Oxygen Dynamics in Algal Based Wastewater Treatment Systems

Richard Andrew Evans B.Sc.(Hons.)

School of the Environment.

Faculty of Science and Engineering.

Flinders University

Submitted as a PhD thesis at Flinders University of South Australia. March 2012.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Lichard ED

Acknowledgments

I would like to thank all of my colleagues from the former Department of Environmental Health and Biomedical Engineering at Flinders Medical Centre; Given my long tenure in EH during my research it may be best to do this in order of appearance (as best as my memory can now provide); Duncan Craig, Alana Hansen, Peter Hobson, Michelle Critchley, Megge Miller, Briony Vickery, Maria Wilson, Ben Pol, Linda Health, Julanta Ciuk, John Edwards, Richard Bentham, Emily Fearnley, Brian Bridger, Jack Beasly, Darcy Schultz, Robin Woolford, Kateryna Babina, David Sweeney, Eddie Herdianto, Michael Short, Ben Vandenakker, 'the evil third twin', Louis Bradbury, Akio Yamamoto, Kirstin Ross, Sharyn Gaskin, Iryanti Suprihatin, Cheryl Caldwell, Neil Buchanan, Mark Disher, Team Honda, Captain Beefheart, Magnus Fairweather Peabody, Monte Zuma, Peke Deboo, Snoop Dog and of course Mrs Lincoln; to those many I have not mentioned I thank you also. Huge huge thanks go to Monika, Ian and Kateryna, Catherine and David and other colleagues and friends in the Department of Health without whom I would surely have lost my way.

Of course great thanks are offered to my supervisors Nancy Cromar and in particular Howard Fallowfield for his notably notable patience and support, and enthusiasm for science without which I would not have finished.

Lastly and certainly not leastly I offer my deepest thanks to Roma and Dylan for all the encouragement and patience they have shown over the years and of course my wonderful sister Jane, Mum and Mike for all their kind words and support.

Table of Contents

Decl Ackı	arationi nowledgementsii
Chap Intro 1.0	oter 1 duction and Aims of the study Introduction
Chap Liter 2.1	oter 2 ature review (Part 1) Introduction
2.2	Wastewater treatment and Disposal
2.3	Bolivar WWTP and Wastewater Reuse in South Australia8
2.4	Biological Processes in Ponds11
2.5	Photosynthesis in Algal Based Wastewater treatment Systems13
2.6	Dissolved Inorganic and Organic Carbon16
2.7	Productivity in Algal Pond Systems
	Quotients of Production21
	Mixing and Productivity24
	Measuring Productivity25
Chap	oter 3
Liter 3.1	ature review (Part 2) Introduction
3.2	Complexity in Ecological Systems and Models of Photosynthesis
	Algal Fluorescence
	Oxygen Dynamics in Natural and Laboratory Based Systems32
	Photoinhibition, Pmax and Alpha36
	The Primary Productivity Algorithm Round Robin (PPARR)

3.3	Conclusions and Purpose	43
Chaj Mate	pter 4 erials and Methods	
4.1	HRAP Bioreactor	45
	Physical Characterisation	
	Re-aeration	49
	Light Source	49
	Photon Flux Density	50
	Light Attenuation	50
	Wet Chemistry	
	Chlorophyll_a	51
	Suspended and Volatile Suspended Solids	51
	Carbon	51
	Chemical Oxygen Demand	51
	Biochemical Oxygen Demand	52
	Bacterial Protein	52
	Online Data	
	Dissolved Oxygen	
	рН	53
	Temperature	53
	Standard Photosynthesis-Irradiance Determinations	53
	Experimental Treatments and Data Collection	53

4.2	Murray Bridge HRAP	54
4.3	Bolivar WSP	54
	System Characterisation	54
	Sampling and Experimental Design	54
	Online Monitoring Stations	55
	Weather Station	55
	Thermistor Network	56
	Sampling and Downloading Schedule	56
	Wet Chemistry	56
	Incident and Transmitted Light	57
	Data Collation and Analysis	.57

Chapter 5 HRAP Bioreactor

	Purpose	
5.1	Introduction	59
5.2	Materials and Methods	63
5.2.1	Experimental Design	63
	Treatment 1	65
	Treatment 2	65
	Treatment 3	65
	Chlorophyll_a	65
	Dissolved Oxygen	65

	Light Attenuation65
	Temperature65
	Carbon66
	Bacterial Protein
	Steady State Conditions66
	Photoperiod
5.3	Results and Discussion
5.3.1	Measures of Pond Performance
	Dissolved Oxygen67
	Algal Biomass70
	Suspended and Volatile Suspended Solids70
	Bacterial Protein73
	Inorganic Carbon74
	Light Attenuation74
5.3.2	Online Data and PI Determinations78
	Dissolved Oxygen78
	Temperature Variation79
	Oxygen Utilisation Rates81
	Gross and Net Photosynthetic Rates
	Comparison of Standard and Online Photosynthesis-Irradiance Metrics
5.4	Conclusions

Chapter 6 Oxygen and Temperature Dynamics Bolivar WSP 1	
	Purpose
6.1	Introduction
6.2	Materials and Methods102
6.2.1.	Sampling and Experimental Design102
	Sampling and Downloading Schedule104
	Wet Chemistry105
	Light Attenuation105
	Online PAR105
	Pond Dissolved Oxygen Dynamics105
	Surface Plots
	Sampling Periods106
6.3.	Results and Discussion107
6.3.1.	Standard Measures of Pond Performance107
	Biomass109
	Inorganic Carbon111
	Light Attenuation111
6.3.2. and Th	Factors Associated with Patterns of Change in Pond Temperature nermal Stratification
	February 2005 Thermal Gradient Surface Plots122
	May 2005 Thermal Gradient Surface Plots126
	Thermal Gradient Discussion129
	Conclusions134

6.3.3. Conce	Factors Associated with Patterns of Change in Dissolved Oxygen ntration
	Grab Samples
	Online DO and Temperature
	February 2005 Dissolved Oxygen and Temperature Surface Plots
	May 2005 Dissolved Oxygen and Temperature Surface Plots147
	Factors Determining Dissolved Oxygen and Temperature Variation
	Conclusions and Implications for Wastewater Treatment
6.3.4.	Rates of Photosynthesis160
	Comparison of Gross and Net Photosynthetic Rates
6.4.	Conclusions180
Char	oter 7
Discu	ission
7.1.	Introduction
7.2.	Laboratory Based Validation Study

7.2.1.	Laboratory Based System Operation1	83
7.3.	Bolivar WSP1	86
7.4.	Further Studies	99

Appendices

А	Macros and Scripts used for Preparation of Surface Plots	200
В	Electronic Files	218
С	Factor Analysis Output Files	219
Refe	rences	247

List of Tables

Table 4.1	HRAP Bioreactor specifications47
Table 5.1	Summary Data HRAP68
Table 5.1 and Biomass I	Summary Data HRAP Wastewater Quality Parameters
Table 5.3	Pre-Dawn Oxygen Utilisation Rates
Table 5.4	Pre-Dawn Oxygen Utilisation Rates
Table 5.5	Summary Statistics for Standard PI Apparatus95
Table 6.1	Summary Data WSP February 2005108
Table 6.2	Summary Data WSP May 2005108
Table 6.3	Summary Online Data WSP February 2005118
Table 6.4	Summary Online Data WSP May 2005119
Table 6.5	Pre-Dawn Average Oxygen Utilisation Rate169
Table 6.6 Norma	Pre-Dawn Average Oxygen Utilisation Rate lised to Unit Chlorophyll_a170
Table 6.7	Post-Dawn Average Gross Photosynthetic Rate172
Table 6.8 Norma	Post-Dawn Average Gross Photosynthetic Rate lised to Unit Chlorophyll_a172
Table 6.9	Post-Dawn Average Net Photosynthetic Rate174
Table 6.10 Norma	Post-Dawn Average Net Photosynthetic Rate lised to Unit Chlorophyll_a174
Table 7.1	Literature MBP Observations
Table 7.2	Literature MBP Gross Primary Productivity Observations
Table 7.3	Summary OUR, GPR, Pnet198
Table 7.4	Summary Biomass Normalised Photosynthetic Rates198

List of Figures

Figure 2.1	The Cycle of Oxygen and Algal Production12
Figure 3.1 and Green (19 as a function of	Reproduction of figure from the paper of Emmerson 34), showing the oxygen production rate of the alga Gigartina of light intensity
Figure 3.2 evolution at in 1987)	Representative PI trace showing photosynthetic O2 creasing levels of irradiance (adapted from Dubinsky et al.
Figure 3.3 Reynolds 2000	Hypothetical photosynthesis-irradiance plots (adapted from 6)
Figure 3.4	Factor Analysis of subset of the ClimPP data set42
Figure 4.1	HRAP Bioreactor (Plan View)45
Figure 4.2	HRAP Bioreactor (Side View)45
Figure 4.3	Emission spectra of Osram HQI 400W/D metal halide lamp
Figure 4.4	WSP Plan Showing Sampling Locations58
Figure 5.1 Experimental	Box and Whisker Plots of Dissolved Oxygen for each Treatment
Figure 5.2 for each Expen	Box and Whisker Plots of Chlorophyll_a Concentration rimental Treatment
Figure 5.3 for each Expen	Box and Whisker Plots of Suspended Solids Concentration rimental Treatment
Figure 5.4 Experimental	Box and Whisker Plots of Protein Concentration for each Treatment
Figure 5.5 each Experime	Box and Whisker Plots of Inorganic Carbon Concentration for ental Treatment
Figure 5.6 Treatment 1	Scatter-Plots of Average temperature and Dissolved Oxygen
Figure 5.7 Treatment 2	Scatter-Plots of Average temperature and Dissolved Oxygen

Figure 5.8 Treatment 3	Scatter-Plots of Average temperature and Dissolved Oxygen
Figure 5.9	Murray bridge HRAP Representative Online Data85
Figure 5.10	Murray bridge HRAP Net Photosynthetic rate
Figure 5.11	Scatter-plot of Net Photosynthetic Rate Treatment 188
Figure 5.12	Scatter-plot of Net Photosynthetic Rate Treatment 289
Figure 5.13	Scatter-plot of Net Photosynthetic Rate Treatment 391
Figure 5.14 P, Treatment 1	Scatter-plot of Net Photosynthetic Rate (Standard PI and Online
Figure 5.15 P, Treatment 2	Scatter-plot of Net Photosynthetic Rate (Standard PI and Online 94
Figure 5.16 P, Treatment 3	Scatter-plot of Net Photosynthetic Rate (Standard PI and Online 395
Figure 6.1	WSP Plan Showing Sampling Locations104
Figure 6.2 (location I) Febr	Scatter Plot of Representative Data of PAR versus Depth for NW ruary 2005113
Figure 6.3 (location I) May	Scatter Plot of Representative Data of PAR versus Depth for NW 2005114
Figure 6.4 Location Depth	Box and Whisker plots of Pond Temperature for each Sampling of 25cm, February and May 2005120
Figure 6.5 Location Depth	Box and Whisker plots of Pond Temperature for each Sampling of 25, 50, 75cm, February 2005120
Figure 6.6 Location Depth	Box and Whisker plots of Pond Temperature for each Sampling of 25, 50, 75cm, May 2005121
Figure 6.7 average of 10 d	Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; ays data for <u>Midnight</u> February 2005124
Figure 6.8 average of 10 d	Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; ays data for <u>Dawn</u> February 2005124
Figure 6.9 average of 10 d	Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; ays data for <u>Mid-day</u> February 2005125
Figure 6.10 average of 10 d	Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; ays data for <u>Sunset</u> February 2005125

Figure 6.11 Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; average of 10 days data for <u>Midnight</u> May 2005
Figure 6.12Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity;average of 10 days data for Dawn May 2005
Figure 6.13 Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; average of 10 days data for <u>Mid-day</u> May 2005
Figure 6.14 Surface Plot of Thermal Gradient, Rose Plot of Wind Velocity; average of 10 days data for <u>Sunset May</u> 2005129
Figure 6.15 Factor Analysis of Thermal Stratification February 2005132
Figure 6.16 Factor Analysis of Thermal Stratification May 2005133
Figure 6.17Box and Whisker Plots of Dissolved Oxygen for each LocationFebruary and May 2005140
Figure 6.18 Box and Whisker Plots of Dissolved Oxygen for each Location February 2005
Figure 6.19 Box and Whisker Plots of Dissolved Oxygen for each Location May 2005
Figure 6.20 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Midnight</u> February 2005
Figure 6.21 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Dawn</u> February 2005144
Figure 6.22 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Mid-day</u> February 2005145
Figure 6.23 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Sunset</u> February 2005145
Figure 6.24 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Midnight</u> May 2005148
Figure 6.25 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Dawn</u> May 2005149
Figure 6.26 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Mid-day</u> May 2005149
Figure 6.27 Surface Plot of DO, Temperature, Rose Plot of Wind Velocity, PAR; 'average day' data for <u>Sunset</u> May 2005149

Figure 6.28Factor Analysis of DO, PAR, Wind VelocityFebruary 2005152
Figure 6.29 Factor Analysis of DO, PAR, Wind Velocity May 2005
Figure 6.30 Factor Analysis of DO and Stratification Status February 2005
Figure 6.31 Factor Analysis of DO and Stratification Status May 2005
Figure 6.32 Scatter Plot of representative DO and Temperature Data February 2005
Figure 6.33 Scatter Plot of representative DO and Temperature Data May 2005
Figure 6.34 Box and Whisker Plots of Gross Dissolved Oxygen Production February 2005
Figure 6.35 Box and Whisker Plots of Gross Dissolved Oxygen Production May 2005
Figure 6.36 Box and Whisker Plots of Gross Dissolved Oxygen Production per Unit Biomass May 2005
Figure 6.37 Scatter Plot of Rate of Change in DO Concentration Pre-Dawn February 2005
Figure 6.38 Scatter Plot of Rate of Change in DO Concentration Post-Dawn February 2005
Figure 6.39 Scatter Plot of OUR/hour for all Sampling Locations February and May 2005
Figure 6.40 Scatter Plot of OUR/hour/mgChl_a for all Sampling Locations February and May 2005
Figure 6.41 Scatter Plot of GPR/hour for all Sampling Locations February and May 2005
Figure 6.42 Scatter Plot of GPR/hour/Chl_a for all Sampling Locations February and May 2005
Figure 6.43 Scatter Plot of Pnet/hour for all Sampling Locations February and May 2005
Figure 6.44 Scatter Plot of Pnet/hour/Chl_a for all Sampling Locations February and May 2005175

Figure 6.45	Equation Describing Total Water-Column Light Utilisation Index (ψ).
Figure 6.46 Treatments 1 a	Phi for all Bolivar Sampling Locations and Bioreactor nd 3179
Figure 6.47 Bioreactor Trea	Phi for Bolivar Sampling Locations, Murray Bridge HRAP and tments 2179

1. INTRODUCTION

Wastewater derived from domestic or industrial sources can contain a diverse range of dissolved and suspended chemical and/or biological contaminants (e.g. nutrients, heavy metals, pharmaceuticals, pathogens) and can present a serious risk to human health or ecosystems if not disposed of appropriately (Metcalf and Eddy 2004).

Such effluent if disposed of without appropriate treatment can cause illness to those who have primary or secondary contact with it. In an effort to protect human health, treated and untreated wastewaters from coastal cities worldwide have traditionally been disposed of via ocean and river outfalls. Unfortunately, an unintended side effect of such disposal methods has been the eutrophication (sometimes termed cultural eutrophication) of these receiving waters and ecosystems (Nixon 1995, 1998) in addition to contamination of recreational and groundwater resources.

In Australia as elsewhere such disposal methods have been shown to contribute to the intensity of some toxic algal blooms in receiving waters (Davis and Koop 2000). Similarly there is strong evidence that disposal of treated wastewater and untreated storm-water from the city of Adelaide to the adjacent coastal environments may have contributed to large declines in sea-grass cover in this area (Fox et al. 2007).

Various methods of wastewater treatment (Chapter 2) are employed to remove nutrients, pathogens, heavy metals, persistent organic pollutants; with the treatment type determined by factors such as effectiveness, cost (land, initial and maintenance) disposal and re-use options and community and government expectation. An effective and commonly used method for treating organic or domestic wastewaters is to detain the effluent stream in large and shallow lined ponds or impoundments for a period of time. Such ponds are typically termed 'waste stabilisation ponds' (WSP) or 'waste stabilisation lagoons' or simply 'ponds' or 'lagoons'. Ponds actively mixed using paddlewheels are typically termed 'high rate algal ponds' (HRAP) or 'high rate oxidation ponds' (HROP). Semantics and basic differences aside, such systems provide a contained environment that allows naturally occurring algae and photosynthetic bacteria to grow profusely in response to light from the sun. The abundant oxygen produced by this photosynthetic activity in a nutrient rich medium provides heterotrophic bacteria with an ideal environment in which to flourish and oxidise organic and inorganic nutrients. Such conditions can also result in dramatic declines in the concentration of viral and bacterial pathogens (Fallowfield et al. 1996, Bolton et al. 2010). Provided that conditions in a pond remain aerobic (an excess of dissolved oxygen in the water) the pond will be largely odour free due to the rapid oxidation of H_2S and other odour forming compounds by dissolved oxygen. The removal of planktonic biomass (algal, bacterial, fungal matter) via settlement, filtration or both can produce an effluent (after chlorination) of sufficient quality for crop irrigation or other non-potable uses (Chapter 2).

Whilst the systems described above are relatively simple from a construction and engineering perspective, the ecology of such systems is not. Design principles have traditionally relied on 'rules of thumb' based of hard won experience of what works and doesn't in the field to determine functional pond depths, waste loading rates and retention times (Chapter 2). A lesson from history may show how wastewater treatment plants (WWTP) operators and the community might benefit from improvements in the scientific understanding of ecological processes at work in algal based treatment systems. The Bolivar treatment system Adelaide, Australia was constructed during the mid-sixties in response to increased population size and ultimately removed the need for the disposal of screened raw sewage into the Port River and the Gulf St Vincent. The details of the system itself, including primary and secondary bio-filter components are described in Chapter 2.

Treatment failure was experienced at the Bolivar wastewater treatment lagoon during later part of the 1997 (Sheil 2000); organic content of the waste stabilisation pond influent was increased purposefully due to a managed reduction in the capacity of the primary treatment system until the pond 'mode' changed from aerobic to anaerobic, resulting in serious odour problems for the entire city of Adelaide. Prior to this incident the plant had operated to the satisfaction of the community for a period of over thirty years. It can be argued that this episode provides a useful case study where the wastewater treatment system, designed using 'rule of thumb' based approach with a large margin for error, was 'optimised' for the purposes of efficiency (cost saving) without understanding the consequences of these changes on algal productivity and oxygen production. The sulphurous odour that arose from the lagoons was ultimately suppressed when sufficient dissolved oxygen from algal photosynthesis was available in the ponds for oxidation of sulphides.

Photosynthesis drives treatment processes afforded by heterotrophic bacteria and ensures maintenance of aerobic conditions within pond, a great deal of research has therefore been undertaken over the decades to better understand the factors that determine the oxygen dynamics, productivity and ecology of algal/bacterial assemblages present in these systems. Such research has also been undertaken in the area of algal biomass production of *Spirulina sp* for example.

The research presented in this thesis was undertaken with the goal of characterising relations between irradiance, algal oxygen dynamics and productivity. Such factors are basic to the cycling of energy in algal-based wastewater treatment systems as well as natural aquatic ecosystems. It is hoped that the findings of this research may contribute towards a greater understanding of the phytoecology of these systems.