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Abstract

This thesis extends and generalises work on a theory of gravity broadly dubbed
Dynamical 3-Space theory with reference to ongoing work in the development of
other theories of gravitation. Chapter 1 seeks to first outline current research into
theories of gravitation, and notably makes reference to currently unexplained phe-
nomena and relations within cosmology. This first chapter also notes in particular
another theory of gravitation, Modified Newtonian Dynamics, due to similarities
with previous work in Dynamical 3-Space theory. Chapter 2 serves as a broad in-
troduction to Dynamical 3-Space theory from its Process Physics origin, noting a
number of key results and methods used within the theory. This in particular in-
cludes discussion of the importance of space itself within the theory, and why the
theory has developed in the way it has.

Chapters 3 and 4 serve as original contribution to this work, and it is here that
generalisation of the theory begins, with reference to two other theories of gravita-
tion; Modified Newtonian Dynamics and the General Theory of Relativity. Chapter
3 begins with a discussion of work that was originally developed to explain the
behaviour of free parameters within Dynamical 3-Space theory, before deconstruct-
ing and rebuilding this work with reference to research into Modified Newtonian
Dynamics. From here Chapter 3 serves to explore the impacts of this on broader
Dynamical 3-Space theory. Chapter 4 seeks to construct a self-consistent description
of Dynamical 3-Space theory from comparison with Painlevé-Gullstrand coordinates,
first noting the behaviour of these coordinates, and discussing this with relation to
Dynamical 3-Space theory, before deriving a number of key results seen in Dynam-
ical 3-Space theory from the use of these coordinates alone. This is then used as a
vehicle for first discussing why the theory behaves differently to the General Theory
of Relativity, before using this base to generalise Dynamical 3-Space theory overall.
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Introduction

At the core of modern theories of gravitation sits an implicit assumption, one

that is rarely if ever directly acknowledged, but one that has profound effects on how

we model and perceive the universe. The theories themselves have come in many

forms, but ultimately always boil down to the same basic idea; a theory of gravita-

tion is about the interaction between masses. This of course would seem obvious.

Gravitation is an effect where paths of objects bend towards masses, whether this

be modeled as a force as with Newton or through the curvature of spacetime as with

Einstein. Yet here in a day and age where two of the most crucial elements of our

modern understanding of the universe are broadly dubbed ‘dark matter’ and ‘dark

energy’, it still remains that no pause for thought was given to the one player in

our understanding of gravitation that receives the least attention, the space objects

themselves are contained it. Yes, relativistic theories rely on the bending of space,

and other theories model how objects move through space, but no dynamics are

given to this space. We start our understandings of the universe at a point where

space is a mere empty container which holds objects, and work from there. It is not

seen as a dynamic, nor emergent part of the system, just a convenient method of

describing it. This is analogous to mapping the World without oceans, yet here in an

age where we search for our planet Vulcan, the ‘dark’ elements of our universe, that

we still ignore this most crucial part in the dynamics of gravitational theory. It is

no wonder then that theories of gravitation still remain incompatible with quantum

understandings of reality, for they are treated so differently, as to leave little space

1



2 Introduction

for direct comparison.

This thesis seeks to expand and generalise the work on a theory of gravitation

that does attempt to take into account space itself as a dynamic component of reality

and gravitation. This theory, dubbed Dynamical 3-Space theory (D3ST), is based

on Process Physics, an attempt at modeling space, time and the behaviours that

accompany these out of an emergent neural network. Despite this being the base for

the logic that goes into the theory however, Process Physics is at this time unable to

determine any more than the behaviours required by such a theory, and D3ST itself

is largely built through unique generalisations of other formulations of gravitation.

Within this though are the dynamics of the space itself, and most notably within

its construction is a potential solution to the expansion of the universe without the

need for dark matter, nor dark energy. At this time however the theory does lack a

number of key components, notably a full description of galactic scale dark matter

distributions, as well as a full covariant formulation. To this end this thesis is largely

focused within these two broad areas, first seeking to further develop previous work

in the theory’s description of dark matter, and secondly seeking to develop such a

covariant description of the theory.

Within the description of dark matter for D3ST, this thesis expands on previ-

ous work on setting free parameters within this theory. This, however, was found

to demonstrate that the theory provided an incomplete description through this

method, and hence replaces it with newer methods of dealing with these issues

within the theory. Comparisons of this with Modified Newtonian Dynamics show

striking similarities with the original form of the theory, but also provide a base

for discussions of how these methods could be successfully used. Despite the simi-

larities however, the dynamical effects of space itself are not taken into account in

constructions of other theories.

The covariant formulation of the theory is broadly based on a class of met-

rics referred to as the Painlevé–Gullstrand class of metrics. The chapter seeks to
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demonstrate firstly how they provide a description for D3ST at a basic level, before

demonstrating their relationship with other results in GR, as well as how the myriad

of results within D3ST may be derived. This is then used for a direct comparison of

how the expansion of the universe is accounted for in D3ST, and hence demonstrates

why D3ST allows for an expanding universe without dark matter and dark energy

where the standard model fails to.



Chapter 1

Gravity and Relativity

This chapter discusses the development of gravitational theories, and the his-

torical basis for many of the currently commonly held notions about gravitation.

Through a discussion of how current theories were developed, an understanding of

why we model gravity as we do can be grasped. This chapter seeks to discuss the

introduction of ideas within gravitational theories and how this has in turn led to

the current position dealing with dark matter and dark energy, while equally going

over a number of key results of interest to the rest of this thesis. Some astronomical

relations of interest are also noted, as well as competing theories of gravitation for

further discussion and later comparison.

1.1 Galilean Relativity and Gravity

Physics before Galileo was strikingly different. Things commonly held now as

basic knowledge and assumptions about how objects move, such as Newton’s laws

of motion and the equivalence principle were not known. Indeed, at some level this

makes sense. The World of Aristotle was before the scientific method as we would

currently describe it, and his observations were of course a creation of their time.

They were, however, persuasive, and would be considered the leading authority on

such ideas for the best part of two millennia. Part of the reason for this has been

4



Chapter 1. Gravity and Relativity 5

argued to be the nature of the way that observations were made in Aristotle’s time,

and equally that his descriptions did work in a heuristic sense [110]. Of course, with

complex interactions such as fluid dynamics being involved with falling motion,

before such ideas were separated, these descriptions were necessarily intertwined.

In this sense, it could be argued that the great success of Galilean physics and

what followed would be to allow physics to control variables and begin to create a

description free from multiple complex interactions, and hence view each physical

relation separately.

It is through this lens that the advancements that were made during Galileo’s

time should be viewed. Galilean challenges to the Aristotlean view of the World

did not simply replace prior work, but rather reframed it in a new and more us-

able manner, and hence began the process of unraveling these relationships, as has

characterised the changes that would follow. The first of Galileo’s challenges to

Aristotelian physics, Galilean relativity (GaR), is based on the assumption that the

laws of motion are the same in all reference frames. Unlike Aristotle who classified

motion in two broad ways, natural and forced motion, Galileo defined motion in the

same terms for all reference frames. The motions of any object could be classified

under the same rules, rather than rules for one, not for the other. By studying

the motions of objects, Galileo also noted that objects tended to remain in motion

unless otherwise acted on, though this idea would be more directly formulated by

Newton. Namely, for an observer O′ moving at a velocity u = uxi+uyj+uzk away

from O we have the transformation

t′ = t

x′ = x− uxt

y′ = y − uyt

z′ = z − uzt

(1.1.1)

or as a linear transformation
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t′

x′

y′

z′


=



1 0 0 0

−ux 1 0 0

−uy 0 1 0

−uz 0 0 1





t

x

y

z


(1.1.2)

which can be written more generally as

x′ = Lx

x′i = Lijx
j

(1.1.3)

where here L is non-symmetric as time is not impacted by changes in velocity

within GaR. These transformations may also be defined for rotations, and by de-

sign Galilean transformations leave the length of these vectors as invariant under

these translations and rotations. Of course, from the above, for the same change in

observer, the transformation of velocity is

w′ = w − u. (1.1.4)

This formulation of relativity is particularly important as all more general ver-

sions of relativity reduce to it under some assumptions, including most notably the

Special and General theories of relativity. In this sense, Galilean relativity underpins

the modern understanding of motion, and relationship between observers.

Galileo’s second challenge to Aristotle came in the form of gravitation. Aristo-

tle had postulated that objects fell due to their particular properties and in a way

defined by solely that. Galileo, however, determined the first statement of the equiv-

alence, which represented a direct challenge to this idea. It is of course worth noting

that Aristotle, much as Galileo, could only observe this acceleration by observing

motion in a medium, and hence making this discovery more subtle than its modern

importance would make it seem. Vincenzo Viviani [39], a student of Galileo gave

an account of how Galileo explored this. Galileo had dropped two balls of different
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densities from the top of the Leaning Tower of Pisa. With both hitting the ground

at the same time, it was demonstrated that in fact, unlike previous assertions such

as those of Aristotle, the rate at which objects fall was not down to their ‘nature’,

but rather a property of gravitation itself [49]. Whilst it is debated as to whether

or not this experiment was actually carried out, or was in fact merely a thought

experiment, it is an interesting insight in the early ideas around gravitation. In

effect, such understandings are the first statements of the equivalence principle. In

a sense, Galilean gravity on Earth can be stated as

a = g = const. (1.1.5)

this being independent of the material or ‘nature of the object’ and approximately

uniform across the surface of the Earth. Of course, the surface gravity on Earth

does vary, and this has some uses within various fields surveying the surface of the

Earth [68, 120, 119], but these changes are subtle and not of key importance to this

discussion. This in turn is not only the first statement of the equivalence principle,

but also notes the key elements within gravitational theory, and one that is generally

brushed past even in the teaching of gravitation. Whilst generally described as a

force, and generally as one of the four fundamental forces of nature, gravitation

appears as a pure acceleration towards masses, and one that is unrelated to the

properties of the object being accelerated. This is included in more modern theories

of gravity which involve lensing, though this is generally through the idea of a

warped spacetime. Whilst this acceleration is understood and built into all theories

that would follow, and indeed a key component within relativistic theories, the force

notion of gravitation would remain a key part of gravitational theory for centuries

to come, and arguably to this day. Despite it appearing, acting and behaving as

an acceleration, the ‘force of gravity’ still remains a key element even in modern

interpretations.



8 1.2. Newtonian Gravity

1.2 Newtonian Gravity

The next important step in the development of modern gravitational theory was

the observation of planetary motion, which led to the development of Kepler’s Laws.

It was not until Sir Isaac Newton and his work ‘Philosophiæ Naturalis Principia

Mathematica’ [91] that this was put into its more modern context. His three laws

of motion outlined what would become the very basis of classical mechanics, these

being

1. An object maintains its current velocity, unless acted upon by a force.

2. The net force on an object is proportional to the magnitude of acceleration it

will experience, this being related by the mass of the object.

3. Each action has an equal and opposite reaction.

It was in this manner that Aristotle’s understanding of the physical world would

give way, at least within physics, to a more modern one, and through this a better

understanding of motion could be attained. Of particular interest to gravitation

however, and particularly the notion of ‘the force of gravitation’ is Newton’s second

law, which may also be stated as an equation as

F = ma. (1.2.1)

Here F is the force, a is the acceleration of the object. With such an under-

standing of motion, as well as the sense that objects are ‘forced’ downward, it is

understandable that this particular law would dominate thoughts on how gravity

acts. Using the second law, and considering Kepler’s Laws

1. All orbits of planets form an ellipse, with the Sun at one of the two foci.

2. A line from the planet to the sun sweeps out equal areas per equal time.
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3. The square of the period of a planet’s orbit is proportional to the cube of its

semimajor axis.

Newton had managed to derive Kepler’s Laws from his own description of gravity

[91, 37]. This can be stated as Newtonian gravity (NG) in one direction between

two objects. Labeling these two objects ‘a’ and ‘b’, NG may be written as a force

law as

F1 (r) = MaGMb

r2 (1.2.2)

with G being the gravitational constant and r being the distance between the

two objects. Defining inertial mass as m, for object ‘a’, gravitational acceleration

may be defined as

g (r) = Fa (r)
ma

= Ma

ma

GMb

r2 . (1.2.3)

This as such only leads to the equivalence principle if Ma = ma. This may seem

like a simple and reasonable assumption to make, but here exists one of the key

reasons that a force formulation of gravitation needed to be considered. Prior to the

Eötvös experiment [129, 34], this stood only as an assumption, and there does not

exist a clear reason that in such formulation, inertial and gravitational masses need

be the same. With this determined however, Newton’s force law for gravitation does

lead to the equivalence principle, and determines gravitational acceleration towards

a mass M as

g (r) = GM

r2 . (1.2.4)

This is of course identical to 1.1.5 for constant or near constant r, such as the

surface of the Earth. The above may also be expressed in terms of vectors as
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g (r) = −GM
r2 r̂, (1.2.5)

in Gauss’ form

∇ · g (r, t) = −4πGρ (r, t) , (1.2.6)

or in terms of a scalar potential Φ in Laplace’s form

∇2Φ = 4πGρ. (1.2.7)

This in essence is the basis of classical gravitational theories. Here the consid-

eration of gravity as a force can be clearly seen, despite its origins and behaviour

being that of an acceleration. This is also despite it being demonstrated at multiple

steps that gravity was describable as an acceleration alone, without reference to it

as a force. Referencing it as a force is a consequence of Newton’s second law, though

the significance of this will become more apparent in the coming chapters.

Newton’s forms of gravitation are also important even to this day not only in

the education of gravitational theory, but in that modern theories under certain

assumptions reduce to them, much as relativistic formulations reduce to GaR.

1.3 Special Theory of Relativity

With the behaviour of GaR in mind, one question does arise, this being the

nature of the speed of light. Present to a student unaware of relativistic principles

the problem of an observer and the speed of light, and they will invariably suggest

that the speed of light would be the speed of the object added to the initial speed.

This is of course a natural consequence of the construction of GaR. This as a sense

of thinking, however, is important to remember in the construction of relativistic

theories, particularly with a modern understanding of the speed of light.
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The construction of the Special Theory of Relativity (SR) is best considered

in reference to the World it developed in. Maxwell’s ‘A treatise on electricity and

magnetism’ [74] presented for the first time the Maxwell equations in their more

modern form, which can be stated as

µ0
∂H

∂t
= −∇×E (1.3.1)

ε0
∂E

∂t
= ∇×H (1.3.2)

∇ ·H = 0 (1.3.3)

∇ ·E = 0 (1.3.4)

in the sourceless case. These equations predicted and described light as an

electromagnetic wave for the first time, and in doing so began research into the

nature and properties of this, as well as research into the understanding of how a

wave could exist without a medium. Of course, none of these were new ideas as such;

indeed, debates about whether light propagated through an aether medium were

contemporary to Newton [92]. With growing interest in magnetism and electricity,

the idea of luminiferous aether was commonplace, and by Maxwell’s time it was

essentially considered a requirement. Of course, understanding of light brought

about a greater understanding of the speed of light, and it was expected that the

speed of light would only be relative to the aether at rest, as would be expected

under GaR. In this sense, measurement of the speed of the Earth moving against

this aether as it orbited the sun could be measured within anisotropy of the speed of

light, as it seemed natural to assume that the Sun was central and unmoving against

this aether rest frame. Hypotheses with reference to the nature of this included

Fresnel drag [44], as well as others of similar design. Under Fresnel drag, first order

experiments were expected to not pick up any anisotropy of light, as was the result

with early experiments; second order experiments were however anticipated to have
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detectable results. The Michelson–Morley experiment [81], the first of the famous

second order experiments, did determine that null result, and hence demonstrated

the isotropy of light and acted as was the beginning of the end for aether theories.

This null result was with the finding of 8 km s−1 as the speed of Earth, as opposed

to the expected result of 30 km s−1. There were attempts to explain how this result

could come about with an aether theory, such as by Lorentz [70], which suggested

physical contraction of the rods in response to the aether. Such attempts were

quickly refuted however, and the two postulates that SR would be constructed from

were cemented:

• The laws of physics are the same in all reference frames.

• The speed of light in a vacuum is the same for all observers.

In order for this to work, the concepts of absolute motion and absolute time were

discarded, and the world of physics would enter the era of SR, as opposed to GaR.

This of course meant that time itself was now relative to the observer, each observer

would have their own measure of time, but this item would present its own problems.

To compare to GaR, SR can be stated in an analogous sense to equations 1.1.1 and

1.1.2 for a boost of v in the x direction relative to the coordinate frame

ct′ = γ
(
ct− u

c
x
)

x′ = γ (x− ut)

y′ = y

z′ = z

(1.3.5)

where

γ−2 = 1− u2

c2 . (1.3.6)

Defining β = u/c, and βi = ui/c, this can be written as a linear transformation

as
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ct′

x′

y′

z′


= Λ



ct

x

y

z


(1.3.7)

with

Λ =



γ −βxγ −βyγ −βzγ

−βxγ 1 + γ−1
β2 β

2
x

γ−1
β2 βxβy

γ−1
β2 βxβz

−βyγ γ−1
β2 βyβx 1 + γ−1

β2 β
2
y

γ−1
β2 βyβz

−βzγ γ−1
β2 βzβx

γ−1
β2 βzβy 1 + γ−1

β2 β
2
z


. (1.3.8)

This can also be represented as a linear transformation

x′µ = Λµ
νx

ν . (1.3.9)

While of course, the addition of two velocities is no longer a trivial linear sum,

and u′ as u boosted by w is given by

u′ = u+ w

1 + uw/c2 . (1.3.10)

or in vector form

u′ = 1
1 + u ·w

(
u+w + 1

c2
γw

1 + γw
w × (w × u)

)
. (1.3.11)

Here γu is the Lorentz factor in u. These of course all reduce to Galilean relativity

in the case u � c, as would be expected. This includes the lack of symmetry in

1.1.2; in truth it should be in the form
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ct′

x′

y′

z′


=



1 −βx −βy −βz

−βx 1 0 0

−βy 0 1 0

−βz 0 0 1





ct

x

y

z


. (1.3.12)

Here the reason for the form in 1.1.2 becomes apparent. In this case the transfor-

mation is symmetric, yet when calculated, the c terms on the time components give

−βict = −uit, while other time components keep their 1/c terms, which of course

tend to zero in the limiting case of u� c. The Minkowski metric may be presented

in the form

η =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(1.3.13)

this defining the scalar product, and hence length within SR in the form

x · x = ηµνx
νxµ

= xµx
µ

= −c2t2 + x2 + y2 + z2

. (1.3.14)

Here note that a time negative convention for the Minkowski metric has been

used and will be used for the remainder of the thesis. Through this, time and space

are under SR indivisible, if fundamentally different, this giving rise to spacetime as

it is now known as a concept. This has become the prevailing understanding of the

relationship between space and time in the modern era, yet within this formulation

some sense of the behaviour of time has been lost. This will be discussed in further

depth in chapter 2.

Returning to the concept of electromagnetism, the electromagnetic tensor may
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be represented in the form

Fµν = ∂µAν − ∂νAµ (1.3.15)

where ∂µ is the four-gradient and Aµ is the four potential. These may be written

in vector form as

∂ =
(
−1
c

∂

∂t
,∇
)

(1.3.16)

that is, it is the standard 3-gradient with the addition of a normalised time

term, noting that this is the contravariant form. The electromagnetic four-potential

Aµ can be represented as A0 = φ, that is the electric potential, while Ai is the

standard magnetic potential. This is a useful representation of electromagnetism,

demonstrating the connected nature of electricity and magnetism in the process.

Useful properties of the tensor include Fµµ = 0, while standard electric and magnetic

fields may be recovered as Ei = cF0i = −cFi0 and Bi = −1
2εijkF

jk. The Maxwell

equations take on a new, more compact form of in this formulation

F[αβ,γ] = 0 (1.3.17)

Fαβ
,γ = 0 (1.3.18)

these represent the equivalent formulation of Maxwell’s equations in the source-

less case in SR. Here F[α1α2...αn] represents the anti-symmetric part of the tensor,

that is, F[α1α2...αn] ≡ 1
n!δ

β1β2...βn
α1α2...αn

Fβ1β2...βn , while F,α is the partial derivative in α in

the form F,α ≡ ∂αF .

In effect, SR created the basis for understanding of relativistic principles, but it

did not tackle some of the more important questions involved in an understanding of

these phenomena. It was useful only for frames not experiencing acceleration, yet in
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a universe dominated by accelerating frames due to gravitation, this is understand-

ably limited in utility. Of course, SR could be generalised to tackle accelerating

reference frames, but even so generalisations of this to better include such phenom-

ena is a natural progression of SR.

1.4 General Theory of Relativity

The General Theory of Relativity (GR) follows on from the ideas of SR, and

does so in a way to include gravitational phenomena. The relativity of SR appeared

to be valid, but only in the case of inertial reference frames. Of course, gravitational

phenomena appear as accelerations, and hence reference frames affected by gravita-

tion are not inertial reference frames. Whilst SR had been generalised to be able to

deal with accelerating reference frames, the more complicated examples seen in the

study of gravitation require a more complete description. Equally, time within SR

is only relative to the observer themselves, which causes issues within NG, where

the instantaneous nature of the equations could no longer be modeled. Issues with

NG had already manifested by the late 19th, and there was a well known problem

with Mercury’s orbit, such as with the work by Le Verrier [64]. Much as with their

discovery of Neptune, Le Verrier had hypothesised another planet creating perturba-

tions within orbits, this one existing in a closer orbit to the Sun than Mercury, and

hence disturbing its orbit. Le Verrier had named this hypothetical planet Vulcan,

alluding to its closeness to the Sun. By the time of Einstein however, searches for

Vulcan had proved fruitless and it had been all but rejected as a possibility. Einstein

in his construction of a General Theory of Relativity would include in scope first

accelerated motion of reference frames, and then later equivalence with gravitational

acceleration; this being the equivalence principle. From here, Einstein made what

would become known as the three classical tests of relativity [40]

1. The perihelion procession of the orbit of Mercury.
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2. Bending of light around the Sun.

3. Redshift of light caused by gravity.

All three of these would be found to be the case, and hence GR gained legitimacy

within scientific consciousness of the time. Here of course, the same spacetime of

SR is present, but here used to describe the universe as a sheetlike structure that

could be bent by masses, and hence geodesics within this theory could be bent. In a

more modern context, GR can be summarised broadly with the following equations,

firstly the Einstein Field Equation with Gµν as the curvature of space, Rµν the Ricci

curvature tensor, R the scalar curvature, gµν the metric tensor, Tµν the energy-stress

tensor and Λ a cosmological constant

Gµν = Rµν −
(1

2R− Λ
)
gµν = 8πG

c4 Tµν . (1.4.1)

That is, the curvature of space is proportional to the energy-stress of space.

Here the convention used is to include the cosmological constant term within the

curvature tensor. The paths of objects are then determined by the geodesic equation

in the form

d2xλ

dτ 2 + Γλµν
dxµ
dt

dxν
dt = 0 (1.4.2)

where Γλαβ represents Levi-Civita connections, and τ proper time, and can be

calculated as

Γαβγ = 1
2g

αε (gβε,γ + gγε,β − gβγ,ε) . (1.4.3)

The Riemann curvature tensor takes the form

Rρ
σµν = Γρνσ,µ − Γρµσ,ν + ΓρµλΓλνσ − ΓρνλΓλµσ (1.4.4)

where here
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Rσν ≡ Rρ
σρν (1.4.5)

and finally the scalar curvature

R ≡ Rσ
σ. (1.4.6)

These together generate the turning of vectors from curvature of the manifold.

The metric tensor takes the place of the Minkowski metric, and hence lengths are

determined in GR as

x · x = xµgµνx
ν

= xµxµ

(1.4.7)

and determined by the curvature by the above. Of course, the above does reduce

to NG in the weak field case, this known as the weak field approximation. In a weak

field the metric tensor may be linearised as a linear sum of the Minkowski Metric

and another small metric hab of the form [85, 121]

gµν = ηµν + hµν (1.4.8)

where hmn must be of negligible contribution. In the Newtonian limit the energy-

stress tensor reduces to only T00 = c2ρ, with Tµν = 0 for all µ 6= 0, ν 6= 0; that is,

the only component is a matter density. Equally, in the case of a slowly moving xµ,

all components of equation 1.4.2 that are not a derivative of time will be dwarfed

by the time coordinates, reducing the equation to

d2xλ

dτ 2 + Γλ00

(
dx0

dt

)2

= 0 (1.4.9)

which given a static field and the linearised form of the metric becomes
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d2xλ

dτ 2 = 1
2η

λρ∂ρh00

(
dx0

dt

)2

. (1.4.10)

Of course for λ = 0, this must become zero as time moves steadily within the

Newtonian limit, as dτ ≈ dt, leaving only the spacial coordinates

d2xi

dt2 = 1
2η

ij∂jh00

(
dx0

dt

)2

. (1.4.11)

If h00 = −2Φ, then this equation becomes

d2xi

dt2 = −∂jΦ. (1.4.12)

This giving gravitational acceleration as g = −∇Φ. The Ricci metric in equa-

tions 1.4.4 and 1.4.5 reduces by the same assumptions to with the energy-stress

tensor T00 = c2ρ to become

c2R00 = 8πGρ = ∂λΓλ00 (1.4.13)

and from the same assumptions the Christoffel symbols reduce to

∂i∂ih00 = −8πGρ (1.4.14)

which as h00 = −2Φ this becomes

2∂i∂iΦ = 8πGρ (1.4.15)

which is of course the Laplacian form of Newtonian gravity in the form of equa-

tion 1.2.7.

Much as with NG, methods of determining solutions to the general field equations

above depends on the scenario. One of the most famous results from the theory is

by Schwarzschild [116], which was achieved by first diagonalising the metric tensor
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in spherical coordinates

gµν = 0, for all µ 6= ν (1.4.16)

hence giving a line element

ds2 = g00 dt2 + g11 dr2 + g22 dθ2 + g33 dφ2 (1.4.17)

which considering spherical symmetry and time independence leads to the form

ds2 = A
(

1 + 1
Br

)
dt2 +

(
1 + 1

Br

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
(1.4.18)

with A and B constants to be determined. These can be determined in the same

manner as previously as

A = −c2

B = − c2

2GM

(1.4.19)

giving the Schwarzschild [116] metric in the usual form of

ds2 = −c2
(

1− 2GM
c2r

)
dt2 +

(
1− 2GM

c2r

)−1
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
. (1.4.20)

This is one of the simplest and most common noted solutions to the Einstein Field

equations, and is applicable for time-independent gravitational fields outside any

spherical object. This in a sense means that the Schwarzschild metric is applicable

to anything from planets to black holes. It is in effect the GR analogy to the

spherically symmetric forms of Newtonian gravity, such as equation 1.2.5. It also

has a number of interesting properties, including the Schwarzschild radius, given as
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rS = 2GM
c2 (1.4.21)

which in equation 1.4.20 forms a singularity. This of course is not the only valid

choice of coordinates, and there exist coordinates under which the event horizon

is regular [67]. If a mass M is contained within this radius, it would form what

is known as a black hole, that is, light would not be able to escape from within

this radius; hence the physical meaning of the singularity. Whilst there exists a

singularity at the Schwarzschild radius, there do exist coordinates that are regular

across the Schwarzschild radius, and these will be discussed elsewhere in this thesis.

These black holes were considered little more than a mathematical curiosity of the

equations for decades, with the development of models of stellar collapse they are

now considered to be real and important components of cosmology, particularly in

regard to galactic dynamics, where most galaxies contain supermassive black holes

at their centre, including our own galaxy with Sagittarius A* (SrgA*) [94, 48].

The existence of such is inferred from the behaviour of stars around such dark

compact objects at the centre of the galaxy, and their mass may be determined as

M = rV 2
circ/G from orbital data and by more sophisticated analyses for non-circular

orbits [48].

1.5 Dark Matter

With more robust tools to study gravitational effects, it was natural that an

exploration of large scale structures would occur. Whilst GR is in a sense the

covariant generalisation of NG, and reduces to it in the non-relativistic limit, it does

allow for further dynamics that could be studied, including the previously noted key

tests of GR. With this however, issues with GRs interpretation of gravitation would

follow with study of large scale effects of gravitation, most notably in rotationally

supported galaxies. The theory allows, much as with NG, inferences to be made
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Figure 1.1: Rotation curve in the solar system, with data from [89]. The points
represent planets and large gravitationally rounded objects, while the dotted line
represents the expected rotation curve from NG alone.

into the amount of enclosed mass at a given distance. It would be here that the so

called ‘missing mass problem’, would first be noted. This effect, and, as it would

become known, ‘dark matter’, was first demonstrated in the dynamics of rotation

curves of galaxies. To gain an appreciation of this effect, it is best to first consider

the expected curve, starting with the simplified NG case. Consider rotation curves

as observed by Kepler, and as they usually appear

V 2
circ = MG

r
. (1.5.1)

Figure 1.1 shows the rotation curve for the solar system, while figure 1.2 shows

a rotation curve of a fairly typical galaxy, this being NGC 3198. Here, whilst the
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Figure 1.2: Rotation Curve of NGC 3198, data from [38].

total mass of the system is well within the radii this includes, it presents with a near

flat rotation curve. Analysed by NG and theories of similar dynamics such as GR

alone, this would represent increasing extra mass out to great distance in order to

account for this flat region.

This problem is hardly new however. In different forms, the problem with missing

mass was reported by Poincaré (1906) [101], Kapteyn (1922) [60], Oort (1932) [93]

and Zwicky (1937) [132], though momentum behind the development of it as a

serious explanation of observations would not occur until the work of Rubin &

Ford Jr [111] in 1970. This was followed up by the influential paper by Rubin,

Ford Jr & Thonnard [112] in 1980, which reported from numerous galaxies that

the amount of dark matter needed must be in excess of 6 times the visible matter

in galaxies. Whilst it is argued that there were movements about dark matter in
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the intervening years [12], these observations would be the watershed moment in the

development of dark matter theories. Despite nearly four decades having passed, the

dark matter remains an unresolved issue within the standard model of cosmology

[79], and the search for it remains a key test of the model.

Other theories have been developed to explain these effects in other ways, though

these theories have issues of their own. While recent work suggests that dark matter

components of rotationally supported galaxies is strongly coupled to the apparent

dark matter [80], this not only remains an open question in the field, but one that

could still reshape modern understandings of gravitational theory. Of course, con-

cerns with modified gravitational descriptions of dark matter are fraught with con-

cerns of their own, including specific examples such as the bullet cluster, which was

claimed to be ‘direct empirical proof of the existence of dark matter’ [36] at the time

of its publication. The gas-rich cluster, resembling a bullet under x-rays, shows dis-

parate mass centres and gas, suggesting that dark matter is moving independently

of the mass density. Hence it is regarded as proof of dark matter being a substance

rather than an alteration of gravitational laws. Others have challenged this find-

ing however [2, 3], not only suggesting MOND is compatible with the observations,

but that in fact the cluster is direct proof of issues with GR due to the collision

velocities involved [65], while they are consistent with MOND predictions for the

cluster [2, 3]. Equally, the tightness of coupling between baryonic matter and the

accelerations seen within rotationally supported galaxies suggests other dynamics at

play, and provides a direct challenge to modeling dark matter in galaxies on a case

by case basis [80]. Dark matter remains not just an open question within cosmology,

but the discovery or non-discovery of direct evidence for it could be considered the

key test of gravity within modern cosmology.



Chapter 1. Gravity and Relativity 25

1.6 Expansion of the Universe and Dark Energy

Within Einstein’s Field Equations a term was included to allow for a static

solution to space. This term, the cosmological constant, denoted Λ as it can be

seen in equation 1.4.1, acted as a way to fine tune solutions to the expansion of the

universe. When Hubble published his results demonstrating the expanding nature

of the universe in 1929 [56], this term was quickly discarded. According to Gamow

[45], Einstein had remarked that he felt that the cosmological constant was his

biggest blunder; without it his Field Equations would have predicted the expansion

of the universe prior to its discovery. This in and of itself was no insult against

Einstein’s work, as a steady state universe was preferred in that era. Gamow for

his own part was one of the early adopters of the Big Bang theory as proposed by

Lemaître [66]. The name, initially used mockingly, has taken on its own prestige

within science and particularly popular science. The very concept of it has captured

popular imagination, and has had its own cultural impacts on the modern era.

In order to model the expansion of space, it is assumed that it is homogenous,

isotropic and time dependent. Using a scale factor, R (t), in a sense a measure of

the size of the universe at one point against any other, it can be written as

− c2 dτ 2 = −c2 dt2 +R (t) dΣ2 (1.6.1)

where Σ represents 3-space of some uniform curvature. This is known as the

Friedmann–Lemaître–Robertson–Walker metric (FLRW). Depending on the choice

of coordinates this may take a number of forms, but solutions with this metric

require some assumption about the nature of the energy-stress tensor. For the case

of a perfect fluid this can be written as

T µν =
(
ρ+ p

c2

)
UµUν + pgµν (1.6.2)

where ρ is energy density, p is pressure, and Uµ is the velocity vector field of the
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fluid. For U0 = c, U i = 0, solutions to the Einstein Field Equation are of the form,

with a curvature k

Ṙ + kc2

R2 = 8πGρ
3 (1.6.3)

R̈

R
= −4πG

3

(
ρ+ 3p

c2

)
+ Λc2

3 (1.6.4)

these being the Friedmann equations. The Hubble parameter may also be defined

as H ≡ Ṙ/R, with H0 being the current value. From these exists a critical density

that determines the behaviour of the expansion of the universe. From the above this

exists as

ρc = 3H2

8πG (1.6.5)

defining a density parameter Ω ≡ ρ/ρc. In the case that there is no cosmological

constant, that is Λ = 0, this would determine where the universe would be

Ω =


< 1, open

1 flat

> 1 closed

. (1.6.6)

This analysis, however, changes with the addition of a cosmological constant. Of

course, work by Perlmutter et al. [98] and Riess et al. [106] discovered that in order

for the observed redshift data for the expansion of the universe to be consistent

with the FLWR metric and Friedmann equations, it would require a considerable

cosmological constant. This was termed dark energy, and Perlmutter, Schmitt and

Riess would win the 2011 Nobel Prize in Physics for their discovery [99]. This

is now a key part of the Λ–Cold Dark Matter model of the universe (ΛCDM).

The current best estimates for the key parameters, Ωm = 0.308 ± 0.012 and H0 =

(67.8± 0.9) km s−1 Mpc−1.
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1.7 Strong Unexplained Cosmological Effects

Within cosmology there exist a number of strong relations that behave in much

the same way as classical laws of nature. These can be used to determine charac-

teristics and positions of stars, and are generally used to infer other information.

Whilst many of these are well known, the behaviours of these relations remain dif-

ficult to describe, and at times at odds with current theories of gravity and models

of cosmology. It is for this reason that there needs to be some focus upon these, as

they may act as a test of sorts, and much as classical laws defined the assumptions

that were used to develop the classical theories of gravity, these modern laws may

be used in a similar manner.

The relations described herein are by no means an exhaustive list of such, but

rather a select few of particular interest to the remainder of this thesis. Those chosen

are of particular interest to D3ST as discussed in later chapters. Cases emphasised

have been chosen with a focus on where these relations may represent evidence

of potential new physics, as opposed to ones where it is more likely to merely be

measurement errors or misunderstandings of current phenomena.

1.7.1 Tully-Fisher relation

The Tully-Fisher relation (TFR) is an empirical relationship between the lumi-

nosity of a spiral galaxy and its asymptotic rotational velocity [125]. Developed as a

method of determining distances to galaxies, the relationship has played a large role

in the changing landscape of cosmology in recent decades. Whilst its original state-

ment is in terms of luminosity, a Baryonic Tully-Fisher relation (BTFR) has been

developed and is now widely used [77], and has been generalised to gas dominated

galaxies [118]. The relation sees a proportionality of M ∝ V 4
f , where M is the mass

of baryons within the system, and Vf is the asymptotic rotational velocity of the

system [78]. This calibration for gas dominated galaxies is particularly important
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in theories relating baryonic mass to supposed dark matter effects, as it continues

the Tully-Fisher relationship in low light galaxies where it broke down in terms of

pure luminosity. The tightness of the relationship, as well as the number of orders of

magnitude it appears in, means that it has some important properties for study, and

can be considered a major test of the dynamics of a gravitational theory [78, 83].

1.7.2 M-σ Relation

There also exists an empirical relation between the mass of a galaxy’s central

super massive blackhole (M•) and the velocity dispersion of the system (σ) [46], this

being applicable both to elliptical galaxies, and the bulges of spiral galaxies [42]. The

relation, which can be stated as M• ∝ σβ, has been found with β = 4.24± 0.41 for

all galaxies and β = 3.96± 0.42 for elliptical galaxies alone [52]. These more recent

values follow on from initial concerns with the differences seen in slopes between

different studies, with this being found to be largely down to the methodologies of

different groups in estimating the velocity dispersion [123]. The M-σ relationship is

noted because of its strong fit to data and limited scatter, which is less than expected

from formation processes alone. As such the M–σ may be considered another key

test of the dynamics of a gravitational theory.

1.7.3 Bulge-Mass to Black Hole Relation

There is a reported relationship between bulge mass and the mass of the cen-

tral black hole (M•), this relationship being Mbulge ∝ M• [72, 23]. Whilst this

is formulated as a direct proportionality relationship, relationships involving pow-

ers that are not exactly 1 are also reported [55, 76], while this relationship has

also been explored at low-mass [50]. There have also been reports of this relation-

ship representing roughly M• ≈ α
2Mbulge, where α is the fine structure constant

[19]. The result considered for the remainder of this thesis is log10 (M•/M�) =

8.46 ± 0.08 + (1.05± 0.11) log10 (Mbulge/M�), from [76]. Generally this relation is
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considered to be caused by formation processes within galaxies [76], though it has

been argued that it could also represent a new type of physics [19, 23, 14, 62].

1.7.4 Baryonic Mass to Rotation Curve Relation

McGaugh, Lelli & Schombert [80] report a strong correlation between radial ac-

celeration traced by rotation curves observed and those predicted by the baryonic

mass within galaxies alone. This relationship differs from the BTFR which relates

only to the baryonic matter of the galaxy and asymptotic rotational velocity, while

this relationship relates the observed radial acceleration to the predicted acceler-

ation within the systems themselves. This relationship is of particular interest as

it notes the importance of these relationships within the systems themselves. The

study by McGaugh, Lelli & Schombert [80] is of particular interest, however, as it

demonstrates this strong coupling between observed and predicted curves, and does

so from a sample including 2693 points from 153 rotationally supported galaxies.

They note that rotationally supported galaxies were chosen in particular as elliptical

and other galaxies have more complicated potentials, though a similar relationship

is expected [80]. They report an empirical relationship between gobs to gbar of the

form

gobs = gbar

1− e−
√
gbar/g†

. (1.7.1)

Here gobs is the observed gravitational acceleration, gbar is the gravitational ac-

celeration predicted from the total number of baryons, while g† a single free fitting

parameter with dimensions of acceleration. They report g† = 1.20±0.02 (random)±

0.24 (systematic)× 10−10m s−2. On this basis, the authors argue that this could be

a potential ‘Kepler’s Law for rotating galaxies’ considering the tightness of fit.
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Figure 1.3: A plot of measurements of Big G in terms of fractional difference from
the CODATA (2014) recommendation [87], which here is represented by the vertical
dotted line with the grey region being the recommended uncertainty.

1.7.5 Measurement of G

While not strictly a cosmological relationship, the measurement of the gravita-

tional constant G has presented issues within gravitational research. Unlike many

physical constants, the value of Newton’s gravitational constant G remains some-

what alone in that there is still a comparatively large scatter in measured values.

Whilst most constants are known to parts per million at worst, values for G still

vary in the region of parts per ten thousand [88, 31, 87, 102]. The concerns with

the measurement of the gravitational constant G are well established; such concerns

have inspired efforts and conferences such as the 2016 one at NIST. The current

CODATA recommended value for big G is (6.67408± 0.00031) × 10−11m3 kg−1 s−2

[87]. A plot including some recent values of G with error bars is included as figure
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1.3, while the table this was produced from is included as appendix A. As can be

seen within the plot, there is a large spread, and this spread of over one part in ten

thousand can be clearly seen. There have also been attempts at theoretical values

for G [69], though at this point none of these have received widespread attention,

nor have these given a sufficient reason for the spread seen in the constant. Equally

there have been some less orthodox studies of the gravitational constant in recent

years, including suggestions that this may be caused by changes in G over time [1],

though their argument that it varies over a period of half a dozen years has been

challenged on numerous bases [114]. Overall, the spread in the measurements of

the gravitational constant suggests that there may be something else at play here.

Whether or not this represents some new physics, or misunderstandings in current

measurement protocols, remains to be seen.

1.8 Alternative Theories of Gravity

While GR is the most used and considered standard theory of gravity, there

do exist other theories of gravity that attempt to solve some of the problems dis-

cussed above. Of particular interest to this thesis are Modified Newtonian Dynamics

(MOND) due to similarities arising between its dynamics, and previous work in the

topic of this thesis.

1.8.1 Modified Newtonian Dynamics (MOND)

MOND is a theory that attempts to explain the asymptotically flat rotation

curves for spiral galaxies by alteration of the gravitational law for small accelerations.

The original formulation of the theory was in regard to a modified force law for

gravity in the form [10]

m µ
(
g

a0

)
g = GMm

r2 (1.8.1)
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where m is the mass of the object being accelerated, a0 is a constant acceleration

defining a switching scale for MOND’s form of gravity and µ is a function with the

property

µ (x) ∼


1, x� 1

x, x� 1

otherwise determined.

. (1.8.2)

The acceleration is denoted a0 and is roughly ∼ 1.5 × 10−10m s−2 [83]. There

were issues with this form, notably that for Newton’s third law to hold, the following

would be true

mµ
(
g

a0

)
g = GMm

r2

M µ
(
g

a0

)
g = GMm

r2

(1.8.3)

which means that

µ
(
g

a0

)
= µ

(
g

a0

)
(1.8.4)

which requires that µ (x) be a constant, this violating equation 1.8.2. In essence,

in the original formulation of the theory as a force law, it violated one of the key laws

behind motion. The resolution to this issue a construction of MOND called AQUAL,

being name for the term A Quadractic Lagrangian [10, 82, 83]. The AQUAL form

of MOND is derived from the Lagrangian [8]

L = − a2
0

8πGF
(
|∇Φ|2

a2
0

)
− ρΦ (1.8.5)

and usually stated in the form

∇ ·
[
µ

(
|∇Φ|
a0

)
∇Φ

]
= 4πGρ. (1.8.6)



Chapter 1. Gravity and Relativity 33

The function F (x) is related to the interpolating function as µ (x) = dF(x2)
dx .

Using equations (1.8.6) and (1.8.2), gravity outside a spherical system, where g ≡

|∇Φ| � a0, is

∇ ·
[
|∇Φ|
a0
∇Φ

]
= 4πGρ

g2

a0
= GM

r2

g =
√
GMa0

r
.

(1.8.7)

This being the same form as the behaviour initially described in equation 1.8.1.

These interpolating functions come in a number of forms, though the most common

generally are of the form [131, 47]

µ (x) = x√
1 + x2

(1.8.8)

or the simple interpolating function

µ (x) = x

1 + x
. (1.8.9)

Application of MOND in the case of a0 � g, it produces for spherical orbits

Vcirc (r) = 4
√
GMa0 (1.8.10)

that is, a flat rotation curve, as is observed in spiral galaxies. This being MOND’s

solution for the BTFR [77, 78]. It has been argued that MOND is the best descrip-

tion for these phenomena, and that it is difficult to otherwise understand how there

is such a strong correlation between low acceleration environments and dark matter

[79].

There also exists a relativistic form of MOND called Tensor-Vector-Scalar grav-

ity (TeVeS) [7, 113, 86, 9], which is derived from the action principle, and allows

MOND to account for relativistic phenomena, most notably gravitational lensing.
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The theory yields other forms of MOND in the weak field approximation.

1.8.2 Entropic Gravity

Another attempt at describing these effects comes in the form of Entropic Gravity

(EG). Through this, the argument is essentially that we can model the universe and

objects within it as information [126]; this not too dissimilar to the starting point

for Process Physics. The theory follows a postulate that

∆S = 2πkB
mc

~
∆x (1.8.11)

argued as [126]

∆S = 2πkB when ∆x = ~
mc

. (1.8.12)

From this it follows that

kBT = 1
2π

~a
c
. (1.8.13)

Within this theory, Newton’s law of universal gravitation is returned by first

considering a number of bits N that it takes to describe an object, enclosed within

a surface A, with the number of bits given as [126]

N = Ac3

G~
. (1.8.14)

Here, area and a set of constants were introduced and it was assumed that

number of bits was proportional to area [126]. Following the standard equipartition

rule

E = 1
2NkBT, (1.8.15)

assuming that the energy enclosed by the surface follows the standard



Chapter 1. Gravity and Relativity 35

E = Mc2, (1.8.16)

and that

A = 4πr2 (1.8.17)

this becomes

F = GMm

r2 (1.8.18)

which is the standard form of Newton’s universal law of gravitation as in equation

1.2.2. Whilst Verlinde does note that this comes about by design of the equations

[126], it is argued that this does form a new argument for the origin of gravity.

That is, gravitation can be described as an entropic force. These arguments are also

generalised for the Poisson equation, and Einstein equations for gravity, though the

arguments follow similar lines [126].

Verlinde [127] has also formulated arguments for an explanation for dark matter

within galaxies as an entropic phenomena related to the amount of entropy removed

from a region by the addition of matter. In effect, the theory relates added mass to

the expansion of the universe, and derives a ‘dark matter’ like effect from it. Notably,

it is argued that the acceleration scale of MOND, a0 may in fact be determined

theoretically, in this case as for an Anti-de Sitter space with a finite horizon, that

the surface acceleration κ can be modeled as [127]

κ = cH0 = c2

L
= aEG. (1.8.19)

Here L is a Hubble scale and this aEG (written as a0 in Verlinde’s paper) being

the same acceleration as identified within MOND. This however is only similar to

the one used, and is related by a0 = aEG/6. This would give a0 ≈ 1.2×10−10 m s−2,
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this comparable to the value generally seen in MOND [83].

There exist criticisms of EG both on a theoretical basis and a observational basis.

Visser [128] argues that Verlinde’s formulation of the theory causes problems with

how the entropic forces need to be set up. Pardo [96] argues that EG fails to predict

the maximum velocity in rotation curves for small gas dominated galaxies. How

this relates to the relationship as described by McGaugh, Lelli & Schombert [80] is

unclear. Despite such concerns, the theory appears to work fairly well in an area

where there is still no clear solution to problems.

Concluding Remarks

The development of gravitational theories has lead to a strong understanding

of gravity within our own neighbourhood. Kepler’s laws having been explained by

Newton were a turning point in the understanding of modern physics, and offered

a link between the motions of bodies from the scale of dust to astronomical bodies.

Unlike under the work of Aristotle, it was no longer a case of different types of motion

for different types of objects. With this however, whilst we have now explained our

own solar system to great detail, at large scales our theories of gravity now require

a new Vulcan. Not just one either, but two, normally named dark matter and dark

energy, without which our understanding of the universe falls flat. Whilst there exist

other theories that attempt to explain these phenomena, such as MOND and EG,

there still remains no full explanation for the dynamics of the universe at a large

scale.

This chapter has outlined the development of modern gravitational theories from

their classical origins, and noted some areas of interest to the rest of this thesis. Of

particular interest include elements of GR, MOND, and large scale astronomical

relations.



Chapter 2

An Introduction to Dynamical

3-Space Theory

With the current developments in other theories of gravitation in mind, consider-

ation of the basis for this research within its field, as well as where it has come from,

is appropriate. This chapter seeks to outline the basis for, and direction in, research

into D3ST with reference to its Process Physics origins, and in doing so justify and

highlight the direction of the rest of the thesis. In particular, this chapter outlines

key results in the theory to this point, and will be used as a basis for discussion

within chapters 3 and 4. In addition to this, while drawing on the knowledge of past

papers within this field, work by Rothall [108] has been noted to improve previous

definitions within the theory.

2.1 Process Physics

Process Physics is a theory that seeks to model reality from a viewpoint that does

not contain a priori elements [15]. Inspired by work on self-referential syntactical

information systems, as described by Gödel and Chaitin [35], the theory attempts

to model space and quantum realities as emergent entities, rather than syntactical

ones. It does so in a way that models time as a non-geometric process [15]. Cahill

37



38 2.1. Process Physics

[22] argues that whilst geometric modeling of time has useful mathematical elements,

such representations of time offer little resemblance to its reality. Of notable concern

is that time itself can be seen to have three separate phases which are difficult to

capture geometrically, that is

1. The Past: events that have happened and have clearly defined results.

2. The Present: a boundary separating the past and the future, and interacting

directly with reality.

3. The Future: undecided and unknowable.

Whilst it is undeniable that there are uses of geometric modeling of time within

physics, and in understanding classical laws of physics, care should be taken not to

confuse this with the ontology of time as has arguably happened with other theories

[22]. Within SR and GR, the concept of a spacetime, in a way wedded together

inseparably, is argued to be confusing useful modeling tools with an understanding

of reality itself. Whilst there is undeniably value in such modeling, particularly in

terms of the results of such theories, this theory is argued on the basis of process

time.

The philosophical side of the theory focuses on concerns with the limitations

of many physical theories, and the over-reliance on metarules and metaphysical

assumptions to overcome these limitations. In particular, the theory is concerned

with understanding how quantum processes come about, and considering elements

such as the Born measurement metarule to model the non-process structures in a

way congruent with syntactical theories.

To this end the theory models reality as a stochastic neural network, and time

as a self-ordering process, rather than a geometric one [15]; in effect, the system

is bootstrapped by some start-up process and modeling and description can be

performed herein. Here the self-ordering and stochastic processes in a sense compete

as the system iterates. Containing no a priori concept of geometry, fields or physical
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laws, these elements emerge from these processes, rather than being a designed part

of the system. Whilst the initial aims of the theory were to attempt to understand

the emergent properties of reality and explore how this can be done without these

prior assumptions, what it instead found was new and interesting properties that

could be tested against observational and experimental phenomena. In a sense,

what was found was that these systems formed a quantum foam-like structure that

behaved roughly as a 3-space, with topological defects acting as sinks. This, along

with other behaviours of the defects, sees its behaviour identified with that of matter;

this argued to be a possible unification of space and matter [15], as well as an

explanation of quantum, inertial and gravitational behaviour.

To this end, Process Physics appeared to give rise to behaviours such as inertia,

gravity, 3-space and such without the need for prior assumptions. It has also been

suggested that under these models, the universe would form as an S3 space [24], that

is the 3-dimensional surface of a 4-dimensional sphere. This, for a sufficiently sized

universe, would appear flat locally, though there should exist some real curvature of

space should this be verifiable. In any case, at this time a method of transitioning

this modeling to that of a more traditional syntactical theory has yet to be found.

To this end, D3ST was developed to fill this void, and to be a theory of gravity

derived from principles of this theory.

2.2 3-Space Velocity

While Process Physics at this time has not been completely unified with D3ST,

it does serve as the motivation for it, as well as the processes seen within it. Whilst

NG treats gravity as a force field and GR treats it as warping of a 4D sheet like

spacetime, within D3ST gravity is modeled by changes in a velocity field denoted v.

This velocity field is suggested to be one of a background quantum foam which acts

as a dynamical 3-space. From considering behaviours of this from Process Physics,
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this theory attempts to describe these processes embedded in a 3-space. This 3-

space itself is used merely as an embedding space for the velocity field, and is not

believed to have ontological significance within the theory [22, 24, 29]. In this sense

the idea of gravitation being equivalent to accelerations takes on a clear and well

defined meaning, as within this theory it is defined as the changes in the velocity

field. This can be defined by taking the change of the velocity field over a step in

time, and hence gravitational acceleration may be defined by

a (r, t) = dv
dt

= lim
∆t→0

v (r + v (r, t) ∆t, t+ ∆t)− v (r, t)
∆t

= ∂v

∂t
+ (v · ∇)v.

(2.2.1)

This here is also known as the material derivative. The above form would suggest

that this acceleration a should be identified with gravitational acceleration g. The

definitions here can be considered to be a statement of the equivalence principle in

a sense, here gravitation is not only identified as being indistinguishable from an

acceleration, but in a sense is a true acceleration within the field. From this, the

above can be identified with Gauss’ form of gravitation (equation 1.2.6), this would

suggest a form for a 3-space equation of

∇ ·
(
∂v

∂t
+ (v · ∇)v

)
= −4πGρ (2.2.2)

or equivalently as

∇ · Dv
Dt = −4πGρ. (2.2.3)

Whilst the first is the standard form of the equation seen in the theory, for this

thesis the second will be preferred for brevity as Dv
Dt ≡

∂v
∂t

+ (v · ∇)v, this being the

definition of the material derivative. These forms of the equation represent a simple

form of the dynamical 3-space equation, but one that behaves identically to NG. To
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that end, consider solutions to the above for a mass M at distance r in the form

v (r) = −r̂
√

2GM
r

(2.2.4)

which yields a gravitational acceleration of

g (r) = −r̂GM
r2 (2.2.5)

this being the same behaviour as with NG. Equally, this velocity field can as such

be seen as being equivalent to escape velocity for a single source, or total escape

velocity for a collection of sources. This here gives some physical meaning to the

velocity field beyond it acting as a generator for gravitational acceleration.

Equally, for the case of zero vorticity and time-independence, it is possible to

associate v2 ≡ v · v with gravitational potential as

v2 = −2Φ (2.2.6)

which of course in equation 2.2.3 produces the Poisson form of gravitation

∇2Φ = −4πGρ. (2.2.7)

Which again shows the equivalence between 3-space gravitational theory and

other gravitational theories in this form. Alternatively, for zero vorticity, this would

become, keeping velocity notation

∇ ·
(
∂v

∂t
+∇

(
v2

2

))
= −4πGρ (2.2.8)

or for the gravitational acceleration

g (r, t) = ∂v

∂t
+∇

(
v2

2

)
(2.2.9)
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which is useful in some circumstances.

In a sense, under this formulation, 3-space is simply a velocity field formulation of

NG. Whilst there may exist a temptation to associate this theory with luminiferous

aether theories, it is actually very different in both its construction and consequences.

Aether theories required the medium’s existence to explain how light propagated,

while this theory is instead interested in the geometry that the universe is embedded

in. It is not a substance within the geometry of the universe that is flowing, but

rather a change in the geometry itself. It is actually closer to the construction

of GR than aether theories, the difference is the focus. As will be discussed in

chapter 4, the theory may actually be constructed in a near identical way to GR,

and maintain the same behaviours. There is nothing particularly mysterious about

this construction of a gravitation, and it in terms of gravitational phenomena at the

very least, behaves in an identical fashion in the Newtonian and relativistic limits

at the very least. It is at this point that the new dynamics of the theory need to be

considered however.

2.3 Dynamics of the 3-Space

The version of the dynamical 3-space equation as can be seen as 2.2.3 may be

generalised by considering other possible terms. In order to expand possible dy-

namics considered by this theory, other terms that may fit within the equation of

gravity were considered, such that they could be compared to observations. Con-

sidering minimal terms of dimension t−2 which are invariant under translation and

rotation, these added to equation 2.2.3 produces

∇ · Dv
Dt + α1 (trD)2 + α2tr

(
D2
)

= −4πGρ (2.3.1)

where here
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Dij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
. (2.3.2)

In order for these terms to produce no unusual behaviour outside of spherically

symmetric objects, this requires that α2 = −α1, that is, the two extra terms are

required to be equal and opposite. For this reason α1 may be replaced with simply

α. This is how the theory was originally set up, and older work saw the dynamical

3-space equation published as [22, 29]

∇ · Dv
Dt + α

8
(
(trD)2 − tr

(
D2
))

= −4πGρ (2.3.3)

however a reanalysis by Rothall [108] found issues with the original analysis of

some observations, and instead proposed the form

∇ · Dv
Dt + π2α

8
(
(trD)2 − tr

(
D2
))

= −4πGρ. (2.3.4)

This form will be used for the remainder of this thesis. The value of α has been

found independently using bore hole data to be α ≈ 1/137 [18, 108]. This has been

observed to be similar to the fine structure constant α = 1/137.036 within error,

and it has been suggested that this may be the constant observed [18]. It is also

convenient to rewrite this in the form α′ ≡ π2α
2 due to the frequent instances of π2α

2

seen within the theory, giving the form

∇ · Dv
Dt + α′

4
(
(trD)2 − tr

(
D2
))

= −4πGρ. (2.3.5)

Of course, the above can also be solved for outside a spherical mass M at distance

r as before, firstly for the velocity field

v (r) = −r̂
√

2GM (1 + α′)
r

(2.3.6)

and secondly the gravitational acceleration
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g (r) = −r̂GM (1 + α′)
r2 . (2.3.7)

The above could also be represented by defining these changes as MDM = α′M

such that

g (r) = −r̂G (M +MDM)
r2 . (2.3.8)

This ‘dark matter’ term here represents extra effective matter caused by the α

term in equation 2.3.5. That is, the extra apparent mass that would appear should

this be analysed with a purely Newtonian theory of gravitation. Of course, this

would present in effect a small offset to the data, and could represent part of the

issue in measurements of the gravitational constant as discussed in section A.

Further expansion of the dynamics of this theory were done including a further

term, this being the topic of my previous research. It was argued to require the

following that [31, 14, 62]

1. It must maintain the case of NG outside spherically symmetric matter systems.

2. Dark matter effects seen where α 6= 0.

The form that was tested included a new term of the form

δ2∇2
(
(trD)2 − tr

(
D2
))

(2.3.9)

and may be incorporated into the dynamical 3-space equation as

∇ · Dv
Dt +

(
α′

4 + δ2∇2
)(

(trD)2 − tr
(
D2
))

= −4πGρ (2.3.10)

where here δ is some small, Plank-like length. This form prevents inflow velocity

for systems going to infinite at the origin in spherical and cylindrical coordinates.

Whilst this was not a major concern as the theory had to this point been interested
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in effects far away from the origin, this still posed theoretical issues in some isolated

cases, such as cosmic filaments [31]. The solutions to this version of the 3-space

equation has well-behaved solutions even at small scales.

Equation 2.3.10 may also be represented as

∇ · Dv
Dt = −4πG (ρ+ ρDM) (2.3.11)

where

ρDM = 1
32πG

(
α′

4 + δ2∇2
)(

(trD)2 − tr
(
D2
))
. (2.3.12)

This form has been chosen for brevity as well as allowing the equation to remain

consistent regardless of choice of α and δ value, as will be discussed further in this

chapter. It also allows any further terms to be included simply without any changes

to the rest of the equation, nor standard formulae used within the theory. This

choice of writing the equation also highlights a key component of the equation,

that all effects that differ from NG represent some new form of physics and under

Newtonian theories will appear to behave as some form of apparent mass.

At this time, exact solutions to this form of the equation for outside a spherical

mass are unknown [31, 108], by analogy to previous solutions however it is expected

that they will come in a similar manner, with the original Newtonian Inverse Square

Law, followed by additional terms which can be packaged in a similar manner. That

is, in the same manner as equation 2.3.8, solutions to equation 2.3.11 may be written

as

g (r) = −r̂G (M +MDM)
r2 (2.3.13)

which, whilst not a full solution, with some understanding of the behaviour of

MDM, does suggest its behaviour. For a full discussion of the known behaviour

of MDM, see section 2.11. Of course, the other way of defining this would be
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Gobs ≡ G
(
1 + MDM

M

)
giving the form

g (r) = −r̂GObsM

r2 . (2.3.14)

That is, we could represent these changes as being a perturbation to the gravita-

tional constant. This however assumes that MDM/M is a constant value for δ 6= 0,

which is not a given, unlike in the α 6= 0 case for spherically symmetric systems. In

any case, even an approximate form of this relation could be a cause for the difficulty

in measuring G as discussed in section 1.7.5.

2.4 Characteristics of the 3-Space

The dynamics of the theory are highly non-local and instantaneous [29]. To

see this action at a distance, the integro-differential form of equation 2.3.12 can be

written as

∂v

∂t
= −Dv

Dt − 4πG
∫

d3s (ρ (s, t) + ρDM (s, t)) r − s
|r − s|3

(2.4.1)

which, beyond being non-local, is also non-linear in changes in ρ and ρDM [29].

It is worth noting that this apparent dark matter density behaves exactly as bary-

onic matter within this formulation. This may also be generalised considering the

effective velocity to an object moving against the 3-space, this being

vR (rO (t) , t) = vO (t)− v (rO (t) , t) (2.4.2)

where v0 is defined as the velocity of the object, which in the case of vR � c can

be used to determine the vorticity vector field ω (r, t) = ∇× v as [29]

ω (r, t) = 2G
c2

∫
d3s

ρDM (s, t) + ρ (s, t)
|r − s|3

vR (s, t)× (r − s) (2.4.3)

which has been used to analyse experiments such as the procession of gyroscopes
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in gravity probe B experiment [21, 29].

Equally, approximate velocity superposition effects have previously been studied

within the theory, and it has been demonstrated that both the velocity field and

gravitational acceleration are invariant with change of observers [16].

2.5 Direct Observations

It has been reported that direct observations of this 3-Space have been made,

with the most famous experiment claimed to show such an effect being the Michelson-

Morley experiment of 1887 which was concluded to be null [81, 28]. The theory is

argued to have Lorentzian relativistic effects relative only to the background 3-space

[29]. A reanalysis of the Michelson-Morley experiment by [20] reported a velocity of

in excess of 300 km s−1, arguing that the original analysis did not take into account

dynamical effects. This is a stark contrast to the originally reported 8 km s−1 as

reported by Michelson & Morley [81], and far in excess of the 30 km s−1 that they

had originally expected. Further experiments by Miller (1925/26) [84], Torr and

Kolen (1981) [122], De Witte (1991) [26], Cahill (2006) [25] and Rothall & Cahill

(2014) [109] using various methods have shown the same result [29] under Cahill’s

theory. Another characterisation of the 3-space velocity was found using spacecraft

Earth Flyby Doppler shift data to be 486km · s−1 in the direction Right Ascension

(RA)= 4.3hrs, Declination (Dec)= −75◦ [28], confirming that this velocity could be

determined from multiple different types of sources.

The inflow velocity has been confirmed to be in a different direction to the

Cosmic Microwave Background frame, as is expected [16]. This is because, for the

inflow interpretation to be self-consistent, it requires that inflow in our local region

be dominated by gravitational effects in our local region. These are, namely, the

inflow towards the centre of the galaxy, and the inflow towards the Sun and Earth

proper. This is also on top of motion of the solar system, galaxy and such against
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the background frame.

The most recent method of detecting these changes in v has also been reported

using RF coaxial cables and zener diodes [32], with this reported to be potentially

related to the Schnoll effect [17]. It is believed that the zener diode based detectors

work due to a hypothesised change in the tunneling current caused by the velocity

of the 3-space [33]. These experiments have confirmed independently a velocity in

the direction RA∼ 5hrs, Dec ∼ −80◦ with a speed of ∼ 500km · s−1[109].

Despite this reported success other groups checking the results have had less

success. There have been two recent tests using Cahill’s Zener Diode experiments.

Whilst Seaver [117] reported an effect, they reported that it was a response to local

electromagnetic disturbances. Equally, they noted that it appeared that it was the

similar natures of the diodes that lead to the apparent correlations. Equally a recent

test by Baer, Reiter & Jabs [5] reported a null result from similar tests. The authors

noted that they felt that this was not an overall null result for the effect, but rather

that they simply were not able to see the same effect as reported by Cahill.

Overall it appears that whilst there are reports of direct detection of 3-space

velocities, there do remain concerns about both the methodology and previous find-

ings. Whilst the results in and of themselves are interesting, without results being

confirmed independently, and correlated by multiple teams, the claimed effect by

Cahill and colleagues at this time should be taken as a potentially interesting effect,

but one that is in no way proven. Whether or not 3-space may be directly detected

is however not of key importance to the rest of this thesis, which is primarily focused

on gravitational phenomena. Whilst there is a relationship between the reported

effect and these gravitational phenomena, particularly in how D3ST is constructed,

whether or not direct detection is possible does not impact later sections.
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2.6 Emergent Quantum Gravity

This theory also allows for a quantum explanation of gravity. A unique general-

isation of the Schrödinger equation allows a wave function associated with a mass

m to respond to the velocity field v with respect to the 3-Space [24]. That is, the

theory provides a candidate for a quantum explanation of gravity, and motion rel-

ative to the 3-space, or more directly, quantum foam. The generalised Schrödinger

equation with a velocity field v is

i~
(
∂

∂t
+ v · ∇+ 1

2∇ · v
)
ψ (r, t) = − ~2

2m∇
2ψ (r, t) . (2.6.1)

Here v is the 3-Space velocity field, while ψ (t) is the wave function. This may

also be represented as the Hamiltonian

Ĥ (t) = − ~2

2m∇
2ψ (r, t)− i~

(
v · ∇+ 1

2∇ · v
)
. (2.6.2)

This form includes the dynamics of the 3-space in the same manner as previously,

except with an extra term of 1
2∇ · v to maintain the Hermitian and symmetric

properties of the operator, as well as its invariance.

From the above, the quantum wave packet propagates as

g ≡ d2

dt2 (ψ (t) , rψ (t)) = Dv
Dt + (∇× v)× vR + . . . (2.6.3)

where vR ≡ vO − v, that is the velocity vR is the velocity of the object relative

to the local 3-space. The last term in (2.6.3) accounts for the Lense-Thirring effect

within the theory [24]. This explanation of gravity is not only a quantum account

of gravity, but it is also an explanation of the equivalence principle from quantum

systems.

A similar analysis can be performed with the Dirac equation as well. In this case

the suggested form becomes
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i~
(
∂

∂t
+ v · ∇+ 1

2∇ · v
)
ψ = −i~cα · ∇ψ + βmc2ψ. (2.6.4)

Here α and β are the Dirac matrices. This here allows the generalisation of the

previous effect for relativistic phenomena. This can be solved in the same manner

as before to find the propagation of the quantum wave packet as

g ≡ Dv
Dt + (∇× v)× vR −

1
2

vR

1− (v2
R/c

2)
d
dt

(
v2

R
c2

)
+ . . . (2.6.5)

which generalises 2.6.3 and introduces a limit to the speed a wavepacket may

travel relative to the 3-space to |vR| < c, and causes elliptical orbits to precess [29].

In effect, this defines the gravitational acceleration due to the 3-space within the

theory, and has been derived from a quantum base. Of course, these two additional

effects tend to zero in the case of zero vorticity and |vR| � c this tends towards the

standard formulation.

In effect, this formulation represents a quantum gravitational theory, and one

congruent with both Process Physics and D3ST at large. As well as being an

interesting result within the theory, it is also used in justification for a number of

key results. This includes results such as the equivalence of GPS systems within

the theory [16], and predictions for Gravity Probe B [21]. In essence, the quantum

formulation of gravity is an important part of the construction of D3ST [24, 29],

and an important part of the formulation of this theory.

2.7 Maxwell-Hertz Equations

D3ST also includes alterations to the Maxwell equations to include reference to

the 3-space velocity [27], given in the form
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(
∂

∂t
+ v · ∇

)
H = −∇×E (2.7.1)

1
c2

(
∂

∂t
+ v · ∇

)
E = ∇×H (2.7.2)

∇ ·H = 0 (2.7.3)

∇ ·E = 0 (2.7.4)

this being the source-free Maxwell equations as in equations 1.3.1–1.3.4 with the

replacement ∂
∂t
→ ∂

∂t
+v ·∇. This alteration of the equations is required for many of

the elements of the theory to be self-consistent, notably including the speed of light.

Their inclusion here is self-justified, and, far from being new physics, were actually

proposed by Hertz [27]; they are merely the result of including such a velocity field

to describe the behaviour of the geometry, and this impact will become more evident

when discussing other phenomena. Of course, as would be expected, this will lead

to alterations in the group velocity for light, with new plane wave solutions of

E (r, t) = E0ei(k·r−ωt)

H (r, t) = H0ei(k·r−ωt)

ω (k,v) = |k|
√
µ0ε0

+ v · k

(2.7.5)

where c−1 = √µ0ε0. This means that the group velocity is

vgroup = ∇kω (k,v) = ck̂ + v. (2.7.6)

This means that within D3ST that c is only the speed of light at rest to the 3-

space, and is otherwise affected by the 3-space velocity v. The previously discussed

direct observations of the 3-space velocity may be justified by such self-consistent me-

chanics. In order for many gravitational phenomena to manifest within the theory,

these changes are required. Much as with the quantum effects previously discussed,
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these alterations are a key part of how this theory is structured.

2.8 Lensing

Lensing within D3ST is a result of the above alterations to Maxwell’s equations,

with the velocity of space only being c in respect to the 3-space reference frame. The

time-dependent and homogeneous elements of the above as such lead to bending of

light, and explain such phenomena within this theory. This behaviour is of course

the same as seen within GR up to ρDM effects. Consider the minimisation of travel

time problem with an object traveling at vR, using equations 2.4.2 and 2.7.6, travel

time may be minimised as [29]

τ =
∫ s2

s1

ds∣∣∣ck̂ (s) + v (r (s) , t (s))
∣∣∣
∣∣∣∣∣drds

∣∣∣∣∣ (2.8.1)

from which the angle of reflection may be calculated as

θ̂ = 2v
2

c2 = 4GMObs

c2r
(2.8.2)

where r is distance from the object, and β̂ is the angle of deflection. In essence,

this is the same as GR up to the same correction term included above, which as

previously discussed would merely represent a change in the expected mass, or a

change to the gravitational constant. This means that gravitational lensing could

be seen as not only a key behaviour within this theory, but as a direct measure of

the 3-space inflow velocity in the form

v =

√
θ̂c2

2 (2.8.3)

and has been suggested to have uses in determining inflow velocities [29]. This

has important implications for how D3ST may be generalised to include further

dynamics, as will be discussed in chapter 3.
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2.9 The Spherically Symmetric Case

One of the simplest solutions to the D3ST equation (equation 2.3.11) is the

spherically symmetric case. More specifically, one may take the case for irrotational

and time independent flows as to simplify the equations. Taking the case of spher-

ically symmetric flows where one sets v (r, t) = v (r) r̂ , ∇ × v = 0, the equation

becomes, including the expanded ‘dark matter’ term [62]

(v′)2 + 2vv′
r

+ vv′′ + α′
(

2v2 + 4rvv′
r2

)
+

δ2

r4

(
v2 + r2v′ (v′ + 3rv′′) + rv (−2v′ + r (v′′ + rv′′′))

)
= −4πGρ.

(2.9.1)

Using Φ = −v2

2 , the above becomes

(
α′

r2 + δ2

r4

)
Φ +

(
2
r

+ α′

r
− δ2

r3

)
Φ′ +

(
1 + δ2

2r2

)
Φ′′ + δ2

2rΦ′′′ = −4πGρ. (2.9.2)

It is worth noting that in this theory, it is roughly linear in terms of v2 or Φ for

spacial components, and linear in v for time dependent components. This means

that in solving problems outside spherical mass systems, use of Φ may be a useful

and compact notation, despite it still being used to model the 3-space velocity. In

order to investigate effects of the equation in this instance, the first method is to

solve the equation for the case of α′ = 0, δ = 0, giving

2
r

Φ′ + Φ′′ = −4πGρ (2.9.3)

which is a standard form of the Laplacian form of NG. The above has solutions

Φ (r) = −A
r

+ −G
r

∫ r

0
4πs2ρ (s) ds−G

∫ ∞
r

4πsρ (s) ds. (2.9.4)
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Here A = 0 by comparison with the solution in vector form, as ∇2
(
A
r

)
6= 0, and

would create imaginary mass, hence not be a solution to the original form of the

3-space equation.

2.9.1 α-effects

The inclusion of α–effects from here can be achieved in a similar manner. Con-

sider equation 2.9.1 with α′ 6= 0 and δ = 0, giving

α′

r2 Φ +
(

2
r

+ α′

r

)
Φ′ + Φ′′ = 4πGρ (2.9.5)

which may be written in a Poisson like form [75]

1
r2

d
dr

(
r2−α′ d

dr
(
rα

′Φ
))

= 4πGρ. (2.9.6)

This form demonstrates the altered Poisson form of the dynamics produced. This

can be solved in the form

Φ (r) = −A
r

+ −B
rα′ + −G

(1− α′) r

∫ r

0
4πs2ρ (s) ds+

−G
(1− α′) rα′

∫ ∞
r

4πs1+α′
ρ (s) ds.

(2.9.7)

As before A = 0 due to it not being a solution to the full 3-Space equation under

the same parameters, while B acts as a ‘dark matter’ source of sorts [29]. This is

generally referred to as a primordial black hole within D3ST. The total extra ‘dark

matter’ beyond the B term may be written in the form [75]

ρDM = α′

4πGr2
d
dr (rΦ) . (2.9.8)

Which are all equivalent to Newtonian Gravity in the case where α′ = 0 [75].

The potential in (2.9.7) also creates a singularity at the center with gravitational
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Figure 2.1: Graph of the 3-space velocity for NG (red, α = 0) and D3ST (blue) for
a uniform sphere. The dotted gray line represents the radius of the matter density.
This has been done with from equations 2.9.11 and 2.9.12.

potential even in the case γ = 0 as

Φ (r) = G

(1− α′) rα′

∫ ∞
0

4πs1+α′
ρ (s) ds. (2.9.9)

A simple case is the solution for a uniformly dense sphere with ρ (r) = ρ0 for

0 ≤ r < R, where ρ0 is a constant. Using the above form for Φ (r)

Φ (r) = −B
rα′ + −G

(1− α′) r

∫ r

0
4πs2ρ0 ds+ −G

(1− α′) rα′

∫ ∞
r

4πs1+α′
ρ0 ds (2.9.10)

which for a sphere with finite radius R this becomes a gravitational potential of
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the form

Φ (r) = −B
rα′ + −4πGρ0r

2

3 (1− α′) +
−4πGρ0

(
R2+α′ − r2+α′

)
(2 + α′) (1− α′) rα′ (2.9.11)

which outside the sphere becomes

Φ (r) = −B
rα′ + −GM

(1− α′) r . (2.9.12)

ForB = 0 and outside the massM , this is essentially the same form as Newtonian

Gravity with a small extra mass as previously. This system has been used to produce

figure 2.1, which graphs the above’s inflow velocity v (r) to demonstrate its effects in

the case α 6= 0 and δ = 0. Note how the 3-space velocity increases as r approaches

zero in the α 6= 0 case. This is the manifestation of the dark matter effect, and for

the above form at exactly r = 0, the 3-space velocity will go to infinite. Here it is

also worth noting that the change in mass caused by α in the previous equation is

M

(1− α′) −M ≈ α′M. (2.9.13)

This here is considered the total dark matter from α effects alone. Where using

α ≈ 1/137 = 7.30 × 10−3 gives this to be a 3.60% change in mass for the exact

equation and 3.74% for the approximate one. This mass difference would be built

into measurements using other theories and offers no change to the observable result.

The main difference in the gravitational potential that occurs in this spherical case

is to do with the interior of a system.

2.9.2 δ-effects

In the case of α′ 6= 0 and δ 6= 0, the equation again becomes
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(
α′

r2 + δ2

r4

)
Φ +

(
2
r

+ α′

r
− δ2

r3

)
Φ′ +

(
1 + δ2

2r2

)
Φ′′ + δ2

2rΦ′′′ = −4πGρ. (2.9.14)

At this time there are no known solutions to the equation in the case of ρ 6= 0

[62, 108], there are however solutions for where ρ = 0, here given as

Φ1 = 1
r

Φ2 =
δ2
(

1F1
(
−1
2 + α′

2 ; −1
2 ; −r2

δ2

)
− 1

)
r (2α′ − 2)

Φ3 = 2α′√
π

3r

3δ2
((

1F1
(
−1
2 + α′

2 ; −1
2 ; −r2

δ2

)
− 1

))
r (2α′ − 2) Γ

(
1/2− α′

2

) −

r3
1F1

(
1 + α′

2 ; 5
2 ; −r2

δ2

)
δΓ (−α′/2)

 .

(2.9.15)

Here 1F1 (a; b; z) represents the confluent hypergeometric functions, which are

defined as

M (a, b, z) ≡ 1F1 (a; b; z) =
∞∑
n=0

(ai)n
(bi)n

zn

n! (2.9.16)

with (x)n being the Pochhamme symbol defined as

(x)n ≡


1, n = 0

x (x+ 1) . . . (x+ n− 1) , n > 0
. (2.9.17)

The full solutions of this form of the dynamical 3-space equation can be written

as a linear sum of the three answers with constants, i.e.

Φ (r) = AΦ1 +BΦ2 + CΦ3 (2.9.18)

yet here, once again A = 0 for the same reasons as previously. This means that

this can be represented in the more compact form
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Figure 2.2: A plot of the approximation for δ 6= 0 case (blue) with the actual solution
(red), demonstrating how it behaves as r � δ. Here the value of δ has been set to 1
and is represented by a vertical gray dotted line. Note that v (r) for the exact case
goes to zero at the origin.

Φ (r) = −B (1− C)
r

(
M

(
−1
2 + α′

2 ,
−1
2 ,
−r2

δ2

)
− 1

)

−BC
2r2 (2α′ − 2) Γ

(
1/2− α′

2

)
M
(
1 + α′

2 ,
5
2 ,
−r2

δ2

)
3δ3Γ

(
−α′

2

) .

(2.9.19)

The above can be approximated for large arguments of r in the form [62]

Φ (r) ≈ − 2
√
πB

Γ
(
−α′

2

)
δ1−α′rα′

− B (C − 1)
r

(2.9.20)

or relabeling the constants
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Φ (r) ≈ − B

rα′ −
Cδ1−α′

r
. (2.9.21)

A comparison between these forms and the form in equations 2.9.19 and 2.9.20

can be seen in figure 2.2. Here B has the same form as in the case for α 6= 0, and we

have a new free parameter term with C and the length scale δ. One issue that had

existed previously within the theory was the case of cosmic filaments 2.10, where

they did not have well defined inflows. One of the effects of the δ term, arguably its

most important effect, is that it creates well defined inflows at the origin of spherical

potentials, with all inflows tending to zero. This can be seen particularly well in

figure 2.2 which shows the approximate solution going to infinite at the origin, and

the exact solution going to 0. This is particularly important for the case of cosmic

filaments as in the following section, as unlike spherical inflows, considerable issues

are introduced without δ 6= 0 for cylindrical inflows.

2.10 Cosmic Filaments

The Dynamical 3-Space equation may also be solved in the case of spherical

symmetry and time independence, which has its own set of spacial inflow solutions.

Consider the equation in terms of spherical coordinates [31, 14]

1
r

∂v

∂t
+ ∂v′

∂t
+ vv′

r
+ v′2 + vv′′ + α′

2
vv′

r
= 0 (2.10.1)

where here r is perpendicular to the z axis. This has static solutions with a free

parameter µ of the form

v (r) = − µ

rα′/4 (2.10.2)

and hence gravitational acceleration of
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g (r) = − α′µ2

4r1+α′/2 . (2.10.3)

This form here causes some issues however. Considering the divergence form of

the above

∫
∇ · g dV =

∫
g · dA = α′µ2θd

4

(
1

R
α′/2
1
− 1
R
α′/2
2

)
(2.10.4)

which requires and suggests that there must exist some R1 > 0 outside the fila-

ment axis itself. This problem was used as a partial justification for the introduction

of the δ term which allows such solutions to be well behaved towards the origin. In

this instance, the δ 6= 0 form of this equation is [62]

v (r)2 = v2
0

(
r

δ

)2
M

[
1 + α′

4 , 2,−
1
2

(
r

δ

)2
]

(2.10.5)

which is well behaved towards the origin, unlike the δ 6= 0 form. This also

includes a gravitational acceleration of

g (r) ∼ 1
r1+α′/2 (2.10.6)

for r � δ and otherwise behaves the same as the previous solution. In effect, the

only difference is the behaviour on scales of r near δ. The presence of the δ term

again regulates solutions as r → 0 such that v (r)→ 0. That is, the δ–dynamics of

the theory regulate the behaviour of inflows near their origin, which has important

implications for these particular dynamics. At this time however, no solutions exist

to be able to determine the scale of δ itself. Beyond being on a small enough scale

to not impact gravitational effects currently observed, the length is otherwise left

undetermined.
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2.11 Dark Matter-Like Effects

As previously noted this theory contains a number of non-Newtonian results,

which here are broadly termed ‘dark matter’ effects. This is not meant to represent

actual dark matter, that is, non-baryonic matter. Rather, these terms are meant

to represent gravitational effects that are predicted within the theory that would

otherwise be misattributed to such non-baryonic matter. Consider Gauss’ form of

gravity

∇ · g = −4πGρ. (2.11.1)

Any additional effects that are not predicted by NG would be placed in the

ρ term when analysing gravitational fields, and as such we can consider the form

previously given as

∇ · g = −4πG (ρ+ ρDM) . (2.11.2)

It is for this reason that within this theory terms such as ρDM is used. For the

most part however, there are effects within the theory that add small amounts of

well defined extra mass, and this could either be considered as a change of the total

mass, or as an alteration to the gravitational constant. Beyond these however there

are some more significant contributions that are beyond these other effects, the two

most important are termed as primordial black holes, and matter-like black holes;

these coming from α and δ effects within the 3-space equation.

In cases where dark matter densities may not be found in other ways, they may

be numerically calculated using iterative methods [75] by using the baryonic matter

density ρ, and putting it through the non-Newtonian part of the matter density ρDM

in the form of equation 2.3.12.
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2.11.1 Primordial Black Holes

Consider the solutions to the spherical 3-space equation in section 2.9.1, which

include a free parameter B. It has been suggested that these black holes may be

the cause of the flat rotation curves of spiral galaxies [29, 30] due to the properties

of gravitational accelerations caused by them. Consider equation 2.9.7 in the case

of A = 0 and M (r) = 0, which gives

Φ (r) = −B
rα′ (2.11.3)

which produces gravitational acceleration of

g (r) = −−Bα
′

r1+α′ (2.11.4)

which are asymptotically flat up to a factor of α′. Defining apparent enclosed

mass for analysis by a Newtonian theory as

M (r) = r2g

G
(2.11.5)

the above becomes, with a relabeled constant

M (r) = M0

(
r

rs

)1−α′

(2.11.6)

where rs is defined by M (rs) = M0, which in turns returns a gravitational

acceleration of

g (r) = GM0

r1−α′
s r1+α′ . (2.11.7)

This form has a few key behaviours, notably the plot rotation curves that are

observed and argued as the basis for dark matter as discussed in section 1.5. Equally,

consider circular orbits which have the relation
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V 2
circ
r

= a (2.11.8)

which from the above produces the form

Vcirc (r) =
√

GM0

r1−α′
s rα′ (2.11.9)

which is in effect flat due to the small magnitude of α′, this being D3ST’s original

resolution to the Tully-Fisher relations [62]. Further work on this topic demonstrated

that should there exist an acceleration where the Newtonian and non-Newtonian

components of acceleration were of equal magnitude for all systems, and this was

a constant for all systems, that the above would reduce to exactly the Tully-Fisher

relation [62]. This was termed the g0–hypothesis, and will be expanded in more

details as the introduction to chapter 3, which focuses on refining the understanding

of the above effect and improving it.

2.11.2 Matter-like Black Holes

By analogy with the above, consider the case with the approximation for δ 6= 0

as in equation 2.9.21, which may be redefined as

M (r) = M0

(
1 +

(
r

rs

)1−α′)
(2.11.10)

where M (rs) = 2M0. Figure 2.3 shows a log-log plot of the apparent enclosed

mass as found from 2.3 with M0 = 1, graphing in r/rs, demonstrating the change

seen. Figure 2.3 shows how this in effect would look for a galactic system. At the

switching distance rs it changes from the flat regime to the linearly increasing one.

This becomes more apparent at higher length scales, particularly after the switching

distance rs. Here it is important to note that this apparent increase in mass effect is

caused entirely by the primordial black hole within this example, and not a baryonic

matter density.
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Figure 2.3: This plot has been produced from equation 2.11.10. Here showing the
switching behaviour caused by the length scale rs, which is represented by a vertical
dotted line.

2.11.3 Enclosed Matter Parametrisation and Srg. A*

This particular form has also been compared to the motions of stars in the

galactic core [14, 62]. The two parameters in (2.11.10) can also be used to predict

the asymptotic velocity in spiral galaxy rotation curves by using equation (2.11.8)

V 2
circ (r) = GM0

(
rs

r

)α′ 1
rs
≈ GM0

rs
. (2.11.11)

Which is again, the form predicted by the BTFR, as previously noted. For later

comparison with chapter 3, a previous analysis of this system using data from the

star orbits about Srg A* has been used to determine an apparent enclosed mass

toward the center of the galaxy [94, 14, 62]. Figure 2.4 shows this data and using
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Figure 2.4: The enclosed mass parameterisation around SrgA* and nearby stars.
Here using rs = 1.08 pc and M0 = 4.5× 106M⊙ and data from [48].

the parametrisation as in equation 2.11.10 a best fit can be made, here shown in

blue. Here the red point represents an added point showing the data point found

from S2 from [48] which has M0 = (4.5± 0.4) × 106M⊙ and this is assumed to

be the value of the mass M0 under this analysis. The other data has been scaled

by 2 as compared to the original data in [94], which had already been scaled to fit

better with their model. Originally, the best fit here was rs = 1.33 pc [14, 62], while

a newer analysis by Rothall [108] using the replacement α → π2α reanalysis found

rs = 1.08 pc. Using 2.11.11, the asymptotic circular velocity is Vcirc = 120 km s−1 by

the old analysis, and Vcirc = 135 km s−1 by the new one. These differ to the values

given in [62] and [108] due keeping the values of α and δ constant in the calculation.

Both of these are considerably less than the Vcirc = 254± 16km · s−1 observed [105];

the observed value of rs would be 0.300 pc. This could have a number of causes,
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and has been identified as a problem previously [62, 108].

Using the form of 2.11.10 and 2.11.10 can also be used to give the gravitational

potential of the system in terms of these parameters

Φ (r) = −2M0r
α′−1
s

αrα′ − GM0

r
. (2.11.12)

Whilst the dark matter density may be calculated with the δ term, for all func-

tional systems the impact of this term is negligible, and as such it is generally better

to take approximations in the case of δ ≈ 0. Whilst the δ term is required for matter-

like black holes to exist within the theory, the inclusion of such in the final results

merely complicates the expressions, and unlike α 6= 0 effects, it does not change

the predictions of the theory. In any case, taking this approximation produces the

following form

ρDM (r) ≈ M0 (1− α′)
4Gπr1−α′

s r2+α′ (2.11.13)

Which falls off in the same manner as observed dark matter density does of the

form g−1 ∼ r2+α′ as has been observed [13].

2.12 Expanding Solutions

There exists a solution to the 3-space equation in the absence of matter density

with a Hubble-solution [29]. This can be found using the spherically symmetric case

with δ = 0 using 2.9.5 with the centreless flow v (r) = H (t) r giving the form

Ḣ +
(

1 + α′

4

)
H2 = 0. (2.12.1)

Here note that as the equation is linear in terms of v in this instance, v was

preferred to Φ. Here Ḣ is the time derivative of H. In the usual manner the scale

factor R (t) may be introduced as H (t) = Ṙ (t) /R (t). In terms of scale factor, this

equation is [108]
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4RR̈ + 2α′Ṙ2 = −16
3 πGR2ρ. (2.12.2)

This being a kind of Friedmann equation for D3ST. These equations have solu-

tions for H (t) of

H (t) = 1
(1 + α′/2) t = H0

t0
t

(2.12.3)

with R (t) being found to be

R (t) = R0

(
t

t0

)1/(1+α′/2)
(2.12.4)

with definitions H0 ≡ H (t0) and R0 ≡ R (t0). This demonstrates that within

D3ST the universe expands with a centreless flow at a near linear rate without the

need for introducing dark matter or dark energy. This has been shown to be in

agreement with observations [30]. This may also be expressed as

t (a) = t0

(
a

a0

)α′/2
. (2.12.5)

Rothall [108] demonstrated that the above equations contain a very rapid infla-

tion epoch, with a singularity at t = 0. This presents a possible emergent solution

to the Horizon Problem, as this inflation is inherent to the structure and form of

the equations. That is, D3ST offers an inflation solution to the Horizon Problem,

something that was expected from the understanding of the problem [54].

As demonstrated by Cahill [29], it is possible to find a solution for the case of

non-zero energy density. This can be done by introducing energy density in the form

ρ (r, t) = ρm

a (t)3 + ρr

a (t)4 + Λ. (2.12.6)
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Where here ρm is the matter density, ρr is radiation and Λ is a cosmological

constant. It is argued that this Λ is unnecessary. Using this (Spherical 3DST)

becomes [29]

R̈

R
+ α′

2
Ṙ2

R2 = −4πG
3

(
ρm

a3 + ρr

a4 + Λ
)

(2.12.7)

giving

Ṙ2 = 8πG
3

(
ρm

R
+ ρr

R2 + ΛR2
)
− α′

∫ Ṙ2

R
dR. (2.12.8)

This has the solution

Ṙ2 = 8πG
3

(
ρm

(1− α′) a + ρr

(1− α′/2)R2 + ΛR2

(1 + α′/2) + bR−α
′
)

(2.12.9)

where b is a constant of integration. This can be expressed as

t (R) =
√

3
8πG

∫ R

R0
dR

(
ρm

(1− α′)R + ρr

(1− α′/2)R2 +

Λa2

(1 + α′/2) + bR−α
′
)−1/2

.

(2.12.10)

Which in the case of ρm = ρr = 0 and Λ = 0 becomes equation (2.12.5) as

expected. In a universe of minimal energy density, being around 1 proton for every

4 cubic metres [11], it is expected that this final term b would dominate the expansion

with the other terms being only minor, with there being no need for Λ to be non-

zero. As shown by Cahill [29], forcing b = 0 and curve fitting with only ρm, ρr

and Λ leads to the standard model’s interpretation of the expansion of the universe.

This has been confirmed by Rothall [108]. The combination of the two Friedmann

equations in effect under the standard model requires that b = 0, hence ΛCDM

cosmology’s requirement of Λ 6= 0.
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2.13 Curved Spacetime Formalism

Within the theory a spacetime metric can be induced in the same manner as

GR, and the metric below is in fact the Painlevé–Gullstrand class of metrics (PG),

of the form [95, 51, 67, 29]

c2 dτ 2 = gµν dxµ dxν = c2 dt2 − (dr − v (r, t) dt)2 . (2.13.1)

This class of metrics is notable in that it allows the coordinates to be regular

across the event horizon, unlike the case with Schwarzschild coordinates [73]. In fact,

there is a natural sense in this metric, and one that will be unpacked later in this

thesis 4, with the behaviour here and relation to the theory as a whole investigated.

We may also consider the behaviour in minimum time intervals

τ =
∫

dt
√
gµν

dxµ
dt

dxν
dt (2.13.2)

this recovering the standard geodesic behaviour in the form

τ [r0] =
∫

dt
√

1− v
2
R
c2 . (2.13.3)

This formulation is potentially interesting due to how time is modeled within it,

and for this reason it was chosen as an idea to be explored as part of this thesis.

Concluding Remarks

This chapter has outlined the currently investigated elements of D3ST with ref-

erences to its Process Physics origins. D3ST is still a developing theory, and yet

it has so far seen some success in dealing with the nature of the expansion of the

universe, as well as success in dealing with dark matter on a universal scale. On a

galactic scale, while the theory has scope for dealing with rotation curves of galax-

ies, this is an area that is as yet incomplete. Other dark matter effects, and smaller
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scale sections of the theory have also been developed, but are largely outside the

scope of this project. Part of D3ST of particular interest to the remainder to this

thesis includes the nature of the equation’s behaviour in the spherical case for mod-

eling simple galactic scale dynamics, the expanding solutions of the equation, and

the incomplete discussions of how covariant formalisms may be included within the

theory.



Outline of the Thesis

The remainder of this thesis covers new research into D3ST, and the behaviour

of a number of large scale relations. Chapter 3 begins by discussing some previous

work on how dark matter distributions may be modeled and predicted within D3ST,

first discussing and dissecting previous efforts within the theory in sections 3.1 and

3.1.1. This is done by first identifying the nature of the relationship between D3ST

and MOND, and then identifying issues in the original formulation. From here,

a more robust version of this previous work is discussed, and determined through

comparison with another theory, MOND. From this, previous analyses performed

are repeated with an emphasis on the predictive capabilities. Despite improvements

upon previous work, and extending the theory’s capabilities with a number of ob-

served galactic scale relations, this chapter has failed to identify a potential source

of the phenomena as such, and this is still considered a key area for future work.

For this reason this effect has been broadly dubbed the g0–conjecture within this

theory.

Beyond this, chapter 4 then considers the relationship between D3ST and the

GR. This is done with a particular focus on the PG class of metrics, and the simi-

larities between the flow-like characteristics seen and the behaviour of D3ST. This

both generalises previous work within the theory, and in turn allows a number of

key results from the theory to be rederived from this basis. From here the nature of

the expanding universe within the theory is reconsidered and discussed, in particu-

lar, the reasons for D3ST allowing for a uniformly expanding universe are discussed

71
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and reconsidered through this lens. This thesis concludes with a short summary

of the work as presented, as well as a discussion of potential future work proposed

following.



Chapter 3

g0–Conjecture

The g0–conjecture was originally formulated as the g0–hypothesis, which pre-

sented the idea of there existing a point at which the Newtonian and non-Newtonian

components of gravitational acceleration within D3ST would be equal. This was ini-

tially done as a manner of setting the strength of free parameter black holes within

D3ST. In effect, there appeared to exist some critical radius r0 at which the New-

tonian and non-Newtonian components seen within the theory may be equal for

the case of a primordial black hole. This radius for each system would be set by a

universal constant acceleration, denoted g0. This form was used to set the strength

of these primordial black holes, and the idea was tested, and used to make a no-free-

parameters prediction for theM–σ relation with a simple model. Hence, this worked

as a test of a simplified case, setting the asymptotically flat rotation curves with a

parameter, though offering no reasoning as to why this would occur. Whilst it was

consistent with observations in the cases considered, this was of course by design as

D3ST naturally predicts asymptotically flat rotation curves from free parameters;

this merely setting the value of those free parameters. This chapter begins with a de-

scription, then reanalysis of the results of the previous g0–hypothesis work, notably

discussing issues with the original formulation, as well as limitations of the results.

Within this, the similar characteristics between this formulation and MOND were

73
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identified, and the theory has been compared with MOND on this basis. From here,

this comparison with MOND, along with other observations is used to generalise

the dynamics of D3ST, and new analyses of the previous work is performed, finding

that whilst the previous work was limited, it can be considered a limiting case of

the more general formulation.

3.1 Background

In its original form, referred to as the g0–hypothesis, the conjecture was framed

as being related to using the free parameters within the δ 6= 0 form of the theory

in order to produce a self-consistent description of how the BTFR may occur [62].

The gravitational acceleration for a system with a significant free parameter B as

in equation 2.11.3 has an acceleration of the form

g (r) = GM (r)
r2 + α′B

r1+α′ . (3.1.1)

Here the first term is the standard Newtonian acceleration, while the second term

is a free parameter black hole as discussed in 2.11.1. From the form it is clear that

for small r the Newtonian term will dominate, but as r → ∞ the non-Newtonian

term will dominate. There exists some point r0 at which these two terms will become

equal, that is

g (r0) = GM (r0)
r2

0
= α′B

r1+α′
0

. (3.1.2)

such that defining 2g0 ≡ g (r0) and M0 ≡M (r0) this can be written

2g0 = GM0

r2
0

+ α′B

r1+α′
0

(3.1.3)

which with the two terms equal means that
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GM0

r2
0

= g0 (3.1.4)

hence this can also be used to calculate the distance r0 as

r0 =
√
GM

g0
. (3.1.5)

This in turn means we can calculate the parameter B in this instance as here

this essentially represents the acceleration at which the two terms become equal.

From this, the behaviour of this primordial black hole can be considered. B can be

found as

B = 1
α′

√
(GM0)1+α′

g1−α′
0

≈ 1
α′

√
GM0g0.

(3.1.6)

Here, the above could be redefined such that G1+α′ → G, g1−α′

0 → g0, etc.,

however for the sake of this analysis the approximation 1±α′ ≈ 0 has been preferred

for simplicity. It is worth noting that in order to include these effects overall, it has

to be done from this step to avoid other issues occurring. This gives a form for

gravitational acceleration to be

g (r) ≈ GM

r2 +
√
GMg0

r
. (3.1.7)

GM

r2 =
√
GMg0

r
(3.1.8)

This result being exact in the limit α→ 0. This can be used to find the circular

velocity at large distance considering that g = V 2
circ/r as

Vcirc (r) =
√
GM

r
+
√
GMg0. (3.1.9)

For large r the above becomes
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Vcirc (r) = 4
√
GMg0 (3.1.10)

which is the form of the BTFR [78]. The above form however only produces the

BTFR in the case that g0 is a constant, hence suggesting that g0 is a universal con-

stant. It is worth noting that the above formulation would identify, up to correction

terms for α and δ effects, the constant g0 as being the constant a0 as reported within

MOND [83, 78]. As these additional effects exist within D3ST however, g0 is left as

being considered a different constant for the sake later comparison. This in a sense is

the concept behind the g0–hypothesis as it was, that there exists an acceleration at

which the Newtonian and non-Newtonian elements of the gravitational acceleration

are of equal value, this being 2g0.

Of interest to later sections, the above formulation has the interesting effect

of being set by mass enclosed within some critical radius r0, yet this effect would

exist within that radius. Equally, as this analysis has only been performed on static

systems, how this may or may not respond to changes to the matter density, or mass

contained within the critical radius are unknown. These remained as key issues to

be considered from the original work.

It is also worth noting that with the α dynamics that there still remains a

g−1/2 ∝ rα
′ component in the circular velocity when not approximating, yet for

large r it is clear that the non-Newtonian term dominates. Consider some r = 109r0,

for which rα
′ = 2.11rα′

0 . In effect, whilst this can have an impact, it is not large

enough to justify for comparisons of asymptotic velocities on a galactic scale, but

may be useful for comparisons on a much larger scales. What is interesting in this

regard is that in effect these α dynamics have their key effects on very small and

very large scales, but otherwise in the theory to this point act as little more than a

bootstrapping for these primordial black holes. For this reason α dynamics will be

largely neglected for this section with them approximated to α′ ≈ 0, though they

can be included in a fairly rudimentary manner.
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3.1.1 Previous Results

The g0–hypothesis in the above case was applied to data from the BTFR (section

1.7.1) and bulge-mass to black hole (section 1.7.3) relation, and from there used to

create a simple prediction for the M–σ relation (section 1.7.2) with no free parame-

ters. The data from [77, 62] was used to calculate g0 = (1.46± 0.490)×10−10 m s−2.

Considering a second conjecture, that the bulge mass of a galaxy is related to the

mass of its central black hole by the relation

M• = ηMbulge (3.1.11)

and this being found from data to be log η = −2.77± 0.280 from [55, 62]. Using

this pair of values a prediction of the M-σ relation could be produced. This was done

in [62] by considering the Jeans equation [57] for a spherically symmetric system in

the form

〈Vr〉
∂ 〈Vr〉

dr = −∂Φ
∂r
− 1
ν

d (νσ2)
dr (3.1.12)

where 〈Vr〉 is the expected velocity in r of particles and ν is the number density.

As this is modeling a galaxy, it is reasonable to assume that there is no average

velocity away or towards the origin and hence 〈Vr〉 = 0, from which this can be

solved, which associating ν with ρ becomes

σ2 = 1
ρ

∫
ρg dr. (3.1.13)

From this, the values for g0, η and a simple isothermal sphere model for matter

density in the form

ρ (r) = ρ0R
2
0

r2 (3.1.14)

which was used to find that
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Figure 3.1: Predicted M–σ relation using the g0–hypothesis, here the data points
are observed systems, the red line is the prediction and the shaded area covers the
error in the prediction, graph and result from [62].

σ (r) ≈ 4
√
Gη−1Mbulgeg0. (3.1.15)

Using this, a predicted M-σ relationship was found as log (M•/M�) = 8.12 ±

0.433+4 log (σ/200 km s−1) as compared to the observed relation of log (M•/M�) =

8.12 ± 0.08 + (4.24± 0.41) log (σ/200 km s−1) [52, 62]. A plot of the result of this

against observations can be seen as figure 3.1. This was of course a very simple

model, and did not take into account more complicated dynamics of even roughly

spherical galaxies. It did however demonstrate how the M–σ relationship could be

modeled using the results of the g0-hypothesis with the free parameters set by other

observational data.
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3.2 Similarities with MOND

To begin the reanalysis of the previous work, it seemed appropriate to compare

this construction to MOND, due to the similar nature of the results at great distance.

Particularly given the similar motivations of MOND, comparing these two theories

more directly may be considered a useful method of generalising the g0–hypothesis.

Of course, it is worth noting the difference in many aspects of these theories however,

including notably how gravity comes about within D3ST. In any case, consider again

the interpolating functions used within MOND as in section 1.8.1, and notably the

behaviour that

µ

(
|∇Φ|
a0

)
∼


1, |∇Φ| � a0

|∇Φ| /a0, |∇Φ| � a0

otherwise determined.

. (3.2.1)

This is the same behaviour as seen in from the g0–hypothesis. This suggests

rewriting equation 3.1.7 in the form

µ
(
g

a0

)
g = GM

r2 . (3.2.2)

That is, attempting to define the result in terms of a MOND-like interpolating

function in the spherically symmetric case. Here the right hand side is a Newtonian

inverse square law, while the left hand side is MOND’s force law. The substitution

u = GM
r2 , and x = g

a0
allows the above to be defined as

µ (x)x = u (3.2.3)

from which we can write the same to equation 3.1.7 in the form

x = u+
√
u (3.2.4)
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and hence can be solved from the substitution

x = µ (x)x+
√
µ (x)x. (3.2.5)

This has the solution for µ (x) of

µ (x) =
√

1 + 4x− 1√
1 + 4x+ 1

(3.2.6)

which has appropriate behaviour for an interpolating function. This interpolating

function has been used and derived within the TeVeS form of MOND [7, 131]. This

in effect is the result of having as a requirement that the Newtonian and non-

Newtonian elements add linearly. This particular interpolating function however

has been criticised when compared to the more standard interpolating functions

as it switches slower; this property will be discussed more in section 3.4.1, which

discusses interpolating functions and the choice of which in more depth.

It is at this point that the differences between the theories become apparent

however. The first and most obvious here being that whilst within MOND, the

non-Newtonian gravitational acceleration only applies to matter enclosed, the form

presented as the g0–hypothesis depends on mass at some radius r0, and hence the

acceleration from the primordial black hole does not depend on the structure of the

matter density in the same manner. That is, the strength of the primordial black

hole remains constant at all length scales up to α–effects as described in the previous

section. This means that whilst MOND and the g0–hypothesis for the D3ST would

agree outside of matter systems in the deep MOND regime, the two theories will

disagree within matter systems, it will cause issues for rotation curves for galaxies

as a whole. This in particular is problematic as MOND in general provides a good

description of rotation curves of galaxies [83, 79, 80], and having behaviour that

is comparable only outside the systems themselves should be seen as somewhat of

an issue. Equally, previous work discussing the nature of the centre of the galaxy
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within D3ST had indeed confirmed that the strength of the black hole at the galactic

centre was too large to confidently determine the strength of this primordial black

hole directly [62]; this will be discussed in more detail in the next section.

3.3 Concerns with Original Formulation

As noted, D3ST with the g0–hypothesis is capable of explaining asymptotically

flat rotation curves, but at this time has no explanation for the behaviour of rotation

curves within the matter system itself, particularly towards the centre of systems.

For this reason it is worth reconsidering how D3ST in general deals with these

phenomena.

Firstly consider the rotation curves of galaxies, which under NG, D3ST and

MOND with the simple fitting function in equation 1.8.9, which have gravitational

accelerations of

g = GM (r)
r2 NG (3.3.1)

g = GM (r)
r2 +

√
GM0g0

r
D3ST (3.3.2)

g =
GM (r) +

√
G2M (r)2 + 4GM (r) a0r2

2r2 MOND (3.3.3)

which as Vcirc = √rg we get

Vcirc =
√
GM (r)

r
NG (3.3.4)

Vcirc =
√
GM (r)

r
+
√
GM0g0 D3ST (3.3.5)

Vcirc =

√√√√GM (r) +
√
G2M (r)2 + 4GM (r) a0r2

2r MOND (3.3.6)
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Figure 3.2: Comparison of Rotational Velocities between NG (red), D3ST (blue) and
MOND (green). Here units have been chosen such that at r/rc = 1 that GM0 = 1
and a0 = g0 = 1. Of particular interest here is the behaviour of D3ST inside the
sphere, and at great distance from the sphere. Keep in mind that this is for the
interpolating function µ (x) = x/ (1 + x).

which from the forms alone have vastly different predictions, particularly near

the origin as can be seen in figure 3.2. This shows a case of a uniformly dense sphere,

but on a scale where g0 is significant. Note that here g0 = a0 = 1 for the sake of

comparison, with GM (r0) = 1. Of particular note here is the behaviour of D3ST

within the matter system and towards the origin. Here, unlike MOND or NG, the

circular velocity does not go to zero, and instead tends to a value set entirely by

the primordial black hole term. This behaviour occurs in both the g0 and non-g0

case, as the g0–conjecture is merely setting the value for this term. This in effect

is one of the larger issues with the g0–hypothesis, the flat rotation curves at great
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Figure 3.3: Comparison of Rotational Velocities between NG (red), D3ST (blue)
and MOND (green). Here units have been chosen such that at r/rc = 1 that
GM0 = 1 and a0 = g0 = 1. Of particular interest here is the behaviour of D3ST
inside the sphere, and at great distance from the sphere. In this instance the MOND
interpolating function is from equation 3.2.6.

distances remains as a linear addition to the Newtonian curve, yet this is not what

is observed inside galaxies [100, 77, 38].

The above can also be repeated in the case of the MOND interpolating function

from equation 3.2.6, which gives new MOND versions from the above of

g = GM (r)
r2 +

√
GM (r) a0

r
(3.3.7)

Vcirc =
√
GM (r)

r
+
√
GM (r) g0 (3.3.8)
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which will match the behaviour of D3ST exactly outside of matter systems. As

can be seen in figure 3.3, this other form sees D3ST and MOND match exactly

outside matter systems. The difference here is in terms of the rate that this switch

occurs. The interpolating function that can be derived from D3ST has been criticised

for not matching data strongly due to the rate at which it switches from the NG to

deep MOND regime [131].

The other related issue is related to a previous analysis presented in [14, 62] in

relation to the galactic core, and the object SrgA*. Previous analyses of this object

with this theory have centred around enclosed mass parameterisations as in 2.11.10,

relating it to the free parameters for matter-like and primordial black holes. This

parameterisation was elegant, but the results found left something to be desired. As

noted in section 2.11.3, the fit value for the switching distance rs was found to be

1.08 pc [108], which leads to an asymptotic circular velocity of Vcirc = 106 km s−1,

which is less than half the vc = 254 ± 16km · s−1 observed [105]. This is a fairly

significant result, in that it suggests that there are considerable issues here with the

analysis. In fact, from figure 3.4, it is clear that what is seen could be produced

from already known matter profiles near the centre of the galaxy, and a compact

mass M0 = (4.5± 0.4) × 106M⊙ [48] . This problem was identified originally [62],

and it was suggested that the concern was that it would be difficult to remove actual

matter density from the observed density data; this however brings into question

whether this situation can actually be considered evidence of a primordial black hole

effect at all. If it is impossible to separate the effect of matter densities and this

effect, then the analysis itself tells us nothing useful, hence the considerably different

result. Particularly considering, as noted, that the effect from primordial blackhole

is otherwise not seen close to the centre in galactic rotation curves.

Alternatively, considering the mass functions as discussed in [58], density func-

tions appear as



Chapter 3. g0–Conjecture 85

−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

Radius log (r/pc)

En
cl
os
ed

M
as
s

lo
g(
M
/M
�

)
Enclosed Mass Near the Galactic Core

Figure 3.4: Apparent enclosed mass plot from the same data as figure 2.4, the fitted
value for rs of 1.08 pc in blue, with the value of rs observed from the asymtotic
velocity of the galaxy of 0.30 pc included in red.

ρ (r) ∝
(
rb
r

)2.4
(3.3.9)

which including the mass of SrgA* itself would give a mass function of the form

M (r) = M0 + Ar0.6 (3.3.10)

which can of course be written in the exact same manner as equation 2.11.10
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[Figure has been removed due to copyright restrictions; original can be found as
figure 7 in [41].]

Figure 3.5: Orbit stars around the galactic core, including projected orbits demon-
strating their elliptical nature, graphic from [41].

M (r) = M0

(
1 +

(
r

rs

)0.6
)

Baryonic Matter (3.3.11)

M (r) = M0

(
1 +

(
r

rs

)1−α′)
. Free Parameters (3.3.12)

Equation 2.11.10 has been reproduced here to demonstrate the similar forms.

Plotted on a log-log plot, the only differences here will be the slope, and as can be

seen in figure 3.4, this data alone is not only not enough to differentiate, but it is

fully expected that there will be baryonic matter within this region which cannot

be easily removed from this analysis. Consider figure 3.4, where the red line is the

observed value of rs of 0.30. Here it is clear that the parameterisation used above

produces a form that is not in agreement with the observations, which again, as

with the full rotation curve, suggests that a constant value for this free parameter

does not match observations. As such it appears that having a constant strength

primordial black hole is not consistent with the observations, and hence some other

effect may be occurring here.

Even with all this in mind however, SrgA* remains a candidate for a matter-

like black hole under D3ST. Indeed, figure 3.5 shows the orbits of stars around the

SrgA*, showing the elliptical nature of the orbits. Even if a constant primordial

black hole potential were valid from other data, this alone would mean that SrgA*

remains a candidate for a matter-like or matter black hole, with nothing presented

here capable of differentiating between those two possibilities. That is, there is an

object that appears as a dense mass here, the question in terms of D3ST is only if

it is a matter or matter-like black hole. Furthermore, the only concern here is that
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primordial black holes appear to not behave in a way consistent with observations,

and hence a new model needs to be developed to explain observations within the

theory. That is, the concern is with the constant nature of the primordial black hole

within the theory, and whether or not there is another way of modeling this, as the

inclusion of them as they are currently considered within D3ST is not consistent

with the range of observations we currently have.

3.4 Reconstruction of the Conjecture

With these issues in mind, it is clear that modeling spiral galaxies by use of a

primordial black hole as previously discussed has been unsuccessful to an extent,

only being able to describe behaviour of velocity curves further out. For D3ST to

be able to correctly model such systems, it requires that

• Non-Newtonian r−1 accelerations respond to enclosed matter density, rather

than matter contained at some radius.

• The transition from Newtonian to non-Newtonian must be slower.

This in effect means that solutions with a clear linear addition of Newtonian and

non-Newtonian components are not valid when compared to the observations. A

possible method of dealing with these issues would be to consider what other effects

that flowing space may have on an object. Consider a rudimentary unit analysis for

the system of variables;
∣∣∣Dv

Dt

∣∣∣, the change in the velocity field; gobs the gravitational

acceleration observed; g0, a constant of units acceleration. By collecting these in

terms of unitless sets this gives; (1/g0) Dv
Dt and gobs/g0. This means that such can

be expressed as

gobs

g0
= f

(
1
g0

Dv
Dt

)
(3.4.1)

where f (x) is some function relating the two. Of course, the trivial solution
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from this is
gobs

g0
= 1
g0

Dv
Dt (3.4.2)

which simply gives gobs = Dv
Dt , which is the standard form of acceleration from

the 3-space velocity neglecting higher order effects. The other simple version that

could be used is analogous to the original g0–conjecture, this being

gobs

g0
= 1
g0

Dv
Dt +

√√√√ g0∣∣∣Dv
Dt

∣∣∣ 1
g0

Dv
Dt (3.4.3)

which in terms of gobs becomes

gobs = Dv
Dt +

√√√√ g0∣∣∣Dv
Dt

∣∣∣DvDt . (3.4.4)

This in effect relates the observed gravitational acceleration to the calculated

velocity field from solely baryonic matter. As expected, by construction this will

have the same behaviour as equation 3.1.7, except here this is written in vector form.

Taking the example of a standard solution for a spherical mass M (r), with α = 0

and δ = 0, this becomes

gobs = −r̂GM (r)
r2 − r̂

√
GM (r) g0

r
. (3.4.5)

This form solves one but not both of the issues noted at the start of this section;

this acceleration responds only to matter enclosed, but it fails to have a slower

switching phase. This form will of course produce the BTFR exactly as the previous

formulation, though that is entirely by design. This is of course only one possible

choice of the function f (x), and one merely to compare to the previous formulation.

The choice of f (x) here however should be to better suit the observations, and hence

agree with the second of the two points as well. This in effect, creating the D3ST

form of MOND, and this function f (x) is not only analogous to MOND, but can

be directly compared, in the α = 0 and δ = 0 form of D3ST. Following a similar
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procedure to section 3.2, considering that

µ (x)x = u (3.4.6)

and that f (x) is defined in the form

x = f (u) (3.4.7)

which hence becomes

µ (x) = f−1 (x)
x

. (3.4.8)

This generating the more general result for comparison in the spherically sym-

metric case. The reverse of this is non-trivial however, and should be solved on a

case by case basis. Here exists however a manner of comparing the velocity based

D3ST and the action based AQUAL form of MOND, and one that may be useful

for the remainder of this chapter.

3.4.1 The Function f (x)

As described above, whilst the forms previously discussed show the expected

behaviours within the highly Newtonian and highly non-Newtonian domains, obser-

vational data shows some differences to this formulation. That is, the choice of the

function of how this transition from the Newtonian to non-Newtonian regimes is not

as trivial as a linear sum of the Newtonian and non-Newtonian contributions in the

deep regimes of both. In order to find the most appropriate fitting function however

the behaviour seen in the observations is required. Newer findings have found a

correlation between observed acceleration and acceleration predicted solely by bary-

onic mass; this correlation being observed in cases where ‘dark matter’ dominates,

as well as cases where baryonic matter dominates [80]. The relationship found in

[80] is
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Table 3.1: Fitting functions for µ (x)

Function µ(x) Colour on Figure 3.6

D3ST Original
√

1 + 4x− 1√
1 + 4x+ 1

Green

MOND Common x√
1 + x2

Blue

MOND Simple x

1 + x
Red

Empirical Law [80] No Analytical Function Black

gobs = gbar

1− e−
√
gbar/g†

(3.4.9)

where gobs is the observed acceleration, gbar is the expected acceleration from

baryonic mass and g† is a fitting parameter with units acceleration, this value being

found to be g† = 1.20 × 10−10m · s−2. Here g† may be identified with g0 and a0,

that is, an acceleration scale for the theory in question. Comparisons of the above

with the MOND interpolating function µ (x) are not originally clear, as the above

is non-trivial to solve for the MOND interpolating function. Other methods for

performing such a comparison as such need to be used this thing case. First writing

the above in terms of a dimensionless function, as with the other fitting functions

f (x) = x

1− e−
√
x

(3.4.10)

the power expansion of this around x = 0 becomes for the first 5 terms becomes

f (x) =
√
x+ x

2 + x3/2

12 −
x5/2

720 + x7/2

30240 +O
(
x9/2

)
. (3.4.11)

Whilst µ (x) may not be derived simply from the original function, this can
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Figure 3.6: Comparison of µ (x) over the range x ∈ [0, 5] . The green function is
the original form from D3ST, while the blue and red functions are the common and
simple µ (x) respectively. Black is the numerically calculated version of the empirical
law found by [80].

be used to graph an approximate version of it for comparison. In this instance a

numerical version of µ (x) for empirical law was made from the first three terms of

3.4.11.

Figure 3.6 shows this comparison of some selected interpolating functions. The

functions used for the comparison can be seen in table 3.1. The MOND interpolating

function µ (x) was used for this comparison as the behaviour of µ (x) is clearer to

illustrate by graphing. Whilst f (x) displays switching properties, this switching is

from f (x) ∼ x to f (x) ∼
√
x, the MOND interpolating function goes from µ (x) ∼ 1

to f (x) ∼ x for small x, hence a clearer visible change and better for demonstration

purposes. Of course, the change in slope in a log-log plot from 1 to 1/2 would also
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provide another method of making the change clearer, but still not as clear as in

terms of µ (x).

From figure 3.6 the value of the simple MOND interpolating function can be

seen. Whilst the one originally seen in the comparison with D3ST appears far

below the other functions, and the common MOND interpolating function switches

far quicker, the simple MOND interpolating function remains quite close to the value

of the empirically found value, suggesting that it is not only a simple interpolating

function for use, but that it may well be the best simple estimate of its behaviour.

This may serve as a reason for this simpler fitting function performing better for

some galaxies, notably the Milky Way as noted in [131].

On this basis, the following function is likely the best to be used for the time

being

µ (x) = x

1 + x
(3.4.12)

in cases where µ (x) is required, while the function

f (x) = x

1− e−
√
x

(3.4.13)

in cases where the function f (x) may be used. Of course, the nature of this

functions means that even in cases where f (x) is applicable, it may not be the

ideal form to use. This will allow the interpolation to behave in the manner as

observed, and hence should give a better fit for observations in cases where the

observed function is not appropriate. Comparing the opposite form of the simple

MOND interpolating in the form

f (x) = x+
√
x2 + 4x
2 . (3.4.14)

the error caused by using this has a maxima at 4.68%, although this occurs

around x ≈ 7. Of course, for these fitting functions the issue with errors is when
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they exist in this very range, as this is the switching range for MOND, but the

overall error is quite minor compared to other interpolating functions. A family of

functions could be constructed in the sense of

µ (x) = x

(1 + xn)1/n (3.4.15)

as has been suggested by some authors [131], where here n controls the rate of

switching seen in the theory. From this, a best fit with the empirical law can be

found for n, although due to the different shapes of the functions this depends heavily

upon the point at which they are compared, hence the ‘best’ fit can only truly be

decided on a case by case basis. In any case though, values of n from 1.04–1.11 are

good fits for µ (x) ∈ [1, 7]. This however removes the single most valuable aspect of

the n = 1 case, this being the simplicity in constructing analytical solutions. Hence

the simple function will be the one used for the remainder of this chapter where this

property is useful, while the empirically found function will be used where analytical

solutions are less important.

3.4.2 Critical Radius

It is worth noting that in the limiting case for most matter systems, for example

spherically symmetric systems as discussed in section 2.9. For a given matter dis-

tribution M (r) outside which M (r) = M for r greater than some critical radius,

the above formulation reduces to that discussed in section 3.1 up to choice of f (x).

Equally, where g (r) � g0 the results in this regime become identical. This being

the reason that the original formulation worked in the sense that it did, at great

distance outside a matter distribution, the results converge; that is, the comparison

was largely being made in the highly non-Newtonian regime.

Also of interest is the point that the Newtonian and non-Newtonian components

of the theory become identical. Assuming the case outside of a spherically symmetric
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matter distribution, and using the simple MOND equivalent of f (x), we have that

GM

r2
0

=
−GM +

√
G2M2 + 4GMg0r2

0

2r2
0

(3.4.16)

which solving for r0 gives

r0 =
√

2GM
g0

. (3.4.17)

This being the replacement for the original form seen in equation 3.1.5. This can

be done more generally in the form

gN (r0) = gobs (r0)− gbar (r0) (3.4.18)

which can also be stated in differential terms in v as

2
∣∣∣∣∣DvDt

∣∣∣∣∣ = g0f

(
1
g0

∣∣∣∣∣DvDt

∣∣∣∣∣
)
. (3.4.19)

The above version can be used more generally when considering a switching

distance between matter systems themselves, and is not simply limited to just the

behaviour of f (x). This in turn allows the above to be useful in calculating this

in a range of other circumstances. Whilst not overly useful in most circumstances,

this above can give a good idea of the rate at which the switching occurs. That is,

the above is useful in terms of demonstrating this switching effect, but outside of a

discussion of the switching point itself, serves little function.

This can also be used to consider the acceleration at which they are equal.

Of interest with the above result however is that the simple MOND interpolating

function, as well as the one discussed by McGaugh, Lelli & Schombert [80], tend

toward the acceleration that the two terms are equal as being g0 rather than 2g0

as seen in the original formulation in section 3.1. This in turn might be suggesting

something about the dynamics themselves may have led to this effect, though at
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this time the impact itself is unknown. This does however suggest that the family

of solutions to equation which result in r0 =
√

2GM/g0 may be important, noting

that for spherically symmetric systems that

gN (r0) = GM

r2
0

= g0

2 (3.4.20)

for all such cases, and hence where the two contributions are equal this will

remain the case. Indeed, the solution to the function discussion in McGaugh, Lelli

& Schombert [80] in this instance is

r0 = 1
log 2

√
GM

g0
(3.4.21)

here noting that log 2 ≈ 2−1/2, while we also know that the described relationship

is empirical in nature. This in effect suggests that not only is the simple interpolating

function a good fit for the remainder of this chapter, but that it may be a close

approximation to the actual relationship. This in turn may be useful in determining

the nature of why this occurs, regardless of theory used for initial analysis, and may

offer some sense of future direction is how to examine how this effect may arise from

the theory itself.

3.4.3 Apparent Enclosed Mass

Another important property of these switching functions, and new form of the

conjecture in general is the apparent enclosed mass. The existence of dark matter

is inferred from its effects on the universe around it, notably due to the effects it

has on galactic dynamics as discussed in section 1.5. With this in mind, it is worth

considering how the above changes predictions about apparent enclosed mass within

D3ST. As an example, the rotation curve of the galaxy NGC3198 will be used. This

particular galaxy has been chosen due to its previous use as an example for work

in D3ST Rothall [108], as well as for its fairly typical rotation curve. The data
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Table 3.2: The three different models, and enclosed mass.

Model Enclosed Mass from V (r) (M (r))

Newtonian rV 2
circ (r)
G

D3ST Before r

G

(
V 2

circ −
√
GM0g0

)

D3ST After V (r)4

G (g0 + V (r)2/r)

used here however is of greater resolution than previously used within work on the

theory, this new data coming from the THINGS survey [38]. From the rotation curve

of NGC3198, apparent enclosed mass may be calculated using the various models

discussed above. Consider three different models of gravitation from a galaxy as in

table 3.2

Of course, the drastically lower amount of enclosed mass than expected from

the original model towards the centre of a galaxy renders the ‘D3ST before’ model

effectively useless here, and it will return extremely large negative values for enclosed

mass. This can be demonstrated by comparing the expected curve of a galaxy to the

fitted one, as in figure 3.7. The curve in the figure was produced using the original

form of the g0–hypothesis as discussed in section 3.1, using the α 6= 0 formulation.

Note that this fitting issue is not unique to the g0–hypothesis work, and existed in

all fitting of spiral galaxies with this free parameter within previous D3ST work.

For this reason only the Newtonian and new D3ST models are included in figure

3.8.

Figure 3.8 demonstrates the drastic difference in total enclosed mass between the

Newtonian and non-Newtonian models here, as would be expected. In this figure

the red line represents the Newtonian enclosed mass, while the blue line represents

the non-Newtonian enclosed mass with the new model used within D3ST. As can
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Figure 3.7: Example rotation curve fit with old modelling in D3ST to the galaxy
NGC3198 with data from [38]. The red line is the fit from the original formulation
of D3ST with α 6= 0, while the blue line is the acceleration from solely baryonic
matter with the new model.

be seen, the amount of mass required to generate the observed rotation curve is an

order of magnitude less using the new form of the g0–conjecture, this being the same

effect as in MOND.

Within this representation, however, this is merely reproducing the effects seen

within MOND within D3ST, and for this reason repeating large scale comparisons of

rotations curves would serve limited purpose when specific analyses of these rotation

curves with a similar theory already exist, and indeed the effectiveness of MOND

fitting for such galaxies has been demonstrated at the large scale [80]. Indeed,

through this comparison there exists limited need to investigate whether this form of

D3ST can reproduce these results, as this has already been done up to the difference

seen with α and δ effects, neither of which are of significant contribution here. Rather
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Figure 3.8: Enclosed mass as analysed with a Newtonian model (red) and the new
model within D3ST (blue).

now attention turns to exactly how this works within wider D3ST.

3.4.4 Effective Dark Matter Density

The above of course leads to a question about how this will change the effec-

tive dark matter densities as discussed in section 2.11. In order to determine the

effective dark matter distributions arising from the above, how dark matter is sur-

veyed again needs to be considered. In effect, effective dark matter is matter beyond

the observable matter when considering gravitational effects in terms of the grav-

itational acceleration. This means that taking equation 3.4.1 for the gravitational

acceleration, the additional acceleration from non-baryonic sources may be defined

as
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Figure 3.9: Comparison of effective ‘dark matter’ predictions between original
g0–hypothesis (blue), and MOND simple (red) for NGC3198 in terms of radius
r in kpc, data for the rotation curve from [38].

gobs − gbar = g0f

(
1
g0

∣∣∣∣∣DvDt

∣∣∣∣∣
)
−
∣∣∣∣∣DvDt

∣∣∣∣∣ (3.4.22)

up to vorticity and relativistic effects. This allowing the determination of ex-

pected dark matter distributions as analysed by different theories. The behaviour of

the above depends heavily on the choice of f (x) used. For example, for the function

originally suggested in equation 3.4.3 this would become

gobs − gbar =
√√√√ g0∣∣∣Dv

Dt

∣∣∣DvDt (3.4.23)

that is, the non-Newtonian component in the acceleration alone. Of course, the

switching behaviour seen in this as noted previously is different to what is observed.
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The function discussed in McGaugh, Lelli & Schombert [80] becomes

gobs − gbar = 1

e
√
|Dv

Dt |/g0 − 1

Dv
Dt . (3.4.24)

The simple MOND interpolating function here becomes

gobs − gbar =
−1 +

√
1 + 4g0/

∣∣∣Dv
Dt

∣∣∣
2

Dv
Dt . (3.4.25)

From this, the effective matter density can be found as done in section 2.11.

Here, the key comparison is between the new function used within D3ST and what

was previously used. Figure 3.9 shows this comparison. Of course, the old form used

within D3ST was not responsive to enclosed mass, and hence appears near linear

here, save for a slight curve due to the r−α′ factor. It also starts and remains at a

higher mass, this caused by the difference near the centre of the galaxy, where the

observed rotation curves show a near solid body rotation profile, as opposed to the

flat curve originally expected within D3ST.

3.5 g0–Conjecture and D3ST

With all this in mind, the question now is how this all fits into the rest of the

theory. The first and most pressing concern is the nature of the behaviour already

discussed. Whilst this is modeled up to here as relating observational gravity to

predicted gravity, the actual meaning of this has not been explored. One possibility

would be altering the gravitational acceleration from a velocity flow in the form,

that is, changing equation 2.6.3 to become

g

g0
= f

(
1
g0

Dv
Dt

)
+ 1
g0

(∇× v)× vR −
1

2g0

vR
1− (v2

R/c
2)

d
dt

(
v2
R

c2

)
. (3.5.1)
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From here then the g0–hypothesis can be restated in a new form as the g0–conjecture.

Here this can be stated as

The gravitational acceleration caused by changes in the 3-space is some

function in the material derivative of the 3-space, divided by a uni-

versal acceleration constant g0.

with the previous equation being a possible statement of this. It is also worth

noting that the requirement that the Newtonian and non-Newtonian components of

the acceleration being equal at exactly g0 could be an important constraint on this.

In any case, this formulation would however have large implication for lensing

within the theory. Lensing is a result of refraction through changing velocity (as

discussed in section 2.8), so a further acceleration from the same velocity field would

not result in further lensing by current construction, and hence observations of dark

matter from gravitational lensing [59, 130, 36] would not be explained by this effect.

An alternative change would be to alter the 3-space equation to accommodate these

effects in the same sense as MOND

∇ ·
(
µ

(
1
g0

∣∣∣∣∣DvDt

∣∣∣∣∣
)

Dv
Dt

)
= −4πG (ρDM + ρ) (3.5.2)

where here ρDM contains the α and δ terms as before. This in a sense would

represent a D3ST version of MOND, but including other dynamics. Of course,

when analysing observations in the standard manner, the difference of α′ falls within

standard modeling parameters, and hence may be neglected in most cases, unless

specifically testing for α′ dynamics.

This in a sense would be an interesting prospect to test, but still lacks a dy-

namical explanation for the effects. For the time being however this will be the

form preferred. The other advantage of this form, at least for the time being, is

that up to α and δ effects, the above theory is comparable with the AQUAL form

of MOND, yet has lensing dynamics and relativistic effects. In essence, the above
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would represent a MOND-like version of D3ST, with the additional effects such as

lensing that are included from other parts of the theory. That is, it is in effect a

flow-dynamic form of MOND, and not requiring other elements from theories such

as TeVeS.

With this all considered however it is important to note that this does not repre-

sent a complete explanation of the phenomena being discussed, but rather a method

of modeling it within D3ST. At this time there still does not exist a reason for how

this comes about as part of the theory itself, although potential solutions for where

this may come from have been presented in work of other theories, such as EG (see

section 1.8.2), which presents a manner by which these acceleration scale effects

may be caused by the entropy of the system. Whilst D3ST and EG represent sig-

nificantly different theories, such potential explanations could be further expanded

with further consideration of how Process Physics transitions into D3ST. Equally,

the empirically observed relation that the Newtonian and non-Newtonian compo-

nents are of equal strength at g0 may also be part of a future explanation.

Concluding Remarks

This chapter has expanded previous work in the theory on the behaviour of

free parameters, replacing it instead with a MOND-like modification of the 3-space

equation. This in turn has solved a number of key issues previously arising out of

both the free parameter description of spiral galaxies used within D3ST, as well as

the set parameters as in the g0–hypothesis. The utility of this within D3ST has been

demonstrated through an exploration of various new effects that may be tested, as

well as checking that select previous results remain as they had before. Within this

however, the theory has taken on a number of MOND-like characteristics, up to α

and δ effects, and for this reason under these methods the theory faces the same

successes and issues as seen in the AQUAL form of MOND, although D3ST deals
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with relativistic phenomena differently, notably including lensing. This distinction

is important to remember, as D3ST is based on the concept of a velocity flow model

for gravity, as opposed to how MOND models gravity. Equally, it has raised the

interesting point of Newtonian and non-Newtonian components of gravity being

equal at the overall gravitational acceleration being g0 as opposed to 2g0 as with the

original formulation, although the significance of this has not been fully investigated.

Overall, the reconstruction of the g0–hypothesis into the more usable g0–conjecture

offers an interesting new direction for describing these dynamics within D3ST, and

allows for better comparison with results seen in other theories such as MOND.



Chapter 4

Covariant 3-Space Theory

D3ST is the result of generalising the dynamics of a fluid flow form of NG in

order to understand other effects that may be emergent out of Process Physics. The

focus on the quantum foam nature of space and geometry underpins this research.

To this end however, covariant formulations of the theory have to this point been

limited to ad-hoc discussions of how the various results from other theories may

be compared, as opposed to a full examination of how a covariant form of the flow

metric may behave. As noted in section 2.13, there exists a class of metrics which

show similar behaviour to D3ST, these being the PG class of metrics. Aside from

being regular across the event horizon, these metrics can be written in a way to

effectively relate a velocity field v to the curvature of space time, and in doing so,

relate D3ST-like language to covariant theories. The PG class of metrics are usually

used as a form of coordinates for the Schwarzschild metric, and hence consideration

of their behaviour beyond this is not usually performed, where the primary concern

is to the behaviour across the event horizon of a black hole. Here however the

concern is to the behaviour of the velocity field itself, and how this relates to a

number of key results within D3ST.

This chapter begins with an analysis of the impacts of the PG class of metrics as

a 3-space velocity metric, with regard to key results within D3ST, notably including

104
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rederiving elements of the 3-space equation in the α = 0, δ = 0 case, before showing

that the familiar results, including within electro-magnetism, are a natural result of

using this metric. This will then be used to create a simple model of the expansion

of the universe, and demonstrate the utility of such coordinates as a generalisation

of D3ST in the α = 0, δ = 0 case. From here this is then used as a method of arguing

the case for modifications to the Einstein field equations for the case of D3ST, and

from this, exploring the behaviour of this new form with regard to a key result in

this theory, the expansion of the universe.

4.1 Construction of the Metric

Consider a 3-space four-vector constructed as V 0 = c, in which the spacial com-

ponents are simply the three values of the standard 3-space velocity field. Let 3-space

and time be representable by some smooth pseudo-Riemann manifold (M, g), where

g is the metric tensor on this manifold. Constructing from this a representation of

this metric tensor, with a flat 3-space represented by ηµν with η00 = ηi0 = η0i = 0

and the tensor product of the velocity field with itself, divided by the speed of light

squared defining the time-like components. That is, constructing the metric in the

form

gµν = ηµν − 1
c2V

µV ν (4.1.1)

gµν =



−1 −β1 −β2 −β3

−β1 η11 − (β1)2
η12 − β2β1 η13 − β3β1

−β2 η21 − β1β2 η22 − (β2)2
η23 − β3β2

−β3 η31 − β1β3 η32 − β2β3 η33 − (β3)2


. (4.1.2)

which for a flat 3-space in Cartesian coordinates, has the inverse of
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gµν =



β2 − 1 −β1 −β2 −β3

−β1 1 0 0

−β2 0 1 0

−β3 0 0 1


(4.1.3)

where here βi ≡ ηijβ
j. Of course discussing the metric in terms of a particular

set of coordinates is rather inefficient, but here is used for illustration of the key

point. That is, how the metric itself is represented in the above. In any case, more

generally the above leads to line element

ds2 = −c2 dt2 + (dr − v (r, t) dt)2 . (4.1.4)

This is the metric as discussed in section 2.13. Noting here despite how the time

and spacial components are separated, there is the interaction in the right hand

term. This has the alternative form

ds2 = −
(
1− β (r, t)2

)
c2 dt2 + dr2 − 2dr · v (r, t) dt. (4.1.5)

Here the cross term behaviour of the PG class of metrics is more apparent. This

of course is the same version of the PG metric as discussed in 2.13, yet here it is

created entirely from the 3-space velocity. The metric has the property gµνgνλ = δλµ,

of course, while ηµνηνλ = δlm where µ, ν, λ ∈ [0, 3] and the associatedm, n, l ∈ [1, 3]

by convention. This property occurs as η00 = 0 in this construction.

The properties of the metric tensor for this manifold also tend towards a standard

flat spacetime in the condition that v → 0, and this induces from the properties of the

3-space velocity alone, this producing the standard Minkowski Metric, as opposed to

the one used here. This property is a consequence of defining a time component of

velocity to be related to the speed of light, the same standard construction as within

SR and GR four-vectors. One interesting property of the above metric however is
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that even at small scales, there exists this velocity v (r, t), which even if constant is

still apparent in the metric, this relating back to the original formulation of D3ST.

That is, even if the velocity field v (r, t) is not producing curvature effects, it still

exists within this construction. This is of course expected within D3ST, particularly

if direct detection of the 3-space velocity can be verified further as discussed in

section 2.5. This was of course an effect also discussed with the original formulation

of PG coordinates [95, 51].

Of course, this formulation depends strongly on the behaviour of the velocity

field itself. For this reason, whilst this form is a useful representation of D3ST in a

covariant form, using the above metric is in a sense non-trivial. This brings up the

second main point with this above formulation however, with this class of metrics

there are a number of well known properties. Most notably that they are related to

more standard coordinate systems by a transformation involving time in the form

t′ = t− f (r, t) (4.1.6)

which for dt becomes

c dt = c dt′ + c df (r, t) (4.1.7)

this here depends heavily on the formulation of the velocity field, and hence to

understand the connection between these coordinates and other sets, it requires a

number of assumptions and knowledge of the behaviour of the velocity field v (r, t)

where this relation may be used. Here, some behaviour of this function can be

considered more generally. In this instance, the form in equation 4.1.5 suggests that

the transformation

c dt = c dt′ + β

1− β2 dr (4.1.8)

is appropriate given that it reduces equations 4.1.4 and 4.1.5 to



108 4.2. Requirements of a 3-Space Metric

ds2 = −
(
1− β2

)
c2 dt′2 + dr2

1− β2 + dΩ2 (4.1.9)

this being the standard form used in Schwarzschild coordinates. A simple ex-

ample of this would be to consider a 3-space inflow as usually predicted within the

theory in the form of equation 2.2.4. Inputting this gives the following form for the

metric in equation 4.1.5

ds2 = −c2
(

1− 2GM
c2r

)
dt2 +

dr + 2
√

2GM
r

dt
 dr + dΩ2. (4.1.10)

which given the previous transformation becomes

ds2 = −c2
(

1− 2GM
c2r

)
dt′2 +

(
1− 2GM

c2r

)−1
dr2 + dΩ2. (4.1.11)

which is the standard form of the Schwarzschild metric. This hence defines the

behaviour of this particular metric, and its relationship to more standard GR. The

form presented in the coordinate transformation in equation 4.1.8 in the case that

β → 0 reduces to a perfectly flat metric, with both sets of coordinates agreeing.

From here however, the concern moves from the relationship between this theory

and GR, to whether or not the PG class of metrics is capable of describing the

various elements of D3ST, notably including various standard forms of the theory,

as well as required elements such as the Maxwell-Hertz equations, which are how

lensing and other such effects are described within the theory.

4.2 Requirements of a 3-Space Metric

Considering this class of metrics in the form presented, this can be used to deter-

mine a number of different results previously used as part of D3ST. Here, rather than

simply using them as a self-consistent set of rules, this section seeks to demonstrate
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that they are in fact a natural consequence of this particular formulation. Whilst at

this point α and δ effects are not built into this formulation, by demonstrating that

GR in an inflow formalism is congruent with previous results, it presents a manner

by which D3ST can be built into a proper covariant framework. As such, this section

will explore a number of key elements within this, and confirm that they reduce to

the usual expected results within D3ST. In essence, for this metric to be able to

model D3ST in a standard sense, it is a requirement that in the non-relativistic case

that it reduces to the standard equations within D3ST.

This section of course is attempting to recover a number of results within D3ST,

and do so in a manner consistent with those seen in chapter 2. As such, relativistic

effects are neglected in a number of cases, but do present areas where D3ST can be

generalised to include such effects from this construction. This means that the main

concern here is the case that v � c, and hence the parameter β → 0, and terms

which will not include coefficients of c will tend to be negligible in many instances.

This is particularly important when dealing with covariant derivatives as will be

discussed later, as whilst this is crucial in relativistic cases, and hence has future

value, the case where v � c is where almost all previous study of D3ST has been

focused and hence this represents the best options for a proper comparison. That is,

as long as results are consistent in this regime, this may be considered an effective

representation of the theory.

4.3 Length contractions

Length contractions are discussed heavily in much of the work referred to in sec-

tion 2.5, and present a key part in the question of whether or not the velocity field

v is actually observable. Here it is worth noting that the important component for

length contractions is the velocity with respect to the 3-space, that is, the velocity

vR ≡ v − vO as previously discussed. For objects at rest in a particular reference
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frame, vR = v, yet this distinction itself is important to remember. In considering

this point of course, time dilatation and length contractions come out of this formu-

lation naturally. Here, as usually defined, proper time is related to length step as

c2dτ 2 = −ds2. Consider the form of the PG metric in equation 4.1.5, which can be

manipulated by replacing the differentials with differentials in time as

−
(

dτ
dt

)2

= −1 + 1
c2

(
dr
dt − v (r, t)

)2

. (4.3.1)

which gives using the previous definition vR and as vO ≡ dr
dt

−
(

dτ
dt

)2

= −1 + v2
R
c2 (4.3.2)

which hence defines

dt
dτ = γ (vR) . (4.3.3)

This is of course the Lorentz factor for the velocity of an object relative to the

3-space vR as previously discussed, and discussed in chapter 2. This in turn defines

all time contractions within the theory as defined against movement relative to the

3-space, exactly as expected. This can be demonstrated in the form

dxi
dτ = dxi

dt
dt
dτ = γ (vR)vR. (4.3.4)

This form of course defines contractions as length to go along contractions in

time by this Lorentz factor in terms of velocity relative to the defined velocity field.

This indeed is the same type of relativistic behaviour described within this theory

previously as discussed in section 2.6. This here being a key result within the theory,

and describing the kind of relativistic behaviour required. Hence, for the standard

relativistic effects assumed within D3ST, this construction does indeed produce the

expected result.
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In considering proper time, we can find the comparison between proper time

intervals and time intervals in the standard sense. Consider a proper time interval

of the form

c∆τ =
∫

∆τ

√
c2 dt2 − (dr − v (r, t) dt)2 (4.3.5)

which can hence be rewritten in the form

c∆τ =
∫

∆τ

√
c2 − v2

R dt (4.3.6)

which is

∆τ =
∫

∆τ

dt
γ (vR) . (4.3.7)

This comes out the same as the above discussion about length contractions, and,

as would be expected, is again in terms of velocity relative to the 3-space. That is,

all dilation and contractions are relative only to the 3-space.

In any case, these results are consistent with D3ST up to this point, and these

are consistent with key results to do with the nature and behaviour of length and

time contractions within the theory. These occur only relative to the 3-space itself,

and do so in the manner expected. This in effect covers the previously studied

relativistic behaviour within the theory.

4.4 Speed of Light

The speed of light itself is an important point within the theory, given that

detection of anisotropy in the speed of light has been claimed to be one of the

methods of detection of the 3-space velocity as discussed in section 2.5. The same

process as above can be applied to light rays to find the speed of light. Consider as

before equation 4.3.1, except here dτ = 0 for a ray of light. Hence we can find that
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c = |vO − v (r, t)| . (4.4.1)

which is vR as previously defined, and hence a light ray moves at exactly the

speed of light relative to the 3-space, as expected. This behaviour is of course

exactly the same as discussed in section 4.3, but determining it more directly remains

important. This in turn defines why these behaviours are apparent within the theory,

as its relative movement against the 3-space, at which the speed of light is exactly

c. This has interesting properties, but in effect here vO, that is, the velocity of the

light ray, and the velocity of the three space, must together have the length of the

speed of light. Due to the previous relation, we can use

c = vO − v (r, t) (4.4.2)

that is, c ≡ cv̂R, such that

vO = c+ v (r, t) . (4.4.3)

The speed of light in these coordinates is the speed of light in the direction

of vR plus the speed from the velocity field, as expected in wider D3ST. This is

particularly important for the results of section 2.5. This effect is a natural result

of the coordinates of the PG class of metrics, and this formulation remains self

consistent with a covariant construction. Indeed, the real question is whether or

not a 3-space velocity is detectable, and hence demonstrable, rather than if it is

self-consistent within a modern formulation of gravitation.

These definitions are of course congruent with those defined in section 2.7, while

further in this chapter, section 4.8 will present another definition as a consequence

of the Maxwell equations in this construction for the sake of comparison.
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4.5 Velocity Field 4-Gradient

Another key result discussed throughout the theory is the replacement of a partial

derivative in time ∂
∂t

with the material derivative. This has been noted in section

2.7 in particular, but is an important point within the theory. Considering equation

1.3.16 for ∂µ the above metric may also be used to find the material derivative form

discussed within the theory. Consider the form of the operator as created from the

definition of gµν . From this ∂µ can be found as

∂0 = −1
c
∂t − βi∂i (4.5.1)

∂i = −β
i

c
∂t − βiβj∂j + ∂i (4.5.2)

which suggests from the form of the metric in equation 4.1.4 alone that the

replacement seen in 3-space theory of the form [27, 29] where appropriate

∂

∂t
→ ∂

∂t
+ v · ∇ (4.5.3)

is direct result of that initial form. Indeed, equation 4.5.1 is this replacement

exactly, while the spacial components include only small relativistic corrections,

which tends to zero in the case that β → 0. Whilst this on its own suggests that the

formulations for the Maxwell-Hertz equations discussed in 2.7, further consideration

of this will be made later in the chapter with specific reference to their construction.

Due to the behaviour of form of the PG metric used, this also defines the wave

operator in the form

∂µ∂µ = − 1
c2

(
∂t∂t + 2vi∂i∂t + vivj∂i∂j

)
+ ∂i∂i (4.5.4)

which can be written in vector form as
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∂µ∂µ ≡ 2 = − 1
c2

(
∂2

∂t2
+ 2 (v · ∇) ∂

∂t
+ v2∇2

)
+∇2. (4.5.5)

this here being the wave operator within this formulation. Of particular interest

here is that this can also be written in the form

2 = − 1
c2

(
∂2

∂t2
+ 2 (v · ∇) ∂

∂t

)
+ γ−2∇2 (4.5.6)

where γ−2 = 1 − β2 as it is usually formulated. This showing the relativistic

behaviour of the operator with respect to the 3-space. Of course, all of these be-

haviours go to the standard forms of the above in the case of v = 0, as should be

expected.

4.6 Christoffel Symbols

Of course, the metric tensor defines the Christoffel symbols for the manifold, and

these will be important for results from here. Using the metric in equation 4.1.4,

these may be defined in the form

Γαβγ = 1
2g

αε (gβε,γ + gγε,β − gβγ,ε) (4.6.1)

where here we know that

gµν = ηµν − 1
c2V

µV ν (4.6.2)

and gµν is defined as

g00 = β2 − 1

gi0 = g0i = −βi

gij = ηij.

(4.6.3)
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Here as noted previously ηµνηνε = δem, while βiβi ≡ β2 where here Greek symbols

α, β, γ and ε include the time coordinate, and associated Roman symbols a, b, c

and e are only in spacial dimensions. This allows the above to remain invariant

under coordinate transformations and rotation. The Christoffel symbols Γαβγ may

be calculated from the above as

Γ0
00 = βε

(
βε,0 + 1

2β
2
,ε

)
Γa00 = (βaβε − ηaε)

(
βε,0 + 1

2β
2
,ε

)
Γ0
b0 = βεβ[ε,b]

Γab0 = (βaβε − ηaε) β[ε,b]

Γ0
bc = βε

(
ηb[c,ε] −

1
2ηcε,b

)
Γabc = (βaβε − ηaε)

(
ηb[c,ε] −

1
2ηcε,b

)

(4.6.4)

with the immediate consequence that most of these terms will go to zero for

the case that β → 0 within the geodesic equation. Whilst some time components,

notably Γ0
00 and Γa00 will have some significant component in some cases, others

will quickly vanish under this requirement, as will be discussed below. It is also

important to remember the importance of using the defined ηµν here to allow this to

behave as designed, as these allow the transformations required with the Christoffel

symbols. This can be used to calculate the Riemann and Ricci tensors, although

expressing the full tensors would be inefficient in this regard. The above is only

produced to demonstrate how results are being produced in the following sections.

4.7 Geodesics

It is also worth considering the behaviour of geodesics in the non-relativistic limit,

and hence compare the motions of test particles with D3ST. It should be expected

that from the geodesic equation that the acceleration induced by the 3-space be
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recovered, up to the assumptions made. Of course, as discussed in section 1.4 in

the relativistic limit we can consider dt ≈ dτ , hence giving the geodesic equation

(equation 1.4.2) as

d2xλ

dt2 + Γλµν
dxµ
dt

dxν
dt = 0. (4.7.1)

The spacial components hence become

d2xl

dt2 = −Γl µν
dxµ
dt

dxν
dt

= −c2Γm00

(4.7.2)

here as all other elements of Christoffel symbols approach zero as β → 0, as

discussed in the previous section. This leaves only one set of components which

have significant contributions, these giving

− c2Γl 00 = −βlβεvε,t −
1
2β

lβεv2
,ε + ηlεvε,t + 1

2η
lεv2

,ε (4.7.3)

which as v � c, β ≈ 0, hence this becomes

d2xl

dt2 = vl,t + 1
2v

2
,l (4.7.4)

which rewritten in vector form is

a = ∂v

∂t
+∇

(
v2

2

)
(4.7.5)

which is the non-relativistic form of the acceleration from the dynamical 3-space

equation, up to vorticity effects, as in equation 2.2.9. This is of course a direct

consequence of the assumptions made to create this form, namely no relativistic

effects, and assuming negligible cross spacial terms. Of course, those cross terms

may also be included to allow these vorticity effects.The right hand term may also

be stated in the form
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∇
(
v2

2

)
= (v · ∇)v + (∇× v)× v. (4.7.6)

Which is the first contribution to the vorticity effects within D3ST. Then consider

the terms from equation 4.7.2 that include these contributions, namely

cΓl i0
dxm
dt =

(
βlβε − ηlε

)
v[ε,m]

dxm
dt (4.7.7)

where again, these βmβε are relativistic terms and are here negligible. This leaves

the ηmε contribution, which means that using the definition that dxi

dt = viO we have

that

cΓlm0
dxm
dt = −1

2
(
vl,mv

m
O − v,lmvmO

)
(4.7.8)

which is just the double cross product

− 1
2 (∇× v)× vO (4.7.9)

for which there are two contributions to the full equation Γlm0 and Γl0m, both

negative, and hence as vR = v − vO, and using the definitions Dv
Dt ≡

∂v
∂t

+ (v · ∇)v

and the definition in equation 4.7.6, equation 4.7.5 becomes

a = Dv
Dt + (∇× v)× vR (4.7.10)

which is now the same as the non-relativistic form of the standard 3-space accel-

eration, including vorticity effects. Of course, we could also include these relativistic

terms, but the main concern here is the non-relativistic limit comparison with D3ST.

Under these requirements, this is consistent with the form and behaviour discussed

and described within D3ST in section 2.6.
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4.8 Maxwell Equations

As discussed in section 1.3, the Maxwell equations in a curved spacetime may be

represented in terms of the electromagnetic tensor. To start with, the inclusion of

the covariant derivative form of equations 1.3.17 and 1.3.18 from section 1.3, these

being in the sourceless case

F[αβ;γ] = 0 (4.8.1)

Fαβ
;α = 0 (4.8.2)

where here it is worth recalling the definitions that F 0i = −1
c
Ei and F ij = εijkHk,

while F µν = −F νµ. For the purposes here, consider the covariant derivative for a

general four-vector Zµ. In this instance we have that Zµ
;ν is defined as

Zµ
;ν ≡ ∂νZ

µ + ZλΓµλν . (4.8.3)

As previously discussed in section 4.5, there are considerations for changes to

the four-gradient defined out the front here, while the Chirstoffel symbols have been

defined in section 4.6. In the majority of cases for v � c, this second term will be

of minimal effect to the overall derivative due to the presence of the c−1 and c−2

terms. There are instances where some elements of this can become significant even

in non-relativistic examples, but they generally have some factor of c involved, such

as in section 4.7, which discussed the behaviour of geodesics. As such this section

will consider the Maxwell equations in the essentially flat form, using

Zµ
;0 = Zµ

,0 = 1
c
∂tZ

µ

Zµ
;i = Zµ

,i = ∂iZ
µ

(4.8.4)

with this definition used for the remainder of this section. Derivatives with raised
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indices in this form, assuming the non-relativistic case of v � c, follow this due to

the previously stated identities ∂0 = −1
c

(∂t + vi∂i) and ∂i = ∂i; these discussed in

section 4.7. Using this, equation 4.8.1 can be expanded in the usual sense

Fαβ;γ + Fβγ;α + Fγα;β = 0 (4.8.5)

which produces two sets of independent equations, the first with α = 0 and

β → b and γ → c such that b, c ∈ [1, 3] having raised the indices

F 0b,c + F bc,0 + F c0,b = 0 (4.8.6)

which reduces in the standard manner to

cHa,0 = gad
√
|det g|εdbcEb,c (4.8.7)

which in vector form becomes

(
∂

∂t
+ v · ∇

)
H = −∇×E. (4.8.8)

Keep in mind that this pullback does have a significant effect in the calculation

itself, but the above relation does hold. The other equation can be found by instead

taking α, β, γ → a, b, c, which gives

Fab,c + Fbc,a + Fca,b = 0 (4.8.9)

which is equivalent to

εcabFab,c = 0 (4.8.10)

and as such is
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Hc
,c = 0. (4.8.11)

which in vector form is

∇ ·H = 0. (4.8.12)

Hence this recovers two of the Maxwell-Hertz equations. The other two are from

equation 4.8.2 with β = 0 and α→ a

F a0
,a = 0 (4.8.13)

which simplifies to

Ea
,a = 0. (4.8.14)

which in vector form is

∇ ·E = 0. (4.8.15)

The final of the four comes from repeating the above with β → b and switching

the first and third indices

Fαb,α = 0 (4.8.16)

producing the form

F 0b,0 + F ab,a = 0 (4.8.17)

which reduces to

1
c
Eb,0 = −gba

√
|det g|εacdEc,d. (4.8.18)
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which hence becomes, in vector form

1
c2

(
∂

∂t
+ v · ∇

)
E = ∇×H . (4.8.19)

These can of course all be rewritten in vector form with evaluated derivatives as

below

(
∂

∂t
+ v · ∇

)
H = −∇×E (4.8.20)

1
c2

(
∂

∂t
+ v · ∇

)
E = ∇×H (4.8.21)

∇ ·H = 0 (4.8.22)

∇ ·E = 0. (4.8.23)

Hence under the conditions here the four Maxwell-Hertz equations do come out of

this formulation, as is expected. Of course, this is essentially restating the findings of

section 4.5, but the main point is further use of such formulations within this theory.

In any case, this produces the same forms as seen in 2.7, and hence is consistent

with those elements of D3ST. This in turn shows the consistency in lensing seen in

D3ST, and GR, and how they have a common cause, that is, the warping of the

paths. The difference here of course is that they have been caused by a warping of

space induced by the change in a velocity field.

4.9 Weak Field Approximation

Of course, the 3-space equation can be found by taking a similar weak field

approximation to the one that was discussed in section 1.4. That is, the 3-space

equation, at least in its α and δ free case, should be reproduced from the Field

Equations. For simplicity here however, first consider the trace reverse form of the
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field equation in the form

Rµν = 8πG
c4

(
Tµν −

1
2Tgµν

)
(4.9.1)

where T is the trace of the energy-stress tensor such that here we can find this

right hand term with the simplified energy-stress tensor as T00 = −c2ρ and other

Tµν = 0, giving in the case that v � c for the 00 component of the field equation

T00 −
1
2Tg00 = −4πGρ

c2 (4.9.2)

this hence reducing the equation to

c2R00 = −4πGρ. (4.9.3)

Considering the elements of the Ricci tensor in the form

Rσν = Γρνσ,ρ − Γρρσ,ν + ΓρρλΓλνσ − ΓρνλΓλρσ (4.9.4)

elements σ and ν are not equal to zero and will become negligible and dominated

by relativistic and vorticity terms, and hence this leaves only

c2R00 = c2Γρ00,ρ. (4.9.5)

Using the previous definitions of the Christoffel symbols in section 4.6, this be-

comes

R00 = 1
c
∂t

(
βε
(
βε,0 + 1

2β
2
,ε

))
+ ∂i

((
βiβε − ηiε

) (
βε,0 + 1

2β
2
,ε

))
. (4.9.6)

Of this the first term here is negligible compared to the second as it is of the

order of c−2 out, and the βiβε term is negligible compared to the remaining term
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for the same reason, hence this becomes

R00 = −∂iηiε
(
βε,0 + 1

2β
2
,ε

)
(4.9.7)

which simply becomes

R00 = − 1
c2∇ ·

(
∂v

∂t
+∇

(
v2

2

))
. (4.9.8)

Bringing back in the other side of the equation this produces

∇ ·
(
∂v

∂t
+∇

(
v2

2

))
= −4πGρ (4.9.9)

which is the 3-space equation in the case of zero vorticity, and without α and

δ effects. That is, in the Newtonian limit these are in effect equivalent methods of

defining this. This of course also points to how D3ST may be used to generalise the

Field Equations with α and δ effects, although this analysis has not been carried

out in this work.

4.10 Discussion

Hence from this it is clear that the PG class of metrics does behave appropriately

as a covariant formulation of D3ST, covering a number of key results within the

theory in the Newtonian limit, while allowing the theory to be generalised for the

relativistic case more readily. Of course, this as it currently stands neglects α and δ

effects, as well as the nature of the g0–conjecture as discussed in Chapter 3, although

these may be added and defined later.

The key point out of this however is that a flow dynamic version of GR can

indeed be used and compared with D3ST, showing that whilst the language usually

used within the theory is distinctly focused on these flow dynamics, and the α and

δ effects, there is indeed a relationship between these theories. Indeed, the key
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point out of this is this relationship between the curvature of GR, and the change

in velocity seen in D3ST. Of course, this is to be expected, but still an important

point to make and emphasise within context. Ultimately though, the key difference

between the two theories is the timekeeping.

Concluding Remarks

This chapter has, through reference to the PG coordinates of GR, demonstrated

that results within D3ST are a natural consequence of these coordinates, as well as

discussed methods of how this may be used to better understand these phenomena.

The flowing characteristics of both the PG class of metrics and D3ST can be clearly

compared through this lens, and the reasons for the comparison become clearer. It

is also worth considering the nature of the transformation between PG coordinates

and more commonly used coordinates within GR however. It is the change in how

time is considered that leads to these effects, including notably the relativistic effects

being relative to 3-space itself, as within D3ST. This in a sense can be considered

the fundamental difference between D3ST and more standard GR in this regard.

Whilst this chapter has considered the comparison with GR, and how a covariant

formulation of D3ST may be developed, it has not considered it more generally in

reference to the α and δ effects seen within the theory as discussed in sections 2.9.1

and 2.9.2. These effects however, whilst significant in specific circumstances, are

not a major contributor in many large scale phenomena, including expansion of the

universe in the current epoch. It is worth noting however that it has been argued that

α effects in the early expansion of the universe may be a crucial part in understanding

the inflation epoch of the early universe [108]. With this in mind, there is still

room for developing a full 3-space field equation. Overall however, this chapter has

completed its original aim of developing a potential covariant formulation of D3ST

through comparisons with GR.



Conclusion

Dynamical 3-Space Theory is a theory of gravity that attempts to model grav-

ity in a different manner to other theories. Rather than modeling it as a force as

with Newtonian gravity or as curvature of spacetime as with the General Theory of

Relativity, the theory models gravity as being the result of movement against a back-

ground substratum; a quantum foam. This theory, developed to compliment work

done on Process Physics, has seen a number of developments in the last decade, go-

ing from a unique generalisation of Newtonian Gravity, to developing predictive and

modeling capabilities, and offering solutions to current issues within gravitational

research. Most notable here being the search for the elusive dark matter and dark

energy, which may be explained as being a result of an incomplete theory of gravity

according to dynamical 3-space theory. Despite offering resolution to the dark en-

ergy problem without free parameters however, dark matter, whilst consistent with

the theory, is still not completely explained without additional parameters.

Previous work on the g0–hypothesis has been greatly improved to include a wider

range of phenomena, though a complete answer to why this effect occurs is still un-

known. This has been achieved firstly through a comparison with MOND, as well

as with use of newer data and research into the behaviour of spiral galaxies at large,

including comparisons between them. Notably, an effect reported by McGaugh, Lelli

& Schombert [80] is included within this discussion. This all together has allowed

for the development of the more complete g0–conjecture, which is compatible with

wider dynamical 3-space theory, along with an appropriate fitting function. Along
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with explaining the Tully-Fisher relationship and a number of other galactic scale

relationships, it has also become apparent that the Newtonian and non-Newtonian

contributions to the acceleration is set by g0 such that they are equal when gravita-

tional acceleration is exactly g0, although the overall significance of this is currently

unknown. Overall, the research into the relationship between MOND and dynamical

3-space theory has been fruitful, and the g0–conjecture, while incomplete, provides

a good way to model the behaviour of galaxies within the theory, particularly in

reference to dark matter.

The development of a covariant form of 3-space theory with comparison to the

PG class of metrics within GR has provided an interesting way of both expressing the

results of the theory, as well as an avenue for future development. The changes to the

time coordinate of more standard coordinate systems in GR, such as Schwarzschild

coordinates, and expression of these results in analogous language to dynamical 3-

space theory has been shown to lead to a number of the key results seen and used

within the theory, and do so in a unique manner. Key comparisons between the

source of lensing between the theories, and the equivalence brought about through

this formulation are important to consider within this. This work in effect opens a

new way of expressing and studying new results within the theory.

Overall, this thesis, through comparisons with MOND and GR has developed

D3ST in a number of key areas which may be of interest to future research. In

particular, this has presented a new way to study dark matter and dark energy

within the theory, and doing so in a way more congruent with the language and

methods used in other research within the field itself.



Future Work

This work has presented a number of new tools for the study of dark matter

and dark energy within dynamical 3-space. In regard to the g0–conjecture, this is

both in allowing greater study of galactic scale dynamics, while also leaving the

larger question of the origin of these effects currently unsolved. The finding that the

actual point where Newtonian and non-Newtonian parts of gravitational accelera-

tion appear to become equal at g0, as opposed to the previously assumed 2g0 also

opens up an avenue for future research, and may point to a potential reason to the

g0–conjecture.

The use of covariant language within future work within this theory offers the

chance to better develop elements of this theory in the future, particularly in regard

to expansion and inflation epochs. Equally, the covariant language in and of itself

offers newer methods of solving one of the larger unsolved problems within the

theory, this being time dependent solutions to ρ 6= 0 cases. Incorporation of α and

δ effects into the covariant forms of this theory equally may present a fruitful area

for future research. The incorporation of δ effects in cases where ρ 6= 0 remains an

issue within the theory due to the difficulty in solving such equations by current

methods. Equally, further generalisation of the dynamical 3-space equation remains

an area of interest.

Equally, the theory could also be compared more directly with other theories

such as Entropic Gravity to further develop some elements of it, particularly due

to some similarities in the way that elements of the theory are handled, that is, in
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the way that information is handled and may lead to effects such as gravitation.

Particularly with developments within that theory in recent years, this could be a

fruitful area for further research.

Overall, it is hoped that the work presented here will be of use in future research

into the theory, and potentially other theories of gravity.
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Appendix A

Values of Big G

Table A.1: Table of values used to produce figure 1.3
Type Year Value ( m3 kg−1 s−2) Uncert. Ref.

CODATA 2014 6.67408× 10−11 47 ppm [87]
Pendulum 2014 6.67433 (11)× 10−11 19 ppm [90]

Cold Atoms 2014 6.67191 (99)× 10−11 150 ppm [107]
Torque Balance 2014 6.67554 (16)× 10−11 25 ppm [103]
Two Pendulum 2010 6.67234× 10−11 21 ppm [97]
Torsion Swing 2010 6.67349× 10−11 26 ppm [124]

CODATA 2008 6.67428× 10−11 100 ppm [88]
Beam Balance 2006 6.674252 (109)× 10−11 18 ppm [115]

Torque Balance 2003 6.67387× 10−11 95 ppm [4]
Torsion Balance 2001 6.67559 (27)× 10−11 41 ppm [104]
Torsion Balance 2001 6.674215× 10−11 14 ppm [53]

Resonator 1999 6.6735× 10−11 432 ppm [63]
Torsion Balance 1998 6.6699× 10−11 105 ppm [71]
Torsion Balance 1997 6.6740× 10−11 105 ppm [6]
Torsion Balance 1996 6.6729× 10−11 75 ppm [61]
Torque Balance 1995 6.6656 (6)× 10−11 40 ppm [43]
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