THE GEOLOGY AND HYDROCHEMISTRY OF CALCAREOUS MOUND SPRING WETLAND ENVIRONMENTS IN THE LAKE EYRE SOUTH REGION, GREAT ARTESIAN BASIN, SOUTH AUSTRALIA

Mark N. Keppel

(BSc. Hons.)

Thesis submitted as partial fulfilment for the requirements of the Doctor of Philosophy in Science

School of the Environment

June 2013

For Tanya, Edith and Maggie

Oncoids at Blanche Cup, Wabma Kadarbu National Park, South Australia

On Monday, when the sun is hot I wonder to myself a lot: Now is it true, or is it not, That what is which and which is what?

On Tuesday, when it hails and snows The feeling on me grows and grows That hardly anybody knows If those are these or these are those?

On Wednesday, when the sky is blue, And I have nothing else to do, I sometimes wonder if it's true That who is what and what is who?

On Thursday, when it starts to freeze And hoar-frost twinkles on the trees, How very readily one sees That these are whose- but whose are these?

On Friday-

Sadly, this was never finished, due to an untimely interruption from Kanga

A. A. Milne. "The House at Pooh-corner"

TABLE OF CONTENTS	
ACKNOWLEDGEMENTS	XVI
DECLARATION	XIX
CO-AUTHORSHIP	XX
PUBLICATIONS ARISING FROM THIS THESIS	XXI
CHAPTER 1: INTRODUCTION	23
1.1 Composition of mound springs and the importance of water chemistry	26
1.2 Mound springs of the Lake Eyre South region	29
1.3 The Great Artesian Basin: Relationship to mound springs	34
1.4 Objectives of thesis	36
1.5 Organisation and contributions of thesis	38
CHAPTER 2: OVERVIEW OF STUDY AREA	44
2.1 Climate	44
2.2 Hydrology and geomorphology2.2.1 Surface hydrology2.2.2 Geomorphology	48 48 50
2.3 Geology and hydrogeology of the southwestern GAB	53
 2.4 Relationship between tectonics and spring formation in the southwestern GAE 2.4.1 General relationship between springs and seismicity 2.4.2 Relationship between GAB springs and regional fault structures 2.4.3 Tectonic setting of the southwestern GAB 	65 65 67 70
CHAPTER 3: MOUND SPRINGS IN THE ARID LAKE EYRE SOUTH REGION OF SOUTH AUSTRALIA: A NEW DEPOSITIONAL TUFA MODEL AND ITS CONTROLS	75
	15
Abstract	75
3.1 Introduction 3.1.1 Mound spring structures	77 77
3.1.2 Spring carbonate classification	80

3.2 Study Area	81
3.2.1 Regional geology and hydrogeology	81
3.2.2 Climate and hydrology	82
3.2.3 Fauna and flora	83
3.3 Methodology	83
3.3.1 Fieldwork	83
3.3.2 Petrology	85
3.3.3 Scanning Electron Microscopy (SEM)	85
3.3.4 Water chemistry	86
3.3.5 Microcosm experiment	88
3.4 Results	91
3.4.1 Mound spring morphology	91
3.4.2 Petrology	92
3.4.3 Water chemistry	103
3.4.4 Microcosm experiment	104
3.5 Discussion	108
3.5.1 Water chemistry, microcosms and implications for mound formation	108
3.5.2 Depositional environment and implications for morphotype classification	110
3.5.3 The tufa mound spring conceptual model	115
3.6 Conclusions	120

CHAPTER 4: INFLUENCES ON THE CARBONATE HYDROCHEMISTRY OF MOUND SPRING ENVIRONMENTS, LAKE EYRE SOUTH REGION, SOUTH AUSTRALIA 122

Abstract	122
4.1 Introduction	124
4.2 Study Area	127
4.2.1 Climate and hydrology	127
4.2.2 Regional geology and hydrogeology	128
4.2.3 Spring sites	130
4.2.4 Geology of mound springs	132
4.3 Sampling and Analytical Methods	134
4.3.1 Field methods	134
4.3.2 Water sample data processing	138
4.4 Results	146
4.4.1 Water chemistry	147
4.4.2 Carbonate hydrochemistry modelling	156
4.5 Discussion	160
4.6 Conclusions	165

CHAPTER 5: THE INITIAL FORMATION OF MOUND SPRING STRUCTURES: INSIGHTS FROM CARBONATE REACTIVE TRANSPORT	
MODELLING	168
Abstract	168
5.1 Introduction	170
5.2 Study Area	172
5.3 Methodology5.3.1 Field methods5.3.2 Carbonate-reaction modelling - Theoretical considerations	176 176 176
5.4 Results 5.4.1 Water chemistry results 5.4.2 Modelling results	183 183 183
5.6 Discussion	184
5.7 Conclusions	193
CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS	195
REFERENCES	205
APPENDIX 1: EVIDENCE FOR INTRAPLATE SEISMICITY FROM CALCAREOUS MOUND SPRING DEPOSITS, LAKE EYRE REGION, SOUTH AUSTRALIA	A1
A1.1 Introduction	A1
A1.2 Study Sites	A2
A1.3 Methodology	A3
A1.4 Results A1.4.1 Warburton/ Beresford Hill study site A1.4.2 Freeling Springs	A4 A4 A9
A1.5 Discussion	A11
A1.6 Conclusions	A17
APPENDIX 2: GEOLOGICAL FIELD NOTES	A18
APPENDIX 3: GEOCHEMISTRY DATA	A59

APPENDIX 4: SLIDE DESCRIPTIONS AND PETROLOGICAL INTERPRETATIONS

A67

SUMMARY

Mound springs of the Lake Eyre South region of South Australia (SA) are domeshaped accumulations of largely calcareous precipitates associated with artesian springs sourced by groundwater from the Great Artesian Basin (GAB). These springs and associated wetlands provide unique habitats for a number of endemic flora and fauna species and hold great cultural and societal importance to indigenous and nonindigenous Australians.

Few intensive studies of mound spring structures exist despite similar formations being found worldwide. Specifically, there has been little work with respect to either determining or verifying the hydrochemical and environmental factors important with respect to mound spring formation, or how spring flow is maintained once a mound structure has been built. Consequently, existing descriptions for the formation of mound structures described in the literature are inadequate with respect to the Lake Eyre South mound springs.

Consequently, geological and hydrochemical investigations were undertaken to develop a conceptual model for the initial formation and evolution of mound spring environments. A reactive transport model was developed to provide a generic, quantitatively constrained framework for the analysis of spring hydrochemistry. This model was also adapted to afford insight into the hydrochemical conditions within the initial spring wetland from which mound structures develop (the maximum spatial extent of the mound base or mound "footprint").

This study found that mound spring-related calcareous deposits were largely composed of tufa, defined here as a terrestrial limestone precipitated from sub-

viii

ambient to ambient temperature springwater, with sedimentary textures synonymous with microbial activity and encrustation around hydrophytes. Evidence from experimental data obtained during this study highlighted the important role cyanobacteria have in mediating tufa precipitation.

Carbon dioxide (CO₂) degassing from calcium carbonate (CaCO₃) laden water is the primary cause for CaCO₃ precipitation. Degassing is caused by either physiochemical processes, particularly in subterranean and near vent environments, or biomediation. CO₂ degassing and CaCO₃ precipitation were found to be timedependent, with this dependence controlled by the rate at which CO₂ is able to degas. The CO₂ degassing rate was in turn dependent on flow turbulence and the surface area exposure of water to substrate and the atmosphere. Such rate-limited CaCO₃ precipitation in mound spring environments is reasoned to have a critical stabilising effect on mound growth and spring flow; consequently rate-limited CaCO₃ precipitation is central to a new conceptual model for mound spring formation and evolution.

Reactive transport modelling was used to infer the previously unrecognised roles infiltration and heterotrophy have in controlling wetland hydrology and water chemistry respectively. Conversely, evapotranspiration was not found to significantly affect the rate of CaCO₃ precipitation. The mound footprint predicted by the model provided a reasonable approximation of the measured mound, with the prediction being primarily a product of the carbonate precipitation rate.

The location of mound springs are correlated with a tectonically active shear zone related to the Adelaide Fold Belt. Seismicity is evidenced through the propagation of

deformation structures within spring-related sediments that are concordant with these regional structures and may have an important role in influencing the development of mounds.

This study has demonstrated that a unique interplay between hydraulics, hydrochemistry and the environment is responsible for mound structure formation and the maintenance of spring flow after a mound structure has formed, while the developed reactive transport modelling methodology is novel with respect to terrestrial calcareous deposits and resultant morphotype development.

LIST OF FIGURES

Figure 1.1: Typical morphological characteristics of Lake Eyre South mound sprin environments.	ng 24
Figure 1.2: Location map of mound spring study sites.	30
Figure 2.1: Average daily maximum annual temperature and average daily mean annual temperature for continental Australia.	46
Figure 2.2: Average annual rainfall and annual rainfall variability for continental Australia.	47
Figure 2.3: Location map of study areas, geographic features and Digital Elevation Model (DEM) of the region.	n 49
Figure 2.4: Typical geomorphological characteristics of the Lake Eyre South regio	n.51
Figure 2.5: Major sub-basins within the GAB and the location of the Great Dividir Range.	ng 54
Figure 2.7: Outcrop geology of the regional study area.	61
Figure 2.8: Potentiometric surface msl contours for GAB aquifer.	63
Figure 2.9: Fault network in basement rocks in the vicinity the GAB spring, earthquake epicentres, outcropping Proterozoic basement and interpreted extent of Proterozoic units.	69
Figure 2.10: Modelled stress trajectory trends for maximum horizontal stress (σ H) obtained from Reynolds et al. (2002).	, 71
Figure 2.11: Location map of earthquake epicentres.	74
Figure 3.1: Locality map of study sites.	77
Figure 3.2: Morphology of mound springs.	84
Figure 3.3: Microcosm placement localities and geological mapping at Warburton Spring and Billa Kalina Spring.	1 87
Figure 3.4: Photograph of a microcosm showing construction.	89
Figure 3.5: SEM images of modern phytoherm facies tufa collected from Billa Kalina Spring and of calcareous precipitate from a microcosm placement at Warburton Spring.	95

Figure 3.6: Thin section photomicrographs and field occurrences of important primary fabrics and processes.	96
Figure 3.7: Schematic cross section based on the main spring at Billa Kalina Spr	ing.97
Figure 3.8: Thin section photomicrographs of important diagenetic fabrics.	102
Figure 3.9: Graphs of water and ambient air temperature, as well as pH and E.C. each microcosm placement site at Warburton and Billa Kalina Springs.	at 107
Figure 3.10: Examples from microcosm experiments.	108
Figure 3.11: Conceptual model for tufa mound formation.	119
Figure 4.1: Location map of the study area, showing the locations of the sampled springs and other mound springs.	l 129
Figure 4.2: Schematic cross section through Lake Eyre South region showing var aquifer and aquitard units of the GAB and position of the springs.	rious 131
Figure 4.3: Morphological features of mound spring sites.	133
Figure 4.4: Water sampling localities at the various spring sites.	136
Figure 4.5: Graphical representation of the geometry-based hydrochemistry mod used to simulate CaCO ₃ precipitation within the tail delta environment.	el 141
Figure 4.6: Graphs of key water quality measurements and hydrochemistry result Warburton Spring.	ts, 150
Figure 4.7: Graphs of key water quality measurements and hydrochemistry result Billa Kalina Spring.	ts, 152
Figure 4.8: Graphs of key water quality measurements and hydrochemistry result. The Bubbler.	ts, 155
Figure 4.9: Modelled versus field data for tail delta environment, Warburton Spr	ing.157
Figure 4.10: Modelled versus field data for tail delta environment, Billa Kalina Spring.	158
Figure 5.1: Location map of study sites.	174
Figure 5.2: Photographs describing morphology of mound spring structures.	175
Figure 5.3: Graphical representation of the geometry-based hydrochemistry mod	el

used to simulate CaCO₃ precipitation within the initial mound spring environment.178

Figure 5.4: Graphs of SI _c calculations for spring examples.	187
Figure 5.6: The predicted radius of water depletion for three mound spring environments with low discharge (<1 L/sec) compared to the geological and morphological interpretation.	189
Figure 5.7: The predicted radius of carbonate precipitation for two mound spring environments with high discharge (>1 L/sec) compared to the geological and morphological interpretation.	190
Figure 5.8: Scatter plot of the estimated average mapped radius of each mound structure versus the maximum radius carbonate precipitation as predicted by modelling.	191
Figure A1.1: Location of study sites.	A3
Figure A1.2: View of the Beresford Hill Spring complex from Warburton Hill.	A4
Figure A1.3: Aerial photograph and surface geological interpretation of the Beresford Hill Spring system.	A6
Figure A1.4: Interpreted lineaments and vein orientations derived from the Warburton Spring complex.	A7
Figure A1.5: Field examples of structural deformation in calcareous spring depos near Warburton Spring.	its A9
Figure A1.6: Panorama of the Freeling Springs site, looking west.	A10
Figure A1.7: Mapped surface geology at Freeling Spring.	A12

LIST OF TABLES

Table 1.1: Summary of publications relating to conceptual models for mound spri formation	ng 28
Table 1.2: Indicative water demand in the Far North Prescribed Wells Area.	36
Table 1.3: Summary of field work undertaken during this study.	42
Table 2.1 Summary of hydrostratigraphy of the Western margin of the GAB: Cretaceous to Quaternary.	58
Table 3.1: Brief site description for each placement site, Warburton and Billa Kal Springs.	ina 86
Table 3.2: Summary of tufa facies types identified at selected GAB mound spring	;s.99
Table 3.3: Major ions, PCO_2 and SI_c results for springwater vent samples from Warburton Spring, Billa Kalina Spring and Strangways Spring.	105
Table 3.4: Results from the marble and spring carbonate substrates from microcos experiments and water quality measurements.	sm 111
Table 4.1: Brief site description for each sampling site.	135
Table 4.2: Constants used in carbonate hydrochemistry modelling.	144
Table 4.3: Major ion, stable isotope, PCO_2 and SI_c results for water samples from Warburton Spring, Billa Kalina Spring and The Bubbler.	148
Table 5.1: Characteristics of mound spring study sites.	175
Table 5.2: Water quality and chemistry results for the spring sites included in this study. All samples were taken from the spring vent.	186
Table 5.3: Comparison of estimated radii of mound structures from aerial photographic mapping and predicted radii from modelling.	186
Table 6.1: Summary of publications relating to conceptual models for mound spri formation, compared to the conceptual model presented in this thesis.	ing 203
Table A2.1: Geological logging definitions.	A19
Table A2.2: Geological field notes.	A21
Table A2.3: Trend measurements for calcite veins at Warburton Spring.	A56
Table A3.1: XRD results for rock and soil samples.	A60

Table A3.2: XRF results for rock and soil samples.

ACKNOWLEDGEMENTS

I would like to thank the following people and organisations for their assistance towards the completion of my PhD candidature.

• My supervisors Andrew Love, Adrian Werner, Vincent Post, Jonathan Clarke and Todd Halihan for their guidance, patience and support during the term of this candidature. I consider myself lucky to have obtained from them the levels of empathy, inspiration, encouragement and honest opinion that they offered. In particular, I would like to thank Adrian for his prompt and forthright responses to editing questions, Vincent for his calm demeanour, love of science and encouragement, Jonathan for his sense of humour and his honesty, Todd for his vision (both metaphorically and with respect to driving) and ability to translate my jargon and Andy for his moral support. I would especially like to thank Todd for collecting the discharge data used in this work, without which this work would have been much the poorer.

• The National Water Commission (NWC) and the South Australian Arid Lands Natural Resources Management Board (SAAL NRMB) for provision of funding and administrative management. I would also like to thank the Great Artesian Basin Co-ordinating Committee (GABCC) and the Centre for Groundwater Studies (CGS) for the provision of scholarship top-up awards.

xvi

• The traditional owners and custodians (past and present) of the South Australian spring country present and past, particularly the Arrabuna, Dieri, Lower Southern Arrente, Wokangurru and Kuyani peoples, especially Dean Ah Chee, Reg Dodd, Gordon Warren, Marylin AhChee and Aaron Stuart.

• The station managers at Billa Kalina station, Stuarts Creek station and Anna Creek station and the South Australian Department of Environment and Heritage (DEH) for allowing me access to work on the lands under their management. I would also like to thank the DEH for the provision of aerial photographs that made mapping of the study areas possible.

• Paul Shand, Peter Self, Mark Raven at CSIRO Land and Water, Waite Campus, Urrbrae for the provision of both geochemical and hydrochemical data on which this entire thesis is based. I would also like to thank Ian Pontifex and the staff of Pontifex and Associates for their work preparing petrologic slides.

• Laura Crossey and Karl Karlstrom of the University of New Mexico and Martyn Pedley of the University of Hull for the many useful and insightful conversations in relation to my work; their generous donation of their time was very appreciated. I would also like to thank Karl Karlstrom and Stacey Priestley for the donation of some of the field measurements and U-series dating data used in Appendix 1 of this thesis. • Samantha DeRitter, Gail Jackson, Renee Spinks, Jennie Fluin, Brad Wolaver, Travis Gotch, Lloyd Sampson, Peter Kretchmer, Stacey Priestley, Volmer Berens, Janette Wales, Jeanette Tininczky, Daniel Wohling, Davina White, Megan Lewis, Zac Sibenaler, Rien Habermehl and Simon Fulton for the innumerable instances I called upon their help and service with respect to logistics and administration.

• Finally, I would like to thank Tanya Ashworth Keppel for her patience, empathy, understanding, support and love, not to mention the countless times she happily proof-read manuscripts over and over again when she could have been reading the latest Jodi Picoult novel. Without her, my candidature would not have been so pleasant.

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Th

Mark Nicholas Keppel, Bachelor of Science (Hons).

CO-AUTHORSHIP

Mark Keppel is the primary author of this thesis and all the enclosed documents. Chapters 3 to 5 were written as independent manuscripts in which the co-authors provided intellectual supervision and editorial comment. Chapter 2 as well as parts of Chapter 6 and Appendix 1 were written to be incorporated into independent manuscripts in which the co-authors provided intellectual supervision and editorial comment.

Additionally, Dr Vincent Post suggested a modelling approach as a means of quantifying the processes interpreted from hydrochemistry data and played an important role in the development of the modelling protocol used in Chapter 4. Dr Karl Karlstrom suggested including U-series dating data collected by Ms Stacey Priestley in Appendix 1. Dr Karl Karlstrom and Ms Stacey Priestley contributed supporting field data to those already collected by the author, U-series dating data presented in Appendix 1 and some text pertaining to the U-series dating data. Finally Dr Todd Halihan provided discharge measurement data used in Chapters 4 and 5.