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Summary

Facial expression recognition is a broad research domain in machine learning. Princi-

pal Component analysis (PCA), Independent Component analysis(ICA), Non-negative

matrix factorization (NMF) and HOG (Histogram of Oriented Gradients) are well-

established techniques for image analysis. In this thesis, we propose a facial expres-

sion recognition system, which is based on NMF, HOG, PCA and ICA for feature

extraction. For classification, we implement Euclidian Distance (ED), Support Vector

Machine (SVM) and ELM (Extreme Learning Machine) classifiers. Every feature has

been passed to each of the classifiers to find the performance of the feature and clas-

sifier combinations. As we are using PCA, ICA and NMF which are mainly applied

for dimension reduction and HOG works as SIFT descriptors, we will use the term

’space’ for the feature extraction processes. Altogether we investigate the performance

of sixteen space and classifier combinations to make a comparison of the FER system.

Our proposed approach has been tested on both CK and JAFFE datasets.

There is a considerable debate over whether it is best to use whole or part based image

analysis. So in our proposed system, we implement the FER system using both whole

face and part face based recognition systems. In our experimental setup, first, we

detect the three face parts (eyes, nose and mouth) using cascaded object detection by

setting regions using a systematic trial and error basis.

For the extraction of facial features, we apply the commonly used PCA and ICA

with the more plausible NMF and also the SIFT (Scale-invariant feature transform)

descriptor like feature, HOG. As PCA, ICA and NMF work by reducing the total

feature space, so in this thesis, we will consider the features produced by PCA, ICA,

NMF and HOG as ‘Space’. The classifiers we implement here are the following: Eu-
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clidian Distance (ED), Support Vector machine (SVM), Extreme Learning Machine

(ELM) and Extreme Learning Machine Kernel (ELM-Kernel). As every Space is fed

to every classifier, so the total comparison is among sixteen space+classifier combina-

tions. These space-classifier combinations are, PCA+ED, PCA+ELM, PCA+ ELM

kernel, PCA+SVM, ICA+ED, ICA+ELM, ICA+ ELM kernel, ICA+SVM, NMF+ED,

NMF+ELM, NMF+ ELM kernel, NMF+SVM, HOG+ED, HOG+ELM, HOG+ ELM

kernel as HOG+SVM.

Potentially a subset of all the three facial parts (eyes, nose and mouth) of the face

is better in terms of processing time and accuracy for identifying an expression. To

prove whether three facial parts can perform better to express any certain emotions or

vice versa, we implement a 3X10-fold R-K cross-validation, where ’R’ is for repeated

cross-validation. From the investigation, it is proved that for some space-classifier

combinations three main facial parts perform better than the full face based FER

and also vice versa. Also our prediction is any subset of the three facial parts can

still perform better. To analyze this issue, we carefully design a 10x10 Nested Cross-

Validation (N-CV) approach to tune the space-classifier combinations for each subset

of the facial parts and also for the full face. We analyzed the results in the Result

Analysis chapter.

We use a set of three facial regions and ensure each part is of similar size. For our

proposed RK-CV method we segment the faces into three regions, eyes, nose and

mouth and we consider all these three face parts to classify expressions. For the N-CV

approach, we take the features for the whole face, eyes, nose, mouth, nose+ mouth,

eyes+ mouth, eyes+nose, and eyes+nose+mouth. These features are made for all the

seven basic expressions.

The recognition rate can be seen to be much better using the whole face decomposition

and comparison, but this comes at an increased computational cost. We formulate a

table which shows the influence of di↵erent facial parts for emoting a specific expres-

sion. To validate our results, we tested each expression individually, projecting it onto

the whole set feature spaces trained against the whole training dataset, which has a

mixture of all seven expressions.
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Chapter 1

Introduction

1.1 Face and Facial Expression Recognition

Faces provide some of the most prominent biometric traits characterized by unique-

ness and robustness. For this reason Face Recognition has caught the attention of

researchers in the domain of person identification, speaker recognition, intruder detec-

tion, security enhancement as well as in other domains of computer vision, psychology,

and physiotherapy. Face Recognition covers both the area of Face Identification and

Face Verification. Face Identification means to find the identity of a given person out

of a pool of N persons (1 to N matching) and this Face Identification is widely used in

video surveillance, information retrieval, video games and some other human-computer

interaction areas. On the other hand, Face Verification establishes the process of con-

firming or denying the identity claimed by a person (1 to 1 matching). To verify access

control into computer or mobile device or building gate, and digital multimedia data

access control, Face Verification techniques are needed. At the same time, there are

many applications where facial expression recognition is more important than only face

detection and recognition. As an example, facial expression recognition is applicable

when pain estimations for patients is needed by observing the movement of facial fea-

tures. Another example is human-machine interaction; like online chat conversation or

online teaching where users or students expression is needed to make the conversation

more realistic and fruitful. Also, analysis of facial expression is needed in long time
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vehicle travel to detect whether the driver is sleepy or active during the time of driving

for the safety reason. In recent times, the applications of facial expression recognition

have been steadily increasing. Thus automatic recognition of facial expression has

become a broad research domain of increasing significance.

In this research work, our focus is facial expression recognition (FER). As expression,we

consider here the basic emotions; like anger, disgust, fear, happy, sad and surprise. So

for our work, facial expression recognition and facial emotion recognition

considers the same meaning. The most challenging part in these areas are to

recognize facial expressions with a minimum time requirement and with minimum

error rate. Our proposed approach and programming and mathematical analysis will

focus on these constraints of minimum time requirement and with minimum error.

1.2 Background of the study

Automatic emotion recognition has been attracting the attention of researchers from

several areas including computer vision, psychology, behavioral science, computer

games and medicine (Pantic and Rothkrantz, 2000). But it is really a hard prob-

lem to recognize facial expression with a very high accuracy (Kapoor and Picard,

2001), (Picard, 1997), (Izard, 1979) and (Cottrell and Metcalfe, 1991). There are lots

of challenges and critical issues in the domain of facial expression recognition.

As described in the previous section, facial expression recognition is playing very im-

portant role in machine learning and computer vision area. During human-to-human

interactions; perception and decision-making play a very important role. And this

interaction, perception and decision making occur due to change of persons’ emotional

expression or a↵ective states. But this change of expression is inaccessible to com-

puting systems unless we provide computers to understand the human expression. So

without this, human-computer interaction has become a predominantly one-way in-

teraction where a user needs to directly request computer responses. E↵ective natural

human-computer interaction becomes hard in many applications as computers become

integrated into everyday objects. In some cases, users need to be able to interact natu-

rally with computers exactly the way interpersonal face-to-face interaction takes place.

3



When computers or machines will recognize human faces as well as understand human

expression then we can get more feedback from machines. The ability to detect and

track users expression or emotional expression or a↵ective states has the potential to

allow a computing system to initiate communication with a user based on not only

the user’s command but also the perceived needs of the user within the context of the

user’s actions. And then human-computer interaction can become more users friendly

and natural. Emerging technological advances are enabling and inspiring the research

field of a↵ective computing, which aims at allowing computers to express and recog-

nize a↵ect (Picard, 1997). These are because research in social psychology [(Boyle

et al., 1994), (Stephenson et al., 1976), (Matsumura et al., 1997), (Ekman and David-

son, 1994), (Pantic and Rothkrantz, 2000), (Ekman, 1979), (Ekman, 1982a), (Ekman,

1982b), (Ekman and Friesen, 1971), (Ekman and Friesen, 1976)] suggests that facial

expressions play a major role in the human-human interactions and provide a very

strong cue about finding the level of interest (Matsumura et al., 1997).

Facial expression recognition system generally consists of three steps, like face de-

tection, feature extraction and classification. Machine learning researchers are using

many algorithms for feature extraction and classification. Feature extraction is the

process, which extracts the relevant information from a face image for a particular

task. Feature extraction process can be performed in two di↵erent ways:

1 Take the facial features from the whole face to collect information for classifica-

tions of facial expression.

2 Divide the face into several sub-parts and process each to get an information

that can be used as classification input.

A large number of machine learning algorithms can be used in the area of facial

expression recognition. There is a considerable debate whether full face based FER or

part based FER is more accurate. Among all these algorithms, we can divide it into

two broad categories, like; appearance based approaches and geometrical feature-based

approaches.

In the domain of appearance based feature extraction, subspace projection techniques

are often used in computer vision problem as an e�cient method for both dimension
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reduction and finding the direction of the projection with certain properties. Usually,

the face image is considered to lie in a high-dimensional vector space. The subspace

projection techniques represent a facial image as a linear combination of low-rank basis

images. The popular subspace projection techniques are PCA, ICA, NMF and FDA.

Subspace projection algorithms work by creating low-rank basis images and project

the original image as a linear combination of low-rank images. By projecting they

employ feature vectors consisting of coe�cients of the reduced components. Figure

1.1 depicts the algorithm for subspace projection step by step.

Figure 1.1: Subspace projection technique.

In the context of face expression recognition , we attempt to find some basis vectors

in that space serving as much as important directions of projection in a low-rank

image subspace. These subspace projection algorithms have been used in the Facial

Expression Recognition area over the last ten years in the work of (Buciu et al., 2003),

(Frank and Noth, 2003b), (Frank and Noth, 2003a), (Pentland, 1987), (Kolenda et al.,

2002), (Uddin et al., 2009), (Chen and Kotani, 2008).

Redundancy in the sensory input contains structural information about the environ-

ment (Marian et al., 2002). PCA and ICA are most well-known methods for redun-

dancy as well as finding useful components for attaining distinguishable properties.

It has been argued in (Barlow, 1989) that such redundancy provides knowledge and

that the role of the sensory system is to develop factorial representations in which

these dependencies are separated into independent component (ICs) and such repre-
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sentations are advantageous for encoding complex objects that are characterized by

high-order dependencies. Similarly, these representations have potential as a general

coding strategy for the visual system (Atick and Redlich, 1992). For feature extrac-

tion from the face and facial expression images, most of the early research works did

experiment by extracting useful features using Principal Component Analysis (PCA).

PCA is a second-order statistical method to derive the orthogonal bases containing the

maximum variability in an unsupervised manner that provides global image features.

It is also commonly used for dimension reduction. In (Donato et al., 1999) and (Ek-

man and Friesen, 1978), the authors employed PCA as one of the feature extractors to

solve facial expression recognition with the Facial Action Coding System (FACS) and

in (Cohn, 1999) same procedure is applied for face recognition. Our previous work

in (Ali and Powers, 2013) shows applying PCA on face parts rather the whole face

give more accuracy when using euclidian distance as a classifier. Lately, Independent

Component Analysis (ICA) has been extensively utilized for face and facial expression

recognition tasks due to its ability to extract local facial features.

As much of the information that distinguishes di↵erent facial expressions and di↵erent

face styles stay in the higher order statistics of the images (Chen and Kotani, 2008),

ICA is a better choice for face recognition as well as FER than PCA. Basically, ICA is a

generalization of PCA that seeks the independencies of the image features (Hyvarinen

et al., 2001), (Karklin and Lewicki, 2003). In (Bartlett et al., 1999), Bartlett et al.

extracted the local image representations for the facial expression coding using ICA

to classify 12 facial expressions referred to FACS. In (Chuang and Shih, 2006), Chao-

Fa and Shin utilized ICA to extract the IC features of facial expression images to

recognize the Action Units (AU) in the whole face as well as the lower and upper part

of the faces. However, the FAU-based works mostly focus on the successful extraction

of FAUs not the recognition of emotions derived from facial expression changes. Also,

they encounter the limitation of AUs due to the fact that the separate facial expressions

do not directly draw the comparisons with human data (Calder et al., 2000). Later on,

in (Buciu et al., 2003), Buciu et al. proposed ICA for the emotion-specified FER where

ICA was applied on the Japanese female facial expression database. In (Bartlett et al.,

2002), Bartlett et al. again introduced ICA on the PCs for face recognition in two

di↵erent architectures where the first architecture finds the spatially local basis images
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and the second one the factorial face codes. They showed that both the architectures

outperform PCA. Applying ICA on the PC features is usually recognized as Enhanced

Independent Component Analysis (EICA) (Liu, 2004). In (Liu, 2004), Liu applied

EICA for content-based face image retrieval using more than thousand frontal face

images from the FERET database (Phillips et al., 1998).

In some recent research, Scale-invariant feature transform (SIFT) and a histogram of

oriented gradients(HOG), are also used as e↵ective feature descriptors [(Luo et al.,

2007), (Albiol et al., 2008)]. The underlying methods of HOG have similarity with

scale-invariant feature transform descriptors, shape contexts and edge orientation his-

tograms. It is mainly computed based on a dense grid of uniformly spaced cells and

to enhance the accuracy it applies overlapping local contrast normalization.

Two researchers at the French National Institute for Research in Computer Science and

Automation (INRIA), Navneet Dalal and Bill Triggs first described HOG descriptors

at the 2005 Conference on Computer Vision and Pattern Recognition (CVPR) (Dalal

and Triggs, 2005). In this work, they focused on pedestrian detection in static images,

although since then they expanded their tests to include human detection in videos,

as well as to a variety of common animals and vehicles in static imagery. In the area of

facial expression recognition, HOG has been successfully implemented in several works

[(Lemaire et al., 2013), (Dahmane and Meunier, 2011), (Zhang et al., 2013)].

Facial expression recognition system uses two types of technologies, image processing

and pattern recognition. Image processing is used for face detection and feature ex-

traction process and pattern recognition is the process of classifying patterns of facial

expression by learning the classifier. The following figure 1.2 depicts the steps. So far

we have discussed the image processing step. Now we will give a short discussion on

facial expression classification.

Facial expression classification can be thought of as pattern recognition problems in

machine learning. The information extracted from the feature the extraction process

is given to the classifier as input vectors. The first step of the classifier is to train

the system based on the extracted features. Then the learned classifier is applied

on a test set to recognize the accuracy or the systems performance. There are several

classifiers which are extensively used in machine learning especially in facial expression
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Figure 1.2: Basic Flow Chart of Facial Expression Recognition.

recognition area, like; neural networks, support vector machines, extreme learning

machine, nearest neighbor classifier, linear classifiers, vector norm etc. Other classifiers

that have been widely used are AdaBoost classification with a selection of several weak

classifiers, and its variation, like; GentleBoost classification. Sometimes, two or more

classifiers are combined to achieve better results. Although there are many classifiers

have been used in machine learning and image analysis area, still, the shortcomings

are also huge when it comes to the point of recognizing facial expression. The neural

network classifier requires large training samples and many adjustable parameters as

well as it requires a large amount of training time. The performance of AdaBoost

classifier depends on the weak classifier selection.

Some research works have successfully used Support Vector Machine(SVM) with sev-

eral feature extraction processes. SVM is a non-linear data-processing tool, which

has been successfully used in many fields such as face recognition, databases learn-

ing, identity verification and text categorization because of it avoiding the problems

of over learning. Although SVM’s operational speed is low as it needs huge com-

putational resources. For an example, (Niu and Qiu, 2010) used SVM with WPCA

and PPCA for facial expression recognition and received 88.25% and 84.75% accuracy

using simple train-test method. The work of (Zhang et al., 2013) used the single ker-

nel and multi-kernel SVM where the feature extraction process is HOG and LBPH.

This work benchmarked their proposed approach on Bosphorus database using nested

cross-validation and received the accuracy from 70% to 80% range.
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(Huang et al., 2004) proposed extreme learning machine (ELM) which is an improved

feedforward neural network that can randomly generate weights and thresholds and

arranges only the numbers of neurons in the hidden layer. The ELM performs well in

both regression and classification problems. (Liu et al., 2015) used ELM with Gabor

filter and 2D-PCA for FER and achieved a reasonable recognition rate.

In recent years, video timing characteristics of facial expression recognition research

has become a hot topic. In the work of (Song and Bao, 2016), Bezier Curve has

been used for feature extraction and non-linear function fitting has been used for 3D

feature extraction and also classification. They received average 93.2% accuracy on

their proposed video dataset.

In the review paper work (Corneanu et al., 2016), the progress of Facial Expression

Recognition research based on RGB, 3D, thermal and multimodal approaches has been

depicted thoroughly.

Some very recent work on facial expression analysis, researchers used the Trajectory-

Pooled Fisher Vector Descriptor. In this work (Liu and Yin, 2017), an individual

video is modelled as a improved fisher vector aggregated by local and global trajectory

features. Gaussian mixture models are constructed based on the features extracted

training video. With GMM, the test video can be instantiated by fitting to GMM, the

corresponding improved fisher vector is built to model test video. They got more than

70% accuracy on NVIE and MMSE facial expression datasets. Previously the same

researchers used temperature changes and head motions for facial expression analysis

(Liu and Yin, 2015).

Some other recent works have show their interest to analyze game based facial expres-

sion recognition. In the work of (Sawyer et al., 2017), researchers used FACS coding

system for FER and achieve a good recognition rate.

In this research work, our focus is automatic face recognition from frontal faces. We

are concerned here with the seven basic facial expressions identified by happy, sad,

fear, surprise, anger, disgust and neutral. Our main contribution here is to improve

the accuracy of expression detection as well as to reduce the computation time. Our

proposed algorithm shows these successes on Cohn-Kanade and JAFFE facial expres-
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sion datasets. We used here PCA, ICA, NMF and HOG techniques and applied on

whole faces and facial parts as well. To train and classify the facial expressions, we

used here euclidian distance (ED), support vector machine (SVM), extreme learning

machine(ELM) and extreme learning machine kernel (ELM Kernel). Altogether we

have used 4x4= 16 feature-classifier combinations on full face and on facial parts to

recognize the facial expressions as well as to analyze the comparison of full face and

part face based approaches. Our proposed approaches and results will be discussed in

the corresponding sections.

1.3 Facial Expressions

To express emotion, mood and attitude people communicate through speech, facial

expression and body language (Qvarfordt and Zhai, 2005) and (McNeill, 1992). In our

work, we can say emotion recognition in terms of verbal (speech) and non-verbal (facial

expression and body languages like postures, eye gaze, and head motions) correlation

detection. The face has been called the most important perceptual stimulus in the

social world (Frith and Cohen, 1987) with infants as young as 3 months able to discern

facial emotion (Charlesworth and Kreutzer, 1973). So visual feature extraction means

mainly facial feature extraction.

At 1968, (Mehrabian, 1968) pioneered research into the role of non-verbal communi-

cation. He published findings indicating that spoken words only account for 7% of the

what a listener perceives; the remaining 93% of what a listener comprehends originates

from the body language and tone employed in the delivery of the word. In the research

work (Mehrabian, 1968), Mehrabian determined that when judging someone’s a↵ective

state, people mainly rely on facial expression and vocal intonations.

Also, Paul Ekman’s research shows the same understanding as Mehrabian. For exam-

ple, Paul Ekman and Wallace V. Friesen in 1976 and 1978 mentioned that face reveals

a strong evidence for the fruitfulness of the systematic analysis of facial expression.

Based on this they proposed FACS to understand the facial expressions The intercon-

nections of facial expression with the rest of human psychology are mostly complicated

and hard to elucidate (Ekman and Rosenberg, 1997).
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Some psychology research also shows that adult children are also able to understand

facial expression to detect the emotion. Although it is still highly controversial re-

garding the course of development of the ability to discriminate and recognize facial

expressions.(Field et al., 1982) reported that 2-day old neonates could distinguish be-

tween the facial expressions of happiness, sadness and surprise, and could reciprocate

by producing the same expressions in response. Between the ages of 8 and 18 months,

infants become able to use the mechanism of social referencing (looking at the moth-

ers face in order to gain information about the environment) to guide their behavior

(Leibbrandt, 2000). This indicates some ability on the part of these infants to gain

access to the meaning of facial expressions.

Research shows that vocal tone is another important modal to recognize expressions.

But in this research work, our focus is only on facial features to recognize expressions

during human-machine interaction.

1.4 Universality of Emotions

The formal study of emotion in human (and animal) behavior has a long history of

the early observational work of (Darwin, 1872) up to the recent emergence of A↵ective

Science (Davidson et al., 2003) as a cohesive discipline. Over the period, three main

categories of a psychological model of human emotion have emerged.

The earliest discrete theories of emotion (stemming from Darwins work) hypothesized

the existence of a small number of basic emotions, such as happiness, sadness, fear,

anger, surprise and disgust (Ekman, 1999). In such theories, it is supposed that these

emotions are based on specific psychological response patterns to external stimuli

(Wallis et al., 2006).

Specifically, the basic emotions common to most discrete-emotions theories are anger,

sadness, fear, enjoyment and disgust, with some theories also including interest, sur-

prise, shame and guilt (Izard, 1994) and others adding contempt, awe and embarrass-

ment (Ekman, 1992). This still leaves a great many other emotion words in English

that do not refer to one of the basic emotions, such as jealousy, scorn, hope etc.
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Discrete-emotion theorists argue that the basic emotions are better thought of as

emotion families, and so, for instance, pride or relief could be said to belong to the

enjoyment family. Also, (Izard, 1994) points out that distinct words are often used for

the same emotion when it occurs with di↵erent cognitive concomitants, so that regret

can be described as sadness combined with thoughts of a di↵erent course of action

that one should have taken, while grief is sadness combined with thoughts of the loss

of a loved one. Lastly, some emotion words refer to complexes or patterns of emotion

that occur together or in rapid succession, so that, for instance, jealousy could be said

to be made up of a pattern of experiencing anger, fear and sadness (Ekman, 1992).

According to some studies, specific emotions like happiness, fear, sadness, hostility,

guilt, surprise and interest are considered discrete in that they are assumed to be

unique experiential states that stem from distinct causes (Izard, 1977); some even

consider these emotions to be basic [i.e. that they are present from birth and have

distinct adaptive value: (Izard, 1992); (Stein and Oatley, 1992)].

This research work is based on basic emotions like happiness, sadness, fear, anger,

disgust, surprise and neutral.
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Chapter 2

Feature Extraction Algorithms

2.1 Principal Component Analysis

Principal Component Analysis is a linear dimensionality reduction technique: it trans-

forms the data by a linear projection onto a lower-dimensional space that preserves as

much data variation as possible. Here’s a simple example of projecting 2D points into

1 dimension in Figure 2.1.

Figure 2.1: PCA example:

1D projection of 2D points

in the original space

Figure 2.2: Illustration of a

vector that satisfies is sim-

ply rescaled (not rotated)

by.

Consider the equation Av = �v. This states that the result of multiplying matrix

A with a vector is the same as multiplying that vector by the scalar �. A graphical

representation of this is shown in the illustration below Figure 2.2. All non-zero vectors

that satisfy such an equation are called eigenvectors of A, and their respective � are
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called eigenvalues. “Eigen” is a German term, meaning “characteristic” or “peculiar

to”, which is appropriate for eigenvectors and eigenvalues because to a great extent

they describe the characteristics of the transformation that a matrix represents. In

fact, for every real-valued, symmetric matrix we can even write the matrix entirely

in terms of its eigenvalues and eigenvectors. Specifically, for an m x m matrix A

we can state A = V ⇤V T , where each column of V is an eigenvector of A and ⇤is a

diagonal matrix with the corresponding Eigen values along its diagonal. This is called

the Eigen-decomposition of the matrix.

Now we want to finally give PCA algorithm.

• Given

D = x1, ..., xn. (2.1)

• Compute

x̄ =
1

n

X

i

xi (2.2)

and
X

=
1

n

nX

i=1

(xi � x̄)(xi � x̄)T . (2.3)

• Find the k eigenvectors of equation(3)with largest eigenvalues:

U1, ...., Uk

(2.4)

These are called principal components

• Project

Zi = ((xi � x̄)TU1, ...., (x
i � x̄)TU

k

) (2.5)

Note that we only need the top eigenvectors not all of them, which is a lot faster to

compute.

2.2 Independent Component Analysis

The Principal Component Analysis (PCA), performed by the Karhunen-Loeve trans-

form, produces features y(i), i = 0, 1, ..., N , that are mutually uncorrelated. The solu-

tion obtained by the KL transform solution is optimal when dimensionality reduction
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Figure 2.3: The KL transform is not always best for pattern recognition. In this

example, projection on the eigenvector with the larger eigenvalue makes the two classes

coincide. On the other hand, projection on the other eigenvector keeps the classes

separated (Theodoridis and Koutroumbas, 2009).

is the goal and one wishes to minimize the approximation mean square error. However,

for certain applications, such as the one illustrated in Figure 1, the obtained solution

falls short of the expectations. In contrast, the more recently developed Independent

Component Analysis (ICA) theory tries to achieve much more than simple decorrela-

tion of the data (Hyvarinen et al., 2001),(Hyvarinen and Oja, 2000). Then ICA task

is defined as follows: Given the set of input samples x, determine an N x N invertible

matrix W such that the entries y(i), i = 0, 1, ..., N � 1, of the transformed vector

y = Wx (2.6)

are mutually independent. The goal of statistical independence is a stronger condition

than the uncorrelatedness required by the PCA. The two condition are equivalent only

for Gaussian random variables.

Searching for independent rather than uncorrelated features gives the mean of exploit-

ing a lot more information, hidden in the higher order statistics of the data. As the

example of (Figure 2.3) suggests, constraining the search by digging information in the

second order statistics only results in the least interesting, for our problem, projection

direction, that is, that of a0. However, a1 is, no doubt, the most interesting direction

from the class separation point of view. In contrast, employing ICA can unveil from

the higher order statistics of the data the piece of information that points a1 as the
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most interesting one. Furthermore, searching for statistically independent features is

in line with the way nature builds up the cognitive maps of the outside world in the

brain, by processing the (input) sensory data (Theodoridis and Koutroumbas, 2009).

(Barlow, 1989), in the so called, Barlow’s hypothesis, suggests that the outcome of the

early processing performed in our visual cortical feature detectors might be the result

of a redundancy reduction process. In other words, the neural outputs are mutual as

statistically independent as possible on the received sensory messages.

Before we proceed to develop techniques for performing ICA, we need to be sure that

such a problem is well defined and has a solution and under what conditions. To this

end, let us assume that our input random data vector x is indeed generated by a linear

combination of statistically independent and stationary in the strict sense components

(sources), that is,

x = Ay (2.7)

The task now is under what conditions a matrix, W, can be computed so as to re-

cover the components of y from equation 2.7, by exploiting information hidden in x.

Usually, A is known as the mixing and W as the demixing matrix, respectively. All

independent components y(i),i = 1, 2, ..., N with the possible exception of one, must

be non-Gaussian. A second condition is that matrix A must be invertible. In the more

general case where A is a nonsquare l x N matrix, then l must be greater than N and A

must be of full column rank. In other words, in contrast to PCA which can always be

performed, ICA is meaningful only if the involved random variable are non-Gaussian.

Indeed, for Gaussian random variables independence is equivalent to uncorrelatedness

and PCA su�ces. From a mathematical point of view, the ICA problem is ill-posed

for Gaussian Processes. Indeed, if we assume that the obtained Independent Com-

ponents y(i), i = 1, 2, ..., N , are all Gaussian, then a linear transformation of them

by any unitary matrix will also be a solution (Theodoridis and Koutroumbas, 2009).

PCA achieves a unique solution by imposing a specific orthogonal structure onto the

transformation matrix.
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Figure 2.4: [PS: Phase Spectrum, AS:Amplitude Spectrum] The phase spectrum of

the image 2 and Amplitude spectrum of image 1 produces the blurred image of image

2. The phase spectrum of the image 1 and Amplitude spectrum of image 2 produces

the blurred image of image 1 replicated from (Marian et al., 2002).

2.2.1 ICA as Feature Extraction

In a specific task like face recognition, the most important information may be hidden

in higher order statistics, not just the second order statistics. An example would

be phase and amplitude spectrums. Amplitude Spectrum of an image is captured by

Second-order statistics and the phase spectrum is hidden in the higher order statistics.

The phase spectrum includes a great deal of information and also applies the human

perception.

The above figure (Figure 2.4 )shows that the more information pertaining the human

eye is the phase spectrum.

2.2.2 ICA Algorithm

2.2.3 ICA By Maximization Of Non-Gaussianity

One of the easy and simple principles for estimating the model of ICA is based on

maximization of non-Gaussianity. According to central limit theorem, the distribution

of a sum of independent random variables tends towards a gaussian distribution, under

certain conditions. Estimating the independent components can be accomplished by
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finding the right linear combinations of the mixture variables, since we can invert the

mixing as.

S = A�1X (2.8)

Thus to estimate one of the independent components, the linear combination of x
i

can

be considered. So it becomes

Y = bTX = bTAS (2.9)

Hence if b were one of the rows of A�1 , this linear combination bTX would actually

equal one of the independent components. But in practice, we cannot determine such

b exactly because we have no knowledge of matrix “[A]” , but we can find an estimator

that gives a good approximation. In practice, there are two di↵erent measures of Non-

Gaussianity.

2.2.4 Kurtosis

The classical measure of non-gaussianity is kurtosis or the fourth order cumulant. It

is stated by

Kurt(y) = Ey4 � 3(Ey2)2 (2.10)

As the variable y is assumed to be standardized it can say

Kurt(y) = Ey4 � 3 (2.11)

Hence the kurtosis is simply a normalized version of the fourth moment Ey4. For

the gaussian case, the fourth moment is equal to 3 and hence Kurt(y) = 0. Thus

for gaussian variable kurtosis is zero but for the non-Gaussian random variable, it is

non-zero.

2.2.5 Negentropy

Negentropy is another very important measure of non-Gaussianity. To obtain a mea-

sure of non-Gaussianity that is zero for a Gaussian variable and always non negative

for a non-Gaussian random variable, we can use a slightly modified version of the
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definition of di↵erential entropy called negentropy. Negentropy J is defined as

J(y) = H(y
gauss

)�H(y) (2.12)

Where y
gauss

is a gaussian random variable of the same covariance matrix as y.

2.2.6 Negentropy in terms of Kurtosis

The gaussian variable has the largest entropy among all the random variables. So that

the negentropy for the random variables will always be positive and it is zero if and

only if it is a gaussian variable. Moreover, the negentropy has an extra property that it

is invariant for invertible transformation. But the estimation of negentropy is di�cult,

as it would require an estimate of the probability density function(pdf). Therefore in

practice negentropy is approximated by using higher order moments.

J(y) ' 1

12
E(y3)2 +

1

48
kurt(y)2 (2.13)

In order to increase the robustness, another approach is to generalize the higher order

cumulant approximation again the random variable y is assumed to be standardized.

So that it uses expectations of general non-quadratic functions. As a simple case, we

can take any two nonquadratic functions G1 and G2 such that G1 is odd and G2 is

even and we obtain the following approximation[2].

J(y) ' K1(EG1(y))
2 +K2(EG2(y))� EG2(U)2 (2.14)

2.2.7 Fast Fixed Point Algorithm for ICA (FastICA)

We have implemented FastICA algorithm using three di↵erent kernels, like a hyper

tangent, gaussian and cubic. The experiment shows that the gaussian kernel needs

the less time than the other two and so that we choose the Gaussian kernel for further

analysis. The algorithm of FastICA is depicted here. Firstly assume that we have

a collection of pre-whitened random vector x. Using the derivation of the preceding

section, the following steps show the fast fixed-point algorithm for ICA.

• Step 1: Take a random initial vector w(0) of norm 1. Let k = 1.
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• Step 2: Let w(k) = E(x(w(k � 1)Tx)3) � 3w(k � 1). The expectation can be

estimated using a large sample of vectors.

• Step 3: Divide w(k) by its norm.

• Step 4: |w(k)Tw(k � 1)| is not close enough to 1, let k = k + 1

The final vector w(k) given by the algorithm equals one of the columns of the (orthog-

onal) mixing matrix “[B]” . In the case of blind source separation, this means that

w(k) separates one of the non-Gaussian source signals. The most important property

of this algorithm is that a very small number of iterations, usually 5-10, seems to be

enough to obtain the maximal accuracy allowed by the sample data set. This is due

to the cubic convergence property of the algorithm.

2.3 Non-negative Matrix Factorization

Many machine learning research shows that Non-negative matrix factorization (NMF)

is a useful decomposition for multivariate data like face and facial expression recogni-

tion. According to research studies (Lee and Seung, 2009) it is clear that NMF can be

understood as part based analysis as it decomposes the matrix only into additive parts.

This factorization technique of NMF is completely di↵erent of Principal Component

Analysis (PCA) or Vector Quantization (VQ) in terms of the nature of the decom-

posed matrix. PCA and VQ work on holistic features whereas NMF decomposes a

part-based representation of matrix (Lee and Seung, 2009). Here we apply NMF and

PCA on whole faces and on di↵erent facial parts. PCA, ICA, VQ, NMF all these sub-

space learning techniques reduces the dimension and make a distributed represented

in which each facial image can be approximated using a linear combination of all or

selected basis images.

The factorization problem can be written like this,

X t W.H (2.15)

where X 2 RMxN,=0
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This is similar to the PCA or ICA initialization. In the above equation, R defines the

low-rank dimensionality. Here [W ] and [H] are quite unknown; [X] is the known input

source. Now we have to estimate the two factors. We have to start with random [W ]

and [H]. Columns of [W ] will contain vertical information about [X] and the horizontal

information will be extracted in the rows of [H]. NMF does additive decompositions

and parts make this decomposition. We first have to define the cost functions to

solve an approximate representation of the factorization problem of X t W.H. By

using some measure of distance between two non-negative matrices [P ] and [Q], such

cost functions can be constructed. The square of the Euclidian distance between the

matrices [P ] and [Q], is one fruitful measure.

||P �Q||2 =
X

i,j

(P
ij

�Q
ij

)2 (2.16)

The above equation is lower bounded by zero and absolutely vanishes if and only if

[P ] = [Q]. To define the cost function, another useful representation is,

D(P k Q) =
X

i,j

(P
ij

log
P
ij

Q
ij

� p
ij

+Q
ij

) (2.17)

In the above equation, when
P

i,j

P
ij

=
P

i,j

Q
ij

= 1, the above Kullback-Leibler or

relative entropy reduces. Here [P ] and [Q] can be regarded a normalized probability

distribution. Now, following the cost function of equation (2), we have to define it for

the input matrix [X] and the non-negative decomposed matrix [W ] and [H]. If we do

that, the cost function would be,

k V = WH k2 (2.18)

The main goal is now to reduce the distance ||V �WH||. To do that, first we have

to initialize [W ] and [H] matrix. Then we apply the multiplicative update rule, which

is described in the paper of (Lee and Seung, 2009). They claim and prove that the

multiplicative update rules minimize the Euclidean distance ||P � Q|| and also the

divergence, D(P ||Q) is decreasing when multiplicative update rule is applied. In our

programming here, we use the Euclidian distance as a cost function and apply the

multiplicative update rule to minimize the distance. The rules are defined below,
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According to the mathematical analysis, if we use the equation 2.19 and 2.20 to de-

crease the Euclidian distance ||V �WH||, the distance ||V �WH|| converges. Our

experimental analysis also shows that and we get a significant output on facial expres-

sion dataset.

2.4 Histogram of Oriented Gradients

In the area of Image Processing and Computer Vision, HOG (histogram of oriented

gradients) has been successfully used in recent years. It has been successfully im-

plemented in pattern recognition as a feature descriptor. The underlying method of

HOG has similarity with scale-invariant feature transform descriptors, shape contexts

and edge orientation histograms. It is mainly computed based on a dense grid of uni-

formly spaced cells and to enhance the accuracy it applies overlapping local contrast

normalization.

Two researchers at the French National Institute for Research in Computer Science and

Automation (INRIA), Navneet Dalal and Bill Triggs first described HOG descriptors

at the 2005 Conference on Computer Vision and Pattern Recognition (CVPR) (Dalal

and Triggs, 2005). In this work, they focused on pedestrian detection in static images,

although since then they expanded their tests to include human detection in videos,

as well as to a variety of common animals and vehicles in static imagery.

The essential thought behind the histogram of oriented gradients descriptor is that

local object appearance and shape within an image can be described by the distribution

of intensity gradients or edge directions [Wikipedia]. The image is divided into small

connected regions called cells, and for the pixels within each cell, a histogram of

gradient directions is compiled. The final descriptor is then the concatenation of

these histograms. To enhance the increased accuracy, the local histograms are made
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contrast-normalized. This normalization results in better invariance to changes in

illumination and shadowing. HOG descriptor is invariant to geometric and photometric

transformations due to its functionality of operating on locally spaced cells. But it is

not invariant to object orientation.

2.4.1 Algorithm Implementation

Gradient Computation

The first step of Histogram of Oriented Gradients is to compute the gradient values.

The most common method is to apply the 1D centered point discrete derivative mask

in both the horizontal and vertical directions. In this method, the grayscale images

need to be filtered with the following filter kernels.

D
y

=
h
1 0 �1

i

and

D
y

=

2

6664

1

0

�1

3

7775

So, for an image I, x and y derivatives can be obtained by applying the convolution

operation: I
x

= I ⇤D
x

and I
y

= I ⇤D
y

. The magnitude of the gradient is,

|G| =
q
I2
x

+ I2
y

and the orientation of the gradient is given by,

✓ = arctan
I
x

I
y

Orientation Binning

The second step of the algorithm is preparing the cell histograms. Based on the gra-

dient values, derived in the previous subsection, each pixel in the cell casts a weighted
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Figure 2.5: Block Normalization Process for HOG

vote for an orientation histogram channel. Depending on the gradient values, whether

it is ’signed’ or ’unsigned’, the histogram channels are evenly spread over 0 to 180 de-

grees or 0 to 360 degrees. As for the vote weight, gradient magnitude or some function

of gradient magnitude, like the square or square root or some clipped version of the

magnitude, is applied for pixel contribution.

Descriptor Blocks

To make the blocks robust for illumination and contrast changes, the gradient strength

must be locally normalized. For this, the cells need to be grouped together to make

it larger and spatially connected blocks. Then the final HOG descriptor contains the

vector of the components of the already normalized cell histograms from al the block

regions derived in the second step. There are basically two types of block geometrics,

like rectangular R-HOG and circular C-HOG.

Block Normalization

Block normalization can be done following several methods. If v can be though of

as a non-normalized vector containing all histograms in a given block, ||v
k

|| is its k

norm for k=1,2, and e are some small constant, whose value does not normally has

any e↵ect on the results. Then the final normalization can be obtained by following

any of the ways stated below:
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L2� norm : f =
vp

||v||22 + e2

L1� norm : f =
v

||v||1 + e

L1� sqrt : f =

r
v

||v||1 + e

In this thesis, we have used HOG as a feature extraction process to analyze the per-

formance of seven-class facial expression recognition system. We have used Euclidian

Distance (ED), Support Vector Machine (SVM) and Extreme Learning Machine(ELM)

as the classifier with the extracted HOG features from the facial expression faces im-

ages.
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Chapter 3

Classifier

3.1 Support Vector Machine

Support vector machines as well as support vector networks are supervised learning

models for data classification and regression analysis. In machine learning, computer

vision and pattern recognition area SVM has been very widely and successfully applied

for classifying dichotomous and multi-class data problems. The genesis of support vec-

tor machines is from the statistical learning theory of Vapnik (Kumar, 2004), (Vapnik,

1995). Primarily the concept of SVM was introduced to solve binary classification

problems applying supervised learning. The learning consists of solving a quadratic

optimization problem, where the error surface is free of any local minimum and has

global optimum(Begg et al., 2005). To find the optimal separating hyperplane using

SVM, it is necessary to consider only a subset of the training points, called support

vectors (Foody and Mathur, 2004) and (Cao and Tay, 2003). The SVMs are able to

determine the optimal separating hyperplane e�ciently and they are generally known

to produce good classification accuracy even with small training sets (Cao and Tay,

2003).

For linear classification problem, an SVM model makes some data points of a specific

class in the feature space and mapped in the way so that the points from the di↵erent

data classes are divided by a clear gap that is as wide as possible. New data point are

then mapped into that same space and predicted to belong to a class based on which
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side of the gap they fall on.

In addition to performing linear classification, SVMs can e�ciently perform a non-

linear classification problem using the kernel trick which works by implicitly mapping

their inputs into high-dimensional feature spaces.

Given a set of training (x
i

, t
i

)N
i=1, where x

i

2 Rd and represents the n-dimensional

input feature vector and t
i

2 [�1,+1] is target output. then the decision function is

given by (Foody and Mathur, 2004), (Osuna et al., 1997), (Gunn, 1998);

f(x, w, b) = sign(w.x+ b) (3.1)

The optimal separating hyperplane can be determined by solving the following opti-

mization problem (Begg et al., 2005), (Osuna et al., 1997), (Gunn, 1998);

minimize �(w) = 1
2kWk

2

subject to

d
i

(w.x+ b) � 1, i = 1, 2, .., N (3.2)

(Haykin, 1999) demonstrates to apply the Lagrangian solve the optimization problem.

For the linearly non-separable patterns, the optimization problem can be reformulated

as follows (Osuna et al., 1997) , (Chang and Lin, 2001);

minimize

�(w,⌅) =
1

2
kWk2 + C

NX

i=1

⇣
i

(3.3)

subject to

d
i

(w.x+ b) � 1� ⇣
i

, i = 1, 2, .., N (3.4)

where ⇣
i

�, i = 1, 2, .., N

In the above equation, C is the regularization parameter. To extend the above ap-

proach into non-linear decision boundaries, the same input space has to be transformed

to the high dimensional Euclidian space H, like; � : Rn �! H [(Begg et al., 2005),

(Haykin, 1999), (Osuna et al., 1997)]. In this high feature space the input vector x is

termed as �(x). The training algorithm depends on functions of the form �(x).�(x
i

).
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The kernel function K should be employed in this way: K(x, x
i

) = �(x).�(x
i

). Ac-

cording to [(Osuna et al., 1997), (Gunn, 1998), (Burges, 1998)], the decision function

should be,

f(x) = sign(
NX

i=1

↵
i

d
i

k(x, x
i

) + b) (3.5)

where ↵
i

�, i = 1, 2, .., N are called Lagrange multipliers. One of the main kernel

function is gaussian radial basis and is given by

K(x, y) = e
kx�yk2

2�2 (3.6)

In the above equation, �2 is kernel parameter or width. The values of two parameters,

C and �2 influence the classification accuracy of SVM classifier. The binary nature of

SVM can be extended to multiclass classification problems. This can be done either

by constructing and combining several binary classifiers or by directly considering all

data in one optimization formulation (Hsu and Lin, 1998). There are three main

mechanisms to solve multiclass classifier problems by combining binary SVMs: One-

against-all, One-against-one, and Direct acyclic graph. In our proposed system, we

evaluated One-against-one multiclass SVM.

3.1.1 One Against One Multiclass SVMs

The classical SVM method can only classify binary classes: there are several ways

to change it into multiclass classification, like; construct a complicated multiclass

constrain optimization SVMs, use C-SVMs and one-against-rest approach, use C-SVM

and one-against-one approach. We choose the one-against-one approach because of its

convenience and shorter training set comparing the one-against-rest approach.

For training data from the ith and jth classes, the following two class classification

problem should be solved:

min
w

ij

,b

ij

,⇣

ij

i

1

2
(wij)

T

(W ij) + C
X

t

(⇣ ij)
t

(3.7)
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subject to constraints: if x
t

belongs to the ith class:

(wij)T�(x
t

+ bij) � 1� (⇣ ij)
t

(3.8)

Onthe other hand, if x
t

belongs to the jth class:

(wij)T�(x
t

+ bij)  1� (⇣ ij)
t

(3.9)

and:

(⇣ ij)
t

� 0 (3.10)

Now the test geometric feature vector x
i

, taken from the above mathematics, is the

input to the 7*(7-1)/6 SVMs. By applying the voting method, each binary classifica-

tion contributes to the total votes. Which input vector has the maximum number of

votes for being in a particular class will be in that class. In case that if two classes

have identical votes, although it is not a good strategy, the multiclass SVM select the

one with the smallest index label.

3.2 Extreme Learning Machine

In recent years, Extreme Learning Machine (ELM), proposed by [(Huang et al., 2004),

(Huang et al., 2006b), (Huang et al., 2006a), (Huang and Chen, 2007)] is attracting

more and more attention because of its outstanding performance in training speed, pre-

dicting accuracy and generalization ability [(Huang et al., 2012), (Huang et al., 2010),

(Lan et al., 2010a), (Lan et al., 2010b)]. The learning speed of feedforward neural

networks is in general far slower than required and it has been a major bottleneck in

their applications for past decades (Huang et al., 2006b). According to (Huang et al.,

2006b), there may be two reasons behind this situation,(first) the slow gradient-based

learning algorithms are extensively used to train neural networks, and (second) all the

parameters of the networks are tuned iteratively by using such learning algorithms.

Where Extreme Learning Machine (ELM) works for single hidden layer feed-forward

neural networks (SLFNs) which randomly chooses hidden nodes and analytically de-

termines the output weights of SLFNs. (Huang et al., 2006b) also claimed very large
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complex application prove that ELM can produce a good performance in most cases

and can learn thousands of times faster than conventional popular learning algorithms

for feedforward neural networks (Huang et al., 2004). Especially it is shown that ELM

tends to outperform Support Vector Machine (SVM) in both regression and classi-

fication applications with much easier implementation (Huang, 2014). Our purpose

here is to analyze the performance of (Huang et al., 2004) ELM on facial expression

recognition system as it is a problem of a multi-class classifier.

3.2.1 Brief overview of ELM

ELM is a kind of single hidden layer feed-forward neural networks (SLFN) and it has

the universal approximation property (Huang et al., 2006a). In order to have SLFNs

work as a universal approximation, one may simply randomly choose hidden nodes

and then just train the output weights linking the hidden and the output layer (Jia

et al., 2016). Let x be the input, the output of an SLFN with hidden nodes can be

represented by

O
L

(x) =
LX

i=1

�
i

F (m
i

, n
i

, x),m
i

✏Rd, b
n

✏R (3.11)

where �
i

is the weight vector connecting the ith hidden nide to the output nodes,

F (m
i

, n
i

, x) is the output of the ith hidden node, m
i

and n
i

are the relative parameters

of hidden nodes. For additive hidden nodes with activation function f(x), the output

of the ith hidden node is given by

F (m
i

, n
i

, x) = f(m+ i.x+ n
i

) (3.12)

where m
i

is the weight vector connecting the input layer to the ith hidden node and

n
i

is the bias of the ith hidden node.

If an SLFN with L hidden nodes can approximate N samples (m
k

, t
k

) with zero error,

where m
k

✏Rd is the input signal feature vector, and t
k

✏Rd is the output target value

or category label, it means that there exists �
i

,m
i

, n
i

such that

O
L

(x
k

) =
LX

i=1

�
i

F (m
i

, n
i

, x
k

) = t
k

, k = 1, ..., N (3.13)
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The above equation can be written in a matrix format as

H� = T (3.14)

where

H =

2

6666666664

F (m1, n1, x1) ... F (m
L

, n
L

, x1)

. .

. ... .

. .

F (m1, n1, xN

) ... F (m
L

, n
L

, x
N

)

3

7777777775

NxL

,

� =

2

6666666664

�T

1

.

.

.

�T

L

3

7777777775

Lxm

and

T =

2

6666666664

tT1

.

.

.

tT
N

3

7777777775

Nxm

The above equation then can be considered as a linear system and training the SLFN

is simply equivalent to find a least squares solution of the linear system. It is proved

that the following equation is the unique smallest norm least squares solution to learn

and obtain output weight � of this linear system (Huang et al., 2006b):

� = H†T (3.15)

where H† is the Moore-Penrose generalized inverse of the hidden layer output matrix,

in which the weight and bias parameters m
i

and n
i

are randomly asigned.

As stated in (Huang et al., 2012), the orthogonal projection method can be used in

ELM: H† = (HTH)�1HT if HTH is non-singular or H† = (HT (HHT )�1 if HHT is

non-singular. According to the ridge regression theory (Hoerl and Kennard, 1970), it

was suggested that a positive value 1
�

is added to the diagonal of HHT or HTH in
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the calculation of the output weights �. The resultant solution is stabler and tends to

have better generalization performance. Then the equation 3.15 becomes,

� = HT (
I

�
+HHT )�1T (3.16)

Then the corresponding output function of ELM becomes:

f(x) = h(x)� = h(x)HT (
I

�
+HHT )�1T (3.17)

3.2.2 Kernel based ELM

As explained in (Huang et al., 2012), ELM also has a kernel implementation version.

ELM normally tries to randomly guess an appropriate hidden layer and uses much

bigger hidden layer than needed and potentially prunes back to the minimum necessary.

This can be preceded or replaced by a kernel, but if only a kernel is used the correct

one must be known to the user in order to be used rather than guessed and trained

by a random weighting, pseudo inversion and/or pruning process. The point is that if

we already know what a good non-linear kernel is we dont need to guess.

Then one can define a kernel matrix for ELM as follows, where the hidden layer feature

mapping h(x) should not be guessed by the users;

⌦
ELM

= HHT : ⌦
ELMi,j

= h(x
i

).h(x
j

) = K(x
i

, x
j

) (3.18)

Then the output of the ELM function that mentioned in equation 3.17, can be re-

written as

f(x) = h(x)HT (
I

�
+HHT )�1 T =

2

6666666664

K(x, x1)

.

.

.

K(x, x
N

)

3

7777777775

(
I

�
+ ⌦

ELM

)�1T (3.19)

This is a single-step kernel version, where the training set @ = (x
i

, t
i

)|x
i

✏Rd, t
i

"Rm, i = 1, ..., N

and kernel= K(u, v) (Huang et al., 2012).
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3.3 Euclidian Distance Classifier

Here we use euclidian distance to take the minimum distance from the feature subspace.

Euclidian distance is the shortest distance between two points on a plane is a straight

line and is known as Euclidean distance as shown in the following equation and is a non-

parametric classifier. In the Euclidean distance, the metric di↵erence of each feature of

query and database image is squared which e↵ectively increases the divergence between

them.

d
Euc

= (A,B) =

vuut
mX

k�1

|A
k

� B
k

|2 (3.20)

In many machine learning data matching areas, euclidian distance classifier (EDC)

has been proven a successful classifier. For an example, EDC performs as well as

or superior to the sample LDF (linear discriminant function) , even for nonspherical

covariance configurations (Marco and Turner., 1987).
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Chapter 4

Image Pre-Processing

Due to the camera configuration, light and shadow, facial pose, background structure,

images need to be normalized. The Cohn-Kanade database greatly varies in illumi-

nation and contrast. For illumination adjustment, we did Contrast Adjustment and

Histogram Equalization. This chapter covers illumination adjustment as well as face

and facial parts detection.

4.1 Illumination Adjustment

The direction where the individual in the image has been illuminated greatly a↵ects

face recognition success. A study on illumination e↵ects on face recognition showed

that lighting the face bottom up makes face recognition a hard task. So obviously, in

that case, facial expression recognition becomes harder too. The CK dataset varies

greatly in image brightness. Contrast Adjustment is applied on very light images.

JAFFE dataset also varies in lighting and shadow. First, we manually separate the

very dark and very light images. Then we apply contrast adjustment procedure on

very light images and Histogram Equalization on very dark images. We are the first to

separate the internal procedure for contrast adjustment and histogram equalization.

For various unknown or technical reasons, when we apply contrast adjustment pro-

cedure on very dark images, the images distort. On the other hand, when we apply

histogram equalization on very light images, then also the images loss its information.
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So from this investigation and also from prediction, we apply contrast adjustment pro-

cedure on very light images and Histogram Equalization on very dark images. This

process saves the images from being distorted.

4.1.1 Contrast Adjustment

An image lacks contrast when there are no sharp di↵erences between black and white.

Brightness refers to the overall lightness or darkness of an image. To change the

contrast or brightness of an image, we perform contrast stretching. In this process,

pixel values below a specified value are displayed as black, pixel values above a specified

value are displayed as white, and pixel values in between these two values are displayed

as shades of gray. The result is a linear mapping of a subset of pixel values to the

entire range of grays, from black to white, producing an image of higher contrast. The

following figure shows this mapping.

Figure 4.1: How to adjust pixel values in Contrast Adjustment Procedure.

In the Contrast Adjustment procedure, we adjust the contrast of an image by linearly

scaling the pixel values between upper and lower limits. Pixel values that are above

or below this range are saturated to the upper or lower limit value, respectively.

Mathematically, the contrast adjustment operation is described by the following equa-

tion, where the input limits are [low
in

, high
in

] and the output limits are [low
out

, high
out

].

Output = low
out

+ (Input� low
in

)
high

out

� low
out

high
in

� low
in

(4.1)
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Figure 4.2: Contrast Adjustment Procedure.

4.1.2 Histogram Equalization

Histogram equalization is applied in order to improve the contrast of the images. The

peaks in the image histogram, indicating the commonly used gray levels, are widened,

while the valleys are compressed. Histogram equalization is a technique for adjusting

image intensities to enhance contrast. The process of histogram equalization enhances

the contrast of images by transforming the values in an intensity image, or the values

in the color map of an indexed image so that the histogram of the output image

approximately matches a specified histogram.

Figure 4.3: (left) Histogram of a very dark image and (right) the same image with

equal histogram.

Two histogram plots are given in the above Figure. The histogram on the left is

before histogram equalization (between 6-250) is applied and the one on the right
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is after histogram equalization is applied. After separating the very dark images,

histogram equalization is applied to the JAFFE and extended cohn-kanade databases

automatically.

When a desired histogram is supplied, histogram equalization procedure chooses the

gray scale transformation T to minimize

|cum1(T (j))� cum0(j)|, (4.2)

where the cumulative histogram of A is defined by cum0, the cumulative sum of the

histogram for all intensities j is defined by cum1. There is a constraint that T must

be monotonic and cum1(T (a)) cannot overshoot cum0(T (a)) by more than half the

distance between the histogram counts at a. The above minimization process is subject

to this constraint. Histogram equalization procedure uses the transformation b = T (a)

to map the gray levels in X or the colormap to their new values.

4.2 Face Detection

Paul Viola and Michael Jones proposed the Viola-Jones object detection framework

in 2001. This object detection algorithm provides competitive object detection rates

in real-time, which is approximately 15 times faster than any previous approach. It

was motivated primarily by the problem of face detection, although it can be trained

to detect a variety of object classes. This face detection framework claimed that they

have three main contributions. In this thesis, we will briefly discuss these three contri-

butions. The first contribution of the Viola-Jones face detection framework is a new

representation of image called integral image, which allows the features computations

very quickly.

4.2.1 Features and Integral Image

Being inspired from the research outcomes for using features rather than the pixels,

this face detection framework uses rectangular features to identify faces. This pro-

cess mainly uses three kinds of features. The di↵erence between the sums of the
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pixels within two rectangular regions is the numeric value of a two-rectangle feature.

The regions have the same size and shape and are horizontally or vertically adjacent.

A three-rectangle feature performs the summation within two outside rectangles sub-

tracted from the sum in a center positioned rectangle. Finally, a four-rectangle feature

computes the di↵erence between diagonal pairs of the rectangles. By applying integral

Figure 4.4: (left) Example rectangle features shown relative to the enclosing detection

window. The sum of the pixels which lie within the white rectangles is subtracted

from the sum of pixels in the gray rectangles. Two-rectangle features are shown in (A)

and (B). Figure (C) shows a three-rectangle feature, and (D) a four-rectangle feature,

Replicated from (Viola and Jones, 2004).

image, which is an intermediate representation for the images, rectangular features

can be computed very quickly. The integral image at location x, y contains the sum

of the pixels above and to the left of x, y, which is:

ii(x, y) =
X

x

05x,y

05y

i(x0, y0) (4.3)

where ii(x,y) is the integral image and i(x,y) is the original image. The following equa-

tions are the recurrences:

t(x, y) = t(x, y � 1) + j(x, y) (4.4)

j(x, y) = jj(x� 1, y) + t(x, y) (4.5)
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where t(x, y) is the cumulative row sum, t(x,�1) = 0, and jj(�1, y) = 0) the integral

image can be computed in one pass over the original image. By applying this integral

image, feature extraction process speeds up very rapidly.

4.2.2 AdaBoost Learning Algorithm

The second contribution of (Viola and Jones, 2004) is a simple and e�cient classifier

that is built by selecting a small number of important features from a huge library

of potential features. This classifier is built using the AdaBoost learning algorithm

(Freund and Schapire, 1995). Boosting performs a classification technique, which

processes by combining weak learners into a constructive ensemble classifier. Adaboost

iteratively combines the classifiers from a linear combination of the weak classifiers.

At first, it gives equal weight to each training example. Then it performs the iterative

training procedure by raising the weights of misclassified sample by the associated

weak learner. Thus it increases the speed as well as accuracy of the feature selection

process.

4.2.3 Cascaded Classifier

Combining successively more complex classifiers in a cascade structure is the third ma-

jor contribution of the Viola-Jones face detection framework. This cascaded classifier

quickly discards background regions and spends more computation on face-like regions

and thus it increases the detection rate to a great extent. A cascade structure does

it job as recursive and degenerated decision tree. At each stage, either the process

denies a specific feature and the process stops, or the classifier accepts the feature and

forwards it to the immediate next stage. The training classifier applying Adaboost

structures the inner stages in the cascade classifier. Research shows that the chain of

classifiers is structurally more complex as well as possess low false positive rates.
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Figure 4.5: Cascade of Classifiers (left) and ROC curve shows how the accuracy is

improving by the cascaded architecture.

Figure 4.6: A diagram of the cascaded classifier. A pool of classifiers is applied to every

sub-window. The initial classifier eliminates a large number of negative examples

with very little pro- cessing. Subsequent layers eliminate additional negatives but

require additional computation. After several stages of processing the num- ber of

sub-windows have been reduced radically. Further processing can take any form such

as additional stages of the cascade (as in our detection system) or an alternative

detection system (Viola and Jones, 2004).
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Chapter 5

Experimental Setup

5.1 Dataset

We benchmark our results on the Cohn-Kanade (CK) and JAFFE datasets. We used

both the datasets for facial expression recognition.

The Cohn-Kanade dataset has a variable number of images per expression. For each

expressed emotion we have a sequence from neutral face images. In the CK dataset,

there are 110 images from anger expression, 102 images from disgust, 152 images from

fear, 101 images from happy, 110 images from neutral, 110 images from sad and 100

images from surprised expression. In total, we have 785 images in CK dataset. In this

dataset, Sixty-five percent were female, 15 percent were African-American, and three

percent were Asian or Latino. The observation room was equipped with a chair for the

subject and two Panasonic WV3230 cameras, each connected to a Panasonic S-VHS

AG-7500 video recorder with a Horita synchronized time-code generator. One of the

cameras was positioned directly in front of the subject, and the other was located 30

degrees to the right of the subject. Then the images were digitized into 640 by 480 or

490 pixel arrays with 8-bit precision for grayscale values.

In the JAFFE dataset, each of the ten subjects posed for 3 or 4 examples of each of the

six basic or distinctive facial expressions (happiness, sadness, surprise, anger, disgust,

fear) as well as a neutral face expression. Altogether JAFFE has 219 facial images and

we use 210 images which include 30 images from each expression (30x7=210 images).

41



In the JAFFE set, each subject took pictures of herself while looking through a semi-

reflective plastic sheet towards the camera. To create even illumination on the frontal

face tungsten lights were used and to decrease the back reflection a box enclosing the

region between the plastic sheet and the camera was used.

The following two figures are a portion of the two datasets, the CK and the JAFFE

dataset, which we feed in our proposed repeated and nested k-fold cross-validation

based Facial Expression Recognition system. We apply contrast adjustment procedure

on very light images and Histogram Equalization on very dark images on both datasets

before doing face detection. This process makes all the images of same contrast and

brightness.

Figure 5.1: Cohn Kanade dataset.

Figure 5.2: Data from JAFFE dataset.
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5.2 Face and Facial Parts Detection

The CK dataset varies greatly in image brightness. For image pre- normalization

procedure, first, we use Contrast Adjustment to enhance the image from very light

images. Then to improve the contrast of the very dark images we apply Histogram

Equalization. In CK dataset, the background is large with all the face images. For

face detection, we apply the Viola-Jones algorithm (Paul and Jones, 2001). The face

detection algorithm gives a green bounding box as shown in figure 5.4. The same

procedures are applied to JAFFE dataset.

The three major steps of face detection methods are stated below.

• Integral images for fast feature evaluation.

• Boosting for feature selection.

• Attentional cascade for fast rejection of non-face windows.

For eyes, nose and mouth detection, we applied cascaded object detector with region

set on already detected frontal faces (Fig. 5.4). This cascade object detector with

proper region set can identify the eyes, nose and mouth. Our proposed model for

facial parts detection determines the locations and sizes of human facial parts by

extracting region of interests and then apply Viola-Jones object detector. This region

set property limits the facial parts search area. Thus this proposed model reduces the

computation time to a great extent as well as this model increases the detection rate

than the straight Viola-Jones algorithm.

Basically, this object detection algorithm uses a cascade of classifiers to e�ciently

process image regions for the presence of a target object. Each stage in the cascade

applies increasingly more complex binary classifiers, which allows the algorithm to

rapidly reject regions that do not contain the target. If the desired object is not found

at any stage in the cascade, the detector immediately rejects the region and processing

is terminated. The model for facial parts detection region set has been shown in

figure 5.3.
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Figure 5.3: Proposed model for the region of interest for facial parts detection.

We perform face and facial parts detection on 785 images from seven expression classes

in CK dataset and 210 images from the same seven expression classes on JAFFE

dataset. As shown in figure 5.3 the facial parts detection area are divided into

three regions interest calculated using the following equations.

• Step 1: First we apply the straight Viola-Jones face detection algorithm on our

facial expression dataset with the large background. The outcome is the detected

face surrounded by an orange bounding box in figure 5.3. Then we have divided
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the detected face by three regions. Figure 1 of figure 5.3, shows the equally

divided three sections.

• Step 2: In figure 2 of figure 5.3, we divided the model into new three parts again.

Where

Eye part (Green)= Lower 1/3 of the first part from the previous step +

upper 1/2 part of the second part from the previous step.

Nose part (Purple)=Lower 2/3 of the second part.

Mouth part (Brown)= The whole third part which is the 1/3 of the whole

detected face area.

• Step 3: Then we apply the Viola-Jones eye-detector in the Eye part, Viola-Jones

nose-detector in the nose part, Viola-Jones mouth-detector in the mouth part.

The facial parts detection outcome is depicted in following figure 5.4.

Figure 5.4: Face and Facial Parts Detection.

5.3 Cross-Validation: Splitting Train and Test Data

5.3.1 Holdout

The conventional holdout strategy is applied to measure the classifier performance

when the amount of data for training and testing is limited. For example, the holdout
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method holds one-third of the data for testing and use the remaining two-thirds for

training. The training corpus is only used to train the model, while the testing corpus

is only used to estimate the performance of the model.

In the holdout method, this is uncertain whether a sample, partitioned for testing and

training, is representative or not. To overcome this issue, each class in the full dataset

should be represented in about the right proportion in the training and testing sets.

If all examples with a certain class were omitted from the training set it is hardly

expected a classifier learned from that data to perform well on examples of that class,

and the situation would be exacerbated by the fact that the class would necessarily be

overrepresented in the test set because none of its instances made it into the training

set. The solution from this obstacle is Stratification, which ensures that the random

sampling is done in a way that guarantees that each class is properly represented

in both training and test sets. While it is generally well worth doing, stratification

provides only a primitive safeguard against uneven representation in training and test

sets (Witten and Frank, 2005).

Research studies (Efron and Gong, 1983), (Efron and Tibshirani, 1994), (Steyerberg,

2008), (Stone, 1974) has shown that holdout validation is statistically ine�cient be-

cause much of the data is not used to train the prediction model. Moreover, an

unfortunate split of the training and testing corpora may cause the performance esti-

mate of holdout validation to be misleading. To reduce the bias and variance research

works of (Tarvo, 2008), (Nagappan et al., 2008), (Zimmermann and Nagappan, 2008)

suggested and proves that holdout validation method should be applied in a repeated

fashion (Tantithamthavorn et al., 2015).

The holdout method is repeated multiple times with crossover from the within and

heldout sets. On the otherhand, in cross-validation data has to be split into a fixed

number of folds or partitions. The errors it makes are accumulated as before to give

the mean absolute test set error, which is used to evaluate the model. However, its

evaluation can have a high variance. The evaluation may depend heavily on which

data points end up in the training set and which end up in the test set, and thus

the evaluation may be significantly di↵erent depending on how the division is made

(Schneider, 1997).
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5.3.2 Cross-Validation

Cross-validation extends the idea of holdout validation by repeating the splitting pro-

cess several times. A cross-validation estimate is a random number that depends on

the division into folds. For an example, if the number of folds is n, then the dataset is

split into n approximately equal partitions; each, in turn, is used for testing and the

remainder is for training. Which means, (n�1)/n of the data for training and 1/n for

testing. This is called n-fold cross validation and if stratification is adopted as well,

then it is called stratified n-fold cross validation.

k-fold Cross-validation

k-fold cross validation is one way to improve over the holdout method (Schneider,

1997). The data set is divided into k subsets, and the holdout method is repeated

k times. Each time, one of the k subsets is used as the test set and the other k-1

subsets are put together to form a training set. Then the average error across all k

trials is computed. The advantage of this method is that it matters less how the data

gets divided. Every data point gets to be in a test set exactly once and gets to be

in a training set k � 1 times. The variance of the resulting estimate is reduced as k

is increased. The disadvantage of this method is that the training algorithm has to

be rerun from scratch k times, which means it takes k times as much computation to

make an evaluation. A variant of this method is to randomly divide the data into a

test and training set k di↵erent times.

In k-fold cross validation we create a k-fold partition of our samples such as k� 1 sets

of observations are used as training examples and n� k sets of observations are used

as training data iteratively. The advantage of k-fold Cross- validation is that all the

examples in the dataset are eventually used for both training and testing.

Leave-one-out cross-validation

Leave-one-out cross validation is k-fold cross validation taken to its logical extreme,

with k equal to n, the number of data points in the set. That means that n separate
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times, the function approximator is trained on all the data except for one point and

a prediction is made for that point (Schneider, 1997). As before the average error is

computed and used to evaluate the model. The evaluation is given by leave-one-out

cross-validation error (LOO-CV) is good, but at first pass, it seems very expensive to

compute. This method not only fully utilizes the available data, but also eliminates

the influence of choices of random pairing. Thus, the LOO-CV is a nearly unbiased

and reliable method. The computational requirement for the LOO seems daunting

at a glance since it requires n training cycles for evaluating a single parameter (Shao

et al., 2015).

10-fold cross-validation

According to (Witten and Frank, 2005), extensive tests on numerous di↵erent datasets

with di↵erent learning techniques, have shown that 10 is about the right number of

folds to get the best estimate of error, and there is also some theoretical evidence

that backs this up. (Witten and Frank, 2005) commented that the standard way of

predicting the error rate of a learning technique given a single, fixed sample of data

is to use stratified ten-fold cross-validation. The data is divided randomly into 10

parts in which the class is represented in approximately the same proportions as in

the full dataset. Each part is held out in turn and the learning scheme trained on the

remaining nine-tenths; then its error rate is calculated on the holdout set. Thus, the

learning procedure has executed a total of 10 times on di↵erent training sets (each set

has a lot in common with the others). Finally, the 10 error estimates are averaged to

yield on overall error estimate. Although these arguments are by no means conclusive,

and debate continues to rage in machine learning and data mining circles about what

is the best scheme for evaluation, 10-fold cross validation has become the standard

method in practical terms(Witten and Frank, 2005). It is also proved from di↵erent

tests that the use of stratification improves results slightly. So for the limited data,

stratified 10-flod cross validation is a standard method. In some cases 5 or 20- fold

cross validation is likely to be almost good.

However, a single ten-fold cross-validation might not be enough to get a reliable er-

ror estimate. Di↵erent ten-fold cross-validation experiments with the same learning
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scheme and dataset often produce di↵erent results because of the e↵ect of random

variation in choosing the folds themselves (Witten and Frank, 2005). Although strat-

ification can reduce the variation but it does not eliminate it entirely. According to

(Witten and Frank, 2005), to measure an accurate error rate, the standard method is

10 times 10-flod cross-validation and average the results. This involves invoking the

learning algorithm 100 times on datasets that are all nine-tenths the size of the original.

To enhance a good measure of performance is a computation-intensive undertaking.

While the cross-validation technique is known to be nearly unbiased, some studies

[(Isaksson et al., 2008), (Braga-Neto and Dougherty, 2004)] find out that it can produce

unstable results for small datasets. To overcome this shortcoming and to improve the

variance of cross-validation results, the entire cross-validation process can be repeated

several times.

For our proposed system, for facial expression recognition, we implemented our system

based on 3x10- fold cross validation. For any systems performance, execution time is

an issue, so we use 3x10 fold cross validation rather than 10x10 or more outer folds.

and we have reasonable results and in some context, it outperforms some predominant

FER systems. Moreover, we also perform 10x10 fold Nested Cross-Validation (NCV).
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Chapter 6

Proposed Approach

Automatic face and emotion recognition has been attracting the attention of re-

searchers from several areas including computer vision, psychology, behavioral science,

computer games and medicine (Pantic and Rothkrantz, 2000). But it is really a hard

problem to recognize face and facial expression with a very high accuracy (Kapoor and

Picard, 2001), (Picard, 1997), (Izard, 1979) and (Cottrell and Metcalfe, 1991). There

are lots of challenges and critical issues in the domain of face and facial expression

recognition.

Among the critical challenges, there is one of the main concerns over whether it is best

to use whole or part based image analysis. Sometimes di↵erent facial parts of the face

are optimal in terms of processing time and accuracy than holistic faces for identifying

an expression. We propose here,

• Repeated Cross-Validation based approach for FER system using Whole face

and three main facial parts (eyes, nose and mouth).

• Nested Cross-Validation based approach for FER system to find the best space-

classifier combinations on the whole face, three main facial parts and all possible

combinations of the facial parts.

Many machines learning kinds of research show that Principal Component Analysis

(PCA), Independent Component Analysis(ICA) and Non-negative matrix factorization

(NMF) are useful decompositions for multivariate data like face and facial expression

50



recognition. Principal Component Analysis is a linear dimensionality reduction tech-

nique: it transforms the data by a linear projection onto a lower-dimensional space

that preserves as much data variation as possible. The Principal Component Analy-

sis (PCA) is performed by the Karhunen-Loeve transform produces features, that are

mutually uncorrelated. The solution obtained by the KL transform solution is optimal

when dimensionality reduction is the goal and one wishes to minimize the approxi-

mation mean square error. However, for certain applications, the obtained solution

falls short of the expectations. In contrast, the more recently developed Independent

Component Analysis (ICA) theory tries to achieve much more than simple decorre-

lation of the data. According to research studies (Lee and Seung, 2009) it is clear

that NMF can be understood as part based analysis as it decomposes the matrix only

into additive parts. PCA, ICA, NMF all these subspace learning techniques reduces

the dimension and make a distributed represented in which each facial image can be

approximated using linear combinations of all or selected basis images. Although the

underlying method of the histogram of oriented gradients (HOG) is not similar to

PCA, ICA, and NMF. It has been successfully used in In the area of Image Process-

ing and Computer Vision in recent years. HOG has been successfully implemented

in pattern recognition as a feature descriptor. The underlying methods of HOG have

similarity with scale-invariant feature transform descriptors, shape contexts and edge

orientation histograms. As we are using PCA, ICA and NMF which are mainly applied

for dimension reduction and HOG works as SIFT descriptors, we will use the term

’space’ for the feature extraction processes. Altogether we investigate the performance

of sixteen space and classifier combinations to make a comparison of the FER system.

We benchmark our system on CK and JAFFE dataset using full face and four facial

parts. For our feature extraction, we use HOG, PCA, NMF and ICA and as classi-

fiers, we apply Euclidian Distance (ED), Extreme Learning Machine(ELM), Extreme

Learning Machine Kernel (ELM Kernel) and Support Vector Machine (SVM).
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6.1 Repeated Cross-Validation based approach for

FER system using Whole face and three main

facial parts (eyes, nose and mouth).

In this section, our first objective is to analyze the comparison of facial expres-

sion recognition based on the whole face and part based faces. In our experimental

setup, first, we detect the face using Viola-Jones face detection algorithm. Then we

apply PCA, ICA, NMF and HOG on whole faces for facial expression recognition to

produce four feature sets. The extracted feature sets are then passed on four classi-

fiers, like; Euclidian Distance(ED), Support Vector Machine(SVM), Extreme Learning

Machine(ELM) and Extreme Learning Machine Kernel (ELM Kernel). Then the sys-

tem produces twelve feature-classifier combinations which are PCA+ED, PCA+SVM,

PCA+ELM, PCA+ELM Kernel, ICA+ED, ICA+SVM, ICA+ELM, ICA+ELM Ker-

nel, NMF+ED, NMF+SVM, NMF+ELM, NMF+ELMKernel, HOG+ED, HOG+SVM,

HOG+ELM and HOG+ELM Kernel. We carefully design a 3x10 fold RCV (3x Re-

peated 10-fold CV), which is repeated 10 fold, cross-validation to evaluate the perfor-

mance of the system and make a comparison among the space-classifier combinations.

So our second objective is to analyze the space-classifiers performance on three main

facial parts (eyes, nose, mouth). We divide the whole face into three main facial parts

and follow the same way as described above. The whole process in described in the

flow chart in figure 6.1 and the associated pseudocode is in Algorithm 1 .
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Figure 6.1: Our proposed Repeated K-fold Cross-Validation approach for FER system.
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Algorithm 1 FER using Repeated K-fold Cross-Validation over specified feature sets.
0: Initialization

0: Ps [(WF) and (E,N,M)]

0: E  [Anger, Disgust, Fear, Happy, Neutral, Sad, Surprised]

0: C [ED, SVM, ELM, ELM Kernel]

0: F [NMF, PCA, ICA, HOG]

0: for <R=1 to 3> do{R is for Repeated cross-validation}

0: for <k=1 to 10> do{k is for k-fold cross-validation}

0: Let WP be a feature extractor for FP = F (P ) in (k-1) data part.

0: Train FP on classifier set C in (k-1) data part.

0: Let FC be F trained input FP to predict labels E.

0: Evaluate the classifier on the held out test dataset (1/k). .

0: Calculate the statistics S over k=10 folds on the powerset of (WP,FC).

0: Calculate the statisticsS over R=3 folds on the powerset of (WP,FC).

0: Return all S for all the combination of (WP,FC). =0

6.2 Nested Cross-Validation based approach for FER

system to find the best space-classifier combi-

nations on the whole face, three main facial

parts and all possible combinations of the fa-

cial parts.

Our prediction is for some cases even less part of faces may perform better than the

three facial parts. To prove these predictions, we implement a 10x10 fold N-CV based

FER system. In this approach, we use whole face (WF), three facial parts (eyes, nose

and mouth which we denote as (E+N+M)) and the all possible combinations of the

three facial parts, which are, Eyes (E), Nose (N), Mouth (M), Eyes + Nose (E+N),

Eyes + Mouth (E+M), Mouth +Nose (M+N) as facial features. then we benchmark

our proposed N-CV analysis on CK and JAFFE dataset. The results are shown in the
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following two tables.

Already by using three facial parts (i.e., eyes, nose and mouth), we are reducing some

facial features and hence the system needs less memory for calculations. Our one the

main objectives, is to increase the accuracy as well as decrease the calculation time. So

we reduced some facial features, like; the top of the forehead, two sides of the cheeks

and took the main three facial parts which are prominent parts to emote the basic

expressions. From the analysis and prediction of some face parts may perform better

than the full face or all three facial parts, we implemented a nested cross-validation

(N-CV) basis FER system.

The following algorithm 2 is the pseudocode for proposed approach. Also, we provide

a flow chart of this nested Cross-Validation based approach in the flow chart 6.2.
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Figure 6.2: Our proposed Nested k-fold Cross-Validation approach for FER system.
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Algorithm 2 FER using Nested K-fold Cross-Validation to select feature sets.
0: Initialization

0: Ps [(WF) and (E,N,M), (E), (N), (M), (E,N), (E,M), (M,N)]

0: E  [Anger, Disgust, Fear, Happy, Neutral, Sad, Surprised]

0: C [ED, SVM, ELM, ELM Kernel]

0: F [NMF, PCA, ICA, HOG]

0: for each P from Ps do

0: for <N=1 to 10> do{N is for Nested cross-validation}

0: for <k=1 to 10> do{k is for k-fold cross-validation}

0: Let WP be a feature extractor for FP = F (P ) in ((k-1)-1) data part.

0: Train FP on classifier set C in (k-1) data part.

0: Let FC be F trained input FP to predict labels E.

0: Evaluate the classifier on the validation dataset.

0: Calculate the statistics S over k=10 folds on the powerset of (WP,FC).

0: Return the argmax(F,C) for the highest Informedness from S.

0: Train the test set using the returned (F,C).

0: Calculate the statistics S over N=10 folds from test set.

0: Return argmax(F,C) with the highest Informedness from S for each Ps. =0

In the next chapter, we investigated the performances of the sixteen feature-classifier

combinations for both full face and part face based FER system. For some feature-

classifier combinations, full face performs better than the part based faces where as for

some the output is vice versa. Also our result shows that the performances are dataset

dependent. For performance evaluation, we propose here kappa statistics, correlation

and informedness besides accuracy.
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Chapter 7

Facial Expression Recognition:

Performance Evaluation

On a systematic trial and error basis, we set some hyperparameter values for ELM

and ELM Kernel for PCA. In the case of ELM classifier, using trial and error basis, we

found that for ‘sigmoid activation function with 100 hidden number of neurons work

better than other combinations. So we use here ‘Sigmoid activation function with 100

hidden neuron numbers. The Elm Kernel was performing with very low informedness,

we investigated whether the main issue is that Elm Kernel does not work properly

when (near) singular. But the underlying PCA method decomposes the whole input

data into three decomposed matrix [U S V], where S is the diagonal matrix of singular

values and U and V are rotations into a latent space that is reduced if (near) singular.

So we took the Pseudoinverse of the ‘singular matrix and increases the performance to

a great extent. Using the same method with PCA more generally also works better.

Optimizing the hyperparameter using nested cross-validation, with ELM and ELM

Kernel will be our future work.

For SVM, we use here ‘Linear Kernel. Optimization of kernels is beyond the scope of

this thesis. This can be one of our future contributions.

On a systematic trial and error basis, we set some of the hyperparameter values for

ELM and ELM Kernel for ICA. Like PCA, we found the same combination for ICA

which is ‘sigmoid activation function with 100 hidden number of neurons works better
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than other combinations in ELM classifier using ICA. In the case of matrix decom-

position, ICA performs PCA decomposition first to get the independent components

A and decorrelate weight W. Basically, the PCA U (or V) matrix is divided by the

singular matrix S, which is then multiplied by the random initial weights to get the

initial estimate of the decorrelated weights. So converting the diagonal matrix of the

singular values into Pseudoinverse for ICA feature extraction, in the case of ELM

classifier reduces the performance of the output. On the other hand in case of ELM

Kernel (to use with ICA), converting the diagonal matrix of the singular values into

Pseudoinverse does not change the accuracy. So we use ‘pinv(S)= No for ELM and

ELM Kernel while using ICA.

7.1 Performance Metrics

(Powers, 2012) claimed that the traditional evaluation measures used in Computational

Intelligence (including Error Rates, Accuracy, Recall, Precision and F-measure) are of

limited value for unbiased evaluation of systems, and are not meaningful for comparison

of algorithms unless both the dataset and algorithm parameters are strictly controlled

for skew (Prevalence and Bias).

Here we will show some evaluation techniques which are highly dependent on the

assumptions made about the distributions of the dataset and the underlying popu-

lations. The author of (Powers, 2012) commented that Research in Computational

Linguistics usually requires some form of quantitative evaluation. A number of tradi-

tional measures borrowed from Information Retrieval (Manning and Schutze, 1999) are

in common use but there has been considerable critical evaluation of these measures

themselves over the last decade or so (Entwisle and Powers, 1998), (Flach, 2003), (Ben-

David, 2008a), (Ben-David, 2008b). Receiver Operating Analysis (ROC) has been

advocated as an alternative by many, and in particular, has been used by (Furnkranz

and Flach, 2005), (Ben-David, 2008a), (Ben-David, 2008b), (Powers, 2008) to better

understand both learning algorithms relationship and the between the various mea-

sures, and the inherent biases that make many of them suspect (Powers, 2012). One

of the key advantages of ROC is that it provides a clear indication of chance level
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performance as well as a less well-known indication of the relative cost weighting of

positive and negative cases for each possible system or parameterization represented

(Powers, 2012).

Studies that measure the agreement between two or more observers should include

a statistic that takes into account the fact that observers will sometimes agree or

disagree simply by chance (Viera and Garrett, 2005). The kappa statistic (or kappa

coe�cient) is the most commonly used statistic for this purpose. A kappa of 1 indicates

perfect agreement, whereas a kappa of 0 indicates agreement equivalent to chance.

A limitation of kappa is that it is a↵ected by the prevalence of the finding under

observation.

There are other methods of assessing inter observer-agreement, but kappa is the most

commonly reported measure in the medical literature. Kappa makes no distinction

among various types and sources of disagreement. Because it is a↵ected by prevalence,

it may not be appropriate to compare kappa between di↵erent studies or populations.

Nonetheless, kappa can provide more information than a simple calculation of the raw

proportion of agreement (Viera and Garrett, 2005).

7.1.1 Two classes and non-negative Kappa

Kappa was originally proposed (Cohen, 1960) to compare human ratings in a binary,

or dichotomous, classification task. (Cohen, 1960) recognized that Rand Accuracy did

not take chance into account and therefore proposed to subtract o↵ the chance level

of Accuracy and then renormalize to the form of a probability.

K(Acc) = [AccE(Acc)]/[1E(Acc)] (7.1)

This leaves the question of how to estimate the expected Accuracy, E(Acc). (Cohen,

1960) made the assumption that raters would have di↵erent distributions that could be

estimated as the products of the corresponding marginal coe�cients of the contingency

table.
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7.1.2 Accuracy

Statistics relative to (the total numbers of items in) the real classes are called Rates

and have the number (or proportion) of Real Positives (RP) or Real Negatives (RN)

in the denominator. In this notation, we have Recall = TPR = TP/RP .

Conversely statistics relative to the (number of) predictions are called Accuracies, so

relative to the predictions that label instances positively, Predicted Positives (PP), we

have Precision = TPA = TP/PP .

The accuracy of all our predictions, positive or negative, is given by RandAccuracy =

(TF + TN)/N = tf + tn, and this is what is meant in general by the unadorned

term Accuracy, or the abbreviation Acc. Rand Accuracy is the weighted average of

Precision and Inverse Precision (probability that negative predictions are correctly

labeled), where the weighting is made according to the number of predictions made

for the corresponding labels. Rand Accuracy is also the weighted average of Recall

and Inverse Recall (probability that negative instances are correctly predicted), where

the weighting is made according to a number of instances in the corresponding classes.

Cohen assumes that their distribution of ratings is independent, as reflected both

by the margins and the contingencies: etp = rp ⇤ pp; etn = rn ⇤ pn. This gives us

E(Acc) = etp + etn = (ETP + ETN)/N . By contrast, the two raters two class form

of (Fleiss, 1981) Kappa, also known as ScottP i, assumes that both raters are labeling

independently using the same distribution and that the margins reflect this potential

variation. The expected number of positives is thus e↵ectively estimated as the average

of the two raters counts so that EP = (RP+PP )/2, andEN = (RN+PN)/2, ETP =

EP2andETN = EN2.

7.1.3 Multiclass multi-rater Kappa

(Fleiss, 1981) and others sought to generalize the (Cohen, 1960) definition of Kappa

to handle both multiple class (not just positive/negative) and multiple raters (not

just two, one of which we have called real and the other prediction). Fleiss in fact

generalized Scotts (Scott, 1955) Pi in both senses, not Cohen Kappa. The Fleiss
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Kappa is not formulated as we have done here for exposition but in terms of pairings

(agreements) amongst the raters, who are each assumed to have rated the same number

of items, N, but not necessarily all.

7.1.4 Powers Informedness

(Powers, 2003a) derived a further multiclass Kappa-like measure from first principles,

dubbing it Informedness, based on an analogy of Bookmaker associating costs/payo↵s

based on the odds. This is then proven to measure the proportion of time (or probabil-

ity) a decision is informed versus random, based on the same assumptions re expecta-

tion as Cohen Kappa, and we will thus call it Powers Kappa, and derive a formulation

of the corresponding expectation. (Powers, 2011) further identifies that the dichoto-

mous form of Powers Kappa is equivalent to the Gini coe�cient as a deskewed version

of the weighted Relative Accuracy proposed by (Flach, 2003) based on his analysis

and deskewing of common evaluation measures in the ROC paradigm. (Powers, 2011)

also identifies that Dichotomous Informedness is equivalent to an empirically derived

psychological measure called DeltaP (Perruchet and Peereman, 2004) DeltaP (and its

dual DeltaP) were derived based on analysis of human word association data, the

combination of this empirical observation with the place of DeltaP as the dichotomous

case of Powers Informedness suggests that human association is in some sense optimal.

(Powers, 2011) also introduces a dual of Informedness that he names Markedness

and shows that the geometric mean of Informedness and Markedness is Matthews

Correlation, the nominal analog of Pearson Correlation (Powers, 2012). Powers In-

formedness is, in fact, a variant of Kappa with some similarities to Cohen Kappa,

but also some advantages over both Cohen and Fleiss Kappa due to its asymmetric

relation with Recall, in the dichotomous form of (Powers, 2011), Informedness =

Recall + InverseRecall � 1 = (Recall � Bias)/(1� Prevalence).

If we think of Kappa as assessing the relationship between two raters, Powers statistic

is not evenhanded and the Informedness and Markedness duals measure the two di-

rections of prediction, normalizing Recall, and Precision (Powers, 2012). In fact, the

relationship with Correlation allows these to be interpreted as regression coe�cients
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for the prediction function and its inverse.

7.1.5 Correlation

It is often asked why we dont just use Correlation to measure. (Uebersax, 1987)

Uebersax (1987), (Hutchinson, 1993) Hutchison (1993) and (Bonett and Price, 2005)

Bonnet and Price (2005) each compare Kappa and Correlation and conclude that

there does not seem to be any situation where Kappa would be preferable to Corre-

lation. However all the Kappa and Correlation variants considered were symmetric,

and it is thus interesting to consider the separate regression coe�cients underlying it

that represent the Powers Kappa duals of Informedness and Markedness, which have

the advantage of separating out the influences of Prevalence and Bias (which then

allows macro-averaging, which is not admissable for any symmetric form of Corre-

lation or Kappa, as we will discuss shortly). (Powers, 2011) Powers (2007) regards

Matthews Correlation as an appropriate measure for symmetric situations (like rater

agreement) and generalizes the relationships between Correlation and Significance to

the Markedness and Informedness Measures. The di↵erences between Informedness

and Markedness, which relate to mismatches in Prevalence and Bias,mean that the

pair of numbers provides further information about the nature of the relationship be-

tween the two classifications or raters, whilst the ability to take the geometric mean

(of macro-averaged) Informedness and Markedness means that a single Correlation

can be provided when appropriate.

From the above discussion, we can conclude that to evaluate the classifier’s perfor-

mance, accuracy is a usual measurement criterion. However, due to the variability

of a number of classes and bias of the systems, accuracy does not show reliable the

measurement. (Powers, 2003b) first introduced the concept of informedness which is a

concept of probabilistic measurement based on the decision, prediction or contingency

is informed, rather than due to chance. Therefore we also adopt here informedness

besides accuracy to enhance a better understanding of classifier’s performance. Ac-

curacy is calculated as the following equation which indicates the proportion of right
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prediction amount from the whole sample data set.

Accuracy =
mX

i=1

a
i

i/N. (7.2)

Where m is the number of expressions (here m=6) and N is the total number of im-

ages. To estimate the informedness, bookmaker is an algorithm, which calculates from

a contingency table encountering the idea of betting with fair odds (Powers, 2011)

and (Powers, 2012). It is shown that informedness subsumes chance-corrected accu-

racy estimates based on other techniques that allow for chance, including Receiver

Operating Characters (ROC), Correlation and Kappa, all of which are identical when

bias is matched to prevalence. Informedness calculates the probability that the pro-

gram makes an informed decision versus guessing. It is calculated by the following

equation.

Informedness =
winloss

N
(7.3)

Where winloss =
P

i 6=j

(a
ij

⇤ bias[j]/(prev[j]� 1)) +
P

i=j

(a
ij

⇤ bias[j]/(prev[j])) and

prev[i] = X
i

/N , bias
i

= Y
i

/N . For clarity prev= prevalence, N is the total samples

in the dataset, X
i

and Y
i

are the derived values which are the number of samples in

original and predicted set correspondingly.

In order to provide a better understanding of the results, we propose here kappa

statistics, correlation and informedness besides accuracy. The datasets we use here

are CK dataset, which is biased and JAFFE dataset which is not bias. Which means

in CK dataset, there are 110 images from anger expression, 102 images from disgust,

152 images from fear, 101 images from happy, 110 images from neutral, 110 images

from sad and 100 images from surprised expression. In total, we have 785 images in

CK dataset. On the other hand, in JAFFE we have 210 images which include 30

images from each expression (30 x 7=210 images).

7.2 Facial Expression Recognition Analysis: Re-

peated K-fold Cross-Validation

There is a considerable debate over whether it is best to use whole or part based image

analysis. Being motivated by this debate, we develop our Facial Expression Recogni-

64



tion (FER) system using whole face and the three main facial parts, which are; eyes,

nose and mouth . For the extraction of facial features, we apply the commonly used

PCA and ICA with the more plausible NMF and also the SIFT (Scale-invariant feature

transform) descriptor like feature, HOG. As PCA, ICA and NMF work by reducing

the total feature space, so in this thesis, we will consider the features produced by

PCA, ICA, NMF and HOG as ‘Space’. The classifiers we implement here are Eu-

clidian Distance (ED), Support Vector machine (SVM), Extreme Learning Machine

(ELM) and Extreme Learning Machine Kernel (ELM-Kernel). As every Space is fed

to every classifier, so the total comparison is among sixteen space+classifier combina-

tions. These space-classifier combinations are, PCA+ED, PCA+ELM, PCA+ ELM

kernel, PCA+SVM, ICA+ED, ICA+ELM, ICA+ ELM kernel, ICA+SVM, NMF+ED,

NMF+ELM, NMF+ ELM kernel, NMF+SVM, HOG+ED, HOG+ELM, HOG+ ELM

kernel as HOG+SVM.

To prove whether three facial parts can perform better to express any certain emotions

or vice versa, we implement a 3x10-fold R-K Cross-validation. From the investigation,

it is proved that for some space-classifier combinations three main facial parts perform

better than the full face based FER and also vice versa. From this investigation, our

prediction is any subset of the three facial parts can still perform better. To analyze

this issue, we carefully design a 10x10 Nested Cross-Validation (N-CV) approach to

tune the space-classifier combinations for each subset of the facial parts and also for

the full face. We analyzed the results in tables in the next sections.

We benchmark our system on CK and JAFFE dataset using full face and three facial

parts (eyes, nose and mouth). For the N-CV approach, every possible subset of the

three main facial features has been tested. So our first objective is to analyze

the comparison of facial expression recognition system based on the whole face and

part faces. Our second objective is to analyze which combination of features and

classifiers perform better for any subset of the main facial features.

For performance evaluation, we propose here kappa statistics, correlation, and in-

formedness besides accuracy. For ELM Kernel classifier we use ’RBF Kernel’ and for

SVM, we use ‘Linear Kernel. Optimization of kernels for ELM Kernel and SVM is

beyond the scope of this thesis. This will be one of our future contributions.
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For all the performance measurement tables in this chapter, we marked the

performance over 80% as bold.

7.3 Histogram of Oriented Gradients

In the area of Image Processing and Computer Vision, HOG (histogram of oriented gra-

dients) has been successfully used in recent years [(Dalal and Triggs, 2005), (Lemaire

et al., 2013), (Dahmane and Meunier, 2011), (Zhang et al., 2013)]. It has been suc-

cessfully implemented in pattern recognition as a feature descriptor. The underly-

ing method of HOG has similarity with scale-invariant feature transform descriptors,

shape contexts and edge orientation histograms. It is mainly computed based on a

dense grid of uniformly spaced cells and to enhance the accuracy it applies overlapping

local contrast normalization.

In our proposed approach, we apply HOG with four classifiers, like; Euclidian Dis-

tance (ED), Extreme Learning Machine(ELM), Extreme Learning Machine Kernel

(ELM Kernel) and Support Vector Machine (SVM). Our objective is to analyze which

combination of spaces and classifiers perform better. Moreover, we compare whether

full face or part face based facial expression recognition performs better applying His-

togram of Oriented Gradients method.

7.3.1 Overall Performance of HOG

For our proposed 3x10 repeated cross-validation approach, we investigated the statis-

tical measurement, like; accuracy, informedness, kappa and correlation to analyze the

performance of the space-classifier combinations. The first table is for CK dataset. the

second table is for JAFFE dataset. As ELM does not perform well with HOG feature.

So we are interested to find the performance of ELM Kernel as well as the training

and testing accuracy separately for both ELM and ELM Kernel. These are tabulated

in the next table. At last, we tabulated the performance, which is informedness, of

CK and JAFFE dataset together using HOG+ED, HOG+ELM, HOG+ELM kernel

and HOG+SVM.
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Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole HOG+ED 86.22 88.28 86.27 86.30

Face HOG+ELM Kernel CK 84.38 86.24 83.85 84.10

HOG+ELM 30.32 40.63 30.83 31.43

HOG+SVM 88.42 88.79 86.89 87.84

E+ HOG+ED 85.24 87.17 87.12 87.12

N+M HOG+ELM Kernel CK 73.66 77.71 73.87 74.03

HOG+ELM 36.04 45.21 36.51 37.94

HOG+SVM 84.50 85.25 83.10 83.89

Table 7.1: Performance Metrices of HOG based Facial Expression analysis with ED,

ELM, ELM Kernel and SVM classifier on CK data using Whole Face and the Three

Facial Parts.

Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole HOG+ED 89.44 90.39 87.88 89.85

Face HOG+ELM kernel JAFFE 85.90 87.62 85.56 86.23

HOG+ELM 32.09 23.00 24.03 24.38

HOG+SVM 69.42 71.90 67.22 75.74

E HOG+ED 80.59 82.67 82.59 82.59

N+M HOG+ELM Kernel JAFFE 72.17 75.71 71.67 73.22

HOG+ELM 41.90 34.08 33.00 33.97

HOG+SVM 67.05 69.52 64.44 70.68

Table 7.2: Performance metrices of HOG based Facial Expression analysis with ED,

ELM, ELM Kernel and SVM classifier on JAFFE data using Whole Face and Three

Facial Parts.

As ELM amd ELM Kernel works di↵erently with HOG feature, we are interested to

investigate both the testing training accuracy for both ELM and ELM Kernel.

Dataset Features Algorithm Hidden Activation Kernel Testing Training

Neuron Numbers Function Type Accuracy(%) Accuracy(%)

CK Full Face HOG+ELM Kernel N/A N/A RBF 86.24±1.50 99.47±0.00

CK E+N+M HOG+ELM Kernel N/A N/A RBF 77.71 1.50 99.47±0.00

CK Full Face HOG+ELM 100 Sigmoid N/A 40.63 ±1.79 62.30 ±2.30

CK E+N+M HOG+ELM 100 Sigmoid N/A 45.21 ±2.15 66.30 ±2.30

JAFFE Full Face HOG+ELM 100 Sigmoid N/A 32.09 ±2.15 80.00 ±4.00

JAFFE E+N+M HOG+ELM 100 Sigmoid N/A 41.90 ±3.15 97.47 ±0.80

JAFFE Full Face HOG+ELM kernel N/A N/A RBF 87.62±1.61 99.47±0.00

JAFFE E+N+M HOG+ELM Kernel N/A N/A RBF 72.17±1.82 99.47±0.00

Table 7.3: Comarison of HOG based FER analysis with ELM and ELM Kernel clas-

sifier on JAFFE dataset.

67



Features Algorithm Dataset Informedness

Whole HOG+ED 86.22 ±0.17

Face HOG+ELM Kernel CK 84.38 ±0.01

HOG+ELM 30.32 ±0.90

HOG+SVM 88.42 ±0.48

E+ HOG+ED 85.24 ±0.19

N+M HOG+ELM Kernel CK 73.66 ±0.03

HOG+ELM 36.04 ±1.14

HOG+SVM 84.50 ±0.50

Whole HOG+ED 89.44 ±0.50

Face HOG+ELM Kernel JAFFE 85.90 ±0.00

HOG+ELM 23.00 ±0.75

HOG+SVM 69.42 ±0.00

E HOG+ED 80.59 ±0.34

N+M HOG+ELM Kernel JAFFE 72.17 ±0.00

HOG+ELM 34.08 ±0.55

HOG+SVM 67.05 ±0.00

Table 7.4: Informedness of HOG based FER analysis with ED, ELM, ELM Kernel

and SVM classifier on CK and JAFFE datasets.

7.4 Non-Negative Matrix factorization

Machine learning research shows that Non-negative matrix factorization (NMF) is a

useful decomposition for multivariate data like face and facial expression recognition.

According to research studies (Lee and Seung, 2009) it is clear that NMF can be

understood as part based analysis as it decomposes the matrix only into additive parts.

This factorization technique of NMF is completely di↵erent of Principal Component

Analysis (PCA) or Vector Quantization (VQ) in terms of the nature of the decomposed

matrix. It can be seen through the visual decomposition of both methods. Figure 7.1

shows a portion of the NMF decomposed faces.
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Figure 7.1: A portion of the NMF-decomposed faces.

The next figure(Fig.7.2) shows the NMF reduced subspace of several facial parts.

Figure 7.2: NMF decomposed facial parts.

We applied NMF with four classifiers, like; Euclidian Distance (ED), Extreme Learn-

ing Machine(ELM), Extreme Learning Machine(ELM Kernel) and Support Vector

Machine (SVM). As described before, our objective is to analyse the performance of

the combination of spaces and classifiers as well as the performance of full face or part

face based facial expression recognition.

7.4.1 Overall Performance of NMF

For our proposed 3x10 repeated cross-validation approach, we investigated the statis-

tical measurement, like; accuracy, informedness, kappa and correlation to analyse the

performance of the space-classifier combinations. The first table is for CK dataset.

The second table is for JAFFE dataset. As ELM does not perform well with NMF
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feature, we are interested to find the performance of ELM Kernel. It is shown in the

table that ELM Kernel also does not perform well with NMF. To have an overview

of these two related classifiers (ELM without kernel and ELM kernel), we find the

training and testing accuracy separately for both ELM and ELM Kernel which are

tabulated in the next table. Finally, we tabulate the performance, which is informed-

ness, of CK and JAFFE dataset together using NMF+ED, NMF+ELM, NMF+ELM

kernel and NMF+SVM.

Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole NMF+ED 84.56 86.24 83.88 84.08

Face NMF+ELM CK 35.76 47.00 37.99 38.33

NMF+ELM kernel 0.00 13.62 0.00 0.00

NMF+SVM 63.01 65.95 60.03 62.17

E+N+M NMF+ED 84.50 86.11 83.74 83.89

NMF+ELM CK 36.58 48.14 37.99 38.33

NMF+ELM kernel 0.00 13.62 0.00 0.00

NMF+SVM 57.67 61.42 54.78 57.26

Table 7.5: Performance metrices of NMF based FER analysis with ED, ELM, ELM

Kernel and SVM classifier on CK dataset using Whole Face and Three Facial Parts.

Features Algorithm Dataset Informedness(%) Accuracy% Kappa(%) Correlation(%)

Whole NMF+ED 82.49 84.76 82.22 82.64

Face NMF+ELM Kernel JAFFE 17.14 25.23 4.23 10.88

NMF+ELM 56.67 49.86 48.18 50.02

NMF+SVM 77.66 80.07 76.75 77.78

E+N+M NMF+ED 71.61 74.76 70.56 71.51

NMF+ELM kernel JAFFE 0.00 17.14 2.01 0.00

NMF+ELM 46.67 41.09 39.54 41.27

NMF+SVM 63.38 67.45 62.02 64.20

Table 7.6: Performances metroces of NMF based FER analysis with ED, ELM, ELM

Kernel and SVM classifier on JAFFE dataset using Whole Face and three Facial Parts.
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Dataset Features Algorithm Hidden Activation Kernel Testing Training

Neuron Numbers Function Type Accuracy(%) Accuracy(%)

CK Full Face NMF+ELM 100 Sigmoid N/A 48.14±1.31 69.00±2.00

CK E+N+M NMF+ELM 100 Sigmoid N/A 47.00±1.30 70.00 ±3.00

CK Full face NMF+ELM kernel N/A N/A RBF 13.62 ±0.46 99.50±0.50

CK E+N+M NMF+ELM kernel N/A N/A RBF 13.62 ±0.46 99.50±0.50

JAFFE Full Face NMF+ELM 100 Sigmoid N/A 56.67±3.78 99.30 ±0.44

JAFFE E+N+M NMF+ELM 100 Sigmoid N/A 46.67±2.22 98.50±0.50

JAFFE Full Face NMF+ELM kernel N/A N/A RBF 17.14±0.77 99.50±0.50

JAFFE E+N+M NMF+ELM Kernel N/A N/A RBF 17.14±0.77 99.36±0.30

Table 7.7: Comarison of NMF based FER analysis with ELM and ELM Kernel clas-

sifier on JAFFE dataset.

Features Algorithm Dataset Informedness

Whole NMF+ED 84.56 ±0.80

Face NMF+ELM CK 36.58 ±0.58

NMF+ELM kernel 0.00

NMF+SVM 63.01 ±0.17

E+ NMF+ED 84.50 ±0.68

N+M NMF+ELM CK 35.76 ±0.52

NMF+ELM kernel 0.00

NMF+SVM 57.67 ±0.25

Whole NMF+ED 82.49±0.60

Face NMF+ELM kernel JAFFE 25.23±1.22

NMF+ELM 49.86±1.20

NMF+SVM 77.66 ±0.79

E+ NMF+ED 71.61 ±0.70

N+M NMF+ELM Kernel 0.00

NMF+ELM JAFFE 41.09±0.80

NMF+SVM 63.38 ±0.50

Table 7.8: Informedness of HOG based FER analysis with ED, ELM, ELM Kernel

and SVM classifier on CK and JAFFE datasets.
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7.5 Principal Component Analysis

Principal Component Analysis is a linear dimensionality reduction technique: it trans-

forms the data by a linear projection onto a lower-dimensional space that preserves

as much data variation as possible. The following figure (Fig.7.3) is the outcome of

face images (single and mixed expression dataset) from the Eigen decomposition of

the datasets.

Figure 7.3: Eigen Decomposed faces.

As described before we made face into four parts and applied PCA and calculated

the accuracy. We benchmarked our system on CK and JAFFE dataset using full

face and three facial parts. We applied PCA with three classifiers, like; Euclidian

Distance (ED), Extreme Learning Machine(ELM), Extreme Learning Machine Kernel

(ELM Kernel) and Support Vector Machine (SVM). Our objective is to analyze which

combination of features and classifiers perform better as well as whether full face

or part face based facial expression recognition performs better applying Principal

Component Analysis method.

7.5.1 Overall Performance of PCA

For our proposed full face and part face based FER system using a 3x10 repeated cross-

validation, we investigated the statistical measurement, like; accuracy, informedness,

kappa and correlation to analyze the performance of the space-classifier combinations.

The first table is for CK dataset. the second table is for JAFFE dataset. As ELM
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does not perform well with PCA feature. So we are interested to find the performance

of ELM Kernel as well as the training and testing accuracy separately for both ELM

and ELM Kernel. These are tabulated in the next table. At last, we tabulated

the performance, which is informedness, of CK and JAFFE dataset together using

PCA+ED, PCA+ELM, PCA+ELM Kernel and PCA+SVM.

Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole PCA+ED 83.77 85.72 83.26 83.62

Face PCA+ELM Kernel (S†=Yes)1 CK 0.00 19.36 0.00 0.00

PCA+ELM (S†=Yes) 32.00 41.90 31.09 31.45

PCA+SVM 74.08 77.20 73.30 74.08

E+N+M PCA+ED 82.93 85.27 82.75 82.94

PCA+ELM Kernel (S†=Yes) CK 0 .00 19.36 0.00 0.00

PCA+ELM (S†=Yes) 21.91 34.27 23.89 24.82

PCA+SVM 68.10 71.00 67.25 67.33

Table 7.9: performances metrices of PCA based FER analysis with ED, ELM, ELM

Kernel and SVM classifier on CK using Whole Face and Three Facial Parts.

Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole PCA+ED 63.05 68.11 62.80 63.53

Face PCA+ELM Kernel (S†=Yes) JAFFE 85.18 85.71 84.29 85.26

PCA+ELM (S†=Yes) 86.55 85.67 84.51 85.75

PCA+SVM 84.58 85.71 83.33 84.67

E+N+M PCA+ED 60.34 65.84 60.15 61.19

PCA+ELM Kernel (S†=Yes) 76.99 78.58 74.49 76.19

PCA+ELM (S†=Yes) JAFFE 71.14 74.76 69.75 70.95

PCA+SVM 71.13 73.81 69.44 70.68

Table 7.10: Performance metrices of PCA based FER analysis with ED, ELM, ELM

Kernel and SVM classifier on JAFFE data using Whole Face and Three Facial Parts.

On a systematic trial and error basis, we set some hyperparameter values for ELM

and ELM Kernel for PCA. In the case of ELM classifier, using trial and error basis, we

found that for ‘sigmoid activation function with 100 hidden number of neurons work

better than other combinations. So we use here Sigmoid activation function with 100

hidden neuron numbers. The Elm Kernel was performing with very low in-

formedness, we investigated whether the main issue is that Elm Kernel does

not work properly when (near) singular. But the underlying PCA method de-

composes the whole input data into three decomposed matrix [U S V], among these ‘S

1
S

†: Pseudoinverse of the diagonal matrix of sungular values.
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is a singular matrix. So we took the Pseudoinverse of the ‘singular matrix and increases

the performance to a great extent. Using same way, we set that For ELM Kernel, PCA

works better. Optimizing the hyperparameter using nested cross-validation, with ELM

and ELM Kernel will be our future work. In the table 7.5.1, for some values, we put

both the testing and training accuracy using both pinv(S)=Yes and pinv(S)=No.

Dataset Features Algorithm Hidden Activation pinv(S) Kernel Testing Training

Neuron Numbers Function Type Accuracy(%) Accuracy(%)

CK Full Face PCA+ELM 100 Sigmoid Yes N/A 41.90 ±2.37 55.47 ±2.00

CK E+N+M PCA+ELM 100 Sigmoid No N/A 34.27 ±1.41 41.66 ±2.00

CK E+N+M PCA+ELM 100 Sigmoid Yes N/A 44.33 ±1.20 55.47 ±2.00

CK Full Face PCA+ELM kernel N/A N/A Yes RBF 19.36 ±0.13 19.36 ±0.13

CK E+N+M PCA+ELM kernel N/A N/A Yes RBF 19.36 ±0.13 19.36 ±0.13

JAFFE Full Face PCA+ELM 100 Sigmoid Yes N/A 85.67 ±3.69 99.47 ±0.00

JAFFE Full Face PCA+ELM 100 Sigmoid No N/A 25.71 ±1.80 38.00 ±0.00

JAFFE E+N+M PCA+ELM 100 Sigmoid Yes N/A 74.76 ±2.66 98.41 ±0.00

JAFFE Full Face PCA+ELM kernel N/A N/A Yes RBF 85.71±2.00 98.80±0.47

JAFFE Full Face PCA+ELM kernel N/A N/A No RBF 15.24±0.95 99.47±0.30

JAFFE E+N+M PCA+ELM Kernel N/A N/A Yes RBF 78.57 ±2.38 98.80 ±0.47

Table 7.11: Comarison of PCA based FER analysis with ELM and ELM Kernel clas-

sifier on JAFFE dataset.
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Features Algorithm Dataset Informedness(%)

Whole PCA+ED 83.77 ±0.21

Face PCA+ELM Kernel CK 0.00

PCA+ELM 32.00 ±0.80

PCA+SVM 74.08 ±0.98

E+N+M PCA+ED 82.93 ±0.22

PCA+ELM Kernel CK 0.00

PCA+ELM 21.91 ±0.55

PCA+SVM 68.10 ±0.78

Whole PCA+ED 63.05 ±0.63

Face PCA+ELM Kernel JAFFE 85.18 ±1.30

PCA+ELM 86.55±1.93

PCA+SVM 84.58 ±0.08

E+N+M PCA+ED 60.34 ±0.89

PCA+ELM JAFFE 71.14 ±1.68

PCA+ELM 76.99 ±0.52

PCA+SVM 71.13 ±0.80

Table 7.12: Informedness of FER analysis with ED, ELM, ELM Kernel and SVM

classifiers with PCA on JAFFE and CK data.

7.6 Independent Component Analysis

The Principal Component Analysis (PCA) is performed by the Karhunen-Loeve trans-

form produces features y(i), i = 0, 1, ..., N , that are mutually uncorrelated. The solu-

tion obtained by the KL transform solution is optimal when dimensionality reduction

is the goal and one wishes to minimize the approximation mean square error. However,

for certain applications, such as the one illustrated in Figure 1, the obtained solution

falls short of the expectations. In contrast, the more recently developed Independent

Component Analysis (ICA) theory tries to achieve much more than simple decorre-

lation of the data. (Hyvarinen et al., 2001),(Hyvarinen and Oja, 2000). Figure 7.4

shows the source image, Figure 7.5 is the filtered mixed signals after Di↵erentiation as
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we performed Di↵erentiation as a preprocessing step. Independent Components are

shown in figure 7.6 and the inverse matrix is shown in figure 7.7.

Figure 7.4: Source images.

Figure 7.5: Images after Di↵erentiation.

Figure 7.6: Independent Components.
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Figure 7.7: Inverse Matrix.

For our proposed experiment, we implemented FastICA with three kernels: Hyper

Tangent, Gaussian and Cubic kernels. then we made a comparison among these three

kernels. The following table clearly shows that the Gaussian kernel needs the less

time compared to other kernels of ICA. This table 7.6 is a comparison among first

ten independent component extraction time. For the next step, we choose the FastIca

algorithm with Gaussian kernel.
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Algorithm Extracted Trial Iteration Elapsed Performance

Component Time Index

FastICA Component1 01 11 881.5s 0.1894

Kernel:Hyper Tangent Component2 01 11

(tanh(y)) Component3 01 94

Component4 01 18

Component5 01 25

Component6 01 13

Component7 01 13

Component8 01 12

Component9 01 22

Component10 01 16

FastICA Component1 01 11 45.11s 0.1835

Kernel:Gaussian Component2 01 11

(y ⇤ exp(�y2/2)) Component3 01 15

Component4 01 16

Component5 01 58

Component6 01 32

Component7 01 25

Component8 01 13

Component9 01 41

Component10 01 12

FastICA Component1 01 217 397.56 s 0.1329

Kernel:Cubic Component2 01 236

(y3) Component3 01 40

Component4 01 20

Component5 01 16

Component6 01 19

Component7 01 11

Component8 01 19

Component9 01 21

Component10 01 12

Table 7.13: Time Comparison among di↵erent kernels of FastICA algorithm.
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We applied ICA with the same four classifiers, like; Euclidian Distance (ED), Extreme

Learning Machine(ELM), Extreme Learning Machine Kernel (ELM Kernel) and Sup-

port Vector Machine (SVM). Our objective is to analyze which combination of fea-

tures and classifiers perform better as well as whether full face or part face based

facial expression recognition performs better applying Independent Component Anal-

ysis method. The confusion matrices are given sequentially using CK and JAFFE

dataset both applying full face and then four facial parts. At the end of this section,

we provided some statistical measurement, like; accuracy, informedness, kappa and

correlation. As described before applied FastICA with Gaussian kernel and calculated

the accuracy, kappa, informedness and correlation as performance measurement.

7.6.1 Overall Performance of ICA

For our proposed 3x10 repeated cross-validation approach, we investigated the statis-

tical measurement, like; accuracy, informedness, kappa and correlation to analyze the

performance of the space-classifier combinations. The first table is for CK dataset. the

second table is for JAFFE dataset. As ELM does not perform well with ICA feature.

So we are interested to find the performance of ELM Kernel as well as the training

and testing accuracy separately for both ELM and ELM Kernel. These are tabulated

in the next table. At last, we tabulated the performance, which is informedness, of

CK and JAFFE dataset together using ICA+ED, ICA+ELM, ICA+ELM kernel and

ICA+SVM.

Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole ICA+ED 79.08 81.37 78.21 78.81

Face ICA+ELM(S†=No)2 CK 28.34 41.53 30.18 30.67

ICA+ELM kernel(S†=No) 0 13.62 0 0

ICA+SVM 71.40 74.27 70.86 71.65

E+N+M ICA+ED 84.06 86.17 83.79 83.96

ICA+ELM(S†=No) CK 43.33 30.80 31.37 32.67

ICA+ELM Kernel(S†=No) 0 13.62 0 0

ICA+SVM 64.90 69.00 63.75 64.00

Table 7.14: Performance measurement of ICA based FER analysis with ED, ELM,

ELM kernel and SVM classifier on CK data using Whole Face and Three Facial Parts.

2
S

†: Pseudoinverse of the diagonal matrix of sungular values.
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Features Algorithm Dataset Informedness(%) Accuracy(%) Kappa(%) Correlation(%)

Whole ICA+ED 81.96 84.40 81.78 82.30

ICA +ELM(S†=No)3 46.00 54.29 47.02 47.30

Face ICA+ELMKernel(S†=No) JAFFE 19.50 17.14 4.14 9.96

ICA+SVM 75.41 77.62 73.89 75.92

E+N+M ICA+ED 77.80 79.32 75.89 77.23

ICA+ELM (S†=No) JAFFE 31.33 40.95 30.71 31.72

ICA+ELMKerne(S†=No) 0 17.14 0 0

ICA+SVM 70.05 70.55 64.89 66.70

Table 7.15: Performance measurement of ICA based FER analysis with ED, ELM,

ELM Kernel and SVM classifier on JAFFE data using Whole Face and Three Facial

Parts.

On a systematic trial and error basis, we set some hyperparameter values for ELM

and ELM Kernel for ICA. Like PCA, we found the same combination for ICA which

is sigmoid activation function with 100 hidden number of neurons works better than

other combinations in ELM classifier using ICA. In the case of matrix decomposition,

ICA performs PCA decomposition first to get the independent components ‘A’ and

decorrelate weight ‘W’ . Basically, the PCA U (or V) matrix is divided by the singular

matrix S, which is then multiplied by the random initial weights to get the initial es-

timate of the decorrelated weights. So converting‘singular values,S (S is the diagonal

matrix of singular values), into Pseudoinverse for ICA feature extraction, in the case

of ELM classifier reduces the performance of the output. On the other hand in case

of ELM Kernel (to use with ICA), converting ‘singular values into Pseudoinverse does

not change the accuracy. So we use pinv(S)= No for ELM and ELM Kernel while us-

ing ICA. For an example, for JAFFE dataset, applying ICA+ELM with pinv(S)=yes,

we get the testing and training accuracy both as 19.23. On the other hand, applying

ICA+ELM with pinv(S)=No, we get the testing accuracy as 54.29 and training accu-

racy as 91.00. So we don’t perform the pseudoinverse of the diagonal matrix of the

singular values when applying ICA.

3
S

†: Pseudoinverse of the diagonal matrix of sungular values.
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Dataset Features Algorithm Hidden Activation pinv(S) Kernel Testing Training

Neuron Numbers Function Type Accuracy(%) Accuracy(%)

CK Full Face ICA+ELM 100 Sigmoid No N/A 41.53 ±1.81 60.38 ±1.50

CK E+N+M ICA+ELM 100 Sigmoid No N/A 43.33 ±1.78 64.38 ±2.00

CK Full Face ICA+ELM kernel N/A N/A No RBF 13.62 ±0.46 98.80±0.70

CK E+N+M ICA+ELM kernel N/A N/A No RBF 13.62 ±0.46 98.80±0.70

JAFFE Full Face ICA+ELM 100 Sigmoid No N/A 54.29 ±0.00 91.00 ±0.00

JAFFE E+N+M ICA+ELM 100 Sigmoid N/A 40.95 ±2.78 96.00 ±1.50

JAFFE Full Face ICA+ELM kernel N/A N/A No RBF 17.14±1.05 98.80±0.70

JAFFE E+N+M ICA+ELM Kernel N/A N/A No RBF 17.14±1.05 98.80±0.70

Table 7.16: Comarison of ICA based FER analysis with ELM and ELM Kernel clas-

sifier on JAFFE dataset.

Features Algorithm Dataset Informedness(%)

Whole ICA+ED 79.08 ±0.16

Face ICA+ELM CK 28.34 ±0.80

ICA+ELM Kernel 0.00

ICA+SVM 71.40 ±0.80

E+N+M ICA+ED 84.06 ±0.18

ICA+ELM CK 30.80 ±1.78

ICA+ELM Kernel 0.00

ICA+SVM 64.90 ±0.60

Whole ICA+ED 81.96 ±0.42

Face ICA+ELM JAFFE 46.00 ±0.74

ICA+ELM Kernel 19.50 ±1.70

ICA+SVM 75.41±0.72

E+N+M ICA+ED 77.80 ±0.51

ICA+ELM JAFFE 31.33 ±0.87

ICA+ELM Kernel 0.00

ICA+SVM 70.05 ±0.68

Table 7.17: Informedness of FER analysis with ED, ELM, ELM Kernel and SVM

classifiers with ICA on JAFFE and CK data.
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7.7 Facial Expression Recognition Analysis: Nested

Cross-Validation

From our implementations and from the above tables, we found that for some space-

classifier combinations, full face performs better where for some other space-classifier

combinations, part faces performing better. Our prediction is for some cases even less

part of faces may perform better than the three facial parts. Our another investigation

is the performances of space-classifier combinations are data set dependent.

To prove these findings and predictions, we implement a 10x10 fold N-CV based FER

system. In this approach, we use whole face (WF), three facial parts (eyes, nose and

mouth which we denote as (E+N+M)) and the all possible combinations of the three

facial parts, which are, Eyes (E), Nose (N), Mouth (M), Eyes + Nose (E+N), Eyes

+ Mouth (E+M), Mouth +Nose (M+N) as facial features. Then we benchmark our

proposed N-CV analysis on CK and JAFFE dataset. The results are shown in the

following two tables.

Already by using three facial parts (i.e., eyes, nose and mouth), we are reducing some

facial features and hence the system needs less memory for calculations. Our one the

main objectives, is to increase the accuracy as well as decrease the calculation time. So

we reduced some facial features, like; the top of the forehead, two sides of the cheeks

and took the main three facial parts which are prominent parts to emote the basic

expressions. From the analysis and prediction of some face parts may perform better

than the full face or all three facial parts, we implemented a nested cross-validation

(N-CV) basis FER system.
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Features Algorithm Dataset Informedness(%) ±S.E.

Whole Face HOG+SVM 88.75 ±0.48

Eyes HOG+ED 82.10 ±0.17

Mouth HOG+ED CK 88.75 ± 0.17

Nose NMF+ED 84.68 ±0.70

Eyes+Mouth NMF+ED 85.39 ±0.68

Eyes+Nose HOG+ED 84.90 ±0.17

Nose+Mouth NMF+ED 86.60 ±0.70

Eyes+ Mouth + Nose HOG+SVM 83.75 ±0.48

Table 7.18: Informedness of several facial parts using N-CV for CK dataset.

Features Algorithm Dataset Informedness(%) ±S.E.

Whole Face HOG+ED 90.70 ±0.50

Eyes HOG+ED 82.60 ±.50

Mouth HOG+ED JAFFE 66.60 ±0.48

Nose NMF+ED 77.10 ±0.70

Eyes+Mouth HOG+ED 87.70 ±0.48

Eyes+Nose HOG+ED 83.62 ±0.48

Mouth+Nose HOG+ED 71.17 ±0.50

Eyes+ Mouth + Nose HOG+ED 82.59 ±0.34

Table 7.19: Informedness of several facial parts using N-CV for JAFFE dataset.

From the above two tables 7.18 and 7.19, it is clear that the performance of the

space-classifiers are truly dataset dependent. As for an example, HOG+ED is

showing the highest accuracy for whole face based FER system for JAFFE dataset.

On the other hand, HOG+SVM is showing the highest accuracy for whole face based

FER system for CK dataset.

Second very significant finding is that, in 7.18 table, using CK dataset, we get the

informedness of 88.75% by using only the mouth feature applying HOG+SVM. This

informedness is exactly same with the informedness of whole face based FER system.

Moreover, the standard error of the mean is less for only mouth based FER system
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with the same informedness as whole face based FER system. Less facial feature is

much e�cient in terms of memory usage and computational time. This is one of the

very significant output of this thesis which will give a complete new direction in the

area of facial expression analysis, and also in other areas of image analysis.

7.8 Comparison of our proposed Feature-Classifier

Combinations with state of the art FER Sys-

tems

We count Informedness as a performance evaluator for CK and JAFFE datasets. We

implement here a 3x10 fold repeated cross-validation to compare among the homoge-

nous algorithms for FER system.

The bottom line for the performances of space+classifier combinations are, the space-

classifier combinations are dataset and facial feature dependent, which means the

ranking of classifier-feature combinations are di↵erent for di↵erent datasets and also

di↵erent for full face and four facial combinations based analysis on the same dataset.

Now we will make a comparison of the state-of-the-art systems for facial expression

recognition with our proposed approaches. We propose sixteen space-classifier combi-

nations for two datasets, the CK and The JAFFE, for full face and three main face

parts (facial features=2). Altogether it comes 16x2x2=64 comparisons for the repeated

cross-validation. Again, we apply 10x10 nested cross-validation where multistage algo-

rithms have been used which involves tuning space-classifier parameters for each subset

of the face parts. To tune the space-classifier parameters, eight face parts (Full face,

Eyes, Nose, Mouth, Eyes+Nose, Eyes+Mouth, Nose+mouth, (Eyes+nose+mouth))

have been used for both datasets. So it becomes the comparison among 8x2=16 com-

binations. Altogether all of our tables comprise 64+16= 80 comparisons. In the

following table, for our proposed approaches here, we will show the space-classifier

combinations of the highest performances from each space (i.e., PCA, ICA, NMF and

HOG). From the nested cross-validation, we will show the accuracies over 86%. We

will show here the accuracy as most of the state of the art FER systems provide the

84



only accuracy as their performance measurement. The following table will illustrate

this.

Reference Evaluation Classes Dataset Feature Classifier Accuracy

(Liu et al., 2015) Train-Test 7 CK Gabor Filter ELM 95%

JAFFE +2D-PCA 94%

(Niu and Qiu, 2010) Train-Test 7 CK AU-Coded WPCA SVM 88.25%

PPCA 84.75%

(Zhang et al., 2013) Nested 7 Bosphorus HOG C-SVM with 70.31%

Cross validation Dataset single kernel

LBPH SVM with 72.38%

single kernel

LBPH+ HOG SimpleMKL based 76.32%

multiclass-SVM

LBPH+ HOG HessianMKL based 80.30%

multiclass-SVM

(Shan et al., 2009) 10-fold 7 CK LBP+PCA SVM 91.40%

(Turan and Lam, 2014) 7-fold 7 CK PHOG SVM 91.30%

LPQ 95.03%

Our Proposed 3x10-fold 7 CK (FF4) PCA ED 85.72%

Repeated Cross-validation JAFFE (FF) PCA ELM 85.76%

Our Proposed 3x10-fold 7 CK (PF5) ICA ED 86.17%

Repeated Cross-validation JAFFE (FF) ICA ED 84.40%

Our Proposed 3x10-fold 7 CK (FF) NMF ED 86.24%

Repeated Cross-validation JAFFE (FF) NMF ED 84.76%

Our Proposed 3x10-fold 7 CK (FF) HOG ED 88.28%

Repeated Cross-validation CK (FF) HOG ELM Kernel 86.24%

CK(FF) HOG SVM 88.79

Our Proposed 3x10-fold 7 CK (PF) HOG ED 87.17%

Repeated Cross-validation CK (PF) HOG SVM 85.25%

Our Proposed 3x10-fold 7 JAFFE (FF) HOG ED 90.39%

Repeated Cross-validation JAFFE (FF) HOG SVM 87.62%

Our Proposed 10x10-fold 7 CK (FF) HOG SVM 89.50%

Nested Cross-validation CK HOG ED 89.50%

Mouth

CK NMF ED 87.00%

Eyes+Mouth

CK NMF ED 88.40%

Nose+Mouth

Our Proposed 10x10-fold 7 JAFFE (FF) HOG ED 91.50%

Nested Cross-validation JAFFE HOG ED 88.60%

Eyes+Mouth

Table 7.20: Compariosn of our proposed approaches (the four highest feature-classifier

combination from four features) with state of the art FER systems.

4FF: Full Face
5PF: Three main facial parts(eyes, nose and mouth)
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Chapter 8

Concluding Remarks

As described in the Introductory chapter, facial expression recognition is playing very

important role in machine learning and computer vision. During human-to-human

interactions, perception and decision-making play a very important role. And this

interaction, perception and decision making occur due to change of persons’ emotional

expression or a↵ective states. But this change of expression is inaccessible to com-

puting systems unless we provide computers to understand the human expression. So

without this, human-computer interaction has become a predominantly one-way in-

teraction where a user needs to directly request computer responses. E↵ective natural

human-computer interaction becomes hard in many applications as computers become

integrated into everyday objects. In some cases, users need to be able to interact natu-

rally with computers exactly the way interpersonal face-to-face interaction takes place.

The ability to detect and track users expression or emotional expression or a↵ective

states has the potential to allow a computing system to initiate communication with

a user based on not only the user’s command but also the perceived needs of the

user within the context of the user’s actions. And then human-computer interaction

can become more users friendly and natural. Emerging technological advances are en-

abling and inspiring the research field of a↵ective computing, which aims at allowing

computers to express and recognize a↵ect (Picard, 1997). For example, research in

social psychology [(Boyle et al., 1994), (Stephenson et al., 1976), (Matsumura et al.,

1997), (Ekman and Davidson, 1994), (Pantic and Rothkrantz, 2000), (Ekman, 1979),

(Ekman, 1982a), (Ekman, 1982b), (Ekman and Friesen, 1971), (Ekman and Friesen,
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1976)] suggests that facial expressions play a major role in the human-human inter-

actions and provide a very strong cue about finding the level of interest (Matsumura

et al., 1997).

There is a considerable debate over whether it is best to use whole or part based image

analysis. Our motivation is to analyze the e↵ect of this debate on Facial Expression

Recognition system. So in our proposed approach, we implement both facial parts and

whole face based approach. Facial expression recognition system generally consists of

three steps, like face detection, feature extraction and classification. Machine learning

researchers are using many algorithms for feature extraction and also for classification.

In our experimental setup, firs,t we detect the three face parts (eyes, nose and mouth)

using cascaded object detection by setting regions in a systematic trial and error basis.

For the extraction of facial features, we apply the commonly used PCA and ICA

with the more plausible NMF and also the SIFT (Scale-invariant feature transform)

descriptor like feature, HOG. As PCA, ICA and NMF work by reducing the total fea-

ture space, so in this thesis, we consider the features produced by PCA, ICA, NMF and

HOG as ‘Space’. The classifiers we implement here are Euclidian Distance (ED), Sup-

port Vector machine (SVM), Extreme Learning Machine (ELM) and Extreme Learning

Machine Kernel (ELM-Kernel). As every Space is fed to every classifier, so the to-

tal comparison is among sixteen space+classifier combinations. These space-classifier

combinations are, PCA+ED, PCA+ELM, PCA+ ELM kernel, PCA+SVM, ICA+ED,

ICA+ELM, ICA+ ELM kernel, ICA+SVM, NMF+ED, NMF+ELM, NMF+ ELM

kernel, NMF+SVM, HOG+ED, HOG+ELM, HOG+ ELM kernel as HOG+SVM. For

performance evaluation, we propose here kappa statistics, correlation, and informed-

ness besides accuracy. For ELM Kernel classifier we use ‘RBF Kernel’ and for SVM,

we use ‘Linear Kernel’. Optimization of kernels for ELM Kernel and SVM is beyond

the scope of this thesis.

Potentially a subset of all the three facial parts (eyes, nose and mouth) of the face

is better in terms of processing time and accuracy for identifying an expression. To

prove whether three facial parts can perform better to express any certain emotions or

vice versa, we implement a 3x10-fold R-K cross-validation, where ‘R’ is for repeated

cross-validation. From the investigation, it is proved that for some space-classifier
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combinations three main facial parts perform better than the full face based FER

and also vice versa. From this investigation, our prediction is that any subset of the

three facial parts can still perform better. To analyze this issue, we carefully design

a 10x10 Nested Cross-Validation (N-CV) to tune the space-classifier combinations for

each subset of the facial parts and also for the full face. We analyzed the results in

the Chapter 7.

We use a set of three facial regions and ensure each part is of similar size. For our

proposed RK-CV method we segment the faces into three regions: eyes, nose and

mouth and we consider all three parts to classify expressions. We investigate that for

some space-classifier combinations, the part face is better and for some other cases

full face based approach is better. As for an example, in table 7.4, where HOG

based performance has been shown, the full face based performance is better for both

datasets and with each of the four classifiers; ED, SVM, ELM and ELM Kernel. Then,

in table 7.8, where NMF based performance has been shown, for CK dataset, the full

face and the part face based performance is same for three classifiers; ED, ELM and

ELM Kernel. But SVM performs better on a full face for the same dataset. On

the other hand, for all the four classifiers with JAFFE dataset, the full face based

approach performs better than the part based faces. Again in table 7.12, where PCA

based performance has been shown, the full face based PCA performs better for both

datasets. Although the performance of PCA+ED is very competitive for both full

face (83.77% informedness) and part face based (82.93% informedness) approach for

CK dataset. Lastly, for table 7.17, where ICA based performance has been shown,

on CK dataset, ICA+ED and ICA+ELM perform better in part face based systems

than the full face approach. On the other hand, full face based approach with the four

classifiers with ICA performs better on JAFFE dataset. From this analysis, we can

conclude that the performance of the classifiers is facial feature dependent

(full face or part faces).

For the N-CV approach, we take the features for the whole face, eyes, nose, mouth,

nose+ mouth, eyes+ mouth, eyes+nose, and eyes+nose+mouth. These features are

made for all the seven basic expressions.

From the N-CV analysis, it is clear that the performance of the space-classifiers
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is truly dataset dependent. As for an example, HOG+ED is showing the highest

accuracy for whole face based FER system for JAFFE dataset. On the other hand,

HOG+SVM is showing the highest accuracy for whole face based FER system for

CK dataset. We can recommend that the performance of space-classifier is

dependent on the datasets.

Second, a very significant finding is that, in 7.18 table, using CK dataset, we get the

informedness of 88.75% by using only the mouth feature applying HOG+SVM. This

informedness is exactly same with the informedness of the whole face based FER sys-

tem. Moreover, the standard error of the mean is less for the only mouth based FER

system with the same informedness as whole face based FER system. The Less facial

feature is much e�cient in terms of memory usage and computational time. This

88.75% is the highest informedness from the nested cross-validation based multi-part

FER system. So we can recommend that only mouth based FER system can

achieve the highest performance for facial expression recognition. Which

means mouth is the most liable part for emoting a particular facial expres-

sion. This is one of the very significant contributions of this thesis which will give a

completely new direction in the area of facial expression analysis, and also in other

areas of image analysis.

As stated before, tuning the hyperparameters for SVM and ELM Kernel is our possible

future works. Also for ELM and ELM kernel based approach with PCA and ICA, we

try the pseudoinverse of the diagonal matrix of singular values. Due to the time limit,

we did not try with the unit matrix of ‘S’. Exploration with unit matrix will be one

of our future works too.
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