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Summary

The use of water temperature as a tracer to infer rates of fluid flow, and determine
subsurface properties has gained popularity in recent years, with review articles
on heat as a tracer to infer groundwater—surface water exchange (Anderson 2005;
Constantz 2008; Rau et al. 2014), heat as a tracer in hydrogeology (Anderson
2005), and the use of heat as a tracer for deep groundwater processes (Saar 2011).
Heat is a popular tracer because both natural variations in water temperature
(e.g. diurnal temperatures in streambed materials), or applied (e.g. input tem-
perature can be monitored in aquifer storage and recovery systems) temperatures
can be analysed. Other benefits of temperature measurements include the fact
that water temperature can be measured without the need for laboratory anal-
ysis, and it can be collected quickly and easily from point measurements, to the
use of Distributed Temperature Sensors to record temperature both temporally
and spatially. With the increase in popularity in the use of temperature in hy-
drogeology, an understanding of the influence of aquifer heterogeneity on thermal

transport in groundwater is required.

Anderson (2005) highlights that a revival of the use of temperature measurements
in hydrogeology has been promoted by the availability of inexpensive tempera-
ture data loggers, and increased availability of numerical codes to simulate joint
water flow and thermal transport. Temperature measurements could be useful in
a range of contexts, as thermal transport occurs on a range of spatial scales, and
is involved in a number of processes. With heterogeneity of porous media also
occurring from the pore scale to the basin scale, the understanding of how hetero-
geneity influences thermal transport is vital to understand where the use of heat
may be useful to understand groundwater systems, and to identify any limitations
to its use. This body of work addresses the influence of aquifer heterogeneity on
the transport of heat in porous media on scales from the kilometre scale down
to the centimetre scale, and across a range of processes. Specifically, this work
investigates: 1) the influence of aquifer heterogeneity on the potential for thermal
free convection, 2) the influence of aquifer heterogeneity on the interpretation of
applied heat and solute groundwater tracers, and 3) the influence of streambed

heterogeneity on the use of temperature time series to infer groundwater—surface
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water exchange.

The first part of this study investigates the potential for thermal free convection
in the Yarragadee aquifer in the Perth metropolitan area in Western Australia. It
does so by utilising a stratigraphic forward model of the aquifer, which provides
a realistic, and plausible heterogeneous structure of the aquifer, something that
is lacking in existing investigations of the influence of aquifer heterogeneity on
the potential for free convection. The key question was whether the inclusion of
heterogeneity in simulations of coupled heat and water flow would prevent the
occurrence of free convection. We show that the influence of heterogeneity may
not be sufficient to prevent the occurrence of thermal free convection, and iden-
tify regions where convection is most likely. This study provides further evidence
for the presence of thermal free convection in the Perth metropolitan area, which
will assist in the search for low temperature geothermal energy sources in Western

Australia.

The second part of this study investigates the influence of aquifer heterogeneity
on the interpretation of applied solute and heat tracers to determine pore water
velocity in heterogencous aquifers. It does so through the use of numerical simu-
lations of groundwater flow, solute and heat transport in synthetic heterogeneous
aquifers. Aquifer heterogeneity is represented using geostatistical properties that
span the range found across highly instrumented sites such as the Borden, Cape
Cod and the MADE sites. The goal was to identify any benefits or drawbacks
of the use of applied heat or solute tracers. We show that interpretations of a
heat tracer yielded the lowest variance in estimates of velocity. This means that
estimates of velocities inferred from heat tracers will be closer to the mean ve-
locity, which may be a key benefit. The higher variance in estimates of velocity
from interpretation of the solute tracer may provide more insight about aquifer

heterogeneity.

The final part of this study investigates the influence of streambed heterogeneity
on the Hatch et al. (2006) analytical solutions that use temperature time series
to determine groundwater— surface water interactions. It does so through the
use of numerical models which generate synthetic temperature time series data,

which are used to estimate vertical fluxes. The benefits of this approach is that



the analytical models can be tested where fluxes are known. We show that gen-
erally, the Hatch et al. (2006) equations perform fairly well for losing streams.
We show that failure of the Amplitude Ratio method, and large variations in
estimated fluxes over small distances from the Phase Shift method can be at-
tributed to streambed heterogeneity. This research demonstrates that even when
the assumption of 1D and homogeneous flow is violated, that the Hatch et al.
(2006) equations perform well, and can provide detailed understanding of fluxes

in heterogeneous streambeds.

Following Anderson’s (2005) review, temperature measurements are becoming a
more widely used tool in hydrogeology, including contexts ranging from groundwater—
surface water interaction, to the identifying the location of fractures. With the
use of temperature measurements on the increase in hydrogeology, it is impor-
tant to understand the influence of heterogeneity in porous media on thermal

transport and the estimation of flow rates from water temperature.
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