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Abstract 

 
This thesis describes the total synthesis of the polyketide derived marine natural 

product (-)-maurenone (14) and synthetic studies of a model system for the marine 

polyketides, the spiculoic acids (20, 22-24). A biomimetic approach involving 

cyclisation of linear polyketide precursors to install the complex chemical 

frameworks was employed.  
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Maurenone is a polypropionate derived metabolite isolated from pulmonate molluscs 

collected off the coast of Costa Rica. While structural assignment following isolation 

revealed a relatively uncommon tetra-substituted dihydropyrone moiety the only 

stereochemical information deduced was the trans-relative relationship between the 

C8 and C9 protons. The total synthesis of a series of eight stereoisomeric putative 

structures was achieved in order to assign the stereochemistry of (-)-maurenone (14), 

as that depicted above. A time and cost efficient strategy was developed utilising 

common intermediates providing access to the eight stereoisomeric structures in a 

convergent manner. Six key fragments, four aldehydes (109) and two ketones (110), 

were synthesised using highly diastereoselective syn- and anti-boron aldol reactions 

and were coupled using a lithium-mediated aldol reaction. Trifluoroacetic acid-

promoted cyclisation/dehydration enabled installation the γ-dihydropyrone ring. All 

eight isomers of one enantiomeric series were synthesised by coupling two ketones 

with each of four aldehydes. By comparison of the NMR data for the eight isomers 

with that reported for the natural product, the relative stereochemistry was 

established as shown. The (-)-enantiomer of maurenone was synthesised in nine 

linear steps (13 % overall yield) from (R)-2-benzylpentan-3-one ((R)-40) and (R)-2-

benzoyloxypentan-3-one ((R)-39). 
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The spiculoic acid family of polyketide derived natural products, isolated from 

plakortis sponges, possess a unique [4.3.0]-bicyclic core which is proposed to be 

formed via an enzyme catalysed Intramolecular Diels-Alder (IMDA) cycloaddition 

reaction of linear polyene precursors 25. Model linear precursors (114), possessing 

various olefin geometries at C2 and both stereochemical orientations of the C5 

stereocentre, were synthesised in order to examine stereoselectivity of the thermally 

induced IMDA cycloaddition reaction.  
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The two alternative C4-C6 stereotriads of the linear precursors 114 were achieved by 

employing highly diastereoselective substrate-controlled aldol reactions; an anti-

boron aldol reaction, controlled by the facial preference of (R)-2-benzoyloxypentan-

3-one ((R)-39), and a syn-titanium aldol reaction, under the control of chiral N-

acylthiazolidinethione ((R)-43a). The diene and dienophile moieties were installed 

using either standard Wittig, H.W.E. or “modified” Julia olefination reactions.  
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A thorough stereochemical assignment of the cycloadducts of the thermally induced 

IMDA reaction of each linear precursor was accomplished employing 2D NMR 

techniques. Comparison of the stereochemistry of each of the cycloadducts with the 

spiculoic acids revealed that the linear precursor (2E,5S)-114 produced a 

cycloadduct 232 with stereochemistry analogous to the natural products in 94 % 

diastereoselectivity. Thus, a synthetic approach to the spiculoic acids via synthesis of 

a linear precursor 285 possessing a TBS ether at C5 in the S configuration was 

proposed. Unfortunately, problems encountered in the synthesis of the proposed 

linear precursors to the spiculoic acids ultimately prevented the total synthesis from 

being achieved. 
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