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Abstract

The aim of this thesis is to characterise irregular shapes. Irregular shapes are

those such as trees, clouds, land masses, yeast colonies, and cancellous bone.

The method of branching profiles is introduced to characterise such shapes

that cannot be characterised by using standard shape descriptors such as

their height, width and length. The method of branching profiles is to count

the number of intersections of the circle within the object at various scales.

The number of intersections N are zero when N < 2 or N − 2 when N > 2.

We applied the method of branching profiles on twenty images of the yeast

colonies from two different strains. The method classified the yeast colonies

perfectly. The method of branching profiles contributes to understanding

irregular shapes.
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Chapter 1

Introduction

Topology is the science that studies shape characteristics [6]. Topological

characteristics are those that the shape maintains if exposed to a tension

without rupture or attachment. Topological characteristics are important for

understanding shapes, particularly irregular shapes. Most man-made struc-

tures are regular in shape and may be described using a few parameters.

For example, the shapes of many buildings are well characterised by their

height, width and length. In nature, many objects such as trees, clouds and

land masses are irregular in shape. Height, width and length may still have

meaning with respect to the overall extent of these items, but do not char-

acterise the local irregular and intricate patterns that define the structure or

even function of such items. For example, Indonesia and Saudi Arabia have

roughly the same surface area, but Indonesia comprises thousands of islands

spread over a vast region while Saudi Arabia comprises a single connected

region. The number of connected components is an example of a topological

property. Other examples of topological properties are the number of holes

and so is the number of branches. The analysis of objects using such to-

pological properties leads to simple shape descriptors suitable for irregular

objects and data. As an example, counting branches in irregular shapes is

a topological measure. The analyses of shapes by using topology leads to
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CHAPTER 1. INTRODUCTION 5

simplifying our understanding better of the shapes and extraction of data.

The objective of this thesis is to study irregular shapes by counting the

number of branch events of a structure at various scales. The number of local

branches as a function of the scale may be viewed as a local branching profile.

We are going to count branch events as a function of scales to see how branch

number changes. Examples of applications come from trabecular structure

in cancellous bone, the shape of marbling in beef and the shapes of growing

yeast colonies. These examples have appeared in the literature and will be

reviewed below. This project will introduce the use of branching profiles to

characterise irregular shape such as yeast colonies. Furthermore, although

regular shapes have been studied before, we will also use branching profiles

to study regular shapes including regular grids of squares and hexagons.



Chapter 2

Background

2.1 Previous work on characterising irregular

shape

Digital topology is a strategy that arose in the late 1960s for the investiga-

tion of geometric and topological properties of objects in images [8]. Digital

topology is a related field that focusses on digital implementations of topolo-

gical ideas. The outcomes of digital topology provide the mathematical basis

for techniques such as image thinning, border following, counter filling and

object counting [6].

An example of a complex shape is marbling in beef that was studied [2].

The method that was used to characterise the complex shape of marbling was

to find the quantity of branching [2]. In this example, five thousand points

within the marbling area were chosen from each slice of marbling in beef [2].

A square box was centred at each chosen point P. This box was called the

interrogation box [2]. Only the connected set within the interrogation box

containing the point P was retained [2]. The intersection of this connected set

and the boundary of the interrogation box include no less than two parts [2].

If a “rod” of marbling enters and exits the interrogation box, then this results

in two connected components on the boundary of the interrogation box [2].
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CHAPTER 2. BACKGROUND 7

There were three branches inside the interrogation box, when the rod was

branched only once inside the interrogation box and so forth [2]. Thus, if N

is the number of connected components on the boundary of the interrogation

box then the number of branch points is zero if N = 1 or N = 2, and the

number of branch point is N − 2 if N > 2 [2].

Another example of a 3D object is cancellous bone, which was studied to

characterise its structure, such as the irregular shape of trabeculae structure

in rat tibiae [7]. Cancellous bone refers to the spongy bone at the ends of long

bones. The amount of cancellous bone reduces due to ageing or disease but

may increase after treatment. The method that was used in [7] to characterise

irregular shapes of cancellous bone in rats is called oriented thickness textons,

which is to measure the thickness of the bone. It comprises two important

cases which are the thickness of the object at different points P , where P

is the vector representing thickness at a different orientation [7]. Clustering

was used to identify the common local patterns of cancellous bone [7].

A third example of characterising a complex shape is yeast colonies [5].

Yeasts are a set of cells on solid medium and we can study images of their

formation. The datasets selected in the study were studied previously [1].

The aim of this study was to characterise the yeast colonies by quantifying

the changes in morphology [5]. The method for classifying yeast colonies used

was cluster shape primitives (CSPs) [5]. “A shape primitive is computed at an

occupied pixel in a binary image by measuring the lengths of the longest line

segments, oriented at equally spaced angles, that fit entirely inside the set of

occupied pixels, which represent the local shape at the pixel. Common shape

patterns may be identified by applying a clustering algorithm to the set of all

shape primitives computed, and the centres of the resulting clusters, referred

to as CSPs, represent shape patterns that occur commonly throughout a

given set of images”[5]. In summary, by considering the changes in patterns

of a binary image of yeast colonies we can characterise and identify different
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strains or nutrient conditions.

As we have seen above in these examples the authors considered a single

fixed radius to characterise such irregular shapes. But, in this thesis the main

consideration is to characterise irregular and irregular shapes by looking at

the branch profiles. Thus, in Chapter 3 we will demonstrate this technique

to characterise different images of yeast colonies from two different strains;

AWRI 796 and AWRI R2.

2.2 K-means clustering

K-means clustering is a method for automatically identifying clusters of

points in high dimensional Euclidean space. Let S denote a set of points

in Euclidean space

S = {xi = (xi1 , xi2 , ..., xin) : i = 1, 2, ..., p}

The objective is to group these points into K clusters so as to minimise

the total sum distance between all the points and the cluster centres to which

they are assigned.

The K-means clustering algorithm starts by assigning an initial set of K

cluster centres. Each cluster centre is a point in the n-dimensional Euclidean

space. These may be assigned randomly or otherwise. Next, each point in

S is assigned to the nearest cluster centre leading to a vector C called the

cluster assignment with C(i) being the label (an integer in the range 1 to K)

of cluster centre to xi.

The following algorithm appears in [3]:
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Algorithm for K-means clustering:

1. For a given cluster assignment C, the total cluster variance is minimised

by

min
C,{mk}K1

K∑
k=1

∑
{i:C(i)=k}

‖xi −mk‖2

yielding the means of the currently assigned clusters for the observations in

the set Sk then this finds the new centre

x̄Sk
= argmin

m

∑
i∈s

‖xi −m‖2

Here and throughout, ‖.‖ will denote the Euclidean norm.

2. Given a current set of means m1, ...,mk

min
C,{mk}K1

K∑
k=1

∑
{i:C(i)=k}

‖xi −mk‖2

is minimised by assigning each observation to the closest (current) cluster

mean. That is,

C(i) = argmin
1≤k≤K

‖xi −mk‖2 .

For more information see [3].



Chapter 3

Branching profiles

3.1 Counting branches

The theoretical properties of branching profiles will be developed in this thesis

to characterise irregular shapes. Some idealised examples will be constructed

to prove that the method is able to distinguish patterns that simple counting

of branch events at one scale cannot accomplish. By looking at these example

we will illustrate that many different scales are important and prove the

theoretical concept.

We will now demonstrate the idea of counting branches upon the branch

events. Figure 3.1a shows an object (shaded) and four points for which the

number of branches will be counted. To count the number of branches at

a point, a circle of fixed radius is drawn centred at the point. This circle

will intersect the object at a number of places. The number of branching

events within the circle is nominally equal to number of intersections minus

2. Thus, for the left-most point in Figure 3.1a, there are two intersections of

the circle and the object and there are no branching events within the circle.

For the lower middle point in Figure 3.1a, there are four intersections between

the circle and the object and so there are two branching events. The right-

most point in Figure 3.1a illustrates that this rule is not quite correct. The
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CHAPTER 3. BRANCHING PROFILES 11

(a) Full Shape (b) Connected Components

Figure 3.1: (a) An object (shaded region) with four points selected at which
the number of branch points is counted. (b) Only the connected component
within the circle containing the point is shaded. The number of branch points
is the number of intersection of the circle and the connected component
containing the central point minus 2.

circle intersects the object in four places but there are no branching events

within the circle. The reason is that, within the circle, the object comprises

two disconnected components. There are four intersections only because

different parts of the object are close enough to fall within the same circle

and not because there are branching events within the circle. Accordingly,

the full algorithm for counting branching events associated with a point P

in an object Ω, is as follows.

Draw a circle of radius R centred at P . The restriction of Ω to the interior

of the circle may consist of separate components of Ω even if, overall, Ω is a

connected set. Retain only the connected component of Ω within the circle

that contains the point P as shown in Figure 3.1b. Count the number of

intersections of the circle with the connected component of Ω containing P

and subtract 2. The number of branching events associated with P is the

maximum of this number and zero.

With this definition of the number of branching events, the values for

the left and right points in Figure 3.1b are both zero and the number of

branching events for the lower middle point is 2. In addition, the number of
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intersections minus 2 may be negative. For instance, in Figure 3.1b we can

see there is a circle that is drawn at the top of vertical bar and centred by

the point P , the circle intersects within the object at only one place and so

is necessary to take the maximum of zero and the number of intersections

minus 2.

3.2 Generating branching profiles

Now, in Figure 3.2 the number of branching events depends on the radius

that is drawn. We can see there is an image, and a square is drawn around

it. Inside the square, we will draw circles at different radii. Finally, a bar

graph shows the branching profiles for each circle.

We consider different radii r = 4, 8, 12, 16, 20, 24, 28 inside the square.

The circle with radius r = 4 has no branching events . The circles with r = 8

and r = 12 have the same number of branching events within the circle, that

is two branching events. The circles with r = 16, r = 20, r = 24, and r = 28

all have three branching events.

We have demonstrated the concept of branching profiles. Thus, we can

say that the branching profiles help to characterise different shapes. In the

following chapter we will apply the method of branching profiles to char-

acterise regular patterns as well as different images of yeast colonies from

different strains.
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Figure 3.2: The top left panel shows a binary image and a selected point.
The next seven panels show the region inside the rectangular box and circles
centred at the point for increasing radii. The circle is green, the connected
component of the object inside the circle and containing the point is yellow
and the intersections of this component and the object are red. the bar graph
in the lower right panel shows the number of branch points as a function of
the radius. This number is called the branch profile for the selected point.



Chapter 4

Applications

4.1 Regular patterns

4.1.1 Rectangles

The main purpose of this method is to try to extract shape information on

irregular features. Nonetheless, here we begin by exploring regular patterns.

We apply the method of branching profiles to characterise a regular pattern.

The object in Figure 4.1 consists of a grid of evenly spaced vertical and

horizontal lines. To count the branch events, circles are drawn at different

radii, centred at cross point. It is found that by starting from the smallest

circle there are two branch events. Every time the circle expands, it reaches

two more horizontal lines and two more vertical lines; for each of these,

it gains an additional two intersections. For instance, the second smallest

circle has twelve intersections and thus ten branch events. Thus, Table 4.1

describes for each circle the radius and the number of branching events. The

following formula gives the number of branching events seen in this pattern

N = 2 + 8(dre − 1),

where dre denotes ceiling or the smallest integer less than or equal to.
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And so we can see the Table 4.1 as the radius increases then the number

of branching events also increases.

The more interesting property of this rectangular grid is to take the ratio

of the number of intersections to the radius and taking the limit. We obtain

that the limit of that ratio at infinity is equal to 8:

lim
r→∞

N

r
= lim

r→∞

2 + 8(dre − 1)

r
= 8.

In addition, using the same rectangular grid we can consider the branching

profiles for the circle starting at a different centre as in Figure 4.2. Table 4.2

describes for each circle the radius and the number of branching events. The

following formula will give the number of branching events:

N = 8brc,

wherebrc denotes floor or the smallest integer less than or equal to.

Now, if we take the ratio for this case as the radius goes to infinity then

we obtain the limit is equal to 8 which is same result that was for the same

rectangular patterns at a cross centred point.

lim
r→∞

N

r
= lim

r→∞

8brc
r

= 8.

Table 4.1: Number of intersections and branching events by radius of circle
centred at cross point in a rectangular grid.

Radius Intersections Branching Events
0.4 4 2
1.2 12 10
1.8 12 10
2.2 20 18
2.8 20 18
3.2 28 26
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Figure 4.1: This figure shows a regular grid pattern centred at a cross points.
The grid is blue. Six circles are drawn in green with some different radii.
The circles intersect within the pattern in some places. Each time the circle
expands, it reaches a two more lines in each direction.

Figure 4.2: This figure shows a regular grid pattern centred at a point midway
between to cross points. The grid is blue. Six circles are drawn in green with
some different radii. The circles intersect within the pattern in some places.
Each time the circle expands, it reaches two more lines in each direction.

By comparing between the two tables for the rectangular pattern, we

can see the limit at infinity for two differently centred points is equal to 8.
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Table 4.2: Number of intersections and branching events by radius of circle
centred midway between two cross points in a rectangular grid.

Radius Intersections Branching Events
0.4 2 0
1.2 10 8
1.4 10 8
2.2 18 16
2.4 18 16
3.2 26 24

Thus, Table 4.3 is created to demonstrate that the limit at infinity for this

rectangular pattern will always be the same. Because in Figure 4.1 the point

was centred at the cross, where in Figure 4.2 the point was centred midway

between to cross points. If we assume a new point, that is centred between

the previous chosen points. Since every point on the grid is within 0.5 unit

of across point, by symmetry, we can say that the limit in this rectangular

patterns as the radius goes to infinity at any centre points will always equal

8.

Table 4.3: Ratios of the numbers of intersections to the radius for four dif-
ferent radii and two possible centre locations, and their limits as the radius
goes to ∞.

Ratio of intersections to radius
Radius Cross-centred Between crosses
0.4 10 5
1.2 10 8.3333
2.2 8.1818 7.2727
3.2 8.75 8.125
∞ 8 8

4.1.2 Hexagons

Figure 4.3 shows a regular pattern hexagonal. We apply the method of

branching profiles to characterise this pattern. The hexagons in Figure 4.3

have side lengths of one unit. Six circles are drawn in black colour at different
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Figure 4.3: This figure shows a pattern of regular hexagons. Six circles
are drawn in black with some different radii. The circles intersect within
the object in some places. The number of intersections and the number of
branching events are demonstrated in the Table 4.4.

radii. Table 4.4 describes for each circle the value of radii and the number of

branching events.

Compare to the rectangular grid, we can see there are differences between

the values of the branching events for each of these two regular patterns.

Also, the formula to count the number of branching events was found for

the rectangle patterns, whereas for the general formula for the hexagons was

not found, but is clearly not the same as for the rectangular pattern. Hence,

we can say that the method of branching profiles has distinguished between

these two regular patterns.
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Table 4.4: Number of intersections and branching events by radius of circle
in a hexagons grid.

Radius Intersections Branching Events
0.8 3 1
1.6 6 4
2.4 9 7
3.2 15 13
4 15 13
4.8 24 22

4.2 Yeast colonies

Yeast is used in baking, brewing, wine making and many other industries.

Baker’s yeast or Saccharomyces cerevisiae is well known as a dimorphic yeast

which grows usually as single budding cells [5]. According to Gimeno et al.,

dimorphic yeasts are able to grow either by budding of single cells or as

multicellular filaments called psedudohyoha [4]. Baker’s yeast often develops

by sprouting in the yeast stage; however, it tends to be incited to change

to the pseudohyphae stage under certain pressure conditions [9]. There are

thousands of strains of yeast and in industrial settings, identifying strains

automatically and reliably is important. One way to distinguish yeast colony

is by the patterns of growth at the edges.

Datasets

A set of 20 images of yeast colonies used in a previous study by Binder

et al. [1] and Gontar et al. [5] was used to determine if branching profiles

could be used to distinguish between yeast strains. The data consists of

twenty images, ten images of colonies of strain AWRI 796 and ten images of

colonies of strain AWRI R2. They were divided randomly into two sets of

five each for training and five each for testing.
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4.2.1 Method

Branching profiles were applied to identify the yeast colonies from different

strains. In order to characterise the pattern of yeast colony filamentous that

grows at the edge we consider the branching profiles of a binary image as in

Figure 4.4. Black colour refers to the pixels of the yeast and the white colour

refers to the pixels of the background.

We used the method of branching profile that was described in Chapter 3.

Training was done by considering circles of seven different radii in units of

pixel size lengths. After trying some different values, the following radii

were considered to cover a range that is reasonable for problem. Circle radii

were chosen to be 8, 16, 24, 32, 40, 48, 56. Five hundred points per image were

chosen at random to compute branch profiles. For every point per image (20

images) we obtain a single element in seven-dimensional space because we

were computing the branching profiles at seven different radii. The branch

profiles were clustered using K-means with K = 3. Once the cluster centres

were identified then every point was assigned to the closest cluster centre.

We had 500 points per image, then there was a certain frequency for each

cluster. The number of points per image assigned to each cluster formed a

vector of length three and was used to represent the colony image. The Fisher

classifier [3] was used to assign the strain of the yeast colony to each image

based on the three dimensional cluster label vector. The Fisher classifier

was used because the number of data points, five per class for training and

five per class for testing, was too small to justify the use of a more complex

classifier.

4.2.2 Results

The method classified the yeast colonies in the testing set hundred percent

correct classification. The coordinates, in seven dimensions of the three

cluster centres found are visualised in Figures 4.5a, 4.5b and 4.5c. Each
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(a) Strain AWRI 796 (b) Strain AWRI R2

Figure 4.4: This shows four columns. Each has 5 images. From the left
side; the first column is the training set colonies from strain AWRI 796, The
second column is the testing set colonies from strain AWRI 796, the third
column is the training set colonies from strain AWRI R2 and the last column
is the testing set colonies from strain AWRI R2.
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point per image was assigned to its closest cluster centre. Figure 4.5d shows

the summaries of the two different strains of yeast colonies, 1 refers to the

strain AWRI 796 and 2 refers to the strain AWRI R2. Each one of the

bars demonstrate the number of points in each image which belong to one

of these cluster centres. The blue bar refers to the points that belong to the

first cluster,the red bar refers to the points that belong to the second cluster

and the yellow bar refers to the points that belong to the third cluster. As we

can see there is a significant deference between these two strains. The second

group, that is the colonies from strain AWRI R2, has many more points in

cluster three, whereas the first group, that is the colonies from strain AWRI

796, has proportionally more of cluster one and cluster two. To be more pre-

cise, Figure 4.6 shows a scatter plot of these 3-dimensional features in order

to visualise the proportion of each colony of which cluster it belongs to. The

red circles refer to the colonies from the strain AWRI 796 and blue crosses

refer to the colonies from the strain AWRI R2. The result was that it takes

five image from each group and train the Fisher classifier and then takes the

other five that were not use for training. The result of testing set was ten

out of ten.
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(a) Cluster centre one (b) Cluster centre two

(c) Cluster centre three (d) Frequencies

Figure 4.5: Figure shows four bar graphs. (a) The cluster one. (b) The
cluster two. (c) The cluster three. (d) Frequencies of points classified as C1,
C2, and C3 for (1)AWRI 796 and (2)AWRI R2. The blue bar refers to the
points belong to C1, the red bar refers to the points belong to C2 and the
yellow bar refers to the points belong to C3.

4.2.3 Discussion

The method of branching profiles has been used to classify two-dimensional

binary images of yeast colonies. By eye it is difficult to know that is a such

colony from this strain and the other from that strain as in Figure 4.4. Also,

for the algorithm concerning they look very different. Hence, we can say that

counting local branching is important to characterise irregular shapes such

as yeast colonies.

On the other hand, we had only two strains and only ten images were
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Figure 4.6: For each the 20 images, we consider the number of points in the
three clusters as coordinates in 3 dimensional. These point are plotted here.
The Red circles refer to the colonies from strain AWRI 796 and the blue
circles refer to the colonies from strain AWRI R2.

considered in each strain. If we had 100 strains and each strain had that many

images that may not have been so easy. This method may have a limitation

due to some factors such as if we have that many strains. In previous work [2]

authors found that branching and oriented shape feature were complementary

in the sense that experiments showed that the two methods used together

provided more information than either one on their own. In other words,

the two methods do not find the same information. Thus, combining the

methods may help in the case of many strains. A fruitful direction for future

research would be to try adding more images from many different strains and

seeing if the method will lead to improvements.

Also, instead of taking the max(N − 2,0), we could allow the branching

events to attain values of −1 and −2. A score of −1 means that there is

an end point as in Figure 3.1b and a score of −2 means that the connected

component lies entirely within the circle and thus identifies this component

as detached from the rest of the object. This does not make sense for yeast

colonies , but might make sense for marbling in beef or other applications.



Chapter 5

Conclusion

After introducing the use of branching profiles to study shapes, it is found

that by only counting the number of branching events with one radius is not

sufficient to characterise shapes, whereas, counting the number of branching

profiles lead to a useful description of the shape’s structure, in particular,

the irregular shapes. Irregular shapes are such as trees, clouds, land masses,

yeast colonies, and cancellous bone that can not be characterised by using

standard shape descriptors such as their height, width and length. Branch-

ing profiles contribute to our understanding of irregular shapes. Thus, the

method of branching profiles leads to extracting and characterising shape

characteristics. The method allows us to study shape characteristics at vari-

ous scales, which may otherwise not be so easy to find.
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