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On Monday, when the sun is hot 

I wonder to myself a lot: 

Now is it true, or is it not, 

That what is which and which is what? 

 

On Tuesday, when it hails and snows 

The feeling on me grows and grows 

That hardly anybody knows 

If those are these or these are those? 

 

On Wednesday, when the sky is blue, 

And I have nothing else to do, 

I sometimes wonder if it’s true 

That who is what and what is who? 

 

On Thursday, when it starts to freeze 

And hoar-frost twinkles on the trees, 

How very readily one sees 

That these are whose- but whose are these? 

 

On Friday- 

Sadly, this was never finished, due to an untimely interruption from Kanga 

 

A. A. Milne. "The House at Pooh-corner"  
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SUMMARY 

Mound springs of the Lake Eyre South region of South Australia (SA) are dome-

shaped accumulations of largely calcareous precipitates associated with artesian 

springs sourced by groundwater from the Great Artesian Basin (GAB). These springs 

and associated wetlands provide unique habitats for a number of endemic flora and 

fauna species and hold great cultural and societal importance to indigenous and non-

indigenous Australians.  

Few intensive studies of mound spring structures exist despite similar formations 

being found worldwide. Specifically, there has been little work with respect to either 

determining or verifying the hydrochemical and environmental factors important 

with respect to mound spring formation, or how spring flow is maintained once a 

mound structure has been built. Consequently, existing descriptions for the formation 

of mound structures described in the literature are inadequate with respect to the 

Lake Eyre South mound springs. 

Consequently, geological and hydrochemical investigations were undertaken to 

develop a conceptual model for the initial formation and evolution of mound spring 

environments. A reactive transport model was developed to provide a generic, 

quantitatively constrained framework for the analysis of spring hydrochemistry. This 

model was also adapted to afford insight into the hydrochemical conditions within 

the initial spring wetland from which mound structures develop (the maximum 

spatial extent of the mound base or mound “footprint”).  

This study found that mound spring-related calcareous deposits were largely 

composed of tufa, defined here as a terrestrial limestone precipitated from sub-
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ambient to ambient temperature springwater, with sedimentary textures synonymous 

with microbial activity and encrustation around hydrophytes. Evidence from 

experimental data obtained during this study highlighted the important role 

cyanobacteria have in mediating tufa precipitation. 

Carbon dioxide (CO2) degassing from calcium carbonate (CaCO3) laden water is the 

primary cause for CaCO3 precipitation. Degassing is caused by either physio-

chemical processes, particularly in subterranean and near vent environments, or 

biomediation. CO2 degassing and CaCO3 precipitation were found to be time-

dependent, with this dependence controlled by the rate at which CO2 is able to degas. 

The CO2 degassing rate was in turn dependent on flow turbulence and the surface 

area exposure of water to substrate and the atmosphere. Such rate-limited CaCO3 

precipitation in mound spring environments is reasoned to have a critical stabilising 

effect on mound growth and spring flow; consequently rate-limited CaCO3 

precipitation is central to a new conceptual model for mound spring formation and 

evolution. 

Reactive transport modelling was used to infer the previously unrecognised roles 

infiltration and heterotrophy have in controlling wetland hydrology and water 

chemistry respectively. Conversely, evapotranspiration was not found to significantly 

affect the rate of CaCO3 precipitation. The mound footprint predicted by the model 

provided a reasonable approximation of the measured mound, with the prediction 

being primarily a product of the carbonate precipitation rate. 

The location of mound springs are correlated with a tectonically active shear zone 

related to the Adelaide Fold Belt. Seismicity is evidenced through the propagation of 
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deformation structures within spring-related sediments that are concordant with these 

regional structures and may have an important role in influencing the development of 

mounds. 

This study has demonstrated that a unique interplay between hydraulics, 

hydrochemistry and the environment is responsible for mound structure formation 

and the maintenance of spring flow after a mound structure has formed, while the 

developed reactive transport modelling methodology is novel with respect to 

terrestrial calcareous deposits and resultant morphotype development.   
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