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ABSTRACT 

Due to the advancements in sequencing technologies, the amount of transcriptomics and 

metagenomics data has grown exponentially. As a result, advanced automated bioinformatics 

workflows are needed for data analysis and interpretation. Dedicated tools for differential gene 

expression analysis are available for data analysis. However, they are often insufficient for 

interpreting hierarchical annotated datasets, especially datasets generated from the SEED 

subsystems. To address this gap, this thesis designs and implements a new analytical 

bioinformatics pipeline to explore and understand differentially abundant and/or differentially 

expressed features in a hierarchical dataset, such as data generated from microbial taxonomy 

analysis (i.e., taxonomic hierarchy), or shotgun DNA/RNA function counts (i.e., functional 

hierarchy). The primary goal of the research was to build an analysis workflow that can perform 

the differential gene expression/abundance automatically. The pipeline begins with raw 

hierarchical gene-annotated data derived from the SEED subsystem hierarchy (level 1 to level 

4), along with sample grouping metadata. A Custom R coding script automatically generates 

all possible pairwise comparisons between sample groups defined in the metadata. DESeq2 is 

used to perform differential gene expression analysis across all generated pairwise 

comparisons, and results are stored in a dedicated output directory. These results contain a long 

list of differentially expressed genes, including log2 fold change values, p values, and adjusted 

p values, which are difficult to interpret. To address this challenge, a novel pipeline provides a 

dynamic, shiny dashboard for hierarchical data exploration with real-time filtering options. 

This novel pipeline generates multiple visualisation outputs, such as bar plots and volcano 

plots, with real-time filtering options. Users can filter genes across levels 1 to 4, and view 

volcano plots and an interactive data table that updates according to their selection. Eighteen 

test DNA samples (six groups, three replicates each) were used for pipeline testing. Fifteen 

different pairwise comparisons generated by the novel pipeline and DESeq2’s result were 

stored in a dedicated output directory.  The real-time filtering options across the hierarchical 

level reveal a few essential patterns of gene expression, such as “ Amino Acids and 

Derivatives”, “ Carbohydrates” and “ Cofactors, vitamins and Pigments”, which are highly 

expressed in all pairwise comparisons. For validation, this pipeline was tested against the 

tongue biofilm meta transcriptome-halitosis associated dataset from a study published in npj 

Biofilms and Microbiomes and got 90% similar results with the existing study’s result. In 

conclusion, this project provides a scalable, reusable and novel bioinformatics pipeline for the 



 xii 

exploration and interpretation of transcriptomics and metagenomics data with a user-friendly 

shiny dashboard for dynamic filtering and visualisations across hierarchical levels. 
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1 Introduction 

DNA is present in all living organisms and carries the genetic information and instructions for 

cell growth, function and development. DNA is often referred to as the “blueprint of life” 

(Saridakis, 2021) and serves as the hereditary material that is passed from one generation to 

the next. The first double helix structure of DNA was proposed by James Watson and Francis 

Crick in 1953 (Watson & Crick, 1953). RNA (Ribonucleic acid) is a single-stranded nucleic 

acid that plays an essential role in protein synthesis and gene regulation (Brosius & Raabe, 

2016) and is transcribed from instructions within the chromosomal DNA of cells. Connecting 

DNA, RNA, and proteins is termed the “central dogma”, which was first coined by Crick in 

1958 (Cooper, 1981) with a brief explanation given in Figure 1.1 below. DNA, RNA & protein 

are the building blocks of life; therefore, studying all of these is quintessential in the field of 

life sciences. 

Figure 1.1. Central dogma: Central dogma of life, the process in which DNA is transcribed 

into RNA, known as transcription. The conversion of RNA into protein is known as translation. 

In some cases, RNA can be converted back into DNA through a process called reverse 

transcription (Cooper, 1981). 

DNA is made up of 4 bases, adenine, thymine, guanine and cytosine (Watson & Crick, 

1953). DNA sequences are organised in chromosomes and contain genetic information. The 

determination of the order of these base pairs is referred to as DNA sequencing, with many 

methods developed over time. The timeline of sequencing methods is briefly summarised in 

Figure 2 (Pereira et al., 2020). The first sequencing method, Sanger sequencing, was published 

in 1977 by Nobel Prize-winning scientist Frederick Sanger (Mitchelson et al., 2007). The 

Figure removed due to copyright restriction.
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development of the Polymerase Chain Reaction (PCR) occurred in 1983, followed by the 

launch of the first automated sequencing system in 1986. After that, various next-generation 

sequencing platforms were developed. For example, in 2005, Roche launched the 454 platform. 

The Oxford Nanopore MinION portable long-read sequencer, launched in 2015, and SeqLL, 

released single-molecule sequencing in 2017, have marked significant innovations in genomics 

in the last decade (Heather & Chain, 2016; Mitchelson et al., 2007; Pereira et al., 2020). 

Figure 1.2. Timeline of DNA sequencing: This figure provides a detailed timeline of the DNA 

sequencing methodology (Mitchelson et al., 2007; Pereira et al., 2020). 

DNA, RNA & proteins can be arranged in sequence formats output from sequencing methods. 

RNA sequence data is particularly important for gene regulation and expression studies, 

whereas protein sequences provide deeper information about structure-related functions. 

Therefore, studying RNA sequences and protein sequences are important in the field of biology. 

Biological sequence data is being generated at an unprecedented rate. For example, in the year 

2000 the GenBank repository of nucleic acid sequences contained 8,214,400 entries and the 

SWISS-PROT database contained 88,166 entries. It can be clearly seen that this amount of 

information doubles every 15 months (Luscombe et al., 2001).This surge in data presents 

challenges in the field of biology, particularly in bioinformatics, which is applied in the analysis 

Figure removed due to copyright restriction.
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of this data. Bioinformatics combines fields of biology, computer science, mathematics, and 

statistics to analyse and interpret data, producing meaningful results from sequence data. It 

plays a vital role in biology and medicine, where it is used to manage and understand large 

volumes of data generated by techniques like genome sequencing (DNA-based), proteomics 

(protein-based), and transcriptomics (RNA-based). At its core, bioinformatics focuses on the 

development and application of computational tools and methods to analyse and interpret 

complex biological systems and data, including DNA, RNA, and protein sequences. It is an 

umbrella field that complements the wider range of biological studies and analyses different 

types of biological data, including sequence annotation, data visualisation, data mining, data 

exploration and structuring the biological data (Abdurakhmonov, 2016). Sequence data is 

catalogued and stored digitally in publicly available (and in some cases private) databases. The 

following are some examples of publicly available data sources.  

Table 1.1 List of important and popular database resources for bioinformatics.(Pathak et 

al., 2022) 

Database Application Availability References 

National 

Centre for 

Biotechnology 

Information 

(NCBI) 

It offers access to 

biomedical and 

genomic information 

to boost research 

activity. 

https://www.ncbi.nlm.nih.gov/

Benson, 

Boguski, 

Lipman, 

and Ostell 

(1990)

GenBank 

It is a nucleotide 

database available at 

NCBI. It is used for 

the retrieval of 

nucleotide sequences. 

https://www.ncbi.nlm.nih.gov/genbank/
Benson et 

al. (2012)

European 

Nucleotide 

Archive 

It is a nucleotide 

database available at 

EBI-EMBL. It 

provides a detailed 

record of nucleotide 

https://www.ebi.ac.uk/ena/browser/home

Leinonen, 

Sugawara, 

and 

Shumway 

(2010)

https://www.ncbi.nlm.nih.gov/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib13
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib13
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib13
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib13
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib13
https://www.ncbi.nlm.nih.gov/genbank/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib14
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib14
https://www.ebi.ac.uk/ena/browser/home
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib50
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib50
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib50
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib50
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib50
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Database Application Availability References 

sequencing data, 

covering raw 

sequencing data, 

information about 

sequence assembly, 

and functional 

annotation. 

DDBJ 

It is a nucleotide 

database available at 

NIG, Japan. It is used 

for the retrieval of 

nucleotide sequences. 

https://www.ddbj.nig.ac.jp/index-e.html 

Tateno et al. 

(2002)

Protein 

Information 

Resource 

(PIR) 

PIR is an integrated 

database to support 

research and scientific 

studies in genomics, 

proteomics, and 

systems biology. 

https://proteininformationresource.org/
Wu et al. 

(2003)

UniProt 

UniProt aims to 

provide a complete, 

high-quality, and 

freely available 

protein sequence and 

functional information 

resource to the 

scientific community. 

https://www.uniprot.org/ 

Apweiler et 

al. (2004)

Pfam 

It is a broad set of 

protein families 

database used for 

domain analysis. 

https://pfam.xfam.org/
Bateman et 

al. (2002)

https://www.ddbj.nig.ac.jp/index-e.html
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib98
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib98
https://proteininformationresource.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib104
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib104
https://www.uniprot.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib7
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib7
https://pfam.xfam.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib12
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib12
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Database Application Availability References 

CATH (Class, 

Architecture, 

Topology, and 

Homology) 

The CATH database 

offers information on 

the evolutionary 

relationships of 

protein domains as a 

free, publicly 

accessible online 

database resource. 

https://www.cathdb.info/
Orengo et 

al. (1997)

SCOP 

The purpose of the 

SCOP database is to 

provide a detailed and 

systematic 

explanation of the 

structural and 

evolutionary 

relationships between 

proteins deposited in 

the RCSB Protein 

Data Bank. 

http://scop.mrc-lmb.cam.ac.uk/

Murzin, 

Brenner, 

Hubbard, 

and Chothia 

(1995)

Protein Data 

Bank (PDB) 

It is a structural 

database that contains 

the 3D structure of 

macromolecules. It is 

crucial for research in 

the area of structural 

bioinformatics, drug 

discovery and protein 

structure prediction, 

etc. 

https://www.rcsb.org/ 

Berman et 

al. (2000)

https://www.cathdb.info/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib65
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib65
http://scop.mrc-lmb.cam.ac.uk/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib62
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib62
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib62
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib62
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib62
https://www.rcsb.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib15
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib15
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Database Application Availability References 

PubChem 

It is the largest 

database of chemical 

information. Here, we 

search chemical 

molecules and retrieve 

their structure for 

molecular 

docking/virtual 

screening. 

https://pubchem.ncbi.nlm.nih.gov/ 

Bolton, 

Wang, 

Thiessen, 

and Bryant 

(2008)

ZINC 

It is a database that 

contains commercially 

available molecules 

for computational 

screening. We can 

search and retrieve 

analogs for any 

molecule based on 

similarity. It plays a 

key role in the 

discovery of lead 

molecules for drug 

development. 

https://zinc.docking.org/

Sterling and 

Irwin 

(2015)

GEO 

GEO is a database for 

functional genomics. 

It contains gene 

expression/microarray 

data. Here, we can 

download gene 

expression profiles 

submitted by the 

scientific community 

https://www.ncbi.nlm.nih.gov/geo/

Edgar, 

Domrachev, 

and Lash 

(2002)

https://pubchem.ncbi.nlm.nih.gov/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib17
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib17
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib17
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib17
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib17
https://zinc.docking.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib94
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib94
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib94
https://www.ncbi.nlm.nih.gov/geo/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib25
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib25
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib25
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib25
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Database Application Availability References 

throughout the world 

for further 

investigation as per 

need. 

Sequence Read 

Archive 

It is the largest 

publicly available 

repository of high-

throughput 

sequencing data. Here, 

we can download NGS 

data submitted by the 

scientific community 

throughout the world 

for further 

investigation as per 

need. 

https://www.ncbi.nlm.nih.gov/sra
Leinonen et 

al. (2010)

The 

Arabidopsis 

Information 

Resource 

It is a database of the 

model 

plant Arabidopsis 

thaliana provides 

genetic and genomic 

information to the 

scientific community. 

https://www.arabidopsis.org/ 

Rhee et al. 

(2003)

Rice Genome 

Annotation 

Project 

It provides sequence 

and annotation data for 

the rice genome. 

http://rice.plantbiology.msu.edu/
Kawahara 

et al. (2013)

Gramene 

It is a curated, open-

source, integrated 

database platform for 

research in the area of 

https://www.gramene.org/
Ware et al. 

(2002)

https://www.ncbi.nlm.nih.gov/sra
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib49
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib49
https://www.arabidopsis.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib83
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib83
http://rice.plantbiology.msu.edu/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib43
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib43
https://www.gramene.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib102
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib102
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Database Application Availability References 

comparative 

functional genomics 

of crop plant species. 

Kyoto 

Encyclopedia 

of Genes and 

Genomes 

(KEGG) 

Database of 

gene/genome 

sequencing 

information for the 

understanding 

function of biological 

system 

https://www.genome.jp/kegg/

Kanehisa 

and Goto 

(2000)

Search Tool 

for the 

Retrieval of 

Interacting 

Genes/Proteins 

(STRING) 

It is a database 

resource for known 

and predicted protein–

protein interactions 

derived from 

experimental, 

computational 

methods, and text 

mining. 

https://string-db.org/ 

Szklarczyk 

et al. (2019)

BioModel 

It is a repository of 

mathematical models. 

It provides a wide 

variety of current 

physiologically and 

pharmaceutically 

applicable 

mechanistic models 

based on literature in 

standard file formats. 

https://www.ebi.ac.uk/biomodels/
Le Novere 

et al. (2006)

https://www.genome.jp/kegg/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib42
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib42
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib42
https://string-db.org/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib95
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib95
https://www.ebi.ac.uk/biomodels/
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib48
https://www.sciencedirect.com/science/article/pii/B9780323897754000067#bib48
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1.1 Brief History & Advancement of bioinformatics 

Bioinformatics originated decades before DNA sequencing became a feasible technology. 

Margaret O. Dayhoff is known as the mother of Bioinformatics because she developed the early 

computer programs able to determine the peptide structure for x-ray crystallography and 

published the book “Atlas of Protein Sequence and Structure”. This book gave a new direction 

to the field of bioinformatics (Diniz & Canduri, 2017). The first dynamic programming 

algorithm for pairwise alignment for protein sequence was developed by Needleman and 

Wunsch in 1978 (Pathak et al., 2022), which was fundamental in identifying variations in 

protein sequences that inform on genetically based diseases. After 10 years in 1980, the game-

changing software for multiple sequence alignment was introduced, named CLUSTAL. In 

1988, the Notational Centre for Biotechnology Information (NCBI) was established. As 

genomic research moved from the protein space to the DNA space, the human genome project 

entered the field in 1990, which was revolutionary for managing a large dataset and assembling 

small DNA sequences into larger chromosomes computationally (Sawicki et al., 1993). 

Between the years 2000 and 2010, because of advancements in both biology and computing, 

high-throughput bioinformatics techniques were applied and could be utilised on next-

generation sequencing (NGS) data (Pathak et al., 2022). In today’s era, artificial intelligence 

and machine learning techniques are being used to produce faster and more efficient results.  

1.2 Aims of bioinformatics 

There are 3 crucial aims of bioinformatics. First and foremost, it simplifies biological data into 

a clear and concise form that allows researchers to access existing information or contribute 

new data to existing databases. The second aim is to develop tools that aid in analysing this 

data (Luscombe et al., 2001).The third aim is developing new software and algorithms. Apart 

from this, there is an improvement of the content and usefulness of the already available 

database to document the data in a more organised way (Pathak et al., 2022). 

1.3 Needs of Bioinformatics 

Due to advancements in technology, such as sequencing methods including those from 

Illumina, PacBio, and MiniOn platforms, researchers generate large amounts of annotated 

biological data. The analysis and management of these large datasets requires not only 

bioinformatic tools, but also analysis pipelines that integrate and visualise the data products of 

these tools so that users can explore large biological datasets beyond their immediate or central 

hypotheses (Pathak et al., 2022). 
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1.4 Application of Bioinformatics in Biological Research. 

 Figure 1.3. Application of bioinformatics in biological research: A brief overview about how 

bioinformatics can be helpful in various fields to solve biological problems (SILVA & ALVES). 

Bioinformatics has multiple applications as listed above in Figure 1.3. It has great potential to 

solve biological research problems. Starting with the Human Genome Project, bioinformatics 

has become an integral tool not only for scientists but also for industry, playing a significant 

role in the fields of life science, chemical science, physical science, agriculture, cancer 

research, healthcare, and many other disciplines. Some critical applications are discussed 

below. 

1.4.1 Sequence analysis 

Sequence comparison analysis was revolutionised with the development of the basic local 

alignment search tool (BLAST) in 1990, which is useful for finding similarity between two 

sequences, including nucleic acid or proteins (Altschul et al., 1990). It is one of the significant 

applications of bioinformatics in extracting information about gene identification, diseases, 

genetic variation, and mutations (Mount, 2004). Bioinformatics also plays an essential role in 

metagenomics (Environmental or community of genomics) by analysing and annotating 

Figure removed due to copyright restriction.
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sequences to existing databases and providing the information about the composition and 

function of whole microbial communities, for example, present in human and environmental 

samples (Handelsman, 2004). In transcriptomics, bioinformatics provides information about 

differential gene expression. Protein sequence analysis is also helpful for understanding the 

structure and function of proteins with the help of publicly available databases (Punta et al., 

2012). 

1.4.2 Phylogenetic analysis 

Phylogenetic analysis is another important research area in the field of bioinformatics, 

involving the study of evolutionary relationships among genes and organisms using sequence 

data (Challa & Neelapu, 2019). There are multiple tools available, such as MEGA, PHYLIP 

and RAxML, which utilise sequence data and help in phylogenetic tree construction for 

understanding the evolutionary relationship between genes and organisms based on sequence 

similarity (Godini & Fallahi, 2019). It also supports the identification of significant regions of 

interest within the sequences and provides an essential guide in vaccine and drug design 

(Pathak et al., 2022). 

1.4.3 Prediction of protein structure 

Predicting protein structures is crucial to understanding protein functions and interactions. In 

recent years, due to the overwhelming volume of data, automated or semi-automated methods 

in bioinformatics for protein structure prediction from amino acid sequence have come to light 

(Pavlopoulou & Michalopoulos, 2011). The 2024 Nobel Prize in Chemistry was awarded to 

David Baker, Demis Hassabis, and John Jumper for their work on protein structure prediction 

and computational protein design. 

1.5. Different bioinformatics file types 

Producing logical and organised data outputs is vital for parsing and analysing biological 

sequence data. Over the years, many file types have been developed, but several stand out and 

are utilised widely as standards. 

1.5.1 Sequence file formats. 

1.5.2 FASTA 

It is a simple file format to provide information about DNA, RNA, or protein sequences. It is 

most used for storing and sharing of sequencing data in bioinformatics. This file starts with the 

‘>’ SIGN followed by the sequence of amino acids or DNA base pairs (Roughan, 2022). 
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1.5.3 FASTQ 

The FASTQ format is complementary to the FASTA format, but the ‘Q’ stands for quality in 

this format. Therefore, this file format provides the same information as a FASTA file but also 

includes the quality of the sequence read as provided by the sequencing platform. It generally 

has four lines where the first line starts with the ‘@’ sign and is a sequence identifier. The 

second line contains the raw sequence data. The third line has the “+” sign for separation of 

data, and the fourth line has a quality score for each score; this line is identical to the second 

line in length (Roughan, 2022). 

1.5.4 Alignment file format 

1.5.5 SAM 
SAM stands for the Sequence Alignment Map. This file consists of one header section and one 

alignment section. In this file each alignment line has 11 mandatory field such as query name, 

flag, pos, etc (Li et al., 2009; Roughan, 2022). 

1.5.6 BAM 

BAM represent the Binary alignment map format, which is the binary representation of the 

SAM file format (Li et al., 2009; Roughan, 2022). 

1.5.7 Other file formats in bioinformatics. 

BED represent the Browser Extensible Data file format, which includes information about the 

sequence and can be visualised in a genomic browser. The BED file format provides three 

essential pieces of information: chromosome names, start positions, and end positions. The 

PDB file format stores information about protein structures. GTF (Gene Transfer Format) 

stores information about gene regulation (Roughan, 2022). 

1.6 Function Annotation and the Subsystem in Bioinformatics 

Function annotation is the process of assigning biological information to specific genes, 

including their function, identity, and/or location in chromosomes (Berardini et al., 2004). 

Large datasets require a function annotation to analyse and extract meaningful information 

from the sequences, as without annotation, the generated sequences are raw data, and no 

information can be obtained from them. Therefore, function annotation is necessary in 

biological and bioinformatics research because it is essential for identifying genes, especially 

those associated with their role in disease or consequential outcomes in the study system. 

Function annotation is also crucial for the interpretation of metagenomic data. It plays an 
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essential role in understanding the biological pathway, such as which genes are involved in 

which parts of the biological pathway. 

1.6.1 Function annotation tools in bioinformatics. 

Function annotation in bioinformatics is often dependent on a well-established database. The 

following are some of the most important tools. 

1.6.2 KEGG (Kyoto Encyclopaedia of Genes and Genomes) 

KEGG is an important database for the biological interpretation of genome sequences and other 

high-throughput data. More than 4000 complete genomes are annotated within the KEGG 

database (Kanehisa et al., 2016). In 1995, the KEGG project started with the human genome 

project (Ogata et al., 1999). The main advantage of KEGG is that it provides the links between 

the sets of genes from genomes and the functions of cells and organisms (Kanehisa et al., 2016). 

This database is based on the three main components: 1) KEGG PATHWAY, as it has all the 

information of high-level functions, and it has a collection of graphical diagrams of biological 

pathways (Ogata et al., 1999),  2) KEGG GENES has a collection of complete sets of sequenced 

genomes, 3) KEGG ORTHOLOGY, which provides the links between the genes and functions. 

1.6.3 Gene Ontology (GO) 

Gene ontology is a well-structured bioinformatics database that provides structured, standard, 

and controlled vocabularies and classifications that cover several domains of biology, and it is 

freely available for the community to use for annotation of genes, gene products and sequences 

(Consortium, 2004). It is subdivided into three non-overlapping ontologies, such as molecular 

functions (MF), Biological processes (BP), and Cellular components (CC) (Du Plessis et al., 

2011). In this database, each annotation has a source of entry. Source can be literature 

referenced, database references, or computational evidence (Du Plessis et al., 2011). 

1.7 Hierarchical Subsystems in Bioinformatics. 

In a hierarchical subsystem organisation, high-throughput biological data is organised in a 

hierarchy that organises the biological function into nested categories. For example, data are 

organised at different levels, such as broader categories (level 1) to more specific categories 

(level 2,3,4 and 5). This format allows researchers to interpret their data on multiple levels, 

from broader function (ex, level 1 in figure 4) to specific gene role (ex, level 3 in figure 4). 

Another common example is taxonomic systems, where a single phylum (akin to a level 1) can 

contain multiple nested classes, orders, families, etc. This subsystem hierarchy organisation is 

crucial for managing large datasets, especially for metagenomics and transcriptomics data, 
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which assumes that biological functions fall under broad metabolic pathways, and can then be 

nested into more specific branching functions, which may represent particular enzyme products 

that catalyse reactions. This subsystem helps simplify data interpretation and computation, and 

also provides insight into the subsystem's extensive interactions and synergies.

Figure 1.4- Representation of subsystems structure, how each subsystem works and generates 

the data in a hierarchical format. For example, data is arranged at different levels from the 

border level to the specific level (L1 to L4)  (Silva et al., 2016). 

1.8 Current Tools for Hierarchical Functional Profiling 

1.8.1 Super focus 

Super focus is a bioinformatic tool helpful for functional annotation and profiling of 

metagenomic data. This is faster than other tools because it features three improvements over 

other metagenome annotation tools. Firstly, it features a clustered version of the SEED 

database, which reduces the total search space. Second, it identifies the genera or functions 

present in the metagenomic sample using FOCUS. Lastly, alignment is performed by 

RAPsearch2, which is 100 times faster than BLASTX. Therefore, SUPERFOCUS can be up 

to 1000x quicker than other tools (Silva et al., 2017). The input data can be in the form of 

FASTA or FASTQ sequences generated by sequencing platforms. Workflows consist of one 

pre-processing step followed by five computational steps. In the preprocessing stage, it creates 

a reduced database by clustering the sequences from the SEED database. In the next step, 

FOCUS identifies the genera from the samples. After that, input sequences are aligned against 

Figure removed due to copyright restriction.
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a reduced database using RAPsearch2 (default), DIAMOND and BLASTx. In the last step, the 

alignment output is filtered by some fixed default criteria, and function annotation is generated 

for all subsystem levels (Silva et al., 2016; Silva et al., 2017). 

1.9. Differential Expression/ Abundance Analysis in Omics Studies 

DNA and RNA sequencing are strong tools to learn about gene abundance and gene expression. 

Transcriptomics is the study of RNA that is important for understanding gene expression, 

especially in biomarker or in the detection of early complex diseases (Dong & Chen, 2013). 

The transcriptome is the complete set of RNA molecules, a term first proposed by Charles 

Auffray in 1996 and 1997 (McGettigan, 2013). Studying transcriptomic data is a challenging 

and time-consuming process because it contains vast amounts of information, particularly 

when the goal of researchers is hypothesis generation, rather than hypothesis testing. In 

transcriptomics, differential gene expression analysis identifies genes that are statistically 

significantly upregulated or downregulated under a specific condition, as inferred from their 

mRNA count data, which can be annotated to the SEED Subsystem, for example. Differential 

expression analysis can be useful in various biological fields, including cancer research, 

neuroscience, and environmental studies. There are several tools available to do analysis; 

however, DESeq2, EdgeR, and Limma are some of the most widely applied algorithms. All 

three are Bioconductor packages and can run in the R programming language (Elahimanesh & 

Najafi, 2024). For differential abundance analysis, ALDx2 and ANCOM-II are the most 

common packages used; however, differential expression and differential abundance analysis 

can be interchangeable, as long as the data fit the assumptions of the statistical tests used. Those 

two tools have been applied to identify abundant microbes in a microbiome study between 

treatments and sample groups, for example (Nearing et al., 2022). However, all the above-

mentioned packages have limitations; all the mentioned tools cannot provide analysis across 

all hierarchical count data (i.e., multiple hierarchical levels) because they only provide analysis 

for one level intuitively, and require multiple iterations to perform statistical tests across 

multiple levels and/or sample groups. For a better understanding of hierarchical count data, a 

new analysis workflow is essential for providing analysis for all hierarchical levels instead of 

one, particularly for less experienced users. 

1.10 Differential gene expression Tools. 

Differential gene expression analysis is a critical aspect in transcriptomics research because it 

provides identification of the genes that show statistically significant changes in expression 

between two biological conditions, such as treatment and control (Rapaport et al., 2013). 
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1.10.1 DESeq2 

DESeq2 is an R Bioconductor package that applies a negative binomial distribution for 

differential gene expression analysis. DESeq2 also utilises the shrinkage estimation for 

dispersion and fold changes to improve the stability and interpretability of gene count data. 

DESeq2 used the median-of-ratio method for gene-specific normalisation (M. I. Love et al., 

2014). It also utilises a generalised linear model framework for differential expression. This 

package is also capable of providing some visual outputs, such as heat maps and volcano plots, 

which play an essential role in data interpretation (M. Love et al., 2014). 

1.10.2 EdgeR 

EdgeR is an R Bioconductor package designed to analyse differential expression of replicated 

count data (Robinson et al., 2010). It also employs the negative binomial distribution for 

modelling the count data. EdgeR estimates the gene-wise dispersions by conditional maximum 

likelihood. It uses Fisher’s exact test for analysing differential expression, which is highly 

useful, especially for small samples. 

1.10.3 Limma 

Limma is an R package applied to analyse differential expression for microarray data. Limma 

uses the voom transformation model, which converts the raw count into log-count per million, 

by automatically calculating the library size and normalisation factor from itself. This is a 

powerful tool dealing with large datasets and is well-suited for highly replicated experiments. 

1.10.4 Why DESeq2 is used for this study 

Several statistical tools have been developed for differential gene expression analysis, 

including DESeq2, EdgeR and limma. Deseq2 and EdgeR are both based on the negative 

binomial distribution, making them well-suited for RNA-sequence data. On the other hand, 

limma was developed initially for microarray data. A comparative study suggested that DESeq2 

is most suitable for large datasets (Soneson & Delorenzi, 2013). DESeq2 was selected because 

of its statistical robustness, flexibility and widespread availability. It can generate pairwise 

comparisons based on provided metadata, which is easily manipulated and parsed by the 

algorithm. Apart from this, DESeq2 was most suitable for providing an existing code 

framework for the visualisation of the results. 
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1.11 Bioinformatics pipeline 

Bioinformatics pipelines are chains of computational processes, tools or coding scripts that are 

specially designed for analysing specific biological data. Pipelines are arranged in a step-by-

step manner to produce automated, faster, and reproducible results by filtering and processing 

the given raw data. Different pipelines are designed based on three key dimensions (1) syntax: 

pipeline uses the implicit or explicit syntax. (2) Design paradigm: pipeline uses the 

configuration, convention or class-based design. (3) Interface: it is a command line-based or a 

graphical workbench interface (Leipzig, 2017). Pipelines originate from the simple writing of 

code to then utilise modern software and workflow management systems. 

1.12 Modern pipeline frameworks. 

1.12.1 Implicit convention frameworks. 
These pipelines rely on a full coding script, such as Python or R, for both input and output of 

the results. It also depends on some workflow management systems like Snakemake and 

Nextflow (Leipzig, 2017). 

1.12.2 Explicit framework. 

Explicit frameworks simplify the pipeline creation. For example, Bpipe is a tool which helps 

run and manage bioinformatics pipelines (Sadedin et al., 2012). 

1.12.3 Configuration frameworks 

This framework depends on the “fixed task” in the workflow. 

1.12.4 Class-based framework 

This pipeline contains many thousands of lines of code to handle and manage the large 

workflows (Leipzig, 2017). For example, the Genome Analysis Toolkit (GATK) is a Java 

library for variant analysis. 

1.13 Purpose of bioinformatics pipeline  

The primary purpose of bioinformatic pipelines is to ensure automation, reproducibility, 

scalability and ease of use.  
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Figure 1.5: Example of bioinformatics pipeline/workflow, how bioinformatics pipeline 

workflow can generate (Choudhri et al., 2018). 

1.14. Examples of Bioinformatics Pipelines 

1.14.1 Cyrille2 

Cyrille2 is a simple genome annotation pipeline that uses a graphical user interface (GUI). The 

interface provides management and monitoring of pipeline execution, including creating, 

adopting, starting, and stopping the pipeline. The output of this pipeline includes gene 

prediction, homology searches, and protein domain analysis. This workflow starts with the 

DNA sequences. After that, in the second layer application, a programming interface allows 

users to access the three databases for sequence comparison. The biological database and end-

user interface connect to external computer software, such as Sun Grid Engine (SGE). This 

pipeline system needs to store different types of information; therefore, it consists of four 

different databases to store each type of data separately (Fiers et al., 2008). Although this 

pipeline is flexible and automated, it has some challenges, including data storage, as it relies 

on different databases and external computer software. Therefore, customisation is quite 

challenging for this pipeline, and it has limited support for multi-omics data.  

Figure removed due to copyright restriction.
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Figure 1.6. Cyrille2 pipeline design, how it is organised in 4 layers (Fiers et al., 2008). 

1.14.2 MAP-RSeq: For analysis of RNA sequencing data. 

MAP-RSeq is a bioinformatic pipeline used for processing RNA sequence data. This pipeline, 

developed at the Mayo Clinic, utilises the well-developed coding scripts in Python, Java, R and 

Perl, which are available in two versions. The first version is single-threaded, and it can run on 

a virtual machine. Another version is relatively straightforward to install and run on an external 

cluster environment, such as SGE, which is specifically designed to require minimal effort on 

Linux. This pipeline consists of six major modules, including read alignment, sequence quality 

assessment, gene expression analysis, exon expression count, detection of expressed single 

nucleotide variants (SNVs), and final report output. Read alignment is done by the TopHat 

software, which generates the binary alignment file (BAM). Then, quality assessment of reads 

is done using the RSeQC software. For gene expression count, HTSeq software is used. The 

final report comes out in HTML format (Kalari et al., 2014). 

Figure removed due to copyright restriction.
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Figure 1.7: Flow chart for MAP-RSeq bioinformatic pipeline (Kalari et al., 2014). 

1.14.3 Tuxedo suite Bioinformatic pipeline. 

 The Tuxedo suite pipeline is useful for RNA-sequence analysis and transcript quantification. 

In this pipeline, TopHat software is also used for reading alignment and mapping. These 

alignments are then utilised by Cufflinks, which perform transcriptome assembly and provides 

information on transcript abundance. For differential gene expression, this pipeline relies on 

the cuffdiff tool. The final differential expressed gene analysis comes out in a list (Diniz & 

Canduri, 2017) 

Figure removed due to copyright restriction.
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Figure 1.8: Workflow of the Tuxedo suite bioinformatic pipeline (Diniz & Canduri, 2017). 

1.14.4 RNA Flow Bioinformatic pipeline 

The RNA flow bioinformatic pipeline is a comprehensive and automated bioinformatic pipeline 

that specialists and non-specialists in bioinformatics can use. It is a portable, scalable, and 

automated Nextflow RNA-sequence pipeline used to detect differentially expressed genes in 

data generated from RNA sequencing. For input, two parameters are required: the first is the 

RNA sequences (either single or paired end), and the second is the reference genome with 

matching annotation in GTF format. Quality reports of raw reads can be generated by running 

the FASTQC tool. Then, differential gene expression is performed by DESeq2. The final output 

is available in FASTP, BAM, CSV, or Excel format. The summary report is accessible through 

the multipleQC report for this pipeline (Lataretu & Hölzer, 2020). 

Figure removed due to copyright restriction.
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Figure 1.9: workflow for RNAflow pipeline (Lataretu & Hölzer, 2020). 

1.15 Limitation and gap 

In summary, analysis tools such as DESeq2, edgeR, and limma are available to help detect 

differentially expressed genes (DEGs) in experiments with contrasting treatments and controls. 

However, all these tools have some limitations because they typically produce a long list of 

genes that are differentially expressed, such as those that are upregulated and downregulated. 

These outputs typically require more interpretation to extract biological insight and draw 

logical conclusions (Liu et al., 2021). This situation becomes worse when datasets have 

thousands of genes. Apart from this, one fundamental aspect is that genes are organised in a 

hierarchy and are poorly characterised at the individual level, but are well characterised at the 

functional level of subsystems or pathways. For example, indications of wide upregulation of 

genes involved in carbohydrate metabolism are stronger evidence than interpreting thousands 

of genes separately. Therefore, there was more attention on functional annotation. Most of the 

tools available for differentially expressed gene analysis do not provide visualisation and often 

focus only on a particular subsystem level, lacking hierarchical support for functional 

annotations. Functional databases, such as SEED, provide a hierarchical (multi-level) gene 

annotation structure, ranging from broad categories to particular gene functions. Existing 

workflows either ignore hierarchy organisation completely or focus solely on one level at a 

Figure removed due to copyright restriction.
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time. Apart from these, most traditional pipelines require a command line interface and script 

writing, which can be a daunting task to less experienced researchers. Tools that enable 

scientists to perform real-time visualisation with user-friendly dashboards would be beneficial 

for clear data understanding and hypothesis generation from large datasets that often go 

unexplored once the primary aims of a study are fulfilled. 

1.16 Research objectives and hypothesis. 

The main objective of this study is to develop a novel analysis pipeline that can automatically 

perform differential gene expression analysis between all possible pairwise comparisons with 

hierarchical functional filtering and real-time visualisation on count data. This pipeline is 

specifically developed to analyse and interpret large datasets without excessive script writing 

by end users. Aims include:  

• To automate all the pairwise comparisons based on metadata.

• To visualise differentially expressed genes on user friendly shiny R dashboard

• To enable real-time filtering across hierarchical functional subsystems

1.17 New Approach to bridge the gap 

To meet these needs, our goal is to develop a new analysis workflow that explores and 

understands differentially abundant and/or differentially expressed features in a hierarchical 

dataset, such as data generated from microbial taxonomy analysis (i.e., taxonomic hierarchy) 

or shotgun DNA/RNA function counts (i.e., functional hierarchy). This could be applied to the 

dynamics of microbial community functions and/or taxa across different samples representing 

treatment (in the case of an experiment) or environmental conditions. It requires bioinformatic 

tools such as DESeq2 to perform differential gene expression or differential abundance 

analysis. The project aims to analyse data, particularly those organised from broad functional 

categories down to specific gene functions in the case of the SEED annotated functional omics 

data. For example, data from SEED-annotated output is organised in 4 different subsystem 

levels (L1 to L4), which can be generated by the tool, SUPER-FOCUS. The project aims to 

analyse the functional capabilities utilising all 4 levels as opposed to counts from a single layer. 

The overall goal is to develop a comprehensive analysis workflow in R that identifies 

differentially expressed genes across layers using DESeq2, thereby improving data exploration 

and consensus. 

The initial stage of the project involves preparing and integrating functional data from 

L1 to L4, along with metadata. This metadata includes information such as the environmental 
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conditions, location, treatment group, and number of samples taken from the experiment or 

study. This data format must first be manipulated so that it is suitable for performing in DESeq2 

or any other desired differential expression package. This data must be carefully cleaned and 

formatted in a way that is easily accessible from tools such as SUPER-FOCUS. This initial step 

is important for providing a suitable format and dataset for further analysis. 

The second stage involves analysis using DEseq2 and other algorithms, a statistical tool 

specifically designed to handle and analyse gene functional annotated count data and identify 

differentially abundant or expressed features, which include specific taxa or genes within the 

experiment (as defined in the metadata). This differentially expressed data can be visualised by 

volcano plots, MApplot, and R packages including ggplot2 and heatmap. This will offer a clear 

view for users of the functional dynamics across the different samples using the subsystem 

level. 

After that, the project will move to the novel approach of functional network 

reconstruction. After having results from DESeq2, a network is built to visualise how the 

identified functions can interact and relate across sample groups. The end goal is to have a 

ranked list of differentially expressed Subsystems (for example, at Level 1) between sample 

groups, based on how many functions (i.e., at Level 4) within those subsystems are 

differentially expressed. This involves summarising functions at Level 4 based on the higher 

levels to which they belong, and it will also produce graphics and lists of genes/functions 

ordered by their significance values (p-value or log2 fold change values in the case of DEseq2). 

The goal is to provide users with a more comprehensive understanding of the 

differences between their groups in omics studies and to enable them to explore their large 

omics datasets more effectively, generating hypotheses and ideas that may not be intuitively 

apparent. This will help avoid bias and improve upon current analyses that utilise only one 

level of a hierarchy in the functional data structure. In conclusion, a literature review highlights 

the key aspects of bioinformatics and its role in modern biological research, particularly in the 

application of data analysis, such as in metagenomics and transcriptomics. This review focuses 

on the bioinformatics pipeline and workflows for data analysis, providing an overview of the 

workflow structure and how these workflows assist researchers in analysing and handling data 

to produce meaningful results. Additionally, it reviews the challenges associated with 

workflows and proposes a new solution and method to address these challenges. For example, 

despite these advances, some challenges remain, as highlighted by the fact that the analysis 
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workflow needs to be improved for hierarchical count data, as existing tools and workflows 

currently focus solely on a single layer rather than all hierarchical levels. This review bridges 

the gap in handling and analysing hierarchical and multi-level data sets, providing a more 

comprehensive understanding of data than what is currently achievable with single-layer data 

using existing tools like DESeq2. For the future direction, artificial intelligence and machine 

learning models can be implemented to automate workflows. 
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CHAPTER 2: MATERIALS AND METHODS 
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2. MATERIALS AND METHODS

Day by day, biological datasets are becoming increasingly complex due to the rapid

development of sequencing technologies (Stephens et al., 2015). As a result, advanced

computational methods are required to analyse these datasets, especially for differential gene

expression analysis. There are multiple existing tools available on the market that perform data

analysis; however, they have limitations in the context of interpreting functional subsystems or

pathways. This work aims to bridge the gap by developing a novel integrated pipeline that

performs automated differential gene expression analysis while simultaneously enabling real-

time visualisation and exploration of gene expression data organised within hierarchical

functional subsystems. By combining computational methods with an interpretable biological

framework, these novel methods aim to enhance the utility of transcriptomics datasets in

genomic research and hypothesis generation.

2.1 Data Source and Processing 

For building and testing the workflow, 18 test DNA sequence samples (6 groups, 3 replicates 

each) were used. This data originates from a previous study, and the nature of the samples is 

ambiguous to the development of the workflow; it merely provides a count-by-sample data 

output for developing the code. The DNA samples were submitted to the Australian Genome 

Research Facility (AGRF) for whole-genome shotgun sequencing. Library preparation was 

performed using the IDT xGen cfDNA & FFPE DNA Prep Kit, where samples were sheared 

to 550 bp and sequenced on an Illumina MiSeq (600 cycles). Sequence reads were then 

analysed on the Flinders University HPC Cluster (Flinders University, 2021). 

Raw sequence reads (300 bp paired-end) were processed through Trimnami (Roach, 2023), 

using Fastp (Chen, 2023) and Prinseq++ (Cantu et al., 2019) for quality filtering, trimming, 

and adapter removal using the default parameters provided. Functional assignment of reads to 

the SEED Subsystems hierarchical classification structure (Overbeek et al., 2005) was done 

using SUPER-FOCUS (Silva et al., 2016) with mmseqs2 used for alignment. The resulting 

functional count table was used for developing the workflow. 

This pipeline was developed using R Studio (Version 2024.04.2+764 (2024.04.2+764)) on 

macOS (version Sonoma 14.5, chip M3). Figure 2.1 illustrates the entire workflow of the 

bioinformatics pipeline. The primary input was gene-annotated count data, provided in the 

L4_function_Subsystems.csv file. It consists of 21,675 rows (genes) and 19 columns (sample 

IDs), representing gene expression data organised according to function subsystems (Overbeek 
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et al., 2005). Each row provides the information about the gene name or function described in 

the #Name column. Each row also has a semicolon-separated string which indicates genes are 

organised in a multilevel subsystem hierarchy (e.g., L1; L2; L3; L4). The remaining columns 

represent the count data for different samples, indicating how many hits to the database were 

detected for that function. The unique approach of this dataset was its functional hierarchy; for 

example, the gene name in #Name column “Amino Acids and Derivatives; Alanine, serine, 

and glycine; Alanine biosynthesis; Alanine_racemase, _biosynthetic_(EC_5.1.1.1)” could 

be parsed into  

Level 1- Broad category - Amino Acids and Derivatives 

Level 2 – Subsystem group- Alanine, serine, and glycine 

Level 3-Pathway - Alanine biosynthesis 

Level 4 – Enzyme Function- Alanine_racemase, _biosynthetic_(EC_5.1.1.1). 

This structure enables the organisation of gene expression at various biological levels. As a 

result, researchers could explore not only the differentially expressed individual genes but also 

aggregate changes across entire functional subsystems.  

Before the analysis, the first column was used to assign row names, to retain only numeric data. 

The second key input was a metadata file. Here, it was the metadata.csv file, containing 

information about sample names and grouping (Treatment vs control). Here, it was a sample 

name and different locations where the samples originated from (SITE). Each sample's name 

in the metadata matches with sample names in CountData (matrix), which is a critical 

requirement for DESeq2 to perform differential expression analysis accurately. Upon importing 

the metadata, it was preprocessed to set the sample names as raw names. This ensured that 

DESeq2’s requirement for column names matched between countData(matrix) and metadata. 

Prior to DESeq2 model creation, a critical validation step was implemented to ensure that 

sample names were properly aligned between countData(matrix) and metadata. A mismatch at 

this stage reports an error. The following R command was used [all(colnames(countData) 

%in% rownames(metadata))]. If this returns “true” it confirms all the alignment was correct 

and verified. To meet DESeq2’s requirement for statistical modelling, countData (matrix) was 

explicitly converted into an integer format. The SITE variable was explicitly converted into a 

factor to define distinct experimental groups for statistical testing. This enable DESeq2 to 

perform all pairwise comparison between this SITE factor automatically. 
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2.1 DESeq2 Modeling 

 Differential gene expression analysis was a principal component of this workflow. Differential 

gene expression analysis was performed using the DESeq2 package version 1.44.0 from 

Bioconductor, an essential tool for using the negative binomial distribution. DESeq2 was 

chosen because of its robust ability to handle multiple biological replicates and complex 

experimental designs. Apart from this DESeq2 does not require any preprocessing step to 

provide statistically rigorous results even in small sample designs. Furthermore, the negative 

binomial model used in DESeq2 includes a gene-specific dispersion that accurately models this 

variability (M. Love et al., 2014; M. I. Love et al., 2014). 

2.1.1 Construction of DESeq2 dataset 

A DESeq2 dataset was created by using the DESeqDataSetFromMatrix () function in R 

programming command (M. Love et al., 2014; M. I. Love et al., 2014). In this, countData = 

int_matrix, which was derived from countData (matrix) and colData (sample metadata) = 

metadata (metadata.csv file). In this experiment, the design formula was design = ~ SITE) 

which specified that differential gene expression analysis would be assessed with respect to the 

sample information present under the SITE grouping factor. Prior to implementing DESeq2, 

no normalisation was performed on the dataset as the DESeq2 analysis included a 

normalisation step. 

2.1.2 DESeq2 Model 

Once the DESeq2 dataset was defined, the DESeq2 model was implemented using the DESeq 

(dds) R programming command. This command performed the sequence of integrated steps 

required for appropriate differential gene expression analysis. This single command initiates 

the multi-step process in the pipeline, such as size factor normalisation, dispersion estimation, 

and generalised linear model fitting under a negative binomial framework (M. Love et al., 

2014; M. I. Love et al., 2014). 

2.1.3 Automatic pairwise comparison. 

The prominent feature of this pipeline was automated generation of all pairwise comparisons 

between samples define under the SITE metadata factor. For this combn () R programming 

command was used and “2” indicating that we were interested in pairwise comparisons. 

R 

Generate all pairwise comparisons automatically 

SITE <- levels(metadata$SITE) 

comparisons <- combn(SITE, 2, simplify = FALSE) 
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Here, site1 was treated as control group while site2 was treated as a treatment group. The results 

() R programming function was used to generate the differentially expression testing result. 

The contrast vector specified the pairwise comparison between site1 and site2. The result () 

function extracted the result table with log2 fold changes, p values and adjusted p values. 

A dedicated output directory was created by using the dir.create () R programming function to 

store the result of all the pairwise differentially expressed gene expression analysis files. And 

DESeq2 results were converted to a standard data frame for further manipulation. To identify 

meaningful biological insights, genes were filtered based on an adjusted p-value. The base R 

programming command was used to retain only genes where p-adj was less than 0.05. By this 

function, all the NA values were excluded to avoid inconsistent results. Additional columns 

were added to the DESeq2 results output, providing information about which samples belonged 

to the treatment group and which ones belonged to the control group. Direction of regulation 

was also implemented for providing information about which genes were upregulated (i.e., 

higher expressed) in treatment vs. in control. The result of each pairwise comparison was 

directly saved in the created output directory by providing custom paths. The output file is 

saved in .csv format by default with the comparison group names in the file name for easy 

access. 

R. 

Loop through each pairwise comparison (significant results only) 

for (comp in comparisons) { 

  site1 <- comp[1]  # control 

  site2 <- comp[2]  # treatment 

  # Run DESeq2 contrast 

  res <- results(dds, contrast = c("SITE", site2, site1)) 

R. 

Define output directory 

output_dir <- "~/Documents/new_DESeq2_results/" 

dir.create(output_dir, showWarnings = FALSE, recursive = TRUE) 
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2.2Shiny App workflow 

In this study, the shiny app workflow was designed to dynamically explore and visualise results 

(Chang et al., 2012). This workflow was created using the R Shiny package (‘shiny’ version 

1.10.0). The shiny app workflow was utilised to facilitate real-time filtering of differentially 

expressed genes. All the necessary libraries were loaded before workflow development. The 

workflow accepts the custom .csv file generated by DESeq2, containing hierarchical annotated 

gene counts and metadata. This allows users to interactively explore expression changes across 

multiple hierarchical levels, such as taxonomy or SEED-annotated subsystems. This approach 

bridges the gap between complex statistical and biological interpretation, mainly when 

biological hierarchical data (i.e., genes, taxa) is analysed. 

2.2.1 Purpose of workflow 

The primary purpose of developing a shiny app was to bridge the gap between complex 

statistical and biological interpretations, especially when genes are part of subsystems. 

Traditional DESeq2 models provide the results in a statistical table format. To analyse and 

interpret those tables requires profound programming skills. This workflow addresses all these 

problems by integrating hierarchy-based filtering, a Log2fold changes summary, tables for 

differentially expressed genes, and bar and volcano plots for data visualisation, all within a 

dynamic, interactive Shiny R application. 

Data preprocessing within the Shiny app workflow 

In the preprocessing step, the first column of the uploaded file was separated by the semicolons 

(;) using the R programming command strsplit(). This command splits the first column into 4 

levels and merges additional annotated text beyond the fourth semicolon into the 4th level. The 

resulting levels were stored as separate columns named Level 1, Level 2, Level 3, and Level 4, 

which represent the Subsystems organisation scheme. This methodology can also be adapted 

to taxonomic strings, with taxa ranks separated by semicolons. The dataset was then suitable 

for interactive visualisation. 

2.2.2 Interactive Interface overview 

The user interface was created using the fluidpage () and slidelayout() R programming 

commands. The Interface was divided into two main parts. 

• A sidebar panel containing input controls and a summary of results.
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• A main panel displaying the interactive plots and summary tables.

The prominent functions of the sidebar panel are the fileInput () R programming command, 

which accepts and parses the .csv file. SelectInput () and renderUI () ensure that results are 

dynamically updated based on the user’s selection. For example, Level 2 relies on the Level 1 

user’s selection; simultaneously, the same logic applies for all levels. Also, the dropdown levels 

were added for selecting hierarchy levels. verbatimTextOutput() R programming command 

provides several key results, such as the total number of genes and the number of upregulated 

and downregulated genes in control and treatment designated groups. For the main panel, 

plotOutput(), tableOutput and DTOutput() produce the visualisations including a bar plot, 

volcano plot, and results table within the interface. Displaying dynamic summaries such as the 

number of selected genes based on positive and negative log2fold change values. The central 

panel displays the summary table, log2fold change bar plot. 

2.2.3 Visualisation Outputs. 

Data visualisation is a critical part of bioinformatic pipelines that are designed for less 

experienced users to explore hierarchical data. Our shiny app generates multiple visualisation 

outputs with dynamic filtering options for exploratory data analysis, incorporating necessary 

R package libraries such as ggplot2 and DT. The primary visualisation outputs provided by this 

workflow are volcano plots, bar plots (M. I. Love et al., 2014; Rutter et al., 2019), and an 

interactive filtering panel and summary table with searching and filtering options. Volcano 

plots give precise information about significantly upregulated and downregulated genes. In 

Volcano plots, the X-axis represents the log2 fold change, which provides information about 

the direction of gene expression between treatment and controls. The Y-axis represents the 

negative log10 of the adjusted p-value, which provides information about the significance of 

each gene and allows visual identification of genes of statistical significance (adj p < 0.05), 

contrasted against non-significant outputs. Genes were classified into three different categories 

based on the define threshold. For upregulated genes, adjusted p-value < 0.05 and log2 

foldchange > 1 (Indicated in red). For downregulated adjusted p-value < 0.05 and log2 

foldchange < -1 (Indicated in blue). For non-significant genes, such as all other genes, are 

indicated in grey. To enhance the clarity and avoid datapoint overlap, geom_point (alpha = 0.7, 

size = 1.5) was used within the ggplot2 code. Overall, volcano plots are constructed using 

ggplot2 and reformed immediately based on the user’s hierarchical selection within the 

interface. 
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Bar plots were also constructed using the ggplot2 library package. The workflow creates the 

bar plot based on the level 1 Subsystem category (i.e., a Broad Category). In this graph, the X-

axis represents the number of genes differentially expressed, while the Y-axis represents the 

functional categories' names for level 1. Genes with positive log fold2  change values (log fold2 

change > 0)  are shown in blue, illustrating the upregulation in treatment, whereas genes with 

negative log fold2  change value(log fold2  change  < 0) are shown in red, illustrating the 

downregulation in treatment. Each bar in the plot represents the gene count for a specific level 

1 category. In order to emphasise the contrast and direction, negative values reflect towards the 

left side, while positive values reflect towards the right side. 

The complete list of filtered differentially expressed genes is presented in a table using the 

DTOutput R programming command. This table features key elements, including column 

sorting and real-time searching. Overall, this pipeline allows users to search and visualise 

prioritised significantly differentially expressed genes at any given Subsystem level 

dynamically 

2.3 Benchmark and validation. 

To check the accuracy and scalability, benchmarking and validation were essential. This section 

includes a validation analysis, where we run a previously published dataset through our 

pipeline. To check the accuracy and validation, we used the tongue biofilm metatranscriptome-

halitosis associated dataset from the study (Carda-Diéguez et al., 2022) published in npj 

Biofilms and Microbiomes. 

In this original study, the authors tested and compared the RNA-seq of tongue coating samples 

from 83 different individuals with or without intra-oral halitosis. The original study identified 

differential gene expression and microbial taxonomic patterns related to volatile sulphur 

compounds in the oral environment of subjects. We downloaded the pre-processed annotated 

gene expression table provided in the supplementary data for the manuscript. After running our 

automated pipeline, the results were compared with the existing results of this study to ensure 

that the DESeq2 results generated by our pipeline were accurate. 

2.4 Method Summary 

This chapter provides an extensive summary of the material and methods used to create an 

automated and interactive bioinformatics pipeline for differential gene expression analysis. As 

illustrated in Figure 2.1, it starts with the acquisition of gene-annotated count data and 

metadata, which can originate from DNA or RNA-seq. The DESeq2 package was used to 
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perform differential gene expression analysis. For automated pairwise comparisons across 

multiple groups/factors in metadata, custom R coding scripts were applied that can save 

DESeq2 results in a dedicated directory. As illustrated in Figure 2.2, the shiny app workflow 

side panel includes a section for uploading the desired file containing the group comparison of 

interest, which was generated in the previous step. Another R coding script facilitates the 

visualisation and outputs that can support dynamic filtering and real-time visual summaries. 

Volcano and bar plot visualisation offer quick insight into the biological pattern of genes and 

can guide the user through multiple hierarchical levels, which may represent Subsystem SEED 

functions or taxonomic ranks. 
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Figure 2.1 Schematic workflow of the novel pipeline. 

The given flow chart illustrates the complete structure of the bioinformatics pipeline used in 

the study. The pipeline begins with the input of gene-annotated count data, along with 

supporting metadata, which includes all labelling, such as different sample identifiers and 

group classifications. This input is processed using an R-based coding script, which installs the 
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DESeq2 package and generates output for differentially expressed genes. The resulting output 

consists of differentially expressed genes categorised across hierarchical functional levels. The 

final output is integrated into a Shiny application that facilitates dynamic filtering and 

visualisation of differential expression results across hierarchical functional annotations. 

Figure 2.2 Workflow of shiny app for gene exploration 
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Figure 2.2 illustrates the complete workflow of the Shiny app developed in this study. The 

workflow is designed to visualise gene expression across multiple hierarchical levels. The 

workflow begins with the upload of a .csv file containing DESeq2 results with hierarchical 

annotations of genes. Next, the file is passed to a data processing module, which splits the first 

column into 4 levels (in the case of Subsystem SEED annotations). After the data is explorable 

through a dynamic filtering system, which provides options across levels 1 to 4. The output 

also displays a summary in a table format, allowing for sorting and searching through the 

results. A summary of the totals of upregulated and downregulated genes is visualised in a bar 

plot format. The application was built using R code and is deployable either locally or cloud-

based via Shiny host platforms. This makes it more portable, reusable, and accessible without 

requiring programming skills.   
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CHAPTER 3: RESULT 
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3.1 Summary of Differentially Expressed Genes in the Testing DNA Dataset. 

To understand the differences between the samples, differential gene expression analysis was 

performed using DESeq2 (M. Love et al., 2014). The DESeq2 dataset was created by the R 

script outlined in section 2.1.2. The provided DESeq2 R script in section 2.1.3 automatically 

identified and generated all the possible pairwise combinations of all six sample groups defined 

in the metadata file. With six sample groups analysed, a total of 15 pairwise comparisons are 

generated, along with the total numbers of differentially expressed genes listed in Table 3.1. 

Each sample provided in the metadata file was treated as a control (reference) and compared 

with each other for the respective comparisons. All the results were stored in the dedicated 

directory, created by section 2.1.3. All the DESeq2 results were filtered with an adjusted p-

value (p-value <0.05) to get significantly differentially expressed genes between all the 

pairwise comparisons. 

Table 3.1. Summary of all the possible pairwise comparisons generated between defined 

samples in the metadata file 

NO Treatment Control (Reference) Comparison DEGs 

1 PGMW5 Seep2 PGMW5 vs Seep2 6272 

2 PGMW5 CT_Portal PGMW5 vs CT_Portal 5734 

3 PGMW5 Seep1 PGMW5 vs Seep1 4953 

4 Seep1 CT_Portal Seep1 vs CT_Portal 5953 

5 Seep2 CT_Portal Seep2 vs CT_Portal 5574 

6 Seep2 Seep1 Seep2 vs Seep1 4889 

7 VLF1 Seep2 VLF1 vs Seep2 6805 

8 VLF1 Seep1 VLF1 vs Seep1 6046 

9 VLF1 PGMW5 VLF1 vs PGMW5 5312 

10 VLF1 CT_Portal VLF1 vs CT_Portal 5087 

11 VLF2 Seep1 VLF2 vs Seep1 6512 

12 VLF2 PGMW5 VLF2 vs PGMW5 6474 
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13 VLF2 Seep2 VLF2 vs Seep2 6270 

14 VLF2 CT_Portal VLF2 vs CT_Portal 5474 

15 VLF2 VLF1 VLF2 vs VLF1 4676 

Table 3.1 illustrates the 15 pairwise comparisons along with the numbers of differentially 

expressed genes generated by methods 2.1.3. Across all comparisons, the number of 

significantly differentially expressed genes varied from 4,676 to 6,805 between the sample 

groups. These variable numbers indicate the biological differences among the pairwise 

comparisons. 
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Figure 3.1. Bar plot showing the numbers of significantly differentially expressed genes 

across all 15 pairwise comparisons of six sample groups. The Y-axis represents the number 

of significantly differentially expressed genes, which were generated by filtering the DESeq2 

result with an adjusted p-value of < 0.05. In contrast, the X-axis represents the name of the 

pairwise comparison, which was generated by a custom R programming coding script from 

section 2.1.3. The highest numbers of significantly DEGs were noticed in site VLF1 vs seep2, 

while the lowest numbers of significantly DEGs were noticed in site VLF2 vs VLF1. This 

figure provides a clear visualisation and comparison of the differentially expressed genes in all 

pairwise comparisons. 

To visualise the overall trend, Figure 3.1 (bar graph) was generated to compare the number of 

significantly differentially expressed genes across all the comparisons. Figure 3.1 and Table 

3.1 provide information about which comparison has the highest number of genes and which 

comparison has the lowest number of genes. Table 3.1 and Figure 1 clearly illustrate that 

comparison sites such as VLF1 vs seep2, VLF2 vs seep1 and VLF2 vs PGMW5 indicated the 

high DEG counts, while sites such as seep2 vs seep1 and VLF2 and VLF1 indicated the lower 

numbers of DEG compared to all other comparisons. 

3.2 Key pairwise comparison. 

According to section 3.1, we have noticed that some key pairwise comparisons showed some 

biologically significant patterns in gene expression change. These comparisons were selected 

based on the number of significantly differentially expressed genes. Some key pairwise 

comparisons are illustrated below. 

3.2.1 VLF1 VS Seep2 

Among all 15 comparisons, this comparison showed the highest numbers (6805) of 

significantly differentially expressed genes. In this case, as shown in Table 3.1.1, VLF1 was 

treated as the treatment, while seep2 was treated as the control (reference). Figure 3.2 provides 

a precise distribution of significantly differentially expressed genes based on a log2-fold 

change for level 1 functional categories. Figure 3.2 indicated that “Amino acids and 

derivatives”, “carbohydrates”, and “Cofactors, Vitamins, Prosthetic Groups, Pigments” were 

highly upregulated categories in treatment (VLF1), with DEG counts of 648, 718 and 524, 

respectively. This suggested increased metabolic activity. These categories also showed the 

downregulated genes. This indicated the balancing differential regulation within level 1’s 

subsystem. Some categories, such as DNA metabolism, phosphorus metabolism, and potassium 
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metabolism, showed bidirectional regulation. Figure 2 illustrates the functional regulation for 

level 1, where metabolic functions, such as amino acids and their derivatives, and 

carbohydrates showed the most significant upregulation in the treatment group. 

Figure 3.2. Distribution of differentially expressed genes based on log2 fold change for 

level 1 functional categories for VLF1 VS Seep2. Figure 2 illustrates the number of 

differentially expressed genes across the level 1 subsystem based on hierarchical annotated 

data. In this graph, the X-axis represents the number of genes, while the Y-axis represents the 

functional categories. Genes with positive log2 fold change value( log2fold  change > 0)  are 

shown in blue, illustrating the upregulation in treatment (VLF1), whereas genes with negative 

log2fold  change value( log2fold  change  < 0) are shown in red, illustrating the downregulation 

in treatment (VLF1).  Each bar represents the number of genes for a specific category. To 

emphasise the contrast and direction, negative values are reflected towards the left side, while 

positive values are reflected towards the right side. Gene-annotated hierarchical count data 

were analysed using a custom R coding-based Shiny application, which utilised DESeq2 to 

generate log2 fold changes between treatment and control conditions. This figure provides a 

clear visualisation and comparison of differentially expressed upregulated and downregulated 

genes in the dataset. This figure helps identify functionally enriched pathways or categories for 

prioritising targets for future investigation. Factional categories such as carbohydrates, amino 

Acids, and Derivatives are highly upregulated in treatment (VLF1), while cofactors, vitamins, 

prosthetic groups, and pigments are downregulated in treatment (VLF1).  
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3.2.2 VLF2 VS Seep1 

This pairwise comparison generated the second-highest number of differentially expressed 

genes (6512). For this, VLF2 was treated as the treatment, and Seep1 was treated as the control 

(reference), as described in Table 3.1. Figure 3.3 provides a precise distribution of significantly 

differentially expressed genes based on a log2-fold change for level 1 functional categories. 

According to the figure, it was a clear indication that amino acids and derivatives, carbohydrate, 

clustering-based subsystem, cofactors, vitamins, prosthetic groups and pigments were highly 

upregulated in treatment( VLF2). 

Figure 3.3. Distribution of differentially expressed genes based on log2 fold change for 

level 1 functional categories for VLF2VS seep1. Figure 3.3 illustrates the numbers of 

differentially expressed genes across the level 1 subsystem based on hierarchical annotated 

data. In this graph, the X-axis represents the number of genes, while the Y-axis represents the 

functional categories. Genes with positive log2 fold change value ( log2fold  change > 0)  are 

shown in blue, illustrating the upregulation in treatment (VLF2), whereas genes with negative 

log2 fold change value ( log2fold  change< 0) are shown in red, illustrating the downregulation 

in treatment (VLF2). Each bar represents the number of genes for a specific category. To 

emphasise the contrast and direction, negative values are reflected towards the left side, while 

positive values are reflected towards the right side. Gene-annotated hierarchical count data 

were analysed using a custom R coding-based Shiny application, which utilised DESeq2 to 

generate log2 fold changes between treatment and control conditions. This figure provides a 

clear visualisation and comparison of differentially expressed upregulated and downregulated 
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genes in the dataset. This figure helps identify functionally enriched pathways or categories for 

prioritising targets for future investigation. Factional categories such as carbohydrates, amino 

Acids, and Derivatives are highly upregulated in treatment(VLF2), while carbohydrate 

pigments are downregulated in treatment(VLF2).  

3.2.3 VLF2 vs PGMW5 

This pairwise comparison generated the third-highest number of differentially expressed genes 

( 6474). For this, VLF2 was treated as the treatment, and PGMW5 was treated as a control ( 

reference), as described in Table 3.1. Figure 3.4 provides a precise distribution of significantly 

differentially expressed genes based on a log2-fold change for level 1 functional categories. 

According to the figure, it was a clear indication that amino acids and derivatives, and 

carbohydrates were highly downregulated in treatment ( VLF2), with numbers of 364 and 532, 

respectively. However, the same categories were upregulated in treatment as well. 

Figure 3.4. Distribution of differentially expressed genes based on log2 fold change for 

level 1 functional categories for VLF2VS PGMW5. Figure 3.4 illustrates the number of 

differentially expressed genes across the level 1 subsystem based on hierarchical annotated 

data. In this graph, the X-axis represents the number of genes, while the Y-axis represents the 

functional categories. Genes with positive log2 fold change value (log2 fold change > 0) are 

shown in blue, illustrating the upregulation in treatment (VLF2). In contrast, genes with 

negative log2 fold change value (log2 fold change < 0) are shown in red, illustrating the 

downregulation in treatment (VLF2).  Each bar represents the number of genes for a specific 

category. To emphasise the contrast and direction, negative values are reflected towards the left 
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side, while positive values are reflected towards the right side. Gene-annotated hierarchical 

count data were analysed using a custom R-coding-based Shiny application, which utilised 

DESeq2 to generate log2 fold changes between treatment and control conditions. This figure 

provides a clear visualisation and comparison of differentially expressed upregulated and 

downregulated genes in the dataset. This figure helps identify functionally enriched pathways 

or categories for prioritising targets for future investigation. Factional categories such as 

carbohydrates, amino Acids, and Derivatives were highly downregulated in treatment (VLF2), 

while the same categories were upregulated in treatment (VLF2).  

3.2.4 VLF2 VS VLF1 

This pairwise comparison generated the lowest number of differentially expressed genes ( 

4676). For this, VLF2 was treated as the treatment, and VLF1 was treated as the control 

(reference), as described in Table 3.1. Figure 3.5 provides a precise distribution of significantly 

differentially expressed genes based on a log2fold change for level 1 functional categories. 

According to the figure, it was a clear indication that all the categories were highly 

downregulated in treatment( VLF2). 

Figure 3.5. Distribution of differentially expressed genes based on log2 fold change for 

level 1 functional categories for VLF2VS VLF1. This figure 3.5 illustrate the numbers of 

differentially expressed genes across level1 subsystem based on hierarchical annotated data. In 

this graph, the X-axis represent the number of genes, while the Y-axis represent the functional 
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categories' names. Genes with positive log2 fold change value( log2 fold change > 0)  are shown 

in blue, illustrating the upregulation in treatment. In contrast, genes with negative log2 fold

change value( log2 fold change  < 0) are shown in red, illustrating the downregulation in 

treatment. Each bar represents the number of genes for a specific category. To emphasise the 

contrast and direction, negative values are reflected towards the left side, while positive values 

are reflected towards the right side. Gene-annotated hierarchical count data were analysed 

using a custom R coding-based Shiny application, which utilised DESeq2 to generate log2 fold 

changes between treatment and control conditions. This figure provides a clear visualisation 

and comparison of differentially expressed upregulated and downregulated genes in the dataset. 

This figure assists in identifying functionally enriched pathways or categories for prioritising 

targets for future investigation. The majority of categories showed the downregulated trend in 

treatment(VLF2) across all level 1 categories. 

3.3 Hierarchical Insights by workflow 

In large-scale transcriptomics and metagenomics data, DESeq2 provides limited insights 

because it focuses only on one level of the dataset. In contrast, this shiny app workflow 

overcomes this issue by providing filtering options across the gene-annotated count data 

(SEED subsystems). This hierarchical filtering option enabled the discovery of biological 

insights, ranging from broad category-level trends to the specific functions of genes. 

Across all the key pairwise comparisons from figures 3.2 to 3.5, it is evident that “Amino Acids 

and Derivatives” and “Carbohydrates” were consistently dominant categories in differentially 

expressed gene analysis, either as upregulated or downregulated. It was a strong indication that 

these two categories were involved in microbial activity. 

3.4 Shiny App workflow- walkthrough. 

In this study, an improved workflow was created by custom R coding scripts provided in section 

2.2. This was the critical part of the novel pipeline because it was the interface for the user to 

explore and interpret the DESeq2 results with SEED subsystem annotations. This workflow 

started with the file uploading process. 
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Figure 3.6 Side bar panel for hierarchical data exploration. Figure 3.6 illustrates the sidebar 

panel of the Shiny application workflow. Here, a dedicated section was provided for data 

upload, which can only accept data in .csv file format. Additionally, the drop-down options 

provided across Levels 1 to 4 enable users to select or refine their results according to their 

level of interest. After selecting the interested level, the summary output, such as the total 

number of selected genes and numbers of upregulated and downregulated genes based on the 

log2fold change value, is displayed 

The workflow begins by uploading the file. This contains the differentially expressed genes 

annotated with SEED level 1 through level 4 subsystems, and upon uploading the file, the data 

processing function processed the data. 

3.4.1 Filtering option 

One of the most prominent features of this pipeline is the hierarchical filtering options, which 

were generated by the selectInput() and renderUI() functions. In Figure 3.6, this function is 

illustrated by the names from level 1 to level 4. As shown in Figure 3.6, for example, users may 
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select “Amino Acids and Derivatives” as a level 1 broad category. After that, based on the 

selected level 1, a second dropdown for level 2 was automatically filtered using the renderUI() 

function and showed relevant subsystem categories within “Amino Acids and Derivatives”. 

This logic continues to levels 3 and 4. 

Figure 3.7: How the subsystems filtering options work across the levels. Figure 3.7 

illustrates the power of the filtering option across the subsystem levels. 

3.4.2 Example of filtering options. 

Let’s explore the power of filtering options with an example. According to Figure 3.2, the user 

has already selected "Amino Acids and Derivatives" as the level 1 category. It is also clearly 

shown that the relevant subsystem option for the Level 2 category is instantly populated, as 

shown in Figure 3.9 (A). If the user selected “Branched chain amino acids” as a level 2 

category, then the total number of selected genes was updated automatically, along with a 

summary of the log2 fold change, which provided the direction of gene expression. A similar 

logic is applied to the entire set of filtering options and across all subsystem levels. This has 

several advantages, first and foremost is that every change in selection updates the numbers of 

selected genes, the volcano plot, and the data tables. 
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3.4.3 Visualisation- Real-time filtering and Update. 

According to the user's selected options, the visualisations are updated. As shown in Figures 

3.7 and 3.8, the total number of genes and Log2fold change summaries are updated according 

to the selection. Like visualisation, such as volcano plots and interactive data tables, were 

changing according to the selection. Figures 3.9 and 3.10 provide a clear illustration of how 

the volcano plot has altered according to the user’s selection. According to Figure 3.9 (A), the 

user has selected only the level one broad category, and a volcano plot was generated (Figure 

3.9 (B)) according to this selection. However, according to Figure 3.10 (A), the user has 

selected the level 2 category along with the level 1; therefore, the volcano plot is updated 

according to the selection ( Figure 3.10 (B) ). This dynamic approach of updating the volcano 

plot based on the hierarchical user’s selection allows the user to enhance the interpretability. 

Because users can visualise the data or gene expression from broad categories to specific 

pathways 

Figure 3.8 Real time filtering and updating. This figure illustrates the how numbers of 

differentially expressed genes were updating after user’s selection. It is clear from figure 3.7 

and 3.8 how real time filtering options updating the numbers of gene counts. 
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A) Sidebar panel

B) Volcano Plot.

Figure 3.9. Real-time filtering and updating of the volcano plot.  Figure 3.9 (A) illustrates 

the sidebar panel of the workflow, where the user selected "Amino Acids and Derivatives" as 

the level 1 category. Figure 3.9 (B) demonstrates the volcano plot, which was automatically 

generated by an R programming script based on the selection. In the volcano plot, the X-axis 

represents the log2fold change, while the Y-axis represents the -log10 adjusted p-value. The 
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genes were expressed according to the method in section 2.2.3. This plot was updated according 

to the user’s selection and includes all significant (red and blue dots) and non-significant (grey 

dots) DEGs in each group for all Amino Acid and Derivatives functions. 
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Figure 3.10. Real-time updating of the volcano plot after the user’s selection. Figure 3.10 

(A) illustrates the sidebar panel of the workflow, in which the user selected "Amino acids

and Derivates" as the level 1 category and "Branched chain amino acids" as the level 2

category. Figure 3.10 (B) illustrates the volcano plot, which was automatically generated by

an R programming script according to the selection. In the volcano plot, the X-axis represents

the log2fold change, while the Y-axis represents the -log10 adjusted p-value. The genes were

expressed according to the method in section 2.2.3. This plot was updated according to the

user’s selection and includes all significant (red and blue dots) and non-significant (grey dots)

DEGs in each group for only “branched chain amino acids” functions within “Amino Acid and

Derivatives”.

Hierarchical analysis plays a crucial role in the functional interpretation of complex and large 

biological datasets. Instead of examining gene expression or abundance at an individual level 

alone, hierarchical analysis offers several advantages. First and foremost, it enhances biological 

insights by allowing researchers to observe how differentially expressed or abundant genes 

contribute to larger biological pathways or processes. Another benefit is that it can simplify the 

complex data instead of dealing with thousands of genes; hierarchical analysis reduces the 

complexity by summarising the analysis at different functional levels. It is also helpful for 

hypothesis generation and enhancing the visualisation. 

3.5 Benchmark and validation 

 To evaluate the accuracy, we validate our pipeline’s results with the existing published results 

as per Section 2.3. This study was selected because it utilised the same primary differential 

expression algorithm (DESeq2) and provided raw count data in supplementary data, and was 

published in a high-tier journal. In this study, the authors utilised 83 individual samples and 

distributed them into 4 major groups: control (healthy), MM (Methyl mercaptan), HS 

(Hydrogen Sulphide), and MM-HS. We have downloaded the primary input from this study 

and converted it into a .csv format. Secondary metadata input was created based on the 

information in the manuscript's supplementary data. The provided DESEq2 R script in Section 

2.1.3 automatically identified and generated all possible pairwise combinations of the samples 

defined in the metadata file. All the pairwise comparisons are outlined in Table 3.2. The 

differential gene expression patterns were comparable to the published results, with a 90% 

similarity rate (Figure 3.11). That indicated that our pipeline produces accurate results. 
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A

B 

Figure 3.11 Comparison of results with the existing dataset. Figure 3.11 illustrates the 

validation of the pipeline by comparing its results with those from existing published studies. 

A) represented the existing study result, which the authors generated after running DESeq2.

The asterisks (*) represent the level of significance for each statistical comparison, with *

representing p>0.05 and ** representing p>0.1, as per the authors of the manuscript. B)  Results

generated by our pipeline. The asterisks (*) represent the level of significance found in our

analysis. Black-coloured asterisks indicate that the same level of significance was seen as in

the published study, while a red asterisk indicates a different level of significance was found.

Taxa Tested HS vs Health 

Comparison 

Result 

MM vs 

Health 

Comparison 

Result 

MM.HS vs 

Health 

Comparison 

Result 

MM vs HS 

Comparison 

Result 

MM.HS vs 

HS 

Comparison 

Result 

MM.HS vs 

MM 

Comparison 

Result 

Veillonella dispar Up in health* Up in 

health* 

Up in health* Up in MM* Up in 

MM.HS

Up in MM 

Rothia 

mucilaginosa 

Up in health* Up in 

health* 

Up in health* Up in MM** Up in 

MM.HS**

Up in 

MM.HS

Streptococcus 

parasangunis 

Up in health* Up in health Up in health* Up in MM* Up in 

MM.HS

Up in MM* 

Prevotella Shahii Up in HS* Up in MM Up in MM.HS* UP IN HS Up in 

MM.HS

Up in 

MM.HS**

Fusobacterium 

peridonticum 

Up in HS Up in health Up in MM.HS** UP IN HS Up in 

MM.HS

Up in 

MM.HS*
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Our results had a comparable rate of 90% (27/30 correct significance values), matching the 

published study. 

Table 3.2 All possible pairwise comparisons generated by our pipeline for the published 

dataset 

treatment control comparison 

HS Health HS vs Health 

MM Health MM vs Health 

MM.HS Health MM.HS vs

Health

MM HS MM vs HS 

MM.HS HS MM.HS vs

HS

MM.HS MM MM.HS vs

MM

Table 3.2 illustrates all possible pairwise comparisons generated through our pipeline. Here, 4 

different samples were defined in the metadata; therefore, six different pairwise comparisons 

were generated. 

3.6 Accessibility for all researchers. 

This novel pipeline is helpful for every researcher; anyone can utilise this without knowledge 

of programming skills. It has a simple and easy-to-use layout that leads users through a logical 

flow, including data import, subsystem filtering, data visualisation, and interpretation. By 

combining automation, a user-friendly dashboard, and filtering options, this pipeline enhances 

the analysis of differentially expressed gene expression for gene-annotated hierarchical count 

data. 
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CHAPTER 4: DISCUSSION 
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4.1 Overview of study 

The rapid development of sequencing technology has created a huge amount of sequencing 

data (including gene expression data) that allows researchers to explore complex biological 

information in greater resolution (Satam et al., 2023). Although data analysis tools are available 

to perform differential gene expression analysis, they often require manual coding, which can 

be a time-consuming and frustrating process. Apart from this, all these tools produce long lists 

of statistically significantly changed genes that may be important but very hard to interpret 

holistically, especially for those who do not have solid profound knowledge of bioinformatics 

or an existing hypothesis to test (i.e., they need to explore their data for unknown linkages or 

results from treatment vs. control studies). This is compounded by a lack of interactive 

visualisation and real-time filtering for hierarchical biological annotations, such as Subsystem 

SEED annotated data, as well as taxonomic strings. This study introduces a novel 

bioinformatics workflow aimed at addressing this gap. The primary objective was to develop 

a bioinformatics pipeline that automates differential gene expression analysis. The novelty of 

this pipeline lies in its ability to generate all possible pairwise comparisons based on the 

provided metadata and output them in a parsable file that can be sorted interactively. The R 

shiny workflow fulfils this visualisation of SEED annotated hierarchical count data with an 

interactive filtering option ranging from level 1 to level 4. The workflow comprises several 

pivotal phases. It begins by generating all possible pairwise comparisons and then filtering the 

output gene table based on adjusted p-values to obtain statistically significant results. Next, 

parsing a hierarchical gene’s function based on the semicolon. Then, visualisation and 

interactive exploration of results with dynamic filtering options in the Shiny R environment. 

With this pipeline, we have analysed 6 different samples in a test dataset (VLF1, VLF2, Seep1, 

Seep2, PGMW5 and CT_Portal) and this pipeline generated 15 pairwise comparisons. 

Thousands of differentially expressed genes were illustrated, and comparisons were made to 

identify which groups had the highest numbers of differentially expressed genes and which 

comparisons had the lowest. One of the centres of innovation is the real-time interactive 

filtering data table, bar plots, and volcano plots created by this pipeline, which provide clear 

visualisations of the distribution of differentially expressed genes.  

4.2 Differential expression across the test samples 

The result of differential gene expression over 15 pairwise comparisons gave evidence on great 

diversity of microbial activity as numbers of differentially expressed genes ranging from 6805 

to 4676 as shown in table 3.1 and figure 3. 1. The contrasts were designed to for comparison 
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of gene expression between all the possible pairwise comparisons defined in the metadata. As 

a result, this purpose provided the biological significance to compare specific enriched 

functions and metabolic patterns. 

Out of 15 pairwise comparisons, the VLF1 vs Seep2 group comparison had the highest number 

of differentially expressed gene counts. VLF1 served as the treatment while Seep2 served as 

the control, in this instance. Figure 3.2 demonstrates the distribution of differential gene 

expression at the SEED level 1 categories, including amino acids and Derivatives (648 genes), 

carbohydrates (718 genes), and cofactors, vitamins, and pigments (524 genes), which were 

notably upregulated in the treatment (VLF1). These results indicate that in the treatment group, 

these pathways were essential for basic metabolic and biosynthetic activity. However, at the 

same time, the same level 1 categories also illustrated the strong downregulation for the 

treatment condition. This indicated the balancing regulation. This expression indicated that 

some genes were activated while others were downregulated to maintain effective metabolism. 

This mixed expression represents the adaptation in cellular response. 

The second-highest number of differentially expressed genes was observed in VLF2 versus 

Seep1, with 6,512 differentially expressed genes. Figure 3.3 demonstrates the distribution of 

differential gene expression at SEED level 1 categories. The same pattern of upregulation was 

observed as categories observed for VLF1 VS Seep2, along with that clustering-based 

subsystem was observed for upregulation. Clustering-based subsystems with highly 

upregulated means in treatment means genes were typically poorly characterised and often 

involved in a shared pattern of expression, even if the exact role of the gene was not fully 

defined. Highly downregulation was observed for carbohydrate in the treatment due to the 

switch to an alternative energy source, which means energy is diverted from protein synthesis. 

 The third most highlighted pairwise comparison was VLF2 vs PGMW5, with 6474 

differentially expressed genes. This comparison has also shown the mixed regulation approach. 

As shown in Figure 3.4, it was clear that Amino acids and their derivatives, as well as 

carbohydrates, were downregulated. However, the same categories also showed an 

upregulation trend, revealing a dual regulation pattern. It was indicated that the treatment group 

may facilitate the increased metabolic activity. 

 The VLF1 vs. VLF2 comparison showed the lowest number of differentially expressed genes. 

As shown in Figure 3.5, this comparison reveals a majority of the downregulation trend 

compared to the controlled condition (VLF2). Lower expression of amino acids and 
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derivatives, carbohydrates, and other pathways indicated that VLF1 supports the view of stress 

under the treatment condition. 

Across all the comparisons. We have noticed that several conditions, including Amino Acids 

and Derivatives, Carbohydrates, Cofactors, Vitamins, and Pigments, have shown a repeated 

contribution in differential gene expression analysis. These standard categories were 

fundamental for the survival and adaptation of microbes. Apart from this, the observation that 

both upregulated and downregulated genes are observed for all the comparisons reflects the 

complex biological pattern. This study can identify and interpret patterns based on adjusted p-

values and log2fold change values. Additionally, real-time filtering options within the Shiny 

workflow facilitate the easy detection of patterns and understanding of biological differences 

across all pairwise comparisons. 

4.3 Hierarchical data explorer 

The hierarchical gene annotation count data were generated using the SEED subsystem. This 

annotation allowed functional trend to organise from border category (level 1) to specific 

pathway(level 2-4). This approach would be essential for understanding the distribution of 

differentially expressed genes from the border category to a specific pathway. We have already 

analyzed the 15 pairwise comparisons in section 3.2 and discussed the common expressed 

categories in section 4.3. The majority of them showed the bidirectional regulation. Therefore, 

the SEED subsystem approach helps to get a clearer understanding of the regulation. According 

to Section 2.1 of the method, the SEED annotated gene count data is parsed into levels 1 to 4. 

For example, at level 1 for Amino acids and derivatives, the results demonstrate the mixed 

approach as outlined in section 3.2. It would remain the same for the level 2 category, such as 

"Branched Chain Amino Acid Biosynthesis". However, with further filtering options at level 3 

or level 4, the specific direction of expression is disclosed. For example, at level 4, the 

Branched-Chain acyl-CoA dehydrogenase (EC 1.3.99.12) enzyme showed an upregulated 

trend in the treatment. These enzymes play an essential role in the catabolism of branched-

chain amino acids. This hierarchical parsing structure enables researchers to understand the 

role of gene expression not only at the metabolic level but also to comprehend the specific 

reactions within the pathway. 

4.4 Role of filtering options and visualisation 

One of the significant contributions of this study was the development and integration of a 

shiny dashboard for filtering and data visualisation. These options significantly enhance the 
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accessibility and usability of this pipeline. It allows researchers to study and interpret complex 

datasets without requiring programming and bioinformatics skills. Traditional approaches rely 

on statistical differential gene expression tables. From this table, it isn't easy to understand and 

interpret the results, especially for those with a non-bioinformatics background. Because the 

raw DESeq2 result table contains the list of expressed genes, log2 fold change, p-value, and 

adjusted p-value, it lacks complex biological information. To address these issues, a 

streamlined workflow was created to interpret and organise the DESeq2 output file with SEED 

hierarchical annotated gene count data, featuring real-time filtering and visualisation. It 

expressed the genes across multiple levels (from level 1 to level 4). For example, sections 3.5.2 

and 3.5.3 briefly illustrate the mechanism of filtering options. The user is interested in Amino 

acids and derivatives, as selected from the Level 1 dropdown menu. The volcano plot was 

generated based on level 1 selection. After selecting these options, the workflow automatically 

populated the level 2 categories. After selecting from the Level 2 list, the number of genes and 

the volcano plot were updated, as shown in Figure 3.10. This live filtering is not helpful for the 

immediate visualised understanding, but also enhances the interpretation of gene expression 

(RNA) or gene abundance for DNA. The volcano plot immediately reflects the upregulated or 

downregulated genes. 

Overall, this streamlined workflow is beneficial for every researcher, regardless of their 

programming skills, as it is simple to use by uploading a file and selecting options from a drop-

down menu in the side panel. It facilitates complex data analysis and interpretation within a 

few clicks. Additionally, it could be helpful for teaching purposes to demonstrate the gene 

expression or gene abundance related to specific biological functions. Additionally, it could 

facilitate comparisons of metabolic responses across different samples. For reproducibility, the 

workflow ensured the consistent filtering, graph plotting and interpretation. This streamlined 

workflow could be readily useful for future studies by simply uploading the appropriate input. 

4.5 Comparing with existing findings and pipeline. 

Due to the ongoing advancement of technology in bioinformatics, the field is growing rapidly. 

This section compares our novel pipeline with several widely used tools. 

4.5.1 Comparing with shiny-seq. 

Shiny-seq was established in 2019 to study RNA sequencing data by utilising a wide range of 

tools and algorithms (Sundararajan et al., 2019). Shiny-seq relies on classical databases, such 

as KEGG and GO, for functional enrichment analysis, but lacks hierarchical annotated data 
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analysis. Our pipeline addressed this gap by incorporating multi-level biological interpretation. 

This allows users to trace the biological information from broader categories to specific 

pathways, such as from Level 1 to Level 4. Apart from this, shiny-seq does not provide real-

time filtering options like our novel pipeline does for visualisation output, for example, filtering 

dynamically using the drop-down menu from the side panel and immediately updating the 

volcano plot and numbers of differentially expressed genes (as well as non-significant 

comparisons, which are displayed as grey dots). Additionally, our pipeline can generate all 

possible pairwise comparisons as defined in the metadata. 

4.5.2 Comparing with RNA-flow 

RNAflow is a complex, robust and reproducible RNA sequence pipeline, implemented using 

the Nextflow workflow management system. This pipeline is promising for preprocessing data, 

alignment, and detecting differentially expressed genes; thus, it provides valuable 

preprocessing of raw sequence data that falls outside the scope of our project. However, it 

provides limited downstream analysis (Lataretu & Hölzer, 2020). While our shiny-based 

pipeline enhances the multi-layer biological interpretability and interactive data exploration 

with real-time filtering options for visualisation. In the RNAflow pipeline, knowledge of 

different file formats is necessary because each step requires uploading a new file format to 

process further. While our pipeline does not require more file formats, it only requires one. 

CSV file format, which was already generated and stored by our pipeline. Another current issue 

with RNAflow is that the installation and execution of the bioinformatics workflow operate 

within the Nextflow framework, whereas our pipeline features a simple, user-friendly 

dashboard. However, output from RNAflow could be adapted to our pipeline. 

4.5.3 Comparing with VIPER 

VIPER is a robust bioinformatics pipeline for RNA sequence analysis, which is implemented 

using the Snakemake workflow management system (Cornwell et al., 2018). This pipeline 

provides end-to-end RNA sequence analysis by utilising multiple tools, including DESeq2, 

gene set enrichment analysis, KEGG, and STAR-fusion. It is primarily optimised for human 

and mouse transcriptomics data. However, it could not provide hierarchical subsystem parsing 

and real-time filtering across multi-level gene functional level hierarchical count data. Our 

pipeline fills the gap by incorporating real-time filtering options across all hierarchical levels. 

VIPER’s output is based on the input and configuration, whereas in our pipeline, users can 

dynamically filter and change the output using a simple interactive dropdown menu. VIPER 

performs differential gene expression analysis for only one comparison. In contrast, our novel 
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bioinformatics pipeline can generate all possible pairwise comparisons as defined in the 

metadata and perform differential gene expression analysis for all pairwise comparisons. The 

results are stored automatically in a dedicated output directory in the form of a .csv table. This 

would require several extra steps in VIPER. 

4.5.4 Comparing with TRAPLINE 

TRAPLINE is an automated RNA sequence analysis pipeline, implemented within the Galaxy 

environment (Wolfien et al., 2016). It is designed to provide reproducible and automated 

results. This pipeline can perform preprocessing, quality control, read alignment, differential 

gene expression analysis, single-nucleotide polymorphism detection, and protein-protein 

interaction analysis, thus encompassing utilities like RNA-Seq. However, like all other 

pipelines, it cannot support hierarchical functional annotation analysis, such as data generated 

from the SEED subsystem. Another significant comparison is accessibility, as TRAPLINE 

requires the Galax system to run the analysis, which can be challenging during the installation 

process. In contrast, our pipeline features a user-friendly dashboard that allows for easy 

analysis and interpretation of results, facilitated by real-time filtering options. Overall, 

TRAPLINE is highly valuable for detecting single-nucleotide polymorphisms and protein-

protein interactions, while our pipeline is crucial for analysing differential gene expression or 

abundance. 

Overall, all the above-mentioned pipelines were proficient for RNA-sequence analysis, starting 

with raw sequence files; however, they all show gaps in end-user data exploration, which are 

addressed by our novel bioinformatics workflow. The most critical gap was the inability to 

perform differential gene expression analysis for functional hierarchical gene count data. Apart 

from this, limited support for multiple comparisons was also a critical gap. Because tools like 

DESEq2 provide multiple pairwise comparison analyses, but only after script writing, it may 

be too complicated for those without profound knowledge in bioinformatics and programming 

skills. Lack of real-time filtering options was also highlighted as a critical gap. By 

incorporating real-time filtering options and hierarchical parsing, we were addressing this gap. 

Also, a Shiny dashboard is provided for data exploration and data interpretation. Our tool is a 

valuable “next step” after the tools mentioned above, thus it does not serve to replace these 

existing tools but complements them, as expanded on below. 
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4.6 Strengths and Limitations. 

The development of an automated hierarchical differential gene expression bioinformatic 

pipeline was a critical requirement to address the aforementioned research gap. It is necessary 

to create an automated, interpretable and real-time filtering pipeline for sequencing data. This 

section provides an overview of the strengths and limitations of this novel bioinformatics 

pipeline. 

4.6.1 Strength. 

Overall, our pipeline has several strengths. Let’s start with the most important one, which was 

the automated generation of all possible pairwise comparisons according to the metadata file. 

As per Section 2.1.3 of the method, it utilises the combn() R programming function, which 

identifies the different samples and generates all possible pairwise comparisons for data 

analysis. For example, we had 6 different samples defined in the test metadata; therefore, 15 

pairwise comparisons were generated. Each generated pair is subjected to DESeq2’s result and 

stored in the dedicated directory. All results were stored after being filtered by adjusted p-value 

less than 0.05. This automation saves time, ensures consistency (for example, a 90% similarity 

rate to a previous study in terms of replicating significance level), and minimises human error 

while covering all necessary biological information by comparing all possible pairwise 

comparisons. Another strength was a streamlined workflow, which was portable, scalable, 

reproducible, and easy to use, featuring a real-time filtering option for data exploration. Here, 

the user needs to upload the .csv file containing DESeq2’s results, which were generated by 

this pipeline. As per Section 2.2.2 of the method, the entire interface was created using the 

fluidPage () and sliderLayout() R programming commands, with SelectInput() and renderUI() 

ensuring that results dynamically update and support filtering options. This strength has made 

this pipeline more accessible to both bioinformaticians and non-bioinformaticians. We also 

utilise SEED subsystems' functional annotated hierarchical data. This structure is best suited 

for filtering options, as researchers could explore the data from multiple levels. The user-

friendly dashboard, featuring dropdown filtering options, made this pipeline accessible. This 

shiny dashboard also provides visualisations. This visualisation output provides the immediate 

illustration of which genes were categorised as upregulated or downregulated, which expands 

data exploration when hypothesis generation is required.  

This pipeline, however, has several limitations. A key limitation of this pipeline was the data 

input format, as it was dependent on the function-annotated dataset generated from SEED 

subsystems. Using other data may take manual pre-processing to convert to a semicolon-
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separated string of hierarchical data; however, many genomic data types (such as microbial 

taxonomy) are output in this format by default. Currently, the pipeline is optimised for all 

possible pairwise comparisons by using DEseq2’s model. The crucial limitation was that users 

had to compare each comparison individually by uploading it one by one to the Shiny app 

workflow. It cannot compare every pairwise comparison at once. Another limitation is that this 

pipeline currently provides gene expression or abundance trends at all levels (from level 1 to 

level 4). However, it does not support functional enrichment analysis. 

Despite providing valuable functional insights, the study's reliance on functional annotations 

has inherent limitations. Functional annotation approaches, such as the SEED subsystem 

hierarchy, categorise genes by their biological roles but abstract away from their taxonomic 

origins. Consequently, distinct microbial communities with varying species compositions may 

exhibit similar functional profiles. This functional redundancy means that even if the species 

diversity across samples is markedly different, the dominant pathways identified through 

functional enrichment may appear identical. Such limitations underscore the need to interpret 

functional analyses in conjunction with taxonomic composition data to gain a comprehensive 

understanding of microbial community structure and function. 

4.7 Future direction 

 The bioinformatics field is experiencing rapid growth, particularly in the areas of 

transcriptomics and metagenomics. This section provides an overview of the future direction 

for extended application development and increased scalability. 

4.7.1 Integration with functional enhancement databases. 

As discussed in section 4.6, the current pipeline does not support the functional enrichment 

analysis. Functional enrichment analysis is a statistical method used in bioinformatics that 

provides information about which specific biological functions, pathways or categories are 

overrepresented in a set of genes. Therefore, it is crucial to integrate with functional databases 

such as Gene Ontology (GO) and KEGG. This integration would be helpful to perform the 

statistical enrichment test. It would provide a better understanding of functional enrichment for 

hierarchical SEED subsystem-based annotated genes. After adding this into the current 

pipeline, the user can identify the functional property of differentially expressed genes. 

4.7.2 Incorporating a Machine learning model for classification and prediction 

Another potential future direction would be to incorporate a machine learning model into the 

pipeline. As per the current stage, this pipeline can identify and visualise differentially 
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expressed genes across hierarchical SEED subsystem annotated gene count data. Machine 

learning models can be built and trained to predict and classify these findings, providing a 

quicker biological understanding related to controls and treatments (Pirooznia et al., 2008).ML 

model such as random forest and support vector machines can be trained on the differentially 

expressed genes’ profile to classify samples into their relative environment. It would lead 

towards biomarker discovery.  

4.7.3 Widespread availability. 

To increase the accessibility of this pipeline, widespread availability is mandatory. This should 

be hosted on a platform such as Shinyapps.io, GitHub, or any Docker, so that anyone can utilise 

this pipeline from any browser. 

4.8 Conclusion 

This study successfully developed a novel bioinformatics workflow that can perform 

automated differential gene expression analysis between all possible pairwise comparisons 

defined in the input metadata file. Additionally, a R shiny workflow was implemented for 

interactive visualisation of SEED annotated hierarchical count data, featuring interactive 

filtering options ranging from level 1 to level 4, as well as clear visualisation of hierarchical 

genomic data. Overall, this study provides a comprehensive solution for exploring 

transcriptomics and metagenomics data, which can be integrated after pre-processing and gene 

annotation steps. This pipeline achieves dual strength, solid automated analysis power, and 

biological interpretability. One of the key achievements of this study was the computerised 

generation of all possible pairwise comparisons for differential gene expression. This part 

eliminates manual scripting. Apart from this, the real-time interactive filtering options enable 

users to trace expression from a broader biological category to a specific pathway or function 

of the genes. This filter, facilitated by the shiny dashboard, represents the major accessibility 

by just selecting options from the drop-down menu. Filtering options dynamically re-update 

the volcano plot and the number of differentially expressed genes according to the user’s 

selection. By addressing critical gaps, such as the need for a real-time filtering option and a 

lack of hierarchical analysis, this pipeline provides gene expression or abundance analysis and 

improved visualisation output. 
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Appendix. 
Appendix A : R coding Script 

install.packages("BiocManager") 

BiocManager::install("DESeq2") 

library(DESeq2) 

library(tibble) 

library(dplyr) 

library(ggplot2) 

install.packages("pheatmap") 

BiocManager::install("apeglm") 

library(apeglm) 

library(pheatmap) 

ainstall.packages("ggrepel") 

library(ggrepel) 

# Load the dataset 

countData <- 
read.csv("/Users/rohan/Downloads/L4_function_Subsystems.csv") 

metadata <- read.csv("/Users/rohan/Downloads/metadata.csv") 

colnames(countData) 

rownames(metadata) 

rownames(metadata) <- metadata[[1]] 
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metadata<-metadata[-1] 

rownames(countData)<-countData[[1]] 

countData<-countData[-1] 

str(countData) 

# all columns and row should have same names this result in true 

all(colnames(countData) %in% rownames(metadata)) 

# Convert to matrix 

matrix <- as.matrix(countData) 

int_matrix <- apply(matrix, c(1, 2), as.integer) 

#  Convert SITE column to factor (automatically detect levels) 

metadata$SITE <- factor(metadata$SITE, levels = 
unique(metadata$SITE)) 

# Create DESeq2 dataset 

dds <- DESeqDataSetFromMatrix(countData = int_matrix, 

colData = metadata, 

design = ~ SITE) 

dds <- DESeq(dds) 

# Generate all pairwise comparisons automatically 

SITE <- levels(metadata$SITE) 

comparisons <- combn(SITE, 2, simplify = FALSE) 

#  Define output directory 

output_dir <- "~/Documents/new_DESeq2_results/" 

dir.create(output_dir, showWarnings = FALSE, recursive = TRUE) 

#  Loop through each pairwise comparison (significant results only) 
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for (comp in comparisons) { 

  site1 <- comp[1]  # control 

  site2 <- comp[2]  # treatment 

  # Run DESeq2 contrast 

  res <- results(dds, contrast = c("SITE", site2, site1)) 

  # Convert to dataframe 

  res_df <- as.data.frame(res) 

  # Filter by adjusted p-value < 0.05 (significant genes only) 

  sig_res_df <- subset(res_df, padj < 0.05 & !is.na(padj)) 

  # Add metadata columns for clarity 

  sig_res_df$treatment <- site2 

  sig_res_df$control <- site1 

  sig_res_df$comparison <- paste(site2, "vs", site1) 

  sig_res_df$direction <- ifelse(sig_res_df$log2FoldChange > 0, 
paste("Up in", site2), 

ifelse(sig_res_df$log2FoldChange < 
0, paste("Up in", site1), "No change")) 

  # Save only if there are significant results 

  if (nrow(sig_res_df) > 0) { 

    filename <- paste0(output_dir, "DESeq2_", site2, "_vs_", site1, 
"_significant.csv") 

    write.csv(sig_res_df, filename, row.names = TRUE) 

    print(paste(" Saved significant results:", filename)) 

  } else { 

    print(paste(" No significant results for:", site2, "vs", site1)) 

  } 

} 

# Optional: Summary of all comparisons 

summary_table <- do.call(rbind, lapply(comparisons, function(comp) {
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  data.frame( 

    treatment = comp[2], 

    control = comp[1], 

    comparison = paste(comp[2], "vs", comp[1]) 

  ) 

})) 

write.csv(summary_table, paste0(output_dir, 
"All_DESeq2_Comparisons_Summary.csv"), row.names = FALSE) 

print(" Summary of all comparisons saved!") 

Shiny app workflow 

library(shiny) 

library(dplyr) 

library(readr) 

library(ggplot2) 

library(DT) 

# Function to process uploaded file 

data_processing <- function(file_path) { 

  data <- read_csv(file_path) 

  split_data <- strsplit(data[[1]], ";") 

  max_splits <- max(sapply(split_data, length)) 

  split_data <- lapply(split_data, function(x) { 

    length(x) <- max_splits 

    return(x) 

  }) 

  processed_data <- do.call(rbind, split_data) %>% 
as.data.frame(stringsAsFactors = FALSE) 

  colnames(processed_data) <- paste0("Level", 
seq_len(ncol(processed_data))) 

  processed_data <- processed_data %>% 
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    mutate(Level4 = apply(processed_data[, 4:ncol(processed_data), 
drop = FALSE], 1, function(x) paste(na.omit(x), collapse = ";"))) 
%>% 

    select(Level1, Level2, Level3, Level4) 

  final_data <- cbind(processed_data, data[,-1]) 

  return(final_data) 

} 

# Shiny App 

ui <- fluidPage( 

  titlePanel("Hierarchical Data Explorer with Volcano Plot"), 

  sidebarLayout( 

    sidebarPanel( 

fileInput("file", "Upload CSV File", accept = c(".csv")), 

selectInput("level1", "Select Level 1:", choices = NULL), 

uiOutput("level2_ui"), 

uiOutput("level3_ui"), 

uiOutput("level4_ui"), 

br(), 

h4("Number of Selected Genes:"), 

verbatimTextOutput("gene_count"), 

h4("Log2 Fold Change Summary:"), 

verbatimTextOutput("logfc_summary") 

    ), 

    mainPanel( 

h3("Summary of Selected Data"), 

DTOutput("summary_table"), 

br(), 

h3("Volcano Plot"), 

plotOutput("volcano_plot"), 

br(), 

h3("Positive and Negative log2 Fold Change Bar Plot"), 

plotOutput("logfc_barplot"), 

br(), 
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h3("Positive and Negative log2 Fold Change Summary by Level 
1"), 

tableOutput("level1_summary"), 

br(), 

h3("Bar Plot Based on Level 1 Summary"), 

plotOutput("level1_barplot"), 

br(), 

h3("Overall Summary for Level 1"), 

plotOutput("overall_level1_barplot") 

    ) 

  ) 

) 

server <- function(input, output, session) { 

  data_reactive <- reactive({ 

    req(input$file) 

    processed_data <- data_processing(input$file$datapath) 

    return(processed_data) 

  }) 

  observe({ 

    req(data_reactive()) 

    updateSelectInput(session, "level1", choices = 
unique(data_reactive()$Level1)) 

  }) 

  output$level2_ui <- renderUI({ 

    req(input$level1) 

    level2_choices <- unique(data_reactive() %>% filter(Level1 == 
input$level1) %>% pull(Level2)) 

    selectInput("level2", "Select Level 2:", choices = c("All", 
level2_choices)) 

  }) 

  output$level3_ui <- renderUI({ 

    req(input$level2) 
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    filtered_data <- data_reactive() %>% filter(Level1 == 
input$level1) 

    if (input$level2 != "All") { 

filtered_data <- filtered_data %>% filter(Level2 == 
input$level2) 

    } 

    level3_choices <- unique(filtered_data$Level3) 

    selectInput("level3", "Select Level 3:", choices = c("All", 
level3_choices)) 

  }) 

  output$level4_ui <- renderUI({ 

    req(input$level3) 

    filtered_data <- data_reactive() %>% filter(Level1 == 
input$level1) 

    if (input$level2 != "All") { 

filtered_data <- filtered_data %>% filter(Level2 == 
input$level2) 

    } 

    if (input$level3 != "All") { 

filtered_data <- filtered_data %>% filter(Level3 == 
input$level3) 

    } 

    level4_choices <- unique(filtered_data$Level4) 

    selectInput("level4", "Select Level 4:", choices = c("All", 
level4_choices)) 

  }) 

  filtered_data_reactive <- reactive({ 

    filtered_data <- data_reactive() 

    if (!is.null(input$level1) && input$level1 != "") { 

filtered_data <- filtered_data %>% filter(Level1 == 
input$level1) 

    } 

    if (!is.null(input$level2) && input$level2 != "All" && 
input$level2 != "") { 

filtered_data <- filtered_data %>% filter(Level2 == 
input$level2) 
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    } 

    if (!is.null(input$level3) && input$level3 != "All" && 
input$level3 != "") { 

filtered_data <- filtered_data %>% filter(Level3 == 
input$level3) 

    } 

    if (!is.null(input$level4) && input$level4 != "All" && 
input$level4 != "") { 

filtered_data <- filtered_data %>% filter(Level4 == 
input$level4) 

    } 

    return(filtered_data) 

  }) 

  output$gene_count <- renderText({ 

    filtered_data <- filtered_data_reactive() 

    paste(nrow(filtered_data), "genes available") 

  }) 

  output$logfc_summary <- renderText({ 

    filtered_data <- filtered_data_reactive() 

    positive_count <- sum(filtered_data$log2FoldChange > 0, na.rm = 
TRUE) 

    negative_count <- sum(filtered_data$log2FoldChange < 0, na.rm = 
TRUE) 

    paste("Positive log2FoldChange: ", positive_count, " 

Negative log2FoldChange: ", negative_count) 

  }) 

  output$volcano_plot <- renderPlot({ 

    data <- filtered_data_reactive() 

    data$threshold <- "Not Significant" 

    data$threshold[data$padj < 0.05 & data$log2FoldChange > 1] <- 
"Upregulated" 

    data$threshold[data$padj < 0.05 & data$log2FoldChange < -1] <- 
"Downregulated" 
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    ggplot(data, aes(x = log2FoldChange, y = -log10(padj), color = 
threshold)) + 

geom_point(alpha = 0.7, size = 1.5) + 

scale_color_manual(values = c("Upregulated" = "red", 
"Downregulated" = "blue", "Not Significant" = "grey")) + 

theme_minimal() + 

labs(title = "Volcano Plot", x = "log2(Fold Change)", y = "-
log10(Adjusted p-value)") 

  }) 

  output$logfc_barplot <- renderPlot({ 

    summary_data <- data_reactive() %>% 

group_by(Level1) %>% 

summarise(Positive = sum(log2FoldChange > 0, na.rm = TRUE), 

Negative = sum(log2FoldChange < 0, na.rm = TRUE)) 
%>% 

tidyr::pivot_longer(cols = c(Positive, Negative), names_to = 
"Direction", values_to = "Count") 

    ggplot(summary_data, aes(x = Level1, y = ifelse(Direction == 
"Negative", -Count, Count), fill = Direction)) + 

geom_bar(stat = "identity") + 

geom_text(aes(label = abs(Count)), position = 
position_stack(vjust = 0.5)) + 

coord_flip() + 

labs(title = "Positive and Negative log2 Fold Change by Level 
1", x = "Level 1", y = "Gene Count") + 

theme_minimal() 

  }) 

  output$level1_summary <- renderTable({ 

    data_reactive() %>% 

group_by(Level1) %>% 

summarise(Genes_Present = n()) 

  }) 

  output$overall_level1_barplot <- renderPlot({ 
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    summary_data <- data_reactive() %>% 

group_by(Level1) %>% 

summarise(Positive = sum(log2FoldChange > 0, na.rm = TRUE), 

Negative = sum(log2FoldChange < 0, na.rm = TRUE)) 
%>% 

tidyr::pivot_longer(cols = c(Positive, Negative), names_to = 
"Direction", values_to = "Count") 

    ggplot(summary_data, aes(x = Level1, y = ifelse(Direction == 
"Negative", -Count, Count), fill = Direction)) + 

geom_bar(stat = "identity") + 

geom_text(aes(label = abs(Count)), position = 
position_stack(vjust = 0.5)) + 

coord_flip() + 

labs(title = "Overall Positive and Negative log2 Fold Change 
by Level 1", x = "Level 1", y = "Gene Count") + 

theme_minimal() 

  }) 

  output$summary_table <- renderDT({ 

    datatable(filtered_data_reactive(), options = list(pageLength = 
10, autoWidth = TRUE)) 

  }) 

} 

shinyApp(ui, server) 

Appendix B. Supplementary result data table for tongue biofilm metatranscriptome-
halitosis associated dataset, used for validation and benchmarking . 

HS VS HEALTH 

MM VS HEALTH 

Taxonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 -3.2943372 0.76033079 -4.3327684 1.47E-05 0.00073917 HS Health HS vs Health Up in Health
Veillonella dispar 11190.5041 -2.5145687 0.82818226 -3.0362504 0.0023954 0.03164454 HS Health HS vs Health Up in Health
Fusobacterium periodonticum 29382.0668 1.15740796 0.86824106 1.3330491 0.18251569 0.48735573 HS Health HS vs Health Up in HS
Rothia mucilaginosa 4798.07472 -3.9700588 0.88928098 -4.4643469 8.03E-06 0.00061614 HS Health HS vs Health Up in Health
Prevotella shahii 1838.17699 3.25388427 1.2862444 2.52975584 0.01141419 0.0992757 HS Health HS vs Health Up in HS
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MM VS HS 

MM-HS VS HEALTH

MM-HA VS HS

 

MM-HA VS MM

 

Texonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 -0.5943947 0.78365586 -0.7584895 0.448158 1 MM Health MM vs Health Up in Health
Veillonella dispar 11190.5041 -1.6870412 0.85365369 -1.9762595 0.0481254 0.74541571 MM Health MM vs Health Up in Health
Fusobacterium periodonticum 29382.0668 -0.1667378 0.8949673 -0.1863061 0.85220475 1 MM Health MM vs Health Up in Health
Rothia mucilaginosa 4798.07472 -2.426247 0.91652689 -2.6472185 0.00811569 0.44230505 MM Health MM vs Health Up in Health
Prevotella shahii 1838.17699 1.22199883 1.32589678 0.92163949 0.35671665 1 MM Health MM vs Health Up in MM

Texonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 2.6999425 0.78372173 3.44502698 0.000571 0.03920883 MM HS MM vs HS Up in MM
Veillonella dispar 11190.5041 0.82752751 0.85367652 0.96936895 0.33236114 0.61852365 MM HS MM vs HS Up in MM
Fusobacterium periodonticum 29382.0668 -1.3241458 0.89495453 -1.4795677 0.13898866 0.45447086 MM HS MM vs HS Up in HS
Rothia mucilaginosa 4798.07472 1.54381179 0.91667779 1.68413789 0.09215502 0.3757347 MM HS MM vs HS Up in MM
Prevotella shahii 1838.17699 -2.0318854 1.3252925 -1.53316 0.12523644 0.43726621 MM HS MM vs HS Up in HS

Texonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 -3.0482855 0.81290315 -3.7498753 0.00017692 0.00484751 MM.HS Health MM.HS vs HealthUp in Health
Veillonella dispar 11190.5041 -2.0488598 0.88538478 -2.3140897 0.0206628 0.10079417 MM.HS Health MM.HS vs HealthUp in Health
Fusobacterium periodonticum 29382.0668 1.73235253 0.92818836 1.86638037 0.06198817 0.19678783 MM.HS Health MM.HS vs HealthUp in MM.HS
Rothia mucilaginosa 4798.07472 -2.2700212 0.95061737 -2.3879442 0.01694291 0.09158332 MM.HS Health MM.HS vs HealthUp in Health
Prevotella shahii 1838.17699 3.65598398 1.37498945 2.65891785 0.00783921 0.06271366 MM.HS Health MM.HS vs HealthUp in MM.HS

Texonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 0.24605179 0.81296669 0.30265912 0.76214965 1 MM.HS HS MM.HS vs HS Up in MM.HS
Veillonella dispar 11190.5041 0.46570896 0.88540683 0.52598302 0.59890001 1 MM.HS HS MM.HS vs HS Up in MM.HS
Fusobacterium periodonticum 29382.0668 0.57494457 0.9281761 0.61943479 0.53562997 1 MM.HS HS MM.HS vs HS Up in MM.HS
Rothia mucilaginosa 4798.07472 1.70003751 0.95076291 1.78807722 0.07376355 0.62599337 MM.HS HS MM.HS vs HS Up in MM.HS
Prevotella shahii 1838.17699 0.4020997 1.37440691 0.29256234 0.7698567 1 MM.HS HS MM.HS vs HS Up in MM.HS

Texonomy baseMean log2FoldChangelfcSE stat pvalue padj treatment control comparison direction
Streptococcus parasanguinis 9450.77131 -2.4538907 0.83482242 -2.9394164 0.00328831 0.05293874 MM.HS MM MM.HS vs MM Up in MM
Veillonella dispar 11190.5041 -0.3618186 0.90927668 -0.3979191 0.69068983 0.82794229 MM.HS MM MM.HS vs MM Up in MM
Fusobacterium periodonticum 29382.0668 1.89909036 0.95322341 1.99228255 0.04634007 0.28885308 MM.HS MM MM.HS vs MM Up in MM.HS
Rothia mucilaginosa 4798.07472 0.15622572 0.97629457 0.16001904 0.87286608 0.94223349 MM.HS MM MM.HS vs MM Up in MM.HS
Prevotella shahii 1838.17699 2.43398515 1.41158504 1.72429225 0.0846551 0.3272307 MM.HS MM MM.HS vs MM Up in MM.HS
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