INTERVENTIONS AIMED TO IMPROVE AUTONOMIC AND ENDOTHELIAL FUNCTION IN CHRONIC HEART FAILURE AND CORONARY ARTERY DISEASE

Thesis presented by

Biju Paul, MBBS, MA HMPP (UK), FRACP (Australia)

Thesis submitted to fulfill the requirements of the conferment of

the degree of Doctor of Philosophy

Department of Clinical Pharmacology

School of Medicine, Faculty of Health Science

Flinders University, Adelaide, Australia

January 2011

TABLE OF CONTENTS

Table of Contents		
List of Figur	es	i
List of Table	es	i
Declaration	ii	
Acknowledg	gements	iii
Publications	and Awards	iv
Abstract	v	
ABBREVIA	TIONS	viii
Chapter 1	9	
Background	and Objectives	9
1.1	Introduction	9
1.2	Epidemiology and pathogenesis of cardiovascular disease	11
1.3	Coronary artery disease	12
1.4	Chronic heart failure	22
1.5	Current treatment modalities in cardiovascular disease	38
1.6	Role of oxygen in CHF	40
1.7	Role of folic acid and tetrahydrobiopterin in CHF	46
1.8	Objectives of the thesis	52
Chapter 2		56
Methods		56
2.1	Introduction	56
2.2	Cardiopulmonary exercise testing	56
2.3	Autonomic function testing in CHF	66
2.4	Assessment of endothelial function	71
2.5	Cardiac MRI	91
Conclusion		92
Chapter 3		93
Influence of failure	f oxygen on ergoreflex and peripheral blood flow in chronic	heart 93
3.1	Introduction	93
3.2	Autonomic reflexes in CHF	93

3.3	Role of oxygen in CHF94
3.4	Methodology 95
3.5	Study protocol 96
3.6	Results 98
3.7	Discussion 106
3.8	Conclusion 108
Chapter 4	109
Improvement in exercise ventilation by acute oxygen therapy in chronic heart failure patients 109	
4.1	Introduction 109
4.2	Methodology 110
4.3	Results 112
4.4	Discussion 117
4.5	Study Limitations 119
Chapter 5	120
Acute Effects Of 5-Methyltetrahydrofolate on Arterial Wave Reflection and Endothelial Function In Patients With Chronic Heart Failure 120	
5.1	Introduction 120
5.2	Methods 124
5.3	Study protocol 125
5.4	Results 128
5.5	Discussion 135
Chapter 6	138
Analysis of short-term reproducibility of Arterial Vasoreactivity by Pulse-Wave analysis after Pharmacological challenge 138	
6.1	Introduction 138
6.2	Methods 139
6.3	Study protocol 141
6.3	Results 144
6.5	Discussion 150
Chapter 7	154
A randomised, double-blinded trial of the effect of tetrahydrobiopterin and folic acid on aortic distensibility and peripheral vasoreactivity using cardiovascular magnetic resonance 154	

7.1	Introduction	154
7.2	Methodology	156
7.3	Results	158

7.4	Discussion	161
Chapter 8		164
Conclusions		164
Reference List		171

Figure 1.1	Electron micrograph images of the alveolar-capillary membrane in	
CHF	The VE VICO2 shares in heart foilers	28
Figure 1.2	The VE/VCO2 slope in heart failure	29
Figure 1.3	Kaplan Meier curve showing prognostic significance of Ve/VCO ₂	20
1 1	patients with CHF	30
Figure 1.4	Electron micrograph of cytochrome c oxidase in a patient with sev	
	ure (left panel) and in a normal subject (right panel)	36
Figure 1.5	Metabolism of folite and homocysteine	49
Figure 1.6	Interaction of folic acid and tetrahydrobiopterin with eNOS	51
Figure 1.7	Role of folic acid in cardiovascular disease	52
Figure 2.9	Gas transport mechanism during exercise	59
Figure 2.10	CPET using a bicycle ergometry	62
Figure 2.11	VO_2 uptake in CHF and healthy individuals	63
Figure 2.12	Ventilatory efficiency as a marker of severity of disease	65
Figure 2.13	Determination of ergoreflex by hand grip exercise	67
Figure 2.1	Marey's original sphygmograph	73
Figure 2.2	Change of pressure wave amplitude and wave pattern from centra	al to
	al arteries at different ages	75
Figure 2.3	Applanation of the tubular artery against underling bone permits	
accurate	measurement of intra-arterial pressure	77
Figure 2.4	Augmentation Index = $\Delta P = P2 - P1$	79
Figure 2.5	FMD measurement in the brachial artery	87
Figure 2.6	Endothelium dependent vasodilation in the femoral artery	87
Figure 2.7	Forearm venous plethysmography	90
Figure 2.8	A simulated response to inflation of upper arm cuff	90
Figure 5.1	Chemical structures of L-arginine, asymmetric dimethylarginine	
(ADMA)	, and symmetric dimethylarginine (SDMA)	123
Figure 5.2	Salbutamol (endothelial dependent) and GTN (endothelial	
independ	ent) mediated changes in augmentation index when characterised b	у
healthy c	ontrols and CHF patients receiving intervention and placebo	133
Figure 5.3	Changes in homocysteine, ADMA, SDMA levels when characteris	sed
by health	y controls and CHF patients receiving intervention and placebo	134
Figure 6.1	Bland- Altman plots of baseline augmentation index (AIx) for hou	r-
-	epeated measurements	147
Figure 6.2	Bland- Altman plots of sublingual GTN mediated changes in	
0	ation index (AIx) for hour-to-hour repeated measurements	148
Figure 6.3	Bland- Altman plots of salbutamol- mediated changes in	
U	ation index (AIx) for hour-to-hour repeated measurements	149
0		

LIST OF TABLES

Table 3.1	Patients demographics	98
Table 3.2	Respiratory and haemodynamic contribution to ergoreflex	101
Table 3.3	Ergoreflex in CHF patients	102
Table 3.4	Blood flow in the non-exercising limb	105
Table 4.1	Patient characteristics	113
Table 4.2	ANOVA analysis for ventilatory parameters during exercise	115
Table 4.3	Paired T test for influence of oxygen on ventilatory parameters	116
Table 5.1	Clinical and biochemical characteristics	130
Table 6.1	Repeated vascular and haemodynamic assessments	141
Table 6.2	Intraclass correlation coefficients of repeated measurements augmentation index	of 146
Table 7.1	Patient characteristics	158
Table 7.2	Aortic distensibility and FMD%	160
Table 7.3	Comparitive analysis of aortic distensibility	161

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and that to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference in made in the test.

Biju Paul January 2011 First and foremost, I would like to express my sense of gratitude to my supervisors Professor John Miners, Professor Arduino Mangoni and Dr. Carmine DePasquale for their mentorship and guidance throughout my PhD and for the solid foundation they have instilled in me as a researcher.

I thank the department of Clinical Pharmacology for its support. My colleagues Professor Peter Frith, Dr. Zbigniew Gieroba, Professor Matthew Worthley, Professor Steve Worthley, Professor Campbell Thompson, Professor Joseph Selvanayagam, Dr. Benjamin Dundon and Mr David Schembri for their valuable assistance and guidance. Ms Heather Aubert and Ms Karli Goodwin for their clerical and moral support.

I thank Flinders Medical Centre Volunteers and Flinders University for providing financial support.

A special thought to my wife Neeta and my daughter Rachel, whose understanding and patience are the source of my motivation and inspiration. My parents Leela and Paul and my parents-in-law Charollette and Wilfred who have supported us throughout this period.

I could not have completed this work without the help and support of the aforementioned people. I am sincerely grateful to all of them.

Awards:

- 2006-2007: Flinders Medical Centre Volunteers Research Scholarship, Flinders Medical Centre, Bedford Park, SA.
- 2007 Flinders University Faculty of Health Sciences Research Grant for Autonomic Reflexes in Chronic Heart Failure.
- 2007 Flinders University Faculty of Health Sciences Research Grant for Effect of tetrahydrobiopterin and folic acid on myocardial blood flow, aortic distensibility and peripheral vascular reactivity in patients with coronary artery disease.

Publications:

- Acute effects of 5-Methyltetrahydrofolate on arterial wave reflection and endothelial function in patients with chronic heart failure.
 Paul B, DePasquale CG, Mangoni AA. *Nutr.Metab.Cardiovasc.Dis.*, 2010 June; 20(5):341-349
- 2. Analysis of short-term reproducibility of arterial vasoreactivity by pulse-wave analysis after pharmacological challenge.

Paul B, Hewitson CL, Woodman RJ, Mangoni AA. *Clin.Exp.Pharmacol.Physiol.*2009 Jan; 36(1):49-54

The current epidemic of cardiovascular disease has defined itself as the healthcare priority of this generation. It ranges from coronary artery disease (CAD) (presenting with acute symptoms) to chronic heart failure (CHF) (presenting with debilitating and gradual worsening symptoms). An improved understanding of the pathophysiology of the disease has lead to new medications and reduced disease specific mortality. However, increased prevalence and chronic symptoms have adversely affected quality of life. Persistent angina in CAD and dyspnoea and fatigue in CHF remain the cardinal symptoms restricting quality of life. These debilitating symptoms are a reflection of end stage disease and are resistant to current therapeutic options. This thesis explores new therapeutic options to manage these debilitating symptoms.

Recent studies have highlighted the potential benefit of non toxic agent's- folic acid, tetrahydrobiopterin and oxygen in patients with cardiovascular risk factors. Previous studies done by our group and others have shown oxygen to improve symptoms and exercise performance in patients with CHF while folic acid and tetrahydrobiopterin are shown to improve vascular endothelial function in these patients. The low cost and largely non toxic potential of these agents has driven their further assessment for this thesis.

Existing literature provides information on the influence of these agents in patients with cardiovascular risk factors. The scope of this thesis is to add to this knowledge and assess the effects of these agents on cardiopulmonary reflexes and endothelial function in patients with established CAD and CHF. The first part of the thesis analysed the influence of low flow nasal oxygen on cardiopulmonary reflex during sub-maximal and maximal exercise testing in CHF and the second part analysed the influence of folic acid and tetrahydrobiopterin on endothelial function in CHF and CAD. The thesis also conducted a technical analysis of the reproducibility of pulse wave analysis, used to analyse vascular endothelial function.

Folic acid, tetrahydrobiopterin and oxygen were well tolerated and no significant side effects were reported. Patients with CHF were characterised by autonomic imbalance; predominantly inefficient ventilation during sub-maximal and maximal exercise. Low flow inhaled oxygen significantly improved this imbalance and reduced the ventilatory overdrive during sub-maximal, but not maximal exercise. However, it did not influence cardiovascular parameters. This ventilatory benefit might explain the improvement in exercise performance and quality of life seen with its use in CHF. Further studies are required to assess its impact on disease progression and mortality.

Folic acid significantly reduced serum ADMA level in patients with CHF. ADMA is a well defined surrogate marker of endothelial injury. However, it did not concurrently improve endothelial function. Furthermore, the combined administration of folic acid and tetrahydrobiopterin did not improve endothelial function in both the large (aorta) and small arteries (brachial) of patients with CAD. The lack of effect of folic acid and tetrahydrobiopterin might be explained by the advanced irreversible nature of endothelial function in patients with well established cardiovascular disease. The technical analysis of pulse wave analysis emphasised its usefulness in assessing baseline endothelial function; however, it correlated poorly when used to assess the impact of various therapeutic agents on endothelial function.

5-MTHF	5-methyl tetrahydrofolate
AA	ascending aorta
ACE	Angiotensin converting enzyme inhibitors
ADMA	serum asymmetrical dimethylarginine
AIx	augmentation index
ANS	autonomous nervous system
BH4	Tetrahydrobiopterin
BMI	body mass index
CAD	•
CAD CHF	coronary artery disease chronic heart failure
CaO2	
	arterial oxygen content
CvO2	venous oxygen content
cGMP	cyclic guanosine monophosphate
CMR	cardiac magnetic resonance imaging
CPET	Cardiopulmonary exercise testing
CV	coefficient of variation
DBP	blood pressure
DDA	distal descending aorta
DDAH	dimethylarginine dimethylaminohydrolase
EF	ejection fraction
eNOS	Endothelial NOS
FMD	Flow mediated dilatation
GTN	Glyceryl trinitrate
HR	heart rate
HIF-1	hypoxia inducible translation factor
ICC	intraclass correlation coefficient
IHD	ischaemic heart disease
L-NMMA	N monomethly-L-arginine
MI	myocardial infarction
MRI	Magnetic resonance imaging
NADPH	nicotinamide adenine dinucleotide phosphate
NOS	nitric oxide synthase
NO	nitric oxide
PDA	proximal descending aorta
PGC-1 γ	peroxisome-proliferator-activated receptor-γ co-activator 1
PP	pulse pressure
PWA	Pulse wave analysis
RER	Respiratory exchange ratio
ROS	reactive oxygen species
SDMA	symmetrical dimethylarginine
SV	stroke volume
sBP	systolic blood pressure
VO2	ventilatory oxygen
VCO2	ventilatory Carbon dioxide
Ve	ventilation
Vt	tidal volume