
Approximations of the Convex Hull of Hamiltonian Cycles

for Cubic Graphs

Asghar Moeini Korbekandi

School of Computer Science, Engineering and Mathematics

Faculty of Science and Engineering

Flinders University

This dissertation submitted for the degree of

Doctor of Philosophy (Mathematics)

February 2016

i

To my family

for unconditionally providing their love, support, guidance and

encouragement.

ii

Contents

Contents

Dedication ii

Table of Contents iii

List of Figures v

List of Tables vii

Summary viii

Declaration xi

Acknowledgements xii

1 Introduction 1

1.1 The Hamiltonian cycle problem . 1

1.2 Background and outline . 2

2 Preliminary Results and Notation 6

2.1 Introduction to Markov decision process 6

2.2 Hamiltonian cycles via controlled Markov chains 10

2.3 Parameter-free polytope . 13

2.4 Removing redundancies of parameter-free model 17

2.5 Only O(N2) integer variables are su�cient 21

3 Hamiltonian Cycle Curves 28

iii

Contents

3.1 Methodology . 30

3.2 A path from a Hamiltonian cycle to its reverse 31

3.2.1 Coe�cients of the expansion of matrix R(σα) 33

3.2.2 Uniqueness of coe�cients for all Hamiltonian cycles 45

3.3 H-curve in the space of occupational measures 46

3.3.1 Relation between R(σα) and R(σ1−α) 47

3.3.2 Properties of the angular function of a regular graph 48

3.3.3 New equality constraints for Hamiltonian regular graphs . . . 50

4 Discovery of Unidenti�ed Equality Constraints for Integer Program-

ming Problems 53

4.1 Introduction . 54

4.2 Preliminaries and notations . 57

4.2.1 A�ne sets . 57

4.3 Equality constraint augmenting method 58

4.3.1 ECA-method . 59

4.3.2 A mixed-integer model to assist in pattern recognition 64

4.4 New equality constraints for parameter-free model 66

4.5 Applications . 72

5 Structural Equality Constraints for Cubic Graphs 75

5.1 Extracting structural equality constraints 76

5.2 Comparison of performance . 91

6 Conclusion and Future Work 93

6.1 CSEC constraints based on 2-index variables 96

References 112

iv

List of Figures

List of Figures

2.1 A directed 4-vertex Hamiltonian graph 11

2.2 The values of entries of the vector x on the above graph 12

4.1 Demonstration of a 2-step constraint 69

5.1 Universal graph U6 . 78

5.2 Envelope graph . 79

5.3 A three degree vertex . 85

5.4 Constraints (5.4) . 85

5.5 Constraints (5.28), case (i) . 86

5.6 Constraints (5.28), case (ii) . 86

5.7 Constraints (5.28), case (iii) . 87

5.8 Constraints (5.28), case (iv) . 87

5.9 Constraints (5.28), case (v) . 87

5.10 Constraints (5.28), case (vi) . 87

5.11 Constraints (5.28), case (vii) . 87

5.12 Constraints (5.28), case (viii) . 87

5.13 Constraints (5.28), case (ix) . 88

5.14 Constraints (5.28), case (x) . 88

5.15 Constraints (5.28), case (xi) . 88

5.16 Constraints (5.28), case (xii) . 88

5.17 Constraints (5.28), case (xiii) . 88

5.18 Constraints (5.28), case (xiv) . 89

v

List of Figures

5.19 Constraints (5.28), case (xv) . 89

5.20 Constraints (5.28), case (xvi) . 89

5.21 Constraints (5.28), case (xvii) . 90

5.22 Constraints (5.28), case (xviii) . 90

5.23 Constraints (5.28), case (xix) . 90

5.24 Constraints (5.28), case (xx) . 90

6.1 A sparse universal graph . 95

6.2 Demonstration of G1 . 99

6.3 Demonstration of G2 . 99

6.4 Demonstration of G3 . 100

6.5 Demonstration of G4 . 101

6.6 Demonstration of G5 . 101

6.7 Demonstration of G6 . 102

6.8 Demonstration of G7 . 102

6.9 Demonstration of G8 . 103

6.10 Demonstration of G9 . 104

6.11 Demonstration of G10 . 105

6.12 Demonstration of G11 . 106

6.13 Demonstration of G12 . 107

6.14 Demonstration of G13 . 107

6.15 A 12-vertex cubic graph . 109

6.16 Subgraph G123 . 109

vi

List of Tables

4.1 First dimension study . 67

4.2 Dimension study after appending 2-step constraints 70

4.3 LP-relaxation comparison study . 74

5.1 Solving HCP for non-Hamiltonian cubic graphs varying from 10-18 nodes . 91

6.1 Isomorphisms for quasi-universal graphs 110

vii

Summary

The now classical Travelling Salesman Problem (TSP) constitutes a famous challenge

for operations researchers, mathematicians and computers scientists. In particular,

suppose there are N cities, and a traveling salesman is going to start from the home

city, pass through all the other cities exactly once and return to the home city. Such

a travel path is called a tour or a Hamiltonian cycle (HC). The distance between

each pair of cities is given, and so for any tour, the tour length is the sum of dis-

tances travelled. Hence TSP can be simply thought of as the optimisation problem

of identifying the tour of shortest length.

A simple case of TSP is the Hamiltonian Cycle Problem (HCP). In particular,

given a graph, we are asked to determine whether it contains at least one HC or

not. With respect to this property - Hamiltonicity - graphs possessing HC are called

Hamiltonian, and graphs not possessing a HC are called non-Hamiltonian. Hamilto-

nian cycle problem is known to be an NP-Complete problem. Indeed, HCP is already

NP-complete for cubic graphs, namely, undirected graphs with exactly three edges

emanating from each vertex.

An inherent di�culty in studying either HCP or TSP is the discreteness of the

solution space of these problems. One approach to analysing these problems in con-

tinuous and convex domains stems from the embedding of the Hamiltonian Cycle

problem, on a symmetric graph, in a discounted Markov decision process. The em-

bedding allows us to explore the space of occupational measures corresponding to

that decision process.

In this thesis we consider a convex combination of a Hamiltonian cycle and its

reverse. We show that this convex combination traces out an interesting "H-curve"

viii

in the space of occupational measures. Since such an H-curve always exists in Hamil-

tonian graphs, its properties may help in di�erentiating between graphs possessing

Hamiltonian cycles and those that do not. Our analysis relies on the fact that the

resolvent-like matrix induced by our convex combination can be expanded in terms of

�nitely many powers of probability transition matrices corresponding to that Hamil-

tonian cycle. We derive closed form formulae for the coe�cients of these powers

which are reduced to expressions involving the classical Chebyshev polynomials of

the second kind.

An important aim of the methods for TSP and HCP which are designed based on

integer programing is to construct a good approximation for the polytope Qc, whose

extreme points are all posible HCs. However, in most real-world TSP applications

and also in the case of HCP, we deal with non-complete graphs. Therefore, we would

ideally like to approximate Q(G), the polytope whose extreme points are all HCs

that belong to a given graph G. To the best of our knowledge, there is no standard

approximation for Q(G), and Qc often plays that role. However, Qc can be a very

poor approximation for Q(G), especially when the graph G is sparse.

In this thesis we developed an approximation for Q(G), where G is a given cubic

graph. Before constructing this approximation, we introduce a generic technique to

generate unidenti�ed equality constraints that can be used to re�ne feasible regions of

LP-relaxations of integer programming problems. Consequently, we exploit this tech-

nique and introduce a method for identifying structural equality constraints through

embedding of cubic graphs in a suitably constructed universal graph.

An indirect method of tackling HCP is by identifying which cubic graphs are

non-Hamiltonian. In recent contributions other researchers developed a formulation

that we call the parameter-free model. The latter characterizes a polytope contain-

ing the ideal polytope whose extreme points are Hamiltonian cycles (if any) of the

given graph. Thus, if that polytope is empty, the graph is non-Hamiltonian. Unfortu-

nately, while the polytope associated with the parameter-free model is successful at so

identifying all bridge graphs and approximately 18% of non-Hamiltonian non-bridge

ix

graphs, it fails on the remaining 82% of the latter. The strength of our approximations

for Q(G) is such that its use allows us to re�ne the parameter-free model for cubic

graphs to achieve 100% success rate with identifying all non-Hamiltonian instances

in all tested cases; in particular, when the number of vertices is 18 or less.

x

Declaration

I certify that this thesis does not incorporate without acknowledgment any material

previously submitted for a degree or diploma in any university; and that to the best

of my knowledge and belief it does not contain any material previously published or

written by another person except where due reference is made in the text.

Asghar Moeini Korbekandi B.Sc., M.Sc.

xi

Acknowledgements

I am very grateful to Professor Jerzy Filar for being a great friend and a fantas-

tic supervisor (and a patient one, as well!). Working with him was a very joyful

experience.

I would also like to thank my associate supervisor, Dr. Michael Haythrope. He has

helped me a lot in proofreading my PhD thesis. I have also learned a lot from him

about how to write good MATLAB code.

I wish to thank Dr. Ali Eshragh for being a great teacher. I have had many good

teachers thus far, but he had the greatest in�uence. His teaching methods persuaded

me to engage in research with great enthusiasm. I further wish to thank him for

involving me in this interesting research project.

I am always thankful to my friends for some great moments in my life from time

to time, and for sharing stories with me (vice versa), not only literally but also

practically. To name a few: Leila, Ghazal, Hamed, Amir Mahdi, Davoud, Hamid,

Amir, Pouya, Amin, Serguei, Mahdi, Masoud, Smaeil, Nasim, Amelia, Brianna, Alex,

and Dale.

I also very much appreciate Associate Professor V. Ejov, Dr. D. Glynn, Mr. S.

Rossomakhine, Mr. P. Baniasadi, Mr. K. Clancy, and Mr. A. Newcombe for their

company and valuable comments made in our weekly meetings.

Last but not least are my parents. They have always supported me as I have pursued

my studies. I am eternally grateful to them.

xii

Chapter 1

Introduction

1.1 The Hamiltonian cycle problem

Combinatorial optimisation refers to problems where optimal solutions lie among a

possibly very large number of discrete alternative solutions. There are many combi-

natorial optimization problems in literature, with the Travelling Salesman Problem

(TSP) arguably the most famous. Although TSP is an NP-Hard problem, its appeal-

ing interpretation has attracted many researchers.

There are various versions of this problem in the literature (e.g., see [2, Chapter

1]). However, in this thesis the standard form will be considered. In particular,

suppose there are N cities, and a traveling salesman is going to start from the home

city, pass through all the other cities exactly once and return to the home city. Such

a travel path is called a tour or a Hamiltonian cycle1 (HC). The distance between

each pair of cities is given, and so for any tour, the tour length is the sum of distances

travelled. Then TSP can be simply thought of as the problem of identifying the tour

of shortest length.

A special case of TSP is the Hamiltonian Cycle Problem (HCP). In particular,

given a graph G, we are asked to determine whether it contains at least one HC or

1 It should be noted that terms �tour� and �Hamiltonian cycle� will be used, interchangeably.

1

not. With respect to this property - Hamiltonicity - graphs possessing HC are called

Hamiltonian2, and those graphs not possesing HC are called non-Hamiltonian. HCP

is known to be an NP-Complete problem (e.g., see [24]). In order to show that HCP

is a special case of the TSP, we �rst add some auxillary arcs to the graph G to make

it a complete graph. If we assign length 0 to each original arc and 1 to each auxillary

arc, the resultant instance of TSP is equivalent to HCP, in the following sense. If

there exists a tour with length of zero in such a complete graph, then the graph G

is Hamiltonian and otherwise, it is non-Hamiltonian. Although HCP seems to be a

special case of the TSP, some authors presume that the underlying di�culty of the

TSP is, perhaps, hidden in HCP [18]. Hence, HCP can sometimes be considered as

a �haupt problem" for solving TSP.

1.2 Background and outline

In 1994, Filar and Krass [20] embedded HCP in a perturbed Markov decision process

(MDP). In this way, they converted the deterministic HCP to a particular average-

reward MDP and then exploited some of the properties of such a process. That

model was the motivation for a new line of research continued by a growing group of

researchers around the world (e.g., see [17], [8], [13], [15], [9], [14] and [29]). A review

of many �ndings resulting from these investigations is given in [18].

In 2000, Feinberg [17] converted HCP to a special class of MDPs, the so-called,

�weighted discounted MDP�. In the process, he introduced Hβ, a new polytope cor-

responding to a given graph G. Among other results, he showed that if the graph G

is Hamiltonian, then corresponding to each HC in G, there exists an extreme point

of polytope Hβ. This polytope is contained in the polytope X (β) of all discounted

occupational measures induced by stationary policies, where β ∈ (0, 1) is the discount

parameter. This model has been recently extended to a parameter-free model that

2The name stems from Sir William Hamilton's investigations of such cycles on the dodecahedron

graph around 1856 but Leonhard Euler studied the famous �knight's tour" on a chessboard as early

as 1759.

2

has a feasible region P (in O(N4) dimensions) [6], [19]. Many other approaches to

TSP have focused on properties of feasible regions LF resulting from LP relaxations

of various Integer Linear Programming (ILP) formulations. There are literally hun-

dreds of papers devoted to those approaches. The reader is referred to the excellent

text Applegate et al [2] for summary of the latter.

This thesis contains three main contributions:

1. An analysis of Hamiltonian curves in the polytope X (β) and the equality con-

straints implied by these curves in P .

2. A generic method to discover and generate new equality constraints that can

be used to re�ne feasible regions LF .

3. An embedding of cubic graphs in a suitably constructed universal graph is

introduced as a useful tool in identifying new structural equality constraints.

The outline of this thesis is as follows. Chapter 2 presents a brief overview of

MDPs and explains the space of discounted occupational measures corresponding to

a given graph G. We then formally introduce a re�ned polyhedral domain for HCP,

namely, Hβ. We also review the parameter-free model P introduced by Filar et al.

[6], [19] and then re�ne this model by removing a number of redundant constraints.

At the end of the chapter, we prove that only O(N2) integer variables are required

to ensure that the feasible region of P corresponds precisely to the set of HCs.

In Chapter 3 we study the embedding of the Hamiltonian Cycle problem, for

undirected graphs, in a discounted Markov decision process. In particular, we consider

a convex combination of a Hamiltonian cycle and its reverse. We show that this

convex combination traces out an interesting �H-curve� in the space of occupational

measures X (β). Since such an H-curve always exists in Hamiltonian graphs, its

properties may help in di�erentiating between graphs possessing Hamiltonian cycles

and those that do not. Our analysis relies on the fact that the resolvent-like matrix

induced by our convex combination can be expanded in terms of �nitely many powers

of the probability transition matrix corresponding to that Hamiltonian cycle. We

3

derive closed form formulae for the coe�cients of these powers which are reduced to

expressions involving the classical Chebyshev polynomials of the second kind. For

regular graphs, we also de�ne a function that is the inner product of points on the H-

curve with a suitably de�ned center of the space of occupational measures and show

that, despite the nonlinearity of the inner-product, this function can be expressed as

a linear function of variables in the parameter-free model.

In Chapter 4 we consider the smallest dimension polytope containing all integer so-

lutions of an integer programming problem. Frequently, this polytope is characterized

by identifying linear equality constraints that all integer solutions must satisfy. Typ-

ically, some of these constraints are readily available but others need to be discovered

by more technical means. We develop a method to obtain such equality constraints,

and derive a set of new equality constraints for the parameter-free model. Subse-

quently, exploiting these results, some techniques are proposed to tighten several

integer program formulations of both TSP and HCP. Finally, we strengthen the re-

laxation of a widely used TSP formulation with help of the newly discovered equality

constraints, and analyse the improvement obtained by doing so.

In Chapter 5 we discuss the concept of universal graphs, and construct a new

universal graph for cubic graphs. We then extract a number of new structural equal-

ity constraints by exploiting this universal graph and results from Chapter 4. We

compare the performance of this new model with that of the original parameter-free

model in terms of their ability to correctly identify all non-Hamiltonian graphs, and

demonstrate that the new model is successful in identifying non-Hamiltonian cubic

graphs up to size 18. These models use infeasibility as an indicator that a graph is

non-Hamiltonian.

We conclude this thesis in Chapter 6 by summarising the results discovered, and

presenting future directions for work in this line of research. The most promising of

these is to construct a family of graphs which are universal for all cubic graphs, in a

generalised sense. More precisely, any given cubic graph is a sub-graph of at least one

of the graphs in this family. Based on this family of generalised universal graphs, we

4

derive structural equality constraints for TSP and HCP on cubic graphs using only

O(N2) variables.

5

Chapter 2

Preliminary Results and Notation

2.1 Introduction to Markov decision process

We consider a sequential decision making problem. More precisely, there is a system

that evolves randomly over time. At each time t, called a stage, the system is in an

observable state St that takes values in the �nite set S = {1, . . . , N}. At each stage

t a decision maker looks at the state of the system and chooses an action, At. It is

assumed that for each state i ∈ S, there is a set A(i) that comprises a �nite number

of corresponding actions. If the decision maker selects action a ∈ A(i), he will receive

the reward r(i, a), immediately, and the state of the system changes to some state

j ∈ S with respect to a stochastic transition rule. If such a rule follows a Markov

transition law, that is,

Pr(St+1 = j | S0 = s0, A0 = a0, · · · , St−1 = st−1, At−1 = at−1, St = i, At = a)

= Pr (St+1 = j | St = i, At = a)

= p(j|i, a) ,

then this sequential decision making process is called a Markov Decision Process

(MDP). One might be interested in �nding a sequence of decision rules ft that choose

actions with respect to the pair (t, St). Such a sequence is called policy. Thus, a

6

typical policy f is made up of decision rules ft, t = 0, 1, 2, . . . , where ft(i, ·) is a

probability distribution function over action set A(i); that is,
∑
a∈A(i)

ft(i, a) = 1,

ft(i, a) ≥ 0, ∀ a ∈ A(i)

∀ i ∈ S .

A policy f is called stationary if it is independent of the stages (that is, ft(i, ·) =

ft′(i, ·) for all possible values of t, t′ and i). A stationary deterministic policy is one

that has a degenerate distribution, that is, f(i, a) = ft(i, a) ∈ {0, 1} for all possible

values of t, i and a. To simplify notation, this type of policy is denoted by f(i) which

determines the exact action one should choose whenever the system is in state i.

Since we will only be interested in stationary policies, we will take �policy� to imply

�stationary policy� throughout this thesis.

Note that every stationary policy f uniquely de�nes the probability transition

matrix P (f) = (pij(f))N,Ni,j=1 where

pij(f) =
∑
a∈A(i)

p(j|i, a)f(i, a), i, j = 1, . . . , N. (2.1)

Here, for a �xed policy f , and where no confusion can arise we suppress the argument

f and write pij = pij(f).

Now, if f is a deterministic stationary policy and P (f) a permutation matrix

comprising a single cycle, then P (f) will be called a Hamiltonian matrix. Note also

that P (f) has period N . That is PN(f) = I and P r(f) 6= I, r = 1, . . . , N − 1.

One might be interested in �nding an optimal policy, that is, a policy that opti-

mizes a function (often called a �criterion�) which aggregates a sequence of rewards.

A criterion which is extensively discussed in literature (e.g., see [22, Chapter 2]) is

given below:

Discounted Markov Decision Process. Suppose the real-valued function vf is

de�ned by

vf (s0) :=
∞∑
t=0

βtEf [r(St, At)|S0 = s0] ,

7

where β is a �xed discount factor chosen from [0, 1) and Ef denotes the expected

reward value with respect to the probability transition matrix P (f) induced by a

policy f . Hence, the subscript f in vf determines that the decision maker selects

actions based on the policy f . The MDP associated with the optimisation

problem

v∗(s0) := max
f
{vf (s0)} , (2.2)

is called Discounted Markov Decision Process (DMDP).

It can be proved that there exists a stationary policy that is optimal for the

optimisation problem (2.2) (e.g., see [22, Chapter 2]). Now, consider the following

primal and dual linear programs:

• Primal

minimize
N∑
i=1

γi yi

subject to yi ≥ r(i, a) + β
N∑
j=1

p(j|i, a)yj, ∀ i ∈ S, a ∈ A(i) .

• Dual

maximize
N∑
i=1

∑
a∈A(i)

r(i, a)xia

subject to
N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xia = γj, ∀ j ∈ S (2.3)

and xia ≥ 0, ∀ i ∈ S, a ∈ A(i) , (2.4)

where γi > 0 is the probability that the process starts at state i, and δij is the

Kronecker delta, that is,

δij =

1 , if i = j

0 , if i 6= j

.

The optimal values of primal variables yi are in fact equal to v∗(i) in equation

(2.2) and the optimal values of dual variables x∗ia can be interpreted as the total

8

discounted probability of being in (state-action)-pair (i, a), when an optimal policy,

say f ∗, is applied, that is,

x∗ia =
N∑
j=1

∞∑
t=0

βt Prf∗ (St = i, At = a|S0 = j) Pr(S0 = j)

=
N∑
j=1

∞∑
t=0

βt Prf∗ (St = i, At = a|S0 = j) γj .

Thus, one can interpret xia as the summation of total discounted times that the

(state, action)-pair (i, a) is occupied. For this reason, x = {xia|i ∈ S, a ∈ A(i)} is

called a discounted occupational measure. Accordingly, the polytope de�ned by linear

constraints (2.3)�(2.4) is called the space of discounted occupational measures. We

also de�ne xi :=
∑

a xia and xf (β) := (x1, . . . , xN).

The following theorem is the main result that connects DMDP with linear pro-

gramming. (e.g., see [22, Chapter 2] and [33, Chapter 6]):

Theorem 2.1.1. The following hold:

(i) The primal-dual linear programs mentioned above possess �nite optimal solu-

tions.

(ii) Let {y∗1, . . . , y∗N} be an optimal solution of the primal linear program, then

y∗i = v∗(i), ∀ i ∈ S.

(iii) Let the occupational measure x∗ = {x∗ia|i ∈ S, a ∈ A(i)} be an optimal solution

of the dual linear program and de�ne x∗i :=
∑

a∈A(i) x
∗
ia for each i ∈ S; then

x∗i > 0, and the stationary policy f ∗ de�ned by

f ∗(i, a) :=
x∗ia
x∗i
, ∀ i ∈ S, a ∈ A(i),

is an optimal stationary policy for the related DMDP optimization problem pro-

posed in (2.2).

There are extensive discussions of MDPs in [27] and [33]. The book [22] could be

considered as a comprehensive manuscript for stochastic games, a competitive form

of MDPs, but it also deals with MDPs. Although only one chapter in [22] deals

9

mainly with MDPs, the connections with linear programming are discussed there in

a concise way.

2.2 Hamiltonian cycles via controlled Markov chains

An important contribution stemming from the research direction described in Sec-

tion 1.2, is due to Feinberg [17]. As mentioned in that section, Filar and Krass [20]

converted HCP to an average-reward Markov decision process and developed a new

model based on the extensive theory of MDPs. In a similar way, Feinberg converted

HCP to a class of DMDPs, the so-called Weighted Discounted Markov Decision Pro-

cesses (WDMDP). He proved the following theorem which shows that HCP can be

reduced to �nding a feasible deterministic policy for a DMDP with constraints. In

the upcoming theorem, we will use the following terminology and notation.

Directed graph G. Let G be a directed graph on N (N > 3) vertices with no

self-loops. Suppose V = {1, 2, . . . , N} is the set of all vertices and A is the

set of all arcs in this graph. For each vertex i, we can de�ne two subsets

A(i) = {a ∈ V | (i, a) ∈ A} and B(i) = {b ∈ V | (b, i) ∈ A}.

Theorem 2.2.1. [17] Consider the following linear constraints corresponding to the

graph described above:∑
a∈A(i)

xia − β
∑
b∈B(i)

xbi = δi1, ∀ i ∈ V (2.5)

∑
a∈A(1)

x1a =
1

1− βN
(2.6)

xia ≥ 0, ∀ i ∈ V , a ∈ A(i), (2.7)

where β is a �xed discount factor chosen arbitrarily from interval (0, 1). The graph

G is Hamiltonian if and only if the linear constraints (2.5)�(2.7) have at least one

feasible solution x corresponding to a deterministic policy, a so-called �Hamiltonian

10

policy�. That is, if for each i ∈ V, there is exactly one a ∈ A(i) such that, xia > 0.

In other words,

f(i, a) :=
xia∑

j∈A(i)

xij
∈ {0, 1}, ∀ i ∈ V , a ∈ A(i) .

If such a solution is found, then the corresponding deterministic policy f traces out

a Hamiltonian cycle in G.

Example 2.2.2. We illustrate Constraints (2.5)�(2.7) for the following given graph:

1 2

34

Figure 2.1: A directed 4-vertex Hamiltonian graph

1 1 1 −β 0 0 0 −β 0

−β 0 0 1 1 −β 0 0 0

0 −β 0 0 −β 1 1 0 −β

0 0 −β 0 0 0 −β 1 1

1 1 1 0 0 0 0 0 0

x12

x13

x14

x21

x23

x32

x34

x41

x43

=

1

0

0

0

1
1−β4

xia ≥ 0 ; i = 1, 2, 3, 4 , a ∈ A(i)

It is easy to show that

xT =
1

1− β4
(1, 0, 0, 0, β, 0, β2, β3, 0).

11

is a feasible solution of above constraints. Moreover, this solution is associated with

the following Hamiltonian policyf(1, 2) = 1 , f(2, 3) = 1 , f(3, 4) = 1 , f(4, 1) = 1

f(1, 3) = f(1, 4) = f(2, 1) = f(3, 2) = f(4, 3) = 0

,

which traces out the tour �1→ 2→ 3→ 4→ 1�.

1 2

34

1
1−β4

β
1−β4

β2

1−β4

β3

1−β4

Figure 2.2: The values of entries of the vector x on the above graph

The interesting point is that these values of vertices of a feasible vector of (2.5)�

(2.7) can be achieved only for Hamiltonian cycles. Hence, this may clarify the crucial

role of Constraint (2.6).

One important matrix in the context of MDPs is β-resolvent matrix where β is

the discount factor. This matrix, for a policy f , is de�ned as follows:

R(β) := (I − βP (f))−1 . (2.8)

where P (f) is the probability transition matrix induced by a policy f .

The following proposition provided in [6] shows R(β) is equal to a �nite sum of

powers of matrix P when P is a Hamiltonian transition matrix. For completeness we

supply that proof here.

Proposition 2.2.3. [6] If P is a Hamiltonian transition matrix, then for any value

of discount factor β ∈ (0, 1), the following holds:

12

R(β) =
1

1− βN
N−1∑
r=0

βrP r .

Proof. By exploiting the fact that N is the smallest power such that PN = I,

we have

R(β) =
∞∑
i=0

βiP i =
∞∑
d=0

N−1∑
r=0

βdN+rP dN+r

=
N−1∑
r=0

∞∑
d=0

βdN+rP r =
N−1∑
r=0

P r

∞∑
d=0

βdN+r

=
N−1∑
r=0

P r βr

1− βN
=

1

1− βN
N−1∑
r=0

βrP r .

�

2.3 Parameter-free polytope

As mentioned in Section 2.2, corresponding to each given graph G, we can construct a

DMDP. It is well known that we can associate the following system of linear equations

with each stationary policy f in DMDP (e.g., see [22, Chapter 2] and [33, Chapter

6]):

xf (β)T (I − βP (f)) := γT , (2.9)

or, equivalently

N∑
i=1

xi(δij − βp(j|i, a)) = γj, j = 1, . . . , N , (2.10)

where γ is the initial distribution. Accordingly, by assuming xf (β) > 0 and de�ning

xia := xi f(i, a), we can rewrite the left hand side of (2.10) with the help of (2.2)

13

as
N∑
i=1

xi(δij − β p(j|i, a)) =
N∑
i=1

xi
∑
a∈A(i)

(δij − β p(j|i, a))f(i, a)

=
N∑
i=1

xi
∑
a∈A(i)

(δij − β p(j|i, a))
xia
xi

=
N∑
i=1

∑
a∈A(i)

(δij − β p(j|i, a))xia

=
∑
a∈A(j)

xja − β
∑
b∈B(j)

xbj.

In the above we had assumed that xi > 0 for every i. In fact this need not be the

case in general but it always holds when f is an HC. Thus, (2.10) is simpli�ed as

below: ∑
a∈A(j)

xja − β
∑
b∈B(j)

xbj = γj, j = 1, . . . , N . (2.11)

Clearly, if we set the initial distribution γ to a degenerate distribution on vertex

1, constraints (2.5) will coincide with (2.11).

Suppose that the Hamiltonian graph G on N vertices is given and P is a prob-

ability transition matrix that is a Hamiltonian matrix. Similarly to Feinberg's ap-

proach [17] to derive constraints (2.5)�(2.7), we can de�ne the following set of con-

straints:

xk(β)T (I − βP) := (1− βN)eTk , k = 1, . . . , N , (2.12)

where ek is a column vector with a unit in the kth element, and zeros elsewhere.

From (2.7) and Proposition 2.2.3, equation (2.12) can be rewritten as

xk(β)T = (1− βN)eTkR(β) = eTk I + βeTk P + β2eTk P
2 + · · ·+ βN−1eTk P

N−1 .

Now, one may de�ne new vectors (xkr)
T := eTkP

r for r = 0, 1, 2, . . . , N − 1. Since P

is a permutation matrix, all components of vector xkr will be 0 except for single entry

which will be equal to 1. This unique element identi�es the rth vertex visited on a

Hamiltonian cycle starting from vertex k. Hence, we can rewrite xk(β) in terms of

vectors xkr as follows:

xk(β) = xk0 + βxk1 + β2xk2 + · · ·+ βN−1xkN−1 . (2.13)

14

Example 2.3.1. In the case of the Hamiltonian cycle 1→ 2→ 3→ 4→ 1 in exam-

ple 2.2.2, the corresponding Hamiltonian policy f induces the Hamiltonian matrix

P = P (f) =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

and

R(β) =
1

1− β4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+
β

1− β4

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

+
β2

1− β4

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

+
β3

1− β4

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 .

Now it is easy to verify that (2.13) corresponds to

xk(β) =
1

1− β4
(1, 0, 0, 0, 0, 0, 0, 0, 0) +

β

1− β4
(0, 0, 0, 0, 1, 0, 0, 0, 0)+

β2

1− β4
(0, 0, 0, 0, 0, 0, 1, 0, 0) +

β3

1− β4
(0, 0, 0, 0, 0, 0, 0, 1, 0).

It is readily seen that (2.13) supports the generic structure of solutions correspond-

ing to Hamiltonian policies given in Theorem 2.2.1. Next, we consider constraints

(2.12) with the right side of (2.13) in place of xk(β) to obtain

(xk0 + βxk1 + β2xk2 + · · ·+ βN−1xkN−1)
T (I − βP) := (1− βN)eTk , k = 1, . . . , N .

Or, equivalently,

xk0 + β(xk1 − P Txk0) + β2(xk2 − P Txk1) + · · ·

+βN−1(xkN−1 − P TxkN−2)− βNP TxkN−1 = ek − βNek . (2.14)

15

Now, by equating coe�cients of powers of β in both sides of (2.14), we obtain the

following set of linear constraints which is free of the parameter β:

xkr − P Txkr−1 = 0, r = 2, . . . , N − 1. (2.15)

Now the above equation can be expanded as follows:

∑
a∈A(i)

xkr,ia =
∑
b∈B(i)

xkr−1,bi, i, k = 1, . . . , N, r = 1, . . . , N − 1. (2.16)

Based on the way we have de�ned vectors xkr , we now have an interesting inter-

pretation for components xkr,ia. More precisely, if these vectors indeed came from a

Hamiltonian transition matrix P , then we may demand that xkr,ia be equal to 1 if

arc (i, a) is visited at the rth step of a Hamiltonian cycle starting from vertex k, and

otherwise be equal to 0. New constraints which can be derived by the use of this

interpretation are listed below. (see [6])

(i) If a vertex i is visited at rth step of a Hamiltonian cycle starting from vertex k,

then on the same tour, vertex k should be visited at N − r steps starting from

vertex i:

∑
a∈A(i)

xkr,ia =
∑

a∈A(k)

xiN−r,ka, i, k = 1, . . . , N, i 6= k, r = 1, . . . , N − 1 ; (2.17)

(ii) If an arc (i, a) belongs to a particular Hamiltonian cycle, then it should be

visited from any starting vertex on that tour, in particular from starting vertices

k and j:

N−1∑
r=0

xkr,ia =
N−1∑
r=0

xjr,ia, i, k, j = 1, . . . , N, j < k, a ∈ A(i) ; (2.18)

(iii) If an arc (i, a) belongs to a particular Hamiltonian cycle, then arc (i, a) will

be traversed in any given step 0, . . . , N − 1 for precisely one starting vertex.

0, 1, . . . , N − 1 on that tour:

N∑
k=1

xkr,ia =
N∑
k=1

xkt,ia, i = 1, . . . , N, t = 0, . . . , N − 1, a ∈ A(i) ; (2.19)

16

(iv) Starting from vertex k, we must visit vertex i at some step in the next N − 1

steps:

N−1∑
r=0

∑
a∈A(i)

xkr,ia = 1, i, k = 1, 2, . . . , N ; (2.20)

(v) Starting from vertex k, we must visit exactly one vertex at rth step:

N∑
i=1

∑
a∈A(i)

xkr,ia = 1, k = 1, . . . , N, r = 0, 1, . . . , N − 1 ; (2.21)

(vi) The probability that a vertex is departed at the very start of a Hamiltonian

cycle starting at a di�erent vertex is 0:

xk0,ia = 0, i, k = 1, . . . , N, i 6= k, a ∈ A(i) . (2.22)

(vii) Finally, all variables should be non-negative:

xkr,ia ≥ 0, i, k = 1, . . . , N, r = 0, 1, . . . , N − 1, a ∈ A(i) . (2.23)

2.4 Removing redundancies of parameter-free model

Let P denote the parameter-free model constructed by the constraints (2.16)�(2.23).

We shall also use P to denote the polytope corresponding to the feasible region of

that model. This polytope was comprehensively discussed in [6], and [19]. However,

we will show that this model includes a number of redundancies. We will see that

it is bene�cial to remove some of these redundancies. To write the constraints of

the parameter-free model for a given graph G, we can begin by constructing the

parameter-free polytope Pc associated with a complete graph. Then we remove vari-

ables corresponding to the edges present in the complete graph but not in the given

graph G. This means that a redundant constraint for the complete graph is redundant

for any given graph G as well.

There are many variables which always have zero value in any HC. One kind of these

is mentioned in the constraints (2.22), but there are four other kinds. We extend

constraints (2.22) as follows.

17

xkr,ia = 0

i 6= k; r = 0

a 6= k; r = N − 1

i = k; r 6= 0

a = k; r 6= N − 1

r < µki

(2.24)

One should note that µki in constraints (2.24) is the shortest path between vertices

k and i in terms of the number of steps required to reach i from k. Obviously the

last branch of (2.24) arises because a tour cannot begin at vertex k and reach vertex

i in fewer than µki steps. When k = i, constraints (2.16) are equivalent to 0 =

0 by constraints (2.24). Therefore, we only need to consider these constraints for

k 6= i.

In the set of constraints (2.17) we only need to consider k < i, because for k > i, each

of these constraints coincides with the analogous k < i constraint when r is replaced

by N − r. When k = i, constraints (2.17) are equivalent to 0 = 0 by constraints

(2.24).

Since constraints (2.18) (respectively, (2.19)) hold for all pairs of indices j 6= k (re-

spectively, r 6= t) it is su�cient to �x one of these indices. In particular, it is su�cient

to set j = 1 (respectively, t = 0).

Lemma 2.4.1. If the following single constraint is added to (2.16)�(2.24)

N∑
k=1

N−1∑
r=0

N∑
i=1

∑
a∈A(i)

xkr,ia = N2, (I)

then it follows that constraints (2.20) and (2.21) become redundant.

Proof.

(i) First we show that constraints (2.20) are redundant. Recall constraint (2.18)

has been replaced by
∑N−1

r=0 x
1
r,ia =

∑N−1
r=0 x

k
r,ia, ∀ k, i, a. By taking the sum of

18

the latter over i and a we have

N∑
i=1

∑
a∈A(i)

N−1∑
r=0

x1r,ia =
N∑
i=1

∑
a∈A(i)

N−1∑
r=0

xkr,ia, ∀ k.

Therefore we can write
∑N

i=1

∑
a∈A(i)

∑N−1
r=0 x

k
r,ia = c, ∀ k, where c is a constant.

By substituting, the above equation in the constraint (I) we have

N∑
k=1

N−1∑
r=0

N∑
i=1

∑
a∈A(i)

xkr,ia

 =
N∑
k=1

c = N2.

That is, c = N and we can write

N−1∑
r=0

N∑
i=1

∑
a∈A(i)

xkr,ia = N, ∀ k. (I′)

If in constraints (2.18) we take the sum over a of both sides, we can write

∑
a∈A(i)

N−1∑
r=0

x1r,ia =
∑
a∈A(i)

N−1∑
r=0

xkr,ia, ∀ k, i,

and conclude∑
a∈A(i)

N−1∑
r=0

x1r,ia =
∑
a∈A(i)

N−1∑
r=0

x2r,ia = . . . =
∑
a∈A(i)

N−1∑
r=0

xNr,ia = di, ∀ i, (II)

where di depends only on i.

The constraints (2.17) are
∑

a∈A(k) x
k
r,ia =

∑
a∈A(i) x

i
N−r,ka, ∀ k, i, r. By taking

the sum over r of both sides of these constraints, we will have

N−1∑
r=0

∑
a∈A(i)

xkr,ia =
N−1∑
r=0

∑
a∈A(k)

xiN−r,ka =
N−1∑
r=0

∑
a∈A(k)

xir,ka, ∀ k, i,

where the last equality follows from the fact that the index N − r takes the

same set of values as the index r. Then by exploiting the above equation and

(II) we arrive at

di =
N−1∑
r=0

∑
a∈A(i)

xkr,ia =
N−1∑
r=0

∑
a∈A(k)

xir,ka = dk, ∀ k, i, (III)

19

and as (III) can be written for any i and k, we can conclude that di = dk =

d, ∀ i, k. Then (II) can be rewritten as follows

N−1∑
r=0

∑
a∈A(i)

xkr,ia = d, ∀ k, i. (II′)

Then by substituting (II′) into (I′) we have
∑

i d = N, ∀ k. Therefore d = 1

and we can rewrite (II′) as follows

N−1∑
r=0

∑
a∈A(i)

xkr,ia = 1, ∀ k, i,

which is equivalent to constraints (2.20). That is, we have found that constraints

(2.20) are implied by (2.17),(2.18),(I). This proves that constraints (2.20) are

redundant and can be removed after (I) is added.

(ii) We now can prove that the constraints (2.21) are also redundant. From the

redundancy of constraints (2.20) we know that the following constraints are

redundant ∑
a∈A(i)

xi0,ia = 1, ∀ i,

because they can be derived from constraints (2.20) by setting i = k and using

(2.24). Also, by taking sum over a, from both sides, of constraints (2.19) (with

t = 0) and using (2.22) we have

∑
a∈A(i)

N∑
k=1

xkr,ia =
∑
a∈A(i)

xi0,ia = 1 ∀ r, i.

This shows that constraints (2.21) are also redundant and should be removed

from P .

�

In view of the above, the parameter-free model (2.16)-(2.23) can be replaced by the

following, simpler, model de�ned by constraints (2.25)-(2.31) below which we shall

20

call the re�ned parameter-free model and denote it by P̄ :∑
a∈A(i)

xkr,ia =
∑
a∈B(i)

xkr−1,ai k 6= i = 1, . . . , N ; r = 1, . . . , N − 1 (2.25)

∑
a∈A(i)

xkr,ia =
∑
a∈A(k)

xiN−r,ka k > i = 1, . . . , N ; r = 1, . . . , N − 1 (2.26)

N−1∑
r=0

xkr,ia =
N−1∑
r=0

x1r,ia k = 2, . . . , N ; (i, a) ∈ G (2.27)

xi0,ia =
N∑
k=1

xkr,ia r = 1, . . . , N − 1; (i, a) ∈ G (2.28)

N∑
k=1

N−1∑
r=0

N∑
i=1

N∑
a∈A(i)

xkr,ia = N2 (2.29)

xkr,ia = 0

r = 0; i 6= k = 1, . . . , N ; (i, a) ∈ G

i = k = 1, . . . , N ; r = 1, . . . , N − 1; (i, a) ∈ G

a = k; r = 0, . . . , N − 2; (i, a) ∈ G

r < µki ; k, i = 1, . . . , N ; (i, a) ∈ G

(2.30)

xkr,ia ≥ 0 k = 1, . . . , N ; r = 0, . . . N − 1; (i, a) ∈ G (2.31)

We are now assuming that the underlying graph is undirected. It will be shown that

if there exist a feasible point in P̄ such that every xkr,ia is binary then this feasible

point de�nes a HC in the original graph.

Note that, for cubic graphs, re�ned parameter-free model P̄ has O(N2) constraints

in O(N3) variables. We are not claiming that all the redundant constraints of the

parameter-free model have been eliminated, as we do not wish to sacri�ce the easy

interpretability of the constraints.

2.5 Only O(N 2) integer variables are su�cient

Often, having an Integer Program with fewer integer variables is preferable to one

with more variables. One might expect that to restrict the set of feasible solutions

of P̄ to be equal to the set of HCs, we would need to demand that all variables be

21

integer-valued. However, in this section it will be proved that only O(N2) variables

are required to be binary.

Proposition 2.5.1. Consider a feasible point x = {xkr,ia} ∈ P̄ such that the initial

O(N2) variables are binary, that is,

xk0,ka ∈ {0, 1}, k = 1, . . . , N, a ∈ A(k).

Then all the other variables will be binary as well.

xkr,ia ∈ {0, 1}, k = 1, . . . , N, r = 1, . . . , N − 1, i = 1, . . . , N, a ∈ A(k).

Proof. Let variables xi0,ia ∈ {0, 1}, ∀(i, a) ∈ G, and recall that all other variables

are non-negative and continuous. Then summing constraint (2.28) over r (6= 0) we

obtain

(N − 1)xi0,ia =
N−1∑
r=1

xi0,ia =
N−1∑
r=1

N∑
k=1

xkr,ia, ∀(i, a) ∈ G. (∗)

By taking sum of (∗) over i and a, we see that

N∑
i=1

∑
a∈A(i)

(N − 1)xi0,ia −
N∑
k=1

N−1∑
r=1

N∑
i=1

∑
a∈A(i)

xkr,ia = 0.

Next, rewrite constraint (2.29), with the help of (2.30), as

N∑
i=1

∑
a∈A(i)

xi0,ia +
N∑
k=1

N−1∑
r=1

N∑
i=1

∑
a∈A(i)

xkr,ia = N2,

and add to the preceding to obtain

N
N∑
i=1

∑
a∈A(i)

xi0,ia = N2,

or, equivalently
N∑
i=1

∑
a∈A(i)

xi0,ia = N. (†)

22

Also, from (∗)

xi0,ia =
1

N − 1

N−1∑
r=1

N∑
k=1

xkr,ia. (‡)

From the above equation we see that

if xi0,ia = 0, then xkr,ia = 0, ∀ k, r. (§)

According to (†) and the hypothesis of the proposition, exactly N variables among

xi0,ia with (i, a) ∈ G must have value 1. Moreover, if xi0,ia = 1, then from constraints

(2.25) and (2.30) we see xi0,ia =
∑

j∈A(a) x
i
1,aj = 1. Now we show that xi1,aj has value

one for only one j ∈ A(a), and the rest have to be zero. By contradiction, assume

two have positive value. Without loss of generality suppose xi0,ia = xi1,ab +xi1,ac where

xi1,ab, x
i
1,ac > 0. By exploiting constraints (2.28) we can write

xa0,ab = xi1,ab +
N∑
k=1
k 6=i

xk1,ab > 0,

xa0,ac = xi1,ac +
N∑
k=1
k 6=i

xk1,ac > 0.

Since xa0,ab, x
a
0,ac ∈ {0, 1} and the two RHSs are strictly larger than 0 by assumption,

we can conclude that xa0,ab = xa0,ac = 1. Note that (†) and xi0,ij ∈ {0, 1} ∀(i, j) ∈ G

ensure that exactly N variables among xi0,ij ∀(i, j) ∈ G have value one and the rest

have value zero. Also, since two variables xa0,ab, x
a
0,ac among xa0,aj, j ∈ A(a) have value

one, there must exist at least a vertex, say d, from which no �ow emanates. That is,

xd0,dj = 0, j ∈ A(d). Then by using constraints (2.25), with r = 1, we have

xd0,dj = 0 =
∑

m∈A(j)

xd1,jm, j ∈ A(d).

By taking sum over j, we have

0 =
∑
j∈A(d)

xd0,dj =
∑
j∈A(d)

∑
m∈A(j)

xd1,jm.

23

Therefore by (§) we can write xd1,jm = 0 ∀ j,m. We then can continue by using

(2.25) as follows

0 =
N∑
m=1

N∑
j=1

xd1,jm =
N∑
m=1

N∑
i=1

xd2,mi,

implying that xd2,mi = 0 ∀m, i. By iteratively using constraints (2.25) we can conclude

that

xdr,mj = 0, ∀r,m, j. (∗∗)

Then, by setting k = d in constraints (2.27) and exploiting (∗∗) we have
N−1∑
r=0

x1r,ia =
N−1∑
r=0

xdr,ia = 0, ∀ (i, a) ∈ G,

so x1r,ia = 0, ∀ r, i, a. Considering constraint (2.27) we see

N−1∑
r=0

x1r,ia =
N−1∑
r=0

xkr,ia = 0, ∀(i, a) ∈ G, k = 2, . . . , N,

which forces xkr,ia = 0, ∀ k = 2, . . . , N, (i, a) ∈ G, that is, xkr,ia = 0, ∀ k, r, i, a and

this is obviously a contradiction to constraint (2.29). Therefore our assumption is

wrong and exactly one arc emanates from each vertex when the solutions are traced

out by xi0,ia ∈ {0, 1} ∀ (i, a) ∈ G. Let xi1,ab = 1 and xi1,aj = 0, ∀ j 6= b ∈ A(a). It

then follows that only one of xi2,bj has value 1 for j ∈ A(b) and the rest have to be

zero. To prove this, by contradiction assume that two or more of them have positive

values, so we have xi1,ab = xi2,bc + xi2,bd with x
i
2,bc, x

i
2,bd ≥ 0 and by using constraints

(2.28) we obtain

xb0,bc = xi2,bc +
N∑
k=1
k 6=i

xk2,bc > 0,

xb0,bd = xi2,bd +
N∑
k=1
k 6=i

xk2,bd > 0.

Arguing as before, since xb0,bc, x
b
0,bd ∈ {0, 1} and they are both strictly larger than 0,

they both must be 1 and it contradicts constraints (2.29) as shown earlier.

Utilising analogous arguments guarantees that when xi0,ia = 1, then for each

r = 1, . . . , N − 1 exactly one term in
∑N

j=1

∑
b∈A(j) x

i
r,jb takes value 1 and all other

24

terms are equal to 0. As N elements of xi0,ia ∀(i, a) ∈ G must have value 1, we will

have N2 variables with value 1 and the rest of the variables will have zero value. This

proves that all the variables are either 0 or 1. �

Theorem 2.5.2. Let x ∈ P̄ be a binary feasible point. Consider the arcs (i, a) ∈ G

such that xi0,ia = 1. These arcs form a Hamiltonian cycle in G.

Proof. We know from the proof of Proposition 2.5.1 that exactly N of the

xi0,ia variables take value 1. Also, exactly one of these, say xi0,iai , emanates from

each vertex i. Therefore, the matrix X0 =
(
xi0,iai

)N,N
i,ai=1

is a 0-1 matrix with all rows

summing to 1. Recall that, by construction, xi0,ia = 0 whenever (i, a) 6∈ G. Hence the

positive values of X0 trace out a sub-graph G0 of G, consisting of all N vertices and

exactly N arcs. That sub-graph can be (i) a Hamiltonian cycle, (ii) a noose cycle,

or (iii) a union of disjoint cycles. A noose cycle arises when some column j of X0

sums to zero. Hence there exists a vertex j corresponding to column j of X0 such

that xi0,ij = 0 ∀ i = 1, . . . , N . Then, (§) in the proof of Proposition 2.5.1 implies

that xkr,ij = 0, ∀ k, r, i. By taking the sum over r(6= 0) in constraints (2.25) we can

write

0 =
N−1∑
r=1

N∑
i=1

xkr−1,ij =
N−1∑
r=1

N∑
i=1

xkr,ji,

so xkr,ji = 0, ∀ k, i, r = 1, . . . , N and then by taking sum over i in (‡) we have

N∑
k=1

N∑
i=1

N−1∑
r=1

xkr,ji = (N − 1)
N∑
i=1

xj0,ji = 0.

Therefore, xj0,ji = 0, ∀ i, which contradicts the fact that jth row of X0 must sum to

1. Hence G0 cannot be a noose cycle and case (ii) cannot hold.

Next, suppose case (iii) holds. That is, G0 is a union of two or more disjoint cycles.

That is, there are p cycles C1, C2, . . . , Cp forming a partition of the vertices of G.

Suppose now that distinct vertices j and a belong to two disjoint cycles in that

partition. It then follows that xj0,ja = 0. Hence, by (§), it also follows that

xkr,ja = 0, ∀ k, r. (2.32)

25

Now, without loss of generality, suppose that vertex 1 ∈ C1 and j ∈ C2. Since C2 is

traced out by positive entries of the form xi0,ia = 1, there exists a vertex m ∈ C2 such

that xj0,jm = 1. Now by (2.25) with r = 1 we have

1 =
∑
a∈A(j)

xj0,ja = xj0,jm =
∑

a∈A(m)

xj1,ma, (2.33)

where the second equality follows from (2.30). Since all variables are binary the right

side of (2.33) contains exactly one variable taking value one. Suppose that xj1,mz = 1

and xj1,ma = 0 if a 6= z. Note that z lies in C2 because otherwise we would have

contradiction to (2.32). Now, applying (2.25) as before, we obtain

1 = xj1,mz =
∑
a∈A(z)

xj2,za. (2.34)

Again, exactly one of the terms in the above summation takes value one. Suppose

xj2,zl = 1 and xj2,za = 0 if a 6= l. Again note that l ∈ C2 because otherwise we would

have a contradiction to (2.32).

Continuing in this fashion we deduce that for j ∈ C2 there are exactly N variables of

the form

xjr,krar = 1 ; r = 0, . . . , N − 1, (2.35)

where (k0, a0) = (j,m), (k1, a1) = (m, z), (k2, a2) = (z, l) and so on. Furthermore, j

and kr ∈ C2 for every r = 0, 1, . . . , N−1. Since the same argument can be represented

for any vertex, irrespective of which cycle it lies in, we have constructed a total of

N2 variables taking values one, which consistent with constraints (2.29) which also

implies that all other variables take value zero. In particular, xjr,1a = 0 whenever j

and i do not lie in the same cycle of the partition. Without loss of generality assume

arc (1, a) lies in C1 and j ∈ C2. Then applying (2.27) at that arc we have

N−1∑
r=0

x1r,1a = x10,1a +
N−1∑
r=1

x1r,1a =
N−1∑
r=0

xjr,1a. (2.36)

Since all terms in the summation on the right side of (2.35) are 0 and since x10,1a = 1,

by construction, we have a contradiction. Thus, positive values of xi0,ia cannot trace

26

out disjoint cycles C1, C2, . . . , Cp. Therefore, only case (i) where the positive variables

correspond to the Hamiltonian cycles is possible. �

The Time Dependent Traveling Salesman Problem (TD-TSP) is a generalisation

of the classical TSP, where arc costs depend on their position in the tour with re-

spect to the source vertex. Theorem 2.5.2 implies that TD-TSP which naturally has

O(N3) number of integral variables can be formulated as a model with O(N2) integer

variables, at the cost of having O(N4) continuous variables.

27

Chapter 3

Hamiltonian Cycle Curves

In this chapter1, we consider a convex combination of a Hamiltonian cycle and its

reverse. We show that this convex combination traces out an interesting �H-curve� in

the space of occupational measures. Since such an H-curve always exists for Hamil-

tonian graphs, its properties may help in di�erentiating between graphs possessing

Hamiltonian cycles and those that do not. Our analysis relies on the fact that the

resolvent-like matrix induced by our convex combination can be expanded in terms of

�nitely many powers of probability transition matrices corresponding to that Hamil-

tonian cycle. We derive closed form formulae for the coe�cients of these powers which

are reduced to expressions involving the classical Chebyshev polynomials of the sec-

ond kind. For regular graphs, we also de�ne a function that is the inner product

of points on the H-curve with a suitably de�ned center of the space of occupational

measures and show that, despite the nonlinearity of the inner-product, this function

can be expressed as a linear function of auxiliary variables associated with our em-

bedding. These results can be seen as stepping stones towards developing constraints

on the space of occupational measures that may help characterise non-Hamiltonian

graphs.

Thus the key mathematical object in this study is the set of discounted occupa-

tional measures arising in the theory of �nite Markov decision processes consisting of

1The main results of this chapter have appeared in a journal publication [21].

28

vectors xk = {xkia}Ni=1,a∈A(i) belonging to the set

X (β, k) = {xk|
N∑
i=1

∑
a∈A(i)

(δij − βp(j|i, a))xkia = δkj, ∀ j ∈ S : xkia ≥ 0, ∀ i ∈ S, a ∈ A(i)} .

With the home node �xed at k = 1, and with initial state distribution given as

γ, analogous occupational measures were already introduced in Section 2.2. How-

ever, to make this chapter self-contained, we re-introduce all the necessary notation

below.

Note that δij is the Kronecker delta, k in X (β, k) denotes the initial state in the

�nite state space S, A(i) denotes the �nite set of actions in state i, and β ∈ [0, 1) is

a �xed parameter, sometimes called the discount factor. In the MDP the transition

probability p(j|i, a) denotes the one-step probability of the system moving from state

i to state j when action a available in state i is taken.

Recall that, in the embeddings of the graph G in the MDP denoted by Γ(G)

described in [20] and [17], the state space S = {1, 2, . . . , N} is the set of nodes of

G, A(i) is the set of arcs emanating from node i, and the transition probabilities

simplify to:

p(j|i, a) =

1 if arc (i, a) ∈ G and j = a

0 if arc (i, a) ∈ G and j 6= a

0 if arc (i, a) /∈ G,

where the arc (i, a) ∈ G will sometimes be denoted simply by the action a corre-

sponding to the head of that arc.

The innovation proposed here is to introduce certain special curves in X (β, k)

that correspond to policies that are convex combinations of pairs of Hamiltonian

cycles. In particular, in an undirected graph each Hamiltonian cycle is accompanied

by its reverse cycle and hence a convex combination of these results in a stationary

policy in the MDP and a point in X (β, k). The set of all such points, correspond

to all possible convex combinations, thus results in a curve in X (β, k). We call such

a curve an H-curve. Clearly, if the original undirected graph is Hamiltonian, each

29

Hamiltonian cycle in the graph induces an H-curve. It will be seen that H-curves

possess attractive symmetry properties and a unique stationary point of a certain

inner product function that we call an angular function. This angular function is

related to the cosine of the angle between points on the H-curve and the center of

X (β, k), where the latter is de�ned by the occupational measure of the policy that

chooses all actions available at a state with equal probabilities.

3.1 Methodology

One of the bene�ts of embedding a graph G in a discounted Markov decision process

Γ(G) is that it allows us to search for a Hamiltonian cycle in the convex space X (β, k)

of (normalised) discounted occupational measures which is a polytope with a non-

empty interior, thereby converting the original discrete, deterministic, static problem

to a continuous, stochastic and dynamic one. Recall that X (β, k) was de�ned with the

help of variables xkia(β) that can be regarded as realisations of stationary policies. In

particular, a stationary policy f in Γ(G) is de�ned by probabilities f(i, a) denoting the

probability that the controller chooses the action/arc (i, a), whenever the state/node

i is visited. Of course,
∑

a∈A(i) f(i, a) = 1, for each i. A deterministic policy is

simply a stationary policy where all f(i, a)′s are binary. It is easy to verify that each

stationary policy f uniquely identi�es a Markov chain with the N × N probability

transition matrix P (f) whose iath entry is simply f(i, a) when the arc (i, a) ∈ G and

0 when (i, a) /∈ G. Note that every deterministic policy identi�es a unique subgraph

of G identi�ed by the non-zero entries of the zero-one transition matrix P (f).

A key object in our analysis will be the resolvent-like matrixR(β) := (I−βP (f))−1

associated with every stationary policy f . It also induces a vector xk(f, β) ∈ X (β, k)

whose entries are given by

xkia(f, β) := [R(f)]ki f(i, a). (3.1)

Importantly, we note that the policies f in Γ(G) that correspond to Hamiltonian

cycles in G are precisely those where P (f) is a permutation matrix containing only

30

a single ergodic class; of course, the corresponding Markov chains have period N . In

such a case we shall say that the policy f is Hamiltonian. Recall from Section 2.2

that whenever f is Hamiltonian,

R(f) =
1

1− βN
N−1∑
r=0

βrP r(f). (3.2)

The above equation suggests that when searching for Hamiltonian cycles in the

space of discounted occupational measures X (β, k), it may also be possible to simul-

taneously search in a higher dimensional - but parameter-free - space de�ned by the

variables

xkr,ia(u) := [P r(f)]ki f(i, a), (3.3)

where the entries [P r(f)]ki have the natural probabilistic interpretation as r−step

probabilities of transitions from state k to state i under the policy f .

Extreme points of the polytopes related to X (β, k) have been studied extensively

in [17], [14] and [16]. However, a further opportunity exists to exploit curves in

X (β, k) joining extreme points of interest. In particular, if the policy h is Hamilto-

nian, then (in an undirected graph) there always exists another Hamiltonian policy

h−1 which we shall call the reverse of h. In addition, we know that h(i, a) = 1 if and

only if h−1(a, i) = 1. Next, we shall consider a parametrised family σα of policies

de�ned by

σα(i, a) := αh(i, a) + (1− α)h−1(i, a). (3.4)

for all nodes i and arcs (i, a) and α ∈ [0, 1].

In the next section we shall analyse properties of the resolvent-like matrix R(σα)

induced by the policy σα as the parameter α varies from 0 to 1.

3.2 A path from a Hamiltonian cycle to its reverse

Suppose h and h−1 correspond to a Hamiltonian cycle and its reverse, respectively.

To simplify the notation let P := P (h) be the transition matrix induced by the policy

31

h. It is easy to check that, for the reverse Hamiltonian cycle h−1, the corresponding

probability transition matrix satis�es

P−1 := P (h−1) = P T (h) = P−1(h),

where the last form is used in situations where the argument h−1 is suppressed.

In this section we investigate the behavior of the policy σα = αh + (1 − α)h−1.

The transition matrix P (σα) induced by the policy σα will be denoted by Pα. It

should be clear that it satis�es the relation

Pα = αP + (1− α)P−1.

We note that it is possible to write the resolvent matrix of this policy as a linear

combination of powers of P . We will use the Neumann expansion to obtain

R(σα) := (I − βPα)−1 =
∞∑
r=0

(βPα)r =
∞∑
r=0

βr
(
αP + (1− α)P−1

)r
. (3.5)

Remark 3.2.1. To simplify the already complicated notation, in some symbols, de-

pendence on the parameter β and/or the policy f is suppressed. For instance, this is

the case with Rα de�ned above and also P and Pα.

Now, an H-curve in the space of discounted occupational measures X (β) :=
∏N

k=1X (β, k)

is the parametrized family of vectors xk(σα, β) for k = 1, . . . , N whose entries are de-

�ned by

xkia(α) := xkia(σα, β) = [R(σα)]ki σα(i, a); α ∈ [0, 1], (3.6)

for all k, i ∈ S and a ∈ A(i). Note that for α ∈ {0, 1} the above will satisfy the

constraint
∑

a∈A(k) x
k
ka(α) = (1− βN)−1 introduced by Feinberg in [17]. However, for

α ∈ (0, 1) this constraint will, in general, not be satis�ed.

As PN = P−N = I, every exponent of P in (3.5), can be replaced by some integer

between 0 to N − 1. This implies that the summation can be rewritten as a �nite

32

summation involving only �rst N − 1 powers of P . In particular, for some constants

cr(α, β) depending only on α, and β,

R(σα) =
∞∑
r=0

βr
(
αP + (1− α)P−1

)r
=

N−1∑
r=0

cr(α, β)P r. (3.7)

Now the challenge is to �nd closed form formulae for the coe�cients cr(α, β) in

(3.7). To achieve this goal we exploit some properties of determinants of tridiagonal

matrices and their connections with Chebyshev polynomials.

3.2.1 Coe�cients of the expansion of matrix R(σα)

It will be seen below that in order to derive the expressions for the coe�cients of

the expansion in (3.7) we will need to examine the cofactor form of the inverse

R(σα) = (I − βPα)−1 whose structure is inherited from the structure of Pα. It will

be seen, later, that it is su�cient to derive these coe�cients for the matrix R̄(σα) =(
I − βP̄α

)−1
, where P̄α is induced by the standard Hamiltonian cycle 1 → 2 →

. . . → N → 1. The general case can subsequently be obtained from an appropriate

permutation of the standard cycle.

Now, the entries of R̄(σα) can be computed by exploiting the special �ve-diagonal

structure of the following matrix:

M̄α(β) := I−βP̄α =

1 −αβ 0 . . . 0 −(1− α) β

−(1− α) β 1 −αβ 0 . . . 0

0
.

...
...

. 0

0 . . . 0 −(1− α) β 1 −αβ

−αβ 0 . . . 0 −(1− α) β 1

.

To simplify the notation, let x = −αβ, and y = −(1 − α) β and rewrite M̄α(β)

33

in the following form:

M̄α(β) =

1 x 0 . . . 0 y

y 1 x 0 . . . 0

0
.

...
...

. 0

0 . . . 0 y 1 x

x 0 . . . 0 y 1

. (3.8)

While the above matrix is �ve-diagonal, it will be shown that in deriving formu-

lae for its cofactors we shall need to consider determinants of specially structured

tridiagonal and four-diagonal matrices obtained in the process of expanding the de-

terminant of M̄α(β) along a selected row.

(i) Chebyshev polynomials and determinants of uniform tridiagonal ma-

trices

It is well known (e.g., see [39]), that n-th Chebyshev polynomial Un(z) of the second

kind can be represented as the determinant of the following tridiagonal matrix

Un(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2z 1 0 . . . 0

1
.

...

0
. 0

...
. 1

0 . . . 0 1 2z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.9)

We shall say that a tridiagonal matrix is uniform if all its diagonal elements are

equal to unity, all of its superdiagonal elements are equal to some value (say x) and

all of its subdiagonal elements are equal to some value (say y).

34

Lemma 3.2.2. The determinant of the following uniform tridiagonal n×n matrices

Vn(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 . . . 0

y
.

...

0
. 0

...
. x

0 . . . 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, V̂n(x, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
√
xy 0 . . . 0

√
xy

.
...

0
. 0

...
.

√
xy

0 . . . 0
√
xy 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.10)

coincide and can be expressed in terms of Chebyshev polynomials as

Vn(x, y) = V̂n(x, y) = (xy)n/2 Un

(
1

2
√
xy

)
for n ≥ 2. (3.11)

Proof. For n = 2 equation (3.11) can be veri�ed by direct computation. Fur-

thermore, from recursive properties of determinants of tridiagonal matrices we must

have that

Vn(x, y) = Vn−1(x, y)− xyVn−2(x, y), (3.12)

where V−1(x, y) = 0, V0(x, y) = 1. V̂n(x, y) also satis�es the same recursion since

xy =
(√

xy
) (√

xy
)
. The equality Vn(x, y) = V̂n(x, y) now follows by induction on

n.

Now multiplying and dividing each row of the matrix corresponding to the determi-

nant V̂n(x, y) by
√
xy yields

V̂n(x, y) = (xy)n/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(xy)
−1
2 1 0 . . . 0

1
.

...

0
. 0

...
. 1

0 . . . 0 1 (xy)
−1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (xy)n/2 Un

(
1

2
√
xy

)
. (3.13)

�

35

(ii) Determinants of specially structured four-diagonal matrices

The preceding results enable us to derive a formula for determinants of certain, spe-

cially structured, four diagonal matrices. That formula will play a key role in the

main result of this section.

Lemma 3.2.3. Let G be an n× n four-diagonal matrix with the following structure:

G =

1 x 0 0 · · · · · · · · · · · · · · · 0

y
.

...

0
.

...
...

. . . y 1 x 0
. . .

...
...

. . . 0 y 1 x
. . .

...
...

.
...

...
. 0

...
. x

...
. 1

0 · · · · · · · · · · · · · · · · · · 0 0 y

.

Let k be number of times the argument y appears in the diagonal of G, then

|G| = yk Vn−k (x, y) .

Proof. A convenient way to calculate the determinant of G is to use the ex-

pansion on the last row. It can be easily be checked that the minor of the single

non-zero element of that row will again have a single non-zero element in its last

row. This will repeat itself k times, until we arrive at a uniform tridiagonal matrix

of dimension (n− k)× (n− k). Hence, iterating in this fashion we can easily obtain

the relationship

36

|G| = yk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 · · · 0

y
.

...

0
. 0

...
. x

0 · · · 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= yk Vn−k (x, y) . (3.14)

�

(iii) Closed form formulae for coe�cients cr(α, β)

Now we are ready to prove the following theorem that supplies correct coe�cients

cr(α, β) in (3.7).

Theorem 3.2.4. For r = 1, . . . , N the coe�cients cr(α, β) of P r in the �nite expan-

sion R(σα) =
∑N−1

r=0 cr(α, β)P r are given by:

cr−1(α, β) = (−1)r+1 xr−1 VN−r (x, y) + (−1)N yN−r+1 Vr−2 (x, y)

VN−1 (x, y)− 2x y VN−2 (x, y) + (−1)N+1 (xN + yN)
, (3.15)

where

Vn(x, y) = (xy)n/2 Un

(
1

2
√
xy

)
, n = 2, . . . , N

and

x = −αβ and y = −(1− α) β.

Here we set V−1(x, y) = 0, V0(x, y) = V1(x, y) = 1.

Proof. Recall that P̄ is the standard Hamiltonian cycle and R̄(σα) is the resol-

vent of the convex combination matrix P̄α = α P̄ + (1−α) P̄−1. Let c̄r(α, β)'s denote

the coe�cient cr(α, β) for this standard Hamiltonian cycle. At �rst these coe�cients

will be derived, and later it will be proved that they are invariant for all Hamiltonian

cycles.

We use equation R̄(σα) = (I − βP̄α)−1 =
∑N−1

r=0 c̄r (α, β) P̄ r to �nd c̄r(α, β)'s.

To simplify the notation let c̄r := c̄r(α, β) for r = 0, 1, . . . N − 1. Observe that for

37

each r, the matrix P̄ r has exactly one entry equal to unity and all remaining entries

equal to 0 in every row. Furthermore, the unity entries in such a row appear at

non-overlapping values of the index r. It is also the case that R̄(σα) must be of the

form:

R̄(σα) =

c̄0 c̄1 c̄2 · · · c̄N−1

c̄N−1 c̄0 c̄1 · · · c̄N−2

c̄N−2 c̄N−1 c̄0 · · · c̄N−3
...

.
...

c̄1 · · · · · · c̄N−1 c̄0

. (3.16)

As can be seen from (3.16) all coe�cients of interest appear in every single row of

R̄(σα). Therefore, to �nd these coe�cients it is su�cient to calculate the entries of

the �rst row of this matrix.

Hence we need to �nd the �rst row of the inverse of M̄α(β) = I − βP̄α. We recall

the cofactor form of the inverse of any non-singular matrix A, namely, A−1 = 1
|A|Γ

T
A,

where ΓA is the matrix of cofactors of A. Thus to �nd the �rst row of the inverse

of M̄α(β), one only needs to compute the determinant, and the cofactors of its �rst

column. In particular, we have

c̄r−1 = c̄r−1(α, β) = [
(
M̄α(β)

)−1
]1r =

γr1(M̄α(β))

|M̄α(β)|
, r = 1, . . . , N. (3.17)

where γr1
(
M̄α(β)

)
= (−1)r+1|M̄α(β)|r1 and |M̄α(β)|r1 denotes the determinant of the

(N − 1)× (N − 1) submatrix of M̄α(β) obtained after the rth row and the 1st column

have been deleted.

We begin by deriving the determinant of M̄α(β). We use the expansion along the

�rst row as follows (see (3.8)):

38

∣∣M̄α(β)
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y
.

...

0
.

...
...

.
...

...
. 0

...
. x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y x 0 0

0 1
.

...

0 y
.

...
...

.
...

...
. 0

0 0 y 1 x

x 0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)N+1y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y 1 x 0 0

0
.

...
...

.
...

...
. 0

...
. x

0 0 y 1

x 0 0 y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.18)

The �rst term in (3.18) is a uniform tridiagonal matrix and the last two terms are four-

diagonal. Hence, we expand the remaining terms further to reach either a triangular

or a tridiagonal matrix. In the next step we have:

∣∣M̄α(β)
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y
.

...

0
.

...
...

.
...

...
. 0

...
. x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

39

−x

y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y
.

...

0
.

...
...

. 0
...

. x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)Nx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0

1
.

...

y
.

...

0
.

...
...

. 0

0 . . . 0 y 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+(−1)N+1y

y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y 1 x 0 . . . 0

0
.

...
...

. 0
...

. x
...

. 1

0 0 y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)Nx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y
.

...

0
.

...
...

. 0
...

. x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now, using the results from Lemmata 3.2.2-3.2.3, we obtain

∣∣M̄α(β)
∣∣ = VN−1 (x, y)− x

(
y VN−2 (x, y) + (−1)N x xN−2

)
+(−1)N+1 y

(
y yN−2 + (−1)NxVN−2 (x, y)

)
(3.19)

= VN−1 (x, y)− 2x y VN−2 (x, y) + (−1)N+1
(
xN + yN

)
.

We next return to the numerator of the right side of equation (3.17). We shall

require the cofactors of elements in the �rst column of M̄α(β). We note that the

determinant, for r ≥ 4, of the (N − 1) × (N − 1) submatrix of M̄α(β) obtained

after the rth row and the 1st column have been deleted has the following generic,

�ve-diagonal, structure:

40

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · · · · · · · · · · · · · 0 0 y

1 x 0
. 0

y 1 x
. 0

0 y 1
.

...
...

.
...

...
. . . y 1 x 0

. . .
...

...
. . . 0 y 1 x

. . .
...

...
.

...
...

. x 0
...

. 1 x

0 · · · · · · · · · · · · · · · · · · 0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Expanding it along the �rst row, we obtain a sum of two terms

x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · · · · · · · · · · · · · · · · 0

1
.

...

y
.

...

0
.

...
...

. . . y 1 x 0
. . .

...
...

. . . 0 y 1 x
. . .

...
...

. y
.

...
...

. 0
...

. x

0 · · · · · · · · · · · · · · · 0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

41

+(−1)N y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 · · · · · · · · · · · · · · · · · · 0

y
.

...

0
.

...
...

. x
.

...
...

. . . y 1 x 0
. . .

...
...

. . . 0 y 1 x
. . .

...
...

. 0
...

. x
...

. 1

0 · · · · · · · · · · · · · · · · · · 0 0 y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is important to note that the determinants of both of the matrices in the

above expansion can be partitioned into two block-diagonal submatrices of dimensions

(r − 2)× (r − 2) and (N − r)× (N − r), respectively. However, in the �rst of these

matrices the (r − 2) × (r − 2) diagonal block is a lower triangular matrix and the

(N−r)×(N−r) block has the uniform tridiagonal structure. Conversely, in the second

matrix of the expansion (r − 2)× (r − 2) diagonal block has the uniform tridiagonal

structure, whereas the (N − r) × (N − r) diagonal block is upper triangular. This

allows us to exploit expressions derived in Lemmata 3.2.2-3.2.3 to obtain:

(−1)r+1 |γr1| = (−1)r+1 (x xr−2 VN−r (x, y) + (−1)N y yN−r Vr−2 (x, y)
)

=

(−1)r+1 (xr−1 VN−r (x, y) + (−1)N yN−r+1 Vr−2 (x, y)
)
, r = 4, . . . , N. (3.20)

Interestingly, the expression (3.20) also holds for the special cases of r = 1, 2, 3,

when (as before) V−1(x, y) = 0 and V0(x, y) = V1(x, y) = 1. In particular, for r = 1,

it is easy to see directly from (3.8) that γ11 is (N − 1)× (N − 1) uniform tridiagonal

matrix and hence (−1)2 |γ11| = VN−1(x, y).

The case r = 2 follows from the fact that γ21 is (N − 1)× (N − 1) four diagonal

matrix with the �rst row having an x in its �rst entry, y in its last entry and zeros in

all other entries. Then expanding |γ21| by its �rst row we obtain two terms, the �rst

42

involving a uniform tridiagonal matrix and the second an upper triangular matrix.

It can be checked that (−1)3 |γ21| = −(xVN−2(x, y) + (−1)NyN−1).

The case r = 3, follows by an analogous argument to the above and yields

(−1)4|γ31| = x2VN−3(x, y) + (−1)NyN−2.

Finally, we have all the composite parts to use in (3.17) to �nd coe�cients

c̄r(α, β)'s by dividing (3.20) by (3.19).

c̄r−1(α, β) = (−1)r+1 xr−1 VN−r (x, y) + (−1)N yN−r+1 Vr−2 (x, y)

VN−1 (x, y)− 2x y VN−2 (x, y) + (−1)N+1 (xN + yN)
, r = 1, . . . , N.

�

Example 3.2.5. To illustrate the way that the above coe�cients are derived, we

obtain them for N = 5, by using the analogous expansions that are used in the above

proof.

c̄r−1 = [
(
M̄α(β)

)−1
]1r =

γr1(M̄α(β))

|M̄α(β)|
, r = 1, . . . , 5. (3.21)

Note that the dominator |M̄α(β)| can be computed by expansion along �rst row as

follows:

∣∣M̄α(β)
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0 y

y 1 x 0 0

0 y 1 x 0

0 0 y 1 x

x 0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y 1 x 0

0 y 1 x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
− x

∣∣∣∣∣∣∣∣∣∣∣∣

y x 0 0

0 1 x 0

0 y 1 x

x 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
+ y

∣∣∣∣∣∣∣∣∣∣∣∣

y 1 x 0

0 y 1 x

0 0 y 1

x 0 0 y

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y 1 x 0

0 y 1 x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
−x

y
∣∣∣∣∣∣∣∣∣

1 x 0

y 1 x

0 y 1

∣∣∣∣∣∣∣∣∣− x
∣∣∣∣∣∣∣∣∣
x 0 0

1 x 0

y 1 x

∣∣∣∣∣∣∣∣∣

+ y

y
∣∣∣∣∣∣∣∣∣
y 1 x

0 y 1

0 0 y

∣∣∣∣∣∣∣∣∣− x
∣∣∣∣∣∣∣∣∣

1 x 0

y 1 x

0 y 1

∣∣∣∣∣∣∣∣∣

 =

V4 (x, y)− 2x y V3 (x, y) +
(
x5 + y5

)
.

43

We also can �nd numerators γr1(M̄α(β)) r = 1, . . . , 5 by expanding along the �rst

row as follows:

γ11(M̄α(β)) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x 0 0

y 1 x 0

0 y 1 x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
= V4 (x, y) = x0V4 (x, y) + y5V−1 (x, y) .

γ21(M̄α(β)) =

∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 y

y 1 x 0

0 y 1 x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣∣∣∣
1 x 0

y 1 x

0 y 1

∣∣∣∣∣∣∣∣∣− y
∣∣∣∣∣∣∣∣∣
y 1 x

0 y 1

0 0 y

∣∣∣∣∣∣∣∣∣ = x V3 (x, y)− y.y3

= xV3 (x, y)− y4V0 (x, y) .

γ31(M̄α(β)) =

∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 y

1 x 0 0

0 y 1 x

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣∣∣∣
x 0 0

y 1 x

0 y 1

∣∣∣∣∣∣∣∣∣− y
∣∣∣∣∣∣∣∣∣

1 x 0

0 y 1

0 0 y

∣∣∣∣∣∣∣∣∣ = x.x

∣∣∣∣∣∣ 1 x

y 1

∣∣∣∣∣∣ − y.y2

= x.xV2 (x, y)− y.y2 = x2V2 (x, y)− y3V1 (x, y) .

γ41(M̄α(β)) =

∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 y

1 x 0 0

y 1 x 0

0 0 y 1

∣∣∣∣∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣∣∣∣
x 0 0

1 x 0

0 y 1

∣∣∣∣∣∣∣∣∣− y
∣∣∣∣∣∣∣∣∣

1 x 0

y 1 x

0 0 y

∣∣∣∣∣∣∣∣∣ = x.x2 − y.y

∣∣∣∣∣∣ 1 x

y 1

∣∣∣∣∣∣
= x.x2 − y.yV2 (x, y) = x3V1 (x, y)− y2V2 (x, y) .

γ51(M̄α(β)) =

∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 y

1 x 0 0

y 1 x 0

0 y 1 x

∣∣∣∣∣∣∣∣∣∣∣∣
= x

∣∣∣∣∣∣∣∣∣
x 0 0

1 x 0

y 1 x

∣∣∣∣∣∣∣∣∣− y
∣∣∣∣∣∣∣∣∣

1 x 0

y 1 x

0 y 1

∣∣∣∣∣∣∣∣∣ = x.x3 − y V3 (x, y)

44

= x4V0 (x, y)− yV3 (x, y) .

Then coe�cients are obtained by

c0(α, β) =
γ11(M̄α(β))∣∣M̄α(β)

∣∣ =
V4 (x, y)

V4 (x, y)− 2x y V3 (x, y) + (x5 + y5)
.

c1(α, β) =
γ21(M̄α(β))∣∣M̄α(β)

∣∣ =
x V3 (x, y)− y4

V4 (x, y)− 2x y V3 (x, y) + (x5 + y5)
.

c2(α, β) =
γ31(M̄α(β))∣∣M̄α(β)

∣∣ =
x2V2 (x, y)− y3

V4 (x, y)− 2x y V3 (x, y) + (x5 + y5)
.

c3(α, β) =
γ41(M̄α(β))∣∣M̄α(β)

∣∣ =
x3 − y2V2 (x, y)

V4 (x, y)− 2x y V3 (x, y) + (x5 + y5)
.

c4(α, β) =
γ51(M̄α(β))∣∣M̄α(β)

∣∣ =
x4 − y V3 (x, y)

V4 (x, y)− 2x y V3 (x, y) + (x5 + y5)
.

3.2.2 Uniqueness of coe�cients for all Hamiltonian cycles

Let P̄ denote the standard Hamiltonian transition matrix, then we know that an

arbitrary Hamiltonian transition matrix P can be derived via P = Q P̄ Q−1, where

Q is a permutation matrix. Let M̄α(β) := [R̄(σα)]−1 = I − β
(
α P̄ + (1− α) P̄−1

)
and Mα(β) := [R(σα)]−1 = I − β (αP + (1− α)P−1). Then it follows immediately

that

Mα(β) = I − β
(
αP + (1− α)P−1

)
= QIQ−1 − αβQP̄Q−1 − β(1− α)QP̄−1Q−1 = QM̄α(β)Q−1.

Furthermore, taking powers of the relation P = Q P̄ Q−1, for every r = 0, 1, 2, . . . , N−

1, yields

P r = Q P̄ rQ−1.

45

However, for the standard Hamiltonian cycle, in Proposition (3.2.4) we already proved

that

R̄(σα) =
N−1∑
r=0

c̄r(α, β) P̄ r.

Now, multiplying the last equation on the left by Q and on the right by Q−1 and

exploiting the preceding two equations we obtain

R(σα) =
N−1∑
r=0

c̄r(α, β)Q P̄ rQ−1 =
N−1∑
r=0

c̄r(α, β)P r =
N−1∑
r=0

cr(α, β)P r. (3.22)

Hence the coe�cients cr(α, β) in (3.7) of the expansion of R(σα) corresponding to an

arbitrary Hamiltonian cycle, coincide with the coe�cients c̄r(α, β) in the expansion

of R̄(σα) induced by the standard Hamiltonian cycle.

3.3 H-curve in the space of occupational measures

In this section we analyse properties of curves xk(σα, β) in X (β, k) which join ori-

ented Hamiltonian cycles to their reverse cycles as represented by their induced dis-

counted occupational measures as de�ned by (3.1). Recall that these were named

H-curves.

We shall also be interested in inner products of points on H-curves with the center

of X (β, k) de�ned as xk(u†, β), where the center policy u† is one that selects all arcs

emanating from the vertex i with equal probabilities, for each i = 1, . . . , N . Namely,

if the cardinality of A(i) (degree of node i) is mi, then u
†(i, a) = 1

mi
, for each a ∈ A(i)

and every i = 1, . . . , N .

We note that the point xk(u†, β) is well-de�ned by the equation

xkia(†) := xkia(u
†, β) := [R(u†)]ki u

†(i, a), (3.23)

and lies in X (β, k), irrespective of the structure of the underlying graph G. Of course,

points on an H-curve are known to exist speci�cally for Hamiltonian graphs. Hence,

it will be interesting to investigate the inner product xk(σα, β) . xk(u†, β), ∀α ∈ [0, 1].

To do this we shall need an additional symmetry property of R(σα).

46

3.3.1 Relation between R(σα) and R(σ1−α)

As in the previous section, let P be the transition matrix induced by the Hamiltonian

policy h and 0 < α < 1. Also let R(σα) denote the resolvent-like matrix of the σα

policy de�ned by (3.4). Of course, R(σ1−α) denotes the resolvent-like matrix of the

σ1−α policy. Then following expressions can be easily derived

P T
1−α = Pα, (3.24)

RT (σ1−α) = R(σα). (3.25)

In particular, (3.24) holds because

Pα = αP + (1− α)P T ,

P T
1−α =

[
(1− α)P + αP T

]T
= (1− α)P T + αP = Pα.

Similarly, (3.25) holds because

RT (σ1−α) =
[
(I − β P1−α)−1

]T
=
[
(I − β P1−α)T

]−1
.

The above expression can now be simpli�ed as follows

RT (σ1−α) =
(
I − β P T

1−α
)−1

= (I − β Pα)−1 = R(σα).

In view of the complexity of the expression (3.15) it is, perhaps, surprising that the

following relation can be demonstrated rather easily from (3.25):

cr(1− α, β) = cN−r(α, β), r = 1, ..., N − 1. (3.26)

In particular, if we consider the H-curve corresponding to the standard Hamil-

tonian cycle, it was seen in (3.16) that the �rst row of R̄(σ1−α) contains all the

coe�cients c̄r(1 − α, β) in ascending order of r. Now, from (3.25) it follows that

47

this row equals to the �rst column of R̄(σα) containing the coe�cients c̄0(α, β)

and c̄N−r(α, β), in descending order. Hence, for r = 1, . . . , N − 1 we have that

c̄r(1 − α, β) = c̄N−r(α, β). Now, (3.26) follows immediately from the uniqueness of

the cr(α, β) coe�cients for all Hamiltonian cycles, see (3.22).

3.3.2 Properties of the angular function of a regular graph

An undirected graph G is called d−regular if the degree of each vertex equals d. From

the point of view of determining a regular graph's Hamiltonicity it is clear that the

case d = 2 is trivial but already for d = 3 it is known that HCP is NP-complete [24].

In this section it will be shown that H-curves of Hamiltonian regular graphs possess

an interesting property that is related to the angles that the policy u† makes with

the policies σα in the space of discounted occupational measures X (β).

Towards this end we de�ne an auxiliary angular function of one variable (where

β is the �xed discount factor)

θ(α, β) :=
N∑
k=1

< xk(σα, β) , xk(u†, β) >; α ∈ [0, 1]. (3.27)

Theorem 3.3.1. Let G be a d−regular Hamiltonian graph. Then on its H-curves the

angular function satis�es:

1. For each α ∈ [0, 1], we have that θ(α, β) = θ(1− α, β)

2. The derivative of θ(α, β) at the mid-point is zero, that is, θ̇(1
2
, β) = 0.

Proof. It is clear from (3.23) that for a d−regular graph,

xkia(†) =

1
d
[R(u†)]ki if arc (i, a) ∈ G

0 if arc (i, a) /∈ G.

We note also that R(u†), the resolvent-like matrix of the center policy u†, is symmetric

48

and hence [R(u†)]ki = [R(u†)]ik for all k and i. Then, we de�ne

θk(α, β) := xk(σα, β) xk(u†, β) =
N∑
i=1

∑
a∈A(i)

xkia(†) xkia(α)

=
N∑
i=1

∑
a∈A(i)

1

d
[R(u†)]ki [R(σα)]ki σα(i, a) =

1

d

N∑
i=1

[R(σα)]ki [R(u†)]ik

=
1

d

N∑
i=1

[R(σα)]ki [R(u†)]ik =
1

d
[R(σα) R(u†)]kk.

Hence it follows that

θ(α, β) =
N∑
k=1

θk(α, β) =
1

d

N∑
k=1

[R(σα)R(u†)]kk =
1

d
Tr
(
R(σα)R(u†)

)
, (3.28)

where Tr(A) denotes the trace of matrix A.

Now using the well known property of the trace Tr(AB) = Tr(ATBT), the sym-

metry of R(u†) and the equation (3.25) we immediately obtain that for any α ∈

[0, 1]

θ(α, β) =
1

d
Tr
(
R(σα)R(u†)

)
=

1

d
Tr
(
RT (σα)RT (u†)

)
=

1

d
Tr
(
R(σ1−α)R(u†)

)
= θ(1− α, β).

Thus the �rst part of the theorem is proved. The second part follows immediately

from the �rst part since θ(α, β) is di�erentiable with respect α on the interval (0, 1).

�

Remark 3.3.2. We note that for a �xed starting vertex k, in general, θk(α, β) 6=

θk(1 − α, β). This is why we need to consider all possible starting vertices in the

de�nition of θ(α, β).

Of course, the angular function θ(α, β) (for any �xed β ∈ [0, 1)) is well-de�ned

for any undirected graph, not just for d−regular graphs. However, for general graphs

there are examples for which Theorem 3.3.1 does not hold, so the regularity require-

ment is tight. It is also, perhaps, interesting that even in regular graphs θ(α, β)

49

depends on the Hamiltonian cycle inducing the H-curve. For instance, with the value

of β ∈ [0, 1) held �xed, the values of θ(1
2
, β) can be di�erent when they correspond to

the H-curves induced by two distinct Hamiltonian cycles in the same regular graph. It

seems that, these di�erences re�ect the relative position of the occupational measure

of the center policy u† with respect to these distinct H-curves.

3.3.3 New equality constraints for Hamiltonian regular graphs

Much of the earlier work in this line of research (e.g., see [17] or [14]) relied on the

representation of the space of discounted occupational measures X (β, k) in terms of

linear constraints in variables xkia(u, β) de�ned by (3.1).

Next, we demonstrate that the statements of Theorem 3.3.1 can be also formulated

in terms of linear constraints in the variables xkr,ia introduced in Sections 2.3. This will

be achieved with the help of the expansion (3.7) of the resolvent-like matrix R(σα) in

terms of powers of the probability transition matrix P (h) de�ned by the Hamiltonian

cycle policy h. Interestingly, perhaps, the coe�cients of these constraints will be

functions of the parameters α and β, see (3.15), which are invariant on all H-curves

of a Hamiltonian graph.

Now, from (3.4), the expansion (3.7) and the fact that for P = P (h) for every

r = 0, . . . , N − 1, P r = [P−1]N−r it follows that the variables xkia(α) satisfy

xkia(α) = [R(σα)]ki σα(i, a) =

N−1∑
r=0

cr(α, β)[P r]ki
(
αh(i, a) + (1− α)h−1(i, a)

)
=

α

N−1∑
r=0

cr(α, β)[P r]ki h(i, a) + (1− α)
N−1∑
r=0

cr(α, β)
[
P−1

]N−r
ki

h−1(i, a). (3.29)

The above and (3.3) show that the variables in the �rst summation above can

immediately be replaced by xkr,ia variables. However, a little more analysis is needed

to deal with the second summation in (3.29). Fortunately, the following relation

50

connects a Hamiltonian cycle policy h to its reverse h−1 for each r = 1, . . . , N−1[
(P−1)N−r

]
ki
h−1(i, a) =

[
P r−1]

ka
h(a, i) = xkr−1,ai. (3.30)

The above equation can be seen as a consequence of the fact that if the reverse

Hamiltonian cycle h−1 takes N − r steps to go from vertex k to vertex i and then

chooses vertex a next, then the forward cycle h must go from k to a in exactly r− 1

steps and then choose vertex i. Of course, if the arc (i, a) (respectively, (a, i)) does not

lie on h−1 (respectively, h), then (3.30) reduces to 0 = 0. The case of r = 0 is slightly

di�erent because step −1 is not de�ned. However, it is easy to check that[
P−1

]N
ki
h−1(i, a) =

[
PN−1]

ka
h(a, i) = xkN−1,ai. (3.31)

Indeed, for k 6= i the above equation reduces to 0 = 0 as P−N = I and
[
PN−1]

ka
=

0 unless a coincides with bk, the last vertex on the Hamiltonian cycle h prior to return

to vertex k. However, in the latter case h(bk, i) = 0. If, on the other hand, k = i,

then h−1(k, a) = 0 except when a = bk when it equals to 1. Similarly, h(a, k) = 0

unless a = bk when it is equal 1 and simultaneously
[
PN−1]

kbk
= 1.

Now substituting (3.30) and (3.31) into (3.29) we obtain

xkia(α) = α

N−1∑
r=0

cr(α, β)xkr,ia+(1−α)c0(α, β)xkN−1,ai+(1−α)
N−1∑
r=1

cr(α, β)xkr−1,ai. (3.32)

Now, let x = {xkr,ia|r = 0, . . . , N − 1; k, i ∈ S, a ∈ A(i)} be a vector of variables

induced by a Hamiltonian policy h via equation (3.3), with its entries ordered in any

natural way. Then it is easy to see that (3.32) de�nes a linear function

xkia(α) = xkia(α, β) = `kia(x, α, β), (3.33)

in the variables of x(α) where we are now emphasising the dependence on both

parameters α ∈ [0, 1) and β ∈ (0, 1).

The �nal result of this chapter shows that Theorem 3.3.1 supplies a parametrised

of family of linear constraints that the vector x must satisfy.

51

Lemma 3.3.3. Let h be any Hamiltonian cycle policy for a d−regular graph G. Let

the entries of x be de�ned by xkr,ia = [P r(h)]ki h(i, a) for r = 0, . . . , N−1; k, i ∈ S and

a ∈ A(i). Then for every α ∈ [0, 1], and β ∈ [0, 1), the vector x satis�es the linear

constraints

N∑
k=1

N∑
i=1

∑
a∈A(i)

[`kia(x, α, β)− `kia(x, 1− α, β)]xkia(u
†, β) = 0, (3.34)

where u† is the center policy.

Proof. This result follows immediately from the de�nition (3.27) of the angular

function θ(α, β), part one of Theorem 3.3.1 and (3.33). �

Remark 3.3.4. (i) Note that for each β ∈ [0, 1) numerical values of coe�cients

xkia(u
†, β) are known, in the sense that they can be easily calculated from (3.23).

(ii) Similarly, the coe�cients cr(α, β) embedded in (3.34) via (3.32)-(3.33) are known

in the sense that for every α ∈ [0, 1] and β ∈ [0, 1] they can be recursively calculated

with the help of Theorem 3.2.4.

(iii) Thus (3.34) represents a parametrized family of linear constraints that a vector

x (induced by a Hamiltonian cycle h) must satisfy. The question of whether these

constraints can help to identify non-Hamiltonian regular graphs is the subject of con-

tinuing investigations.

52

Chapter 4

Discovery of Unidenti�ed Equality

Constraints for Integer Programming

Problems

Characterising the smallest dimension polytope containing all integer solution of an

integer programming problem can be a very challenging task. Frequently, this task

is facilitated by identifying linear equality constraints that all integer solutions must

satisfy. Typically, some of these constraints are readily available but others need to be

discovered by more technical means. This chapter1 describe a method to assist mod-

elers to obtain such equality constraints. Note that the set of new equality constraints

is not unique, and the proposed method generates a set of these new equality con-

straints for a su�ciently large dimension of the underlying problem. These generated

constraints may be of a form that is easily extended for general case of the underlying

problem, or they may be in a more complicated form where a generalisable pattern is

di�cult to identify. For the latter case, a a new mixed-integer program is developed

to detect a pattern-recognisable constraints. Furthermore, this mixed-integer pro-

gram allows modelers to check if there is a new constraint satisfying speci�c criteria,

such as only permitting coe�cients to be 1, 0, and −1, or placing a limit on the

1The main results of this chapter is under review in a journal for publication [30].

53

number of non-zero coe�cients. In order to illustrate the proposed method, a set of

new equality constraints to supplement the parameter-free model de�ned in Section

2.3, are derived. Subsequently, exploiting these results, some techniques are proposed

to tighten integer programming problems. Finally, relaxations of widely used TSP

formulations are compared against one another and strengthened with help of the

newly discovered equality constraints.

4.1 Introduction

Many problems in Operations Research or Industrial Engineering can be formulated

as Integer Programming (IP) problems of the form

Minimise cTx

subject to A0x = b0

B0x ≥ d0 (IP)

x ∈ Zn

where x is a vector representing the decision variables, c ∈ Rn is a vector representing

objective function coe�cients, A ∈ Rm×n is matrix representing the technological

coe�cients, and b ∈ Rm is a vector representing the right hand side values.

Since IP problems are known to be NP-hard, it is common to begin their analysis by

�rst considering their LP-relaxation, namely the problems

Minimise cTx

subject to A0x = b0 (LIP)

B0x ≥ d0.

A natural question that arises is whether the feasible region FLIP of the above

LP-relaxation could be further reduced, without eliminating any integer valued points

lying in FIP, the feasible region of (IP). In order to undertake such a reduction task

we must utilise the properties of polytopes associated with these problems.

54

It is well known (e.g. see [39]) that there are two main representations for a poly-

tope. In the V-representation, a polytope is identi�ed by the set of its extreme points

and in the H-representation, a polytope is speci�ed as set of solutions to linear con-

straints (equalities and/or inequalities). An interesting question in IP context is how

one can obtain an H-representation from its V-representation. More precisely, if FIP

is a �nite set, then the convex hull of FIP, conv(FIP), is a well-de�ned polytope and

thus by Weyl's theorem [37], there exists a �nite set of linear constraints that com-

pletely describes conv(FIP). Such a linear description is called the H-representation

of the set FIP (see also [38]). Finding the H-representation for a given set FIP is

called the convex hull problem and has been studied by many researches, for example

[5], [4], and [23]. There also exist some software packages such as Polymake [25]

and Porta [10], for polytope speci�cation purposes. It should be noted that in this

chapter we use the term �H-representation� for polyhedral representation of instances

of an IP problem, and we use the term �convex hull formulation� for the polyhedral

representation in the general case of the underlying problem.

Discovering convex hull formulations is, in general,a di�cult task. To the author's

knowledge there is no systematic method of doing so, and it is usually achieved by

a trial and error process. Generally this means trying to guess a valid equality

(or inequality) constraint and then proving that it works for any instance of the

underlying problem. One common method for guessing valid constraints is to extract

the H-representation of very small instances, and then attempt to �nd generalisable

patterns.

The above trial and error process to detect convex hull formulation usually leads

to some di�culties. The main issue with approaches that include �rst �nding the

H-representation is that they are very limited in terms of size [3], with even small

instances often containing a huge number of inequality constraints. For instance,

10-vertex TSP polytope has over 50 billion facets [28]. This limitation sometimes

prevents the identi�ed constraint from being generalisable. The reason behind it

is that those small instances are insu�cient to develop an intuition, because the

behaviors of small instances often are not extendable for the general case. These

55

issues reveal that in order to analyse the polytope of a problem, one needs to study the

H-representation of su�ciently large instances to avoid the results being in�uenced by

exceptional behaviors that are peculiar to the H-representations for small instances

of underlying problem. Another aspect of the trial and error process is that the H-

representation of a polytope is not unique. For example, any linear combination of

two equality constraints can replace one of them to obtain a new H-representation.

This sometimes means that H-representation approaches yield a set of constraints in

which the underlying patterns are disguised beyond easy recognition.

On the other hand, one may only be interested in equality constraints. In partic-

ular, this can be the case when a model includes many extended variables. In this

case the modeller is able to express many inequality constraints of lower dimensional

models as new equality constraints by using these extended variables. Roughly speak-

ing, extended models contain fewer inequalities and more equalities in comparison to

original models. Thus, the di�culty of �nding good inequality constraints in low

dimensional models can, perhaps, be exchanged with the di�culty of �nding good

equality constraints in high dimensional models. Therefore, extracting all equality

constraints for an extended model is not as simple as for a model in lower dimensional

space. Motivated by this, the present chapter includes a proposed method to generate

a set of all the new equality constraints for a given IP model. More precisely, the pro-

posed method assists modelers in �nding as many independent equality constraints

as possible to characterise a given set of points (integer-valued solutions).

Apart from its direct advantage, the proposed method can be applied to strengthen

an IP model in several ways. For example, by adding new variables and creating new

constraints based on the relationships between existing and new variables. This is the

main idea of the extended formulation's context (for example see [11]). In Section 4.5,

an application of this approach is exhibited to strengthen Desrochers and Laporte's

model for TSP [12]. An alternative approach to strengthen an IP model is to create

an extended model for the IP problem, and then project the space of this extended

model to the original variable space to �nd a number of good valid inequalities. For

example, Gouveia et al. projected an extended model and found some complex facets

56

of the original model [26]. See [7] for an overview of projections of polytopes.

The remainder of the chapter is arranged as follows. Notation and de�nitions are

introduced in Section 4.2. The proposed method is presented in Section 4.3. Details

of the proposed method are illustrated through �nding new equality constraints for

the parameter-free polytope in Section 4.4. In Section 4.5 some applications are given

through a numerical comparisons between two vertex-oriented TSP models.

4.2 Preliminaries and notations

This section sets up the notation and o�ers a quick review of a�ne sets and their

relation to subspaces and nullspaces.

4.2.1 A�ne sets

A set C ⊆ Rn is a�ne if the line through any two distinct points in C lies in C, that

is, if for any x1, x2 ∈ C and θ ∈ R, we have θ x1 + (1 − θ)x2 ∈ C. This idea can be

extended to more than two points. We refer to a point of the form θ1 x1 + . . .+ θk xk,

where θ1 + . . . + θk = 1, as an a�ne combination of the points x1, . . . , xk. It can be

shown that an a�ne set contains every a�ne combination of its points. The set of

all a�ne combinations of points in some set S ∈ Rn is called the a�ne hull of S,

and denoted a�(S):

a�(S) = {θ1x1 + . . .+ θkxk |x1, . . . , xk ∈ S, θ1, . . . , θk ∈ R, θ1 + . . .+ θk = 1}.

The points x1, ..., xk ∈ Rn are a�nely independent if and only if no point from

x1, ..., xk can be written as an a�ne combination of the others. The dimension of an

a�ne set C, denoted by dim(C), is the maximum number of a�nely independent

points in C minus one. Similarly, the dimension of the polytope constructed as the

convex hull of points x1, ..., xk is equal to the dimension of the a�ne hull of these

points.

57

If C is an a�ne set and x0 ∈ C, then the set V = C − x0 = {x − x0 |x ∈ C}

is a subspace. Thus, the a�ne set C can be expressed as a subspace plus an o�set,

that is, C = V + x0 = {v + x0 | v ∈ V }. The subspace V associated with the a�ne

set C does not depend on the choice of x0, so x0 can be chosen as any point in

C. Furthermore, every a�ne set can be expressed as the solution set of a system

of linear equations, that is C = {x ∈ Rn |Ax = b}, where A ∈ Rm×n and b ∈ Rm.

The subspace associated with the a�ne set C is the nullspace of A, that is, C =

V + x0 = {v + x0 |Av = 0}, where x0 is any point in C. If C is nonempty, then

dim(C) = n − rank(A).

To explain the proposed method, we need the following preliminaries and de�ni-

tions. Let FIP= {si ∈ Rn, i = 0, . . . ,m} denote the set of solutions of (IP) and de�ne:

vi := si − s0, i = 1, . . . ,m, V := span(v1, . . . , vm), D := [v1|v2| . . . |vm] the n ×m

matrix whose columns are vi's. Also, let C(D) denote the column space of the matrix

D. Obviously

C(D) = span(v1, . . . , vm) = V. (4.1)

Let C(DT) denote the row space of the matrix D, and A0x = b0 as in the for-

mulation of (IP) and (LIP). The latter constitute the available equality constraints

of the IP model. It follows that dim(FLIP) = n − rank(A0) if the inequalities

B0x ≥ d0 do not imply additional equality constraints and also, dim(conv(FIP)) =

rank(D). We let null(G) be a matrix whose columns are a basis of the nullspace

of the matrix G obtained by the reduced row echelon method and consider a�(FIP)

= {θ0 s0 + . . .+ θm sm |x1, . . . , xk ∈ S, θ1, . . . , θk ∈ R, θ1 + . . .+ θk = 1}. We recall

that for an arbitrary matrix A, we have

(C(A))⊥ = nullspace (AT). (4.2)

4.3 Equality constraint augmenting method

In this section, we propose a method to append a set of new equality constraints

for IP problems already endowed with a partial set of equality constraints. We call

58

this method Equality Constraint Augmenting method, or ECA-method, for short.

Subsequently, a mixed-integer programming model is formulated to detect patterns

in the generated constraints.

First of all, one should check if it is even possible to add any new equality con-

straints before making any attempts to �nd them. This can be checked by comparing

the dimension of the polytope FLIP constructed by the relaxation of the IP model

and the dimension of the polytope conv(FIP). If these dimensions coincide, it is

not possible to �nd any new (non-redundant) equality constraints. If the dimension

of conv (FIP) is d units smaller than the dimension of FLIP, this implies that new

equality constraints exist, and it should be possible to identify and add exactly d of

them.

4.3.1 ECA-method

Ignoring the available equality constraints A0x = b0, the ECA-method �nds a set of all

equality constraints and then removes the ones captured by the equality constraints

which are already known. Thus, only the constraints that contribute new information

are retained.

To extract all equality constraints, one needs to �nd a linear equation system,

Ax = b, which represents the a�ne hull of FLIP (a� (FLIP)), that is, {Aw = b |w ∈

a� (FLIP)}. Since a� (FLIP) is an a�ne set, then as described in Section 4.2, it can

be expressed as a subspace and one of its points s0 as follows:

a� (FLIP) = V +s0 = {v+s0 | v ∈ V = span (v1, . . . , vm)} = {v+s0 |Av = 0}, (4.3)

where s0 is one of the integer-valued solutions of (IP). In (4.3) we have Av = 0 for

v ∈ V , which shows that the row space of the matrix A is the orthogonal complement

of subspace V , that is, C(AT) = V ⊥. By using (4.1) and (4.2), one can write

C(AT) = (C(D))⊥ = nullspace (DT). This means that the row space of matrix A

is exactly the nullspace of the matrix DT , and therefore, the smallest representation

of matrix A occurs when rows of matrix A are a basis of the nullspace (DT). This

59

is the smallest representation, since matrix A does not contain any redundant rows.

Suppose null(G) is a matrix whose columns are a basis of the nullspace of matrix G,

then the matrix A can be derived as A =
(
null

(
DT
))T

and the vector b is readily

available via b := As0.

Remark 4.3.1. Of course, the problem of �nding a basis of the nullspace(DT) is

practical only in the case of small examples. However, new constraints so discovered

may be generalisable for all dimensions.

All the equality constraints will be available once the above process is completed.

The generated constraints must be consecutively checked to see whether they con-

tribute any new information. That is, the �rst generated constraint is added to the

available equality constraints to see if it increases the rank of the coe�cient matrix by

one. If so, the constraint is non-redundant and the available constraints should be up-

dated by including this new constraint. Repeating this process ensures all new added

constraints are non-redundant. Of course, the order in which the new constraints are

added in�uences which ones are retained. Hence, we sort the generated constraints

based on the number of their terms, to make it more likely that the constraints to

refund are simpler to interpret.

Remark 4.3.2. One may be interested in directly extracting a set of non-redundant

constraints, since in most (IP) models, some equality constraints are available. To

consider this problem, let A0x = b0 be the set of equality constraint that are avail-

able, and suppose there exists a set of new equality constraints, namely A1x = b1.

Therefore, the problem is to �nd A1 and b1.

To create the latter set of independent constraints from the available constraints

A0x = b0, each row of matrix A1 must be independent from every row of matrix A0.

One way to achieve this independence is to create A1 so that its row space belongs to

the orthogonal complement of the row space of matrix A0, that is:

C(AT0) ∈
(
C(AT1)

)⊥
= nullspace (A1), (4.4)

60

and also based on the result in Section 4.3.1, one can write:

C(AT0) ∈ (C(D))⊥ = nullspace (DT). (4.5)

Exploiting (4.4) and (4.5), one can write C(AT0) ∈ (C(D))⊥ = nullspace

DT

A0

.

Therefore, the matrix A1 can be expressed as A1 =

null
DT

A0

T

. Finally vector

b1 is derived by b1 = A1s0. Note that this is a one way condition, namely, if this

condition is satis�ed, rows of the matrix A0 and A1 are orthogonal, and consequently

they will be independent. However, it is also possible to �nd an A1 which violates this

condition even though its rows are also independent from the rows of A0.

Although this direct method can easily generate the set of new (non-redundant)

equality constraints, in practice, it increases the likelihood of generating complicated

constraints, and hence is likely to result in di�culties in revealing the pattern of

generated constraints. Therefore, the ECA-method is preferable. We are now in a

position to illustrate the details of these two methods via a simple example.

Example 4.3.3. Suppose s0 = [0 1 0 1 1 0]T , s1 = [1 0 1 0 1 0]T , s2 = [0 0 0 1 0 1]T

in R6 are the only feasible points for an IP model, and there are two known equality

constraints, (−x2 + x4 + x5 = 1, 2x1 + x2 + x4− x5 = 1), which are satis�ed by those

three points. We need to �nd the new equality constraints (if any). Both ECA-method

and direct method are implemented to �nd the new equality constraints below. The

known constraints can be written as:

0 −1 0 1 1 0

2 1 0 1 −1 0

x1

x2

x3

x4

x5

x6

=

1

1

 .

61

Therefore, A0 =

0 −1 0 1 1 0

2 1 0 1 −1 0

 and b0 =

1

1

 .
ECA-method: We de�ne vi vectors and matrix D as follows: vi = si − s0, i = 1, 2.

vT1 =
[
1 −1 1 −1 0 0

]
, vT2 =

[
0 −1 0 0 −1 1

]
.

Then

DT =

1 −1 1 −1 0 0

0 −1 0 0 −1 1

 .
Note that dim(FLIP) = 6 − rank(A0) = 4, and dim(conv(FIP)) = rank (D) =

2. These computations shows that it is possible to �nd 2 new equality constraints

(dim(FLIP)−dim(conv(FIP)). Applying the ECA-method, we �nd all equality con-

straints as follows:

A =
(
null

(
DT
))T

=

−1 0 1 0 0 0

1 0 0 1 0 0

−1 −1 0 0 1 0

1 1 0 0 0 1

 , b = As0 =

0

1

0

1

 ,

therefore the system of equations is:

Ax = b;

−1 0 1 0 0 0

1 0 0 1 0 0

−1 −1 0 0 1 0

1 1 0 0 0 1

x1

x2

x3

x4

x5

x6

=

0

1

0

1

 .

Thus we have found a set of all equality constraints, and now we are required to

remove the redundant ones. Considering

[
A0|b0

]
=

 0 −1 0 1 1 0 1

2 1 0 1 −1 0 1

 , rank([A0|b0
])

= 2,

62

we add the �rst generated constraint to
[
A0|b0

]
and check the rank of the so con-

structed matrix

rank

0 −1 0 1 1 0 1

2 1 0 1 −1 0 1

−1 0 1 0 0 0 0

 = 3,

it increases the rank by one and this reveals that it is a new non-redundant constraint.

Thus, this constraint should be appended to the existing constraints. Next, we add the

second generated constraint to this matrix and check its rank as follows:

rank

0 −1 0 1 1 0 1

2 1 0 1 −1 0 1

−1 0 1 0 0 0 0

1 0 0 1 0 0 1

 = 3.

The above rank of matrix has not changed, therefore the second generated constraint

is redundant and should be removed. Then, we try the third generated constraint as

follows:

rank

0 −1 0 1 1 0 1

2 1 0 1 −1 0 1

−1 0 1 0 0 0 0

−1 −1 0 0 1 0 0

 = 3.

Similarly, the third constraint also does not change the rank and is redundant. Finally

we check the forth generated constraint as follows:

rank

0 −1 0 1 1 0 1

2 1 0 1 −1 0 1

−1 0 1 0 0 0 0

1 1 0 0 0 1 1

 = 4.

The latter is a new non-redundant constraint since it increases the rank. As is shown

with the above process, the �rst and fourth generated constraints (x1 = x3, x1 + x2 +

x6 = 1) are the full set of new equality constraints.

63

Direct method: As explained before, constraints in this method can be obtained by

setting:

A1 =

null
DT

A0

T =

 2 −1 −5 −2 1 0

−1 1 3 1 0 1

 , b1 = A1s0 =

−2

2

 ,
In other words, the new found constraints are (2x1−x2−5x3−2x4 +x5 = −2, −x1 +

x2 + 3x3 + x4 + x6 = 2).

As seen in Example 4.3.3 the new non-redundant constraints generated by the

ECA-method seem simpler and more convenient to explore with the view of �nding

generalizable patterns. Obviously, the constraints found by either method imply

those found by the other.

4.3.2 A mixed-integer model to assist in pattern recognition

Two cases can arise after generating a set of new equality constraints in a problem

of small dimension. In the �rst case, one is able to recognise a pattern in the newly

generated constraints. Those constraints are then generalised, shown to be valid in

all instances, and appended to the available set of constraints. In the second case, we

cannot �nd any pattern, but as the set of equality constraints for an IP is not unique,

we may be interested in taking clever linear combination of the constraints in the

hope of discovering an alternative set of generalisable constraints. To achieve this, a

mixed-integer model is designed to identify the constraints that are more likely to be

generalisable.

The mixed-integer model enables the modeler to check if there is any new con-

straint that satis�es speci�c criteria. These criteria may restrict the coe�cients of the

new constraints to be 1, 0, and −1, or demand a constraint with a minimal number

of non-zero coe�cients. Another interesting case is to request zero coe�cients for

some of the variables or, perhaps, one might be interested in having some symme-

tries in the new constraint. For example, we may consider a case where the number

of positive coe�cients is equal to the number of negative coe�cients. All of these

64

patterns are veri�able via the proposed mixed-integer model. We explain the main

framework of this model through an example, and one can adapt it based on the

desired criteria.

Suppose we are interested in a new constraint whose coe�cients take values of −1

or 0 or 1, and which also includes the minimum number of non-zero coe�cients sub-

ject to this requirement. Furthermore, we are interested in having an equal number

of positive and negative coe�cients. Also, suppose that a representation for A1, b1

is known as they were generated by ECA-method. Clearly a new generalisable con-

straint must be constructed from a linear combination of known constraints ([A0|b0])

and generated constraints ([A1|b1]). The following mixed-integer model is designed

for the mentioned criteria.

Proposed mixed-integer model: Let Y and Z be two (0, 1)-vectors in Rn (where n

is the number of decision variables in the IP model) and w0 and w1 be two continuous

vectors. Then the proposed mixed-integer model for the given preferences is:

Minimise YTe + ZTe (4.6)

subject to wT
0 [A0|b0] + wT

1 [A1|b1] = YT − ZT (4.7)

wT
1 e ≥ ε (4.8)

YTe = ZTe (4.9)

Y,Z ∈ {0, 1} (4.10)

where ε is a small positive parameter and e is a vector with all unit entries. Let

Li = Yi − Zi, i = 1, . . . , n. Note that each Li ∈ {−1, 0, 1} since it is obtained by

subtracting of two binary variables. Note also that if Li = 1, then Yi = 1, Zi = 0 and

when Li = −1, then Yi = 0,Zi = 1, and �nally when Li = 0, then Yi = 0,Zi = 0.

The case of Li = 0 derived by Yi = 1,Zi = 1, never occurs, because the objective

function prevents it. In constraint (4.7), a linear combination of the known constraints

(rows of [A0|b0]), and generated constraints (rows of [A1|b1]) are used to construct the

vector L. In this linear combination w0 is a vector that contains multipliers of the

known constraints, andw1 has the same role for the generated constraints. Constraint

65

(4.8) forces at least one multiplier of the generated constraints to be non-zero, and

this guarantees that the model �nds a non-redundant constraint. Constraint (4.9)

ensures that the number of positive Li's equals the number of negative Li's. If the

model is infeasible, it shows there are no constraints that satisfy these criteria. In

such a case, modeler should relax these criteria. For example, Constraint (4.9) could

be removed to see if there exist a new constraint with coe�cients in −1, 0, or 1.

4.4 New equality constraints for parameter-free model

To illustrate ECA-method explained in Section 4.3, it was implemented to discover

new equality constraints to re�ne the parameter-free polytope introduced in [19], and

[6] for the Hamiltonian Cycle Problem. Moreover, this polytope can be considered

as an extended model for TSP and Time Dependent Traveling Salesman Problem

(TD-TSP). In this model variable xkr,ia is equal to 1 whenever (i, a) is the r-th arc on

the tour, assuming vertex k to be the starting vertex. Recall from Section 2.3 that

the constraints of this model can be written as∑
a∈A(i)

xkr,ia −
∑
a∈A(i)

xkr−1,ai = 0, k, i = 1, . . . , N ; r = 1, . . . , N − 1, (4.11)

∑
a∈A(i)

xkr,ia −
∑
a∈A(k)

xiN−r,ka = 0, k, i = 1, . . . , N ; r = 1, . . . , N − 1, (4.12)

N−1∑
r=0

xkr,ia −
N−1∑
r=0

xjr,ia = 0, k, j = 1, . . . , N, k 6= j; (i, a) ∈ Γ, (4.13)

N∑
k=1

xkr,ia −
N∑
k=1

xks,ia = 0, r, s = 0, . . . , N − 1, r 6= s; (i, a) ∈ Γ, (4.14)

N−1∑
r=0

∑
a∈A(i)

xkr,ia = 1, k, i = 1, . . . , N, (4.15)

N∑
k=1

∑
a∈A(i)

xkr,ia = 1, r = 0, . . . , N − 1; i = 1, . . . , N, (4.16)

xk0,ia = 0, k, i = 1, . . . , N, i 6= k; (i, a) ∈ Γ, (4.17)

xkr,ia ≥ 0, k = 1, . . . , N ; r = 0, . . . N − 1; (i, a) ∈ Γ. (4.18)

66

In the above, A(i) denotes the set of vertices that can be reached from a given vertex

i in a single step. Note that Theorem 2.5.2 implies if, in addition to (4.11)�(4.18),

we demand that xkr,ia ∈ {0, 1}, then every feasible point de�nes a tour. Thus (4.11)�

(4.18) essentially constitutes an LP-relaxation.

To start the analysis, we �rst �nd the dimension of conv(FIP) and FLIP for

the complete graphs of various size. These data are provided in the Table 1. Note

that in this example, FIP is set of all tours and FLIP is the polytope constructed by

constraints (4.11)�(4.18).

Table 4.1: First dimension study

N #Decision

Variables
rank(A0) dim(conv(FIP)) dim(FLIP)

#Unidenti�ed

Equality Constraints

2 4 4 0 0 0

3 18 17 1 1 0

4 72 67 5 6 1

5 220 175 22 45 23

6 540 361 95 179 84

7 1134 645 316 489 173

8 2128 1050 859 1078 219

9 3672 1595 1763 2077 314

10 5940 2303 3158 3637 479

11 9130 3193 5245 5937 692

12 13464 4288 8217 9176 959

13 19188 5607 12295 13581 1286

14 26572 7173 16106 19399 3293

As shown in the above table, the dimension of conv(FIP) is always smaller than (or

equal to) the dimension of FLIP. Interestingly, Table 4.1 reveals that there exist some

new equality constraints. Implementing the ECA-method of Section 4.3 for N = 5,

the following 23 non-redundant new equality constraints were generated. We call this

67

Set 1 of new constraints and list them below

x21,31 − x13,23 = 0,

x21,41 − x13,24 = 0,

x31,41 − x13,34 = 0,

x12,23 + x21,53 − x11,42 − x13,34 = 0,

x13,23 + x22,13 − x12,42 − x12,52 = 0,

x13,24 + x22,14 − x12,32 − x12,52 = 0,

x12,23 + x22,31 − x11,42 − x11,52 = 0,

x12,24 + x22,41 − x11,32 − x11,52 = 0,

x13,32 + x32,12 − x12,43 − x12,53 = 0,

x13,34 + x32,14 − x12,23 − x12,53 = 0,

x12,34 + x32,41 − x11,23 − x11,53 = 0,

x11,32 + x11,34 + x13,24 + x13,42 − x10,13 − x11,53 = 0,

x11,32 + x12,42 + x12,52 + x21,13 − x10,13 − x13,23 = 0,

x11,42 + x12,32 + x12,52 + x21,14 − x10,14 − x13,24 = 0,

x13,32 + x13,34 + x21,43 − x11,52 − x12,43 − x12,53 = 0,

x11,23 + x12,43 + x12,53 + x31,12 − x10,12 − x13,32 = 0,

x11,43 + x12,23 + x12,53 + x31,14 − x10,14 − x13,34 = 0,

x10,14 + x12,42 + x22,34 − x11,34 − x11,42 − x11,43 − x12,53 − x13,23 = 0,

x10,12 + x10,13 + x11,42 + x11,43 + x11,52 + x11,53 + x13,23 + x13,32 = 1,

x11,42 + x11,43 + x11,53 + x12,52 + x12,53 + x21,34 − x10,14 − x12,34 − x13,24 − x13,34 = 0,

x11,42 + x11,43 + x11,52 + x12,52 + x12,53 + x31,24 − x10,14 − x12,24 − x13,24 − x13,34 = 0,

x10,14 + x12,34 + x13,24 + x41,12 − x11,23 − x11,42 − x11,43 − x11,53 − x12,52 − x12,53 = 0,

x11,23 + x11,24 + x11,42 + x11,43 + x11,53 + x12,52 + x12,53 + x42,12 − x10,12 − x10,14 − x12,34 − x13,24 = 0.

We try to identify a generalisable pattern in the simplest group of the generated

constraints, namely, the �rst three constraints. Seemingly, the pattern is xk1,ij =

68

xjN−2,ki, for all distinct k, i, j = 1, . . . , N . These constraints have a clear interpretation

illustrated by Figure 4.1. They show that if a tour starts at vertex k and goes to i

in the �rst step, followed by transition from i to j, then this ensures that the tour

starting at j will pass through arc (k, i) after N − 2 steps. We shall call these the

2-step constraints.

Figure 4.1: Demonstration of a 2-step constraint

There are 60 possible 2-step constraints for N = 5 and only three of them appeared

in Set 1. One may think that all remaining constraints of this kind (which are not

present in the generated constraints) are redundant, but it is not the case as they

only would be redundant if all other generated constraints (constraints 4 to 23) were

added. Note that, at this stage of the example, the generalisable patterns (if any) of

constraints 4 to 23 are still unknown. Therefore we must add all the 60 constraints

of this simple kind and then begin the process again. Analysing the dimension of

FLIP after adding the new constraints reveals that those 60 constraints provide 14

new non-redundant equality constraints, which veri�es that the 2-step constraints

were more valuable than just the three new constraints in Set 1. After appending

the 2-step constraints to (4.11)�(4.18) constraints and repeating the ECA-method,

the following nine unidenti�ed generated constraints remain. We call this Set 2 of

unidenti�ed constraints:

69

x12,23 + x21,53 − x1142 − x13,34 = 0,

x11,32 + x11,34 + x13,24 + x13,42 − x10,13 − x11,53 = 0,

x11,32 + x12,42 + x12,52 + x21,13 − x10,13 − x13,23 = 0,

x11,42 + x12,32 + x12,52 + x21,14 − x10,14 − x13,24 = 0,

x13,32 + x13,34 + x21,43 − x11,52 − x12,43 − x12,53 = 0,

x11,43 + x12,23 + x12,53 + x31,14 − x10,14 − x13,34 = 0,

x10,12 + x10,13 + x11,42 + x11,43 + x11,52 + x11,53 + x13,23 + x13,32 = 1,

x11,42 + x11,43 + x11,53 + x12,52 + x12,53 + x21,34 − x10,14 − x12,34 − x13,24 − x13,34 = 0,

x11,42 + x11,43 + x11,52 + x12,52 + x12,53 + x31,24 − x10,14 − x12,24 − x13,24 − x13,34 = 0.

We now de�ne FLIP(1) to consist of (4.11)�(4.18) and all of the 2-step constraints.

Then the calculations analogous to those used to generate Table 4.1 were repeated

to generate Table 4.2 below.

Table 4.2: Dimension study after appending 2-step constraints

N #Decision

Variables
rank(A

(1)
0)

dim(conv (FLIP (1))) dim(FLIP(1))
#Unidenti�ed

Equality Constraints

2 4 4 0 0 0

3 18 17 1 1 0

4 72 67 5 5 0

5 220 189 22 31 9

6 540 408 95 132 37

7 1134 749 316 385 69

8 2128 1241 859 887 28

9 3672 1909 1763 1763 0

10 5940 2782 3158 3158 0

11 9130 3885 5245 5245 0

12 13464 5247 8217 8217 0

13 19188 6893 12295 12295 0

14 26572 10466 16106 16106 0

70

We note that the entries in the column corresponding to rank
(
A

(1)
0

)
have increased

for all N ≥ 5. Similarly, the entries in the column dim
(
FLIP(1))

)
have decreased

for all N ≥ 4. For large N these changes are quite substantial. Arguably, this is

counter-intuitive because one would expect the under-determination to grow with

the increasing size of the problem. This leads to the following conjecture.

Conjecture 4.1. For N ≥ 9, following holds

dim(conv(FIP)) = dim
(
FLIP(1)

)
.

If true, Conjecture 4.1 suggests that all non-redundant equality constraints can be

obtained from the parameter-free model with the help of a single iteration of the

ECA-method of Section 4.1.

Consequently, we also investigated the case of N ≤ 8 with a view of identifying

generalisable equality constraints. For instance, in the case of N = 6 we discovered

the following new constraint

N
2∑

k=1

N
2∑
i=1
i 6=k

N
2∑

a=1
a6=k,i

xkN
2
−1,ia =

N∑
k=1+N

2

N∑
i=1+N

2
i 6=k

N∑
a=1+N

2
a6=k,i

xkN
2
,ia
. (4.19)

The constraint (4.19) was identi�ed by solving the integer programming model (4.6)�

(4.10) (for the case N = 6) and examining the pattern of zeros and ones in the

solution. This constraints also holds for N = 8 but not for any other N . However,

interestingly, the following inequality relaxation of (4.19) holds for all even N

−1 ≤
N
2∑

k=1

N
2∑
i=1
i 6=k

N
2∑

a=1
a6=k,i

xkN
2
−1,ia −

N∑
k=1+N

2

N∑
i=1+N

2
i 6=k

N∑
a=1+N

2
a6=k,i

xkN
2
,ia
≤ 1.

An interpretation of the above �ndings could be that in small instances of IP models,

a number of relations may exist which can be expressed as non-redundant equality

constraints, but those equality constraints are not valid for the larger instances of

71

the underlying problem. This example is a good illustration of the need to consider

instances that are su�ciently large.

4.5 Applications

One important application of the technique developed in Section 4.3 is to strengthen

existing integer programming formulations of important operations research prob-

lems. In particular, it is possible that - with the additional equality constraints

identi�ed by our method - the strengthened IP formulations and their corresponding

LP-relaxations will provide better quality solutions.

We illustrate this by considering the well-known Desrochers and Laporte (DL) model

[12] for solving the asymmetric TSP. The latter model was compared to a model due

to Sherali and Driscoll (SD) [35]. It was shown that in terms of objective function

values of LP-relaxation the SD model dominates the DL model. This raises the

question of whether such domination could be reversed by strengthening the DL

model with additional equality constraints identi�ed by the method of Section 4.3.

The DL model is as follows:

Minimise
N∑
i=1

N∑
j=1
j 6=i

cijxij

Subject to

N∑
i=1
i 6=k

xki = 1, k = 1, . . . , N,

N∑
k=1
i 6=k

xki = 1, i = 1, . . . , N,

U1 = 0, (DL)

Uj ≥ (Ui + 1)− (N − 1)(1− xij) + (N − 3)xji i 6= j = 2, . . . , N,

2− x1j + (N − 3)xj1 ≤ Uj ≤ N − (N − 3)x1j + xj1 − 2, j = 2, . . . , N.

xik ≥ 0, i 6= k = 1, . . . , N,

72

where Ui denotes the rank order when vertex i is visited with the base city being

assigned a rank of zero.

One way to tighten the model would be to add additional variables, with appro-

prite linking constraints. However, it is not necessarily obvious how bets to do this.

The ECA-method provides a systematic method for doing so, and as will be shown

below, the resulting extended model is stronger than before.

Suppose we add N2 − N variables to the DL model, with the intention of replacing

Ui variables with Uki variables, denoting the rank order of visiting vertex i on a tour

starting at vertex k. After the application of our method the extended DL model

becomes

Minimise
N∑
i=1

N∑
j=1
j 6=i

cijxij

Subject to

N∑
i=1
i 6=k

xki = 1, k = 1, . . . , N,

N∑
k=1
i 6=k

xki = 1, i = 1, . . . , N,

Ukk = 0, k = 1, . . . , N, (EDL)

Ukj ≥ (Uki + 1)− (N − 1)(1− xij) + (N − 3)xji k 6= i 6= j = 1, . . . , N,

2− xkj + (N − 3)xjk ≤ Ukj ≤ N − (N − 3)xkj + xjk − 2, k 6= j = 1, . . . , N,

Uki + Uik = N, i 6= k = 1, . . . , N,

N∑
i=1

Uki =
N(N − 1)

2
, k = 1, . . . , N,

xik ≥ 0, i 6= k = 1, . . . , N.

We then compared the performance of LP-relaxation of EDL versus the original

DL model and SD model. We tested their performance on all examples of ATSP listed

73

on TSBLIB [34]. It is important to note that, despite adding N2 −N variables, the

number of decision variables in EDL is still fewer than in SD model. The results are

summarised in Table 4.3. Note that, EDL matches or outperforms SD in eleven out

of nineteen listed problems, exactly matches SD in �ve instances and is outperformed

by SD in the remaining three instances. Thus it is clear that our technique has

considerably strengthened the DL model.

Table 4.3: LP-relaxation comparison study

Problem DL EDL SD OPT∗

br17 22 22 27.679 39

ft-53 6011.875 6044.673 6118.404 6905

ft-70 38333.543 38409.767 38364.552 38673

ftv-33 1217.182 1224.86 1224.504 1286

ftv-35 1413.5 1425.866 1415.512 1473

ftv-38 1477.155 1482.2 1480.055 1530

ftv-44 1573.75 1582.01 1573.75 1613

ftv-47 1725.657 1733.162 1727.208 1776

ftv-55 1510.733 1534.274 1513.27 1608

ftv-64 1761 1765.3 1765.3 1839

ftv-70 1858.533 1864.162 1859.577 1950

ftv-170 2698.472 2703.633 2698.679 2755

kro124p 34976.667 35512.509 35059.582 36230

p43 216 216 864.581 5620

rbg323 1326 1326 1326 1326

rbg358 1163 1163 1163 1163

rbg403 2465 2465 2465 2465

rbg443 2720 2720 2720 2720

ry48p 13809.168 13837.595 13820.433 14422

74

Chapter 5

Structural Equality Constraints for

Cubic Graphs

In this chapter1, we focus on connected undirected cubic graphs. A cubic graph is

one in which every vertex has degree three. We recall that HCP is still NP-complete

even when considered only on cubic graphs [24].

Let Qc be the polytope which is the convex hull of all HCs that belong to a com-

plete graph on N vertices. A key goal of the methods for TSP which are designed

based on polyhedra and integer programing is to construct a good approximation for

the polytope Qc. In particular, the feasible regions of LP-relaxations of all integer

programming formulations for TSP can be considered as approximations of this poly-

tope. However, in most real-world TSP applications and also in the case of HCP, we

deal with non-complete graphs. Therefore, we would ideally like to approximate the

polytope which is the convex hull of all HCs that belong to a given graph G. We

shall call this polytope Q(G).

To the best of our knowledge, there is no standard approximation for Q(G), and

Qc often plays that role. However, Qc can be a very poor approximation for Q(G),

especially when the graph G is sparse. One should note that, the number of HCs

1The main results of this chapter is under review in a journal for publication [31].

75

of a given cubic graph G can be as small as three [36] while the number of HCs of

the complete graph is (N − 1)!. Hence, the dimension of Q(G) may be much smaller

than the dimension of Qc. Furthermore, appending each non-redundant equality

constraint to a polytope decreases the dimension of that polytope by one. That is,

there may exist many new equality constraints, depending on the special stracture of

G which we call structural equality constraints, that could be appended to the already

available constraints that were used to approximate Qc.

Recall that in Section 4.4, the case of the complete graph was considered. We

generated all of the equality constraints for di�erent sizes of the complete graph, and

then by generalising the patterns in the generated constraints, we extracted a number

of new equality constraints. Although it might seen as sensible to use an analogous

process to extract all the equality constraints for the set of HCs of a particular

cubic graph, the set of equality constraints so produced would only be meaningful

for that graph and would not be extendable to the general constraints for all cubic

graphs.

Hence, the natural question that arises is: How can we generate new equality

constraints that take advantage of cubicity in some fashion, but are still valid for all

cubic graphs? This issue is focus of the rest of this chapter.

5.1 Extracting structural equality constraints

Before going into details, some de�nitions and notation are needed. Let the com-

plement set of A(i), the set of neighbours of i, be denoted by A′(i), which contains

the set of vertices that are not accessible from i in a single step and excluding i as

well. Also, let H(G) denote the set of HCs of a given graph G and KN denote the

complete graph on N vertices. The following lemma plays a crucial role in exploiting

the structure of the graph to �nd a better approximation for Q(G).

76

Theorem 5.1.1. Let G and G be two given graphs on the same set of vertices and

G be a subgraph of G, that is, (G ⊆ G), then the following holds:

Q(G) ⊆ conv (H(G)) .

Proof. As G is a subgraph of G, all of the edges in G also belong to G. It is

clear that any HC of G exists in G as well, that is, H(G) ⊆ H(G). Therefore, we

have Q(G) = conv(H(G)) ⊆ conv(H(G)). �

We now, immediately conclude two following corollaries from the above theorem:

Corollary 5.1.2. If G ⊆ G, any valid constraint used to represent conv(H(G)) is

also a constraint that can be used to represent Q(G).

Corollary 5.1.3. If G is a subgraph of graphs G1, . . . ,Gm, we have

Q(G) ⊆
m⋂
L=1

conv(H(GL)).

One can see from Corollary 5.1.2 that any constraint used to represent Qc will be

satis�ed by any point in Q(G), since any given graph G on N vertices is a subgraph

of KN . However, depending on the structure of the given graph G, Qc may be a very

poor approximation of Q(G). Moreover, characterising the polytope Q(G) may be

as di�cult as �nding all HCs of the graph G.

Although we do not know all HCs of the graph G, we may eliminate consideration

of many HCs which do not belong to graph G. For example, all of the HCs that

contain an edge not belonging to graph G clearly could be eliminated. However, our

aim is to �nd equality constraints which are applicable for any given cubic graph.

Therefore, we need to remove some HCs (not belonging to graphG) so that the convex

hull of remaining HCs has special properties. That is, we need to keep some HCs

which do not belong to grah G in order to preserve generalisability of the generated

constraints. This is achieved by constructing a subgraph of the complete graph that,

in a special sense, contains all cubic graphs.

77

In particular, let CN be the set of all connected cubic graphs on N vertices. We

wish to construct a graph UN on N vertices that has the following two desirable

properties:

(a) for every graph G ∈ CN there exists a graph isomorphismM such G ⊂M(UN).

In such a case we say that G is isomorphically contained in UN or alternatively

UN covers G isomorphically ;

(b) the construction of UN is generalisable in an obvious and unique way for all N .

Indeed, property (a), above de�nes a Universal graph for CN . That is, for any

G ∈ CN we have G ⊂M(UN), for some graph isomorphismM. Hence, by exploiting

the Corollary 5.1.2 we arrive at

Q(G) ⊂ conv(H(M(UN))).

Therefore, we want to be able to construct conv(H(M(UN))) or a good approxima-

tion of conv(H(M(UN))) to �nd a set of new equality constraints for Q(G) without

knowing any information about HCs of any particular G. Property (b) is also impor-

tant as it is necessary to ensure any new constraints we subsequently discover can be

generalised to larger N .

In Figure 5.1, we demonstrate an example of such a universal graph UN for N =

6.

1

2 3

4

56

Figure 5.1: Universal graph U6

First we take the complete graph KN , then we construct a graph by removing

78

N − 4 edges ((1, 4), (1, 5), . . . , (1, N)) incident on the vertex 1. We shall denote the

resulting graph by UN . Figure 5.1 demonstrates this graph in the case when N = 6.

Remark 5.1.4. Even though UN is only marginally sparser than KN , we will see that

its consideration will lead to many new constraints. Note that, UN contains 6(N−4)!

HCs which is only 6
(N−1)(N−2)(N−3) as many HCs as are present in KN . Obviously

sparser choices of UN will lead to even greater opportunities.

Now, suppose our given graph G ∈ C6 is the �envelope� graph, which is labelled as

shown in Figure 5.2.

5

2 6

1

34

Figure 5.2: Envelope graph

Then, we can construct an isomorphic mapM such that G ⊂M(U6). For example,

we could chooseM : {1, 2, 3, 4, 5, 6} → {4, 3, 5, 2, 6, 1}.

Note that one way of obtaining a subset of constraints which characterise conv(H(M(UN)))

is to �nd a subset of constraints which characterise conv(H(UN)) and then relabel

the variables of those constraints based on the mapM.

To illustrate the above discussion, let x22,34 = x11,34 be a new constraint to char-

acterise conv(H(U6)). Then the constraint x
M(2)
2,M(3)M(4) = x

M(1)
1,M(3)M(4), (x32,52 =

x41,52) will be the corresponding new constraint for the envelope graph labelled as

above.

Of course, the isomorphism M speci�ed above is not the only way that U6 can

79

cover the envelope graph. Indeed, there are many such isomorphisms. To obtain

all of these isomorphisms, we �rst map vertex 1 of UN to an arbitrary vertex z of

the envelope graph, that is, z =M(1). After mapping vertex 1 of U6, there are 3!2!

(3!(N−4)!) possible isomorphisms. These correspond to 3! ways of mapping the three

neighbours of vertex 1 of U6 to the neighbours of vertex z in the envelope graph, and

2! ((N − 4)!) ways of mapping the remaining vertices of U6 to those of the envelope

graph. For instance, after mapping 1 to 4, M̂ : {1, 2, 3, 4, 5, 6} → {4, 2, 3, 5, 1, 6} is

another one of these 12 isomorphisms. In particular, this means that the number of

isomorphisms of UN that can cover any given cubic graph is 6N(N − 4)! since the

vertex z can be any vertex of the given graph.

Obviously, the constraint so discovered depends on the map chosen, and using

a di�erent map leads to �nding a di�erent constraint. One may be interested in

rewriting the constraints based on di�erent relabellings to gain more constraints.

Interestingly, this can only be achieved by considering the maps that can be obtained

through the 3! ways that the neighbour vertices of the vertex 1 of UN can be mapped

to the neighbours of z in the given cubic graph. It will be shown that (N − 4)!

permutations of remaining vertices do not produce any new constraints. In general,

we can write 6N new constraints for the given cubic graph based on each constraint

associated with conv(H(UN)). More precisely, by exploiting Corollary 5.1.3, we

arrive at

conv(H(G)) ⊂
6N⋂
L=1

conv(H(ML(UN))). (5.1)

Based on the above discussion, we only need to �nd a set of constraints to char-

acterise conv(H(UN)). However, it is still very hard to �nd a set of constraints

which fully characterises the polytope conv(H(UN)). We recall from Section 4.2

that having many extended variables results in having more equality constraints and

less inequality constraints (facets) to characterise a convex hull of a given set of HCs.

Recall the parameter-free model introduced in Section 2.3, since there are many ex-

tended variables in that model, it is reasonable to just concentrate on �nding the

equality constraints in those variables, rather than all constraints that characterise

80

conv(H(UN)). That is, we try to �nd a subset of constraints which characterise

a�(H(UN)) instead of conv(H(UN)).

We recall from Section 2.4 that the existing constraints of the re�ned parameter-

free polytope P̄ provide a number of structured constraints needed to represent

a�(H(UN)). We exploit the ECA-method introduced in Chapter 4.3 to extract

unidenti�ed equality constraints to represent a�(H(UN)).

We then consider M as a general isomorphism such that G ⊂ M(UN) for any

givenG ∈ CN , and then transform those newly extracted constraints to the constraints

for a�(M(H(UN))) and call them the set of cubic structural equality constraints

(CSEC). In order to achieve this generalisation, we assume vertex z of a given cubic

graph G is adjacent to vertices i, j, and k. That is, A(z) = {i, j, k}. We then map

vertices 1, 2, 3, 4 of UN into vetices z, i, j, k respectively. We also map vertices 5, . . . , N

of UN into the vertices belonging to A′(z) with an arbitrary order. This generalisation

allows us to write the constraints for all choices of z and 3! permutations of i, j, and

k.

This procedure results in a rather large set CSEC. Fortunately, the constraints of

that set which we were able to discover can be classi�ed into 31 types of constraints,

where each type can be given a natural interpretation. Note that we are not claiming

that these 31 types of constraints are mutually exclusive.

Those 31 types of constraints of CSEC are listed for all z = 1, . . . , N, and i, j, k ∈

A(z), i 6= j 6= k, as follows

xzr,ij = 0 r = 2, . . . , N − 3; (5.2)

xir,jk = 0 r = 1, 3, . . . , N − 4; (5.3)

xi2,jk = xz1,jk; (5.4)

xjN−3,ki = xzN−2,ki; (5.5)

xz2,ia = xj1,ia + xk1,ia a ∈ A′(z); (5.6)

xi2,ka + xj2,ka = xz1,ka + xz3,ka a ∈ A′(z); (5.7)

xjN−3,ai + xkN−3,ai = xzN−4,ai + xzN−2,ai a ∈ A′(z); (5.8)

81

xzN−2,ij + xi2,zj =
∑

a∈A′(z)

xzN−3,ai; (5.9)

xir,jz + xir+1,zj =
∑

a∈A′(z)

xzN−2−r,ai r = 2, . . . , N − 5; (5.10)

xi3,jz + xjN−4,zi =
∑

a∈A′(z)

xi2,aj; (5.11)

∑
a∈A′(z)

xi1,aj + xjN−4,iz =
∑

a∈A′(z)

xz2,aj + xi2,jz; (5.12)

∑
a∈A′(z)

xi2,aj + xjN−5,iz =
∑

a∈A′(z)

xz3,aj + xi3,jz; (5.13)

∑
a∈A′(z)

xzN−5,ai + xkN−4,zi =
∑

a∈A′(z)

xi2,ak + xi3,jz; (5.14)

∑
a∈A′(z)

xi2,ak + xi3,jz + xkN−5,iz =
∑

a∈A′(z)

xz3,ak +
∑

a∈A′(z)

xzN−5,ai; (5.15)

∑
a∈A′(z)

xi1,ak + xi2,jz + xkN−4,iz =
∑

a∈A′(z)

xz2,ak +
∑

a∈A′(z)

xzN−4,ai; (5.16)

∑
a∈A′(z)

xz2,aj + xi2,jz + xi4,jz + xjN−5,zi =
∑

a∈A′(z)

xi1,aj +
∑

a∈A′(z)

xi3,aj; (5.17)

∑
a∈A′(z)

xz3,aj + xi3,jz + xi5,jz + xjN−6,zi =
∑

a∈A′(z)

xi2,aj +
∑

a∈A′(z)

xi4,aj; (5.18)

∑
a∈A′(z)

xi1,aj +
∑

a∈A′(z)

xi3,aj + xjN−6,iz =
∑

a∈A′(z)

xz2,aj +
∑

a∈A′(z)

xz4,aj + xi2,jz + xi4,jz;

(5.19)∑
a∈A′(z)

xi2,aj +
∑

a∈A′(z)

xi4,aj + xjN−7,iz =
∑

a∈A′(z)

xz3,aj +
∑

a∈A′(z)

xz5,aj + xi3,jz + xi5,jz;

(5.20)∑
a∈A′(z)

xz2,ak +
∑

a∈A′(z)

xzN−6,ai +
∑

a∈A′(z)

xzN−4,ai + xkN−5,zi = (5.21)

∑
a∈A′(z)

xi1,ak +
∑

a∈A′(z)

xi3,ak + xi2,jz + xi4,jz;

∑
a∈A′(z)

xzN−7,ai +
∑

a∈A′(z)

xz3,ak +
∑

a∈A′(z)

xzN−5,ai + xkN−6,zi = (5.22)

∑
a∈A′(z)

xi2,ak +
∑

a∈A′(z)

xi4,ak + xi3,jz + xi5,jz;

82

∑
a∈A(z)

xz2,ma + xzN−3,im +
N−3∑
r=1

xir,jm +
N−3∑
r=3

xir,km +
N−3∑
r=3

xjr,km = (5.23)

N−4∑
r=1

xzr,jm +
∑

r=1,2,3,N−3

xzr,km + 2
N−4∑
r=4

xzr,km

+ xi1,mj + xi1,mk + xj1,mk m ∈ A′(z);

xi3,jz +
∑

a∈A′(z)

xiN−6,ak + xiN−5,jz +
∑

a∈A′(z)

xjN−6,ak = (5.24)

∑
a∈A′(z)

xz3,ai +
∑

a∈A′(z)

xzN−7,ak +
∑

a∈A′(z)

xzN−5,ak +
∑

a∈A′(z)

xi2,aj;

∑
a∈A′(z)

xi1,ak + xi2,jz +
∑

a∈A′(z)

xi3,ak + xi4,jz + xkN−6,iz = (5.25)

∑
a∈A′(z)

xz2,ak +
∑

a∈A′(z)

xzN−6,ai +
∑

a∈A′(z)

xz4,ak +
∑

a∈A′(z)

xzN−4,ai;

∑
a∈A′(z)

xi2,ak + xi3,jz +
∑

a∈A′(z)

xi4,ak + xi5,jz + xkN−7,iz = (5.26)

∑
a∈A′(z)

xz3,ak +
∑

a∈A′(z)

xzN−7,ai +
∑

a∈A′(z)

xz5,ak +
∑

a∈A′(z)

xzN−5,ai;

N−3∑
r=1

xzr,jm +
N−3∑
r=1

xzr,km +
N−4∑
r=2

xjr,mi +
N−4∑
r=2

xkr,mi = (5.27)

2
N−5∑
r=2

xzr,mi +
N−2∑
r=N−4

xzr,mi +
N−3∑
r=1

xir,jm +
N−3∑
r=1

xir,km m ∈ A′(z);

xz2,mi + xz2,mk + xzN−3,im +
N−3∑
r=1

xir,jm +
N−3∑
r=1

xir,km +
N−4∑
r=2

xir,mj +
N−4∑
r=2

xkr,mj = (5.28)

xz1,jm + xz1,km + xzN−2,mj +
N−4∑
r=2

xzr,jm +
N−4∑
r=2

xzr,km + 2
N−5∑
r=3

xzr,mj+

N−3∑
r=N−4

xzr,mj + xz2,mj + xi1,mk + xj1,mk m ∈ A′(z);

∑
a∈A(z)

xz1,am +
N−4∑
r=2

N∑
g=1

g 6=m,z,j

xzr,gm + xzN−2,mi + xzN−2,mj + xiN−3,mk (5.29)

+ xjN−3,mk − x
z
N−4,mk = 1 m ∈ A′(z);∑

a∈A(z)

xz1,am +
N−4∑
r=2

N∑
g=1

g 6=m,z,j

xzr,gm + xzN−2,mi + xzN−2,mj +
N−4∑
r=1

xir,mk+ (5.30)

83

N−4∑
r=1

xjr,mk − 2
N−5∑
r=2

xzr,mk − xzN−4,mk − xzN−3,mk = 1 m ∈ A′(z);

∑
a∈A(z)

xz2,ma + xzN−3,im +
N−3∑
r=1

xir,jm +
N−3∑
r=3

xir,km +
N−3∑
r=3

xjr,km = (5.31)

N−4∑
r=1

xzr,jm +
∑

r=1,2,3,N−3

xzr,km + 2
N−4∑
r=4

xzr,km + xi1,mj + xi1,mk + xj1,mk m ∈ A′(z).

(5.32)

Theorem 5.1.5. Rewriting CSEC constraints based on (N − 4)! permutations, that

vertices 5, . . . , N of UN can be mapped into the vertices in A′(z) (non-adjacent vertices

of vertex z) of a given cubic graph, does not lead to any new constraints.

Proof. Note that the CSEC constraints can be classi�ed in three categories.

1) The constraints which do not contain any index from A′(z) such as Constraints

(5.2). Obviously, these kind of constraints do not vary by considering any of

those (N − 4)! permutations. Thus, changing the map does not lead to any new

constraints in this category.

2) The constraints which have only one index in A′(z) such as Constraints (5.6).

Obviously, di�erent permutations may change this index to another index inA′(z).

However, since we already consider all choices of that index, further consideration

of those (N − 4)! permutations only leads to repeating the constraints of this

category.

3) The constraints which include some summations so that those summations enu-

merate all indices in A′(z) such as Constraints (5.9). Obviously, writing the terms

of a summation in di�erent order has no e�ect, and so, considering those (N − 4)!

permutations only repeats the constraints of this category (N − 4)! times.

�

As mentioned earlier the above 31 types of constraints have natural interpreta-

tions. These vary from very simple ones to quite technical ones. Below we supply

explanations of just three types (5.2), (5,4) and (5.28). The others can be explained

84

by derivations that are conceptually similar.

Starting with (5.2) it is helpful to consider the con�guration shown in Figure

5.3.

j

i

k

z

Figure 5.3: A three degree vertex

Recall that any HC passes through z and uses exactly two out of three edges. Thus

starting at z one of i, j or k must precede z at (N − 1)st step (r = N − 1) and one

must follow z at the 1st step (r = 1). Now, by inspection, it is easy to see that for

r = 2, . . . , N − 3, xzr,ij = 0. For instance, if xz2,ij = 1 were possible that would mean

that i is the 2nd vertex on the HC starting at z and j is the 3rd vertex on that cycle.

But this implies that vertex k had to be visited on the �rst step which means that

there are no more neighbours of z left to return to it on the last step. This yields a

contradiction.

In Constraints (5.4), xi2,jk = 1 if an HC starts at vertex i and arrives at j after 2

steps, followed by transition from j to k. Since vertex z is only adjacent to i, j, k and

k is visited after j, z must be preceded by i , and succeeded by j, that is, xi1,zj = 1.

Otherwise, this constraint yields 0 = 0.

i z j k

Figure 5.4: Constraints (5.4)

85

To show that the constraint (5.28) is valid, we let each term of the right hand side

of this constraint be non-zero at a time and then analyse its in�uence on the other

terms of the constraint. For example, we assume xj1,mk = 1 (the last term in the right

hand side). Since vertex z is only adjacent to i, j, and k, one of the following (i) or

(ii) cases can occur.

(i) One con�guration that allows xj1,mk = 1 is shown in Figure 5.5, this con�guration

leads to xz1,jm = 1 and all other terms in right hand side are zero and the

only non-negative terms in left hand side are xz2,mk = 1 and
∑N−3

r=1 x
i
r,jm = 1.

This implies that the Constraint (5.28) is satis�ed in the form 2 = xz2,mk +∑N−3
r=1 x

i
r,jm = xj1,mk + xz1,jm = 2.

i z j m k

Figure 5.5: Constraints (5.28), case (i)

(ii) In the case displayed in Figure 5.6, when xj1,mk = 1, all other terms in right

hand side have zero value and in the left hand side only one of the terms in∑N−3
r=1 x

i
r,jm, namely, xiN−4,jm = 1 will be non-zero. That is, Constraint (5.28)

is satis�ed in the form 1 =
∑N−3

r=1 x
i
r,jm = xj1,mk = 1.

j m k z i

Figure 5.6: Constraints (5.28), case (ii)

Continuing these analyses results in 18 additional cases ((iii) - (xx)) which

are demonstrated in the following �gures. We show how Constraint (5.28) is

satis�ed in each case by introducing the non-negative terms of the constraint

for each case.

(iii) 1 = xz2,mk = xi1,mk = 1.

86

j z i m k

Figure 5.7: Constraints (5.28), case (iii)

(iv) 1 = xzN−3,im = xi1,mk = 1.

i m k z j

Figure 5.8: Constraints (5.28), case (iv)

(v) 2 =
∑N−3

r=1 x
i
r,km +

∑N−4
r=2 x

i
r,mj = xz2,mj + xz1,km = 2.

i z k m j

Figure 5.9: Constraints (5.28), case (v)

(vi) 1 =
∑N−4

r=2 x
k
r,mj = xz2,mj = 1.

k z i m j

Figure 5.10: Constraints (5.28), case (vi)

(vii) 1 =
∑N−4

r=2 x
k
r,mj =

∑N−3
r=N−4 x

z
r,mj = 1.

i z k m j

r = N − 4, N − 3

Figure 5.11: Constraints (5.28), case (vii)

(viii) 1 =
∑N−4

r=2 x
i
r,mj =

∑N−3
r=N−4 x

z
r,mj = 1.

k z i m j

r = N − 4, N − 3

Figure 5.12: Constraints (5.28), case (viii)

87

(ix) 2 =
∑N−4

r=2 x
i
r,mj +

∑N−4
r=2 x

k
r,mj = 2

∑N−5
r=3 x

z
r,mj = 2.

i z k m j

r = 3, ..., N − 5

Figure 5.13: Constraints (5.28), case (ix)

(x) 2 =
∑N−4

r=2 x
i
r,mj +

∑N−4
r=2 x

k
r,mj = 2

∑N−5
r=3 x

z
r,mj = 2.

k z i m j

r = 3, ..., N − 5

Figure 5.14: Constraints (5.28), case (x)

(xi) 1 =
∑N−3

r=1 x
i
r,km =

∑N−4
r=2 x

z
r,km = 1.

i z j k m

r = 2, ..., N − 4

Figure 5.15: Constraints (5.28), case (xi)

(xii) 1 =
∑N−3

r=1 x
i
r,km =

∑N−4
r=2 x

z
r,km = 1.

j z i k m

r = 2, ..., N − 4

Figure 5.16: Constraints (5.28), case (xii)

(xiii) 1 =
∑N−3

r=1 x
i
r,jm =

∑N−4
r=2 x

z
r,jm = 1.

i z k j m

r = 2, ..., N − 4

Figure 5.17: Constraints (5.28), case (xiii)

88

(xiv) 1 =
∑N−3

r=1 x
i
r,jm =

∑N−4
r=2 x

z
r,jm = 1.

k z i j m

r = 2, ..., N − 4

Figure 5.18: Constraints (5.28), case (xiv)

In case (xv), based on the position of vertex k, only one of the following terms

in left hand side can be non-zero. More precisely, if k appears one step before

m in an HC, then
∑N−3

r=1 x
i
r,km = 1, and

∑N−4
r=2 x

k
r,mj = 0 and if k visited in

any other position rather than one step before m, then
∑N−3

r=1 x
i
r,km = 0 and∑N−4

r=2 x
k
r,mj = 1.

(xv) 1 =
∑N−3

r=1 x
i
r,km +

∑N−4
r=2 x

k
r,mj = xzN−2,mj = 1.

m j z i

Figure 5.19: Constraints (5.28), case (xv)

An analogous reasoning for the con�guration shown in Figure 5.20 leads to

(xvi) 1 = xzN−3,im +
∑N−4

r=2 x
i
r,mj = xzN−2,mj = 1.

m j z k

Figure 5.20: Constraints (5.28), case (xvi)

In case (xvii), if vertex j is preceded exactly one step afterm, then
∑N−3

r=1 x
i
r,km =

1, and
∑N−4

r=2 x
i
r,mj = 1 in the left side of the constraints and accordingly the

terms xz2,mj, and x
z
1,km in the right hand side take value 1. Otherwise if j is not

visited in exactly one step after m, then
∑N−3

r=1 x
i
r,km = 1, and

∑N−4
r=2 x

i
r,mj = 0

in the left side and in the right side, we see xz2,mj = 0, and xz1,km = 1.

(xvii) 1 or 2 =
∑N−3

r=1 x
i
r,km +

∑N−4
r=2 x

i
r,mj = xz2,mj + xz1,km = 1 or 2.

89

i z k m

Figure 5.21: Constraints (5.28), case (xvii)

In case (xviii), if vertex i is preceded exactly one step after m, then xz2,mi = 1,

and
∑N−3

r=1 x
i
r,km = 0. Otherwise if j is not visited in exactly one step after m,

then xz2,mi = 0, and
∑N−3

r=1 x
i
r,km = 1.

(xviii) 1 = xz2,mi +
∑N−3

r=1 x
i
r,km = xz1,km = 1.

j z k m

Figure 5.22: Constraints (5.28), case (xviii)

Obviously, in case (xix) we see xz1,jm = 1 and
∑N−3

r=1 x
i
r,jm = 1. Also, if vertex k

is preceded exactly one step after m, then xj1,mk = 1, and xz2,mk = 1. Otherwise

if k is not visited in exactly one step after m, then xj1,mk = 0, and xz2,mk = 0.

(xix) 1 or 2 = xz2,mk +
∑N−3

r=1 x
i
r,jm = xz1,jm + xj1,mk = 1 or 2.

i z j m

Figure 5.23: Constraints (5.28), case (xix)

Similar reasoning applies to case (xx). If vertex i is preceded exactly one step

after m, then xz2,mi = 1, and
∑N−3

r=1 x
i
r,jm = 0. Otherwise if i is not visited in

exactly one step after m, then xz2,mk = 0, and
∑N−3

r=1 x
i
r,jm = 1.

(xx) 1 = xz2,mi +
∑N−3

r=1 x
i
r,jm = xz1,jm = 1.

k z j m

Figure 5.24: Constraints (5.28), case (xx)

90

5.2 Comparison of performance

We recall that Q := Q(G) is a polytope constructed as the convex hull of HCs of a

given graph G. Obviously, polytope Q is empty when G is a non-Hamiltonian graph

and we are hopeful that the polytope Q̂ which is constructed as an approximation of

Q will be empty as well. That is, the constraints that represent Q̂ should be infeasible

for a non-Hamiltonian graph.

Since Q is a subset of Q̂, the emptiness of Q̂ implies that the graph G is non-

Hamiltonian. However, whenever polytope Q̂ is non-empty, the result is inconclusive.

Hence, the following natural question arises: if we assume that a non-empty poly-

tope Q̂ implies Hamiltonicity, how frequently is this diagnosis incorrect? Filar et

al. [19] proved that, in the case of bridge graphs2, the re�ned parameter-free poly-

tope P̄ is always empty. Therefore, we only compare P̄ with the new constructed

model over non-bridge non-Hamiltonian (NBNH for short) cubic graphs. The new

constructed model P̄CSEC includes CSEC constraints (5.2)-(5.32) and the constraints

which represent P̄ (2.25)-(2.31). The results are reported in Table 5.1.

In Table 5.1, from the left, the �rst column shows the number of nodes in the family

of cubic graphs, the second columns displays the total number of NBNH graphs in

that particular family, the third and �fth columns display the number of such NHNB

graphs which had empty polytopes, P̄ and P̄CSEC, respectively, and the fourth and six

columns gives the ratio of the correct detection by P̄ and P̄CSEC respectively.

Table 5.1: Solving HCP for non-Hamiltonian cubic graphs varying from 10-18 nodes

n # NBNH # Detected by P̄ Ratio by P̄ # Detected by P̄CSEC Ratio by P̄CSEC

10 1 0 0 1 1.0

12 1 0 0 1 1.0

14 6 1 0.167 6 1.0

16 33 6 0.182 33 1.0

18 231 42 0.182 231 1.0

2A graph is called a bridge graph, if the set V can be partitioned into two non-empty sets such

that there is only one arc from one partition to the other one.

91

As seen in the above table, for cubic graphs containing up to 18 vertices, 223 out

of 272 undirected connected cubic graphs were so misdiagnosed by P̄ . In contrast,

the new constructed polytope P̄CSEC was successful at diagnosing non-Hamiltonicity

of all of tested instances. Finally, it should be noted that promising results indicated

in Table 5.1 strongly suggest the need for further work on extracting more structural

equality constraints.

92

Chapter 6

Conclusion and Future Work

In this thesis, we reviewed MDPs and the space of discounted occupational measures

when applied to HCP and TSP for a given graph. We also reviewed the parameter-

free model as an extension of the space of discounted occupational measures and then

re�ned this model by removing a number of redundant constraints. Accordingly, we

showed that all variables of this model are forced to be binary even if only the initial

O(N2) variables are constrained to be binary. Following that, we proved that if

all variables of the parameter-free model are binary the feasible space of this model

corresponds precisely to the set of Hamiltonian cycles of the associated graph.

In Chapter 3 we considered the convex combination of a Hamiltonian cycle policy

and its reverse. We showed that the resolvent-like matrix induced by this combined

policy can be expanded in terms of �nitely many powers of the probability transition

matrix corresponding to the underlying Hamiltonian cycle. We derived closed-form

formulae for the coe�cients of these powers which were reduced to expressions in-

volving the classical Chebyshev polynomials of the second kind.

In Chapter 4 we developed a generic method to discover and generate unidenti�ed

equality constraints that can be used to re�ne feasible regions of LP-relaxations of

integer programming problems, and demonstrated this model on the parameter-free

model which resulted in identi�cation of the 2-step constraints in Section 4.4.

93

In Chapter 5 we embedded cubic graphs in suitably constructed universal graph

and subsequently identi�ed many structural equality constraints by exploiting the

proposed method in Chapter 4. A comparison study between the performance of this

updated model with that of the original parameter-free model in terms of their ability

to correctly identify non-Hamiltonian cubic graphs up to size 18 revealed promising

results. While the original parameter-free model was successful at identifying approx-

imately 18 % of non-Hamiltonian non-bridge graphs, it failed on the remaining 82%

of the latter. However the new model achieved 100% success rate with identifying all

tested non-Hamiltonian instances.

There are several naturally arising topics for future research in this direction.

They include the following:

1. A naturally arising topic for future research is to exploit the proposed method in

Chapter 4 to extract e�ective inequality constraints for IP problems. Notably,

one can use the ECA-method to generate equality constraints for IP problems.

Then, one might �nd good inequality constraints by projecting the feasible

space of those IP formulations into the original, lower dimensional, variable

space.

2. As mentioned in Remark 5.1.4, a sparser universal graph leads to a tighter

approximation for the convex hull of HCs of a given cubic graph. Note that

designing sparse universal graphs for regular graphs is extensively studied in [1]

and references within. However, designing a universal graph with the properties

that are discussed in Section 5.2 is a new problem. For example, following graph

is a universal graph with our desired properties.

94

Figure 6.1: A sparse universal graph

In this graph, we removed 4N − 4 edges from the complete graph, while in

the universal graph UN that was used in Section 5.2, we only removed N − 4

edges from the complete graph. This indicates the further advantages that can

still be made, and hence designing a sparser universal graph with the desired

properties is an interesting problem for future work, which seems likely to lead

to better approximations.

3. One practical issue with the parameter-free model is that it possesses many

variables, and so despite being polynomially large, it is still very ine�cient.

Ideally, we would like to design an equivalently tight model with only O(N2)

variables. However, early experiments along this line have indicated that using

only O(N2) variables decreases the accuracy of detecting non-hamiltonicity.

One potential idea for overcoming this issue is to construct a family of graphs

which are, in some sense, universal for all cubic graphs (see Section 6.1). Based

on this family of universal graphs, we could establish stronger structural equality

constraints for TSP and HCP on cubic graphs using only O(N2) variables.

95

4. As discussed in item 2 above, we can improve the accuracy of detecting non-

Hamiltonicity through having a model with more variables (increasing the num-

ber of indices) or considering more vertices at a time (see Section 6.1). It seems

increasing the indices is more expensive than increasing the number of vertices

considered at a time. Therefore, it seems preferable to use the latter alternative

to improve the accuracy. However, a proper comparison study should be carried

out to determine which combination of alternatives is the most e�ective. For

example, we could try a 3-index model and consider 3 vertices at a time, or

alternatively a 2-index model, and consider 4 or 5 vertices at a time, and see

which model is the most accurate and e�cient.

6.1 CSEC constraints based on 2-index variables

In this section1, we demonstrate the idea of maximising the bene�t of a model with

O(N2) variables. In particular, we may be interested in having a model with only

2-index variables, namely xij, for cubic graphs. In the directed case, the variable

xij = 1 if the HC goes from vertex i to vertex j and otherwise xij = 0.

Considering KN , the only equality constraints based on the 2-index variables are

assignment constraints which are listed below

N∑
i=1
i 6=j

xij = 1, j = 1, . . . , N

N∑
j=1
j 6=i

xij = 1, i = 1, . . . , N.

It is easy to check that the dimension of conv(H(G)) is much smaller than the

dimension of conv(KN) for any given cubic graph G. Therefore, there exist a number

of structural equality constraints in 2-index variables model.

1The results of this section is under review in a journal for publication [32].

96

To extract a set of structural equality constraints for 2-index variable models, a

very natural thought is to exploit the analysis that discussed in Section 4.3. However,

that process will not lead to any structural equality constraints, because unlike for

the parameter-free model (with 4-index variables), the dimension of conv(H(G)) is

equal to the dimension of conv(KN) in the 2-index variable model. We will extend

the idea of using one universal graph, to using several subgraphs in order to extract

new equality constraints for the 2-index case.

We consider three arbitrary vertices of complete graph KN and remove N − 4

edges conecting to each of these three vertice as in Section 5.2. This construction

results in a graph which has three vertices with degree 3. Enumerating all such graphs

and removing those which are isomorphic, we found that there exist 40 graphs with

that properties, for any N ≥ 12. We call these 40 graphs quasi-universal graphs and

denote them by U (1), . . . , U (40). The name quasi-universal graph is inspired from the

fact that each U (i) graph is not universal for all cubic graphs, but we can �nd a copy

of any given cubic graph G in at least one of the quasi-universal graphs. We also

consider subgraphs of U (i) graphs that are constructed by just taking into account

three degree 3 vertices and their adjacent edges and vertices. We call them kernels

and denote them by G1, . . . ,G40.

Comparing the dimension of conv
(
H(U (i))

)
, i = 1, . . . , 40 to the dimension

of conv (KN) shows that there are only thirteen interesting quasi-universal graphs,

namely U (1), . . . , U (13) and the other quasi-universal graphs will result in no new

equality constraints. The kernels corresponding to those thirteen quasi-universal

graphs, along with their associated structural equality constraints obtained from the

method in Section 4.3, are demonstrated below.

Remark 6.1.1.

1. The appended structural equality constraints have been identi�ed via the method

in Section 4.3, but have not yet been formally proved. In principle, such proofs

should be straightforward (but extensive) by the enumeration of all possible

97

cases.

2. The constraints applicable for each kernel are valid for any graph that contains

that kernel as an induced subgraph. However, if only cubic graphs are consid-

ered, some constraints will be redundant, for example, those arising from kernel

G12.

98

Kernel G1:

12 3

4N − 1

N

Figure 6.2: Demonstration of G1

Associated 2-index structural equality constraints:

N−2∑
i=2

xi(N−1) = 1,

N−2∑
j=4

N−2∑
i=4
i 6=j

xij = N − 6.

Kernel G2:

12 3

4

N

Figure 6.3: Demonstration of G2

Associated 2-index structural equality constraints:

x12 + x13 = 1,

x12 + x21 = 1,

99

x31 = x12,

x12 + x34 + x42 = 1,

x24 + x43 = x12,

N−1∑
i=5

x4i = x24 + x34,

N−1∑
i=2

xi4 = 1.

Kernel G3:

12

34

N

Figure 6.4: Demonstration of G3

Associated 2-index structural equality constraints:

x13 + x31 = 1,

x21 + x24 = x12 + x13,

x12 + x13 + x42 − x21 = 1,

N−1∑
i=5

x3i = x13,

x13 +
N−1∑
i=5

xi3 = 1.

100

Kernel G4:

1 23

4N − 1 N

Figure 6.5: Demonstration of G4

Associated 2-index structural equality constraints:

x24 + x42 = x13 + x31.

Kernel G5:

12 3

4 5N

Figure 6.6: Demonstration of G5

Associated 2-index structural equality constraints:

x34 = 0,

x43 = 0,

x12 + x21 = 1,

x31 +
N−1∑
i=5

x3i = 1,

x13 +
N−1∑
i=5

xi3 = 1,

x12 + x42 +
N−1∑
i=5

x4i − x31 = 1,

101

x24 +
N−1∑
i=5

xi4 = x12 + x13.

Kernel G6:

12 3

4

5

N − 2

N − 1

N

Figure 6.7: Demonstration of G6

Associated 2-index structural equality constraints:

x34 = 0,

x43 = 0,

x12 + x21 = 1,

x23 + x31 = x12,

x12 + x13 + x32 = 1.

Kernel G7:

12 3

4 5 N

N − 1

Figure 6.8: Demonstration of G7

102

Associated 2-index structural equality constraints:

x34 = 0,

x43 = 0,

x12 + x21 = 1,

x23 + x31 = x12,

x12 + x13 + x32 = 1.

Kernel G8:

12 3

4

5

N

Figure 6.9: Demonstration of G8

Associated 2-index structural equality constraints:

x34 = 0,

x43 = 0,

x12 + x21 = 1,

x23 + x31 = x12,

x12 + x13 + x32 = 1,

x13 + x23 + x45 + x53 = 1,

x35 + x54 = x13 + x23,

N−1∑
i=6

xi3 = x45,

N−1∑
i=6

xi4 = x35,

103

x13 + x23 +
N−1∑
i=5

x4i = 1,

N−1∑
i=5

x3i = x13 + x23.

Kernel G9:

12 3

4

5 6

N − 2 N − 1 N

Figure 6.10: Demonstration of G9

Associated 2-index structural equality constraints:

xN−2,N−1 = 0,

N−3∑
i=2

xi(N−2) = 1,

N−3∑
i=2

xi(N−1) = 1,

N−3∑
i=2

x(N−2)i = 1,

N−3∑
i=2

x(N−1)i = 1,

4∑
i=2

 4∑
j=2
j 6=i

xij +
N−3∑
j=7

xij

+
N−3∑
i=7

 4∑
j=2

xij +
N−3∑
j=7
j 6=i

xij

 = N − 8.

104

Kernel G10:

12 3

4

5

N − 1

6

N

Figure 6.11: Demonstration of G10

Associated 2-index structural equality constraints:

x4(N−1) = 0,

x(N−1)4 = 0,

N−2∑
i=2
i 6=4

xi(N−1) = 1,

N−2∑
i=2
i 6=4

x4i = x21 + x31,

N−2∑
i=2
i 6=4

xi4 = x12 + x13,

3∑
i=2

 3∑
j=1
j 6=i

xij +
N−2∑
j=7

xij

+
N−2∑
i=7

 3∑
j=2

xij +
N−2∑
j=7
j 6=i

xij

 = N − 6.

105

Kernel G11:

12 3

4 5 N 6

Figure 6.12: Demonstration of G11

Associated 2-index structural equality constraints:

x23 = 0,

x24 = 0,

x32 = 0,

x34 = 0,

x42 = 0,

x43 = 0,

x12 + x21 = 1,

N−1∑
i=7

x2i = x12,

x12 +
N−1∑
i=7

xi2 = 1,

x31 +
N−1∑
i=5

x3i = 1,

x13 +
N−1∑
i=5

xi3 = 1,

x12 +
N−1∑
i=5

x4i − x31 = 1,

N−1∑
i=5

xi4 = x12 + x13.

106

Kernel G12:

12 3

4 5

6

N

N − 1

Figure 6.13: Demonstration of G12

Associated 2-index structural equality constraints:

x34 = 0,

x43 = 0.

Kernel G13:

12 3

4 56

N

Figure 6.14: Demonstration of G13

107

Associated 2-index structural equality constraints:

x23 = 0,

x24 = 0,

x32 = 0,

x34 = 0,

x42 = 0,

x43 = 0,

x21 +
N−1∑
i=6

x2i = 1,

x31 + x35 +
N−1∑
i=7

x3i = 1,

x12 +
N−1∑
i=6

xi2 = 1,

x13 + x53 +
N−1∑
i=7

xi3 = 1,

N−1∑
i=5

x4i = x21 + x31,

N−1∑
i=5

xi4 = x12 + x13.

To exploit the above quasi-universal graphs, we consider all combinations of three

vertices of a given cubic graph G, one combination at a time. Suppose we consider

vertices i, j, and k when i < j < k and construct a subgraph of graph G, namely

Gijk, which contains vertices i, j, k and their adjacent vertices and edges. We then

check if Gijk is isomorphic with any of those thirteen interesting kernels. For example,

suppose Gijk is isomorphic with G1 under mapM1, that is Gijk =M1(G1). Therefore,

we can relabel the variables in the constraints for G1 based on mapM1 and add them

to the set of constraints for that graph.

To illustrate the above discussion, consider the following 12-vertex cubic graph.

108

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6.15: A 12-vertex cubic graph

Then G123 is the following subgraph:

1

2

3

4

5

Figure 6.16: Subgraph G123

It is clear, by construction in the case N = 12, that each Gijk can be isomorphic to

some Gi for i = 1, . . . , 13. For instance G123 is isomorphic with G3 via the isomorphism

M3 : {1, 2, 3, 4, 12} → {3, 2, 5, 1, 4}.

We then useM3 to construct a map, namelyMU
3 , such that G ⊂MU

3 (U (3)). To

achieve this, we can consider MU
3 as the same map as M3 for those vertices which

belong to G123 and for the remaining vertices, we just choose an arbitrary map. For

instance we could choose

MU
3 : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} → {3, 2, 5, 1, 6, 7, 8, 9, 10, 11, 12, 4},

Obviously, exploiting Corollary 5.1.2, we see conv(H(G)) ⊂ conv(H(MU
3 (U (3)))).

Therefore, following constraints hold for this 12-vertex graph:

xMU
3 (1)MU

3 (3) + xMU
3 (3)MU

3 (1) = 1,

xMU
3 (2)MU

3 (1) + xMU
3 (2)MU

3 (4) = xMU
3 (1)MU

3 (2) + xMU
3 (1)MU

3 (3),

xMU
3 (1)MU

3 (2) + xMU
3 (1)MU

3 (3) + xMU
3 (4)MU

3 (2) − xMU
3 (2)MU

3 (1) = 1,

109

N−1∑
i=6

xMU
3 (3)MU

3 (i) = xMU
3 (1)MU

3 (3),

xMU
3 (1)MU

3 (3) +
N−1∑
i=5

xMU
3 (i)MU

3 (3) = 1.

We repeat this procedure for all possible combinations of three vertices out of twelve.

This analysis shows that 20 quasi universal graphs cover the 12-vertex graph isomor-

phically. This results are reported in Table 6.1.

Table 6.1: Isomorphisms for quasi-universal graphs

Chosen vertices Kernel k-th MapMk

1, 2, 3 3 {1, 2, 3, 4, 12} → {3, 2, 5, 1, 4}

1, 2, 4 3 {1, 2, 3, 4, 12} → {4, 2, 6, 1, 3}

1, 2, 5 7 {1, 2, 3, 4, 5, 11, 12} → {1, 2, 4, 3, 5, 6, 7}

1, 2, 6 7 {1, 2, 3, 4, 5, 11, 12} → {1, 2, 3, 4, 6, 5, 8}

1, 2, 7 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 7, 5, 8, 9}

1, 2, 8 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 8, 6, 7, 10}

1, 2, 9 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 9, 7, 11, 12}

1, 2, 10 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 10, 8, 11, 12}

1, 2, 11 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 11, 10, 9, 12}

1, 2, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {1, 2, 3, 4, 12, 10, 11, 9}

1, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 1, 2, 3, 4}

2, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 2, 1, 3, 4}

3, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 3, 1, 2, 5}

4, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 4, 1, 2, 6}

5, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 5, 3, 6, 7}

6, 11, 12 6 {1, 2, 3, 4, 5, 10, 11, 12} → {12, 11, 10, 9, 6, 4, 5, 8}

7, 11, 12 7 {1, 2, 3, 4, 5, 11, 12} → {11, 12, 10, 9, 7, 8, 5}

8, 11, 12 7 {1, 2, 3, 4, 5, 11, 12} → {11, 12, 9, 10, 8, 6, 7}

9, 11, 12 3 {1, 2, 3, 4, 12} → {9, 11, 7, 12, 10}

10, 11, 12, 3 {1, 2, 3, 412} → {10, 12, 8, 119}

In the above table, the �rst column shows the combination of three vertices cho-

sen, and the second column indicates a kernel which is isomorphic to the subgraph

constructed by those three vertices. The third column provides an isomorphism which

maps the kernel on that constructed subgraph. We utilise the maps in the third col-

umn as discussed in the mentioned example to construct constraints for the given

110

12-vertex graph. Note that the maps in the third column are not unique and one

could gain more constraints through an analogous way to that discussed in Section

5.2.

These theoretical and numerical results along with the results of Chapter 5, nat-

urally, lead to the following conjecture.

Conjecture 6.1.2. For a given non-Hamiltonian cubic graph G, only a constant

number of combinations of vertices need to be considered in order to obtain su�-

ciently many structural equality constraints to ensure that the constructed polytope is

infeasible.

111

References

[1] N. Alon and M. Capalbo, �Sparse universal graphs for bounded-degree graphs�,

Random Structures and Algorithms, 31(2):123�133, 2007.

[2] D.L. Applegate, R.E. Bixby, V. Chvatal, and W.J. Cook, The Traveling Sales-

man Problem: A Computational Study, Princeton University Press, New Jer-

sey, 2007.

[3] D. Avis, B. Bremner, and R. Seidel, �How good are convex hull algorithms?�,

Computational Geometry: Theory and Applications, 7:265�302, 1997.

[4] D. Avis and K. Fukuda,�A pivoting algorithm for convex hulls and vertex

enumeration of arrangements and polyhedra�, Discrete & Computational Ge-

ometry, 8(3):295�313, 1992.

[5] D. Avis and K. Fukuda, �Reverse search for enumeration�, Discrete Applied

Mathematics, 65:21�46, 1996.

[6] K. Avrachenkov, A. Eshragh, and J.A. Filar, �On transition matrices of

Markov chains corresponding to Hamiltonian cycles�, Annals of Operations

Research doi:10.1007/s10479�014�1642�2, 2014.

[7] B. Balas, �Projection, lifting and extended formulation in integer and combi-

natorial optimization�, Annals of Operations Research, 140:125�161, 2005.

[8] V.S. Borkar, V. Ejov, and J.A. Filar, �Directed Graphs, Hamiltonicity and

Doubly Stochastic Matrices�, Random Structures and Algorithms, 25(4):376�

395, 2004.

112

[9] V.S. Borkar, V. Ejov, and J.A. Filar, �On the Hamiltonicity Gap and Doubly

Stochastic Matrices�, Random Structures & Algorithms, 34(4):502�519, 2009.

[10] T. Christof and A. Loebel, �PORTA: Polyhedron Representation Transforma-

tion Algorithm�, http://www.zib.de/Optimization/Software/Porta, 1997.

[11] M. Conforti, G. Cornuejols, and G. Zambelli, Integer Programming, Springer-

Verlag, Berlin, 2014.

[12] M. Desrochers and G. Laporte, �Improvements and extensions to the Miller-

Tucker-Zemlin subtour elimination constraints�, Operations Research Letters,

10:27�36, 1991.

[13] V. Ejov, J.A. Filar, and J. Gondzio, �An Interior Point Heuristic for the

Hamiltonian Cycle Problem via Markov Decision Processes�, Journal of Global

Optimization, 29:315�334, 2004.

[14] V. Ejov, J.A. Filar, M. Haythorpe, and G.T. Nguyen, �Re�ned MDP-Based

Branch-and-Bound Algorithm for the Hamiltonian Cycles Problem�, Mathe-

matics of Operations Research, 34(3):758�768, 2009.

[15] V. Ejov, J.A. Filar, W. Murray, and G.T. Nguyen,�Determinants and Longest

Cycles of Graphs�, SIAM Journal of Discrete Mathematics, 22(3):1215�1225,

2008.

[16] A. Eshragh and J.A. Filar, � �Hamiltonian Cycles, Random Walks and Dis-

counted Occupational Measures�, Mathematics of Operations Research,

36(2):258�270, 2011.

[17] E.A. Feinberg, �Constrained Discounted Markov Decision Processes and

Hamiltonian Cycles�, Mathematics of Operations Research, 25(1):130�140,

2000.

[18] J.A. Filar, �Controlled Markov Chains, Graphs & Hamiltonicity�, Foundation

and TrendsR© in Stochastic Systems, 1(2):77�162, 2006.

113

[19] J.A. Filar, M. Haythorpe, and S. Rossomakhine, `A new heuristic for detect-

ing non-Hamiltonicity in cubic graphs�, Computers & Operations Research,

64:283�292, 2015.

[20] J.A. Filar and D. Krass, �Hamiltonian Cycles and Markov Chains�, Mathe-

matics of Operations Research, 19(1):223�237, 1994.

[21] J.A. Filar and A. Moeini, �Hamiltonian cycle curves in the space of discounted

occupational measures�, Annals of Operations Research doi:10.1007/s10479�

015�2030�2, 2015.

[22] J.A. Filar and K. Vrieze, Competitive Markov Decision Processes, 1st Edition,

Springer-Verlag, New York, 1996.

[23] K. Fukuda, T.M. Liebling, and F. Margot, �Analysis of backtrack algorithms

for listing all vertices and all faces of a convex polyhedron�, Computational

Geometry - Theory and Applications, 8:1�12, 1997.

[24] M.R. Garey, D.S. Johnson and R. Tarjan, �The planar Hamiltonian circuit

problem is NP-complete�, SIAM Journal on Computing, 5:704�714, 1976.

[25] E. Gawrilow and M. Joswig, �Polymake: a framework for analyzing convex

polytopes�, In: G. Kalai et al (eds.) �Polytopes Combinatorics and Computa-

tion�, DMV Seminar 29:43�73. Springer Basel AG, 2000.

[26] L. Gouveia, L. Simonetti, and E. Uchoa, �Modeling hop-constrained and

diameter-constrained minimum spanning tree problems as Steiner tree prob-

lems over layered graphs�, Mathematical Programming, 128:123�148, 2011.

[27] L.C.M. Kallenberg, Linear Programming and Finite Markovian Control Prob-

lems, Mathematical Centre Tracts 148, Amsterdam, 1983.

[28] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,

Springer-Verlag, Berlin, 2000.

[29] N. Litvak and V. Ejov, �Markov Chains and Optimality of the Hamiltonian

Cycle�, Mathematics of Operations Research, 34(1):71�82, 2009.

114

[30] A. Moeini, �Identi�cation of new Equality Constraints for Integer Program-

ming Problems�, European Journal of operational research, (Under review)

[31] A. Moeini and J.A. Filar, �Approximations of the convex hall of Hamiltonian

cycles for cubic graphs�, Mathematical programming , (Under review)

[32] A. Moeini and J.A. Filar, �Structural Equality Constraints for TSP on cubic

graphs�, Mathematical Programming Computation, (Under review)

[33] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, 1st Edition, Wiley-Interscience, New Jersey, 2005.

[34] G. Reinelt, TSPLIB.

http://www.iwr.uniheidelberg.de/groups/comopt/software/TSPLIB95/

[35] H.D. Sherali and P.J. Driscoll, �On tightening the relaxations of Miller-Tucker-

Zemlin formulations for asymmetric traveling salesman problems�, Operations

Research, 50(4):656�669, 2002.

[36] W.T. Tutte, �On Hamiltonian circuits�, Journal of the London Mathematics

Society, 21:98�101, 1946.

[37] H. Weyl, �Elementare Theorie der konvexen Polyeder. Commentarii Mathe-

matici Helvetici, 7:290-306, 1935. Translation in: H. Kuhn, A. Tucker, Con-

tributions to the Theory of Games I, Princeton University Press, Princeton,

New Jersey, pp. 3�18, 1950.

[38] L. Wolsey, �Strong formulations for mixed integer programming: a survey�,

Mathematical Programming, Series B, 45:173�191, 1989.

[39] G.M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 2007.

115

