be preferable to use a lower redundancy 

to allow AD-P to perform efficiently, to ensure an even comparison between AD-P and  

AD-R, a redundancy-five roadmap was chosen to enable AD-R to produce tours containing 

similar set size to AD-P. 
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8.2.8 Inclusion of the Additional Termination Conditions and Hybrid-heuristic into 

the Adaptive Coverage Planners 

The additional termination conditions and hybrid-heuristic developed in Chapters 5 and 6 

respectively are utilised in these experiments. Regardless of the size of the replan effort the 

additional termination conditions will have a positive impact of minimising the influence of 

the state of minimal improvement. Given the results in Chapter 6, the hybrid-heuristic would 

only be applied to the representative tank environments. The calculation of the  

hybrid-heuristic for the controlled environments is not expected to improve upon either the 

MPP time or tour quality, as the MPPs would be primarily solved using the Euclidean 

assumption.  

As a full replan strategy in Experiment 1 and 2 is equivalent to generating an offline plan, 

there is an expectation that the hybrid heuristic would have a positive influence on Online 

MPP times. However, it is unknown what influence the hybrid-heuristic would have on 

aiding the plan repair strategy as it depends upon the size and influence of the detected 

changes. If the replan effort is small, the computation of the hybrid-heuristic may impact 

planning times despite the potential of solving the MPP more efficiently than using the 

Euclidean assumption. Otherwise, if the replan effort becomes greater, the positive impact 

of the hybrid-heuristic will increase with the increasing size of the replan effort.  

Figure 8-9 highlights how the hybrid-heuristic is incorporated into both the AD-P and  

AD-R. For the AD-R, the hybrid-heuristic is implemented in the same way as the offline 

MPP (Figure 8-9a). The covering set, as generated by the Online CSP, along with the current 

and finishing location, are supplied to the LPP to construct an initial estimation of the 

connectivity. As for the AD-P, to avoid solving the hybrid-heuristic for each sub-MPP, it is 

only solved once over the entire covering set and ROI gate pairs. To initialise the LPP for 

each sub-MPP, sub-adjacency matrices were created from the aforementioned solution 

(Figure 8-9b).  

For clarity, the adaptive coverage planners that utilise the hybrid-heuristic are denoted with 

(HY), e.g. AD-P(HY) and AD-R(HY). The standard notation AD-P and AD-R will represent 

the initialisation of the LPP with the Euclidean assumption. Tank, and the Tank variants, are 

voxelised to a 15mm resolution, consistent with the resolutions used in Chapter 6. 
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Figure 8-9: Implementation of the hybrid-heuristic for each adaptive coverage planner. 

8.3 Experiment 1: Size and Scalability of AD-P within a Controlled 

Environment with Full Map Updates 

Experiment 1 was designed to determine the sensitivity of the AD-P to changes in the 

environment. The AD-P is designed such that the replan effort focusses exclusively on the 

areas or segments of an existing tour where changes have occurred. This experiment used 

the controlled environments prescribed in Section 8.2.3 to systemically control the 

replanning effort of AD-P by incrementally introducing a singular cylindrical feature. By 

introducing the same feature inside increasingly larger environments, the AD-P was 

expected to exhibit a similar behaviour in; 

1) overall planning times,  

2) the number of new configurations introduced to cover new features regardless of 

the size of the environment, and  

3) the number of path evaluations required to solve all MPPs. 

A single replanning iteration is used to solve each planning problem to represent the full 

replanning effort required to perform a tour update. From this controlled and systematic 
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approach, the following questions were investigated; 

1) How much replanning of the tour would need to occur to allow AD-P to be just as 

expensive as replanning using AD-R? 

2) How much tour degradation of the resultant AD-P is acceptable before it is 

beneficial to use AD-R? 

To answer these questions, Experiment 1 tested the following adaptive coverage planners, 

AD-P(R), AD-P and AD-R. 

Given the simplicity of the planning environments, the hybrid-heuristic was not employed 

in this experiment. Each planning problem was trialled 50 times by each adaptive coverage 

planner. In total, 9,450 trials were conducted across all planning environments and adaptive 

coverage planners. For comparisons between trials, an independent-samples t-test (α = 0.01) 

was conducted to investigate whether a statistically (p) and practically (d) significant result 

was present within the trials of the adaptive coverage planners. Results of these tests 

represent the collective result of all planning problems and planning attributes unless 

specified otherwise. For clarity, the analysis that follows is separated into sub-headings to 

discuss the main findings of the experiment. 

8.3.1 Computational Observations and Results 

Analysis of the Replanning Effort Required to Perform a Planning Update 

Table 8-3 provides a summary of the statistical analysis of the results performed over all the 

trials. As expected, small planning environments (2x2m to 4x4m) required the most 

replanning effort, with replanning effort referring to the percentage of the final tour that was 

replanned. Introducing more features into the confined space of these environments, resulted 

in more ROI overlap and therefore increased the influence that each new feature had on the 

initial tour. As a result, more replanning was required to resolve the plan.  

The largest replanning effort for AD-P and AD-P(R) was 2x2m_9 at 84.9% and 94.6% 

respectively. As the environments grew larger in size, with fewer features, the total replan 

effort steadily decreased to 1.3% and 2.0% (8x8m_1) for AD-P and AD-P(R), respectively. 

Despite replanning efforts of up to 94.6% of the final tour occurring, no solution calculated 

by either AD-P or AD-P(R) took longer to compute than any solution calculated by AD-R 

for the respective planning problem.  
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Table 8-3: Statistical analysis of AD-P(R), AD-P and AD-R. 

Model / 

Planner / 

# Features 

Planning 

Time (s) 

ROI  

Validation (s) 

Online CSP 

(s) 

Online MPP 

(s) 

Tour Length 

(m) 
Configurations 

Planning  

Iterations# 

Path 

Evaluations# 
Tour 

Replanned  

(%)* 

Tour 

time 

(mins)^ 

RCE 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD New Removed 𝑥̅ SD 𝑥̅ SD 

2
x2

m
 

A
D

-P
(R

) 

1 0.37 0.01 0.16 0.002 0.21 0.01 0.005 0.002 22.22 0.20 147.46 0.61 9.46 4.00 11.40 2.28 31.38 3.45 17.38 8.62 - 

9 2.84 0.09 0.34 0.003 2.26 0.05 0.21 0.07 22.15 0.31 186.82 1.95 70.94 26.12 10.68 2.26 198.58 11.42 94.62 9.92 - 

A
D

-P
 

1 0.38 0.01 0.16 0.002 0.21 0.01 0.01 0.002 21.21 0.31 162.00 0.76 8.00 2.00 9.50 2.11 27.08 5.30 13.66 8.94 5.07 

9 2.84 0.07 0.32 0.004 2.35 0.06 0.16 0.04 30.29 0.46 206.64 2.19 74.58 23.94 79.84 8.18 259.54 13.08 84.92 11.94 1.68 

A
D

-R
 

1 1.92 0.10 0.01 0.001 1.68 0.06 0.20 0.08 21.82 0.33 157.40 3.66 155.40 154.00 3.50 1.43 164.68 13.08 100.00 8.88 - 

9 4.22 0.24 0.02 0.002 3.69 0.09 0.48 0.23 23.73 0.29 198.10 3.33 196.10 154.00 4.54 2.08 223.44 24.23 100.00 10.56 - 

3
x3

m
 

A
D

-P
(R

) 

1 0.50 0.01 0.27 0.006 0.23 0.01 0.004 0.001 45.10 0.19 260.52 0.91 10.52 4.00 9.36 1.48 24.88 2.54 8.68 16.20 - 

9 2.86 0.08 0.46 0.005 2.34 0.08 0.05 0.008 52.54 0.65 307.20 2.03 78.40 25.20 81.40 6.41 251.26 10.60 72.57 19.00 - 

A
D

-P
 

1 0.54 0.01 0.29 0.003 0.23 0.01 0.01 0.001 43.70 0.10 309.50 0.89 10.40 3.90 8.98 1.13 30.72 2.46 9.24 17.60 7.50 

9 3.05 0.08 0.50 0.004 2.45 0.07 0.08 0.03 50.79 0.52 368.96 3.16 90.48 24.52 98.58 11.53 313.72 16.54 72.28 20.76 2.40 

A
D

-R
 

1 4.03 0.44 0.03 0.001 3.35 0.17 0.61 0.38 45.32 0.44 303.06 4.45 301.06 301.00 4.74 2.88 330.14 22.44 100.00 17.66 - 

9 6.83 0.74 0.04 0.001 5.52 0.24 1.23 0.66 47.77 0.43 343.42 4.19 341.42 301.00 6.94 3.69 405.96 38.68 100.00 19.41 - 

4
x4

m
 

A
D

-P
(R

) 

1 0.77 0.01 0.49 0.005 0.27 0.01 0.004 0.001 76.14 0.17 405.10 1.02 11.10 4.00 9.80 1.60 26.00 3.09 5.72 26.19 - 

9 3.51 0.08 0.67 0.006 2.78 0.08 0.05 0.005 82.22 0.61 462.40 2.80 96.40 32.00 77.20 4.18 248.58 8.01 49.72 29.12 - 

A
D

-P
 

1 0.78 0.01 0.52 0.005 0.25 0.01 0.005 0.001 73.49 0.30 496.46 0.99 7.46 2.00 7.96 0.78 23.98 1.93 4.53 28.80 11.55 

9 3.47 0.08 0.77 0.006 2.60 0.07 0.08 0.018 80.71 0.68 543.40 2.13 72.22 19.82 83.84 8.31 285.86 13.93 45.43 31.57 3.72 

A
D

-R
 

1 9.10 1.10 0.05 0.001 7.01 0.39 1.98 1.09 76.98 0.43 491.46 5.92 489.46 489.00 8.44 4.63 574.70 42.08 100.00 29.21 - 

9 12.69 1.73 0.06 0.005 9.71 0.46 2.84 1.61 79.42 0.49 533.60 4.23 531.60 489.00 10.28 5.74 653.28 48.74 100.00 31.02 - 

5
x5

m
 

A
D

-P
(R

) 

1 1.02 0.02 0.71 0.010 0.30 0.02 0.005 0.001 115.09 0.14 582.30 0.91 12.30 4.00 9.76 1.46 27.36 2.94 4.18 38.59 - 

9 3.92 0.09 0.90 0.008 2.95 0.09 0.05 0.005 121.41 0.58 645.44 3.30 103.44 32.00 79.10 4.87 258.92 7.94 36.69 41.75 - 

A
D

-P
 

1 1.06 0.05 0.75 0.043 0.30 0.01 0.01 0.003 110.44 0.13 728.10 1.25 14.10 5.00 4.30 1.66 23.24 3.21 2.90 42.68 16.53 

9 3.83 0.07 0.99 0.009 2.77 0.07 0.05 0.01 116.00 0.56 781.68 2.59 84.82 22.14 70.80 5.97 266.06 9.17 30.57 45.39 5.93 
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Model / 

Planner / 

# Features 

Planning 

Time (s) 

ROI  

Validation (s) 

Online CSP 

(s) 

Online MPP 

(s) 

Tour Length 

(m) 
Configurations 

Planning  

Iterations# 

Path 

Evaluations# 
Tour 

Replanned  

(%)* 

Tour 

time 

(mins)^ 

RCE 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD New Removed 𝑥̅ SD 𝑥̅ SD 

A
D

-R
 

1 18.02 4.17 0.07 0.001 12.10 0.70 5.74 4.13 117.40 0.57 731.94 7.10 729.94 717.00 14.80 10.70 906.88 71.64 100.00 43.96 - 

9 22.86 4.31 0.08 0.001 14.98 0.72 7.69 4.29 119.70 0.70 773.70 6.82 771.70 717.00 18.10 9.89 1,000.74 60.82 100.00 45.74 - 

6
x6

m
 

A
D

-P
(R

) 

1 1.35 0.02 1.00 0.009 0.34 0.02 0.005 0.001 162.13 0.14 791.38 0.85 13.38 4.00 9.86 1.29 28.68 2.53 3.21 53.40 - 

9 4.57 0.12 1.17 0.01 3.31 0.12 0.07 0.009 169.23 0.54 866.56 3.23 120.56 36.00 81.32 6.82 275.18 10.37 28.83 57.09 - 

A
D

-P
 

1 1.34 0.02 1.05 0.01 0.29 0.01 0.01 0.001 156.50 0.19 1,005.14 0.76 8.58 2.44 8.28 1.68 26.54 2.79 2.11 59.59 30.94 

9 4.33 0.07 1.32 0.01 2.92 0.07 0.07 0.01 162.33 0.48 1,060.16 2.68 84.38 23.22 87.74 6.32 285.14 10.66 24.09 62.39 10.77 

A
D

-R
 

1 43.19 6.05 0.10 0.003 20.23 1.21 22.71 5.84 166.54 0.69 1,023.00 8.23 1,021.00 997.00 43.88 11.31 1,434.30 56.23 100.00 61.86 - 

9 47.53 5.33 0.11 0.002 23.50 0.98 23.76 5.36 168.89 0.71 1,063.92 7.36 1,061.92 997.00 45.60 10.36 1,508.52 64.33 100.00 63.61 - 

7
x7

m
 

A
D

-P
(R

) 

1 1.73 0.03 1.34 0.02 0.39 0.02 0.01 0.001 217.15 0.14 1,031.72 0.86 13.72 4.00 10.68 1.58 30.00 2.54 2.50 70.58 - 

9 5.35 0.13 1.51 0.01 3.74 0.13 0.07 0.007 224.81 0.59 1,111.76 3.22 125.76 36.00 79.62 4.63 278.68 8.67 22.94 74.53 - 

A
D

-P
 

1 1.79 0.02 1.42 0.01 0.36 0.02 0.01 0.001 211.27 0.17 1,363.08 0.97 10.08 3.00 7.18 1.16 26.72 2.12 1.91 80.65 38.96 

9 4.99 0.09 1.74 0.03 3.17 0.09 0.06 0.005 216.66 0.37 1,410.16 2.23 77.96 23.80 74.50 3.49 271.84 4.96 18.60 83.12 16.43 

A
D

-R
 

1 70.94 7.91 0.14 0.003 31.79 1.61 38.80 7.74 222.91 0.71 1,345.26 8.03 1,343.26 1,354.00 50.26 9.67 1,918.68 54.09 100.00 81.99 - 

9 82.77 11.21 0.15 0.003 36.44 1.75 45.96 11.33 225.42 0.99 1,390.34 9.04 1,388.34 1,354.00 56.20 12.91 2,014.28 65.11 100.00 83.91 - 

8
x8

m
 

A
D

-P
(R

) 

1 1.85 0.03 1.48 0.02 0.36 0.02 0.01 0.001 280.16 0.18 1,304.04 0.81 14.04 4.00 10.14 1.90 29.72 3.10 2.00 90.16 - 

9 5.30 0.12 1.63 0.01 3.57 0.11 0.07 0.007 288.24 0.50 1,383.04 2.87 125.04 36.00 81.80 4.49 284.44 6.59 18.38 94.14 - 

A
D

-P
 

1 1.86 0.03 1.52 0.02 0.32 0.02 0.01 0.006 275.68 0.14 1,741.52 0.81 7.52 4.00 8.96 2.76 32.68 5.56 1.29 104.00 58.81 

9 4.93 0.08 1.78 0.02 3.05 0.06 0.09 0.009 281.59 0.44 1,793.46 2.32 79.82 24.36 77.64 4.60 283.42 8.28 14.20 106.71 24.13 

A
D

-R
 

1 111.84 12.64 0.15 0.003 40.03 2.08 71.44 12.84 290.55 0.83 1,744.16 11.26 1,742.16 1,736.00 69.38 12.18 2,576.52 67.78 100.00 106.56 - 

9 120.69 17.84 0.16 0.002 44.09 1.74 76.22 17.74 292.48 1.00 1,784.58 9.14 1,782.58 1,736.00 73.08 17.03 2,649.60 75.35 100.00 108.23 - 

ROI – Region of Interest CSP – Coverage Sampling Problem MPP – Multi-goal Planning Problem 

# Combined total over all MPPs for AD-P and AD-P(R) *Number of configurations in final tour replanned. Excludes start and end position ^Tour time = 2s*Configurations+ 0.1m/s*Tour Length 
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Figure 8-10: Overall planning times for AD-P(R), AD-P and AD-R. 
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Analysis of the Replanning Times 

Figure 8-10 shows the differences between overall replanning times between AD-P(R),  

AD-P and AD-R. As the planning environments grew larger in size, the scale by which the 

replanning times for AD-R grew was significantly greater compared to the replanning times 

of AD-P and AD-P(R). Overall, replanning times for AD-P and AD-P(R) were relatively 

consistent across all planning problems.  

The results demonstrate that the replanning times of AD-P and AD-P(R) increase in 

proportion to the number of new primitives in the environment. As the same cylindrical 

feature is added into the environment, a similar trend appears across each planning series. 

Replanning times are only minimally sensitive to the number of primitives in the 

environment. The largest difference between replanning AD-P and AD-P(R) times was 8% 

for planning problem 8x8m_9, which is a marginal difference considering less than a second 

separates the replanning times for the largest planning problem. For the more complex 

planning problem, 2x2m_9, the replanning times were equivalent. 

Relative Performance between Adaptive Coverage Planners 

A relative comparison of computational performance between AD-P and AD-R is shown in 

Figure 8-11. All planning problems suggest a statistically significant result (p < 0.001,  

d > 0.8). Across all planning problems, AD-P strongly outperforms AD-R. Computational 

times were less for large environments for the same number of features as more of the initial 

tour was preserved. The largest planning problem with minimal environmental influence, 

8x8m_1 (1.3%), resulted in replanning times 60.2 times faster than the AD-R. At the other 

end of the planning problem spectrum, 2x2m_9 (84.6%) was only 1.48 times faster than  

AD-R. A comparison between AD-P(R) and AD-R, illustrated in Figure 8-12, yielded 

similar results (p < 0.001, d > 0.8). For AD-P(R), replanning times for 8x8m_1 (2.0%) were 

58 times faster than AD-R and for 2x2m_9 (94.2%) replanning was 1.2 times faster.  

Distribution of Overall Planning Times among Planning Processes 

Figures 8-13 to 8-15 illustrate the processing time for each adaptive coverage planner. Due 

to the simplicity of path planning within these environments, AD-P and AD-P(R) are more 

dependent on the ROI Validation and Online CSP processes. As the replanning effort 

decreases, the ROI Validation becomes the more dominate process because fewer samples 

are required to cover the new features, hence decreasing the replanning effort. Introducing a 

segmentation process has reduced the use of the CSP and MPP processes that dominate   
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Figure 8-11: Relative comparison between overall planning times of AD-P and AD-R. 

 

 

Figure 8-12: Relative comparison between overall planning times of AD-P(R) and AD-R. 
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Figure 8-13: Ratio of each planning process for AD-P(R) as a percentage of the overall planning 

time. 

 

Figure 8-14: Ratio of each planning process for AD-P as a percentage of the overall planning time. 

 

Figure 8-15: Ratio of each planning process for AD-R as a percentage of the overall planning time. 
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AD-R planning times.  

With the statistically consistent covering sets produced by solving the Online CSP, solving 

the Online MPP has minimal impact on planning times. The only occurrences where Online 

MPP was more than 5% of the overall planning time, was for planning problems 2x2m (8,9) 

when both the AD-P and AD-P(R) replanned more than 75% of the final tour. Despite AD-

P and AD-P(R) being initialised with different initial tours, the plan repair strategy shows 

similar trends in the allocation of each of these planning processes to solve the replanning 

problem. 

In comparison to AD-R, the more expensive Online CSP and Online MPP processes 

dominated planning times. The larger the coverage planning problem became, the more 

influence the Online MPP process had on the planning times (Figure 8-15). The distribution 

of planning times demonstrated how the introduction of a pre-processing phase, to localise 

the replanning effort (ROI Validation), resulted in a reduction in replanning times. 

Visual Demonstration of Computational Improvements for AD-P and AD-P(R) 

Figure 8-16 presents a visual comparison between replanning methodologies for planning 

problem 4x4m_5. The progression of both replanning strategies through the ROI Validation, 

Online CSP and Online MPP phases clearly illustrate the efforts each adaptive coverage 

planner requires to perform a replanning update (Figure 8-16b-d). The visual comparison 

also demonstrates the ability of the AD-P to replan multiple ROIs concurrently within the 

same replanning iteration (Figure 8-16d). Fewer configurations and paths were replanned 

for AD-P and AD-P(R) compared to AD-R, where the full replan strategy resulted in several 

hundreds of new configurations and paths (Figure 8-16d).  

Reduction of Configurations, Path Evaluations and Planning Iterations 

The reduction of the overall computational times was due to; 

1) The significant reduction of new configurations to cover the new features (p < 0.001, 

d > 0.8). 

2) The significant reduction in the number of path evaluations needed to solve each 

MPP (p < 0.001, d > 0.8). Only 2x2m_9 for AD-P was the only planning problem 

that evaluated more paths than AD-R.  

  



CHAPTER 8: COMPUTATIONAL ANALYSIS OF THE ADAPTIVE SAMPLING-BASED COVERAGE 

PLANNERS  

 

244 

 

Figure 8-16: A visual comparison between AD-P, AD-P(R) and AD-R. (a) Initial offline tour. (b) 

ROI Validation phase. (c) Online CSP phase. (d) Online MPP phase and resultant final tour. 
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Figures 8-17 and 8-18 compare the number of new configurations introduced into the new 

tours and the number of paths AD-R and AD-P evaluated for each planning problem. Both 

the full replan strategy and the plan repair strategy proportionally increased with the number 

of new primitives each replanning strategy was required to replan. Due to only replanning 

within the ROIs, AD-P generated smaller set sizes and therefore consequently evaluated 

fewer paths. As a result, the trends witnessed in both Figures 8-17 and 8-18 reflect the same 

trends observed for both adaptive coverage planners with respect to overall planning times 

(Figure 8-10). 

As the ROIs for each new primitive were identical for both AD-P and AD-(R), there was a 

similar number of new configurations introduced into each covering set. The differences 

between how many new configurations were required depended upon;  

1) the number of existing configurations located within the ROIs that require 

recalculation, and  

2) the random nature of the sampling process.  

As the results indicate, AD-P(R) replanned more of the existing tour than AD-P (Table 8-3). 

As more of the existing configurations became candidates for replanning the likelihood of 

these being replaced by new configurations increased. Figure 8-19 illustrates the number of 

new configurations added for each planning problem against the number of configurations 

removed from the original tour for both AD-P and AD-R. Not surprisingly, the more 

configurations removed, resulted in more configurations being required to rectify the loss of 

coverage. However, while AD-P(R) generally had to produce more new configurations to 

compensate for the influence of new features, the number of new configurations generated 

per feature was relatively consistent across all planning problems (Figure 8-20). This 

behaviour was also observed for AD-P. Therefore, despite the influences the features had on 

the initial tour, Online CSP continued to scale to the number of new primitives added to the 

problem.  

As discussed previously, the reduction of covering set sizes led to a significant reduction in 

the number of paths evaluated to solve a given MPP. However, the reduction in path 

evaluations has not led to the reduction of planning iterations (Figure 8-21). Despite AD-P 

and AD-P(R) solving the majority of the planning problems significantly faster than AD-R, 

both AD-P and AD-P(R) collectively performed more planning iterations than AD-P. For 

AD-R, the number of planning iterations increased with the size of the covering set. It was   
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Figure 8-17: New configurations introduced into each planning problem for AD-P(R), AD-P and 

AD-R. 

 

 

Figure 8-18: Number of path evaluations required to solve the multi-goal planning problem for AD-

P(R), AD-P and AD-R.  
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(a) 

 
(b) 

 
(c) 

Figure 8-19: Difference between the number of configurations removed and introduced to solve a 

planning problem for AD-P and AD-P(R) for (a) one feature, (b) five features and (c) nine features.  
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Figure 8-20: Despite the influence of the features on the initial tour, a consistent number of 

configurations were being generated for each feature over each planning environment for all features. 

(a) Results for AD-P(R). (b) Results for AD-P.  

 

 

Figure 8-21: Number of planning iterations for AD-P(R), AD-P and AD-R. 
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not until the covering set sizes were of significant size (1000+) where AD-R performed as 

many planning iterations as AD-P and AD-P(R). 

The trends shown in Figure 8-21 suggest that the number of planning iterations were 

proportional to the amount of replanning required. There is a difference between the number 

of planning iterations of AD-P and AD-P(R) for planning environments 2x2m(6-9) but this 

is due to a separate issue that is commented on later in the discussion.  

Despite the significant increase in planning iterations for the plan repair coverage planners, 

the additional computation has a negligible impact on planning times. While it was not 

confirmed in this analysis why this behaviour occurred, a possible suggestion could be due 

to the state of minimal improvement and the minor variability that was present before the 

LPP is terminated (Section 5.6.1; Table 5-10). 

As there are several sub-MPPs being solved, each one could potentially iterate for a few 

extra iterations after entering the state of minimal improvement before terminating. The 

accumulation of these additional planning iterations, which are likely Zero Path Evaluation 

Iterations (ZEIs; Table 5-10), could quickly increase the replanning that is required to 

perform. While the data was not collected in this experiment to prove this assumption, the 

additional time these additional planning iterations may have had, made no significant 

impact on Online MPP times. 

The potential reason these additional planning iterations would not impact planning times 

more significantly would be the size of the sub-MPPs; a smaller MPP would not exhaust the 

time allocated for the TSP solver to find a solution. These smaller TSP problems would solve 

much faster than those TSP problems formulated by any AD-R covering set. Comparatively, 

for the larger planning problems, 6x6m onwards, where the covering sets for AD-P exceeded 

into the thousands, the TSP solver would have been using the one second time allocation to 

solve the TSP problem while AD-P, with smaller MPPs, would have been using no more 

than the 0.5 second time limit allocated (Sections 4.2.4). 

As the results show, as the number of planning iterations for AD-P made no significant 

impact on planning times, they were presumed to be of no issue considering the difference 

between Online MPP times and the significant reduction in path evaluations. In this context, 

path evaluations are deemed to be more expensive than planning iterations, especially if the 

planning constraints become more complex than implemented in these experiments. The 



CHAPTER 8: COMPUTATIONAL ANALYSIS OF THE ADAPTIVE SAMPLING-BASED COVERAGE 

PLANNERS  

 

250 

ability of the plan repair strategy to reduce the number of times the motion planning is 

utilised, aligns with the focus of the thesis and the motivations for improvements 

documented in previous chapters. Given that the plan repair strategy achieves this reduction 

is a successful outcome.  

Tour Degradation 

A comparison between AD-P and AD-R tour lengths found that tour degradation occurred 

when more than 35% of the final tour was replanned (Figure 8-22). In total, 16 of 63 AD-P 

planning problems experienced tour degradation. Only two planning problems, 2x2m_2 and 

3x3m_4, had tour lengths greater than the equivalent AD-R planning problems at a lower 

replanning effort, 29.7% and 31.6% respectively. Of the 16 solutions that experienced tour 

degradation, all are from the smaller planning problem series, 2x2m_(2-9), 3x3m_(4-9) and 

4x4m_(8-9). The 2x2m_1 scenario was the only planning problem from the 2x2m series not 

to be included in the set of 16 planning problems that experienced tour degradation, despite 

18.2% of the final tour being replanned. 

The planning problems that experienced the greatest degradation were 2x2m_9 at 27.6% and 

2x2m_8 at 18.7%. Both planning problems experienced the highest replanning effort of all 

planning problems. The remaining 14 planning problems experienced tour degradation 

between 0.5% to 10.5%, with replanning efforts between 29.7% to 72.2%.  

In contrast, the majority of the tour lengths for AD-P(R) are less favourable compared to 

AD-P (Figure 8-23). Raster plans, as with the initial tours, are still 1.6% to 9.2% longer than 

AD-P, despite having smaller covering sets for all planning problems. The tour lengths for 

2x2m_(6-9) were the only occurrences where AD-P(R) produced a better overall tour length 

than AD-P. 2x2m_9 tour length for AD-P(R) was 27.4% shorter than AD-P with a higher 

replan effort of 94.2% and 84.6% respectively.  

Similar to the AD-P, there were a series of smaller planning problems where AD-R produced 

tour lengths shorter than AD-P(R). These models included a similar subset but also included 

5x5m_(7-9), the first of the middle to large planning environments experiencing tour 

degradation. On average, AD-R generated coverage plans that where shorter by 2.2% to 

5.0%. There were four occurrences that AD-P(R), outside the primary range produced 

shorter plans (Figure 8-23). However, the differences between these planning problems were 

marginal, no greater than 1%. Unlike AD-P, AD-P(R) for the two most replanned  
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Figure 8-22: The tour degradation of AD-P for the amount of replanning required to perform a tour update. 
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Figure 8-23: The tour degradation of AD-P(R) for the amount of replanning required to perform a tour update. 
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environments 2x2m_(8-9) produced tour lengths of better quality.  

Tour Time and Relative Computational Effort 

Despite experiencing a greater tour degradation in comparison to the other planners,  

AD-P(R) tour times (Equation 8-1) were fastest overall. As the tour degradation for AD-P 

was not as significant as expected, the relative tour time between AD-P and AD-R were 

relatively the same across the majority of the planning problems (Figure 8-24). The smaller 

coverage sets of AD-R produced in the smaller planning problems were not enough to 

produce a better tour time for these problems. Tour times for AD-P planning problems were 

only up to 3.5% less than AD-R. The only AD-R planning problems that were better than 

AD-P coincided with the smaller planning problems, 2x2m_(1-9), 3x3m_(2-9), 4x4m_(5-9), 

whose replan effort was higher than 35% and tours were either longer or similar in length to 

AD-R (Figure 8-22).  

With similar tour times, the RCE between AD-P and AD-R, as illustrated in Figure 8-25, 

yielded a similar trend to what is shown in Figure 8-12. This result suggests that, 

computationally, AD-P is a better overall strategy to employ. In all cases below a replan 

effort of 85%, the trade-off of tour quality is not significantly degraded compared to the 

computational speed-up that can be achieved by employing AD-P to solve the online 

planning problem.  

8.3.2 Discussion  

The aim of this experiment was to analyse the response of the AD-P by controlling the level 

of change in the problem. This enabled the range of operational limits to be determined 

within which the plan repair strategy would be most effective. In summary, the results of 

this experiment have shown that segmenting the initial tour before replanning has resulted 

in all tested planning problems being solved faster than the full replan strategy. 

Does the adaptive partial coverage planner scale to the size of the environment or the 

number of additional primitives? 

The results of the experiment confirm that the plan repair strategy using ROIs does 

successfully constrain the replanning effort to parts of the tour affected by changes in the 

environment. The AD-P and AD-P(R) showed a minimal difference in replanning times 

despite having two different initial offline tours. The plan repair strategy created smaller 

covering sets, therefore creating smaller MPPs. The focus on reducing the size of the 

problem has led to a significant reduction in the number of new configurations and path  
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Figure 8-24: Relative tour time between AD-P and AD-R. 

 

Figure 8-25: Relative computational effort between AD-P and AD-R. 
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evaluations required to solve the online replanning problem. A higher replanning effort was 

required by AD-P(R) to provide an updated tour as more configurations were removed and 

subsequently replaced in the tour. As the same feature was introduced, it was expected a 

similar number of configurations would be required to cover each feature regardless of the 

initial tour (Section 8.2.3). As expected, both AD-P(R) and AD-P provided a consistent 

number of new configurations to cover the new features (Figure 8-20). This also results in 

consistent and repeatable tour lengths which are critical for online applications.  

What was the computational impact of segmentation and merging of sub-plans on the 

planning times? 

In these experiments, the computational impact of the segmentation and merging processes 

were negligible compared to the replanning times of AD-R (Table 8-3; Figure 8-10). The 

cost of solving larger MPPs far outweighs the cost of the segment and merge processes. The 

ROI Validation scales to the number of configurations of the current tour while the full 

replan strategy scales to the size of the environment. ROI Validation times between AD-P 

and AD-P(R) demonstrates this difference, whilst computationally negligible (Table 8-3). 

Despite the ROI Validation phase dominating the majority of the planning problems for  

AD-P and AD-P(R), the overall planning time was significantly reduced by the 

overwhelming reduction of Online CPP and Online MPP times due to the segmentation 

process of ROI Validation. As planning problems are smaller and path planning is relatively 

simple within these environments, solving the CSP became the more dominant of the two 

main planning processes (Figures 8-13 and 8-14).  

The results showed that computationally, the ROI Validation phase times will increase with 

the size of the initial tour and the complexity of the robotic mobility and visibility constraints. 

Additionally, the more complex the environment becomes, the more computationally 

expensive the Online CSP and Online MPP will become. 

How much replanning of the tour would need to occur to allow AD-P to be just as 

expensive as replanning using AD-R? 

This experiment did not, for the environments tested, determine the exact amount of 

replanning that would significantly degrade both the replanning times and tour quality of 

AD-P enough that would render AD-R to be a better replanning strategy. All replanning 

times for AD-P and AD-P(R) were less than AD-R, even at the highest recorded replanning 

efforts of 84.9% and 94.6% for each AD-P and AD-P(R), respectively. At these limits, with 

the exception of 2x2m_(7-9), these adaptive coverage planners exhibited minimal tour 
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degradation that would warrant the use of AD-R in this scenario. In these cases of  

2x2m_(7-9), despite the tour degradation present, there were significant computational 

savings by AD-P as demonstrated in the RCE, with the worst case being 2x2m_9 having a 

RCE value of 1.68.  

What is the potential drop in tour optimality as the sub-plan approach does not solve the 

coverage plan globally?  

It was expected this experiment would demonstrate that as a compromise for shorter 

replanning times tour degradation would occur due to the plan repair strategy. It was 

surprising that the experiment demonstrated that tour lengths for AD-P and AD-P(R) were 

shorter than AD-R and consequently tour degradation predominately occurred after 

replanning 35% of the final tour. It was expected that tour degradation would occur earlier 

since the plan repair strategy only has the ability to replan locally while the full replan 

strategy replans globally. However, the analysis of the data showed, at least for the tested 

scenarios, that the final tours do not support this hypothesis. 

From the analysis, it seems the degradation of the AD-P and AD-P(R) tours did not occur 

due to: 

1) The nature and impact of the new objects had on the initial tours. 

2) Changing the redundancy of the redundant roadmap when solving the Online CSP.  

Tour degradation for the majority of the AD-R planning problems was due to replanning 

redundant roadmaps with a lower level of redundancy than what was used for the initial 

offline tour. A redundancy-five roadmap, as opposed to redundancy-ten, used for the offline 

tours, was chosen using the OSP to reduce the computational impact of the Online CSP 

process (Section 8.2.7). 

As proven by Englot and Hover (2017), redundant roadmaps of higher redundancy create 

shorter tours. As the full replan strategy removes the remaining tour, the offline tour created 

by the redundancy-ten roadmap is replaced with a replanned tour created by a  

redundancy-five roadmap. Given the OSP produced fewer configurations for a redundancy-

five roadmap than that generated by the random sampling procedure, it could have been 

expected that AD-R could produce tours of equivalent quality to AD-P (Section 8.2.7). 

However, for the planning problems that required minimal replanning, the AD-R did not 

produce better quality tours as was expected. The results showed that while the OSP is able 

to generate smaller covering sets than that of the random sampling procedure, the covering 
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sets for AD-R were not better in quality than the tours preserved by the plan repair strategy. 

The lack of AD-P expected degradation was due to the ability of the plan repair strategy to 

preserve the majority of the existing tour that was constructed from a redundancy-ten 

roadmap. As the environments increased in size with fewer features, the relative replanning 

effort naturally decreased. Consequently, more of the initial tours were being preserved. 

Given that majority of the plan was preserved, the minor replanning that did occur did not 

significantly impact the overall tour quality. Therefore, it can be concluded that if AD-R 

were to use a higher redundancy to construct redundant roadmaps, it would potentially result 

in tour lengths of equal and better quality than AD-P but would come at the expense of longer 

Online CSP times. 

Scenarios when tour degradation occurred in AD-P relative to AD-R 

While a majority of the planning problems did not suffer tour degradation, interesting 

findings were observed from the minority of the AD-P and AD-P(R) planning problems that 

did suffer tour degradation. When the replanning effort exceeded 35%, tour quality for AD-

P and AD-P(R) began to degrade as initially expected. Examining the tours of AD-P for 

these planning problems uncovered two limitations of the plan repair strategy; 

Limitation 1) The new tour must follow the strict ordering of the existing tour despite 

changes in geometry.  

Limitation 2) The sorting algorithm used to allocate ROI configurations into sub-MPP 

does not factor a geometrical representation of the environment to determine which 

path segment is geometrically appropriate.  

Figure 8-26 provides a visual example of these two limitations AD-P present for its most 

challenging planning problem 2x2m_9. Given the changes in the environment, the order of 

the initial random tour is no longer suitable for the new geometry. The influence of all the 

changes created several ROI gates (Section 7.6) along the perimeter of the environment 

(Figure 8-26a). As the same tour direction must be preserved, new tour segments must be 

routed through these preserved segments. Given the impact of the changes creates several 

gate parings that may not be appropriate to produce a suitable solution. This trial created 33 

path segments where 14 of these segments required replanning, which included the routing 

through several single configuration segments, increasing the likelihood of poor 

configuration placement.  
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Configurations within a ROI are sorted into sub-MPPs based on the point-to-line evaluation 

between the position of the configuration and all ROI gate pairings (Section 7.6). The point-

to-line evaluation does not factor how the new geometry impacts the current tour. Placement 

of the configurations is based on the Euclidean distance to the line, instead of the actual, or 

an approximated distance. For small localised changes, the sorting algorithm is a sufficient 

evaluation when small perturbations appear within the geometry of the environment. The 

results show this to be true for the majority of the planning problems that do not require 

significant replanning. However, as more of the tour becomes influenced by changes, as seen 

with 2x2m planning set, the combination of the sorting algorithm and the preservation of the 

existing tour order does have the capability to degrade tour quality. By not factoring a 

geometrical representation into the sorting process, a problem is created that is equivalent to 

the Euclidean assumption underestimating the connectivity between configurations before 

solving the MPP. 

Tour degradation between AD-P and AD-P(R) 

Despite the plan repair strategy demonstrating the limitations discussed in the previous 

section, there are examples in the results that indicate that the two limitations improved tour 

quality, where degradation was expected. There were four planning problems, 2x2m_(6-9), 

where AD-P(R) produced better tours than AD-P and two examples where AD-P(R) 

produced better than AD-R. All these occurred at the higher replanning efforts between, 

69.1% and 94.6%. Considering that all raster plans are longer than the random plans  

(Table 8-2), it was surprising that the AD-P(R) tours with the highest replan rate succeeded 

over AD-P and AD-R. 

Figure 8-27 shows the impact that nine changes had on AD-P(R), i.e. 2x2m_9. While AD-P 

produced a 27.6% increase in tour length compared to AD-R, AD-P(R) reported a 6.6% 

decrease. Due to the layout of the raster tour, the size of the ROI and the placement of the 

new features, the preserved path segment and gates for each ROI happened to be 

conveniently placed for the new tour. 

Unlike AD-P, which replanned 16 path segments, this trial replans three path segments, 

increasing the chances that configurations will be placed in an appropriate segment given 

the geometry of the environment. As expected, as the replanning effort approaches 100%, 

the more likely that AD-P and AD-P(R) will produce results similar to AD-R. Given that the 

tour by AD-P(R) is shorter, AD-P results for 2x2m_(7-9) were within 1% of AD-R and well   
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Figure 8-26: Routing through pre-existing tour locations can degrade tour quality. The dashed 

lines are the point-to-line comparison used between each paired gates. 

 

 

Figure 8-27: Routing through pre-existing tour locations can degrade tour quality. The dashed 

lines are the point-to-line comparison used between each pair of gates. 
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well within the variability of the LPP (Section 5.4). 

This difference between AD-P and AD-P(R) for 2x2m_(6-9) highlighted that the point-to-

line evaluation to sort configurations into unresolved path segments may not be suitable for 

all replanning situations, particularly when the replanning effort is significantly high. The 

complexity of the original environment, the impact of the new features, and the original tour 

all play a role in determining the outcome of the sorting process and consequently the 

replanned tour. Despite the inapplicability for a minority of planning problems, the sorting 

process does ensure that a tour can exist. Considering the listed limitations, the AD-P was 

still capable of producing computationally efficient solutions. 

8.3.3 Summary  

In summary, AD-P was designed to replan only the changes present in a large environment. 

The results of this experiment have shown that;  

1) Implementing a pre-processing phase to segment an existing tour to partially replan 

the influenced regions has significantly reduced overall replanning times compared 

to a full replan strategy. The AD-P, regardless of the initial tour, was always 

computationally faster than AD-R. Even at the replanning effort of 94.6%, (2x2m_9 

for AD-P(R)), AD-P still calculated faster.  

2) The results have shown the AD-P has met initial expectations. The experiment has 

clearly demonstrated that the AD-P scales with the size of the changes and not the 

size of the environment, unlike AD-R. The number of new configurations and path 

evaluations required to solve the online replanning problem is consistent for solutions 

provided by AD-P and AD-P(R). Any variation can be attributed to the influence the 

changes have on the initial tour and the segmentation process has on the sorting of 

ROI configurations.  

3) Tour degradation for AD-P appeared in planning problems that replanned over 35% 

of the final tour. This was higher than expected as AD-P replans locally. The 

maximum tour degradation occurred at 84.9% replan effort for AD-P (2x2m_9) with 

a tour length 27.6% greater than AD-R. Despite the significant increase, AD-P still 

calculated the tours 1.5 times faster than AD-R.  

4) The OSP was likely to produce smaller covering sets from the redundancy-five 

roadmaps than a random sampling procedure. As the initial redundancy-ten roadmap 
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was being removed, the redundancy-five roadmap, using the OSP, was unable to 

create covering sets that improved upon the quality of the initial plans.  

5) Despite the plan repair strategy exhibiting tour degradation when replanning greater 

than 35%, the amount of computational effort expended by the plan repair strategy 

per unit of tour generated was significantly less than the full replan strategy. The 

RCE performance between the replanning strategies grew to as large as 58 times 

difference (8x8m_1) when plan repair strategy was able to preserve 98.5% of the 

existing tour. Even when the AD-P replanned over 85% of the existing tour, and 

exhibited tour degradation of upwards of 27%, the RCE between replanning 

strategies was 68% greater. 

6) An examination between AD-P and AD-P(R) highlighted two limitations with the 

plan repair strategy. The preservation of the initial tour order and the sorting of 

configurations without any environmental analysis can potentially degrade tour 

quality. However, despite these limitations, the plan repair strategy did ensure that 

a feasible path could exist without replanning the entire tour with significantly shorter 

replan times.  

8.4 Experiment 2: Adaptive Coverage Planning with Full Map Updates 

in the Representative Tank Environments 

This experiment tests the ability of AD-P and AD-R to replan new coverage within the 

representative submarine tank environments Tank-P1 to Tank-P4 (Section 8.2.3). As 

performed in Experiment 1, one update occurs and each planning problem introduced a set 

of pipes(s), with Tank-P1 corresponding to the introduction of one pipe and Tank-P4 

comprising of four pipes.  

For this sequence of scenarios, Online CSP times were expected to grow due to the 

increasing size of the environment but Online MPP were expected to dominate replanning 

times due to the complexity of the planning problem, as seen from the results of the 

experiments conducted in Chapters 4-6. Given the complexity of the environments, the 

hybrid-heuristic was also tested to determine how effective was is on decreasing Online 

MPP times in an online context (Section 8.2.8). Therefore, this experiment tested the 

response of four adaptive coverage planners, AD-P, AD-R, AD-P(HY) and AD-R(HY) 

across the representative tank environments. Each planning problem was trialled 50 times. 

In total, 800 trials were conducted across all planning environments and adaptive coverage 
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planners.  

8.4.1 Computational Observations and Results 

Analysis of the Replanning Effort Required to Perform a Planning Update 

Table 8-4 provides the statistical analysis of the results performed over all the trials. For  

AD-P and AD-P(HY) replanning ranged from 17.9% (Tank-P1) to 52.8% (Tank-P4). In line 

with expectations presented earlier in Section 8.2.3, this experiment demonstrated that  

AD-P easily accommodated a 52.8% replan effort and still outperformed AD-P(HY), AD-R 

and AD-R(HY) (Figure 8-28). AD-P solved the planning problem 96.7% to 99.6% faster 

than AD-R, 94.6% to 97.3% faster than AD-R(HY) and 53.8% to 56.0% faster than  

AD-P(HY) (Table 8-5). Consequently, all planning times for AD-P observed a statistically 

and practically significant result against the aforementioned adaptive coverage planners  

(p < 0.001, d > 0.8; Table 8-5). Unless stated otherwise, for all the planning attributes 

recorded for comparison between the four adaptive coverage planners, they all recorded a 

statistically and practically significant result (p < 0.001, d > 0.8; Table 8-5). 

Introduction of the Hybrid-heuristic: Planning Times and Path Evaluations 

The hybrid-heuristic significantly reduced planning times for AD-R(HY) compared to  

AD-R by up to 81.3%. As expected, the hybrid-heuristic reduced the number of path 

evaluations for AD-R(HY) compared to AD-R by up to 61%. However, despite these 

reductions, AD-R(HY) was not able solve any planning problem faster than AD-P or  

AD-P(HY). While AD-R(HY) and AD-P(HY) have similar costs to compute the  

hybrid-heuristic (Figure 8-29), the amount of extra replanning that AP-R(HY) was required 

to perform did not allow AD-R(HY) to outperform AD-P(HY). AD-R(HY) is required to 

replan between 1300 to 1700 more configurations than AD-P(HY) and AD-P.  

Despite both AD-P(HY) and AD-R(HY) not being able to outperform AD-P, both  

hybrid-heuristic driven adaptive coverage planners do reduce the number of path 

evaluations required to solve the MPP in comparison to their respective Euclidean-based 

counterparts. Besides Tank-P1, which only recorded a 1.7% improvement (p = 0.06),  

AD-P(HY) evaluated 19.1% to 30.3% fewer paths than AD-P. AD-R(HY) observed a 49.4% 

to 61.1% reduction in the number of paths evaluated compared to AD-R. This reduction led 

to a 73.6% to 81.4% reduction in planning times compared to AD-R. For smaller replanning 

sizes AD-P(HY) evaluated up to 88% fewer paths than AD-R(HY). This value decreased to 

66.5% as the replanning effort of AD-P(HY) increased to 57.2%. 
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Table 8-4: Statistical analysis between planning attributes of the AD-P and AD-R initialised with the Euclidean assumption and hybrid-heuristic. 
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P 3.37 0.07 1.00 0.01 2.23 0.06 0.13 0.04 149.06 0.49 1,418.00 4.11 99.00 7.10 39.74 4.39 280.40 12.69 17.92 72.11 242.92 

R 853.01 227.15 0.06 0.001 26.98 0.77 825.89 227.18 152.35 0.86 1,495.60 10.06 1,493.60 1,317.00 792.42 218.45 5,916.56 819.26 100.00 75.24 - 

H 
P 69.97 0.90 1.00 0.01 2.23 0.05 62.31 0.60 149.01 0.43 1,417.66 3.68 98.68 7.24 38.92 5.11 275.72 12.31 17.90 72.09 2.18 

R 159.03 15.02 0.05 0.001 27.30 0.87 131.59 15.10 152.20 1.06 1,492.22 10.61 1,490.22 1,317.00 60.58 14.82 2,300.98 90.50 100.00 75.11 - 

T
a

n
k-

P
2
 E 

P 11.50 1.68 1.38 0.01 8.21 0.15 1.88 1.69 155.60 0.67 1,497.06 5.81 178.06 15.60 86.84 45.36 616.76 76.79 25.94 75.84 70.88 

R 842.89 251.98 0.06 0.001 35.80 0.87 806.93 252.07 157.13 1.05 1,567.46 12.93 1,567.46 1,317.00 772.18 242.20 5,965.62 841.12 100.00 78.44 - 

H 
P 77.96 0.82 1.38 0.01 8.22 0.16 63.47 0.59 155.46 0.63 1,495.74 4.51 176.74 15.60 34.74 6.13 473.26 27.46 25.87 75.77 2.20 

R 177.63 15.16 0.06 0.001 35.86 1.05 141.60 15.20 157.20 1.16 1,568.76 11.15 1,566.76 1,317.00 67.82 14.74 2,473.54 95.02 100.00 78.49 - 

T
a

n
k-

P
3
 E 

P 14.60 1.50 1.72 0.02 11.07 0.26 1.76 1.54 165.91 0.70 1,597.80 7.16 278.80 27.56 131.02 45.47 894.90 75.06 40.69 80.91 52.02 

R 775.37 178.65 0.07 0.001 39.68 1.00 735.52 178.73 164.31 1.05 1,657.26 12.38 1,655.26 1,317.00 701.54 171.11 5,732.46 599.05 100.00 82.63 - 

H 
P 82.91 0.94 1.72 0.02 11.13 0.22 64.85 0.63 165.84 0.70 1,596.22 5.99 277.22 28.72 83.66 7.82 765.28 30.64 40.63 80.85 2.20 

R 186.15 16.25 0.07 0.001 40.09 1.12 145.89 16.17 164.42 1.17 1,658.32 12.63 1,656.32 1,317.00 70.06 15.72 2,595.44 78.02 100.00 82.68 - 

T
a

n
k-

P
4
 E 

P 24.11 2.95 2.56 0.02 18.44 0.42 3.06 2.93 174.48 1.14 1,659.26 7.29 340.26 44.26 205.80 79.85 1,213.56 110.13 52.72 84.39 30.78 

R 749.87 190.49 0.07 0.001 49.63 1.26 700.05 190.66 168.04 0.88 1,717.88 12.31 1,715.88 1,317.00 559.46 153.07 5,119.02 496.31 100.00 85.27 - 

H 
P 91.22 0.85 2.55 0.02 18.47 0.32 64.49 0.56 174.68 1.62 1,660.48 7.17 341.48 42.78 120.72 9.17 1,019.06 30.49 52.76 84.46 2.14 

R 197.69 14.08 0.08 0.001 49.57 1.31 147.93 14.06 168.07 1.38 1,721.30 13.57 1,719.30 1,317.00 59.26 11.31 2,590.00 94.12 100.00 85.39 - 

ROI – Region of Interest CSP – Coverage Sampling Problem MPP – Multi-goal Planning Problem P – AD-P R – AD-R E – Euclidean assumption H – Hybrid-heuristic 

Diff – Difference in the number of configurations in final tour compared to initial tour  

* Number of configurations in final tour replanned. Excludes start and end positions  

^Tour time = 2s*Configurations +0.1m/s*Tour Length  
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Table 8-5: Relative performance and statistical significance between planning attributes between all adaptive coverage planners. 

Model 
Overall Planning Times (s) Configurations Tour Length (m) Path Evaluations 

RD PD % p d RD PD % p d RD PD % p d RD PD % p d 

AD-P vs AD-R 

Tank-P1 0.004 -99.61 <0.001 7.48 0.95 -5.19 <0.001 10.95 0.98 -2.16 <0.001 4.87 0.05 -95.26 <0.001 13.55 

Tank-P2 0.01 -98.64 <0.001 6.56 0.96 -4.49 <0.001 7.51 0.99 -0.97 <0.001 1.76 0.10 -89.66 <0.001 11.65 

Tank-P3 0.02 -98.12 <0.001 8.45 0.96 -3.59 <0.001 6.09 1.01 0.97 <0.001 1.83 0.16 -84.39 <0.001 14.35 

Tank-P4 0.03 -96.76 <0.001 7.50 0.95 -3.51 <0.001 5.98 1.04 3.83 <0.001 6.37 0.24 -76.29 <0.001 12.88 

AD-P(HY) vs AD-R(HY) 

Tank-P1 0.44 -56.00 <0.001 11.18 0.95 -5.00 <0.001 10.43 0.98 -2.10 <0.001 4.28 0.12 -88.02 <0.001 39.40 

Tank-P2 0.40 -56.11 <0.001 12.48 0.96 -4.65 <0.001 9.33 0.99 -1.10 <0.001 1.93 0.19 -80.87 <0.001 32.66 

Tank-P3 0.46 -55.46 <0.001 12.01 0.96 -3.74 <0.001 6.67 1.01 0.86 <0.001 1.52 0.29 -70.51 <0.001 33.69 

Tank-P4 0.46 -53.86 <0.001 14.26 0.96 -3.53 <0.001 5.86 1.04 3.94 <0.001 4.41 0.39 -60.65 <0.001 25.21 

AD-P vs AD-P(HY) 

Tank-P1 0.05 -95.19 <0.001 136.78 1.001 0.02 0.66 - 1.0003 0.03 0.60 - 1.02 1.70 0.06 - 

Tank-P2 0.15 -85.25 <0.001 53.21 1.009 0.09 0.21 - 1.0009 0.09 0.30 - 1.30 30.32 <0.001 2.75 

Tank-P3 0.18 -82.40 <0.001 56.07 1.001 0.10 0.23 - 1.0004 0.04 0.64 - 1.17 16.94 <0.001 2.45 

Tank-P4 0.26 -73.57 <0.001 35.28 0.993 -0.07 0.40 - 0.9988 -0.12 0.47 - 1.19 19.09 <0.001 2.77 

AD-R(HY) vs AD-R  

Tank-P1 0.19 -81.36 <0.001 5.73 0.998 -0.23 0.11 - 0.999 -0.09 0.46 - 0.39 -61.11 <0.001 7.95 

Tank-P2 0.21 -78.93 <0.001 4.98 1.001 0.08 0.59 - 1.001 0.05 0.74 - 0.41 -58.54 <0.001 7.46 

Tank-P3 0.24 -75.99 <0.001 6.05 1.001 0.06 0.67 - 1.001 0.07 0.62 - 0.45 -54.72 <0.001 9.27 

Tank-P4 0.26 -73.64 <0.001 5.40 1.002 0.19 0.19 - 1.001 0.02 0.90 - 0.51 -49.40 <0.001 8.57 

AD-P vs AD-R(HY) 

Tank-P1 0.02 -97.88 <0.001 20.63 0.95 -4.97 <0.001 10.08 0.98 -2.07 <0.001 4.06 0.12 -87.81 <0.001 39.16 

Tank-P2 0.07 -93.53 <0.001 19.73 0.95 -4.57 <0.001 8.46 0.99 -1.02 <0.001 1.74 0.25 -87.81 <0.001 21.62 

Tank-P3 0.08 -92.16 <0.001 19.34 0.96 -3.65 <0.001 6.12 1.01 0.90 <0.001 1.59 0.34 -65.52 <0.001 22.22 

Tank-P4 0.12 -87.80 <0.001 20.38 0.96 -3.60 <0.001 5.95 1.04 3.81 <0.001 5.09 0.47 -53.14 <0.001 13.48 

RP - Average of relative performance between each trial s.t. mean(AD-P/Compare)  

PD - Average of percentage differences between each trial s.t. mean((AD-P - Compare)/ Compare)*100 

p – Independent-samples t-test (α < 0.01)  

d - Cohen’s d effect size 
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Figure 8-28: Overall planning times of each adaptive coverage planner over each representative 

tank environment.  

 

Figure 8-29: The time each Online MPP for AD-P(HY) and AD-R(HY) spent creating the hybrid-

heuristic and solving all multi-goal planning problems. 
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Despite AD-P(HY) evaluating significant fewer paths, the calculation of the hybrid-heuristic 

inhibits AD-P(HY) being the better adaptive coverage planner. The analysis of the results 

shows that overall planning times for AD-P(HY) would have been faster than AD-P if the 

calculation of the hybrid-heuristic was negligible. For Tank-P4, the calculation of the 

hybrid-heuristic accounts for over 98.8% of the Online MPP time and 99.8% for Tank-P1 

(Figure 8-29). If the time to compute the hybrid-heuristic was removed from the Online MPP 

time, AD-P(HY), for Tank-P4, solved the MPP (0.77s) 3.9 times faster than AD-P (3.05s). 

In summary, although the hybrid-heuristic reduces the number of path evaluations the LPP 

is required to evaluate to solve a given MPP, the additional time to calculate the hybrid-

heuristic, over these planning environments at least, has outweighed the benefit of solving 

the MPP faster.  

Distribution of Overall Planning Times among Planning Processes 

Figure 8-30 shows the distribution of overall planning times across each of the planning 

processes as a ratio of the overall planning times for each adaptive coverage planner. 

Unexpectedly, the majority of the processing time for AD-P was spent sampling. It was not 

expected to observe that the Online MPP would only contribute as much as 15% to the 

overall planning time given the MPP times of Tank and Tank-P4 in previous chapters.  

ROI Validation and Online CSP times were equivalent for AD-P(HY) and AD-P given that 

the same ROIs were being generated, consequently producing similarly sized covering sets 

(p > 0.01). However, as previously discussed, the calculation of the hybrid-heuristic resulted 

in the Online MPP dominating planning times, despite solving all the sub-MPPs faster than 

AD-P. As expected, Online MPP times dominated AD-R and AD-R(HY) planning times due 

to the size and complexity of the problem to be replanned. 

As replanning within the representative tank environments were more complex in 

comparison to the controlled environments, the sampling and path planning processes take 

longer to compute. The segment and merge processes of the plan repair strategy was shown 

to have little impact on overall planning times. The results of AD-P and AD-P(HY) 

demonstrated that the processes that create the ROIs were suitable in an online scenario 

considering the significant impact the ROIs had on reducing the planning times of the 

original CSP and MPP procedures. 
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Figure 8-30: Ratio of each planning process for each adaptive coverage planner in the representative 

tank environments as a percentage of the overall planning time.  

Differences in Covering Set Sizes. 

There is a small difference in covering set sizes between AD-P and AD-R. The use of the 

OSP at a lower redundancy than the initial tour has increased the size of the covering set 

sizes of AD-R compared to AD-P by up to 5.2% (Tank-P1). This rate decreases to 3.1% the 

more replanning the plan repair strategy was required to perform. Again, this was due to the 

plan repair strategy’s ability to preserve more configurations of the initial redundancy-ten 

roadmap. The results in Section 8.2.6 suggest that a redundancy-ten roadmap under a 

random sampling procedure would have yielded a smaller covering set size but at the 

expense of a longer Online CSP.  

Planning Outcomes: Tour time, Tour Lengths and Relative Computational Effort 

The tour times shows that despite the great disparity between planning times, there is only a 

two to three-minute difference in the time it would take to execute each of the tours. This is 

due to the 5% difference in the covering set size and 4.0% difference in tour lengths for any 

combination of the adaptive coverage planner.  

Despite the considerable computational advantages the plan repair strategy possesses, the 

quality of the tour lengths did degrade when more replanning was required. Figure 8-31 

shows how the tour lengths for both AD-P and AD-P(HY) degraded between Tank-P2 and 

Tank-P3. This degradation corresponded to 23.9% and 40.7% of the final tours being 

replanned respectively.  
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Figure 8-31: Tour length for each adaptive coverage planner for the representative tank 

environments. 

The use of the hybrid-heuristic did not degrade tour length of AD-P(HY) and AD-R(HY) 

against their respective Euclidean counterparts. All tour lengths are within 1% for each test 

pair of adaptive coverage planners. There were occasions where AD-P(HY) produces tour 

lengths shorter than AD-P. However, these differences are negligible and could be to the 

slight variation in covering set sizes. 

Despite the tour degradation and larger coverage set sizes exhibited by AD-P and to the 

lesser extent AD-P(HY), the RCE between each of the adaptive coverage planner, highlights 

the effectiveness of the plan repair strategy (Figure 8-32). The faster replanning times of 

AD-P again show how effective the plan repair strategy was when the replanning effort is 

small in comparison to the full replan strategy for all tested planning problems. As the replan 

effort increased, the RCE between AD-P and the other adaptive coverage planners 

decreased. However, the degradation of the tour quality exhibited by AD-P was arguably not 

enough to outweigh the computational benefits of the plan repair strategy over the full 

replan strategy.  
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Figure 8-32: Relative computational effort of AD-P against AD-P(HY) AD-R and AD-R(HY). 

8.4.2 Discussion  

Given the result in Experiment 1, the results in this experiment follow similar trends which 

indicate that the AD-P is the superior of the two replanning strategies in this context. The 

plan repair strategy consistently outperformed both AD-R and AD-R(HY) as well as 

performing better than AD-P(HY). While tour times highlight that executing the resultant 

tours would take approximately the same amount of time to complete, the RCE, as shown in 

Figure 8-32, illustrates how much less work the plan repair strategy performs to produce a 

planning update.  

The results of this experiment highlight the significant influence the ROI Validation phase 

has on reducing the amount of effort required by the sampling and path planning processes 

to perform a replanning update. Considering the size and complexity of the representative 

tank environments, the results illustrate that under the maximum replan effort, the segment 

and merge processes did not contribute significantly to the overall planning times for AD-P 

but have a positive impact at reducing the planning times of both the Online CSP and Online 

MPP processes.  

It was expected that solving the Online MPP would dominate AD-P’s planning times. 
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However, as the results show, Online MPP times were minimal as the Online CSP process 

took the majority of the processing time. This result was not observed for the  

AD-R and AD-R(HY) as the large covering set sizes, as shown throughout this thesis, 

resulted in the Online MPP dominating planning times. Given the main difference between 

the plan repair strategy and full replan strategy is how ROI Validation is used. The 

additional but negligible time it takes to generate ROIs to segment the plan has significantly 

reduced replanning times, making it feasible for the sampling and path planning processes 

of the offline sampling-based coverage planner to be used in an online context.  

Despite the complexity of the representative tank environments used in this experiment, the 

limit to which the full replan strategy would outperform the plan repair strategy, using the 

RCE metric, was not found. While tour degradation occurred for AD-P and AD-P(HY) 

beyond a replan effort of 25.9% (Tank-P2), the degradation thereafter was not enough to 

outweigh the computational benefits of the plan repair strategy. Even at a maximum effort 

of 57.2%, the RCE between AD-P and AD-R was 30.8 times. 

Even though a limit could not be accurately determined, it does appear that tour degradation 

will occur when around 30% of the final tour is required to be replanned. In Experiment 1, 

tour degradation occurred after 32.5%. In this experiment, tour lengths degraded after 25.9%. 

Tour degradation could be due to the limitations found in Experiment 1 (Section 8.3.2). 

Despite the tour degradation observed in these results it was not enough to degrade the 

overall quality of the solutions provided by the plan repair strategy.  

While the additional termination conditions have again been proven to provide stable LPP 

solutions, the addition of the hybrid-heuristic did not aid the plan repair strategy to produce 

solutions faster than AD-P. The plan repair strategy solved under the Euclidean assumption, 

in this planning context, is noticeably faster due to smaller replanning sizes and the 

overheads associated with calculating the hybrid-heuristic. The results showed that while 

the hybrid-heuristic did solve all sub-MPPs faster than the AD-P, as fewer planning 

iterations and path evaluations are executed, the computation of the heuristic outweighed 

any advantage to the LPP, limiting the AD-P(HY) to perform effectively. 

These findings do not make the hybrid-heuristic completely unsuitable to be used in tandem 

with the plan repair strategy. If higher-fidelity constraints were placed on the planning 

problem, Online MPP times would increase. The use of the hybrid-heuristic would be 

suitable in this context as the overhead costs to compute the heuristic would be compensated 
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given the number of path evaluations that would no longer need to be solved. However, 

within this planning context, the hybrid-heuristic invalidates its use as a suitable heuristic 

as its computation outweighs the benefits of solving the MPP faster (Section 6.3,  

Criterion 3). 

Given all the results shown over the previous two experiments, it was concluded that the full 

replan strategy is not suitable to convert the offline sampling-based coverage planner to the 

online domain. The results of the first two experiments have had both replanning strategies 

perform at the maximum replan effort over one planning iteration. On all accounts, the plan 

repair strategy, even with the hybrid-heuristic considerably outperformed the full replan 

strategy. AD-R, regardless of the size of the changes, will always be required to replan more 

than AD-P, unless the entire tour requires replanning. In that case a full replan strategy is 

better suited, given the additional segment and merge processes of ROI Validation and 

Online MPP.  

Given these results, it is concluded that the performance between AD-P and AD-R will only 

continue to become more significant in a continually evolving environment. Furthermore, if 

higher-fidelity visibility and motion constraints were applied, again the performance 

between AD-P and AD-R would grow further apart, due to the more samples and paths  

AD-R would be required to replan. As it was expected that in a real-world scenario only a 

small amount of the environment is expected to change, 30% at most (Assumption 3), the 

designed plan repair strategy has proven to work sufficiently well when 52.7% of the 

existing tour is required to be replanned. 

8.4.3 Summary  

Expanding upon the findings of Experiment 1, Experiment 2 has demonstrated the following: 

1) The ROI Validation phase has significantly reduced the replanning effort for AD-P 

when planning in complex planning environments. The reduction led to AD-P 

outperforming the full replan strategy over all planning problems. 

2) The segment and merge processes of ROI Validation and Online MPP have had 

minimal influences on computational times. As a result, the marginal time it does 

take to segment a tour results in a significant reduction in the number of 

configurations that need to be sampled and paths that will be required to be evaluated.  

3) Despite the hybrid-heuristic solving the MPP faster than solving MPP using the 
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Euclidean assumption, the calculation of the heuristic outweighed the benefits when 

utilised in conjunction with the plan repair strategy.  

Given these findings, it was concluded that the full replan strategy would not be suitable for 

online implementation since the degradation of the replanning strategy was significantly 

greater, the less replanning that AD-P was required to perform. There was a 202 times 

difference in RCE between AD-P and AD-R for Tank-P1.  

8.5 Experiment 3: Simulated Coverage Planning with Partial Map 

Updates 

The final experiment in this chapter simulates the motion of the robot conducting a live 

inspection plan. As discussed in Section 8.2.4, a mock mapping system was used to simulate 

the mapping system module of the Inspection Planning Framework (IPF) for a simulated 

robot implementing the simplified 6-DOF motion model used throughout all experiments 

thus far in this thesis. Given the analysis performed in Experiments 1 and 2, Experiment 3 

served as a validation of those findings but under more realistic conditions. This experiment 

aimed to determine whether if AD-P was capable of stratifying the final STIPP criteria by 

replanning under the one to two-minutes.  

As Experiment 1 showed how AD-R and AD-P respectively scaled to the size of the 

environment or the size of changes, only a subset of planning environments were used to 

determine whether AD-P was capable of outperforming AD-R in an iterative replanning 

situation. Table 8-6 shows all the planning environments and the number of trials undertaken 

in this experiment. An independent-samples t-test (α = 0.01) proved statistically that enough 

trials had been conducted to demonstrate a difference between replanning strategies. In total, 

505 trials were conducted across all planning environment and adaptive coverage planners. 

For completeness, no time limit was specified for adaptive coverage planners to complete 

the online planning problems. 

From the findings of Experiment 1, AD-P was found to be insensitive to the offline tours. 

Consequently, in this experiment each planning problem was only initialised with the 

random tours (Section 8.2.5). The limitations discovered about the plan repair strategy in 

Experiment 1 were not resolved for this experiment. AD-P was implemented as designed 

and the limitations are a subject for future work as discussed in Chapter 9.  

Given the results of Experiment 2, AD-R(HY) was the only feasible hybrid method 
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Table 8-6: The number of trials for each planning problem conducted for Experiment 3. 

Planning 

Environment 
Variations  

# of trials completed per 

variation per planner  

2x2m {_1, _5, _9} 25 

4x4m {_1, _5, _9} 25 

6x6m {_1, _5, _9} 20 

8x8m {_1, _5, _9} 10 

Tank {-P4} 
AD-P 20 

AD-R 5 

 Total trials 505 

capability improving upon the Euclidean based method in the context of solving Tank. 

However, due to computational and memory limitations in creating the new STL files to 

enable skeletisation, the mapping system did not run in a reasonable amount of time. 

Consequently, AD-R(HY) was removed from this experiment. 

8.5.1 Computational Observations and Results 

Analysis of Overall Planning Times in Controlled Environments 

The statistical analysis of Experiment 3 is presented in Table 8-7. For the purposes of this 

analysis, the focus was only on the time taken by the adaptive coverage planners to supply 

inspection plan updates. Figure 8-33 illustrates the planning times together with the average 

replan time per iteration (ARTIP) for each planning problem. The planning times 

demonstrate AD-P replans each planning problem faster than AD-R on all accounts. The 

scale between planning times between AD-P and AD-R over all controlled planning 

environments is shown in Figure 8-34. For the smallest planning problem 2x2m_1, AD-P 

replanned the planning problem eight times faster than AD-R. For the largest controlled 

planning environment 8x8m_9, the speed-up between AD-P and AD-R increased to 32.8 

times. 

Outcome of Replanning Strategies in Representative Tank Environment  

For the most complex environment tested, Tank-P4, AD-P solves it 379 times faster than 

AD-R. On average, AD-R took 46 hours to complete the replanning phase for the inspection 

over 367 replanning iterations; hence, the reason why five trials were sufficient to conclude 

that AD-R was not going to improve in future trials. The difference between AD-P and  

AD-R in this experiment demonstrated the ability of the new plan repair strategy to reduce 

processing times to replan in large and complex environments. Consequently, all planning  
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Table 8-7: Statistical analysis for Experiment 3. Shaded tour times indicate the robot will wait for tour updates. 

Model / 
# Features 
Planner / 

# of replanning 
iterations  

Overall Planning  
Time (s) 

ROI  
Validation (s) 

Online CSP (s) Online MPP (m) Configurations 
Tour  

Length (m) 
Path 

Evals (x103) 
Tour 

Replanned 
(%)* 

ARTPI 
(s) 

Tour 
time  

(mins)^ 
RCE 

𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅ SD 𝑥̅  SD 

2x
2m

 

1 
P 70.08 9.49 12.97 1.78 11.18 1.47 0.98 0.23 0.79 0.72 165.60 2.08 21.28 0.32 1.09 0.16 7.14 0.19 9.07 

5.97 
R 69.36 11.18 104.17 16.15 3.08 0.59 86.19 13.55 13.86 2.25 228.60 11.48 27.51 0.81 9.80 1.51 96.05 1.50 12.20 

5 
P 145.80 16.84 40.02 5.25 29.62 3.41 3.19 0.47 7.15 3.43 200.08 3.51 25.38 0.84 4.27 0.54 29.09 0.27 10.90 

8.56 
R 202.08 14.11 509.69 49.58 13.06 1.44 356.21 27.65 137.18 25.90 313.68 14.40 34.54 1.48 3.58 2.71 99.36 2.52 16.21 

9 
P 215.72 22.43 70.88 7.44 52.54 5.15 6.14 0.46 12.08 3.23 228.36 5.46 28.72 1.32 8.48 0.925 44.07 0.33 12.40 

8.28 
R 285.20 17.38 939.97 71.05 24.95 2.50 589.80 35.49 320.40 54.27 391.84 12.87 40.79 1.41 58.41 3.60 99.49 3.30 19.86 

4x
4m

 

1 
P 35.40 9.13 19.41 5.50 17.78 4.68 0.72 0.27 0.88 0.96 500.48 2.22 73.95 0.36 0.65 0.18 2.40 0.54 29.01 

8.63 
R 37.00 8.16 198.98 57.05 8.14 2.51 144.18 45.29 45.12 11.96 602.92 16.63 86.14 1.38 13.69 3.82 89.88 5.35 34.45 

5 
P 208.76 11.95 120.77 8.08 109.60 6.56 4.33 0.48 6.60 2.70 537.52 4.67 79.70 1.49 4.25 0.31 10.63 0.58 31.20 

9.39 
R 228.20 18.03 1.59x103 109.88 49.61 6.14 1.12x103. 87.99 405.90 45.18 798.60 19.58 102.14 1.95 96.15 6.57 96.37 6.96 43.64 

9 
P 360.76 12.85 216.56 7.78 195.23 7.13 7.98 0.48 13.02 2.73 574.60 4.90 84.32 1.69 8.31 0.35 18.24 0.60 33.21 

9.33 
R 422.88 19.63 12.97 1.78 104.48 7.87 0.98 0.23 0.79 0.72 966.08 27.01 115.60 2.65 175.12. 7.56 99.79 7.42 51.47 

6x
6m

 

1 
P 46.00 0.00 48.24 0.85 46.10 0.68 1.17 0.18 0.86 0.70 1,009.60 2.14 157.12 0.40 0.87 0.09 1.37 1.05 59.84 

17.87 
R 38.85 8.05 982.08 274.75 13.34 3.36 559.29 150.85 405.43 132.37 1,155.85 27.12 177.88 2.76 3.9.60 10.02 93.16 25.12 68.17 

5 
P 247.55 14.38 265.55 15.55 251.69 14.51 6.02 0.51 7.27 2.38 1,047.45 4.83 161.57 1.56 4.59 0.23 6.15 1.07 61.84 

15.60 
R 229.85 22.57 5.60x103 588.44 102.10 12.49 3.14x103 362.30 2.34x103 258.92 1,482.15 23.75 205.47 1.75 210.00 21.75 96.29 24.41 83.65 

9 
P 481.20 22.15 520.86 26.14 492.63 23.03 11.79 0.96 15.61 3.23 1,090.15 5.88 167.13 2.93 9.58 0.46 10.76 1.08 64.19 

14.08 
R 438.30 29.15 10.85x103 1.20x103 228.41 21.15 6.01x103 699.01 4.58x103 568.84 1,729.95 28.06 224.13 2.05 378.86 33.84 99.88 24.79 95.02 

8x
8m

 

1 
P 55.80 0.63 85.31 1.96 80.19 1.27 1.42 0.29 3.59 1.25 1,744.90 2.02 275.59 0.37 1.22 102.33 0.67 1.53 104.09 

28.21 
R 40.10 7.61 2.67x103 850.95 20.10 5.44 1.10x103 329.70 1.54x103 525.36 1,931.40 27.83 305.99 2.09 0.74 19.98 86.95 65.72 115.38 

5 
P 275.10 11.32 417.43 14.30 393.26 13.87 7.54 0.58 16.09 5.20 1,783.60 4.03 280.47 1.20 5.63 233.53 3.31 1.52 106.20 

27.58 
R 234.00 18.71 14.53x103 1.97x103 147.81 12.60 6.17 x103 855.60 8.19x103 1.13x103 2,323.00 34.04 339.71 2.78 0.38 44.39 95.05 61.94 134.05 

9 
P 476.60 26.23 736.38 45.59 687.17 39.41 13.07 0.87 34.85 9.02 1,816.70 4.97 287.36 3.26 9.85 593.40 5.80 1.54 108.45 

24.13 
R 432.20 33.46 24.18x103 3.82x103 327.31 36.76 10.47x103 1.46x103 13.33x103 2.40x103 2,612.40 39.64 362.88 3.24 608.93 74.15 99.92 55.90 147.56 

T
an

k 

P4 
P 288.10 19.39 437.46 34.28 325.72 22.80 45.16 1.91 65.65 15.01 1,703.70 14.75 199.78 6.25 48.38 4.65 26.03 1.52 90.09 

278.73 
R 367.20 19.27 165.7x103 13.1x103 107.06 7.04 8.59x103 732.37 157.3x103 12.43x103 2,508.00 68.77 234.17 4.55 1028.82 74.50 99.92 451.74 122.63 

ROI – Region of Interest CSP – Coverage Sampling Problem MPP – Multi-goal Planning Problem P – AD-P R – AD-R RCE – Relative Computational Effort ARTIP – Average Replan time per Iteration 
* Tour replanned is calculated as a ratio of how many original configurations exist within the final tour. Excludes start and finish positions. ^Tour time = 2s*Configurations + 0.1m/s*Tour Length 
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Figure 8-33: Overall planning times and the average replan time per iteration (ARTPI) for AD-P 

and AD-R over all tested environments.  

 

 

Figure 8-34: Speed-up of AD-P over AD-R for the controlled environments. 
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problems recorded a statistically and practically significant result (p < 0.001; d >0.8); 

following the same trend in all trials tested throughout this chapter. 

Average Replan Time per Iteration  

As AD-P iteratively replanned smaller regions of the environment per replanning update, 

compared to AD-R, AD-P maintained consistent replanning times, taking no more than 1.6 

seconds on average to provide a tour update over all tested environments. This performance 

compared to AD-R’s ARTIP which steadily increased from seconds to minutes as the 

environments grew in size and complexity. For Tank-P4, AD-R’s average RTIP was 7.5 

minutes, equivalent to the total planning time taken for AD-P over the lifetime of the 

inspection; whose ARTIP was 1.5 seconds. Given that AD-R is equivalent to solving the 

inspection planning problem offline, an ARTIP of 7.5 minutes aligns with the 6.6-minute 

solution times (σ = ±1.9 minutes) Tank-P4 was being solved in Chapter 5  

(Table 5-5). The differences between the offline and AD-R solutions can be attributed to; 

1) the additional time to execute ROI Validation,  

2) the difference in configuration locations due to OSP, and 

3) the tour being solved between different start and finish locations.  

Between these two ARTIP times, only AD-P meets the one to two replanning time set by 

Requirement 7 of the STIPP criteria. 

Distribution of Overall Planning Times among Planning Processes 

Figure 8-35 and 8-36 show the distribution of the overall planning times amongst each of 

planning phases for AD-P and AD-R respectively. Due to AD-P’s ability to replan smaller 

regions of the environment, the use of Online CSP and Online MPP procedures has 

decreased in comparison to what was observed in the previous two experiments. The ROI 

Validation phase accounts for up to 85% of the overall planning times, an average increase 

of up to 60% on what was observed in the previous experiments, when replanning was 

performed over a single iteration.  

As expected, the planning environments with the higher replanning effort, 2x2m_(5,9) and 

Tank-P4, required Online CSP and Online MPP to replan more thus reducing the influence 

of ROI Validation. However, the influence of Online CSP and Online MPP processes due to 

preservation, does not allow these processes to influence planning times as much as they do 

for AD-R. As ROI Validation in AD-R is only used to determine how much of the plan has 
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Figure 8-35: Distribution of each planning process as a ratio of overall planning time for AD-P. 

 

Figure 8-36: Distribution of each planning process as a ratio of overall planning time for AD-R. 

been completed before the map update, the influence of ROI Validation is again minimal, as 

previously observed. As each replanning iteration is equivalent to solving the planning 

problem offline, it was no surprise that Online MPP accounted for approximately 95% of 

the overall planning times to solve Tank-P4; equivalent to the domination of MPP times 

observed in the offline experiments (Table 5-5). 

Covering Set Sizes, Path Evaluations, Tour Lengths and Replan Effort 

This experiment has shown that AD-P produced covering set sizes on average 27.5% smaller 

than AD-R over controlled environments (p < 0.001, d > 0.8) and 32% smaller for Tank-P4 

(Figure 8-37; p < 0.001, d > 0.8). Consequently, the larger covering set size of AD-R has led 

to a significant increase in the number of planning iterations and created longer tours than 

AD-P (Figure 8-37; p < 0.001, d > 0.8). For Tank-P4, AD-P produced tour lengths that  
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Figure 8-37: The additional increase in replanning led to AD-R producing covering set sizes, 

planning iterations and tour lengths that were larger than AD-P over all planning problems.  

were 15% shorter than AD-R. This is a significant change considering that AD-P produced 

tours that were 5.2% longer than AD-R in Experiment 2 (Table 8-5).  

As the inspection plans were simulated, AD-R only had to replan everything again upon 

encountering the first map update. Therefore, for the planning environments that contained 

centrally located features, i.e 2x2m_(1), early segments of the inspection plan could be 

completed and thus preserved before replanning commenced. Therefore, the sooner the robot 

encountered change, the less AD-R was able to preserve. Consequently, AD-R showed a 

similar trend in replanning effort as AD-P (Figure 8-37).  

Visual Demonstration of Replanning Strategies and Validation of Planning Heuristics 

A visual comparison between a trial of AD-P and AD-R for 4x4m_5 is illustrated in Figure 

8-38. In these trials, the regions completed by the robot are highlighted in green, the region 

preserved by AD-P displayed in yellow with the uncoloured regions representing the regions 

that required replanning. Over each replanning iteration presented, it is clear that; 

1) AD-P replans less and AD-R,  

2) the difference in covering set sizes, 

3) the difference between tour lengths, and 

4) that AD-P follows the strict ordering of the offline tour, only deviating due to the 

influence of new features.  
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Figure 8-38: Evolution of inspection plans for AD-P and AD-R for 4x4m_5.  
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The trial also demonstrates the capability of the Relaxed Trapped Configuration Heuristic 

(R-TCH; Section 7.4.2), Nearest Neighbour Heuristic (NNH; Section 7.4.2) and Trapped 

Configuration Heuristic for Path Planning (TCH-PP; Section 7.5.2) by removing 

configurations that are contained within partial constructed structures. For the AD-P 

planning iterations, it can be seen that configurations exist within partially constructed 

features. In subsequent iterations, these configurations are removed as the features are 

completed in future iterations. While these functions are not the primary focus of the 

investigation, they were developed to ensure the adaptive coverage planner is capable of 

efficiently handling evolving environments. Furthermore, the trial highlights the 

unobservable primitives in the final planning iterations (magenta) to ensure the operator is 

aware of areas of the environment that cannot be inspected (Requirement 4).   

Planning Outputs: Tour Time and Relative Computation Effort 

The larger covering sets and longer tour lengths of AD-R solutions consequently resulted in 

longer tour times (Figure 8-39). Furthermore, the tour times degraded from the previous 

experiments, increasing from 13.7% to 28%, proportional to the size of the environment.  

Planning problems whose adaptive coverage planner’s overall replanning times are greater 

than the tour time, suggests that concurrent replanning would not be feasible, are shaded in 

Table 8-7. For AD-P, all replanning times were considerably under their respective tour 

times. This finding indicates, that for these planning problems, the plan repair strategy 

would have the capability of replanning concurrently, in accordance Assumption 7 (Section 

3.6.1). For AD-R, only the smaller planning problems were able to meet this requirement. 

Once the planning problem becomes larger in size, with more features, tour times and 

replanning times for AD-R show that the robot is certain to wait, for considerable amounts 

of time, for replanning updates.  

Finally, due to AP-R’s longer overall planning times and tour lengths, the RCE between the 

two replanning strategies considerably increased compared to the RCE of previous 

experiments. For the controlled planning environments, the RCE increases from 6 to 28 

times the computational effort for equivalent tour quality. Granted, the RCE drops slightly 

when AD-P is subjected to replanning more of the environment however, the difference is 

negligible. For Tank-P4, the RCE between replanning strategies was 278 times greater, a 

significant increase compared to the 30.8 times difference observed in Experiment 2  

(Figure 8-32).   
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Figure 8-39: Tour times and relative computation effort (RCE) for Experiment 3. 

8.5.2 Discussion  

The analysis of this experiment clearly demonstrates how effective the plan repair strategy 

is at preserving uninfluenced segments of the tour to minimise the amount of replanning 

required to perform a tour update. For all tested cases, AD-P outperformed AD-R in all 

evaluated metrics. Furthermore, with AD-P producing smaller covering sets and shorter tour 

lengths compared to solutions generated by AD-R, the expected time to complete each  

AD-P tour would be faster than AD-R and the RCE demonstrates how efficient the plan 

repair strategy is at replanning.  

This experiment served as a validation to the previous two experiments. Once again, the 

analysis highlights that the difference between the replanning strategies. With smaller 

amounts to replan per iteration, AD-P still scaled to the size of the changes as indicative of 

the overall planning times, while AD-R scales the size of the environment. Due to AD-P’s 

ability to preserve the majority of the tour per replanning iteration, the difference between 

AD-P and AD-R’s computational performance became significantly more distant the larger 

and more complex the planning scenarios became.  

The results for Tank-P4 demonstrate suitability of the plan repair strategy to solve a 

representation of the target environment. Even if the AD-R(HY) were to be used for this 

experiment, it would have only reduced Online MPP times. Online CSP would remain the 

same and considering that Online CSP times within the AD-R approach for Tank-P4 were 

20 times greater than AD-P’s overall planning time. 
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While the trends of AD-P were replicated in this experiment, it was surprising to observe the 

significant tour degradation exhibited by AD-R solutions. In the previous experiments, when 

AD-P replanned more than 28 to 35% of the environment, tours lengths degraded in 

comparison to AD-R. However, in this experiment this did not occur for any of the planning 

problems, even when AD-P replanned 44% of the final tour for 2x2m_9. A comparison 

between AD-R tour lengths also show how the tour lengths have degraded against the 

respective results in the previous experiments (Figure 8-40). 

While it was not expected for either AD-P or AD-R to produce tours of better quality than 

the tour generated by their respective Experiment 1 and 2 counterparts, they were able to 

reconsider the  entirety of the environment before replanning, AD-R tour lengths were up as 

much as 72% longer. Only the larger planning problems with fewer features (6x6m_1 and 

8x8m_1), which subsequently resulted in fewer replanning iterations, exhibited smaller 

differences in path lengths between the experiments. This finding would not be surprising if 

AD-P followed a similar behaviour. However, as illustrated in Figure 8-40, AD-P 

experiences minimal tour degradation and in the case of 2x2m_9, produced shorter tours. It 

is likely for 2x2m_9 that the incremental nature of map updates did not result in the large 

ROI gates separation that was observed in Experiment 1 (Figure 8-26). 

As previously discussed, the tour degradation experienced by AD-R in the previous 

experiments was determined to be the result of using the OSP with a lower redundancy 

roadmap than was constructed for the initial tour. The increase in tour lengths in this 

experiment could be directly related to the increase in the covering set size AD-R generated 

over all planning problems (Figure 8-41). However, whilst the CSP is sensitive to the 

redundancy of the roadmap and the environment neither of these parameters have changed 

between the three experiments, therefore, suggesting that the significant increase in sub-

optimality observed in this experiment by AD-R cannot be solely attributed to these 

parameters.  

The only other differences between each experiment is the number of planning iterations 

performed and the resulting regions that require replanning. As AD-R solutions were clearly 

more impacted than AD-P solutions, the degradation cannot be directly related to the number 

of replanning iterations, as these are approximately the same for each planner but must be 

due to the size of the area that is required to be replanned.  

While the data collected from this experiment could not conclusively determine the cause  
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Figure 8-40: The average percentage difference between tour lengths produced in Experiment 1 

and 2 against the tour lengths produced in Experiment 3.  

 

Figure 8-41: The average percentage difference between covering set sizes produced in 

Experiment 1 and 2 against the covering set sizes produced in Experiment 3. 

behind AD-R’s tour degradation, a visual examination of the resultant tours allowed for a 

few possible reasons to explain the observed behaviour. For reference, these reasons are 

present in the 4x4m_5 trial shown in Figure 8-38 and listed below: 

1) For both AD-P and AD-R, there is a clustering of configurations that appear on the 

boundaries that separated observed and unobserved primitives. 

For AD-R this boundary exists between the executed and non-executed areas of the 

environment (green and white coloured primitives respectively). For AD-P this boundary 
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exists between the executed, preserved and unpreserved areas of the environment (green, 

yellow and white coloured primitives respectively). In this context, as the boundary for  

AD-R for 4x4m_5 were significantly larger than that of AD-P for any given replanning 

iteration, AD-R is more susceptible to boundary clustering. However, if larger areas were 

required to be replanned, resulting in a larger boundary defined by the ROIs,  

AD-P would have been more significantly impacted by boundary clustering. If this were the 

case, it may explain why boundary clustering was not present for AD-P for Experiment 1 

and 2, since the no portion of the tour was executed, which resulted in better quality tours 

being presented with respect to AD-P despite using a lower redundancy roadmap as 

previously mentioned.  

2) AD-R tours change direction several times over the course of multiple iterations. 

It can be observed in Figure 8-38, the AD-R’s tour changes several times while AD-P 

preserved the direction of the offline tour. Given that AD-R recalculates the entirety of the 

remaining tour based on the robot’s current location and the amount of information present 

within the environment, as more information about the features becomes present, the 

direction of the tour may change in response to what is currently the shortest tour available. 

However, upon the next iteration when new information about the environment is delivered, 

resulting in a new set of configurations, the shortest tour to the goal may change again. As 

a result, over the course of the inspection the tour may change several times, increasing the 

overall tour length, making it significantly longer than a tour that is fixed to the direction of 

the offline tour when the level of replanning per iteration is significantly less.  

The combination of these potential factors along with the removable of high-redundancy 

covering sets with lower redundancy roadmaps and the complexity of the environment at 

each replanning iteration all could compound together to result in the significant, yet 

unexpected tour degradation witnessed by AD-R.  

To conclude, this experiment was also used to determine whether AD-P or AD-R could 

satisfy the one to two-minute replanning time requirement of the STIPP criteria 

(Requirement 7). As the analysis showed, all of AD-Ps ARTIP were able to successfully 

meet this requirement, with an ARTIP of 1.57s for Tank-P4. The ARTIP and overall 

planning times indicated that the robot would be able to concurrently replan and perform an 

inspection when utilising the plan replan strategy. While AD-R was able to replan under the 

one minute per iteration for the controlled environments, for Tank-P4, which was the 
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benchmark environment used, ARTIP was over 6.5 minutes, an undesirable outcome 

considering the results of AD-P.  

The conclusion must be considered with respect to the visibility and motion constraints 

placed on the planning problems. The simplified constraints used create a situation where it 

is cheaper to replan than it would be with the actual high-fidelity constraints of a  

multi-legged platform. In this case, replanning times for both AD-P and AD-R would be 

greater than the times presented in these experiments. However, if high-fidelity constraints 

were used, it would greatly impact the full replan strategy. AD-P will continue to replan 

faster than AD-R until the replan effort is equivalent. Then, the additional cross-checks 

performed by ROI Validation would impact AD-P replanning times. 

In the context of the STIPP and the Inspection Planning Framework, the constraints used 

for the inspection planning module throughout this thesis would have been implemented for 

physical testing on the concept demonstrator (Section 1.2.2). While the simplified 

constraints have had a significant impact on reducing planning times, especially MPP and 

Online MPP times, this thesis sought to reduce the impact high-fidelity constraints of a multi-

legged platform would have on the adaptive sampling-based coverage planner. Therefore, 

the results of this simulated experiment provide a suitable indication of AD-P’s performance. 

So, in conclusion, the results in Experiment 3 validate that the plan repair strategy had 

successfully satisfied all the criteria of STIPP. 

8.6 Chapter Conclusions and Summary  

In this chapter, the plan repair strategy was examined over three experiments, to determine 

if it was the better of the two replanning strategies, using the full replan strategy as a baseline 

comparison, to adapt the offline sampling-based coverage planner to function adaptively in 

the online domain. 

Experiment 1 analysed the intrinsic behaviour of both replanning strategies within the 

controlled environments that scaled in size and the number of features. As each replanning 

problem introduced each feature in full, it evaluated AD-P’s capability to replan the 

maximum amount of change within a single replanning iteration. The results of Experiment 

1 clearly illustrated how AD-P’s computation scaled with the size of the introduced features 

rather than the size of the environment. It also demonstrated that AD-P was capable of 

replanning multiple disconnected ROIs concurrently over any type of plan.  
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Experiment 2 tested AD-P over the representative tank environments in the same manner as 

Experiment 1; replanning occurred over one planning iteration. AD-P exhibited the same 

trends as seen in Experiment 1, where the computation of AD-P continued to scale with the 

size of the changes, unlike AD-R, whose planning times significantly increased due to the 

size and complexity of having to completely replan the entirety of the tank environments. 

Even with the assistance of the hybrid-heuristic and the tour degradation that was present 

above a replan effort of 28%, AD-R(HY) was not capable of outperforming either AD-P or 

AD-P(HY). The amount of replanning required within these environments was too great to 

compensate for a planning process that had the capability to segment and preserve the 

majority of the initial high-quality roadmaps. 

It was clear from Experiment 2 that AD-P was likely to outperform AD-R if both adaptive 

coverage planners had to perform iteratively over the lifetime of an inspection. This 

prediction was proven to be true in Experiment 3. Experiment 3 served as a validation 

experiment to confirm that the trends and behaviours witnessed in the previous two 

experiments, were still valid in a simulated planning environment. This experiment tested 

both adaptive coverage planners under more realistic conditions given that real-world 

testing of the concept demonstrator was not able to be conducted at the time of this thesis.  

The results in Experiment 3 conclusively showed that AD-P was sufficiently capable at 

providing replanning solutions faster and more efficiently than AD-R. Tour lengths and 

configurations set sizes increased for AD-R due to creating lower redundancy roadmaps than 

was used to create the offline tour. With AD-P preserving more of the existing tour, AD-R 

could not match the quality of AD-P solutions as it continually replanned the entire 

environment upon each iteration.  

The purpose of these experiments was to address a series of questions that would help 

determine which of the two replanning strategies was best suited to adapt the offline 

sampling-based coverage planner to the online domain. The answers to these questions, 

given the experimental results and analysis, are summarised as follows: 

Question 1) What is the computational impact of segmentation and merging of  

sub-plans on the planning times? 

The segmentation and merging processes of the plan repair strategy had negligible effects 

on the computational time when compared to the full replan strategy. While the ROI 
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Validation phase was the most dominate process for AD-P in Experiment 3, the effect that 

the segmentation process had on reducing Online CSP and Online MPP was significant. The 

segmentation process created smaller planning problems that led to smaller covering sets 

and MPPs. Consequently, these smaller problems solved quickly compared to a full replan 

strategy. Therefore, to conclude, the segmentation and merging processes of the plan repair 

strategy were not found to negatively impact planning times as originally expected. Of the 

time that was spent segmenting the tour per replanning iteration, it had a positive influence 

on planning times by successfully reducing the time spent using the sampling and path 

planning processes.  

Question 2) What is the potential drop in tour optimality as the sub-plan approach 

does not solve the coverage plan globally? 

Tour degradation was an expected feature of the plan repair strategy. However, tour 

degradation was only observed in the experiments that required a complete replan within 

one iteration. When the plan repair strategy was tested under maximal replanning loads in 

Experiment 1 and 2, tour degradation did occur when 35% and 28% of the final tour was 

replanned for the controlled environments and representative tank environments 

respectively. However, the tour degradation experienced was not significant enough to 

impact tour times or the RCE between the adaptive coverage planners. Even when AD-P 

replanned under the worst-case scenario (92%) the RCE, whilst marginal, was still 1.5 times 

better than AD-R. 

In Experiment 3, tour degradation of AD-P solutions did not occur at all, as AD-R was found 

to produce longer tours due to an increase in covering set sizes. As a result of AD-P achieving 

significantly faster replanning times and better-quality tours than AD-R, AD-P successfully 

outperformed AD-R in every planning problem. Therefore, for the tested planning problems, 

the potential drop in tour optimality that may exist for AD-P did not impact upon the tour 

times compared to AD-R.  

Question 3) How does the plan repair strategy scale with the size of the environment 

and size of the detected features? 

The controlled environments in Experiment 1, showed that regardless to the initial tour used 

or the size of the environment, AD-P consistency produced equivalent covering set sizes for 

each identical feature introduced (Figure 8-17). The size of the environment did not impact 

planning times for AD-P as the replan effort was constrained to work within the defined 
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ROIs surrounding the new features. The same trends were observed in Experiment 2 and 3. 

As the replanning effort increased, due to the introduction of more features, so did the replan 

times and the size of the covering sets.  

Question 4) What is the replanning limit in which the full replan strategy outperforms 

the plan repair strategy? 

As AD-P outperformed AD-R in many cases with respect to both planning time and tour 

quality, these experiments were not able to conclusively find a limit that would render  

AD-R, in any tested case, to be the better replanning strategy to implement. The tour times 

and RCE values used to benchmark the output of AD-P and AD-R clearly showed the 

computational advantages AD-P provided over all tested planning problems. As mentioned 

previously, even when AD-P experienced degradation in tour quality, when the replan effort 

increased, the degradation experienced did not hinder the overall performance of the plan 

repair strategy, in all tested cases.  

While these experiments could not find the limit to which the plan repair strategy would be 

at a significant disadvantage to the full replan strategy,  the analysis of the these experiments 

conclude that the plan repair strategy is indeed the better of the two replanning strategies to 

extend the offline sampling-based coverage planner to the online domain. This conclusion 

does not imply that the plan repair strategy is the overall best choice for all possible planning 

problems. There is logical argument to say that if the plan repair strategy had to replan 100% 

of the tour, the additional processes that are required to segment and merge, would render 

the full replan strategy to be the better solution to implement. However, these experiments 

found that the segment and merge processes were negligible considering the time these 

processes saved by limiting the utilisation of the Online CSP and MPP processes, which will 

increase the more complex the visibility and mobility constraints that are applied. While a 

definitive limit was not found in these experiments, they did demonstrate that the plan repair 

strategy was capable of replanning up to 92% of the existing tour and still be computationally 

faster than the full replan strategy.  

Despite the computational efficiencies of the plan repair strategy, the analysis of the 

intrinsic behaviours of the adaptive sampling-based coverage planner revealed the 

following limitations: 
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Limitation 1) The plan repair strategy must follow the existing order of the preserved 

tour segments (Section 8.3.2). The deliberate forcing of the new path segments to 

route between preserved segments may contribute to overall degradation of tour 

quality. 

Limitation 2) The point-to-line algorithm (Section 7.6) that is used to sort 

configurations into sub-MPPs does not consider changes in geometry of the 

environment. As a result, configurations may be sorted into path segments that are 

not geometrically appropriate (Section 8.3.2).  

Limitation 3) While the hybrid-heuristic provided significant improvement of the MPP 

times, the calculation of the heuristic is computationally inefficient to be used in 

conjunction with the plan replan strategy.  

Whilst these limitations existed within the plan repair strategy, the degradation of the replan 

strategy did not at any stage create a solution that was computationally worse than any 

solution provided by the full replan strategy in any tested planning scenario. 

In summary, considering the two replanning strategies, the plan repair strategy is the 

superior of the two approaches in this context. The introduction of the ROI Validation phase 

to prevent non-influenced segments of the tour from being replanned, has made it possible 

for the sampling and path planning algorithms of the offline sampling-based coverage 

planner to be applied in the online domain. Minimising the amount of work these procedures 

would be required to perform under a full replan strategy has significantly reduced the time 

it takes to replan new features into the coverage plan.  

For the most complex environment tested, Tank-P4, AD-P was able to complete the entire 

replanning problem within 7.5 minutes, 379 times faster than AD-R, which solved Tank-P4 

in 46 hours. This result alone, clearly illustrated that the adaptive sampling-based coverage 

planner that utilises a plan repair strategy is capable of replanning new coverage in both 

large and complex environments. Finally, as AD-P’s ARTIP were within the seconds, it was 

suitably under the required one to two-minute replanning time specified by the STIPP 

criteria. Meeting this final requirement ensured that the plan repair strategy was able to 

satisfy all the STIPP criteria and thereby satisfy the objective of this thesis. 

 



 

 

 

291 

 

 

 

 

Chapter 9  

Summary, Original Contributions, Conclusions, 

and Future Work 

9.1 Thesis Summary  

The objective of this thesis was to develop an adaptive coverage planner that enables an 

autonomous robot to perform a thorough visual inspection of the ballast tanks inside a 

Collins Class submarine. Limitations in the current robotic platform technology make it 

challenging to solve the autonomous inspection problem inside these complex confined 

spaces. A review of robotic inspection platforms suggested that a multi-legged, high  

degree-of-freedom (DOF) robotic platform with a magnetic climbing ability would be a 

suitable platform for submarine tank inspection. A concept demonstrator was presented that 

was to be the testbed for algorithm development.  

To enable a robotic platform to perform an autonomous inspection, three processes were 

highlighted: 

1) a mapping system,  

2) an inspection planner, and  

3) a motion planner. 

Given that knowledge about the submarine tanks were known a priori, a combined planning 

architecture was chosen that allowed an offline inspection plan to be generated first which 

then initialised an online planning architecture capable of modifying the existing plan to 

account for changing conditions. This approach was considered to be more appropriate than 

a complete online solution that incrementally constructs a plan in real-time as the robot finds 

its way through an unknown environment.  
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The combined planning architecture created the Inspection Planning Framework (IPF) that 

was to be implemented on the concept demonstrator. The three processes were separated 

into three modules, each responsible for ensuring the robot was capable of executing the 

calculated inspection plan. 

Of the three IPF modules, this thesis focussed on the development of an adaptive coverage 

planner. The adaptive coverage planner ensured the inspection planner module was able to 

deliver consistent and reliable planning updates to the robot so newly detected features were 

included in the inspection. A list of requirements was presented that formed the submarine 

tank inspection planning problem (STIPP), that was the basis of the investigation of this 

thesis. The STIPP criteria outlined what is required by the coverage planner to ensure it is 

suitable to be deployed on multi-legged platform. However, it was the delivery of timely 

planning updates that created the scope and focus of the thesis.  

In Chapter 2, a review of the path and coverage path planning (CPP) literature found that 

many current coverage path planning solutions did not completely meet all the required 

STIPP criteria. Given the requirements of the STIPP, it was concluded that a discrete 

sampling-based approach to coverage planning was best suited for the application. However, 

no online sampling-based coverage planners were available that met the STIPP criteria. 

Therefore, a gap statement was derived, and it was determined that, to meet all the criteria 

of the STIPP, an offline sampling-based coverage planner should be converted to the online 

domain using the common replanning strategies of path planning.  

Given the gap statement, Chapter 3 formulated a solution to STIPP. On merit, the offline 

sampling-based coverage planner of Englot and Hover (2017) that uses redundant roadmaps 

to generate coverage was selected to be the discrete coverage planner and was adapted for 

online implementation. While online implementations exist that use the sampling and path 

planning procedures for the coverage in unknown environments, there has been no previous 

attempt to create an adaptive coverage planner that modifies an existing plan in a partially 

known environment. With this coverage planner in mind, two replanning strategies were 

proposed to adapt the offline coverage planner into the online domain: a full replan and a 

plan repair. The focus of this thesis was to determine which is better suited to solve the 

online planning problem.  

Chapter 3 also discussed concerns about adapting the offline coverage planner to the online 

domain that were raised in the literature. Emphases on the coverage planner’s long 
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computational times impacting online performance was the primary concern. However, 

given that there was no available benchmark for how the offline sampling-based coverage 

planner would perform in the target environment, it was decided to perform an experiment 

to understand its intrinsic behaviour.   

Chapter 3 concludes with a discussion of the assumptions placed on the relationship between 

the three modules of the IPF. These assumptions constrained the investigation of the thesis 

to only focus upon the development of the adaptive sampling-based coverage planner 

irrespective of any particular mapping system, robotic platform or visibility constraints. 

These assumptions were: 

Environment, Mapping System and Adaptive Replanning 

Assumption 1: Newly detected features all exist within the bounds of the original 

environment.  

Assumption 2: Changes within the environment are expected to be small in relation 

to the size and complexity of the environment.  

Assumption 3: The mapping system will only introduce new features into the 

environment. Given the nature of online mapping, partial maps are also expected. 

Assumption 4: No features within the environment are dynamic in nature.  

Assumption 5: The adaptive sampling-based coverage planner will not handle 

mesh, sensor and positional uncertainty. 

Assumption 6: The adaptive sampling-based coverage planner is not responsible 

for uncovering or directing the robot to uncover new surfaces of partially constructed 

features. 

Assumption 7: Replanning can occur simultaneously to performing the inspection.  

Motion Planning and Visibility Constraints 

Assumption 8: A 6-DOF holonomic assumption is used as a heuristic to 

approximate the motion constraints of an 18-DOF robot with electromagnetic 

adhesion.  

Assumption 9: High-fidelity motion planning will occur after the coverage plan has 

been calculated to reduce the impact on planning times. The sampling-based 

coverage planner will solve motion plans with the simplified constraints of 
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Assumption 8. Therefore, the tour provided by the coverage planner approximates 

the actual tour. 

Assumption 10: Visibility constraints are simplified to aid the high-fidelity motion 

planner to achieve the calculated 6-DOF by relaxing the roll constraint of the viewing 

pose. 

In Chapter 4, the offline sampling-based coverage planner was examined to gain an 

understanding of any shortcomings needing to be addressed for an efficient online 

implementation. To test the offline coverage planner, a series of planning environments, 

including those of representative tanks, were used to evaluate different aspects of algorithms 

behind the covering sampling problem (CSP) and multi-goal planning problem (MPP). 

The offline coverage planner was recreated in this thesis to the specifications outlined in the 

original publications. To prepare for online planning, amendments were made to increase 

the delivery of solutions from the CSP and MPP processes. These included; 

1) a primitive rejection limit to ensure that unobservable primitives are not continually 

sampled after a number of attempts have been made to view them, and  

2) a change in approximate Travelling Salesman Problem (TSP) solvers that should 

produce faster TSP solutions for larger planning problems.  

The analysis of the benchmark experiment showed that;  

1) a significant variability was present between overall planning times for identical 

covering sets despite producing tours of similar quality, and 

2) the coverage planner can be sensitive to small changes within the environment.   

The cause behind the variability and sensitivity was narrowed down to the lazy  

point-to-point planner (LPP), confirmed by the long computational times present among the 

larger planning problems. The sampling algorithms to solve the CSP were not deemed to be 

of concern for online implementation. Therefore, it was clear from these observations that if 

an efficient online implementation was to be derived from the offline sampling-based 

coverage planner, the significant variability and sensitivity of the LPP had to be addressed, 

and either resolved or minimised 

Chapter 5 investigated the LPP data from the benchmark experiment and determined that 

the cause of the variability was due to the equality termination condition not compensating 
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for non-optimal solutions provided by approximation TSP solvers. Given that approximation 

TSP solvers do not guarantee optimal solutions, the likelihood of terminating due to the 

equality termination condition was more unlikely, as the covering set grew in size. 

Ultimately, the LPP was found to be terminating at random.  

To minimise the variability, whilst still retaining an approximation TSP solver to solve TSP 

problems quickly, additional termination conditions were developed to track the two 

primary behaviours observed in the planning data; 

1) the non-consecutive repetition of previous solutions in small planning problems, and  

2) the delivery of multiple yet not repeating sub-optimal answers presented in large 

planning problems. 

The implementation of the additional termination conditions minimised the variability 

exhibited by the LPP resulting in shorter planning times with no degradation to tour length. 

The larger planning problems that had failed to find a solution within six hours were 

completed within 10 minutes. 

By removing the variability from the planning solutions, further examination of the LPP data 

showed how sensitive the LPP is to the environment. Results showed that there were a 

significant number of RRTs being evaluated that were not retained in the final plan. This 

highlighted the significant effort the LPP is required to make to find a feasible solution. 

Considering the expense of solving high-fidelity motion plans, a reduction in the number of 

path evaluations would be beneficial for both offline and online planning approaches. 

Chapter 6 explains how the sensitivity of the LPP was due to the underestimation of the 

Euclidean assumption that is used to initialise the connectivity between the configurations 

before planning. To overcome the naivety of the Euclidean assumption, it was concluded 

that the adjacency between the configurations had to encode a representation of the 

environment.  

Topological skeletons were used to create the skeleton-heuristic that provided an 

approximation of the distances between configurations around obstacles within the 

environment. Rerunning the benchmark experiment showed that the while the skeleton-

heuristic reduced planning times and the number of paths evaluated, its distance metric 

degraded tour quality.  
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Due to the thinning process, configurations that are could have been connected via  

line-of-sight had their distances overestimated therefore making it seem that they were 

further away than they appeared. To overcome the overestimation within local areas of 

connectivity, the Euclidean assumption was reinstated between line-of-sight configurations 

and thus created the hybrid-heuristic. The hybrid-heuristic was found to significantly 

decrease planning times in the large planning problems to within minutes by removing 

thousands of paths from being evaluated without significantly degrading tour quality.  

To demonstrate the effectiveness of the hybrid-heuristic over large planning environments, 

it was then applied to a life-like 70x40x2m office space. The performance of the  

hybrid-heuristic excelled in comparison to the LPP initialised with a Euclidean assumption. 

Feasible tours with minimal degradation were generated in under 10 minutes compared to 

1.1 days using the Euclidean assumption. This result demonstrated that the offline sampling-

based coverage planner is capable of solving significantly larger planning problems with 

the hybrid-heuristic, thus overcoming one of the major concerns with the offline sampling-

based coverage planner.  

At the conclusion of Chapter 6, two new heuristics where introduced to the LPP to reduce 

multi-goal planning problem (MPP) times. Despite the significant improvement provided by 

the additional termination conditions and the hybrid-heuristic, it was not sufficient to 

determine that the full replan strategy would be a suitable extension for online planning. The 

plan repair strategy would prove to be a better strategy providing the segmentation process 

did not significantly impact the planning times.  

Chapter 7 proposed the plan repair strategy to develop the adaptive sampling-based 

coverage planner that would meet the STIPP criteria. To minimise the overall replanning 

effort, the plan repair strategy formed regions of interest (ROIs) around newly detected 

primitives to isolate the replanning effort. Treating each primitive as a separate ROI allowed 

multiple regions to be replanned concurrently, irrespective of their geometric position. 

Setting the ROI threshold to the inspection sensor’s maximum field-of-depth ensured all 

potentially unobserved primitives were included in the replanning phase without having to 

parameterise the environment to perform effectively.  

Introducing ROIs to isolate replanning regions by segmenting the current plan created a 

three-phase coverage planner that still preserved the existing offline CSP and MPP 

procedures. The proposed adaptive sampling-based coverage planner introduced the  
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ROI Validation phase, to supply the Online CSP and Online MPP phases with smaller 

planning problems. Given the plan repair replan strategy preserved the functionality of the 

CSP and MPP processes, the adaptive coverage planner still adhered to probabilistic 

completeness. Hence, each ROI captured all potential primitives that may be under the 

influence of the changes.  

Chapter 7 also introduced the optimal sampling procedure (OSP) to aid in producing 

consistent viewing locations before resulting random samples to fill coverage over simple 

geometries. Furthermore, this chapter introduced the relaxed-trapped configuration 

heuristic (R-TCH) and trapped configuration heuristic for path planning (TCH-PP) to 

remove configurations that are trapped due to prison cells created by an evolving 

representation of the environment. 

Chapter 8 compared the two replanning strategies to determine if the plan repair strategy 

(AD-P) is the better of the two replanning strategies for extending the offline sampling-based 

coverage planner to the online domain. For completeness, the adaptive coverage planner 

using a full replan strategy (AD-R) was also proposed. The chapter aimed to answer the 

following questions that would determine the suitability of AD-P to adaptively solve 

replanning queries: 

Question 1) What is the computational impact of segmentation and merging of sub-

plans on the planning times?  

Question 2) What is the potential drop in tour optimality as the sub-plan approach 

does not solve the coverage plan globally?  

Question 3) How does the adaptive coverage planner, using the plan repair strategy, 

scale to the size of the environment and size of any changes? 

Question 4) What is the replanning limit in which the full replan strategy outperforms 

the plan repair strategy?  

To answer these questions a series of simulated experiments were conducted that analysed 

the behaviour of both AD-P and AD-R within simplified and representative tank 

environments to both static and evolving environments. The primary experiment 

documented in Chapter 8 examined the response of adaptive coverage planners to an 

environment that scaled in the size and number of objects. The main difference between the 

two adaptive coverage planners was the amount of replanning that was required to perform 

an update. The question with the plan repair strategy was whether additional computation 
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cost from the segment (ROI Validation) and merge (Online MPP) processes would outweigh 

the potential benefits of replanning smaller planning problems faster. 

The outcome of the size and scalability experiment determined that for the simplest 

replanning problems, the adaptive coverage planner, using a plan repair strategy (AD-P), 

was the superior of the two approaches. The introduction of a segmentation process 

significantly reduced the replanning effort required, resulting in shorter replanning times. 

Neither the segmentation nor merging processes of the ROI Validation and Online MPP 

phases negatively impacted planning times. 

Subsequent experiments in the representative tank environment demonstrated the same 

trends in behaviours between the two adaptive coverage planners. The plan repair strategy 

was better suited to performing replanning within the target environment. When simulating 

the robot executing the inspection plan, the differences between the two replanning strategies 

grew. AD-R was found not to be suitable for solving the online planning problem. When 

planning over Tank-P4, AD-P solved the replanning problem 379 times faster than AD-R, 

reducing replanning times from 46 hours to 7.5 minutes. With this result, the plan repair 

strategy was deemed to be the superior of the two replanning strategies to convert the offline 

sampling-based coverage planner to the online domain.  

These experiments also tested the effectiveness of the additional termination conditions and 

hybrid-heuristic in the online context. While it was evident that the additional termination 

conditions functioned as expected, the calculation of the skeleton outweighed the benefits it 

provided in solving the MPP faster than using the Euclidean assumption. 

9.2 Original Contributions 

This thesis makes the following five original contributions to the field of coverage path 

planning: 

Contribution 1: The thesis investigated the functionality of the offline sampling-

based coverage planner developed by Englot and Hover (2017). The investigation 

determined the suitability of sampling and path planning processes for an online 

implementation (Chapter 4). The analysis of experimental data revealed that major 

issues were present when using large covering set sizes numbering into the 

thousands. These issues made it infeasible for problems of this size to be solved 

appropriately and thus necessitated new directions of development to improve both 
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the offline and online planning processes (Contributions 2 and 3) The original 

contribution to knowledge is the analysis and findings of this experiment. This 

experiment examined the offline sampling-based coverage planner in a different 

planning domain with different planning constraints, providing further insight about 

the coverage planner than previously published.  

Contribution 2: The investigation in Chapter 4 revealed that the existing offline 

sampling-based coverage planner exhibited significant variability between solutions 

when planning over large covering sets. This thesis explored the cause behind the 

variability and found that it was produced by the equality termination condition and 

approximation Travelling Salesman Problem solutions within the lazy point-to-point 

planner (Chapter 5). To rectify this variability, additional termination conditions 

were developed. These new termination conditions successfully removed the 

majority of the planning time variability due to ineffective iterations, which 

consequently resulted in a significant reduction of planning times across all planning 

problems. These additional termination conditions enabled both the offline and 

adaptive sampling-based coverage planner to continue using an approximation TSP 

solver to solve large coverage planning problems quickly.  

Contribution 3: The analysis in Chapter 4 also demonstrated the sensitivity of the 

lazy point-to-point planner to the geometry of different environments. Topological 

skeletons were introduced to create the hybrid-heuristic and increase the efficiency 

of the lazy point-to-point planner to better solve the multi-goal planning problem in 

complex spaces (Chapter 6). The hybrid-heuristic generally guided the lazy  

point-to-point planner to a faster convergence on solutions, significantly reducing 

planning times of large complex coverage planning problems in concave planning 

environments. 

Contribution 4: This thesis presented a novel adaptive sampling-based coverage 

planner that is capable of performing inspections from an autonomous platform 

within confined, complex environments (Chapter 7). An adaptive variant of the 

offline sampling-based coverage planner of Englot and Hover (2017) was built by 

extending the planner with the capability to modify the current inspection plan to 

accommodate new changes within the environment (Chapter 3). The thesis 

investigated two replanning strategies, a full replan and a plan repair to extend the 



CHAPTER 9: COMPUTATIONAL ANALYSIS OF THE ADAPTIVE SAMPLING-BASED COVERAGE 

PLANNERS  

 

300 

offline coverage planner into the online domain. The investigation found that the 

adaptive coverage planner, using a plan repair strategy, significantly reduced the 

computational effort required to update an existing inspection plan compared to an 

adaptive coverage planner using a full replan strategy (Chapter 8). 

Contribution 5: While a plan repair strategy using a region of interest to bound the 

influence of change is not a novel approach to minimising the replanning effort, the 

application of a plan repair strategy to the offline sampling-based coverage planner 

has not, to the author’s knowledge, been attempted previously (Chapters 3 and 7). 

Application of the region of interest based on the sensing capability of the visual 

sensor enabled the planning processes of a state-of-the-art sampling-based coverage 

planner (which has been highlighted as an expensive coverage planner and 

inappropriate for direct online implementation) to perform efficiently online.  

9.3 Conclusions 

The objective of this thesis was to develop an adaptive coverage planner that met a list of 

criteria to enable a complete and comprehensive inspection of the submarine tanks on-board 

the Australian Collins Class submarines by a multi-legged, high-DOF robot. This thesis 

addresses the STIPP criteria that were defined to ensure the adaptive coverage planner was 

suitable to be implemented as the inspection planning module within the IPF. The following 

section describes how the ideas developed in this thesis satisfy the STIPP criteria and 

concludes on the major findings that indicate how these requirements were met.  

Requirement 1: Construct an inspection plan from a known 3D model of the 

environment. 

For the situation with no damage or modifications to the structure of the tanks, the CAD data 

of the tanks was considered sufficient to generate an offline plan. After a review of the 

literature, the offline sampling-based coverage planner of Englot and Hover (2017) was 

chosen as the most applicable coverage planner to meet the STIPP criteria given that there 

was no adaptive discrete coverage planner available that met all the requirements. 

Requirement 2: The inspection plan should consist of discrete viewing positions that 

enable the robot to stop and photograph desired surfaces. 

Both the offline and online coverage planner are derived from sampling-based coverage 

techniques that create a series of discrete viewing locations, enabling the robot to stabilise 
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at each vertex of the plan and acquire coverage. Given the complexities of motion planning 

for a multi-legged, high-DOF platform, it was concluded that acquiring coverage at discrete 

locations was more desirable than using continuous CPP techniques that acquire coverage 

over the edges of the plan.  

Requirement 3: The inspection planning module should implement a coverage 

planner that has the ability to generate an inspection plan for a variety of different 

tank variations without parameterisation of the environment. 

The selection of the offline sampling-based coverage planner that uses redundant roadmaps 

was a suitable candidate due to the generic nature of the algorithm. The sampling-based 

approach to coverage planning requires no parameterisation or decomposition of the 

environment to formulate a solution. As the coverage was determined directly from the 

visibility and mobility constraints of the robot, the coverage planner could calculate the 

robot’s achievable coverage for any environment. The sampling-based coverage planner 

was therefore a suitable candidate to solve the coverage plans in submarine tanks where 

explicit parameterisation was forbidden.  

Requirement 4: The inspection planning module should assure either complete 

coverage or the highest attainable coverage of the interior tank surfaces, including all 

internal fittings and reinforcement structures. 

Considering the complexity of the intended planning environments and limitations in the 

robotic platform, there is a significant probability that it may not be possible to physically 

observe all primitives. To compensate for the potential loss of coverage, the 100% coverage 

constraint was relaxed, providing unobservable primitives were reported appropriately.  

Additional procedures were developed to record the status of all detected primitives, 

especially the ones which could not be sufficiently observed by the camera. These 

developments took the form of the primitive rejection limit, to limit sampling on 

unobservable primitives and the unobservable primitive list, by recording all primitives in 

the planning problem that could not be observed (Section 4.2.3). Considering the consistency 

of the CSP times in the realistic office space experiment (Section 6.9), where some 

primitives were classified as unobservable, it was sufficient to conclude that these trivial 

improvements ensured all primitives of the environment were taken into account without 

significantly impacting the CSP procedures. 
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Requirement 5: The inspection planning module should generate coverage plans that 

accommodate a multi-legged, high-DOF robotic platform. 

To accommodate the development of inspection plans for a multi-legged platform, this thesis 

accomplished the following: 

1) Selected an appropriate coverage planner that could generate inspection plans with 

minimal issues for a platform with complex mobility constraints. The decoupled 

planning approach to coverage planning was sufficient for a multi-legged robot that 

possesses, or at least approximates, holonomic capability.  

2) Simplified mobility and visibility constraints were implemented to alleviate the 

computational burden of generating the platform’s motion plans within the adaptive 

coverage planner. Within the IPF, high-fidelity motion planning only occurs over 

the final edges of the inspection plan instead of on each edge evaluated by the LPP. 

From an analysis perspective, the reduction of these constraints allowed for a deeper 

understanding of the planning procedures without the influence of a particular robotic 

platform, while but still accommodating the intended platform.  

3) To reduce the LPP’s computation, additional algorithms were required to generate a 

better initial representation of the connectivity between configurations. The  

hybrid-heuristic was developed to better inform the LPP of the connectivity between 

configurations, minimising the requirement of a motion planner when planning in a 

lazy context. Reducing the number of motion planning queries reduced the 

computational effort of the LPP. This finding is particularly useful if high-fidelity 

motion planning was to be undertaken within the LPP and this should be 

generalisable to other applications where the LPP is utilised. 

Requirement 6: The inspection planning module should contain an internal 

framework that allows adapting an existing offline inspection plan for coverage of 

newly detected features. 

As discussed in Chapter 1, it was decided to implement a combined planning architecture 

on the platform given that known data about the submarine tanks was available. As the robot 

would not use traditional online exploration algorithms to perform the inspection, an 

adaptive approach to coverage planning was taken. It was concluded that a sampling-based 

approach was best suited to meet the problem criteria, given the current literature did not 
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meet all STIPP requirements.  

Generating an inspection plan was handled over two processes. As discussed in Section 

3.4.2, decoupled planning approaches typically make planning for non-holonomic robotic 

platforms difficult. Since, the target platform is holonomic in nature, it was decided to keep 

the two-phase planning approach. This ensured that each of the two processes could be 

individually modified for online use without impacting the other.  

The adaptive sampling-based coverage planner using a plan repair strategy was constructed 

on the principle that the two phases were appropriate to solve the online planning problem 

provided a suitable segmentation process could minimise the replan effort. The novelty of 

this approach was introducing the ROI Validation phase which segmented the current plan 

based on the sensor’s visibility constraints. The additional phase fit well with the Online 

CSP and Online MPP phases to maintain an isolated but coherent replanning process.  

The Online CSP and Online MPP were developed to interface with the existing CSP and 

MPP processes without modifying them. Online CSP still creates redundant roadmaps while 

Online solves the MPP. The difference to the traditional offline procedures is that Online 

CSP and Online MPP solve over smaller sub-sets of the overall environment and inspection 

plans that has been defined by ROIs created in the ROI Validation phase. Collectively the 

three phases the plan repair strategy were able to efficiently replan complex 3D 

environments.   

Requirement 7: The inspection planning module should provide inspection plan 

updates in a timely manner.  

The primary investigation of the thesis was to determine which of the full replan or plan 

repair strategies was best suited to extend the offline sampling-based coverage planner into 

the online domain. Consequently, the majority of the thesis focussed on fulfilling the 

requirement to provide timely planning updates. This was achieved by investigating the 

intrinsic properties of the offline sampling-based coverage planner and then adapting its 

processes to work in an online situation. It was decided that, as there was no prior research 

available on how a multi-legged platform would perform an inspection in the Collins Class 

submarine, replanning times in the minutes would be acceptable, and would be particularly 

desirable if kept to under two minutes (Section 1.5.1). 

It was important to undertake the benchmark experiment because there was no current 
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research that indicated how the offline sampling-based coverage planner would perform in 

the target environment. Despite the coverage planner’s known limitations, the benchmark 

experiment confirmed that the recreated offline sampling-based coverage planner was not 

suitable for direct online implementation. It was concluded that the variable planning times 

of up to six hours in the representative tank environments and the sensitivity of the LPP to 

different environments needed to be addressed and resolved. Neither replanning strategy 

would have been successful under these conditions. To minimise the influence of these 

factors from the planning processes the additional termination conditions and hybrid-

heuristic were developed. 

When investigating the use of topological skeletons resolve the sensitivity the LPP has to 

different environments, it was found that using skeleton distances alone were not suitable at 

representing the connectivity of locally connect free-space branches. By reinstating the 

Euclidean assumption to appropriately represent the connectivity between line-of-sight 

configurations enabled the hybrid-heuristic to significantly reduce the number of path 

evaluations required to be solved in complex environments. 

The analysis of the additional termination conditions and hybrid-heuristic demonstrated 

their effectiveness at improving offline planning times in large and complex environments. 

Despite significant improvements to overall planning times, that saw some planning 

problems reduced from six hours to seven minutes, it was not enough to safely ensure a full 

replan strategy would be an effective approach to implement online. Offline planning times 

were not within the 1-2-minute timeframe that would warrant time for the full replan strategy 

to be feasible over a long inspection that could contain several changes. Therefore, it was 

concluded from these investigations that the plan repair strategy may prove to be the better 

replanning strategy to apply.  

For online planning, it was concluded that the additional termination conditions were 

essential for reliable planning updates in the online context. However, while topological 

skeletons aided path planning within environments where the Euclidean assumption was not 

appropriate, the calculation of the skeleton was an expensive process. This was demonstrated 

in Experiment 2 (Section 8.4) where the cost of calculating hybrid-heuristic for AD-P(HY) 

outweighed its benefits for all tested environments. 

The experimental results in Chapter 8 demonstrated that the plan repair strategy was the 

most suitable approach of the two replanning strategies to extend the offline sampling-based 
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coverage planner into the online domain. The introduction of the ROI Validation phase was 

sufficient to segment the planning problem into smaller sizes. Furthermore, as the plan 

repair strategy generated smaller planning problems, the new Online CSP and Online MPP 

procedures solved the replanning problem faster than the full replan strategy on all tested 

scenarios. 

In the size and scalability experiment (Experiment 1), the plan repair strategy could replan 

up to 92% of the current tour and still produced solutions in a less time than the full replan 

strategy. The ability to replan upwards of 92% of the existing tour exceeded initial 

expectations that sought to develop an adaptive coverage planner that could handle at least 

30% of change of the environment (Assumption 2). The trends observed in Experiment 1 

continued to be observed across the other two experiments as the gap in performance grew 

between the two replanning strategies as the complexity of environment increased.  

While a definitive limit to when the plan repair strategy degrades in performance to the full 

replan strategy was not found, it can be certain that the full replan strategy would outperform 

the plan repair strategy when the entire tour requires replanning. The replan effort is the 

same but additional overheads to segment and merge increase the total replan time. Even if 

the mobility and visibility constraints of the platform became more complex, the difference 

between the full replan strategy and the plan repair strategy would only increase further, as 

the full replan strategy will always do more planning than the plan repair strategy.  

The final experiment showed the advantages of the plan repair strategy as it was able to 

replan the entirety of Tank-P4 in the time it took for the full replan strategy to complete a 

single replanning iteration. AD-P’s overall replanning time of 7.3 minutes with an average 

replan time per map update of 1.52 seconds against AD-R’s 46 hours and 7.5 minute replan 

time per iteration was enough to conclude that the plan repair strategy was the better strategy 

to convert the offline sampling-based coverage planner to the online domain. 

Finally, it was concluded from this research that the following limitations were present in 

the ideas and work developed in this thesis:  

Limitation 1) The plan repair strategy must follow the existing order of the preserved 

tour segments (Section 8.3.2). The deliberate forcing of the new path segments to 

route between preserved segments may contribute to overall degradation of tour 

quality.  
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Limitation 2) The point-to-line algorithm (Section 7.6) that is used to sort 

configurations into sub-MPPs does not consider changes in geometry of the 

environment. As a result, configurations may be sorted into path segments that are 

not geometrically appropriate (Section 8.3.2).  

Limitation 3) While the hybrid-heuristic provided significant improvement of MPP 

times, the heuristic is computationally inefficient, due to computing the skeleton, to 

be used in conjunction with the plan replan strategy.  

Limitation 4) The adaptive sampling-based coverage planner is not applicable to 

autonomous robotic platforms that do not possess holonomic ability or stability 

control (Section 3.6.2). Given the adaptive coverage planner preserves the decoupled 

sampling and path planning processes, the coverage planner has the same limitation 

as its offline counterpart.  

Limitation 5) As the online motion planner was not available at the time of the 

experimental trials, the scheduled physical trials did not occur. The adaptive 

sampling-based coverage planner was not tested with robotic platform constraints of 

the concept demonstrator. Therefore, only simulated analysis was performed 

(Chapter 8).  

Limitation 6) The results of this thesis do not completely encapsulate the constraints of 

a multi-legged, high-DOF robot. A generalised 6-DOF holonomic representation was 

used as the mobility model in all experiments (Section 3.6). Therefore, the results of 

the thesis are more generic and applicable to all robots of this capability at the 

expense of a plan customised to the particulars of the target platform.  

Despite the listed limitations, this thesis has achieved its aim by developing a 3D adaptive 

sampling-based coverage planner that in simulation at least, is capable of producing stable 

and consistent planning updates within confined complex environments. This thesis has also 

provided additional improvements in the form of the additional termination conditions and 

the hybrid-heuristic that enable both the offline sampling-based coverage planner and 

adaptive sampling-based coverage planner to solve large complex planning problems.  

9.4 Future Work  

This thesis explored several avenues to create an adaptive sampling-based coverage planner 

suitable enough to perform inspections inside the complex spaces inside the Australian 
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Collins Class submarine tanks. However, as discussed in Sections 9.1 and 9.3, there where 

are several assumptions that were placed on the development of the adaptive coverage 

planner and discovered limitations of the presented solution that leads to many compelling 

areas of future work. The future work presented in this section reconsiders certain aspects of 

the proposed methodologies presented in this thesis, as well as providing extensions to these 

ideas that may yield better outcomes. The following sections highlight areas of future work 

for the; 

1) additional termination conditions, 

2) hybrid-heuristic, and  

3) adaptive sampling-based coverage planner using a plan repair strategy.  

For each of the ideas listed above the future work is classified as either one or more of the 

following categories: 

1) computational improvement, 

2) algorithmic improvement, or  

3) quality improvement. 

In addition to these improvements, algorithmic development should focus on the 

improvement of the mapping, coverage planning and motion planner to include positional 

and sensor uncertainty (Assumption 5). If these processes can sufficiently model uncertainty, 

it will lead to more robust inspections from autonomous platforms. However, techniques to 

implement this were not investigated and therefore were not discussed in detail in future 

work. 

9.4.1 Additional Termination Conditions: Terminating upon the First Sign of No 

Improvement 

Removing the State of Minimal Improvement: Algorithmic / Computational 

Improvement 

While the additional termination conditions produced significant improvements to LPP 

times across the planning problems, some of the larger planning problems were still subject 

to minor variability in planning times due to extra iterations required to determine if the LPP 

is in a state of minimal improvement (Table 5-10). To provide the LPP the best opportunity 

to find a solution, the additional termination conditions were designed to accommodate all 

planning problem sizes. This enabled the LPP to find the best solution without terminating 

prematurely. However, this also allowed additional iterations to execute before the LPP 
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terminated. For larger planning problems, up to 50% of the total number of planning 

iterations reported ZEIs, however compared to how the LPP originally functioned, the 

impact was minimal.  

On reflection, terminating upon the first sign of no significant improvement will remove the 

state of minimal improvement completely. The analysis of the results in Chapter 5  

(Table 5-3) showed that for the planning environments used, termination upon the First-Zero 

Path Evaluation Iteration (FZEI) would generally produce a result within 1% of the best 

tour length that could be found. Given the sub-optimality present in the planning processes 

(RRT paths and random sampling etc.), if time is critical and solving the TSP problem for a 

given planning problem is computationally expensive, then terminating upon the FZEI 

would still yield an acceptable tour, despite the risk of premature termination.  

9.4.2 Improving the ability of the Hybrid-heuristic to Solve the Multi-Goal Planning 

Problem Faster 

Method 1: Parallelisation: Computational Improvement  

A downside to using the topological skeletons was the time taken to compute the skeleton 

(Limitation 3). The recalculation of the skeleton at every replanning iteration removed the 

possibility of it being useful for online implementation despite the significant advantages it 

provided offline. The time taken to generate a skeleton can be improved by replacing the 

single CPU implementation of Lee’s thinning algorithm with a parallel implementation. The 

deterministic nature of the thinning process lends itself well to parallelisation (Liu et al., 

2014; Bakken and Eliassen, 2017; Zhu et al., 2015). These listed implementations used 

multi-CPU or GPUs to achieve a computational improvement over a single CPU 

implementation.  

A parallel implementation would significantly reduce the overhead time to calculate a 

skeleton while maintaining the benefits of solving the MPP with the hybrid-heuristic. A 

parallel implementation would make it possible to produce a skeleton in larger 3D 

environments and with the potential for the hybrid-heuristic to be effective for online 

implementation. 

Method 2: Mesh-based Skeleton Algorithms: Algorithmic Improvement  

Another suggestion to reduce the overhead time to create a skeleton is to remove both the 

voxelisation and thinning processes by using a mesh-based skeleton approach (Cornea et al, 

2007; Jalba, Kustra and Telea, 2012). A mesh-based skeleton may yield a better 
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computational outcome as the representation of the environment is already in the form of a 

mesh and it will not have to be continually converted to voxels and thinned.  

Method 3: Connecting Configurations to Skeletons via Watersheds: Algorithmic 

Improvement  

This thesis proposed an additional rule to the binary thinning algorithm of Lee et al. (1994) 

to ensure that the voxels containing a configuration were not removed and subsequently 

added to the skeleton. However, applying this rule may not be applicable to other types of 

thinning methods. In Section 6.5.1, the use of watersheds was proposed as an alternative 

approach to connect configurations to a skeleton.  

While the application of a watershed introduces an additional step to connect the 

configurations to the skeleton, the approach should allow any thinning algorithm the ability 

to utilise the hybrid-heuristic. Figure 9-1 illustrates what a watershed would look like over 

the 3D office space used in Section 6.9. Each cluster of the watershed can be used to connect 

the configurations to the skeleton, via point-to-line evaluations. 

Method 4: Converting Large Coverage Planning Problem into a Covering Travelling 

Salesman Problem: Algorithmic / Computational Improvement  

Expanding upon the previous suggestion to use a watershed to connect configurations to a 

skeleton, it should be possible to use the clusters of the watershed to create a Covering 

Travelling Salesman Problem (Current and Schilling, 1989) to solve the coverage planning 

problem. Figure 9-2 illustrates this potential solution. Each cluster creates a smaller MPPs 

that can be solved individually, as done with the plan repair strategy. A final inspection plan 

can be constructed by solving the MPP between clusters.  

As the MPP is not considered globally, this proposed solution should evaluate fewer paths, 

further aiding the coverage planner to solve large complex coverage planning problems. 

However, as the tour is not considered globally, tour degradation is expected. 

Method 5: Better Distance Estimations for Robots Constrained to Moving Over the 

Inspecting Surfaces: Algorithmic / Computational / Quality Improvement  

The experiments in Chapter 6, demonstrated the ability of the hybrid-heuristic to solve 

coverage plans for a robot possessing a 6-DOF holonomic capability that can move freely 

through free space. As such, the skeletons that were generated through the empty regions, as 

seen with the representative tank model (Figure 6-10), were a suitable approximation of the 

connectivity between configurations. However, these paths through these regions are not  
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Figure 9-1: Using watersheds to connect configurations to a skeleton. Each shaded region would 

cluster together groups of configurations to form a Covering Travelling Salesman Problem.  

Watershed over  office floor space courtesy of Jonathan Wheare.  

 

Figure 9-2: Proposed solution to use topological skeletons and watersheds to create a Covering 

Travelling Salesman Problem (TSP) that can be used to solve smaller multi-goal planning problems 

(MPPs) in large complex planning environments.  

representative of the paths that a multi-legged robot that is constrained to move along surface 

would take (Limitation 6).  

A better approximation would be obtained by removing the non-traversable space from the 

thinning process (Figure 9-3). This can be achieved by thinning between the actual surface 

and an inflated surface that encapsulates the mobility constraints of the robot. To include all 

the configurations into the skeleton, the surface should be inflated to at least the maximum 

sensor distance (𝐹𝑂𝐷𝑚𝑎𝑥). Thinning between the actual surface and inflated surface may 

yield a better approximation and faster thinning times as the open space voxels that cannot 

be traversed will be removed from the thinning process.  
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Figure 9-3: The difference in skeletons produced in free space (a) and a skeleton bound to be 

constructed within an inflated surface boundary (b).  

9.4.3 Expanding the Capability of the Plan Replan Strategy 

Method 1: Adaptive Coverage Planning in Non-concave Environments: Algorithmic 

Improvement  

Assumptions 1 and 6 require that all the replanning occurs within the bounds of the original 

environment. However, there is a possibility to extend the capability of the adaptive 

coverage planner to work within non-concave environments.  

In the IPF, the adaptive coverage planner only replans over new map updates supplied by 

the mapping system. The mapping system module is required to inform the executive system 

to direct the robot towards undiscovered areas using exploration algorithms e.g. Next-Best-

View algorithms. For non-concave environments, discovering new areas using such 

algorithms is pivotal to ensure a complete, high-quality inspection can be undertaken in non-

concave environments. 

Algorithmically, for the adaptive coverage planner to accommodate for non-concave 
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environments, the R-TCH and NNH (Section 7.4.2) will have to be reconsidered. These 

heuristics work on the assumption that there is an equal valued mesh manifold in each of the 

cardinal directions. Partially constructed features can force these heuristics to fail and depend 

upon the TCH-PP to remove these configurations during the path planning phase. However, 

relying upon the TCH-PP to remove configurations should only be used as a fail-safe 

approach. If mobility constraints increase in complexity, removing configurations using 

TCH-PP will become more expensive. An alternative solution is required to ensure that 

trapped configurations are appropriately removed during the sampling phase.  

Method 2: Replanning Moved, Modified and Removed Environmental Features: 

Algorithmic Improvement  

Assumption 3 assumed that only new primitives were added into the planning problem. 

Under this assumption primitives that have moved from their existing position, modified or 

removed primitives were not included. The natural extension for both the mapping system 

and the adaptive coverage planner would be to accommodate for planning problems that 

possess primitives pertaining to structures that have either moved, been removed or have 

been slightly modified from the existing representation of the environment.  

To implement this extension, primitive indexing must be consistent between the adaptive 

coverage planner and the mapping system. Each configuration contains a list of primitives 

and if primitives have moved from field of view or have been removed, these primitive 

indices must be updated. However, consistent index changes may prove to be expensive 

when replanning over environments that observe significant changes.  

To minimise recomputing a new mesh upon each replanning iteration, it would be easier to 

maintain primitive indexing by never removing primitives of the map even if they no longer 

exist. Newly detected primitives can be appended to the end of the mapping update as 

currently performed, but if the mapping system detects primitives of the original environment 

that no longer exist, to maintain consistent indexing for the inspection, the mapping system 

should mark these primitives as unobservable. Those primitives marked as unobservable 

will be placed on the unobservable primitive list and will remain unobservable for the 

entirety of the inspection. Therefore, post inspection, as the mapping system contains the list 

of primitives that no longer exist, identifying the primitives that are actually unobservable 

can be easily determined since the unobservable primitive list will contain the same primitive 

indices. Providing the mapping system maintains consistency between the new and original 
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primitives, a reconstruction of the mesh, post inspection, should yield consistent indexing. 

An alternative to handling modified primitives, within the coverage planner, could be to 

distort the tour based on the movement of the environment instead of replan planning new 

configurations to accommodate the changes. Instead of storing configurations as positions 

in configuration space, the configuration could be stored relative to the random primitive 

that was selected for that configuration to be generated. Therefore, if the primitives move 

slightly the position of the configuration within the tour will shift with the movement of the 

primitives. Consideration will have to be given to ensuring that the robot can still achieve 

the desired position.  

Method 3: Improving the Path Merging Process Using the Hybrid-Heuristic: 

Algorithmic / Quality Improvement  

A discovered limitation of the plan replan strategy was the sorting process that is required 

to place new and existing configurations within ROIs into new path segments  

(Limitation 2). Sorting the new configurations into unresolved path segments is determined 

by a point-to-line evaluation between successive ROI gate parings (𝑄𝐸𝑛𝑡𝑟𝑦  and  𝑄𝐸𝑥𝑖𝑡 ). 

While this evaluation is computationally cheap, it does not consider the impact the changes 

have on the connectivity between configurations. The current metric selects the ideal path 

segment based on the distance between the configuration and each gate pairing. 

Consequently, it has no encoded representation of the geometry of the space in the 

evaluation. Essentially, the assumption is akin to the Euclidean assumption that has been 

used as an initial guess of the LPP. The use of the hybrid-heuristic, despite its current 

computational limitations for online use, could rectify this problem.  

For AD-P(HY), the hybrid-heuristic was performed just before the MPP was solved  

(Figure 8-9). The distances were calculated once over the complete covering set ( ) and the 

ROI gates and each sub-MPP received the appropriate adjacency matrix from hybrid-

heuristic to initialise the LPP. A proposed solution is to calculate the hybrid-heuristic first 

and then use the approximated distances to sort the configurations as a replacement to using 

the point-to-line evaluation (Figure 9-4). Given that the hybrid-heuristic has been solved 

prior, each sub-MPP can still utilise the distances from the hybrid-heuristic to initialise the 

MPP. If the skeleton could be computed more quickly, using one of the aforementioned 

ideas, the hybrid-heuristic could lead to an increase in tour quality. 
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Figure 9-4: Solving the hybrid-heuristic first will inform the Online MPP of the adjacency between 

configurations before sorting the covering set. 

Method 4: Parallelisation: Algorithmic / Computational Improvement  

To improve the computational efficiency in creating an online tour update, the three phases 

that comprise the adaptive sampling-based coverage planner are independent processes that 

are inherently parallel in nature. The processes that could benefit from a parallel 

implementation are list below: 

1) Validating each configuration of the tour (ROI Validation). 

2) Sampling the new redundant roadmap (Online CSP)  

3) Solving each sub-MPP using the LPP (Online MPP). 

Furthermore, parallelisation of internal algorithms such as;  

1) ray tracing to check for primitive occlusion, which is common practice for gaming 

applications (Schmittler et al., 2005), and  

2) generating motion plans for each edge of a TSP solution, are also strong candidates 

for parallelisation that would significantly improve planning times. 
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Significant gains could be achieved by concurrently processing the motion plans for each 

edge of the TSP solver, especially for planning problems that are required high-fidelity 

solutions. The implementation of parallel processing opens up the opportunity to solve even 

larger planning problems than those presented in this thesis. 

Method 5: Anytime Implementation of the Plan Repair Strategy: Algorithmic / 

Computational Improvement 

The original recommendation, as proposed by Englot (2012), was to extend the offline 

sampling-based coverage algorithm to perform online by implementing the sampling and 

planning processes as anytime algorithms. In this thesis the ‘plan as much as time permits 

philosophy’ was not taken. It was decided that creating a framework for an adaptive 

coverage planner that could solve the complete tour took priority over developing an 

adaptive coverage planner that only relied upon an anytime implementation to produce faster 

planning updates. However, given that the adaptive sampling-based coverage planner still 

retains the functionality of the original offline CSP, SCP and MPP methods, an anytime 

implementation of the plan repair strategy is possible. 

Method 6: Priority Replanning: Algorithmic / Computational Improvement 

As both the CSP and MPP algorithms still retain the capability to be halted after a period of 

time has elapsed, their anytime property coupled with the plan repair strategy opens up the 

opportunity for replanning to be prioritised based on the influence of the ROIs. Given that 

the order of the initial tour is maintained, it is easy to determine which segments of the plan 

require immediate resolution. Replanning times could be further minimised by resolving the 

ROIs that require immediate attention. Distant ROIs can be resolved later, if time permits. 

Distant ROIs do not have to be replanned immediately as it can be assumed that those regions 

may change later during the inspection. 

As discussed in Section 2.2.3, hierarchical path planners HPA* and HAA* make the same 

prioritisation when replanning in real-time for video game applications (Botea et al., 2004; 

Harabor and Botea, 2008). The abstract graph is solved to give an indication of a possible 

path, but the actual path is solved incrementally as it is assumed that future changes in the 

environment will likely invalidate the current path at some point along the way to the goal. 

A parallel implementation will ensure n-ROIs could be replanned for each planning update, 

where n is the number of processors.  
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Method 7: Improving Coverage Quality by Using Quality Metrics: Algorithmic / Quality 

Improvement  

Currently, calculating the minimal set cover is determined by a ‘most primitives observed’ 

metric. Configurations with the highest primitive count do not guarantee the best quality in 

coverage. In Chapter 7, the optimal sampling procedure was proposed to increase the 

regularity of optimally placed configuration over random sampling to increase the quality of 

coverage in areas of simple geometry. For visual inspection tasks where image quality is 

important, it may be better to have two or more observations of a surface than one 

observation that contains the most primitives.  

A more appropriate selection criterion may be to evaluate coverage based on the quality of 

the observation. An illumination metric such as Lambert’s Cosine Law (Luna, 2012) may 

provide as a better indication to the quality of an observation rather than the quantity of the 

observation. Incorporating such a metric would increase the sizes of the covering sets and 

consequently produce longer inspection plans. However, if implemented correctly would 

ensure a more high-quality visual inspection is performed.  

Method 8: Path Smoothing over Sub-MPPs: Quality Improvement  

To improve the optimality of the tour, the post-optimisation path smoothing algorithm 

developed by Englot and Hover (2012a) can be applied over each sub-MPP and the larger 

areas surrounding the ROIs to smooth the transition between existing and newly replanned 

areas. The smoothing technique iteratively examines each configuration of the tour and 

attempts smooth out the path by sampling a new configuration pushing it towards the optimal 

cost frontier that connects neighbouring configurations in the tour. The result of the path 

smoothing algorithm process reduced the length of the tour by minimising travel distance 

between configurations and removed any configurations that no longer unique primitives. 

If an anytime approach to replanning is taken (Method 5) and there is time remaining before 

the plan update is required, the remaining time can be allocated to improve upon the quality 

of recently solved sub-MPPs. If the prioritised replanning approach is taken (Method 6), 

lower prioritised regions can be iteratively updated until the paths segments are required to 

be traversed by the robot. These approaches should be achievable as the online 

implementation of the offline sampling-based coverage planner developed by Song and Jo 

(2018) utilised the path smoothing procedure in real time. 
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Method 9: Implement Adaptive Sampling-based Coverage Planner on a Physical 

Platform: Algorithmic / Computational Improvement 

The final suggestion of future work is aimed at what this thesis was not able to achieve; the 

real-world testing of the adaptive sampling-based coverage planner on a physical multi-

legged platform (Limitation 5). At the time of the scheduled physically trials, the adaptive 

motion planner had not been successfully integrated for use on the concept demonstrator. 

This limited the capability of the platform to move autonomously and motion planner that 

cycled between pre-calculated gait cycles was used as an ad-hock replacement. However, 

given the complexities of autonomously navigating a multi-legged platform, it was not 

sufficient for the physical trials.  

The modification of the PhantomX platform to create the concept demonstrator created 

unforeseen issues that hindered the physical trials. An intermittent issue would arise where 

one of the servomotors would stall a leg of the robot, rendering it unable to move. A hard 

reset of the robot restored the motion to the robot, at the expensive of terminating the 

inspection, but as the fault was not repeatable it was difficult to determine the cause. By the 

time of completing this thesis, the source of the problem had still not been determined or 

resolved. 

Despite the issues with the platform, the mapping system as proposed in Pivetta et al. (2017) 

was successfully integrated with adaptive coverage planner. Proof of concept trials 

highlighted the mapping system and inspection planner modules worked together as 

expected under the assumptions that were placed in this thesis. However, the inability of the 

concept demonstrator to successfully complete an inspection of the testing environment 

produced insufficient data to present conclusive results, so these preliminary results were 

excluded from the thesis. 

If the concept demonstrator were to be operational, the next phase of the IPF development 

would have been to extend the capability of both the mapping system and adaptive coverage 

planner to account for positional and sensor uncertainty (Assumption 5), which is imperative 

for robust online execution of an inspection plan. Instead of the mapping system just 

providing a map update to the inspection planner, further information would need to be 

supplied about the uncertainty of the mesh model to ensure that preserved and new viewing 

locations observe their intended coverage. For the adaptive coverage planner, these cross 

checks will have to be performed during the ROI Validation phase for all configurations.  
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For configurations that lose coverage due to positional and sensor error, the potentially 

unseen primitives could be deemed unobserved and can have their coverage revaluated 

during the Online CSP phase. Newly created viewing locations can have the uncertainty or 

error accounted for at the time of calculation.  

To be verify that the coverage is achieved by each configuration given positional and sensor 

uncertainty, the executive (Figure 1-6) that governs the IPF must cross check the actual 

coverage taken by the robot against the expected coverage listed under that configuration. If 

coverage is missing the executive could call upon the inspection planning module to generate 

new positions that cover the missing coverage without having to trigger a replan update. This 

would create an inspection planning module that is flexible to update its plan at any time 

during the inspection and not just when the mapping system detects new information about 

the environment. Furthermore, if there are any discrepancies in coverage, it can be used by 

the mapping system module (Pivetta et al., 2017) to improve the positional estimates of the 

robot.  

Finally, to get the adaptive coverage planner working on a multi-legged platform in 

submarine tank-like environments, it will require a platform that possesses magnetic 

adhesion. This will require a redesign of the current concept demonstrator to accommodate 

the additional components. Given the algorithmic capability developed, the robot with 

magnetic adhesion should be possible to deploy and test the platform in a real-world 

submarine tank or tank-like environment. Additionally, a redesign with fewer legs on the 

platform may assist in reducing the computational expense of planning multi-legged 

platforms.  

9.5 Concluding Statement 

This thesis investigated the submarine tank inspection planning problem and in doing so 

provided insight into improving existing coverage planning methods for the application of 

automated confined space inspection. To resolve this problem, an adaptive sampling-based 

coverage planner was proposed as an extension to a known offline coverage planner using 

a plan replan strategy. The results revealed that implementing a plan repair strategy, that 

isolated preserved segments from being replanned, resulted in a dramatic reduction in the 

time taken to replanning new features within the environments. Further, the tour quality 

incurred negligible negative effects, and in some cases, there were improvements. 
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A computational analysis was performed for the offline coverage algorithm, and in the 

process of performing this analysis, several limitations in the offline approach were 

discovered when applied to problems of this scale. This resulted in the development of new 

heuristics, in the form of additional termination conditions and the hybrid-heuristic, that 

dramatically improved upon the performance of current techniques. The application of these 

heuristics improved both offline and online coverage planning approaches, as measured by 

the time taken to complete the plan.  

To conclude, while further work is required to validate this adaptive sampling-based 

coverage planner in a real-world scenario, the analysis performed herein suggests that the 

new adaptive coverage planner has the potential to enable a multi-legged robot to conduct 

the required inspection task. This work takes the next step towards high-quality automated 

submarine tank inspection to support and advance the sustainability of the Australian Collins 

Class submarine fleet. 
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Appendix A 

Software Packages used to Create Coverage 

Planners and Heuristics 

Table A-1 provides a list of software packages used to create the algorithms in this thesis.  

Table A-1: The software and resources used to construct and visualise the results of the algorithms 

developed in this thesis. 

Offline / Adaptive Online Coverage Planner 

Software Package Use Source 

AVL Tree 

Storing the mesh structure 

and associated primitive 

lists: observed, 

unobserved, and 

unobservable 

C++ implementation of java code derived 

from tutorials at: 

https://algorithms.tutorialhorizon.com/avl-

tree-insertion/ and  

https://www.geeksforgeeks.org/avl-tree-set-

2-deletion/ 

Optimal Collision 

Detection (OPCODE) 
Collision checking  

OPCODE: 

http://www.codercorner.com/Opcode.htm  

Used implementation from Open Dynamics 

Engine https://www.ode.org/ 

Point Cloud Library 

(PCL) and  

Fast Library for 

Approximate Nearest 

Neighbours (FLANN) 

PCL provided the 

interface to use FLANN 

to perform nearest 

neighbour queries. 

PCL: http://pointclouds.org/ 

FLANN: 

https://github.com/mariusmuja/flann 

Concorde 

Quick-Boruka and 

Chained Lin Kernighan 

Heuristic to solve TSP 

http://www.math.uwaterloo.ca/tsp/concorde

.html 

Open Motion Planning 

Library (OMPL) 
RRT-Connect https://ompl.kavrakilab.org/ 

OpenSceneGraph 

(OSG) 
Ray tracing  http://www.openscenegraph.org/ 

http://www.codercorner.com/Opcode.htm
https://www.ode.org/
http://pointclouds.org/
https://github.com/mariusmuja/flann
http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html
https://ompl.kavrakilab.org/
http://www.openscenegraph.org/
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Boost (uBLAS) 

Matrix data structure to 

multiply rotations from 

the spherical to Cartesian 

frame 

https://www.boost.org/doc/libs/1_65_0/libs/

numeric/ublas/doc/index.html 

Environment Model Construction and Visualisation 

Software Package Use Source 

Autodesk Inventor 

Used to create 

environment models 

(STL) 

https://www.autodesk.com.au/ 

MeshMesh 

View and edit STL 

models to remove outer 

mesh layer 

http://www.meshlab.net/ 

MATLAB 2018a 
Data analysis and 

visualisation of results 
https://au.mathworks.com/ 

ParaView 

To view skeletons 

generated in the form of 

VTK files. 

https://www.paraview.org/ 

Skeletisation 

BinVox 

Convert STL files in to a 

voxlised format for 

thinning.  

https://www.patrickmin.com/binvox/ 

Insight Toolkit (ITK) 

Thinning algorithm for 

the hybrid-huersitc. 

An implementation of 

Homman’s 

implementation of Lee’s 

3D thinning algorithm. 

Exports VTK files 

https://itk.org/ 

(BinaryThinningImageFilter) 

 

 

 

https://www.boost.org/doc/libs/1_65_0/libs/numeric/ublas/doc/index.html
https://www.boost.org/doc/libs/1_65_0/libs/numeric/ublas/doc/index.html
https://www.autodesk.com.au/
http://www.meshlab.net/
https://au.mathworks.com/
https://www.paraview.org/
https://www.patrickmin.com/binvox/
https://itk.org/
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