
 
 

 

Evaluation of Novel Strategies to 
Address the Challenges of Precision 

Dosing for Small Molecule Kinase 
Inhibitors 

by 

Madelé van Dyk  

Thesis 
Submitted to Flinders University 

for the degree of 

Doctor of Philosophy  
College of Medicine & Public Health 

9 August 2018 



2 
 

TABLE OF CONTENTS 

AWARDS ............................................................................................. 14 

PEER REVIEWED JOURNAL MANUSCRIPTS................................... 14 

MANUSCRIPTS UNDER CONSIDERATION ....................................... 15 

PEER REVIEWED CONFERENCE ABSTRACTS................................ 16 

1.1 PUBLIC SIGNIFICANCE OF CANCER .................................... 23 

1.2 CANCER HALLMARK CHARACTERISTICS .......................... 23 

1.2.1 Sustaining Proliferative Signalling ................................................................... 24 

1.2.2 Evading Growth Suppressors ........................................................................... 24 

1.2.3 Resisting Cell Death .......................................................................................... 25 

1.2.4 Enabling Replicative Immortality .................................................................... 26 

1.2.5 Inducing Angiogenesis ...................................................................................... 27 

1.2.6 Activating Invasion and Metastasis .................................................................. 28 

1.2.7 Genome Instability and Mutation..................................................................... 30 

1.2.8 Tumour Promoting Inflammation .................................................................... 31 

1.2.9 Reprogramming Energy Metabolism ............................................................... 31 

1.2.10  Evading Immune Destruction ............................................................................. 32 

1.3 TARGETED THERAPIES AND PRECISION MEDICINE ......... 33 

1.4 SMALL MOLECULE KINASE INHIBITORS ........................... 35 

1.4.1 BCR-ABL Inhibitors......................................................................................... 38 



3 
 

1.4.2 EGFR Inhibitors ............................................................................................... 39 

1.4.3 VEGF Inhibitors ............................................................................................... 41 

1.4.4 BRAF / MEK Inhibitors ................................................................................... 41 

1.4.5 Other Kinase Inhibitors .................................................................................... 41 

Reference ...........................................................................................................................58 

1.5 PHARMACOKINETICS ........................................................... 64 

1.5.1 Absorption and Distribution............................................................................. 64 

1.5.2 Metabolism and Elimination............................................................................. 65 

1.5.3 Inter-Individual Variability in Absorption ....................................................... 66 

1.5.4 Inter-Individual Variability in Metabolism and Elimination ........................... 67 

1.6 ADDRESSING INTER-INDIVIDUAL VARIABILITY IN 

EXPOSURE.......................................................................................... 68 

1.6.1 Therapeutic Drug Monitoring .......................................................................... 69 

1.6.2 Other existing strategies ................................................................................... 73 

1.7 HYPOTHESIS AND AIMS ........................................................ 79 

2.1 INTRODUCTION ........................................................................... 82 

2.2 METHODS ..................................................................................... 84 

2.2.1 Chemicals and Reagents......................................................................................... 84 

2.2.2 Enzyme and Substrate Preparations...................................................................... 84 

2.2.3 Quantification of Substrate Depletion.................................................................... 85 

2.2.4 Data Analysis ......................................................................................................... 85 

2.2.5 PBPK Structural Model ......................................................................................... 86 



4 
 

2.2.6 PBPK Population Profile ....................................................................................... 86 

2.2.7 PBPK Compound Profiles...................................................................................... 87 

2.2.8 Assessing the Effect of Various Covariates on Exposure ....................................... 91 

2.3 RESULTS ....................................................................................... 91 

2.3.1 Substrate Depletion by HLM ................................................................................. 91 

2.3.2 Validation of EGFR KI Profiles ............................................................................. 94 

2.3.3 Impact of Covariates on Simulated EGFR KI Exposure ....................................... 95 

2.3.4 Application to Optimised EGFR KI Dosing........................................................... 96 

2.4 DISCUSSION .................................................................................. 98 

2.5 CONCLUSION.............................................................................. 102 

3.1 INTRODUCTION ......................................................................... 104 

3.2 METHODS ................................................................................... 105 

3.2.1 Study Protocol ...................................................................................................... 105 

3.2.2 Study Cohort and Medications ............................................................................ 106 

3.2.3 Study Design......................................................................................................... 107 

3.2.4 Sample Preparation.............................................................................................. 107 

3.2.5 Sample Analysis ................................................................................................... 107 

3.2.6 CYP3A Genotype ................................................................................................. 109 

3.2.7 Data Analysis ....................................................................................................... 109 

3.3 RESULTS ..................................................................................... 110 

3.3.1 Trial Conduct ....................................................................................................... 110 

3.3.2 Covariate Assessment........................................................................................... 111 



5 
 

3.3.3 Baseline CYP3A4 activity in Caucasians and South Asians ................................ 112 

3.3.4 CYP3A4 Inducibility and Inhibition Potential in Caucasians and South Asians. 112 

3.4 DISCUSSION ................................................................................ 117 

3.5 CONCLUSION.............................................................................. 119 

4.1 INTRODUCTION ......................................................................... 121 

4.2 MATERIALS AND METHODS ..................................................... 122 

4.2.1 Study Protocol ...................................................................................................... 122 

4.2.2 Midazolam Concentrations .................................................................................. 123 

4.2.3 Caffeine Metabolomics......................................................................................... 123 

4.2.4 Caffeine and 1,3,7-trimethyluric Acid Concentrations ........................................ 124 

4.2.5 Data and Statistical Analysis................................................................................ 124 

4.3 RESULTS ..................................................................................... 125 

4.3.1 Caffeine Metabolomics......................................................................................... 125 

4.3.2 Study Conduct...................................................................................................... 126 

4.3.3 Midazolam Exposure ........................................................................................... 126 

4.3.4 Caffeine and TMU Exposure ............................................................................... 127 

4.3.5 Prediction of CYP3A4 Activity Using Caffeine/TMU Ratios............................... 129 

4.3.6 Impact of Race on Caffeine/TMU Ratio .............................................................. 132 

4.4 DISCUSSION ................................................................................ 134 

4.5 CONCLUSION.............................................................................. 137 

5.1 INTRODUCTION ......................................................................... 139 

5.2 METHODS AND MATERIALS ..................................................... 142 



6 
 

5.2.1 Chemicals and Reagents....................................................................................... 142 

5.2.2 Sample Collection and Preparation ..................................................................... 142 

5.2.3 Chromatography .................................................................................................. 143 

5.2.4 Mass Spectrometry............................................................................................... 144 

5.2.5 Calibration ........................................................................................................... 145 

5.2.6 Method Validation ............................................................................................... 148 

5.3. RESULTS..................................................................................... 155 

5.3.1 Sample Collection and Preparation ..................................................................... 155 

5.3.2 Analyte Separation, Detection and Quantification .............................................. 155 

5.3.3 Calibration and Validation .................................................................................. 159 

5.3.4 Application to Clinical Trial Samples .................................................................. 161 

5.4. DISCUSSION ............................................................................... 164 

5.5. CONCLUSION ............................................................................. 166 

6.1 INTRODUCTION ......................................................................... 168 

6.2 METHODS ................................................................................... 170 

6.2.1 Application 1: Identification of physiological and molecular characteristics driving 

between subject variability in dabrafenib exposure ..................................................... 170 

6.2.2 Application 2: Use of KI TDM in a ‘real world’ Cohort ...................................... 177 

6.3 RESULTS ..................................................................................... 178 

6.3.1 Application 1: Identification of physiological and molecular characteristics driving 

between subject variability in dabrafenib exposure ..................................................... 178 

6.3.2 Application 2: TDM Patient Population .............................................................. 182 



7 
 

6.3.3 Plasma Concentrations......................................................................................... 184 

6.3.4 Therapeutic Drug Monitoring Case Study........................................................... 187 

6.4 DISCUSSION ................................................................................ 189 

Appendix 1 – Appendix Table 1 ................................................................................... 215 

Appendix 2 – Rowland A, van Dyk M, et al. Exp Opin Drug Metab Toxicol, 2017, 13: 31-

49. ........................................................................................... Error! Bookmark not defined. 

Appendix 3 – van Dyk M, Rowland A. Trans Cancer Res, 2017, 10: 1600-1615 ........ Error! 

Bookmark not defined. 

Appendix 4 – van Dyk M, et al. Eur J Clin Pharmacol, 2018, 10.1007/s00228-018-2450-4

 ................................................................................................ Error! Bookmark not defined. 

Appendix 5 – van Dyk M, et al. J Chroma B, 2016, 1033, 17-25.Error! Bookmark not 

defined. 

Appendix 6 – Rowland A, van Dyk, M, et al. Clin Pharmacol Ther, Accepted 20 Mar 2018

 ................................................................................................ Error! Bookmark not defined. 

  



8 
 

LIST OF FIGURES 

Figure 1.1: Therapeutic Targeting of the Hallmarks of Cancer. ...................................................28 

Figure 1.2: Decision tree demonstrating the core aspects of precision oncology  and the strategies and 

tools that underpin these core aspects. .....................................................................................34 

Figure 1.3: Approved KIs and related target cancers. .................................................................36 

Figure 1.4: Inactive tyrosine kinase (TK) receptor on the left with an activated TK receptor on the 

right where dimerization took place after ligand binding.  ...........................................................38 

Figure 1.5: Common mutations found in the EGFR kinase domain in NSCLC...............................40 

Figure 2.1: EGFR KI substrate depletion in the absence and presence of appropriate cofactors and 

CYP3cide. ..........................................................................................................................92 

Figure 2.2: Pie charts depicting the contribution of CYP3A4, other CYP and UGT to in vitro EGFR 

KI metabolism.....................................................................................................................93 

Figure 2.3: Representative concentration-time profile depicting simulated afatinib exposure (solid 

line), and observed mean and 95% CI afatinib exposure (dotted lines)..........................................94 

Figure 2.4: Simulated mean and 95% CI concentration time profiles describing exposure to gefitinib 

(250 mg QD) when dosed for 14 days in cancer patients (n=1,000). .............................................96 

Figure 3.1: Mean midazolam concentration-time curves for Caucasian (n=19) and South Asian (n=11) 

cohorts. ............................................................................................................................ 111 

Figure 3.2: Spaghetti plot showing changes in AUC from baseline, following rifampicin and 

clarithromycin dosing. Pavel A; Caucasians, Panel B; South Asians. Dotted lines represent individual 

participant data, while the solid line represent the cohort means. ............................................... 116 

Figure 4.1: Correlation between baseline (blue) and post induction (green) midazolam AUC and 

caffeine/TMU ratio. ........................................................................................................... 130 



9 
 

Figure 4.2: Bland Altman plots for the measurement of CYP3A4 activity by midazolam AUC and 

caffeine/TMU ratio at 3, 4, and 6 hr post dosing on Day 1 and Day 8. ........................................ 131 

Figure 5.1: Chemical characteristics for KIs relevant to their detection by mass spectrometry ........ 141 

Figure 5.2: Representative pooled spiked plasma (100 µg/L) chromatogram (quadrupole acquiring 

data between m/z 250 and 750). ........................................................................................... 157 

Figure 5.3: Representative chromatogram for a patient taking a standard combination dose of 

dabrafenib (150mg BD) and trametinib (2mg OD). ................................................................. 162 

Figure 5.4: Representative chromatogram for a patient taking a standard dose of sunitinib on a 4 week 

on and 2 weeks off cycle. .................................................................................................... 163 

Figure 6.1: Representative [GSK trial ID: 11346] overlay showing the simulated and observed (95% 

observed range) plasma concentration time curves (0 to 24 hours) for dabrafenib following a single 

150 mg oral dose. .............................................................................................................. 173 

Figure 6.2: Representative [GSK trial ID: 113771 Part D] overlay showing the simulated and 

observed (95% observed range) plasma concentration time curves (408 to 432 hours) for dabrafenib 

when dosed for 14 days (150 mg BD). .................................................................................. 174 

Figure 6.4: Computed tomography (CT) scan showing primary tumour ...................................... 187 

  



10 
 

LIST OF TABLES 

Table 1.1: Overview of kinase inhibitor pharmacology ..............................................................42 

Table 1.2: Summary of kinase inhibitor physiochemical properties ..............................................45 

Table 1.3: Summary of kinase inhibitor pharmacokinetics ..........................................................54 

Table 1.4: Metabolic enzymes and transporters involved in kinase inhibitor disposition ..................58 

Table 1.5: Kinase inhibitor pharmacokinetics associated with superior clinical outcomes ................72 

Table 2.1: Substrate and inhibitor parameter values used for KI substrate profile ...........................88 

Table 2.2: Comparison of geometric mean (± 95 % CI) simulated pharmacokinetic parameters with 

those observed in clinical studies............................................................................................89 

Table 2.3: Comparison of mean simulated AUC and Cmax ratios with those observed in clinical 

studies................................................................................................................................90 

Table 2.4: Impact of covariates on mean simulated EGFR KI exposure ........................................97 

Table 3.1: Participant characteristics ..................................................................................... 106 

Table 3.2: Pharmacokinetic parameters describing midazolam exposure..................................... 114 

Table 3.3: Coefficients defining differences in midazolam exposure between Caucasian and South 

Asian healthy males ........................................................................................................... 115 

Table 4.1: Midazolam AUC and Cmax values at baseline and following rifampin induction ............ 127 

Table 4.2: Caffeine/TMU ratios at baseline and following rifampin induction ............................. 127 

Table 4.3: Bias in CYP3A activity measured by the caffeine/TMU ratio and midazolam AUC. ...... 128 

Table 4.4: Impact of ethnicity on the caffeine/TMU ratio and midazolam AUC. .......................... 132 

Table 5.1: Mass spectrometer instrument settings.................................................................... 144 

Table 5.2: Analyte quantification characteristics ..................................................................... 146 

Table 5.3: Assay precision and recovery. ............................................................................... 150 



11 
 

Table 5.4: Assay accuracy. .................................................................................................. 152 

Table 6.1: Input parameters for the dabrafenib compound file.  .................................................. 171 

Table 6.2: Characteristics describing the core simulated cancer patient cohort (n = 1,000). ............ 175 

Table 6.3: Univariate logistic regression analysis of physiological and molecular characteristic 

associated with a dabrafenib Css_trough > 48 mg/mL ............................................................. 178 

Figure 6.3: Receiver operating characteristic curves demonstrating multivariate model performance in 

the training set (Panel A) and verification sets (Panel B and C) ................................................. 181 

Table 6.4: Participant demographics by drug .......................................................................... 183 

Table 6.5: Variability in KI exposure relative to target concentration ......................................... 186 

  



12 
 

DECLARATION 

I certify that this thesis does not incorporate without acknowledgment any material 

previously submitted for a degree or diploma in any university and that to the best of my 

knowledge and belief, it does not contain any material previously published or written by 

another person except where due reference is made in the text. 

 

Maldelé van Dyk 

March 2018 

  



13 
 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude to my principle supervisor, Dr Andrew Rowland, 

for his continuous guidance and mentorship throughout the journey of my PhD studies. I thank 

him for always encouraging me to use my own initiative and develop my own ideas but still 

steer me in the right direction. His friendship, patience, immense knowledge and the expertise 

he has shared with me will always be appreciated.   

 

I thank my co-supervisors, Professor John Miners, Professor Ross McKinnon, Professor 

Michael Sorich and Dr Ganessan Kichenadasse for their valuable assistance and advice, Ms 

Heather Bailey and Ms Karli Goodwin for their clerical and friendly support, and the past and 

present staff and students of the Department of Clinical Pharmacology, Flinders University for 

their friendship and support. I would also like to thank the co-authors of the manuscripts that 

resulted from this thesis for their valuable advice and contributions.  

 

Finally, I would like to thank my Father who always taught me to aim high and to give 

everything I attempt a 100% and my Mother who encouraged me to follow my passion and 

dreams with an ambitious and positive attitude. Without this, this PhD would not have been as 

enjoyable as it has been.  

 

I could not have completed this work without the help and support of the aforementioned 

people. I am sincerely grateful to them all.  



14 
 

PUBLICATIONS AND AWARDS 

 

Awards 

2014-2017  Flinders University Research Scholarship, Flinders University, Adelaide, 

Australia 

2015 Drug Disposition & Response Special Interest group prize, Australian Society 

of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT), 

Hobart, Australia 

 

Peer Reviewed Journal Manuscripts 

1. van Dyk M, Miners JO, Kichenadasse G, McKinnon RA and Rowland A (2016). A 

novel approach for the simultaneous quantification of 18 small molecule kinase 

inhibitors in human plasma: A platform for optimised KI dosing. Journal of 

Chromatography B, 1033: 17-26. 

2. Rowland A, van Dyk M, Mangoni AA, Miners JO, McKinnon RA, Wiese MD,  

Rowland A, Kichenadasse G, Gurney G and Sorich MJ (2017). Kinase inhibitor 

pharmacokinetics: comprehensive summary and roadmap for addressing inter-

individual variability in exposure. Expert Opinion on Drug Metabolism & Toxicology, 

13: 31-49 

3. van Dyk M, Rowland A (2017). Physiologically based pharmacokinetic modelling as 

an approach to evaluate the effect of covariates and drug-drug interactions on variability 



15 
 

in EGFR kinase inhibitor exposure. Translational Cancer Research, 6: 1600-1612. 

4. van Dyk M, Marshall JC, Sorich MJ, Wood LS, Rowland A (2018) Assessment of 

inter-racial variability in CYP3A4 activity and inducibility among healthy adult males 

of Caucasian and South Asian ancestries. European Journal of Clinical Pharmacology, 

DOI: 10.1007/s00228-018-2450-4.  

5. Rowland A, van Dyk, M, Hopkins AM, Mounzer R, Polasek TM, Rostami A, Sorich 

MJ (2018) Physiologically-based pharmacokinetic modelling to identify physiological 

and molecular characteristics driving variability in drug exposure. Clinical 

Pharmacology and Therapeutics, In press (Accepted 20th March 2018). 

 

Manuscripts Under Consideration 

6. van Dyk M,  Miners JO, Marshall JC, Wood LS, Sorich MJ, Rowland A (2018) 

Assessment of the caffeine to trimethyluric acid ratio as a dietary marker of variability 

in cytochrome P450 3A4 activity, Drug Metabolism and Disposition.  

  



16 
 

Peer Reviewed Conference Abstracts 

National conference: Australian Society of Clinical and Experimental Pharmacologists and 

Toxicologists (ASCEPT) – Melbourne, December 2016. Publication: Abstract/poster 

presentation – Assessing the substrate depletion of EGFR kinase inhibitor metabolism. Madelé 

Van Dyk, Michael J Sorich, Andrew Rowland. Department of Clin Pharmacol, Flinders Univ 

School of Medicine, Adelaide SA, 5042 

 

International conference: Australian Society of Clinical and Experimental Pharmacologists and 

Toxicologists (ASCEPT) – Hong Kong, May 2015. Oral presentation: The development of an 

UPLC-MS assay for 18 TKIs.  

 

National conference: Australian Society of Clinical and Experimental Pharmacologists and 

Toxicologists (ASCEPT) – Hobart, November 2015. Publication: Abstract/poster presentation 

assessing the contribution of cyp3a4 to total cytochrome p450 mediated tyrosine kinase 

inhibitor metabolism. Madelé Van Dyk, John O Miners, Michael J Sorich, Andrew Rowland. 

Department of Clin Pharmacol, Flinders Univ School of Medicine, Adelaide SA, 5042  



17 
 

ABSTRACT 

Small molecule protein kinase inhibitors (KIs) are a key class of oral antineoplastic drugs that 

are effective at treating numerous malignancies, including previously difficult to treat forms of 

cancers. However, variability in KI absorption and disposition causes variability in KI exposure 

that is inadequately addressed by the standard fixed-dose schedule of administration. 

Accordingly, it is proposed that the optimisation of KI dosing has great potential to maximise 

therapeutic response, minimise adverse drug reactions (ADRs), and improve cost-effectiveness 

of these expensive drugs. To facilitate this, a more comprehensive understanding of the sources 

of variability in KI exposure is required. 

Results presented in Chapters II and III elucidate sources of variability in KI exposure using 

physiologically based pharmacokinetic (PBPK) modelling and a healthy volunteer study. 

Specifically, in Chapter II, robust mechanistic models with the capacity to describe epidermal 

growth factor receptor (EGFR) KI exposure and the impact of covariates on exposure are 

developed and verified. These models may be applied to inform the impact of different dosing 

regimens on EGFR KI exposure, the potential impact of poor compliance on EGFR KI efficacy, 

the need to perform bridging studies when introducing EGFR KIs to new international markets, 

and the potential impact of DDIs on EFGR KI exposure. In Chapter III inter-racial variability 

in midazolam exposure was assessed in a cohort of healthy males with Caucasian and South 

Asian ancestries. This study demonstrated significantly higher midazolam clearance in healthy 

age-matched males of South Asian compared to Caucasian ancestry that was not explained by 

differences in the frequency of CYP3A genotypes.  

Given the limitations in terms of evidence generation, novel and practical strategies are 

required to facilitate the clinical application of dose optimisation. Such strategies may facilitate 
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earlier dose optimisation and identify patients for whom TDM is most critical. In this regard, 

pathway phenotyping (PP) involves monitoring the blood for a rapidly cleared surrogate probe, 

or cocktail of probes (typically exogenous), that are substrates for pathways involved in the 

disposition of the drug of interest. Chapter IV describes the development of a novel 

phenotyping approach based on dietary markers of CYP3A4 activity to optimise KI dosing 

from a limited number of blood samples without a requirement to administer prescription drugs  

Studies have demonstrated the benefit of using therapeutic drug monitoring (TDM) to 

individualise KI dosing on the basis of plasma-KI concentration, and therapeutic concentration 

ranges have been established for dasatinib, erlotinib, gefitinib, imatinib, nilotinib, pazopanib 

and sunitinib. However, the broader clinical uptake of TDM is hindered by the requirement to: 

(i) establish and validate separate analytical methods for each KI as they enter clinical practice, 

and (ii) generate sufficiently powered evidence to support the clinical validity of the benefit of 

concentration guided dosing. Chapter V describes the development and verification of a panel 

based approach to facilitate the efficient assessment of KI plasma concentrations. This 

approach was developed, validated and reported in accordance with the 2015 version of the 

FDA guidance for industry on ‘analytical procedures and methods validation for drugs and 

biologics’ facilitating direct application as a clinical trials platform.  
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1.1 Public Significance of Cancer 

Cancer is one of the most feared and deadliest diseases (1) and rightly so, as cancer is now the 

leading cause of death and disease burden in the developed world (2).  The most common 

cancers are prostate, breast, TBL (tracheal, bronchus and lung) and colorectal, with the most 

deaths due to TBL, liver, breast and colorectal cancer. A significant increase in incidence has 

been observed worldwide, however, population growth accounted for the majority of this 

observation, along with a contribution from advances in modern screening, detection and 

diagnosis (3). Although incidence rates have increased with time, mortality rates have 

decreased for the majority of cancers including some of the world’s most common and 

deadliest forms. The development of multidisciplinary treatment approaches and the more 

recent discoveries in terms of targeted anticancer therapies are largely responsible for these 

improved mortality rates (4). Cancer is not a single disease but rather a collection of genetic 

and metabolic changes that alter the function of normal cells. Because of this cancer is 

considered a heterogeneous disease as these changes present differently in various tissues and 

individuals.  

 

1.2 Cancer Hallmark Characteristics  

The capabilities acquired by cells during the development of cancer have been termed ‘cancer 

hallmarks’. Six hallmark capabilities were initially summarised by Hanahan and Weinberg 

(2000); two emerging hallmark capabilities and two enabling characteristics were subsequently 

added (5). These hallmark characteristics are based on the aspects of tumour biology and serve 

as key targets for many drugs used in the treatment of cancer (Figure 1.1). Understanding these 

key components of tumour biology provides an important basis for understanding the 
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mechanisms of antineoplastic drugs. 

1.2.1 Sustaining Proliferative Signalling 

One of the key capabilities of cancer is the ability to chronically proliferate. Normally cell 

growth and proliferation is highly regulated, however, once these cells become cancerous, the 

regulation is disrupted and the growth is controlled in a very complex manner. Interestingly, a 

more comprehensive understanding exists for cancer mitogenic signalling in comparison to 

normal cell signalling and growth (6). There are several ways that cancer cells manipulate 

normal growth and proliferation systems; cancer cells can upregulate cell growth by increasing 

their own growth factor receptors making them hyper-responsive to such growth factors.  

Cancer cells can stimulate normal cells to produce growth factors and can also produce growth 

factor themselves which results in autocrine proliferation. Growth factor itself can be 

stimulated from further downstream proteins such as RAF or MAP, while negative-feedback 

loops required to slow down signalling can be dysregulated by the oncogene, RAS, resulting 

in uncontrolled signal transduction. Many other mutations present in cancer cells that result in 

uncontrolled signal transduction may lead to dysregulated cell growth.  The observations that 

growth factors play a critical role in the various mechanisms around sustaining proliferative 

signalling make epidermal growth factor receptor (EGFR) kinase inhibitors an ideal  

therapeutic target to reduce such proliferative signalling and will be discussed further in section 

1.6.  

1.2.2 Evading Growth Suppressors 

Another characteristic that cancer cells manifest is the ability to interfere with processes such 

as senescence or apoptosis as part of the cell cycle (5). Tumour suppressors encode for the RB 

(retinoblastoma-associated) and TP53 proteins which function as the gatekeeper proteins which 
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control or ‘decides’ whether a cell will deteriorate or undergo apoptosis. Both these proteins 

function in part with a larger network of cell redundancy but the way RB functions is from the 

extracellular environments where cell growth signals are inhibited; TP53 functions from the 

intracellular environment where it can detect stressors such as suboptimal oxygenation, glucose 

or cell growth promoting signals, which will be actioned by putting cell proliferation signals 

on hold until the abnormal intracellular environments return to normal (7). In cancer cells these 

proteins are defected and cancer cells essentially ‘skip’ this process and continue to grow 

uncontrollably regardless of the environments. The RB proteins are also substrates to the 

cyclin-dependent kinases (CDKs) which play an important role in cell cycle divisions and 

transcription and often become mutated in cancer, with loss of cell cycle control. CDKs also 

control the activity of the transcription factor EF2, which is over expressed in cancer cells.  

Therefore targeting CDKs by inhibition can have anti-cancer effects (8). Additionally, in 

cancer the MYC gene becomes mutated and over expresses resulting in unregulated cell 

proliferation due to repression of cell senescence. However, MYC requires activation of CDK2, 

making CDK inhibitors a further eligible anticancer agent (8, 9). As a result a number of CDK 

inhibitors have been approved by the US food and drug administration (FDA) as cancer therapy 

when individuals present with specific tumour genetics.  

  

1.2.3 Resisting Cell Death 

Necrosis is a form of cell death which has protective mechanisms against tumour development, 

but it has recently been shown to be tumour promoting as necrotic cells can release growth 

factors into the microenvironment to stimulate proliferation (10). Another form of cell death,  

apoptosis, is triggered by stressors such as increased levels of oncogene signalling and DNA 

damage that results in excessive cell proliferation, however, the process of apoptosis is 
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weakened in tumours found in high grade malignancies (11). The Bcl-2 protein family play an 

important role in apoptosis and consists of anti-apoptotic Bcl-2 proteins, pro-apoptotic Bak and 

Bax proteins, and pro-apoptotic BH3 only proteins. One of the key tumour suppressors, TP53, 

detects damaged DNA and induces apoptosis. However, TP53 suppression function is lost 

during carcinogenesis (11). There are a variety of strategies adopted by cancer cells to avoid 

apoptosis, contributing to the diversity and complexity of malignancies. One of these processes, 

autophagy, often presents in nutrient deficient cancer cells. Autophagosomes engulf such cells 

and bind to lysosomes for degradation, creating a recycled source for biosynthesis and energy 

metabolism; this ensures the survival of small molecule metabolites found in cancer 

environments (5). BH3 proteins that regulate anti-apoptotic programming can trigger 

autophagy by binding to Bcl-2 proteins, which blocks apoptosis. BH3-mimetics are anti-cancer 

agents designed to target and inhibit the anti-apoptotic Bcl-2 proteins resulting in cell death 

(12). It has also been observed that BCR-ABL (break point cluster – Abelson) signalling 

promotes cell survival by increasing expression of anti-apoptotic Bcl-2 proteins therefore, 

BH3-mimetics can be used in combination with inhibitors of oncogenic kinases such as BCR-

ABL (13).  

1.2.4 Enabling Replicative Immortality 

To ensure cell proliferation, growth and division cycles need to be successful. However, two 

processes, senescence and apoptosis, can curtail these cycles and typically act as control 

mechanisms to prevent unnecessary cell proliferation (5). These processes occur in normal cell 

function in response to shortened telomeric DNA as a part of a complex controlled cell life. 

However, in cancer cells, these processes are absent and the cells can become immortal (14). 

In cancer, telomeric DNA is mechanistically maintained or telomerase expression is 

upregulated by adding DNA repeats to the ends of chromosomes, which protects the ends of 
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the chromosomes for long enough to avoid senescence and apoptosis, ensuring unlimited cell 

proliferation. Cell senescence plays a protective role against cancer when abnormalities such 

as excessive oncogene signalling or critically shortened telomeric DNA ends are detected (5). 

Additionally, it has been shown that telomerases has the ability to promote tumorigenesis 

independent of its enzymatic activity for telomere elongation; instead it can act as a 

transcriptional cofactor by modulating the Wnt signalling pathway which results in the 

accumulation of the β-catenin protein which activates transcription factors, thus promoting cell 

proliferation (15). Given that telomerases are barely found in normal cells but upregulated in 

cancer cells, telomerase inhibitors make great candidates for targeted anticancer therapy (16).  

1.2.5 Inducing Angiogenesis 

Typically in normal physiological states, angiogenesis is required to supply cells with nutrients 

and oxygen, and facilitate waste removal, and is regulated by induction and inhibitor signalling 

factors such as VEGF-A (vascular endothelial growth factor-A) and TSP-1 (thrombospondin-

1), respectively. These signalling factors respond according to a ‘switch’ as required. In 

contrast, during tumorigenesis, this ‘switch’ is permanently turned on and thus the tumour has 

a supply of nutrients and oxygen to grow uncontrolled (17). VEGF (vascular endothelial 

growth factor ) can be upregulated in response to hypoxia or oncogene signalling, promoting 

angiogenesis, while in contrast TSP-1 can suppress angiogenesis when binding to 

transmembrane receptors on the endothelial cells (18). Angiogenesis can present in diverse 

ways depending on tumour type; in some cancers such as pancreatic ductal adenocarcinomas, 

angiogenesis is down regulated (19) and in others, such as renal and pancreatic neuroendocrine 

carcinomas, it is upregulated (20). VEGF kinases play a significant role in promoting 

angiogenesis, therefore a number of VEGF kinase inhibitors have been approved to reduce this 

hallmark characteristic involved in cancer development. 
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Figure 1.1: Therapeutic Targeting of the Hallmarks of Cancer.  

Source: Hanahan and Weinberg (5) 

 

1.2.6 Activating Invasion and Metastasis  

During activation of cancer invasion and metastasis, cancer cells travel from local cells through 

the lymphatic and haematological systems to functional tissue in distant organs. The EMT 

(epithelial-mesenchymal transition) program plays a role in activating the ability of cancer cells 

to become invasive and the expression of EMT-induced cells has been observed on the margins 

of the tumours, rather than in the middle of the tumour (5, 21). It has also been suggested that 

heterotypic contributions of stromal cells are involved with invasion and metastasis; signalling 

between cancer cells and non-malignant stromal cells result in the stromal cells releasing 
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signalling proteins such as chemokine ligand 5, which stimulate the cancer cells to become 

invasive (22). During local invasion cancer cells release interleukin 4 to stimulate macrophage 

proteases to degrade matrices of cells, thereby promoting invasion (23). Cancer cells have also 

shown ability to revert back to a non-invasive state once they are residing in the new location 

and no longer being exposed to the signalling that facilitates the transition from epithelial cells 

to mesenchymal cells, hence some cells express both mesenchymal and residual epithelial cells 

(24). EMT invasion results in metastasis whereas collective and amoeboid invasion does not. 

Collective invasion relies on ‘lumps’ of cancer cells to migrate to adjacent tissues, whereas 

amoeboid invasion relies on individual cells that move through the extracellular matrix instead 

of making its own pathway like the other two types of invasion (25). Inflammatory cells have 

also been suggested to facilitate cancer cell invasion by releasing extracellular matrix 

degrading proteins (26). Some cancer cells have the ability to move to distant tissues and adapt 

to the new microenvironment where they colonise to form macroscopic tumours. However, in 

some types of cancers (breast cancers and melanomas), micrometastatic tumours remain 

dormant for a period of time before becoming macroscopic. A number of factors such as 

nutrient starvation, antigrowth signals from healthy extracellular matrix and tumour 

suppressing signals from the immune system have been shown to contribute to this dormancy 

and reversibility of micro metastatic cells (27-29). Therefore surgical treatments can both 

benefit and disadvantage tumour growth in different ways (30). Tyrosine kinase cMET and 

hepatocyte growth factor (HGF) play a crucial role in cellular proliferation, invasion and 

metastasis and have been shown to be upregulated in many malignancies. When the active form 

of HGF binds to cMET several signalling cascades associated with invasion and metastasis are 

activated. EGFR kinases also play a role in the activating cMET, making EGFR kinase 

inhibitors and cMET inhibitors an encouraging combination targeted therapy (31).  
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1.2.7 Genome Instability and Mutation  

In healthy conditions, genomic ‘care taker’ systems are in place to regulate damaged DNA to 

ensure low rates of mutations (32). In contrast, increased rates of mutations occur in cancer 

(33). This increased rate of mutations may be due to changes in the tumour suppressor protein, 

TP53, which controls cell regulatory circuits, resulting in decreased ability to search, detect 

and program damaged cells into a senescent or apoptotic state (34).  Generally telomeres 

protect chromosomal ends and shorten over time. However, it has been demonstrated that 

telomerases play an important role in producing telomeres during cancer development and 

promote cancer growth, therefore telomerases can now be included as a genome ‘care takers’. 

The telomeric chromosomal ends are normally at risk each time DNA replication occurs and 

are therefore susceptible to DNA instability, which is one of the newer enabling characteristics 

of cancer (35). BRCA1 and BCRA2 are tumour suppressor genes and play a role in repairing 

damaged DNA, however, these genes are mutated in some forms of breast and ovarian cancers 

and lack the homologous repair (HR) pathway which normally repairs lesions in the double-

strand breaks.  When this repair pathway is dysfunctional, the cell is susceptible to cell death 

given that both DNA strands are damaged and have no template to work from. The poly (ADP-

ribose) polymerase (PARP) repair pathway can aid in DNA repair by correcting lesions in the 

single-strand breaks which can still allow for double-strand formation given that there is a 

template to work from.  In cancers where repair mechanisms are affected and cells ae already 

vulnerable to cell death, targeting such cells can be effective in reducing cancer cell survival. 

Therefore, targeting the PARP pathway by blocking this enzyme with PARP inhibitors, single-

strand breaks are unable to be corrected to facilitate double-strand DNA formation thus 

becoming unstable and promoting cell death (36, 37). 
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1.2.8 Tumour Promoting Inflammation  

It has long been known that the immune system plays a role in tumour development whereby 

leukocytes infiltrate the area of developing cancers with the aim to destroy the cancer cells.  

However, in recent years it has been demonstrated that the immune responses can be both 

tumour suppressing and tumour promoting depending on the cancer type and conditions of the 

microenvironment (38). The immune responses found in various cancer types are similar to 

that during the process of wound healing; however, in cancer development this response does 

not stop due to innate immune cells such as granulocytes, macrophages, natural killer cells, and 

dendritic cells releasing tumour promoting molecules such as growth factors, extracellular 

matrix degrading enzymes, cytokines, chemokines and other bioactive mediators which can 

facilitate proliferation signalling, cell survival, angiogenesis, invasion, activation of EMT and 

metastasis (39). The immune system can also release reactive oxygen species which can further 

promote active mutations in neighbouring cancer cells thus increasing mutation rates, which is 

a key issue in advanced malignancies (10).   Based on these more recent discoveries about the 

roles of the immune system during tumour development, it is evident that inflammation is 

another enabling characteristic of cancer making selective anti-inflammatory drugs a promising 

anti-cancer agent.  

1.2.9 Reprogramming Energy Metabolism  

Another emerging hallmark of cancer is the understanding of the adjustment of energy 

metabolism within cancer cells to enable continuous cell division and growth, which can be 

demanding given that cell content has to double during each cell cycle (5). In contrast to non-

cancerous cells, it has been demonstrated that cancer cells rely on ‘aerobic glycolysis’ and skip 

mitochondrial oxidative phosphorylation to obtain energy from glucose (40).  This change in 

energy metabolism results in a far less effective ATP production when compared to non-
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cancerous cells which normally rely on glycolysis (formation of glucose to pyruvate) and 

mitochondrial oxidative phosphorylation (pyruvate to carbon dioxide in the mitochondria) 

(40). Instead, cancer cells rely on upregulation of glucose transporters which allows for more 

cytoplasmic glucose which is then converted to pyruvate and then to lactate by the enzyme 

lactate dehydrogenase A (LDH-A) resulting in the upregulation of LDH-A (41). This increase 

in glycolysis and upregulation of LDH-A has been observed to be linked with the oncogenes, 

RAS, MYC, and mutant tumour suppressors such as TP53 (41, 42), thus making aerobic 

glycolysis inhibitors potential effective anti-cancer agents.  Interestingly, two types of energy 

metabolism have been observed within the same tumour depending on the state of the cell; the 

one being dependant on aerobic glycolysis where oxygen levels are low as described above, 

and the second being neighbouring cells with sufficient oxygen levels dependant on the lactate 

formed by the former system as an energy source (5). These observations of energy metabolism 

reprogramming suggests that it plays a significant role in increased cell proliferation present in 

tumours, but this phenomenon requires further investigation to be established as an independent 

hallmark of cancer.  

1.2.10  Evading Immune Destruction  

It is well established that the immune system acts as a surveillance operation ready to attack 

cancerous cells with the aim to eradicate them as a protection measure against the development 

of tumours (29). However, it is clear that some cancers not only bypass or escape this 

surveillance/destruction system but also have the ability to employ immune cells supportive of 

cancer (5). The mechanisms behind this evasion is still somewhat unclear as some confounding 

results have been noted. For example, it has been demonstrated that when cancerous cells from 

immune deficient mice are transplanted into another immune deficient animal, secondary 

cancers were unable to form. By contrast, when cancerous cells from immune proficient mice 
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were transplanted into either immune proficient or deficient mice, secondary cancers were able 

to form (29). This observation suggests that a defective immune system may play a role in the 

evasion of cancer eradication. However, the incidence of non-viral cancers was not 

significantly increased, suggesting that defective immune systems may not play a critical role 

in evading immune destruction, indicating the need for further investigation. Cytotoxic T 

lymphocytes have the ability to destroy cancerous cells, but cytotoxic T lymphocyte-associated 

antigen 4 can turn this response off by interfering with the T-cell activation required for the 

immune response required for anti-cancer effects. By blocking CTLA-4, the regulatory T-cells 

can function normally to signal for additional immune cells to upregulate the immune response 

(43).  

This understanding of the characteristics that distinguish cancer cells from normal cells is 

central to selectively targeting tumours using various pharmacological agents and is largely 

responsible for the paradigm shift that has occurred over the last decade in terms of how 

anticancer medicines work. As depicted in Figure 1.1, ‘targeted therapies’ have now been 

developed to selectively interfere with each of the hallmark characteristics.  

 

1.3 Targeted Therapies and Precision Medicine 

The principle underpinning anti-cancer targeted therapies is that by selectively interfering with 

neoplastic pathways (i.e. pathways involved in cancer development), it is possible to administer 

a sufficiently high dose of the drug to routinely achieve therapeutic effect, while maintaining 

an acceptable toxicity profile (i.e. applying the principle of ‘selective toxicity’). Over the past 

decade a number of targeted therapies have been developed that effectively treat solid organ 

malignancies, including many previously difficult to treat forms of cancers.  
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The development of targeted therapies for cancer has evolved in parallel with individualised 

health care, now termed ‘precision medicine’. While the concept of the ‘right drug at the right 

dose for the right patient’ is not new, the application of the concept to cancer medicines has 

gained considerable momentum over the past decade. The concept of precision medicine in 

oncology (‘Precision Oncology’) involves two aspects: (i) the selection of the optimal drug for 

the patient based on characteristics of the cancer and the patient, and (ii) the selection of the 

optimal dose of that drug for the patient. As show in Figure 1.2, there are several factors that 

need to be considered when selecting both the optimal drug and the optimal dose of the drug, 

and there are multiple strategies and tools that can be applied to inform each of these decisions. 

 

Figure 1.2: Decision tree demonstrating the core aspects of precision oncology  

and the strategies and tools that underpin these core aspects. 
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In practice, the application of precision oncology to date has typically focussed on the use of 

molecular markers to guide drug selection, with comparatively little emphasis on the selection 

of the optimal dose. This is largely because of the greater capacity to develop evidence of 

clinical validity for drug selection using routinely collected samples from clinical trials. 

 

1.4 Small Molecule Kinase Inhibitors 

Small molecule protein kinase inhibitors (KIs) are a novel and rapidly expanding class of 

targeted oral antineoplastic drugs that have demonstrated widespread success, often first-line, 

for the treatment of numerous malignancies, including previously difficult to treat forms of 

cancer. In addition, nintedanib and tofacitinib have recently been approved for the non-

neoplastic indications idiopathic pulmonary fibrosis and rheumatoid arthritis, respectively 

(Table 1.1). However, inter-individual variability in absorption and disposition manifesting as 

variability in exposure is inadequately addressed by fixed-dose prescribing practices, resulting 

in unpredictable and potentially sub-optimal outcomes (44, 45). While fixed-dose prescribing 

is routinely used for orally administered drugs with a wide therapeutic index and limited inter-

individual variability in exposure, it is rarely used for narrow therapeutic index drugs (NTIDs) 

(e.g. warfarin, digoxin, anticonvulsants and immunosuppressants) or for drugs that exhibit 

substantial inter-individual variability in exposure. As with many antineoplastic drugs, KIs are 

NTIDs (46), whereby the difference between the minimum toxic concentrations (MTC) and 

minimum effective concentrations (MEC) is small (typically < 2-fold). Indeed, for several KIs, 

e.g. bosutinib, erlotinib, ponatinib, pazopanib and sunitinib, the recommended starting dose 

required to achieve therapeutic efficacy is the reported maximum tolerated dose (MTD) from 

dose-escalation studies (46). Accordingly, the extent and duration of exposure to a KI are 

important determinant of therapeutic efficacy and tolerability.  
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Figure 1.3: Approved KIs and related target cancers.  

Thyroid cancers are treated with cabozantenib, lenvatenib, sorafenib and vandetinib; lung 

cancers are treated with afatinib, ceritinib, crizotinib, erlotinib, gefitinib, osimertinib and 

nintedanib; breast cancers are treated with palbociclib and lapatinib; liver cancer is treated 

with sorafenib; kidney cancers are treated with axitinib, pazopanib, sorafenib and sunitinib; 

gastrointestinal cancer is treated with sunitinib, imatinib and regorafenib; regorafenib is 

also used to treat colorectal cancer; pancreatic cancers are treated with erlotinib and 

sunitinib; myelofibrosis and polycythemia vera are treated with ruxolitinib; metastatic 

melanoma is treated with vemurafenib, dabrafenib, trametinib or dabrafenib and trametinib 

in combination; blood cancers are treated with bosutinib, dasatinib, ibrutinib, imatinib, 

nilotinib, ponatinib and idelalisib. Tofacitinib is not displayed as it is used to treat 

rheumatoid arthritis and not cancer. 
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Imatinib was the first KI to be approved in 2001. Since then a further 29 KIs have been 

approved for the treatment of various malignancies, 21 of these in the past five years (Figure 

1.3; Table 1.1). KIs are potent inhibitors of pathways that regulate cellular functions such as 

growth, differentiation and survival (47). These pathways are activated by the membrane bound 

cell surface kinase receptor (KR) superfamily, which comprises more than 500 members. KR 

families of particular importance to the development of malignancy are the EGFR, platelet-

derived growth factor receptor (PDGFR), and vascular endothelial growth factor receptor 

(VEGFR) families and their associated signalling pathways such as the mitogen-activated 

protein kinase (MAPK) pathway, which incorporate families of signalling proteins such as 

RAS, RAF, MEK, MAPK, extracellular signal–regulated kinase  (ERK) and c-KIT (48). 

Impaired regulation of kinase activity either through mutation of the KR or downstream 

proteins leads to constitutive pathway activation, uncontrolled cell proliferation and 

malignancy. Many KIs such as EGFR and VEGFR inhibitors act directly on the membrane 

bound cell surface KR, while other KIs such as BRAF and MEK inhibitors act on downstream 

proteins (Figure 1.4). At a molecular level KIs interact with the ATP binding site of the 

intracellular kinase domain. As such most drugs in this class share a common planar 

heterocycle as the core structure. Accordingly there are similarities in the physiochemical 

properties between most, but not all KIs that also translate to common pharmacokinetic 

characteristics. KIs differ in terms of their target selectivities and mechanism of inhibition, and 

as such are effective in treating a variety of malignancies, with some KIs effective in treating 

multiple malignancies. Crystallographic analyses performed to elucidate molecular 

conformations and interactions have demonstrated that the potency and clinical efficacy of 

VEGF inhibitors such as axitinib relate to the conformation of the protein that is bound by 

ligand (49). Each KI is briefly described below with approval details, physiochemical 

properties and pharmacokinetic properties summarised in Table 1.1, 1.2 and 1.3, respectively. 
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Figure 1.4: Inactive tyrosine kinase (TK) receptor on the left with an activated TK 

receptor on the right where dimerization took place after ligand binding.  

Cell signal transduction is tightly controlled by TKs which add phosphate groups from ATP 

to the amino acid tyrosine in the tail of the receptor for activation, and by phosphatases for 

removal of phosphate groups for deactivation.  TKIs exert their physiological effect by 

inhibiting the TKs resulting in no phosphorylation resulting in deactivation of proteins 

involved in cancer growth such as ALK, RAS, RAF, MEK and ERK  further downstream and 

can no longer cause conformational change that would lead to transcription to code for 

cellular processes required for cancer growth. In other words KIs turn the ‘on switch’ back 

to ‘off’ when TKs becomes stuck in ‘on mode’. 

 

1.4.1 BCR-ABL Inhibitors 

The BCR-ABL fusion gene results from a rearrangement of genetic material between 

chromosomes 9 and 22 (the Philadelphia chromosome). This fusion gene, which is the ABL1 
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gene from chromosome 9 translocation onto the BCR gene from chromosome 22, codes for a 

hybrid BCR-ABL tyrosine kinase that is always ‘switched on’, causing cells to divide 

uncontrollably. BCR-ABL is highly prevalent in chronic myeloid and acute lymphoblastic 

leukaemias, and targeting of BCR-ABL by the prototypic KI, imatinib, is widely regarded as 

one of the greatest advances in the treatment of cancer. Dasatinib and Nilotinib is effective 

against point mutations such as BCR – ABL and Src. It targets both the active (unsuccessful 

binding of imatinib) and inactive form of the BCR – ABL gene, however, it is not effective 

against the T3151 resistant mutation. Ponatinib is, however, effective against the native form 

of the BCR-ABL gene, multiple other mutations and most importantly, against the T3151 

mutation. Pharmacokinetic parameters describing exposure to BCR-ABL inhibitors are 

reported in Table 1.3. 

1.4.2 EGFR Inhibitors 

Epidermal growth factor receptor (EGFR) small molecule KIs have made a significant 

improvement in the treatment of advanced non-small cell lung cancer (NSCLC). Currently, 

there are four EGFR inhibitors approved for the treatment of EGFR activating mutation 

positive NCSLC; afatinib, erlotinib and gefitinib are first-line options, while osimertinib is a 

second line option for tumours that develop resistance to afatinib, erlotinib and gefitinib (50). 

In approximately 50% of patients resistance to first line EGFR inhibitors occurs through 

acquisition of the T790M mutation in exon 20 of EGFR; unlike first line options, osimertinib 

retains activity against T790M positive tumours. The use of EGFR KIs for the treatment of this 

cancer is particularly interesting and has become a prominent example of personalized 

medicine where treatment is determined based on the mutation status of the individual’s tumour 

(51). EGFR activating mutations occur at a high frequency in NSCLC with 10 to 50% of 

tumours being positive for a mutation. It has been established that the outcome for NSCLC 
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patients treated with KIs are superior for tumours harbouring an activating mutation compared 

to those without (52, 53). Common mutations that confer either sensitivity or resistance to 

EGFR KIs are shown in Figure 1.5 and include alterations at exon 18, 19, 20 and 21 (54).  

 

Figure 1.5: Common mutations found in the EGFR kinase domain in NSCLC.  

Mutations in grey generally respond to EGFR KIs and mutations in purple are typically 

resistant. Abbreviations: LREA (leucine, arginine, glutamine and alanine) and VAIKEL 

(valine, alanine, isoleucine, lysine, glutamate, and leucine). 

 

Activating mutations in exons 18, 19 and 21 of the EGFR are present in approximately 30% of 

NSCLC tumours. These mutations confer sensitivity EGFR inhibitors (Table 1.1). Lapatinib 

is a dual kinase inhibitor with activity against human epidermal growth factor receptor 2 

(HER2) and EGFR pathways. Unlike other EGFR inhibitors, it is mainly used in the treatment 

of HER2-positive breast cancer. Pharmacokinetic parameters describing exposure to EGFR 

inhibitors are reported in Table 1.3. 
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1.4.3 VEGF Inhibitors 

In cancers including hepatocellular, renal cell and thyroid carcinomas, activation of VEGF-

mediated angiogenesis plays a critical role in tumour growth and metastasis. By inhibiting the 

intracellular catalytic domain of VEGF receptors, small molecule VEGFR inhibitors block 

VEGF-mediated angiogenesis and impair the tumour’s capacity to access the nutrients required 

for growth. Pharmacokinetic parameters describing exposure to VEGFR inhibitors are reported 

in Table 1.3.  

1.4.4 BRAF / MEK Inhibitors 

BRAF is a member of the RAF family of serine/threonine kinases that are related to retroviral 

oncogenes. Mitogen-activated protein kinase kinase (MEK) is the protein that phosphorylates 

MAPK. BRAF and MEK are key regulatory proteins in MAPK / ERK signalling cascade, 

which affects cell division and differentiation. When BRAF and/or MEK is inhibited, cell 

proliferation is blocked and apoptosis is induced. Mutations in the BRAF gene, particularly at 

residue 600 are associated with various cancers including colorectal, lung, melanoma and 

thyroid. Vemurafenib and dabrafenib are BRAF inhibitors approved for treatment of 

unresectable or metastatic BRAF V600E-positive melanoma. In order to maximize therapeutic 

effect, BRAF inhibitors are often used combination with a MEK inhibitor; cobimetinib (with 

vemurafenib) or trametinib (with dabrafenib). Pharmacokinetic parameters describing 

exposure to these inhibitors are reported in Table 1.3.  

1.4.5 Other Kinase Inhibitors 

In addition to VEGFR, EGFR, BRAF/MEK and BCR-ABL, a number of additional kinases 

have been implicated in the development and progression of cancer. In recent years, inhibitors 

of anaplastic lymphoma kinase (ALK; alectinib, ceritinib, crizotinib), Bruton’s tyrosine kinase 
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(BTK; ibrutinib), phosphoinositide 3-kinase (PI3K; idelalisib), and CDK (palbociclib), have 

emerged as effective drugs for the treatment of solid organ tumours including breast and non-

small cell lung cancer, and various forms of leukaemia. 

Table 1.1: Overview of kinase inhibitor pharmacology 

Class Agent Approved 
Indication(s) Molecular Target(s) First Approval a 

VEGF 
inhibitors 

axitinib RCC 
KIT, PDGFRβ, 

VEGFR1-3 
27 Jan 2012 

(FDA) 

cabozantinib MTC 
FLT3, c- KIT, c-MET, 

RET, VEGFR2 
29 Nov 2012 

(FDA) 

lenvatinib TC VEGFR1-3, FGFR1-4, 
RET, KIT, PDGFRα 

13 Feb 2015 
(FDA) 

Nintedanib IPF PDGFRα/β, FGFR1-3, 
VEGFR1-3, FLT3, 

15 October 2014 
(FDA) 

pazopanib RCC 
VEGFR1-3, 

PDGFRα/β, c-KIT, 
FGFGR2 

19 Oct 2009 
(FDA) 

regorafenib CRC, GIST 
c-KIT, PDGFRβ, RAF, 

RET, VEGFR1-3 
27 Sept 2012 
(CRC; FDA) 

sorafenib HCC, RCC, 
TC 

VEGFR2/3, PDGFRβ, 
FLT3, FGFR1, c-KIT, 

RAF, RET 

20 Dec 2005 
(RCC; FDA) 

sunitinib GIST, pNET, 
RCC 

VEGFR1-3, c-KIT, 

PDGFRα/β, FLT3, RET 
26 Jan 2006 

(RCC; FDA) 

vandetanib MTC 
EGFR, 

RET, VEGFR2 
6 Apr 2011  

(FDA) 

EGFR 
inhibitors 

afatinib NSCLC 
(EGFR MUT) 

EGFR, HER2 , HER4 12 Jul 2013  
(FDA) 

erlotinib NSCLC, PC EGFR 18 Nov 2004 
(NSCLC; FDA) 

gefitinib NSCLC EGFR 1 May 2003  
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(EGFR MUT) (FDA) 

lapatinib BC (HER2+) EGFR, HER2 13 May 2007 
(FDA) 

osimertinib NSCLC 
(EGFR MUT) EGFR 13 Nov 2015 

(FDA) 

ALK 
inhibitors 

alectinib NSCLC  
(ALK MUT) ALK 11 Dec 2015 

(FDA) 

ceritinib NSCLC  
(ALK MUT) 

ALK, IGF-1, ROS1, 
InsR 

29 Apr 2014 
(FDA) 

crizotinib NSCLC  
(ALK MUT) ALK, c-MET 26 Aug 2011 

(FDA) 

BRAF / 
MEK 

inhibitors 

cobimetinib MEL  
(BRAF MUT) MEK1-2 10 Nov 2015 

(FDA) 

dabrafenib MEL  
(BRAF MUT) BRAF 10 Jan 2014 

(FDA) 

trametinib MEL  
(BRAF MUT) 

MEK1-2 29 May 2013 
(FDA) 

vemurafenib MEL  
(BRAF MUT) BRAF 17 Aug 2011 

(FDA) 

BCR-ABL 
inhibitors 

bosutinib CML (Ph+) ABL, SRC 4 Sept 2012 
(FDA) 

dasatinib ALL(Ph+), 
CML (Ph+) 

BCR-ABL, SRC, 

c-KIT, PDGFRα/β, 
EphA2 

23 Dec 2005 
(ALL; EMA) 

imatinib 

ALL (Ph+), 
CML (Ph+), 
DFSP, GIST 

(KIT+) 

c-KIT, PDGFRα/β, 

BCR-ABL 
11 May 2001 
(CML; FDA) 

nilotinib CML (Ph+) 
KIT, PDGFRα/β, 

BCR-ABL 
29 Oct 2007 

(FDA) 

ponatinib ALL (Ph+), 
CML (Ph+) 

BCR-ABL, FGFR1-3, 

FLT3, VEGFR2, c-
KIT, RET, PDGFRα 

14 Dec 2012 
(FDA) 

BTK 
inhibitor ibrutinib CLL, MCL, 

WM BTK 13 Nov 2013 
(MCL; FDA) 
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PI3K 
inhibitor idelalisib CLL, FNHL, 

SLL PI3Kδ 23 Jul 2014  
(FDA) 

JAK 
inhibitors 

ruxolitinib MF, PV JAK1/2 16 Nov 2011  
(PV; FDA) 

tofacitinib RA JAK3 6 Nov 2012  
(FDA) 

CDK 
inhibitor palbociclib BC  

(ER+, HER2-) CDK4/6 3 Feb 2015  
(FDA) 

a where indications were approved separately, the first approved indication is noted, some KIs 

received simultaneous approval for multiple indications.  

Abbreviations: ALL; acute lymphoblastic leukemia, BC; breast cancer, CLL; chronic 

lymphocytic leukemia, CML, chronic myelogenous leukemia, CRC; colorectal cancer, DFSP; 

dermatofibrosarcoma protuberans, FNHL; follicular B-cell non-Hodgkin lymphoma, GIST; 

gastrointestinal stromal tumors, HCC; hepatocellular carcinoma, IPF; idiopathic pulmonary 

fibrosis, MCL; mantle cell lymphoma, MEL; melanoma, MF; myelofibrosis, MTC; medullary 

thyroid cancer, NSCLC; non-small cell lung cancer, PC; pancreatic cancer, Ph+; Philadelphia 

chromosome positive, pNET; pancreatic neuroendocrine tumors, PV; polycythemia vera, RA; 

rheumatoid arthritis, RCC; renal cell carcinoma, SLL; small lymphocytic lymphoma, TC; 

thyroid cancer, WM; Waldenstrom's macroglobulinemia. 
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Table 1.2: Summary of kinase inhibitor physiochemical properties  

Class Agents Structure 
BCS 
Class 

Physiochemical Properties 

MW  
(Da) 

ApKa / 
BpKa Log Po:w HBD HBA 

PSA  
(Å2) Species 

VEGF 
inhibitors 

axitinib 

 

II 386.47 12.7 / 4.3 4.2 2 4 96.0 N 

cabozantinib 

 

II 501.51 - / - 5.4 2 7 98.8 N 

lenvatinib 

 

IV 426.85 3.1 / - 2.8 3 5 115.6 A 
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nintedanib 

 

II or IV 539.62 - / 10.5 3.3 2 7 94.2 B 

pazopanib 

 

II 437.51 11.1 / - 3.1 2 8 127.4 N 

regorafenib 

 

II 482.82 12.0 / 2.3 4.2 3 8 92.4 N 

sorafenib 

 

II 464.82 9.5 / 9.6 4.1 3 7 92.4 B 
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sunitinib 

 

II 398.47 - / 11.3 2.6 3 4 77.2 B 

vandetanib 

 

II 475.35 - / 8.9 4.9 1 7 59.5 B 

EGFR 
inhibitors 

afatinib 

 

IV 485.94 - / 0.6 3.6 2 8 88.6 N 

erlotinib 

 

II 393.44 - / 5.3 3.3 1 7 74.7 N 

gefitinib 

 

II 446.90 - / 7.0 4.1 1 8 68.7 N 
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lapatinib 

 

IV 581.06 - / 6.3 5.1 2 9 114.7 N 

osimertinib 

 

II 499.61 - / 8.9 3.7 2 7 87.5 B 

ALK 
inhibitors 

alectinib 

 

IV 482.62 13.7 / 7.5 5.2 1 5 72.4 N 

ceritinib 

 

IV 558.14 8.7 / - 6.4 3 8 113.6 N 
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crizotinib 

 

II 450.34 - / 9.8 3.7 2 6 78.0 B 

BRAF /  
MEK 

inhibitors 

cobimetinib 

 

I 531.31 7.6 / 9.7 3.9 3 7 64.6 B 

dabrafenib 

 

II 519.56 - / - 4.8 2 11 147.5 N 
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trametinib 

 

II 615.39 3.0 / 1.7 3.4 2 6 102.1 A 

vemurafenib 

 

IV 489.92 6.3 / 1.6 5.0 2 7 100.3 A 

BCR-ABL 
inhibitors 

bosutinib 

 

IV 530.45 3.7 / 4.2 5.4 1 8 82.9 A 

dasatinib 

 

II 488.01 10.9 / 7.3 3.6 3 9 134.8 N 
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imatinib 

 

II 493.60 13.3 / 7.6 3.5 2 7 86.3 N 

nilotinib 

 

IV 529.52 6.7 / 10.2 4.9 2 9 97.6 B 

ponatinib 

 

II 532.56 - / 11.5 4.1 1 8 65.8 B 
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BTK 
inhibitors ibrutinib 

 

IV 440.50 - / 7.8 3.6 1 6 99.2 N 

PI3K 
inhibitors idelalisib 

 

II 415.42 - / 6.3 3.7 2 7 99.2 N 

JAK 
inhibitor ruxolitinib 

 

I 306.37 13.9 / 3.9 2.1 1 4 83.2 N 
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tofacitinib 

 

III 312.37 10.0 / 7.9 1.5 1 5 88.9 N 

CDK 
inhibitor palbociclib 

 

IV 447.53 - / 8.7 1.8 2 8 103.4 B 

Abbreviations: HBA; hydrogen bond acceptors, HBD; hydrogen bond donors, Log Po:w; octanol/water partition coefficient, MW; molecular 

weight, PSA; polar surface area.  
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Table 1.3: Summary of kinase inhibitor pharmacokinetics 

Class Agents Standard Dose 
(mg) 

BCS 
Class 

PK Parameters 

References F  
(%) 

fu,p Cmax 
(ng/mL) 

tmax  
(hr) 

t1/2  
(hr) 

Vd / F  
(L) 

CL / F 
(L/hr) 

VEGF 
inhibitors 

axitinib 5 mg BD II 58 < 0.01 28 2 - 6 3.3 180 38 (55, 56) 

cabozantinib 140 mg QD II  < 0.003 608 2 - 5 28 349 11 (57) 

lenvatinib 24 mg QD IV  0.02 655 1 - 4 35 336 6.7 (58) 

nintedanib 150 mg BD II or IV 4.7 0.025 14 2-4 9.5 1050 83.4 

OFEV 
(nintedanib) FDA 

prescribing 
information 

pazopanib 800 mg QD II 21 < 0.01 44000 2 - 4 31 25 0.6 (59, 60) 

regorafenib 160 mg QD II 69 - 83 0.005 3.45 4 14 - 58 88  (61) 

sorafenib 400 mg BD II ˂ 50 < 0.005  3 25 - 48  8.1 (62, 63) 

sunitinib 50 mg QD a II  0.05  6 - 12 60 2230 34 (64, 65)  

vandetanib 300 mg QD II  0.06 130 6 220 4048 14 (66) 

EGFR 
inhibitors 

afatinib 40 mg QD IV  0.054 25 4-6 34 2520 83 (67, 68) 

erlotinib 150 mg QD b II 60 c 0.07 1760 4 36 232 5.3 (69, 70) 



55 
 

gefitinib 250 mg QD II 57 0.09  3 - 7 48 1400 36 (71, 72) 

lapatinib 1500 mg QD IV  0.01  3 - 4 24 >2200 28 (73, 74) 

osimertinib 80 mg QD II  "Low"  4 48 986 14 

TAGRISSO 
(osimertinib)  

FDA prescribing 
information 

ALK 
inhibitors 

alectinib 600 mg BD IV 37 < 0.01 665 4 33 4016 82 

ALECENSA 
(alectinib)  

FDA prescribing 
information 

ceritinib 750 mg QD IV ≥ 25  800 4 - 6 40 1916 33 (75) 

crizotinib 250 mg BD II 43 0.09 100 4 42 1772 65 (76, 77) 

BRAF /  
MEK 

inhibitors 

cobimetinib 60 mg QD I 46 0.05 273 2.5 44 806 14 

(78) 
COTELLIC 
(cobimetinib)  

FDA prescribing 
information 

dabrafenib 150 mg BD II 95 0.003 1324 2 6.5 70 17 

(79) 
TAFINLAR 
(dabrafenib)  

FDA prescribing 
information 

trametinib 2 mg QD II 72 0.026 22 1.5 115 214 4.9 (80) 
MEKINIST 
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(trametinib)  
FDA prescribing 

information 

vemurafenib 960 mg BD IV  < 0.01 42000 3 57 106 1.3 (81) 

BCR-ABL 
inhibitors 

bosutinib 500 mg QD IV 18 0.05 114 6 23 6080 189 (82) 

dasatinib 100 mg QD d                 II ˂ 34 0.04  3 3 - 5 2505 578 (83) 

imatinib 400 mg QD e II 98 0.05  2 - 4 18 295 12 (84) 

nilotinib 300 mg BD f IV 30 0.02 2260 3 17 579 29 (85) 

ponatinib 45 mg QD II  0.01 45 < 6 36 1433 28 

(86) 
ICLUSIG 
(ponatinib)  

FDA prescribing 
information 

BTK 
inhibitors ibrutinib 560 mg QD IV 60 0.027 128 1 - 2 4 - 6 10000 62 

(87) 
IMBRUVICA 

(ibrutinib) 
FDA prescribing 

information 

PI3K 
inhibitors idelalisib 150 mg BD II  < 0.16 2168 2 8.2 216 15 

(88) 
ZYDELIG 
(idelalisib) 

FDA prescribing 
information 
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JAK 
inhibitor 

ruxolitinib 20 mg BD I 95 0.03  1 - 2 3.0 65 ˂ 22 

JAKAFI 
(ruxolitinib) 

FDA prescribing 
information 

tofacitinib 5 mg BD III 74 0.6 397 1.1 3.2 87 18.8 (89) 

CDK 
inhibitor palbociclib 125 mg QD IV 46 0.15 116 6 - 12 29 2583 63 

IBRANCE 
(palbociclib)  

FDA prescribing 
information 

a standard dose for schedule 4/2 in GIST and RCC; lower dose of 37.5 mg QD for schedule 2/1 and pNET,  b standard dose for NSCLC; lower dose 

of 100 mg QD for PC, c increases to ~100 % when taken with food, d standard dose for CML and ALL; higher dose of 140 mg QD for accelerated 

phase (AP) ALL or CML, e standard dose for ALL, CML and GIST; higher doses of 600 mg QD for AP ALL or CML, and 400 mg BD for DFSP, 

f standard dose for CML; higher dose of 400 mg BD for resistant or intolerant CML and AP CML.  

Abbreviations: BD; twice daily, Cmax; maximum plasma concentration, CL/F; oral clearance, F; bioavailability, fu,p; fraction unbound in plasma, 

QD; once daily, tmax; time to maximum plasma concentration, t1/2; elimination half-life, VD/F; apparent volume of distribution.   
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Table 1.4: Metabolic enzymes and transporters involved in kinase inhibitor disposition 

Class Agents 

Metabolic enzymes 

Transporters 

FDA Guidance 
Regarding Use of 

Concomitant 
Medications 

Altering CYP3A4 
Activity a 

Referen
ce    

Functionalisation Conjugatio
n 

Active 
Metabolites 

Strong 
Induce

rs 

Strong 
Inhibito

rs 

VEGF inhibitors 

axitinib CYP3A4, CYP1A2 UGT No   

Avoid; 
reduce 
axitinib 
dose by 

50% 

(90) 

cabozantin
ib 

Major: CYP3A4, 

Minor: CYP2C9 
 No  Avoid Avoid 

(57) 

lenvatinib CYP3A4, aldehyde 
oxidase 

 Yes P-gp, BCRP   (58) 

nintedanib CYP3A4 

UGT1A1, 
UGT1A7, 
UGT1A8, 
UGT1A10 

No P-gp Avoid Monitor 

(91) 

pazopanib Major: CYP3A4, 
CYP1A2,  Minor: 

 No P-gp, BCRP Alterna Avoid; 
reduce 

(92) 
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CYP2C8 te pazopani
b dose to 
400 mg 

QD 

regorafeni
b CYP3A4 UGT1A9 Yes MRP2, 

OATP1B1 Avoid Avoid (82) 

sorafenib CYP3A4 UGT1A9 Yes P-gp 

Caution
; 

increas
e 

sorafeni
b dose, 
monitor 

 

(90) 

sunitinib CYP3A4  Yes P-gp, BCRP 

Increas
e 

sunitini
b dose 
to 87.5 
mg QD 

b 

Reduce 
sunitinib 
dose to 
37.5 mg 

QD c 

(90) 

vandetani
b CYP3A4 FMO1, 

FMO3 Yes  Avoid  (66) 

EGFR inhibitors afatinib CYP3A4 FMO3 No P-gp, BCRP 

d [P-gp: 
increas

e 
afatinib 
dose by 
10 mg 

d [P-gp: 
reduce 
afatinib 
dose by 
10 mg 
until 

(93) 
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as 
tolerate

d] 

tolerated
] 

erlotinib 

Major: CYP3A4, 
CYP3A5, Minor: 

CYP2C8, CYP2D6, 
CYP1A1, CYP1A2 

 Yes P-gp, BCRP 

Increas
e 

erlotini
b dose 

Reduce 
erlotinib 

dose 

(90) 

gefitinib CYP3A4, CYP3A5, 
CYP2D6, CYP1A1 

 Yes BCRP 

Increas
e 

gefitini
b dose 
to 500 

mg QD 

Monitor 

(90) 

lapatinib 
Major: CYP3A4, 
CYP3A5, Minor: 

CYP2C19, CYP2C8 
 Yes 

P-gp, BCRP, 
HOCT1, 

OATP1B1 
Avoid Avoid 

(90) 

osimertini
b CYP3A  Yes P-gp, BCRP Avoid Avoid (94) 

ALK inhibitors 

alectinib CYP3A4  Yes    (95) 

ceritinib CYP3A4  No P-gp Avoid 

Avoid; 
reduce 
ceritinib 
dose to 
150 mg 

QD 

(75) 
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crizotinib CYP3A4, CYP3A5  Yes  Avoid Avoid (96) 

BRAF / MEK 
inhibitors 

cobimetini
b CYP3A4 UGT2B7 No P-gp Avoid Avoid (78) 

dabrafenib CYP3A4, CYP2C8  Yes  Avoid e Avoid e (97) 

trametinib CYP3A4 UGT No  Avoid e Avoid e (80) 

vemurafen
ib CYP3A4  No P-gp Caution Caution (81) 

BCR-ABL 
inhibitors 

bosutinib CYP3A4, CYP3A5  No  Avoid f Avoid f (82) 

dasatinib CYP3A4 
Minor: 

FMO-3 and 
UGT 

Yes P-gp, BCRP 

Avoid; 
increas

e 
dasatini
b dose 

Avoid; 
reduce 

dasatinib 
dose to 
20 mg 
QD g, 

monitor 

(90) 

imatinib 

Major: CYP3A4, 
CYP3A5, Minor: 

CYP1A2, CYP2D6, 
CYP2C9, 
CYP2C19, 

CYP1A1, CYP1B1 

Minor: 
FMO-3 Yes 

P-gp, BCRP, 
MRP4, 

OATP1A2, 
HOCT1 

Avoid; 
increas

e 
imatini
b dose 

by 
50%, 

monitor 
clinical 
respons

 

(90) 
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e 

nilotinib CYP3A4, CYP3A5, 
CYP2C8 

 No P-gp, BCRP Avoid 

Avoid; 
reduce 
nilotinib 

dose, 
monitor 

QTc 

(90) 

ponatinib CYP3A4  Yes P-gp  

Reduce 
ponatinib 
dose to 
30 mg 
QD 

(86) 

BTK inhibitors ibrutinib 
Major: CYP3A4 

Minor: CYP2D6 
 Yes  Avoid 

Avoid; 
reduce 
ibrutinib 
dose to 
140 mg 

QD, 
monitor 

(98) 

PI3K inhibitors idelalisib 
Major: aldehyde 

oxidase 

Minor: CYP3A4 
UGT1A4 Yes P-gp Avoid Avoid 

(88) 

JAK inhibitor ruxolitinib CYP3A4  Yes   

Reduce 
ruxolitini
b dose to 

10 mg 
BD, 

(99) 
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monitor h 

tofacitinib 
Major: CYP3A4, 

Minor: CYP2C19 
 No   

Reduce 
tofacitini
b dose to 
5 mg QD 

(89) 

CDK inhibitor palbocicli
b CYP3A SULT2A1 No  Avoid 

Avoid; 
reduce 

palbocicl
ib dose 

to 75 mg 
QD 

(100) 

a Descriptors regarding FDA labelling: Alternate: Consider an alternate concomitant medication, Avoid: Avoid use of concomitant medication, 

Caution:  Continuous concomitant administration, Monitor: monitor closely for tolerability (unless specified otherwise). b Dose escalation for 

standard 50mg dose, for lower dose of 37.5 mg dose escalation to 62.5 mg recommended. c Dose reduction for standard 50mg dose, for lower dose 

of 37.5 mg dose reduction to 25 mg recommended. d No advise specified regarding concomitant administration of drugs affecting CYP3A4 activity. 

e Advice specified for concomitant use of strong inducers or inhibitors of CYP3A4 and CYP2C8. f Advice specified for concomitant use of 

moderate and strong inducers or inhibitors of CYP3A4/5. g Dose reduction for standard 100mg dose, for higher dose of 140 mg dose reduction to 

40 mg recommended. h In patients with a platelet count greater than or equal to 100 x 109 /L; avoid in patients with platelet counts less than 100 x 

109 /L.
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1.5 Pharmacokinetics 

For many KIs disposition is directly linked to the physiochemical properties of the drug. By 

way of example, most KIs are either neutral or weak basic compounds and pKa is strongly 

associated with pH dependent solubility (discussed in section 1.5.3). The physiochemical 

properties of individual KIs are summarised in Table 1.2. SMILES strings obtained from the 

PubChem database (https://pubchem.ncbi.nlm.nih.gov/) were used to generate 2-dimensiona l 

structures in Marvin. Calculator Plugins were then used to calculated structural properties 

(Marvin 16.4.18.0, 2016, ChemAxon, http://www.chemaxon.com). Mean pharmacokinetic 

(PK) parameters describing patient exposure to individual KIs (bioavailability; F, fraction 

unbound in plasma; fu, maximum plasma concentration; Cmax, time to maximum plasma 

concentration; tmax, elimination half-life; t1/2, apparent volume of distribution; VD/F, and oral 

clearance; CL/F) are summarised in Table 1.3.  

1.5.1 Absorption and Distribution 

With the exception of sunitinib (6 – 12 hrs), KIs achieve a peak plasma concentration within 6 

hrs of oral dosing (46, 101, 102). Oral bioavailability differs between KIs, ranging from 20 % 

for pazopanib up to 95 % for dabrafenib, primarily due to differences in the rate and extent of 

gastrointestinal absorption. In addition to differing between KIs, gastrointestinal absorption for 

individual KIs is affected by multiple environmental and physiological factors (discussed in 

section 1.5.3) resulting in substantial inter- and intra- individual variability in exposure (103). 

As KIs are typically ‘low clearance’ substrates for metabolic pathways (i.e. EH < 0.2 or CLH < 

18 L/hr) factors affecting gastrointestinal and first-pass metabolism such as drug-drug 

interactions (DDIs) have a minor effect on bioavailability (104). Multiple KIs including 

nilotinib and sorafenib exhibit non-proportional increases in exposure with dose escalation, 

which may be due to factors such as saturation of absorption sites or transporter (p-

http://www.chemaxon.com/
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glycoprotein; P-gp) mediated interactions (105, 106). KIs are highly protein bound (fu < 0.1) 

and distribute extensively into tissue. As such, KIs are characterised by a volume of distribution 

(Vd) in excess of total body water, typically in the order of 100s to 1,000s of litres, but in some 

cases as high as 10,000 L (ibrutinib), and a prolonged terminal half-life, frequently ranging 

from 24 to 48 hrs. Notably, the Vd for more basic KIs tends to be higher than that of neutral 

KIs.  

1.5.2 Metabolism and Elimination  

KIs are primarily cleared from the systemic circulation through hepatic metabolism and biliary 

excretion, with elimination of unchanged drug in urine accounting for < 10 % of total systemic 

clearance (90, 101, 102). As such, inter-individual variability in hepatic and biliary, but not 

renal, clearance pathways are potential sources of variability in KI exposure. The key enzymes 

and transporters involved in the elimination of individual KIs are summarised in (Table 1. 4). 

Many KIs including axitinib, bosutinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, 

nilotinib, sorafenib and sunitinib primarily undergo cytochrome P450 (CYP) 3A4-catalysed 

oxidative metabolism. This serves as both a metabolic activation and clearance pathway, with 

other CYP (primarily 2C sub-family and 2D6) and UDP-glucuronosyltransferases (primarily 

UGT1A9) playing lesser roles (90). A notable exception being idelalisib, which is primarily 

metabolised by aldehyde oxidase, with lesser contributions from CYP3A4 and UGT1A4. With 

the exception of dasatinib, KIs are also substrates and/or inhibitors for the efflux and influx 

transporters P-gp and organic anion transport peptide 1B1 (OATP1B1). KI elimination is 

primarily determined by hepatic clearance via CYP3A4-mediated oxidative pathways, and P-

gp-mediated biliary excretion (90, 102).  

However, in addition to being substrates for CYP3A4, multiple KIs are also potent competitive 

inhibitors of this enzyme with Ki values in the sub- to low- micromolar range (107). As such, 
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these KIs have the potential to inhibit their own metabolism resulting in low km / saturable 

metabolism (108). Additionally, multiple KIs including crizotinib cause time dependent 

inhibition of CYP3A4, and as such have the capacity to cause auto-inhibition. Accordingly, it 

is postulated that with chronic dosing metabolism via alternate CYP pathways may contribute 

significantly to systemic clearance. Notable in this regard is evidence demonstrating a minimal 

effect of ritonavir, a potent inhibitor of CYP3A4, on the steady-state PK of imatinib (109). 

Limited recent complementary in vitro data support a potential role of CYP2C8 interactions 

and polymorphisms as a source of inter-individual variability in steady-state imatinib 

elimination (110)     

1.5.3 Inter-Individual Variability in Absorption  

As lipophilic organic bases (111) KIs are typically Biopharmaceutics Classification System 

(BCS) class II or class IV drugs that exhibit either low solubility and high permeability (class 

II) or low solubility and low permeability (class IV) (Table 1.4). Many KIs including axitinib, 

crizotinib, dasatinib, erlotinib, gefitinib, lapatinib, nilotinib, pazopanib, sunitinib and 

vandetanib exhibit pH-sensitive solubility (105), with a rapid and marked reduction in 

solubility above a pH of 2.0 (112). As such, co-administration of acid-supressing agents (e.g. 

antacids, proton-pump inhibitors and H2-antagonists), which increase gastrointestinal pH from 

approximately 1.0 to 4.0, is postulated to impair gastrointestinal KI absorption leading to a 

reduction in exposure and potential failure of therapy (105). This interaction is supported by 

evidence of reduced Cmax and area under the plasma concentration time curve (AUC) for 

axitinib, dasatinib, erlotinib, gefitinib and nilotinib when administered with, or shortly after, 

acid-supressing agents (105). Recent evidence suggest that the effect of concomitant proton 

pump inhibitor (PPI; esomeprazole) use on erlotinib bioavailability may be overcome by co-

administration of erlotinib with an acidic beverage (cola) (113). Co-administration of cola with 
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erlotinib in patients not treated with a PPI had a marginal effect on erlotinib bioavailability.     

Since many KIs are both highly lipophilic and exhibit pH-dependant solubility, the impact of 

food consumption on absorption is complex and dependent on a number of variables including 

meal volume and timing, caloric, liquid, fat and carbohydrate content, temperature, and 

physical composition (114). Consistent with this complexity there are variable reports 

regarding the impact of food consumption on KI absorption. Differences in bioavailability 

between fed- and fasting- states have been reported for at least six KIs (115, 116). However, 

despite exhibiting pH-sensitive solubility, sunitinib bioavailability is apparently not influenced 

by food consumption (117). When considering evidence for the impact of food consumption 

on KI absorption it is important to acknowledge the challenges associated with characterising 

these complex effects even under controlled conditions. By way of example lapatinib 

bioavailability, which does differ between fed- and fasting- states, may be increased between 

2.7- and 4.3- fold depending on the fat content of the meal (118). Given the inconsistent impact 

of food consumption on KI absorption, recommendations for dosing in the fasted state in order 

to achieve consistent therapeutic exposure are supported. As KIs are typically low hepatic 

clearance drugs (EH < 0.2, CLH < 18 L/hr), factors affecting gastrointestinal and first-pass 

metabolism such as drug-drug interactions (DDIs) have a minor effect on bioavailability (104). 

1.5.4 Inter-Individual Variability in Metabolism and Elimination  

As KIs are primarily ‘low CLH’ CYP substrates the rate of clearance is affected by fu and 

intrinsic enzyme activity (CLint) (104). Clinically relevant inter-individual variability in 

CYP3A4, P-gp and OATP1B1 activities due to inherent (age, gender, pharmacogenetic) and 

environmental (diet, disease, polypharmacy) factors is well established (119, 120). Multiple 

covariates may lead to inter- and intra- individual variability in KI exposure. Given the broad 

and inter-related substrate, inducer and inhibitor profiles of CYP3A4 and P-gp  (121, 122), and 
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the high prevalence of polypharmacy in older cancer patients to address multiple co-

morbidities and KI related toxicities (123), DDIs involving weak / moderate inducers or 

inhibitors of CYP3A4 and P-gp represent potential sources of inter-individual variability in KI 

exposure. This variability in KI exposure is frequently clinically relevant and can manifest as 

therapeutic failure due to reduced tumour exposure resulting from enhanced clearance or 

impaired uptake, or toxicity due to increased systemic exposure resulting from impaired 

clearance or enhanced uptake (122). Notably, with the exception of alectinib and lenvatinib, 

FDA labelling for all approved KIs advise avoiding concomitant use of strong CYP3A4 inducer 

and or inhibitors, and specify dose modifications where concomitant use cannot be avoided 

typically with monitoring of tolerability and/or efficacy. Indeed, multiple medications 

including verapamil, erythromycin, clarithromycin, fluconazole and itraconazole have been 

reported to increase KI exposure, predisposing patients to toxicity and reducing tolerability, by 

reducing CYP3A4 and P-gp activities (69). 

 

1.6 Addressing Inter-Individual Variability in Exposure 

The use of KIs is commonly associated with a lack of treatment response (i.e. therapeutic 

failure). As ‘targeted therapies’, despite limiting clinical trials to individuals on the basis of 

pharmacodynamic characteristics (e.g. tumour histology and genotype) associated with 

efficacy, response rates in the range 36 to 78 % are routinely reported (90). Similarly, KI 

therapy is commonly associated with severe adverse drug reactions (ADRs), in particular Grade 

3 fatigue, hypertension, gastrointestinal, hepatobiliary and skin toxicities. The frequency of 

severe ADRs that necessitate cessation of therapy or modification of dosing regimens differs 

between individual KIs and classes, but is typically clinically relevant. By way of example, KIs 

that inhibit VEGFR, such as axitinib, pazopanib, sorafenib and sunitinib are associated with 
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cardiovascular toxicities such as grade 3 hypertension, thromboembolism and bleeding (124). 

While a proportion of the therapeutic failures and ADRs associated with KI use are 

unavoidable, by addressing inter-individual variability in KI exposure and ensuring optimal 

exposure through precision KI dosing, it is plausible that the incidence of sub-optimal 

outcomes may be minimised. Multiple approaches have been proposed to facilitate precision 

KI dosing, each with potential advantages and limitations. When selecting a precision dosing 

strategy for KIs, the criteria that are likely to be associated with the greatest clinical benefit 

include the capacity to (i) identify patients at greatest risk of significant under- or over- dosing 

from fixed-dose prescribing, (ii) account for all potential sources of inter-individual variability 

in exposure in a cohort of clinically complex patients, and (iii) minimise impact on compliance 

due to increased complexity of dosing instructions. Additionally, when evaluating the potential 

utility of precision KI dosing strategies broader considerations such as the strength of evidence, 

capacity to generate evidence of suitable quality, clinical judgement and patient preferences 

must also be addressed.   

1.6.1 Therapeutic Drug Monitoring 

A benefit from individualising KI dosing on the basis of plasma-KI concentration has been 

reported for a panel of KIs (44, 79, 80) and target PK parameters, typically steady-state trough 

concentration (Css_trough), have been proposed for multiple KIs and indications (125) (Table 

1.5). When considering the evidence underpinning therapeutic drug monitoring (TDM) guided 

KI dosing it is important to acknowledge that proposed target Ctrough values are often derived 

by secondary analysis of data from clinical trials, generally Phase-I dose escalation studies. By 

definition, these studies are not fundamentally designed to address questions regarding 

precision dosing as they are often conducted in unselected patient cohorts including terminally 

ill patients and do not accurately represent the intended patient population.  Additionally, the 
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sample size of Phase I studies is usually very low compared to later trials. These observational 

analyses involve correlation of markers of exposure (Ctrough or AUC) and efficacy (including 

response, response rate, progression free and overall survival). Furthermore, many associations 

between KI exposure and efficacy (126-128) are characterised by ‘continuous’ rather than 

‘quantal’ (clearly discriminated) relationships. As such, in the absence of pre-specified 

assessment criteria, target Ctrough values are subject to arbitrary determination with a substantial 

risk of bias. This does not entirely negate the value of this evidence but, rather, means that 

caution must be applied when interpreting established targets. Indeed, acknowledging these 

limitations, de Wit et al. (125) propose that there is currently sufficient evidence to apply target 

Ctrough for three KIs; imatinib (1,100 µg/L), sunitinib (37.5 µg/L with continuous dosing, 50 

µg/L with intermittent dosing) and pazopanib (20,000 µg/L). Notably, in contrast to the 

traditional application of TDM where target concentrations are determined for both minimal 

(ensuring efficacy) and maximal (avoiding toxicity) exposure, despite reported associations 

between exposure and toxicity for many KIs (125), TDM-guided KI dosing currently focusses 

on ensuring exposure above a minimal target Ctrough. The role of maximal exposure targets 

remains to be addressed for these drugs. 

When considering the feasibility of definitively characterising robust target PK parameters 

logistical and financial considerations must also be considered. Based on published data, it was 

reported that in order to achieve 80 % power to demonstrate improved clinical outcomes 

associated with TDM-guided sunitinib dosing for gastrointestinal stromal tumours (GIST), a 

prospective trial would require at least 600 subjects with a 2-year follow-up (129). As sample 

size is inversely related to the effect size, considering that this calculation was performed in a 

context of a large observational effect, whereby a much small effect may still be considered 

significant, it is likely that the actual sample size required to justify a benefit and cost-

effectiveness for TDM-guided KI dosing may, in fact, be even larger than has been reported. 
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The universal implementation of TDM-guided KI dosing also requires substantial development 

in terms of analytical platforms with the capacity to quantify plasma concentrations for this 

rapidly expanding class of drugs. Liquid chromatography (LC) based approaches with 

detection by ultra violet (UV) absorbance or mass spectrometry (MS) have been reported for 

the quantification of plasma concentrations of many KIs. However, these approaches are 

typically designed to facilitate the analytical requirements of a specific study. Approaches 

utilising UV detection normally facilitate the measurement of only a single KI, and as such are 

of limited utility in terms of TDM platforms. Recently, a number of multi-analyte LC-MS 

based approaches with the capacity to quantify between 3 and 9 KIs have been reported. 

Continued development and expansion of these analytical platforms is critical to facilitate this 

approach. Additionally, with routine analytical platforms achieving much higher sensitivity the 

potential use of micro-sampling techniques such as blood spot analysis warrant attention as 

these techniques facilitate less invasive sample collection for cancer patients, particularly in 

paediatric patients. The comparative merits of quantifying total versus unbound plasma KI 

concentrations remains to be considered. Analytical approaches such as MS may have the 

capacity to accurately quantify unbound KI concentrations despite their low total plasma 

concentration and extensive protein binding. However, given the analytical challenges 

demonstrated when determining fu for KIs by standard approaches such as equilibrium dialysis 

(111) due to the low aqueous solubility of these drugs, determination of absolute unbound 

plasma KI concentration is likely to be equally challenging. 
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Table 1.5: Kinase inhibitor pharmacokinetics associated with superior clinical outcomes 

KI Indication Sample size PK Parameter Reference 

axitinib RCC 
168 AUC0-24 > 300 µg/L/hr (128) 

109 AUCSS > 605 µg/L/hr (130) 

erlotinib NSCLC 56 Ctrough  >1,810 µg/L (131) 

gefitinib NSCLC 30 Ctrough  > 200 µg/L (132) 

imatinib 
CML 605 a Ctrough  >1,000 µg/L (133, 134) 

GIST 73 Ctrough  >1,100 µg/L (126) 

nilotinib 
CML b 30 Ctrough  > 761 µg/L (135) 

CML c 455 Ctrough  > 829 µg/L (136) 

pazopanib 
RCC 

10 Ctrough > 15,000 µg/L (92) 

205 Ctrough > 20,500 µg/L (137) 

HCC 28 Ctrough > 20,000 µg/L (138) 

sorafenib HCC 36 Cmax  > 4,780 µg/L (139) 

sunitinib 
RCC 146 AUCSS  > 800 µg/L d (140) 

GIST 278 AUCSS  > 600 µg/L e (140) 

 

a total sample size across two studies, individual study samples sizes of 351 and 254 patients, 

b imatinib pre-treated CML c untreated (newly diagnosed CML)  d intermittent dosing 

extrapolated to combine Ctrough for sunitinib and desethyl-sunitinib (active metabolite) of > 50 

µg/L, e continuous dosing, extrapolated to combine Ctrough for sunitinib and desethyl-sunitinib 

(active metabolite) of > 37.5 µg/L 
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1.6.2 Other existing strategies 

1.6.2.1 Toxicity Guided Dosing  

Toxicity based KI dosing strategies have recently been considered as simple and practical 

alternatives to TDM-guided KI dosing (141, 142). In broad terms these approaches are used to 

optimise KI dosing based on the presence (or absence) of particular toxicities. There are subtle 

nuances in the potential application of these strategies. Firstly, in a similar manner to the 

application of target Ctrough for TDM-guided KI dosing, efficacy-related toxicities (e.g. 

increases in blood pressure with VEGFR inhibitors (143)) may be targeted as predictive 

indicators of efficacy (toxicity-guided dosing). Alternatively, in a more crude approach, KI 

dose may be commenced at a threshold of unacceptable toxicity then adjusted in order to 

maximise the exposure and hence efficacy (toxicity-adjusted dosing; section 1.6.2.2). 

Recent studies have evaluated the feasibility of utilizing on-target toxicities as surrogate 

indicators of efficacy for multiple classes of KIs (144). Foremost amongst these associations 

is increasing evidence that induction of hypertension resulting from disruption of VEGFR-

mediated angiogenesis reflects adequate pharmacological activity of VEGFR inhibitors (143). 

However alternate mechanisms of KI-induced hypertension cannot be discounted (145) and 

may cofound associations. As such, additional studies are required to characterise VEGFR 

inhibitor induced hypertension and the potential impact of confounding factors before this 

marker can be used in routine practice. Similarly mechanistic, albeit complex, evidence linking 

VEGFR inhibition with proteinuria indicates that the efficacy of VEGFR inhibitors may 

correlate with the incidence of on-therapy proteinuria. However, there is limited clinical 

evidence to substantiate this association. Notably, a recent pooled analysis of phase III studies 

involving metastatic renal cell carcinoma (mRCC) patients treated with pazopanib or sunitinib 

demonstrated that a number of covariates including Asian ethnicity, history of diabetes, blood 
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pressure, pre-existing proteinuria and prior nephrectomy were independent predictors of on-

therapy proteinuria. The latter was associated with improved survival (146). Conversely, while 

the precise mechanism of KI induced hypothyroidism is poorly understood, associations 

between clinical outcomes and the incidence of hypothyroidism have been reported for 

multiple VEGFR inhibitors including axitinib, sorafenib and sunitinib (147-149). As for 

hypertension, additional studies are required to characterise associations with proteinuria and 

hypothyroidism, the potential impact of confounding factors and survival outcomes before 

these markers can be used in routine practice. There is extensive literature evaluating 

associations between the presence and severity of skin rash and clinical efficacy in patients 

treated with EGFR inhibitors such as erlotinib and gefitinib across a range of malignancies 

(150-154), although the impact of external factors on the predictive value of skin reactions 

remains to be addressed. Notably a phase II 'dosing-to-rash' dose escalation study with erlotinib 

failed to demonstrate correlations between exposure and either rash severity or response (155). 

In evaluating the role of toxicity-guided KI dosing strategies, it is critical to note that individua l 

KIs exhibit distinct toxicity profiles, and that associations with exposure and / or efficacy have 

been evaluated for a limited panel of KIs. 

1.6.2.2 Toxicity Adjusted Dosing 

Toxicity-adjusted dosing (TAD) has been used in medical oncology for many years, where 

severe toxicity (e.g. myelosuppression, peripheral neuropathy) is a common limiting 

determinant of dose intensity for many intravenously (IV) administered systemic cytotoxic 

anticancer drugs (156).  For systemic cytotoxic anticancer drugs there is a strong association 

between dose intensity and the efficacy of a regimen whereby reductions in dose intensity have 

been shown to compromise both the effectiveness of a regimen and patient survival, leading to 

a negative perception of this approach. However, the continuous nature of the relationship 

between KI exposure and efficacy (126-128, 140, 157), which underpins an implication that 
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maximising exposure will maximise efficacy, supports the concept that maximising KI 

exposure to a point of unacceptable toxicity via TAD may be associated with optimal efficacy 

outcomes. 

When considering the application of TAD (typically involving dose reduction), the negative 

perception regarding a potential loss of efficacy (158) must be addressed. Notably, for multiple 

KIs in contrast to this perceived negative impact of dose reduction of efficacy, studies have 

demonstrated either minimal impact or paradoxical improvement in efficacy among patients 

requiring dose reduction (159, 160). Significant in this regard, a retrospective analysis of two 

studies of mRCC with sunitinib indicates that, despite exhibiting comparable exposures 

(measured as Ctrough), patients who required dose reduction due to toxicity had superior PFS 

compared to patients who could tolerate the recommended dose. Similarly, it has been 

demonstrated that the use of a modified sunitinib dosing schedule for mRCC (i.e. 2 wks 

treatment / 1 wks break) in patients who are unable to tolerate the standard dosing schedule 

(i.e. 4 wks treatment / 2 wks break) due to severe toxicity is not associated with inferior 

outcomes (161, 162). Furthermore, a retrospective analysis demonstrated that patients who 

tolerated the standard sunitinib dosing schedule with minimal or no toxicity had inferior 

survival outcomes compared to those who experienced ≥ grade 2 toxicity (161).  

An additional consideration for KI TAD strategies that is not an issue for IV systemic cytotoxic 

anticancer drugs is the potential negative impact on treatment compliance. Any negative impact 

would need to be addressed given that improving compliance to KI dosing is already an 

emerging issue in oncology practice, with adherence rates as low as 16 % reported for some 

KIs (163). Furthermore, in addition to considerations regarding compliance in the presence of 

severe toxicity, it is necessary to consider the potential risk of underreporting of toxicity due 

to patient concerns regarding treatment interruption, which is estimated to occur in up to 66 % 
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of cases (164). In order to address these issues, patient engagement and education must be a 

core component of any TAD approach.  

Given the comparable time-course of TDM and TAD strategies, it is plausible that these 

approaches may be applied in either an alternative or complementary manner to achieve 

precision KI dosing. While TAD has an established role in oncology practice, there is limited 

specific evidence for KI TAD strategies. The strongest evidence for this approach comes from 

a longitudinal study of TAD for sunitinib in patients (n =27) with mRCC, which did 

demonstrate a significant reduction in inter-patient variability in exposure, with 89 % of 

patients achieving target exposure (Ctrough > 50 ng/mL) (142). Substantial additional trials to 

evaluate the comparative benefit of TDM and TAD strategies are warranted.  

1.6.2.3 Target Concentration Intervention 

The approach of TDM and TAD can also be used in combination and is referred to as Target 

Concentration Intervention (TCI). This approach allows optimisation of efficacy and toxicity 

simultaneously on an individual basis rather than a population approach like TDM. The TCI 

approach finds the ideal concentration for an individual patient where efficacy is maximum 

and toxicity is acceptable or negligible. Thus when any interacting drug is added to therapy or 

a significant covariate changes, measuring a concentration and then dose adjusted can be used 

to ensure the patient returns back to their ideal (target) concentration (165).  

1.6.2.4 Pharmacogenetic Testing 

Pharmacogenomics (PGx) is generally considered among the best established and most 

important approaches to facilitate personalised medicine. Indeed, when considering targeted 

anti-cancer drugs, there are numerous examples where PGx is used to guide treatment 

decisions, such as selection of mAb therapy for the treatment of metastatic colorectal cancer 

(mCRC) (166-168). While substantial efforts have been made to elucidate direct CYP3A4 
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genotypes associated with increased or decreased catalytic activity, there has been limited 

success. Of the reported CY3A4 genotypes associated with altered substrate turnover only the 

CYP3A4*22 allele is considered clinically relevant and given the low frequency of this allele 

(5-7% in Caucasian populations) (169), testing is unlikely to account for much of the observed 

inter-individual variability in CYP3A4 activity. Intriguingly, emerging data suggest that PGx 

testing for transcription factors involved in the regulation of CYP3A4 may be a more promising 

PGx approach for this enzyme (170), although quantitative data are currently lacking. While 

there is some evidence that the contribution of CYP3A4 decreases with chronic dosing, there 

is currently no evidence demonstrating that pharmacogenetic testing for other CYP accounts 

for variability in KI exposure. Given the major role of CYP3A4 in determining KI exposure, 

while potentially useful as an adjunct, it is unlikely that PGx alone will be sufficient to guide 

KI dosing.         

1.6.2.5 In vivo Pathway Phenotyping  

In vivo pathway phenotyping (IVP) has been proposed as a novel approach to account for inter-

individual variability in KI exposure (171). While routinely used in drug development, in 

particular in the evaluation of drug-drug interactions, with the exception of creatinine clearance 

as a marker of renal function, IVP is not routinely used to evaluate drug exposure in clinical 

practice. IVP typically involves administering a sub-therapeutic dose of a rapidly cleared 

surrogate probe drug or cocktail of probe drugs that are substrates for the pathways involved 

in the disposition of the drug of interest, with the collection of a series of timed blood samples, 

typically over a 4 to 8 hr period (172). For KIs, in a research setting IVP for CYP3A4 and P-

gp has been demonstrated to correlate with sunitinib clearance and risk of toxicity, but did not 

fully account for inter-individual variability in exposure (171). This observation is consistent 

with a contribution of variability in sunitinib gastrointestinal absorption, which cannot be 

accounted for using this approach. As such, while potentially useful for facilitating initial dose 
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stratification and identifying patients at the highest risk of sub-optimal outcomes requiring 

robust TDM follow-up, like PGx, IVP is unlikely to yield sufficient insights to independently 

guide KI dosing (171).  

Furthermore, while IVP may assist in predicting KI exposure, the application of this approach 

to oncology practice is likely to be hindered by financial implications, logistical complexity 

and potential adverse consequences associated with administering additional drugs and blood 

sampling over several hours. In particular, while safe and feasible in healthy volunteers, the 

process of administering probe drugs and collecting blood samples via cannulation typically 

over a period of 6 to 12 hrs may result in complications in frail cancer patients. A more 

desirable approach may be to utilise phenotypes based on endogenous markers of the key 

pathways involved in KI disposition, in much the same way that plasma-creatinine 

concentration is used as an marker of renal function, and hence the dosing of renally cleared 

drugs. While a number of endogenous compounds have been demonstrated to reflect changes 

in CYP3A4 activity resulting from inhibition or induction (173), there are currently no 

established endogenous markers of absolute activity for CYP3A4. Coproporphyrins I and III 

have been proposed as potential endogenous functional markers of OATP1B activity based on 

the findings of in vitro (cell line, human and monkey hepatocytes) and pre-clinical animal 

(oatp1a/1b knock-out mice and cynomolgus monkey) studies (174). There are no human data 

to support the use of coproporphyrins I and III or any other endogenous compound as a marker 

of absolute activity for P-gp or OATP1B1. Given the potential application in terms of guiding 

drug dosing further studies to elucidate endogenous markers of CYP3A4, P-gp and OATP 

activities are warranted.    

 

 



79 
 

1.7 Hypothesis and Aims 

The general hypothesis underpinning this thesis is that precision dosing strategies can be used 

to optimise KI dosing in order to maximise efficacy and minimise toxicity. In order to address 

this overarching hypothesis, a series of complementary studies were performed to address sub-

hypotheses. These sub-hypotheses were addressed with the following specific aims: 

Hypothesis 1: Physiologically based pharmacokinetic (PBPK) models built using in vitro data 

trained on clinical trial reports may be used to identify drivers of variability in KI exposure. 

Aim 1: Investigate the in vitro substrate depletion kinetics for a panel of EGFR inhibitors 

in the presence of mixed CYP and UGT cofactors, specific and non-selective inhibitors to 

characterise the kinetics and enzyme involvement in hepatic clearance for these drugs.   

Aim 2: Evaluate PBPK modelling as a strategy to characterise the impact of physiologica l 

covariates and drug-drug interactions as sources of variability in EGFR inhibitor exposure. 

The studies performed to address Aim 1 identified CYP3A4 as a key protein involved in 

determining KI exposure, and identified ethnicity as potential, currently uncharacterised, 

source of variability in KI exposure.  

Hypothesis 2: Development of strategies that provide the capacity to characterise variability 

in CYP3A4 will facilitate marked advances in the ability to define KI exposure.   

Aim 3: Assess inter-racial variability in CYP3A4 activity and inducibility among healthy 

adult males of Caucasian and South Asian ancestry using an in vivo pathway reaction 

phenotyping trial. 

Aim 4: Investigate dietary markers of CYP3A4 as a means of phenotyping individuals to 

characterise variability in the activity of this enzyme.   
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Hypothesis 3: It is possible to address the limitations of existing analytical platforms and 

precision dosing strategies by applying advances in analytical platforms and technologies. 

Aim 5: Apply an ultra-performance liquid chromatography (UPLC) – mass spectrometry 

(MS) based assay for the quantification of TKIs as a platform for TDM 

Aim 6: Apply the PBPK modelling and TDM precision dosing strategies developed in 

Chapter II and IV to case studies to demonstrate the potential clinical application of these 

techniques 

Taken together, the studies undertaken through this thesis have developed, verified and 

demonstrated the application of two strategies to facilitate precision dosing of KIs in a manner 

that overcomes limitations of existing strategies.  
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CHAPTER II: ASSESS PBPK 
MODELLING AS AN APPROACH TO 
EVALUATE VARIABILITY IN EGFR 

KI EXPOSURE 

 

 

van Dyk M, Rowland A (2017) Physiologically-based pharmacokinetic modelling as an 

approach to evaluate the effect of covariates and drug-drug interactions on variability in 

epidermal growth factor receptor kinase inhibitor exposure. Translational Cancer Research, 

10: 1600-1615. 

  

The results presented in this chapter have 

been reported in: 
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2.1 Introduction  

As described in Chapter I environmental, demographic, and genetic factors can affect exposure 

to kinase inhibitors, resulting in inconsistencies in clinical response to these drugs in patients 

(175, 176). In particular, inter-individual variability in drug exposure has been widely reported 

in a number of studies where a large proportion of patients experience either a lack of efficacy 

due to sub-therapeutic dosing or toxicity as a result of excessive dosing (122, 177).  

As NSCLC is responsible for the highest number of cancer related deaths globally, EGFR KIs 

are frequently prescribed to terminally ill patients at high doses therefore a number of EGFR 

KIs were selected to develop models to characterise exposure and to examine covariates likely 

to predict differences in exposure between populations. It is well established that afatinib, 

erlotinib and gefitinib are extensively metabolised by CYP 3A4. Wide inter- and intra- 

individual variability in the activity of this enzyme due to factors effecting expression is widely 

reported. In addition, these EGFR KIs are also substrates for various transporters, OATP1B1 

P-gp, in the intestinal tract and liver, which are all known to impact on exposure (90, 125, 178, 

179).  

In addition to the many physiological factors, that influence exposure to EGFR KIs, given the 

environment that they are prescribed in, it is very likely that patients are co-administered other 

medications. Many commonly prescribed medications such as antibiotics (e.g. clarithromycin) 

and antifungals (e.g. fluconazole) are also metabolised by CYP3A4 and are known to alter the 

activity of this enzyme, and consequently may alter EGFR KI exposure. Given that patients 

receive a standard fixed dosing regimen, it is no surprise that significant inter-individua l 

variability is an issue. Although, many clinicians recognise this, and research toward optimal 

EGFR KI dosing has received significant attention, the solution is still unclear and currently 

unaddressed in clinical practice due to a lack of prospective evidence. Therefore, to assist in 
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optimised EGFR KI dosing, the pharmacokinetics and hence exposure to these drugs is a key 

research focus.  

Physiologically based pharmacokinetic (PBPK) modelling, is a mechanistic ‘bottom up’ 

approach, whereby the concentration-time profile for a drug in a particular patient cohort is 

simulated based on the physiochemical and in vitro kinetics of the drug and the physiological 

characteristics of the patient cohort. PBPK modelling is routinely utilised for the prediction of 

pharmacokinetic behaviour of new chemical entities during drug development, where it can be 

applied to investigate the potential impact of covariates such as age, gender, and metabolic 

drug-drug interactions (DDIs) on drug exposure in various population groups (180-182). 

While, it has been recognised that CYP3A4 is the major enzyme responsible for the metabolic 

clearance of afatinib, erlotinib and gefitinib, the exact contribution of CYP3A4 to the clearance 

of these drugs is less clear (177). EGFR KIs exhibit complex pharmacokinetic behaviour with 

permeability and or solubility limited absorption, variable distribution profiles, complex 

metabolism, typically resulting in the formation of multiple metabolites and substantial 

transporter mediated clearance resulting in enterohepatic recirculation.  

This chapter describes a series of experiments performed to assess the in vitro human liver 

microsomal metabolism of afatinib, erlotinib and gefitinib using a substrate depletion approach 

that allowed for the total CYP, total UDP-glucuronosyltransferase (UGT), and specific 

CYP3A4 mediated metabolism to be quantified without the necessity to individually quantify 

the formation of each metabolite. The in vitro intrinsic clearance for afatinib, erlotinib and 

gefitinib determined by substrate depletion were used to develop PBPK modelling profiles for 

each compound. These profiles were validated using data from healthy volunteer trials. The 

capacity to predict the impact of covariates such as age, gender, and ethnicity reported in 

clinical trials, and the impact of co-administration with strong CYP3A4 inhibitors and inducers 
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on in vivo clearance were assessed using the Simcyp simulator (version 15.1). 

2.2 Methods 

2.2.1 Chemicals and Reagents 

Afatinib, erlotinib and gefitinib were purchased from Selleckchem (Boston, MA). Alamethicin, 

gucose-6-phosphate (G-6-P), G-6-P dehydrogenase, nicotinamide adenine dinucleotide 

phosphate (NADP), NADPH reductase, and UDP-glucuronic acid (UDP-GlcUA) were 

purchased from Sigma-Aldrich (St Louis, MO). Acetonitrile, ammonium acetate, formic acid 

and methanol were purchased from Merck Millipore (Melbourne, Australia). High purity water 

was obtained using a MilliQ Synergy UV Ultrapure water system (Merck Millipore, Sydney, 

Australia). All other solvents and reagents were of analytical grade or higher. 

2.2.2 Enzyme and Substrate Preparations  

Human liver microsomes (HLMs) were pooled from five individual livers (H7, H10, H12, H13, 

H40) obtained from the human liver bank of the Department of Clinical Pharmacology, 

Flinders University (Adelaide, Australia). Microsomes were prepared according to the method 

of Bowalgaha et al. (183). Approval was obtained from the Southern Adelaide Clinical 

Research Ethics Committee for the use of human liver tissue in drug disposition studies in vitro. 

HLMs were activated by pre-incubation with alamethicin (50 mg/mg microsomal protein), as 

described by Boase and Miners (184). HLM protein content was assessed according to standard 

measures (185). Afatinib, erlotinib and gefitinib were prepared in methanol such that the final 

solvent concentration in microsomal incubations was 1%.  
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2.2.3 Quantification of Substrate Depletion 

The rate of microsomal KI metabolism was quantified in incubation samples (2,000 µL) 

containing HLM (0.5 mg/mL), phosphate buffer (0.1 M; pH 7.4) and substrate (1 µM) in the 

presence and absence of CYP (1mM NADPH generating system) and/or UGT (5mM UDP-

GlcUA) cofactors (186, 187). The contribution of non-CYP3A4 metabolism was quantified in 

the presence of the selective CYP3A4 inhibitor (CYP3Cide; 0.5 µM). Following a 10 minute 

pre-incubation, reactions were initiated by the addition of substrate and the rate of depletion 

was assessed over three hours. Reactions were terminated with 4% acetic acid in methanol and 

samples were kept on ice. The supernatant fraction was isolated by centrifugation (5,000 g 10 

min, 10 °C). Substrate concentrations quantified in aliquots (200 µL) collected at 0, 30, 45, 60, 

90, 120, 150, 180, 240, 300 and 360 minutes were used to calculate the rate of KI clearance for 

incubations performed in the presence of the appropriate cofactors and inhibitor (CYP3A4).  

Substrate concentrations were quantified by high performance liquid chromatography (HPLC) 

(Agilent 1100 series instrument; Agilent Technologies, Sydney, Australia) with UV detection 

at the λmax for each analyte. Analytes were separated on a Waters NovaPak C18 analytical 

column (150 mm x 3.9 mm (id), 5 μm particle size; Waters Corporation, Milford, MA) using 

10mM ammonium acetate (pH 5.7; Mobile Phase A) with a gradient of 10 to 50 % acetonitrile 

(Mobile Phase B) over 5 minutes. 

2.2.4 Data Analysis 

All experiments were performed in triplicate and the mean analyte concentration was 

calculated from the integrated peaks in the chromatograms obtained from the HPLC. Total 

CYP and total UGT hepatic clearance was calculated based on the depletion half-life for 

incubations performed in the presence of the associated cofactors, using the equation: 
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CLint = 
0.693 × Vinc
t1/2 × P × fu

 

Where CLint is the in vitro intrinsic clearance, Vinc is the incubation volume, t1/2 is the substrate 

half-life in the incubation, P is the amount of protein in the incubation and fu is the fraction of 

substrate unbound in the incubation (188). CYP3A4 mediated metabolism was calculated by 

subtracting the CLint determined in the presence of CYP3Cide from total CYP CLint. 

Microsomal CLint were used as model inputs defining the metabolic clearance for each drug in 

the Simcyp® profiles.  

2.2.5 PBPK Structural Model  

Simulations were conducted utilising the Simcyp Simulator® (version 15.1) (189). Absorption 

was simulated using the advanced dissolution, absorption and metabolism (ADAM) sub-

model, which considers various compartments of the gastrointestinal tract and several 

processes such as dissolution, gastrointestinal fluid transit, gut wall permeation, drug 

degradation, intestinal metabolism, and active transport (190). The ADAM absorption sub-

model was used in conjunction with the whole body PBPK ‘fully-PBPK’ model, comprising 

individual organ compartments (191-193). The differential equations used by the simulator 

describing enzyme kinetics and the impact of co-variates have been described previously (181).  

2.2.6 PBPK Population Profile 

EGFR KI profiles were developed and validated utilising the Simcyp Healthy Volunteer 

population comprising of a 100 healthy individuals divided across 10 trials with 10 subjects 

each. Virtual subjects were aged between 20 to 50 years with a 50:50 female to male ratio. For 

simulations performed in cancer patients, the Genentech Cancer Population (194) was used; 
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this population comprised patients aged 26 to50 y/o with a 50:50 female to male ratio. 

2.2.7 PBPK Compound Profiles 

PBPK profiles for each compound were created based on individual reported physicochemical 

and distribution characteristics (177, 195) and in vitro microsomal CLint data assessed by 

substrate depletion. In the absence of robust in vitro data describing intestinal and hepatic 

transporter kinetics, these parameters were estimated using the Simcyp parameter estimation 

function. Pharmacokinetic data used to create the compound profile for each EGFR KI are 

summarised in Table 2.1. Once developed, profiles for each compound were validated by 

comparing pharmacokinetic parameters (AUC, Cmax and tmax) describing the simulated 

concentration-time profiles with those observed in clinical studies that were not used in the 

development of the profiles. Simulated and observed pharmacokinetic parameters for each 

EGFR KI are summarised in Table 2.2.  
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Table 2.1: Substrate and inhibitor parameter values used for KI substrate profile 

 Afatinib Erlotinib Gefitinib Source 
Physiochemical properties 

Molecular weight 485.9 393.4 446.9 (195) 

log Po:w 3.6 3.3 4.1 (177) 

Species Neutral Neutral Neutral (177) 

Blood binding properties 

B/P 2.12 1.397 3.206 Simcyp Predicted 

fup 0.07 0.11 0.15 (177) 

Absorption (advanced dissolution, absorption and metabolism model) 

PSA 88.6 74.7 68.7 (177) 

HBD 2 1 1 (177) 

Peff,man (10-4 cm/s) 0.838 2.26 2.63 Simcyp Predicted 

In vivo pharmacokinetic properties (full PB-PK model) 

Vss (L/kg) 18.48 9.26 23.17 Simcyp Predicted 

Prediction model 2 2 2  

Metabolism unbound CLint (µL/min/mg) 

CYP1A2  0.575  In vitro 

CYP2D6   1.91 In vitro 

CYP3A4 9.73 13.56 195.8 In vitro 

UGT 0.438  0.658 In vitro 

Transport CLint (µL/min/106 cells) 

OATP1B1 1161   Simcyp Predicted 

P-gp   105.5 Simcyp Predicted 
Abbreviations: Po:w, neutral species octanol: buffer partition coefficient; B/P, blood-to-plasma 

partition ratio; fup, fraction unbound in plasma; Vss, volume of distribution at steady state; CLpo, 

oral clearance; PSA, polar surface area; HBD, hydrogen bond donor; Peff,man, effective passive 

permeability in man.    
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Table 2.2: Comparison of geometric mean (± 95 % CI) simulated pharmacokinetic parameters with those observed in clinical studies. 

Kinase Inhibitor Dose Sample 
Sizea Study 

Pharmacokinetic Parameter 

Cmax (ng/mL) Tmax (hr) AUC (ng/mL/hr) 

Afatinib 
(196) 40mg 30 

Observed 25.2 (± 9.4)  4.0 (± 2.6)  324 (± 114) 

Simulated 26.7 (± 3.5) 3.5 (± 0.4) 352 (± 41) 

 Ratio of Means 0.94 1.14 0.92 

Erlotinib 
(197) 150mg 32 

Observed 1,003 (± 205) 2.0 (± 1.4) 14,145 (± 6,159) 

Simulated 1,010 (± 112) 2.4 (± 0.3) 14,088 (± 2,236) 

Ratio of Means 0.99 0.83 1.00 

Gefitinib 
(71) 250mg 23 

Observed 159 (± 56) 3.0 (± 2.5) 3,381 (± 1,156) 

Simulated 171 (± 22) 2.5 (± 0.3) 3,820 (± 686)  

Ratio of Means 0.93 1.20 0.89 

Abbreviations: AUC, area under the plasma concentration-time curve; Cmax, maximal plasma concentration; tmax, time taken to achieve maximal 

plasma concentration. a sample size of observed clinical trial. 
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Table 2.3: Comparison of mean simulated AUC and Cmax ratios with those observed in clinical studies. 

Kinase 
Inhibitor 

Age 
Range 

Sample 
Size Dose Probe 

Dosed 

Interaction 
Study 

Interaction Ratios 

Drug Dose Duration Cmax AUC 

Afatinib 
(198) 18 to 55 12 40mg Day 8 Rifampici

n 
600mg 

QD Day 1-7 

Observed 0.77 0.67 

Simulated 0.85 0.67 

Ratio 0.91 1.00 

Erlotinib  
(199) 19 to 59 14 150mg Day 15 Rifampici

n 
600mg 

QD Day 8-14 

Observed 0.71 0.34 

Simulated 0.79 0.53 

Ratio 0.90 0.64 

Gefitinib 
(71) 21 to 66 9 500mg Day 10 Rifampici

n 
600mg 

QD Day 1-16 

Observed 0.85 0.65 

Simulated 0.88 0.58 

Ratio 0.97 1.12 
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2.2.8 Assessing the Effect of Various Covariates on Exposure 

The effect of gender on EGFR KI exposure assessed by comparing exposure in all male and 

all female cohorts to an age and ethnicity matched cohort with a 50:50 female to male 

distribution was performed. The effect of age on EGFR KI exposure was assessed by 

comparing exposure in a geriatric population aged 65 – 90 years to a healthy 20 to 50 year old 

population. The effect of ethnicity was also assessed in Japanese, Chinese and South African 

population comprising males and females (50% female) aged 20 – 50 years. Simulations were 

also performed in various disease models. The impact of covariates on EGFR KI exposure are 

summarised in Table 2.3.  

 

2.3 Results 

2.3.1 Substrate Depletion by HLM 

No depletion of afatinib, erlotinib and gefitinib by HLM was observed in the absence of co-

factor. For incubations containing UDP-GlcUA, <10 % substrate depletion was observed over 

the three hour incubation (Figure 2.1). When NADPH was present in the absence of 

CYP3Cide, substrate depletion of up to 90 % was observed over three hours. The substrate 

depletion in incubations performed in the presence of both UDP-GlcUA and NADPH was 

equivalent to the sum of the depletion observed in incubation with each cofactor individua lly. 

Minimal (<10 %) substrate depletion was observed in the presence of CYP3Cide with NADPH. 

Intrinsic clearance values adjusted for non-specific binding to incubation components are 

summarised in Table 2.1. Observed clearances in the presence and absence of CYP3Cide were 

consistent with a major contribution of CYP3A4 to the metabolism of these drugs (Figure 2.2). 
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Figure 2.1: EGFR KI substrate depletion in the absence and presence of appropriate cofactors and CYP3cide. 

 

  



93 
 

 

Figure 2.2: Pie charts depicting the contribution of CYP3A4, other CYP and UGT to in vitro EGFR KI metabolism. 
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2.3.2 Validation of EGFR KI Profiles 

A comparison of mean (± 95 % confidence interval; CI) model simulated pharmacokinetic 

parameters describing EGFR KI exposure with those observed in clinical studies are 

summarised in Table 2.1, and visualised in Figure 2.3. All ratios of observed to simulated 

pharmacokinetic parameters were contained within the range 0.8 to 1.2, and in all cases 

simulated pharmacokinetic parameters describing EGFR KI exposure were contained within 

the 95% CI for the observed parameter. A comparison of parameter (AUC and Cmax) ratios 

describing the impact of induction on EGFR KI exposure are summarised in Table 2.3. With 

the exception of the ratio of the AUC ratios for erlotinib (0.64), all observed to simulated 

parameter ratios describing the change in exposure caused by induction of clearance were 

contained within the range 0.8 to 1.2. As for parameters describing EGFR KI exposure, all 

simulated parameter ratios describing the impact of induction on EGFR KI exposure were 

contained within the 95% CI for the observed ratio. 

 

Figure 2.3: Representative concentration-time profile depicting simulated afatinib 

exposure (solid line), and observed mean and 95% CI afatinib exposure (dotted lines). 
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2.3.3 Impact of Covariates on Simulated EGFR KI Exposure 

The influence of age, disease, dose, ethnicity and gender on simulated exposure to EGFR KIs 

was assessed by comparison of the mean AUC in covariate populations to a ‘control’ 

population (n=50 participants) of healthy 20 to 50 y/o Caucasians (50% female). Simulated 

populations (n=50 participants) were matched to the control group for all covariates except the 

one tested.  

The mean AUC and % change from the control population for each population are reported in 

Table 2.4. In terms of physiological covariates, gender had no effect on erlotinib or gefitinib 

exposure, with all population AUCs within 10% of the control population. A modest (19.5%) 

increase in afatinib AUC was predicted in the all-female cohort. Older age was associated with 

an increase exposure for all EGFR KIs; mean AUCs were 30 to 35 % higher in the geriatric 

(65 to 90 y/o) population (Table 2.3). Morbid obesity was associated with a modest (~27 %) 

decrease in AUC for erlotinib and gefitinib, but not afatinib. Asian ethnicity was associated 

with significant increases in EGFR KI exposure; in the Chinese population AUC was increased 

by 32.7, 69.3 and 76.7 % for afatinib, erlotinib and gefitinib, respectively, while afatinib, 

erlotinib and gefitinib AUCs were increased by 17.8, 29.8 and 29.8 %, respectively, in the 

Japanese population. In contrast, only a modest (20%) increase in afatinib AUC was predicted 

in the South African (mixed race) population, with essentially no change (<5 %) in AUC for 

erlotinib or gefitinib. Liver dysfunction (Child Pugh A to C), but not renal dysfunction (reduced 

GFR) was associated with an increase in EGFR KI exposure. Mild liver dysfunction caused a 

20 to 35 % increase in EGFR KI exposure, while more severe liver dysfunction (Child Pugh B 

and C) caused 60 to 188 % increases in EGFR KI AUCs. No changes in AUC were predicted 

in the cancer population. When considering the impact of metabolic drug-drug interactions 

(DDIs), administration of the CYP3A4 inducer rifampicin (600mg QD) for seven days prior to 
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EGFR KI dosing caused decreases in AUC of 33.7, 69.5 and 46.5 % for afatinib, erlotinib and 

gefitinib, respectively. Co-administration of the CYP3A4 inhibitor ketoconazole (400mg QD) 

increased afatinib, erlotinib and gefitinib AUCs by 28.8, 103 and 77.3 %, respectively.  

2.3.4 Application to Optimised EGFR KI Dosing 

The established target threshold trough concentration for gefitinib that are associated with 

optimal therapeutic outcomes is >200 ng/mL (132). Simulated mean (range) trough gefitinib 

(250mg QD) concentrations in 1,000 cancer patients following dosing to steady state (14 days) 

were 259.0 (57.2 to 784.9) ng/mL. In this virtual population, 45 % of patients treated with 

gefitinib had trough concentrations of <200 ng/mL at day 15 (Figure 2.4).  

 

Figure 2.4: Simulated mean and 95% CI concentration time profiles describing 

exposure to gefitinib (250 mg QD) when dosed for 14 days in cancer patients (n=1,000). 
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Table 2.4: Impact of covariates on mean simulated EGFR KI exposure  

Covariate Population Age Range Proportion 
Female 

Afatinib Erlotinib Gefitinib 

AUC % Change AUC % Change AUC % Change 

Physiology 

Control 20-50 0.5 341  13,537 
 

4,217 
 

Male 20-50 0 321 -6.0 13,046 -3.6 4,037 -4.3 

Female 20-50 1 408 19.5 14,607 7.9 4,577 8.5 

Geriatric 65-90 0.5 450 31.7 17,876 32.1 5,675 34.6 

Morbid obese 20-50 0.5 309 -9.4 9,904 -26.8 3,043 -27.8 

Ethnicity 

Chinese 20-50 0.5 453 32.7 22,082 63.1 7,133 69.1 

Japanese 20-50 0.5 402 17.8 17,572 29.8 5,443 29.1 

South African 20-50 0.5 411 20.4 12,853 -5.1 4,332 2.7 

Disease 

Cancer 26-50 0.5 328 -3.9 12,728 -6.0 4,386 4.0 

Child Pugh A 20-50 0.5 412 20.8 17,262 27.5 5,596 32.7 

Child Pugh B 20-50 0.5 562 64.5 29,085 114.9 10,808 156.3 

Child Pugh C 20-50 0.5 553 61.9 30,463 125.0 12,127 187.6 

GFR 30 to 60 20-50 0.5 378 10.6 15,696 15.9 4,575 8.5 

GFR <30 20-50 0.5 324 -5.2 14,584 7.7 4,133 -2.0 

DDIs 
Induction 20-50 0.5 226 -33.7 4,130 -69.5 2,258 -46.5 

Inhibition 20-50 0.5 439 28.8 27,480 103.0 7,477 77.3 
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2.4 Discussion 

This chapter describes for the first time a collection of sophisticated full PBPK models for the 

first line EGFR KIs used in the treatment of NSCLC. Although outcomes for patients with 

NSCLC have improved notably since the introduction of EGFR KIs, it is increasingly accepted 

that outcomes for NSCLC patients may be further enhanced by optimising exposure to these 

drugs (125, 200, 201). Variability in EGFR KI exposure primarily involves processes that occur 

in the gastrointestinal tract and liver, but can also be influenced by the tissue distribution of 

these drugs. In addition, EGFR KIs are known to be BCS class II or IV drugs, where oral 

absorption can be complicated by permeability and/or solubility. Therefore, in order to simulate 

exposure to these drugs, profiles based on full PBPK structural models with ADAM absorption 

sub-models that considered the compartmental distribution and interaction between 

permeability limited diffusion, transport and metabolism were developed using the Simcyp 

simulator®.  

The key difference between the full PBPK profiles developed here and previously reported 

minimal EGFR KI PBPK profiles (77, 202, 203) is that these full PBPK profiles accurately 

account for the full range of physiochemical, metabolic and transporter medicated processes 

that determine exposure to these drugs. By way of example, in the current profiles, by 

accounting for permeability limited absorption through the use of the ADAM sub-model, these 

profiles accurately simulated not only the parameters defining EGFR KI absorption, but also 

the ‘shape’ of the absorption profile. In contrast, previous models have either arbitrarily 

modified the absorption rate constant to shift or applied a non-physiological ‘lag time’ to 

artificially model tmax. 

In this chapter, substrate depletion was used to assess the contribution of enzyme families to 

and kinetics of, human liver microsomal EGFR KI metabolism (188). This approach was 
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chosen as it facilitated the assessment of the enzymatic contribution to microsomal EGFR KI 

metabolism at physiologically relevant EGFR KI concentrations, and it allowed for the 

determination of microsomal EGFR KI clearances without the need to individually quantify 

the substantial number of EGFR KI metabolites. Control experiments performed in the absence 

of UDP-GluUA or NADPH demonstrated essentially no (<2 %) depletion of afatinib, erlotinib, 

and gefitinib by HLM over the three hour incubation period. Similarly, less than 10% depletion 

was observed when incubations were performed in the presence of UDP-GlcUA alone (Figure 

2.1), suggesting that UGT enzymes do not play a major role in the hepatic metabolism of these 

EGFR KIs. This observation is consistent with published literature regarding the contribution 

of UGT to the metabolism of these drugs (177). When NADPH was present in the absence of 

CYP3Cide, substrate depletion of up to 95 % was observed over the three hour incubation 

period; this observation is consistent with the reported major contribution of CYP enzymes to 

the hepatic clearance of these drugs. The rate of substrate depletion observed in incubations 

containing UDP-GlcUA and NADPH was equivalent to the sum of the rates observed in 

incubations performed in the presence of each cofactor separately. This observation 

demonstrates that CYP and UGT catalyzed pathways have negligible effect on each other. The 

specific contribution of CYP3A4 to EGFR KI depletion was assessed by subtracting the 

depletion observed in the presence of NADPH with CYP3Cide (i.e. non-CYP3A4 oxidative 

metabolism) from the depletion observed in the presence of NADPH only (CYP3A4 and non-

CYP3A4 metabolism). Less than 10 %  depletion was observed when CYP3Cide  was present 

in incubations, indicating that for these EGFR KIs, CYP3A4 accounts for >90 % of in vitro 

metabolism at substrate concentrations <1 µM. Calculated unbound microsomal CLint values 

for CYP3A4 catalysed metabolism were 9.7, 13.6 and 195.8 µL/min/mg for afatinib, erlotinib, 

and gefitinib, respectively. Remaining microsomal CLint values are reported in Table 2.1. 

These in vitro substrate depletion data were used to develop the compound profiles for each of 
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the EGFR KI.  

The EGFR KI compound profiles were validated by comparing simulated pharmacokinetic 

parameters (AUC, Cmax and tmax) describing exposure with those observed in clinical studies 

that were not used in the development of the compound profiles. With the exception of the 

AUC ratio describing the impact of induction on erlotinib exposure (0.64), the ratio of observed 

to simulated parameters describing exposure, or parameter ratios describing the impact of 

induction on exposure were contained within the range 0.8 to 1.2. This consistent and high 

degree of concordance demonstrates the accuracy and validity of the profiles, which is visually 

depicted in the representative overlay of the simulated and population average concentration-

time curves defining afatinib exposure (Figure 2.3). 

A major challenge for this study related to the validation of the capacity of the compound 

profiles to account for the impact of induction on EGFR KI exposure. As EGFR KIs exhibit 

substantial inter- individual variability in exposure and studies used to assess the impact of 

drug interactions are often undertaken in small (n<10) cohorts, the absolute exposure reported 

in these studies typically poorly reflects the population average. These studies are however 

adequately powered to accurately reflect changes in exposure (i.e. intra- individual variability) 

due to drug-drug interactions. As such, when validating the compound profiles for induction 

and inhibition, parameter ratios (i.e. the change in exposure) were considered rather than 

absolute exposures pre- and post- interaction.  

Understanding and developing approaches to account for the covariates that impact on EGFR 

KI exposure is an important aspect of optimising the dosing of these drugs. In terms of 

physiological covariates, older age (i.e. geriatric population) consistently resulted in higher 

exposure to EGFR KIs, while morbid obesity resulted in moderately reduced exposure to 

erlotinib and gefitinib, but not afatinib. In contrast, female gender resulted in a modest increase 
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in exposure to afatinib, but not to erlotinib or gefitinib. This result is consistent with the known 

distribution profiles of these drugs; the apparent Vd for afatinib (2520L) is almost double that 

of gefitinib (1400L) and ten-fold higher than that of erlotinib (232L) (177). For erlotinib and 

gefitinib, the increased liver size associated with morbid obesity likely contributes to a higher 

metabolic clearance of these drugs in morbidly obese patients, however, the substantial 

distribution of afatinib into the adipose tissue likely offsets any increase in metabolic clearance 

of this drug in this cohort. Similarly, given the fat distribution profiles of males and females, it 

is likely that increased distribution into adipose tissue accounts for the increase in afatinib 

exposure observed in females (204). 

Substantial increases in simulated EGFR KI exposure were also observed in age and gender 

matched Asian (Chinese and Japanese) populations. These simulations indicate that ethnicity 

may be an important factor in determining exposure to EGFR KIs. The clinical implications in 

terms of EGFR KI efficacy and tolerability and the physiological differences between 

Caucasian and Asian individuals that underpin these differences in exposure warrant 

investigation. Consistent with the mechanism of KI clearance, increasing severity of liver 

dysfunction, but not renal dysfunction, was associated with a marked increase in EGFR KI 

exposure. Most notably, erlotinib and gefitinib exposure was increased 2- to 3-fold in virtual 

patients with moderate or severe (Child Pugh B or C) hepatic dysfunction. While still notable, 

moderate to severe liver dysfunction had a comparatively smaller effect on afatinib exposure. 

Consistent with FDA guidance advising against co-administration with strong CYP3A4 

inhibitors and inducers, dosing with rifampicin (600mg QD) for seven days prior to the 

administration of EGFR KIs caused a marked reduction in afatinib, erlotinib and gefitinib 

exposure. Similarly, co-administration of ketoconazole (400mg QD) caused a moderate 

increase in afatinib exposure, and marked increases in erlotinib and gefitinib exposures.    
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The potential applicability of the gefitinib compound profile to optimised KI dosing was 

demonstrated through simulations performed in 1,000 cancer patients using a dosing regimen 

based on the recommended fixed dosing protocol for this drug (177). These simulations 

demonstrated that while the mean trough concentration at day 15 was greater than the 

established target threshold for this drug (259 versus 200 ng/mL), 448 (45 %) patients were 

predicted to experience sub-therapeutic exposure (i.e. trough concentrations < 200 ng/mL) at 

this time (Figure 2.5), with some patients experiencing as low as 25% of the established target 

steady-state threshold exposure. These simulated exposure profiles using a well validated full 

PBPK gefitinib profile emphasise the need to individualise gefitinib dosing in order to 

maximise the benefit of this drug. It is worth noting that BSV observed in the verification of 

these profiles reflected the variability observed within a homogenous (tight trial inclusion 

criteria) clinical trial population. Substantially greater BSV (Chapter 1) is observed in a 

heterogenous cancer patient population. Indeed, the limited BSV observed in clinical trials 

(RCT populations reflect <5% of the actual treatment population) frequently results in an 

underestimation of the importance of variability in exposure in a treatment population and is a 

major confounder when evaluating the impact of variability in exposure. 

2.5 Conclusion 

We have developed and validated robust mechanistic models with the capacity to describe 

EGFR KI exposure and the impact of covariates on exposure. These models may be applied to 

inform the impact of different dosing regimens on EGFR KI exposure, the potential impact of 

poor compliance on EGFR KI efficacy, the need to perform bridging studies when introducing 

EGFR KIs to new international markets, and the potential impact of DDIs on EFGR KI 

exposure. With enhancement of the Simcyp population profiles, these profiles may also be 

applied to assist in optimising dosing in individual patients under the Virtual Twin framework.  
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CHAPTER III: ASSESSMENT OF 
INTER-RACIAL VARIABILITY IN 

CYP3A4 ACTIVITY  

 

 

van Dyk M, Marshall JC, Sorich MJ, Wood LS, Rowland A (2018) Assessment of inter-racial 

variability in CYP3A4 activity and inducibility among healthy adult males of Caucasian and 

South Asian ancestries. European Journal of Clinical Pharmacology, DOI: 10.1007/s00228-

018-2450-4. 

 

 

 

  

The results presented in this chapter have 

been reported in: 
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3.1 Introduction 

As outlined in Chapter I, variability in CYP activity is a known source of clinically important 

differences in drug exposure, response and tolerability (205). This variability may present as 

inherent differences between individuals (inter-individual variability) due to factors such as 

genotype, race or gender, or as changes in activity for an individual over time (intra-individua l 

variability) due to factors such as drug-drug interactions (DDIs), diet or disease states. There 

is also the potential for interplay between these forms of variability. The significance of this 

interplay being that in addition to differences in baseline exposure between individuals of 

different genotype, race or gender, there is also the potential for differences in the impact of 

perturbations of activity by factors such as DDIs. Of particular significance the PBPK analyses 

performed in Chapter II identified race as a potentially important covariate driving variability 

in EGFR exposure. Attempts to verify this observation using clinical trial reports specifically 

related to the KIs of interest or general PK studies identified a gap in the analysis of inter-racial 

variability in CYP3A4 exposure.  

Inter-racial variability in CYP activity is typically attributed to differences in physiology, diet 

and the frequency of genetic polymorphisms, and has been extensively characterised for some 

enzymes, such as CYP1A2 (206). For example the major CYP1A2 reduced function (*1C) 

allele is observed at higher frequencies in African-American (26 %), Hispanic (26 %) and 

Asian (21 %) populations compared to Caucasians (1.6 %) (207), while the low inducibility 

(*1K) allele is observed at higher frequencies in African (3 %) and Middle Eastern (3.6 %) 

populations compared to Caucasians (0.5%) (208). As such, these races are considered to be 

more susceptible to toxicity resulting from impaired clearance of drugs metabolised by 

CYP1A2. Increased exposure to drugs metabolised by CYP1A2 in South Asians (Thailand, 

Vietnam, Cambodia, Singapore, Indonesia, Philippines and Malaysia) compared to Caucasians 
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has been directly shown by comparison of caffeine exposure in these populations (206). It has 

further been demonstrated that South Asians, but not Caucasians, exhibit diurnal variability in 

CYP1A2 activity, with reduced activity in the evening compared to the morning (209). 

As CYP3A4 is responsible for the metabolism of more than 30 % of clinically used drugs (210), 

it is the drug metabolising enzyme (DME) of greatest clinical importance. CYP3A4 is a 

member of the CYP3A sub-family, which also comprises CYP 3A5, 3A7 and 3A43. As these 

enzymes exhibit substantial overlap in substrate specificity, the clearance of drugs metabolised 

by CYP3A4 may also be influenced by the activity of CYP 3A5 and 3A7. The in vivo clearance 

of drugs metabolised by CYP3A is known to exhibit substantial (>10-fold) variability (211), 

while variability in in vitro CYP3A activity is even greater (> 30-fold) (212). Despite the 

clinical importance of CYP3A4, relatively little is known about inter-racial variability in the 

activity of this enzyme. In the current study, we directly assess the impact of inter-racial 

variability in CYP3A4 activity and inducibility on midazolam exposure in a cohort of age 

matched healthy males of Caucasian and South Asian ancestries. This chapter sought to 

investigate race as a source of variability of CYP3A4 activity. 

 

3.2 Methods  

3.2.1 Study Protocol 

This study, EPOK-15, is a single centre, open label, single sequence metabolic phenotyping 

trial. The trial protocol was approved by the Southern Adelaide Clinical Human Research 

Ethics Committee (SAHREC 11.15), and written informed consent was obtained from each 

participant. The trial was registered with the Australian New Zealand Clinical Trials Registry 

(ACTRN 12614001289606).  
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3.2.2 Study Cohort and Medications 

Healthy male participants (n = 30) aged 21 to 35 years old were enrolled into the study 

following screening by physical examination. Participants were required to refrain from use of 

drugs and herbal products, including tobacco and alcohol, grapefruit juice and consuming large 

amounts of cruciferous vegetables prior to and for the duration of the study. Participant 

characteristics are summarised in Table 3.1. Midazolam (Pfizer midazolam for injection) was 

purchased from Pfizer, NSW, Australia; rifampicin (Rifadin) was purchased from Sanofi, 

NSW, Australia; clarithromycin (Klacid) was purchased from Abbott Laboratories, NSW, 

Australia. 

Table 3.1: Participant characteristics 

a Determined by t-test for equality of means, with equal variance (based by Levene’s test for 

equality of variance) assumed for age, height, weight, and BMI (variance p > 0.3), but not 

assumed for CYP3A genotypes (variance p < 0.02). 

b CYP3A4 *1/*1 (EM phenotype), CYP3A5 *3/*3 (PM phenotype) unless specified. 

Mean (Range) 
Caucasian 

(n=19) 

South Asian 

(n = 11) 

Significance  

(2-tailed)a 

Age (years) 25.9 (21 – 34) 26.5 (21 - 34) 0.721 

Height (cm) 177 (164 – 193) 174 (165 – 182) 0.264 

Weight (kg) 77.6 (62.7 – 
108) 

71.4 (57.2 – 
85.2) 0.115 

BMI (kg/m2) 24.7 (18.7 – 
29.0) 

23.6 (19.8 – 
30.1) 0.347 

CYP3A genotypesa    

- CYP3A4 *1/*22 (reduced function) 11 % (2 / 19) 0 % (0 / 11) 0.163 

- CYP3A5 *1/*3 (functional) 11 % (2 / 19) 45 % (5 / 11) 0.063 
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3.2.3 Study Design 

CYP3A4 activity was assessed at baseline (Day 1) following a 7 day course of rifampicin and 

following a 3 day course of clarithromycin. As per the protocol shown in Figure 3.1, on days 

1, 8 and 15 participants (n=30) were orally administered 1 mg of midazolam (1 mL of 5 mg/mL 

midazolam for injection diluted in 4 mL saline) and timed blood samples were collected prior 

to and at 0.25, 0.5, 0.75, 1, 2, 3, 4 and 6 hrs post dosing. Within 1 hr of sample collection, 

plasma was isolated from whole blood by centrifugation at 4,000 g for 5 min and stored at -

80°C until analysis. Between day 1 and 8 participants self-administered 300 mg rifampicin 

(300mg QD PO) each evening, then between day 12 and day 14 participants self-administered 

clarithromycin (250 mg BD) each morning and evening. Rifampicin and clarithromycin plasma 

concentrations were determined pre-midazolam dosing on day 8 and 15, respectively. 

3.2.4 Sample Preparation 

One hundred microliters of plasma sample was diluted in 300 μL of methanol containing 0.1 

% formic acid and 7.5 ng/mL d6-midazolam (assay internal standard) then vortexed for 3 min 

using a MixMate® Vortex Mixer (Eppendorf, Sydney, Australia) to precipitate proteins. 

Samples were then centrifuged at 16,000 g for 5 min, and a 2.5 μL aliquot of the resultant 

supernatant fraction was analysed by ultra-performance liquid chromatography mass 

spectrometry (UPLC-MS). Quality control (QC) and calibration standards (n=6) were prepared 

by spiking known concentrations of midazolam into drug free plasma over a concentration 

range of 2.5 to 25 ng/mL.  

3.2.5 Sample Analysis 

Samples were analysed using a validated assay (172). Briefly, analytes were separated from 

the sample matrix by UPLC performed on a Waters ACQUITYTM BEH C18 column (100 mm 
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× 2.1 mm, 1.7 μm; Waters Corp., Milford, USA) using a Waters ACQUITYTM UPLC system. 

The column temperature was maintained at 40 °C, while the sample compartment was 

maintained at 15 °C. Analytes were separated by linear gradient elution at a flow rate of 0.25 

mL/min. Initial conditions were 70 % water containing 0.1 % formic acid (mobile phase A) 

and 30 % acetonitrile containing 0.1 % formic acid (mobile phase B). The proportion of mobile 

phase B was increased to 60 % over 4 min, then returned to initial conditions. 

Column elutant was monitored by MS, performed on a Waters Q-ToF PremierTM quadrupole, 

orthogonal acceleration time-of-flight tandem mass spectrometer (Q-ToF-MS) operating in 

positive electron spray ionisation (ESI+) mode. The desolvation gas was set at a flow rate of 

400 L/h at a temperature of 250 °C, while the cone gas was set at a flow rate of 50 L/h. The 

source temperature was 90 °C. Source capillary and cone voltages were 2.8 kV and 50 V, 

respectively. ToF data were collected in wide pass MS mode, with the resolving quadrupole 

acquiring data between m/z 150 and 600 to yield a total ion count (TIC) chromatogram. Data 

were collected as centroid spectra using the extended dynamic range function at an acquisition 

rate of 0.1 sec, with a 0.05 sec inter-scan delay. The collision cell energy was 2 eV. Selected 

ion data was extracted at the analyte [M+H]+ precursor m/z. Resulting pseudo-MRM spectra 

were analysed using Waters TargetLynxTM software. Plasma analyte concentrations were 

determined by comparison of normalised peak areas in participant samples to those of 

calibrators. 

The lower limit of quantification (LLOQ) for midazolam by this approach was 0.2 ng/mL, 

while the intra- and inter- day precision at the LLOQ were 1.9 and 2.3 %, respectively, and the 

accuracy (measured as % deviation at the LLOQ) was 5.1 %. The calibration range was 0.5 to 

50 ng/mL (213). 
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3.2.6 CYP3A Genotype 

CYP3A genotyping was performed in kind by collaborators at the Early Clinical Development 

Group at Pfizer Worldwide Research and Development. For technical reference genomic DNA 

was isolated from whole blood using a QIAsymphony (QIAGEN) automated platform running 

a DSP DNA Mini Kit, quantified by NanoDrop and normalized to 20ng/µL.  DNA was 

genotyped for CYP3A4 and CYP3A5 using a custom designed TaqMan™ OpenArray™ that 

was analysed on a QuantStudio™ 12K Flex Real-Time PCR System (Applied Biosystems). 

The specific assays used on the array were C__59013445_10 for CYP3A4*22, 

C__26201809_30 for CYP3A5*3, C__30633867_20 for CYP3A5*5, C__30203950_10 for 

CYP3A5*6, and C__32287188_10 for CYP3A5*7. 

3.2.7 Data Analysis 

Non-compartmental methods  (PK Functions for Microsoft Excel, Department of 

Pharmacokinetics and Drug Metabolism, Irvine, CA, USA) were used to estimate the area 

under the plasma-concentration time curve from the time of dosing to the last measured sample 

(AUC) and maximal concentration (Cmax) for midazolam at baseline (Day 1), following a 7-

day course of rifampicin (Induction (IND) phase; Day 8) and following a 3-day course of 

clarithromycin (Mechanism based inhibition (MBI) phase; Day 15). Midazolam AUC was 

defined as the primary outcome. The midazolam AUC of each group was reported as the 

exponentiation of the mean of the log transformed AUC. Univariate and multivariable linear 

regression were undertaken to evaluate the crude and independent effect, respectively, of race 

(Caucasian vs South Asian), CYP3A4 genotype (*1/*1 vs *1/*22) and CYP3A5 genotype 

(*3/*3 vs *1/*3) on logarithmically transformed midazolam AUC. Back transformation was 

utilised to provide crude and covariate adjusted point estimates and 95% confidence intervals 

(95% CI). Differences in midazolam AUC ratio in the absence and presence of rifampicin 



110 
 

(induction ratio; INDratio) and clarithromycin (MBI ratio; MBIratio) and Cmax were assessed as 

secondary outcomes using the same approach. Exploratory univariate analyses were also 

performed to evaluate whether age, weight, height and BMI were associated with midazolam 

AUC and Cmax. 

 

3.3 Results 

3.3.1 Trial Conduct 

Thirty male subjects completed the study (19 Caucasian and 11 South Asian). Three subjects 

experienced minor adverse events that were attributed to study interventions, but that did not 

affect their completion of the study (one participant experienced discomfort at cannulation site 

on Day 8, one experienced dry mouth during the rifampicin dosing phase, and one experienced 

stomach discomfort during the clarithromycin dosing phase). Based on clinically relevant 

allelic variants in CYP3A4 and CYP3A5, two subjects (both Caucasian) were classified as 

CYP3A4 intermediate metabolisers (CYP3A4 *1/*22), and seven subjects (5 South Asian and 

2 Caucasian) were CYP3A5 intermediate metabolisers (CYP3A5*1/*3). All remaining 

participants were CYP3A4 extensive metabolisers (CYP3A4 *1/*1) and poor (non-functional) 

CYP3A5 metabolisers (CYP3A5 *3/*3 or *3/*5).  

Adherence to rifampicin and clarithromycin dosing was determined by assessment of analyte 

concentrations in pre-midazolam dosing blood samples on Day 8 and Day 15, respectively. 

Mean (± standard deviation; S.D.) plasma rifampicin and clarithromycin concentrations were 

513 ± 146 μg/L and 334 ± 81 μg/L, respectively. These observed concentrations were 

consistent with anticipated exposure profiles for these drugs with the respective dosing 

regimens, and are indicative of good adherence in all participants. Rifampicin and 
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clarithromycin exposure was not observed to differ between Caucasian and South Asian 

participants.  

3.3.2 Covariate Assessment 

No statistically significant difference in midazolam AUC was detected between participants 

with CYP3A4 *1/*22 (n=2, 1032 µg/L/min) and *1/*1 (n=28, 934 µg/L/min) genotype 

(p=0.75), or between participants with CYP3A5 *1/*3 (n=7, 883 µg/L/min) and *3/*3 (n=23, 

958 µg/L/min) genotype (p=0.66). Weight (p = 0.037), but not age or height were not found to 

be associated with midazolam AUC and Cmax (p > 0.2) in exploratory analysis.  

 

 

Figure 3.1: Mean midazolam concentration-time curves for Caucasian (n=19) and South 

Asian (n=11) cohorts. 
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3.3.3 Baseline CYP3A4 activity in Caucasians and South Asians  

A summary of the geometric mean (95% CI) baseline AUC and Cmax defining midazolam 

exposure in Caucasian and South Asian cohorts is reported in Table 3.2, while the coefficients 

defining differences in baseline midazolam exposure between Caucasian and South Asian 

participants are reported in Table 3.3. The geometric mean baseline midazolam AUC in the 

Caucasian cohort (1057 µg/L/min) was 27 % greater than that observed in South Asian cohort 

(768 µg/L/min). Similarly, the mean baseline midazolam Cmax in the Caucasian cohort (7.2 

µg/L) was 24 % greater than that observed in South Asian cohort (5.5 µg/L) (Figure 3.1). 

Linear regression demonstrated that the difference in AUC, but not Cmax, between the 

Caucasian and South Asian cohorts was statistically significant (p ≤ 0.05) in both the crude 

(unadjusted) and genotype adjusted regression analyses.  

3.3.4 CYP3A4 Inducibility and Inhibition Potential in Caucasians and 

South Asians 

A summary of the geometric mean (95% CI) AUC and Cmax defining midazolam exposure in 

Caucasian and South Asian cohorts post- rifampicin induction and clarithromycin inhibition is 

reported in Table 3.2, while the coefficients defining differences in the change in midazolam 

exposure post induction (IND AUC Ratio) and mechanism based inhibition (MBI AUC Ratio) 

between Caucasian and South Asian participants are reported in Table 3.3. The geometric 

mean post-induction midazolam AUC in the Caucasian cohort (308 µg/L/min) was 50% greater 

than that observed in South Asian cohort (154 µg/L/min), while the geometric mean post-

inhibition midazolam AUC in the Caucasian cohort (1834 µg/L/min) was 41% greater than that 

observed in South Asian cohort (1079 µg/L/min) (Figure 3.2). Linear regression demonstrated 

a trend towards a difference in the post-induction AUC Ratio (p = 0.067) between the 

Caucasian and South Asian cohorts in the crude (unadjusted) regression model. The 
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significance of this trend was reduced (p = 0.131) in the model was adjusted for CYP 3A4 and 

3A5 genotypes. No difference in post-inhibition (MBI) ratio was observed between the 

Caucasian and South Asian cohorts.   
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Table 3.2: Pharmacokinetic parameters describing midazolam exposure 

Units: AUC (µg/L/min); Cmax (µg/L) 

  

Parameter Study Phase 

Caucasian South Asian 

Geometric 
Mean 

95% Confidence Interval Geometric 
Mean 

95% Confidence Interval 

Lower Upper Lower Upper 

AUC 

Baseline 1057 880 1270 768 648 1037 

Induced 308 150 464 154 74 234 

Inhibited 1834 1209 2460 1079 632 1526 

Cmax 

Baseline 7.2 5.5 8.9 5.5 4.3 6.8 

Induced 2.7 1.7 3.6 1.2 0.7 1.7 

Inhibited 12.6 7.6 17.7 8.3 4.6 11.9 
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Table 3.3: Coefficients defining differences in midazolam exposure between Caucasian and South Asian healthy males 

Parameter Model 

Caucasian South Asian Difference 

Sig (p) Point 
Estimate 

95% Confidence 
Interval Point 

Estimate 

95% Confidence 
Interval Point 

Estimate 

95% Confidence 
Interval 

Lower Upper Lower Upper Lower Upper 

AUC 
Crude 1057 880 1270 767 649 1037 -289 -408 -20 0.04 ** 

Adjusteda 1052 855 1292 743 623 1052 -309 -428 0 0.05 ** 

Cmax 
Crude 7.2 5.7 8.7 5.5 3.1 8.0 -1.7 -4.2 0.8 0.169 

Adjusteda 7.5 5.8 9.1 5.3 2.6 8.0 -2.2 -4.9 0.6 0.118 

IND AUC 
Ratiob 

Crude 3.9 3.0 4.8 5.3 3.8 6.4 1.4 -0.1 2.5 0.067 

Adjusteda 4.2 3.2 5.2 5.4 3.8 7.0 1.2 -0.4 2.9 0.131 

MBI AUC 
Ratioc 

Crude 1.9 1.5 2.3 1.5 0.8 2.2 -0.4 -1.1 0.3 0.257 

Adjusteda 2.0 1.5 2.4 1.7 1.0 2.5 -0.3 -1.0 0.8 0.456 

Units: AUC (µg/L/min); Cmax (µg/L) 

a Adjusted for independent variables; CYP3A4 *1/*22 and CYP3A5 *1/*3 genotype, b Ratio of Day 1 midazolam AUC (baseline) / Day 8 

midazolam AUC (post rifampicin),c Ratio of Day 15 midazolam AUC (post clarithromycin) / Day 1 midazolam AUC (baseline), ** Statistically 

significant (p ≤ 0.05). 
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Figure 3.2: Spaghetti plot showing changes in AUC from baseline, following rifampicin and clarithromycin dosing. Pavel A; Caucasians, 

Panel B; South Asians. Dotted lines represent individual participant data, while the solid line represent the cohort means.  
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3.4 Discussion 

This chapter demonstrate significantly higher midazolam clearance in healthy age matched 

males of South Asian compared to Caucasian ancestry. These data are consistent with, and 

provide evidence for the clinical importance of, a prior study of Yamaori et al. (214), which 

described 2- to 3- times higher expression of CYP3A mRNAs in Japanese compared to 

Caucasian livers. Furthermore, the trend (p = 0.067) toward greater inducibility of CYP3A 

activity in the South Asian cohort observed in the current study supports the conclusion of 

Yamaori et al. that the mechanisms regulating hepatic CYP3A expression may be different 

between racial groups.  

The higher midazolam clearance among South Asians reported here is inconsistent with a prior 

analysis of midazolam clearance reported by He et al. (215), where no difference in midazolam 

oral clearance related to Asian race was observed. Notably however, while the prior analysis 

was similar in terms of total cohort size (i.e. n = 26 vs 30), this prior cohort had greater 

heterogeneity in terms of gender, age and race, and limited power to assess the impact of Asian 

race, with only 2 of 26 participants of Asian ancestry. 

To date, the broader assessment of inter-racial differences in CYP3A has primarily focused on 

characterizing differences in genotype frequencies between Caucasian, Asian and African-

American populations (216-218). In this regard, the major reduced function variant (CYP3A4 

*22) is observed at a higher frequency in Caucasians compared to other racial groups, while 

functional CYP3A5 (CYP3A5*1) is comparatively uncommon in Caucasians compared to 

other races, with 95% of the population exhibiting the homozygous non-functional (CYP3A5 

*3/*3) genotype (218). In contrast, functional CYP3A5 (*1/*1 or *1/*3) genotypes are 

observed at a frequency of 25 to 40 % in Asian populations (219, 220). Consistent with these 

reported CYP3A allelic frequencies, in the current study the frequency of CYP3A4 (*1/*22) 
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genotype was lower in the South Asian cohort, while the frequency of functional CYP3A5 

(*1/*3) genotype was higher. Notably, however, while these genotypes are biologically 

consistent with the observed higher midazolam clearance in the South Asian cohort, analysis 

of the difference in midazolam exposure and CYP3A inducibility adjusted for CYP3A 

genotypes demonstrated that the higher midazolam clearance in the South Asian cohort was 

independent of genotype, thus indicating that other factors are responsible for the higher 

CYP3A activity in this population. This observation is consistent with prior analyses that have 

demonstrated that the frequency of genetic variants in CYP3A4 and CYP3A5 correlate poorly 

with in vivo CYP3A-mediated drug metabolism (207, 215, 216, 221, 222). 

The inability of genotyping (an established DME diagnostic) to define inter-racial differences 

in CYP3A activity highlights a major challenge to individualized (or precision) dosing more 

generally; that is the lack of a reliable marker of activity for an enzyme that is responsible for 

the metabolism of approximately one third of clinically used drugs (210). Intriguingly, the 

findings of Yamaori et al. suggest that assessment of hepatic CYP3A4 mRNA expression may 

be a robust marker to account for variability in CYP3A activity. The limitation being that 

Yamaori et al. utilized surgically resected liver tissue (in many cases from individuals post-

mortem) to assess expression of hepatic CYP3A mRNAs,  an approach is preclusively invasive 

for routine clinical application.  

In this regard, it has been demonstrated that factors known to impact drug metabolising enzyme 

(DME) activity such as aging and pregnane X receptor (PXR) expression significantly affect 

expression of CYP3A mRNAs in more diagnostically amenable tissues such as peripheral 

blood mononuclear cells (PBMCs) (223). However, attempts to correlate CYP3A4 mRNA 

expression in peripheral blood mononuclear cells (PBMCs) with activity or induction have 

demonstrated that PBMC mRNA expression does not reflect systemic CYP3A mediated drug 
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clearance (224, 225), and current evidence does not support the quantification of mRNA 

expression in PBMCs as a robust surrogate for CYP3A activity or inducibility. Given the 

importance of understanding variability in CYP3A activity there is a considerable need for 

novel strategies to define robust surrogates for hepatic CYP3A activity or expression in 

diagnostically amenable tissue. This enhanced understanding of the impact of factors, that 

contribute to variability in CYP3A activity is likely to be of greatest importance for classes of 

narrow therapeutic index drugs were CYP3A4 activity is a major determinant of exposure, such 

as small molecule kinase inhibitors (177) and HIV protease inhibitors (226). While such 

insights may, at least partially, be derived from approaches such as PBPK modelling (227, 

228), robust verification of such approaches still requires high quality biological and clinical 

evidence. 

3.5 Conclusion 

In conclusion, the data presented here demonstrate significantly higher midazolam clearance 

in healthy age matched males of South Asian compared to Caucasian ancestry that was not 

explained by differences in the frequencies of CYP3A genotype.   These data suggest that race 

is possible a systematic source of variability in KI exposure, the implication being that higher 

CYP3A4 activity may result in lower KI exposure in South Asian patients.  Unfortunately, the 

current lack of direct comparison of KI exposure between Caucasian and South Asian patient 

cohorts precludes the immediate verification of this finding, however, these results do suggest 

that future studies are warranted. 
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4.1 Introduction 

As discussed in Chapter I and II, CYP activity can be affected by genetic, physiological (e.g. 

age, body weight and gender), disease (e.g. impaired hepatic function), and environmental (e.g. 

drug interactions, alcohol consumption, smoking and diet) factors (229). Although CYP3A4 

between subject variability (BSV) (referred to as inter-individual variability in chapters I, II, 

III and V, but BSV in the publications associated with this chapter and chapter VI) is thought 

to be primarily due to non-genetic differences in protein expression, which are currently 

difficult to quantify in humans (210, 230). By contrast, CYP3A5 is expressed polymorphica lly , 

with only approximately 15% of Caucasians expressing the active wild-type enzyme (230). 

Despite significant BSV in CYP3A activity, it is not routine practice to define an individua l’s 

CYP3A activity (229) and often fixed dosing protocols are implemented (125). The limited 

consideration of BSV in CYP3A activity is primarily due to the challenges associated with 

developing a robust evidence base for the value of dose individualisation using traditional 

approaches such as pharmacogenetic testing (231) and therapeutic drug monitoring, 

particularly in populations  such as cancer patients and patients with mental illness (232). The 

need for a diagnostically amenable strategy to define CYP3A activity is clear (230, 233), 

however, a robust, efficient and cost-effective approach has not yet been established and the 

inability to account for variability in CYP3A4 activity in patients continues to be a clinical 

challenge (234-237). Currently, assessment of the area under the midazolam plasma 

concentration curve (AUC) is the gold standard to phenotype CYP3A4 activity. This strategy 

is commonly used to assess inhibition or induction of this enzyme in a research setting. 

However despite the well-established value of this approach in research, midazolam 

phenotyping has not, and likely will never, be translated into clinical practice due to logistical 

and safety issues associated with dosing patients (230, 235, 238).  
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In addition to drugs, CYP3A4 is also responsible for the metabolism of endogenous chemicals 

(237). For example, CYP3A4 converts testosterone to 6β-hydroxytestosterone, cortisol to 6β-

hydroxycortisol, cortisone to 6β-hydroxycortisone and cholesterol to 4β-hydroxycholesterol 

(237). Indeed, each of these compounds have been studied extensively as endogenous markers 

of CYP3A4 activity, but are only able to explain a small proportion (r2 0.1 to 0.4) of CYP3A4 

BSV (237, 239-241). Not only are the correlations relatively weak but results are inconsistent 

(239), and consequently quantification of these compounds has not provided a robust strategy 

to assess differences in CYP3A activity (237). Caffeine is metabolised extensively in humans, 

primarily via N-demethylation but to a lesser extent by 8-hydroxylation (to form 1,3,7-

trimethyluric acid, TMU) (242). Measurement of caffeine N3-demethylation activity (to form 

paraxanthine) is a well-established marker of CYP1A2 activity in vivo. In contrast to N-

demethylation, enzyme activity inhibition, activation and correlation studies with human liver 

microsomes as the enzyme source indicate that CYP3A is mainly responsible for TMU 

formation (243).  The study reported in this chapter sought to assess the conversion of caffeine 

to TMU as a potential novel dietary biomarker for CYP3A4 activity. 

 

4.2 Materials and Methods  

4.2.1 Study Protocol 

The EPOK-15 study protocol was reported in Chapter III. Briefly, healthy male genotyped 

participants (n = 30) aged 21 to 35 years were enrolled into the study following screening by 

physical examination. Exposure to a 1 mg oral dose of midazolam and dietary caffeine (~35 

mg in 375 mL of ‘Coke Zero’) was assessed at baseline (Day 1) and following a 7 day course 

of rifampin (Day 8). Timed blood samples were collected prior to and for up to 6 hr post 
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midazolam and caffeine dosing. Between Day 1 and Day 8 participants self-administered 

rifampin (300mg QD PO).  

4.2.2 Midazolam Concentrations 

The sample preparation and analysis of midazolam plasma concentrations was reported in 

Chapter III. Briefly, 100 μL of plasma sample was diluted in 300 μL of methanol containing 

0.1 % formic acid and 7.5 ng/mL d6-midazolam (assay internal standard) vortexed for 3 min, 

then centrifuged at 16,000 g for 5 min. Analytes in a 2.5 μL aliquot of the resulting supernatant 

were separated from the sample matrix by ultra-performance liquid chromatography (UPLC) 

performed on a Waters ACQUITYTM BEH C18 column (100 mm × 2.1 mm, 1.7 μm; Waters 

Corp., Milford, USA) using a Waters ACQUITYTM UPLC system. Column elutant was 

monitored by mass spectrometry (MS), performed on a Waters Q-ToF PremierTM quadrupole, 

orthogonal acceleration time-of-flight tandem mass spectrometer (Q-ToF-MS) operating in 

positive electron spray ionisation (ESI+) mode. Selected ion data was extracted at the analyte 

[M+H]+ precursor m/z. Resulting pseudo-MRM spectra were analysed using Waters 

TargetLynxTM software. Plasma analyte concentrations were determined by comparison of 

normalised peak areas in participant samples to those of calibrators. 

4.2.3 Caffeine Metabolomics 

Prior to analysis of EPOK-15 participant samples, a metabolomics approach was employed to 

predict the most appropriate caffeine metabolites to evaluate as markers of CYP3A4 activity 

using archived samples from a cohort of healthy 21 to 40 year olds administered a fixed dose 

of caffeine (100mg) as a component of a cocktail drug interaction study (172). Plasma samples 

were prepared and analysed using the approach described below for caffeine and TMU, and 

mass spectral data were interrogated using the Waters MetaboLynxTM platform. 
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4.2.4 Caffeine and 1,3,7-trimethyluric Acid Concentrations 

The sample preparation and analysis of Caffeine and TMU plasma concentrations were 

performed as described previously (213), with minor modification to optimise sensitivity for 

quantification of TMU. Briefly, 100 μL of plasma sample was diluted in 300 μL of methanol 

containing 0.1 % formic acid and internal standard then vortexed for 1 min, then centrifuged 

at 16,000 g for 5 min. Analytes in a 5 μL aliquot of the resulting supernatant were separated 

from the sample matrix on a Waters ACQUITYTM BEH C18 column (100 mm × 2.1 mm, 1.7 

μm; Waters Corp., Milford, USA) using a Waters ACQUITYTM UPLC system. Column elutant 

was monitored using a Waters Q-ToF PremierTM Q-ToF-MS operating in positive (caffeine) 

and negative (TMU) ESI modes. Selected ion data was extracted at the analyte [M+H]+ 

(caffeine) or [M-H]+ (TMU) precursor m/z. Resulting pseudo-MRM spectra were analysed 

using Waters TargetLynxTM software. Plasma analyte concentrations were determined by 

comparison of normalised peak areas in participant samples to those of calibrators. 

4.2.5 Data and Statistical Analysis 

Non-compartmental methods were used to estimate midazolam AUC and maximal Cmax at 

baseline (Day 1) and following a 7-day course of rifampin (Day 8). Plasma caffeine and TMU 

concentrations were quantified at 3hr, 4hr and 6hr post caffeine dosing on Day 1 and Day 8. 

Caffeine/TMU ratios were calculated as the plasma caffeine concentration divided by the 

plasma TMU concentration at each time point. The geometric mean, SD and 95% confidence 

interval (95 % CI) for midazolam AUC and caffeine/TMU ratios were determined using IBM 

SPSS Statistics for Windows, Version 22.0. (IBM Corp, Armonk, NY).  

Pearson’s correlations were performed to assess the concordance between midazolam AUC 

and caffeine/TMU ratios at 3, 4 and 6 hr at baseline and following the seven day course of 
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rifampin. Each of these experimental data sets were then randomised (2:1) into training and 

verification data sets and linear regression was performed using the training data set to derive 

an equation relating the caffeine/TMU ratio to the midazolam AUC. The validity of each 

equation was assessed by Bland Altman analysis with post-hoc linear regression modelling 

using IBM SPSS Statistics for Windows, Version 22.0. (IBM Corp, Armonk, NY). Pearson’s 

correlations were also performed to assess the relationship between change in midazolam AUC 

(∆AUC) and the change in caffeine/TMU ratios (∆caffeine/TMU ratio), post-/pre- rifampin 

dosing, as a secondary outcome. One-way ANOVAs were performed to assess differences in 

caffeine/TMU ratios (1) pre- and post- rifampin dosing, and (2) between Caucasian and South 

Asian study participants, as exploratory outcomes. p-values <0.05 were considered statistical 

significant. 

 

4.3 Results 

4.3.1 Caffeine Metabolomics 

Metabolomic screening of archived human plasma samples (n=12) was performed to 

characterise the caffeine metabolite profile in human plasma, and to predict the best caffeine 

metabolite for the assessment of CYP3A4 activity. Of the 8 metabolites identified in human 

plasma, the only metabolite that demonstrated a correlation between caffeine/metabolite ratio 

and midazolam AUC was TMU. The r2 for the correlation between midazolam AUC and 

caffeine/TMU ratio at 6 hr following a fixed dose of caffeine (100 mg) was 0.88. On this basis, 

caffeine/TMU ratio was selected as the investigational dietary caffeine test to predict CYP3A4 

activity. 
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4.3.2 Study Conduct 

Thirty male subjects completed the study. Two subjects experienced minor adverse events that 

were attributed to study interventions, but that did not affect their completion of the study (one 

participant experienced discomfort at cannulation site on Day 8 and one experienced dry mouth 

during the rifampin dosing phase). Based on clinically relevant allelic variants in CYP3A4 and 

CYP3A5, two subjects were classified as CYP3A4 intermediate metabolisers (CYP3A4 

*1/*22), and seven subjects were CYP3A5 intermediate metabolisers (CYP3A5*1/*3). All 

remaining participants were CYP3A4 extensive metabolisers (CYP3A4 *1/*1) and poor (non-

functional) CYP3A5 metabolisers (CYP3A5 *3/*3 or *3/*5). Both CYP3A4 *1/*22 

participants were CYP3A5 *3/*3. 

Adherence to rifampin dosing was determined by assessment of rifampin concentrations in pre-

midazolam dosing blood samples on Day 8. Mean (± S.D.) plasma rifampin concentrations 

were 513 ± 146 μg/L. Observed concentrations were consistent with predicted exposure 

profiles with the respective dosing regimens, and are indicative of good adherence in all 

participants.  

4.3.3 Midazolam Exposure  

A summary of the geometric mean (95% CI) baseline and post induction AUC and Cmax values 

defining midazolam exposure and the changes in midazolam exposure caused by induction of 

CYP3A4 are reported in Table 4.1. The geometric mean baseline midazolam AUC was 1029 

µg/L/hr, while the mean baseline midazolam Cmax was 6.6 µg/L. The mean (95% CI) change 

in midazolam AUC post rifampin dosing was 4.4- (3.8-5.1-) fold.  
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Table 4.1: Midazolam AUC and Cmax values at baseline and following rifampin induction  

Units: AUC (µg/L/hr); Cmax (µg/L) 

 

4.3.4 Caffeine and TMU Exposure 

A summary of the geometric mean (95% CI) plasma caffeine/TMU ratios are reported in Table 

4.2. Caffeine/TMU ratios were 2.1- to 2.6- fold higher post rifampin dosing compared to 

baseline. One-way ANOVA demonstrated that in all cases the increase in caffeine/TMU ratio 

post- rifampin dosing was statistically significant (p < 0.005).   

Table 4.2: Caffeine/TMU ratios at baseline and following rifampin induction 

 

 Study Phase Mean 
95% Confidence Interval 

Lower Upper 

AUC 
Baseline 1029 996 1061 

Induced 326 306 346 

Cmax 
Baseline 6.58 6.37 6.79 

Induced 2.11 1.99 2.24 

Time Study Phase Ratio (Mean) 
95% Confidence Interval 

Lower Upper 

3hr 
Baseline 461.3 313.5 609.1 

Induced 228.3 159.2 297.4 

4hr 
Baseline 396.6 314.7 478.4 

Induced 196.9 140.1 253.6 

6hr 
Baseline 360.6 265.3 455.8 

Induced 157.9 112.5 203.3 
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Table 4.3: Bias in CYP3A activity measured by the caffeine/TMU ratio and midazolam AUC. 

Time Study Phase Equation Mean Absolute 
Error (%) 

Constant Bias Proportional Bias 

Mean Difference sig (p) t value sig (p) 

3hr 
Baseline 0.55  ⃰y + 3.5948 0.51 -0.04201 0.443 1.512 .151 

Induced 1.31  ⃰y – 1.4356 1.84 -0.06983 0.561 -0.982 0.341 

4hr 
Baseline 0.815  ⃰y + 1.9693 0.60 0.09369 0.142 -.044 0.966 

Induced 1.38  ⃰y – 1.669 1.83 -0.06169 0.561 -0.359 0.725 

6hr 
Baseline 0.688  ⃰y + 3.0001 0.45 -0.11318 0.126 0.329 0.746 

Induced 1.29  ⃰y – 0.8034 1.77 0.09649 0.382 -0.158 0.876 
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4.3.5 Prediction of CYP3A4 Activity Using Caffeine/TMU Ratios  

The correlation of caffeine/TMU ratios at 3, 4 and 6 hr post-dose with midazolam AUC pre- 

(Day 1) and post- (Day 8) rifampin dosing are shown in Figure 4.1. The relationship between 

caffeine/TMU ratio and midazolam AUC at baseline and post induction was best described by 

a linear model. At baseline, r2 values for the correlation were 0.82, 0.79 and 0.65 at 3, 4, and 6 

hr, respectively. The strength of correlations were retained post-induction with r2 values of 

0.72, 0.87 and 0.82 at 3, 4, and 6 hr, respectively. Bland Altman plots for CYP3A4 activity 

measured by each approach in the verification data sets are shown in Figure 4.2 and the 

statistics defining the concordance between the two measures of CYP3A4 activity are 

presented in Table 4.3. In all cases the mean percent absolute error for the derived equation 

relating the caffeine/TMU ratio to midazolam AUC was < 2.5%. Bland Altman analysis 

demonstrated strong concordance between the two measures of CYP3A4 activity in the 

verification data sets with p > 0.1 for all experimental conditions. Similarly, linear regression 

modelling adjusted for mean CYP3A activity demonstrated a lack of proportional bias between 

the two measures of CYP3A activity. Overall, the strongest correlation between caffeine/TMU 

ratio and midazolam AUC was observed for the 4 hr post dosing data set. Notably however, 

appreciably weaker correlations were observed between the ∆midazolam CL/F and ∆ 

caffeine/TMU ratio, with r2 values ranging from 0.30 to 0.41. These data support a robust 

capacity to define BSV in CYP3A4 activity using the 4hr caffeine/TMU ratio, but a poor 

capacity to track within subject variability (WSV) in CYP3A4 activity due to induction using 

any caffeine/TMU ratio. 
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Figure 4.1: Correlation between baseline (blue) and post induction (green) midazolam AUC and caffeine/TMU ratio.  
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Figure 4.2: Bland Altman plots for the measurement of CYP3A4 activity by midazolam AUC and caffeine/TMU ratio at 3, 4, and 6 hr 

post dosing on Day 1 and Day 8. 
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4.3.6 Impact of Race on Caffeine/TMU Ratio 

Based on the observed impact of ethnicity on midazolam oral clearance (Chapter III), the 

capacity of the caffeine/TMU ratio to describe inter-racial variability in CYP3A4 activity was 

evaluated as an exploratory outcome. Statistics describing caffeine/TMU ratios and midazolam 

AUC in Caucasian and South Asian cohorts, and the difference between cohorts for each study 

phase are reported in Table 4.4. While there were multiple trends supporting a difference in 

caffeine/TMU ratio between Caucasian and South Asian cohorts (p < 0.1), with the exception 

of the Day 8 6hr caffeine/TMU ratio (p = 0.038), this study did not demonstrate statistically 

significant inter-racial variability in CYP3A4 activity using caffeine/TMU ratios. Consistent 

with prior reports, there was a significant difference in midazolam AUC between Caucasian 

and South Asian study participants pre- (p = 0.026) and post- (p=0.027) rifampicin dosing.   

Table 4.4: Impact of race on the caffeine/TMU ratio and midazolam AUC. 

Test Phase Cohort Mean 
95% Confidence Interval 

Sig (p) 
Lower Upper 

3 hr 
Caffeine / 
TMU ratio 

D1 

Caucasian 502 333 671  

South Asian 332 245 418  

Difference 171 -30 371 0.092 

D8 

Caucasian 269 171 367  

South Asian 161 109 214  

Difference 108 -9 225 0.068 

D1/D8 
ratio 

Caucasian 1.96 1.58 2.33  

South Asian 2.32 1.61 3.02  

Difference -0.36 -1.22 0.50 0.390 

4 hr 
Caffeine / 

D1 
Caucasian 430 314 546  

South Asian 342 264 420  



133 
 

TMU ratio Difference 88 -59 234 0.230 

D8 

Caucasian 230 147 314  

South Asian 142 117 167  

Difference 88 -4 181 0.060 

D1/D8 
ratio 

Caucasian 2.17 1.79 2.55  

South Asian 2.51 1.86 3.16  

Difference -0.34 -1.15 0.48 0.392 

6 hr 
Caffeine / 
TMU ratio 

D1 

Caucasian 359 263 455  

South Asian 282 190 373  

Difference 78 -62 217 0.262 

D8 

Caucasian 174 115 233  

South Asian 105 88 121  

Difference 69 4 135 0.038 * 

D1/D8 
ratio 

Caucasian 2.55 1.89 3.22  

South Asian 2.81 1.74 3.87  

Difference -0.26 -1.60 1.09 0.693 

Midazolam 
AUC 

D1 

Caucasian 1172 905 1438  

South Asian 804 659 949  

Difference 368 49 687 0.026 * 

D8 

Caucasian 380 231 528  

South Asian 177 97 257  

Difference 203 25 380 0.027 * 

D1/D8 
ratio 

Caucasian 4.10 3.19 5.01  

South Asian 5.29 4.34 6.23  

Difference -1.19 -2.57 0.19 0.089 
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4.4 Discussion 

This chapter describes the evaluation of a dietary marker to describe variability in CYP3A 

activity. The importance of this potential novel marker for variability in CYP3A activity being 

that as both genetic and non-genetic factors contribute to BSV in the activity of this enzyme, it 

is difficult to predict exposure to drugs metabolised by CYP3A. Despite extensive study no 

genetic test currently accounts for a meaningful proportion of BSV in CYP3A4 activity. As 

such, alternate approaches have been extensively studied but currently have major limitations. 

Midazolam has proven to be a robust drug probe to describe CYP3A activity but the use of this 

probe is limited by the logistical complexity and safety issues associated with administering a 

highly restricted drug and measuring exposure over a prolonged intense sampling period. This 

limitation has been partially alleviated with the validation of midazolam micro-dosing and the 

limited sampling strategies, each of which are used in research settings. Indeed, potentially, the 

greatest advance in the evaluation of CYP3A4 activity in the past decade has been the 

validation of the midazolam micro-dose test. While this approach addresses many of the safety 

concerns, it still requires the administration of a highly restricted drug and subsequent intense 

period of blood sampling (244) . 

Previous studies have assessed potential endogenous biomarkers, however correlations with 

midazolam clearance have been poor with r2 values typically below 0.50 (245, 246). The most 

extensively studied of these endogenous biomarkers is cortisol. It has been demonstrated that 

the change in the ratio of urinary cortisol to its metabolite 6β-hydroxycortisol correlates 

strongly (r2=0.83) with induction of CYP3A expression (247). However, in contrast, multiple 

studies have demonstrated weak concordance of this metabolic ratio with absolute CYP3A4 

activity (240, 244, 247). It has been suggested that diurnal and nocturnal fluctuation in cortisol 

levels together with variability in urinary clearance of cortisol can affect the formation 
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clearance of the metabolite. Another proposed reason for the observed inconsistent results with 

cortisol is the capacity for cortisol and 6beta-hydroxycortisol to interconvert to cortisone and 

6β-hydroxycortisone. In order to attempt to address this confounding factor, it has been 

proposed that these metabolites are quantified in combination. While assessment of cortisol 

metabolic ratios is a safe and efficient approach, high BSV and WSV and the inability to define 

absolute CYP3A4 activity limit the value of this metabolic ratio as a reliable biomarker for 

CYP3A4 activity. Another potential endogenous biomarker that has been extensively studied 

is the ratio of urinary 6β-hydroxycholesterol and cholesterol. Superior concordance has been 

demonstrated between the ratio of urinary 6β-hydroxycholesterol to cholesterol and midazolam 

clearance compared to the cortisol metabolic ratio (246). However, circulating cholesterol 

levels also significantly fluctuate between days limiting the value of this endogenous biomarker 

for the prediction of CYP3A4 activity. Steroid hormones, in particular testosterone, have also 

been evaluated as biomarkers for CYP3A4 activity (237). While plausible biomarkers for 

CYP3A4 activity, due to the complexity of steroid synthesis and degradation, the 

interconversion between analytes and the temporal variability in steroid levels, these chemicals 

have largely been discounted as viable biomarkers of CYP3A4 activity. 

In the absence of robust endogenous biomarker, dietary chemicals provide an alternative 

approach. Caffeine is a relatively ubiquitous dietary chemical and hence represents a 

logistically feasible dietary biomarker. Caffeine is already used as a marker of CYP1A2 

activity (as the ratio of caffeine to its primary N-demethylated metabolite paraxanthine). 

Caffeine exhibits complex metabolism involving multiple pathways, including the conversion 

to TMU, which is primarily catalysed by CYP3A4 (248). Therefore, dietary caffeine was 

considered a potential probe for the prediction of CYP3A4 activity. Consistent with the 

reported contribution of CYP to caffeine metabolism, while a metabolomic screen using 

archived samples (n=12) from healthy individuals administered a fixed dose of caffeine 
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(100mg) identified 8 caffeine metabolites in human plasma, the only metabolite ratio that 

demonstrated any concordance with midazolam AUC was the caffeine/TMU ratio. 

The emphasis of the current study was to extend this finding, and determine whether dietary 

caffeine could be used to predict CYP3A activity. This was achieved by correlating the 

caffeine/TMU ratio at three time points (3, 4 and 6 hr) post-dose with midazolam AUC. 

Moderate to strong concordance was demonstrated between each caffeine/TMU ratio and 

midazolam AUC both at baseline and post induction, with r2 values ranging from 0.65 to 0.87. 

Bland Altman analysis with post-hoc logistical regression demonstrated a lack of bias in 

CYP3A4 activity described by each approach both at baseline and post induction. These data 

support the capacity of the caffeine/TMU ratio to explain BSV in CYP3A4 activity. Notably, 

however comparatively weak correlations were observed between the change in midazolam 

AUC and the change in caffeine/TMU ratio (Day 8 / Day 1), with r2 values ranging from 0.3 

to 0.41. It is plausible that this inability of the caffeine/TMU ratio to describe the change in 

CYP3A4 activity caused by induction with rifampin is due to the differential effects of rifampin 

on alternate caffeine metabolic pathways. Specifically, BSV in the effects of rifampin on the 

dominant CYP1A2 mediated pathways may perturb the caffeine concentration thus 

confounding the observed change in the minor CYP3A catalyzed pathway. 

Although significant correlations with midazolam AUC and caffeine/TMU ratios were 

observed, it is important to note that the cohort was small and homogenous. As such, these 

findings need to be replicated in a larger and more diverse cohort in terms of age and gender 

in order to verify this outcome. Specifically, as this study consisted of all male participants, 

gender could not be assessed as a covariate affecting the capacity of the caffeine/TMU ratio to 

describe CYP3A4 activity and would need to be included in any follow-up study as it is known 

that CYP3A4 activity is higher in females. Notably, consistent trends (p < 0.1) were observed 
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supporting the capacity of the caffeine/TMU ratio to define inter-racial variability in CYP3A4 

activity between Caucasians and Southeast Asians.  

4.5 Conclusion 

In conclusion, it is unlikely that caffeine/TMU ratio alone is sufficient to explain all forms of 

variability in CYP3A4 activity, however, these results indicate that the caffeine/TMU ratio 

may be an important tool to define BSV in CYP3A4 activity, and may be a useful marker in a 

panel based metric to assess variability in CYP3A4 activity.     



138 
 

CHAPTER V: A NOVEL APPROACH 
TO ASSIST IN OPTIMISED KI 

DOSING  

 

 

van Dyk M, Miners JO, Kichenadasse G, McKinnon RA, Rowland A (2016) A novel 

approach for the simultaneous quantification of 18 small molecule kinase inhibitors in human 

plasma: a novel platform for optimised KI dosing. Journal of Chromatography B, 1033, 17-

25.  

The results presented in this chapter have 

been reported in: 
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5.1 Introduction 

As explained in Chapter I, variable KI exposure frequently manifests as therapeutic failure due 

to reduced tumour exposure resulting from enhanced clearance or impaired uptake, or toxicity 

due to increased systemic exposure resulting from impaired clearance or enhanced uptake 

(249). As discussed in previous chapters, variability in KI exposure is inadequately addressed 

by the routinely used fixed-dose schedule of administration (44, 45) resulting in the sub-

optimal use of these drugs (250). One of the identified strategies to achieve optimal KI dosing 

is with TDM (section 1.6.1). The benefit of TDM-guided KI dosing has been reported for a 

limited number of KIs including axitinib, imatinib, pazopanib and sunitinib (125, 133, 251, 

252). However, due to the rapid expansion of this novel drug class and relative slow 

development of TDM platforms (both in terms of the analytical platforms to quantify plasma-

KI concentrations and validated target plasma-KI concentration ranges), the capacity to achieve 

optimised KI dosing through TDM in a timely manner remains limited, particularly for newer 

KIs. 

TDM platforms routinely use LC with detection of analytes by UV absorbance, fluorescence 

or MS. Indeed, a number of LC based approaches, utilising UV or MS detection have been 

reported for the quantification of plasma-KI concentrations. Typically approaches utilising UV 

detection facilitate the measurement of only a single analyte, and as such are of limited clinical 

utility in terms of TDM platforms. More recently, a number of studies have reported LC-MS 

panel-based approaches for the quantification of 3 (253, 254), 4 (255), 6 (251, 256, 257); 8 

(258) or 9 KIs (259, 260). However, these approaches focus on a common panel of 11 KIs 

(axitinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, regorafenib, 

sorafenib and sunitinib), and as such do not facilitate pharmacokinetic (PK) analysis for newer 

KIs, which are required to universally establish optimised plasma-KI concentration ranges.  
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Recognising a need to address the limited scope of existing analytical approaches for the 

quantification of plasma-KI concentrations, this chapter sought to develop and validate a 

substantially more extensive platform.  
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Figure 5.1: Chemical characteristics for KIs relevant to their detection by mass spectrometry  
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5.2 Methods and Materials  

5.2.1 Chemicals and Reagents 

Afatinib, axitinib, dabrafenib, dasatinib, erlotinib, gefitinib, ibrutinib, imatinib, lapatinib, 

nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib, vandetanib and vemurafenib were 

obtained from LC Laboratories, Woburn, USA. Regorafenib, N-desethyl sunitinib, trametinib, 

d6-erlotinib hydrochloride, d3-O-methyl-gefitinib, d7-lapatinib di-hydrochloride and d3-

sorafenib were obtained from Toronto Research Chemicals, Ontario, Canada. High purity 

water was obtained using a MilliQ Synergy UV Ultrapure water system (Merck Millipore, 

Sydney, Australia). All chemicals and reagents were of LC-MS grade. Z Serum Sep Clot 

Activator (ref no: 455078, lot no: A1310018), Lithium Heparin (ref no: 455084, lot no: 

A1310031), Lithium Heparin Sep (LH-S) (ref no: 455083, lot no: A141237C) and K3EDTA 

(ref no: 455036, lot no: A111106P) specimen collection vacuettes were purchased from Greiner 

Bio-One. 

5.2.2 Sample Collection and Preparation 

5.2.2.1 Plasma Samples 

Venous blood from healthy volunteers and oncology patients (approved by Southern Adelaide 

Clinical Human Research Ethics Committee; 515.13 - HREC/13/SAC/ 347) was collected into 

an 9 mL LH-S vacuettes, centrifuged (4000 g for 5 min at room temperature), and the plasma 

separated and stored at −80 °C until analysis. A pool of human plasma obtained from the 

Flinders Medical Centre Blood Transfusion Service was used for method development, quality 

control samples and calibrator matrix. 

5.2.2.2 Internal Standard Selection 

Given the analytical complexity and substantial cost, and hence reduced feasibility, of 
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including separate deuterated internal standards (IS) for each of the 18 analytes, an optimised 

panel of four deuterated IS was employed on the basis of chromatographic retention and 

recovery characteristics. 

5.2.2.3 Sample Preparation 

For QC and calibration standards, human plasma was spiked with KIs individually and as a 

panel. Plasma samples were subjected to solvent precipitation in order to isolate analytes of 

interest. One hundred µL of sample or standard was mixed with 50 µL of IS (500 ng/mL d6-

erlotinib, d3-O-methyl-gefitinib, d7-lapatinib and d3-sorafenib in methanol) and 300 µL of 1 

% formic acid in methanol then vortexed for 30 sec using a MixMate® Vortex Mixer 

(Eppendorf, Sydney, Australia). This mixture was centrifuged for 5 min at 18000 g, and a 250 

µL aliquot of the supernatant fraction was transferred to Waters Acquity auto-sampler vial 

containing an LC-MS grade glass insert (Waters, Sydney, Australia); a 5 µL aliquot was 

injected directly onto the analytical column. In order to accommodate the substantially higher 

plasma concentration range for pazopanib (up to 3 orders of magnitude higher than other KIs), 

patient samples were diluted 1 in 20 by mixing 5 µL of patient plasma with 95 µL of blank 

calibrator matrix. Diluted samples were treated as per the standard protocol described above.   

5.2.3 Chromatography  

Chromatographic separations were achieved on a Waters ACQUITYTM T3 HSS C18 analytical 

column (150 mm x 2.1 mm, 1.8 µm) using a Waters ACQUITYTM UPLC system. The column 

temperature was maintained at 40 °C, while the sample compartment was maintained at 15 °C. 

Analytes were separated by gradient elution at a flow rate of 0.25 mL/min. Initial conditions 

were 80% ammonium formate (10 mM) with 10 % acetonitrile (mobile phase A) and 20 % 

ammonium formate (10 mM) in 90 % acetonitrile (mobile phase B). The proportion of mobile 

phase B was increased to 70% over 11 min, then reconditioned to initial conditions over 0.5 
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min. The total run time for the separation of 18 analytes, including reconditioning, was 15 min. 

5.2.4 Mass Spectrometry 

Column elutant was monitored by mass spectrometry, performed on a Waters Q-ToF 

PremierTM quadrupole, orthogonal acceleration time-of-flight tandem mass spectrometer (Q-

ToF-MS). Electron spray ionisation (ESI) was performed in positive ion mode; ion path within 

the time-of-flight (ToF) chamber was set in ‘V’ mode for maximum analyte sensitivity. 

Instrument acquisition settings are described in Table 5.1. ToF data were collected in wide 

pass MS mode, with the resolving quadrupole acquiring data between m/z 250 and 750 to yield 

a TIC chromatogram. Data was collected using the extended dynamic range function in 

MassLynxTM, and as such was collected as centroid spectra. The collision cell energy was 2 

eV. Selected ion data was extracted at the precursor m/z of analytes [M+H]+ as described in 

Table 5.2. Resulting pseudo-MRM spectra were analysed using Waters TargetLynxTM 

software.   

Table 5.1: Mass spectrometer instrument settings 

Parameter Setting 

Capillary voltage (keV) 2.4 

Sampling cone voltage (eV) 25 

Extraction cone voltage (eV) 5.0 

Source temperature (°c) 90 

Desolvation temperature (°c) 270 

Cone gas flow (L/Hr) 50 

Desolvation gas flow (L/Hr) 400 

Collision energy (eV) 2 

Detector voltage (eV) 1950 
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5.2.5 Calibration  

Master stock solutions were prepared for all analytes (1 mg/mL) in MS-grade methanol and 

stored at -20 °C for no longer than 60 days. Aliquot working stocks were stored at 4 °C for no 

longer than two weeks. Analyte stability in stock solutions stored under these conditions was 

confirmed for the respective usage periods. Calibration standards (n = 6 non-zero plus blank) 

were prepared by dilution of KIs in drug free plasma from healthy individuals, such that the 

final concentration spanned three orders of magnitude, in all cases incorporating from 0.2 to 5 

times the range reported in patient cohorts (Table 5.2). A single batch of plasma was used to 

prepare all calibration standards. Calibration standards were extracted in the same manner as 

plasma samples. Standard curves prepared in plasma were created by plotting the peak area 

ratio of the analyte to the associated deuterated IS. Analyte identification within samples was 

determined based on retention time and m/z value. Post-preparative analyte stability for 

samples stored at 15°C (autosampler set-temperature) was assessed in the lowest and highest 

calibration standards over 96 hours (analysis time for 480 samples).    
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Table 5.2: Analyte quantification characteristics 

Analyte Calibration 
Range (ng/mL) 

Calibration Curve 
Linear Regression 

Equation 

Coefficient of 
determination 

(r2) 

Analyte 
m/z 

Retention 
Time (min) 

Limit of 
Detection 
(ng/mL) 

Accuracy 
at LLOQa 
(% True) 

Afatinib 5 – 500 y = 0.9780x – 0.1006 0.9998 486.143 3.50 1.28 103 

Axitinib 5 – 500 y = 0.7815x – 0.0261 0.9997 387.127 5.05 0.90 105 

Dabrafenib 10 – 1000 y = 0.4746x – 0.0372 0.9998 520.108 9.20 1.27 99 

Dasatinib 10 – 1000 y = 0.2348x + 0.0112 0.9966 488.162 10.18 1.43 102 

Erlotinib 50 – 5000 y = 0.2293x + 0.0168 0.9981 394.176 5.18 0.60 106 

Gefitinib 50 – 5000 y = 0.1840x + 0.0022 0.9998 447.159 3.21 1.22 110 

Ibrutinib 5 – 500 y = 0.8205x + 0.0631 0.9993 441.175 8.02 1.37 98 

Imatinib 25 – 2500 y = 0.4248x – 0.0049 0.9951 494.246 3.76 0.15 95 

Lapatinib 10 – 1000 y = 0.2364x – 0.0209 0.9987 581.142 6.60 0.55 97 

Nilotinib 25 – 2500 y = 0.1935x + 0.0065 0.9994 530.191 6.84 0.43 112 

Pazopanib 1000 – 100000b y = 0.0199x + 0.0054 1.0000 438.170 3.82 13.0 101 

Regorafenib 50 – 5000 y = 0.2302x + 0.0015 0.9995 483.084 10.18 0.25 107 

Ruxolitinib 50 – 5000 y = 0.1930x + 0.0053 0.9975 307.166 5.18 0.43 97 

Sorafenib 50 – 5000 y = 0.3720x + 0.0112 0.9999 465.093 9.81 0.52 108 
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Sunitinib 2.5 – 250 y = 0.6367x + 0.0095 0.9936 399.219 4.68 0.15 103 

N-desethyl Sunitinib 2.5 – 250 y = 0.6392x – 0.0107 0.9943 371.187 4.11 0.55 98 

Trametinib 2.5 – 250 y = 0.6012x + 0.0246 0.9984 616.085 8.99 0.07 104 

Vandetinib 5 – 500 y = 0.6820x + 0.0354 0.9992 475.098 3.69 0.65 98 

Vemurafenib 25 – 2500 y = 0.1939x + 0.0064 0.9980 490.079 9.68 0.07 107 
a Lower limit of quantification (LLOQ) defined as the lowest calibration standard. 

b Effective calibration range based on 1 in 20 dilution of patient samples but not calibrators; actual calibrator concentration range 50 to 5000 

ng/mL. 
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5.2.6 Method Validation 

5.2.6.1 Specimen Tube Comparison 

Variability in analyte recovery between specimen collection tubes was assessed in triplicate for 

a panel of specimen tubes with control samples prepared in glass culture and plastic Eppendorf 

tubes. One hundred millilitres of blank whole blood was spiked with the panel of 18 analytes 

(100 µg/L) and mixed thoroughly. Five millilitres of spiked whole blood was then aliquoted 

into Z Serum Sep Clot Activator, Lithium Heparin (LH-S), and K3EDTA specimen collection 

vacuettes (Greiner Bio-One), glass culture and plastic Eppendorf tubes. Samples were mixed 

according to the appropriate protocol for each specimen tube type and left to stand at room 

temperature for 1 hr. Serum or plasma was then isolated using the protocol described in section 

5.2.2.1. ANOVA Tukey Post Hoc HSD analysis was performed to assess differences in 

recovery across the tubes using IBM SPSS Statistics (with an assigned significance at the 0.05 

level). 

5.2.6.2 Analytical Precision and Recovery 

Assay precision was assessed on the basis of intra- and inter-day variability for each analyte 

spiked at three concentrations; the lowest, middle and highest concentrations in corresponding 

calibration curves (Table 5.3). Inter-day variability was assessed in triplicate on 5 occasions, 

while intra-day variability was assessed in 8 individually prepared samples analysed on a single 

day.  

Analyte recovery was determined both in terms of absolute and relative recovery for each 

analyte. In order to ensure the accuracy of pazopanib quantification in diluted samples, a 

comparative analysis was performed with patient samples (n = 4) ranging in concentration from 

250 µg/L (tapering of therapy) to 90,000 µg/L (maximal concentration) against undiluted 

samples analysed using a validated HPLC method with UV detection (111). Relative recovery 
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was assessed by comparison of calibration slopes attained from extracted standards (n = 6) 

prepared in matrices of plasma and mobile phase (control), while absolute recovery was 

assessed by comparison of the calibration slope attained from extracted standards (n = 6) 

prepared in plasma and volume adjusted un-extracted (pure authentic) standards prepared in 

mobile phase (control) (Table 5.3). 



150 
 

Table 5.3: Assay precision and recovery. 

Analyte 

Precision: Variability (% RSD) 
Recovery (%) 

Lowest Mid Highest 

Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day Absolute Relative 

Afatinib 6.8 2.0 5.1 10.9 2.9 1.2 95 96 

Axitinib 2.7 12.9 1.8 7.6 2.1 11.7 92 106 

Dabrafenib 7.9 16.7 6.6 11.2 2.3 9.7 101 113 

Dasatinib 5.0 4.1 2.1 5.4 3.1 4.3 92 108 

Erlotinib 3.6 9.9 4.6 10.1 2.5 12.8 98 105 

Gefitinib 4.5 12.9 3.3 9.7 1.5 5.6 103 105 

Ibrutinib 6.6 13.1 7.1 3.3 2.6 1.8 92 107 

Imatinib 1.2 10.6 3.6 9.7 2.9 14.9 108 99 

Lapatinib 2.6 6.8 1.8 8.8 2.9 14.6 113 104 

Nilotinib 5.1 15.4 3.5 7.7 3.6 3.1 100 101 

Pazopanib 4.1 7.5 2.2 8.0 1.4 8.6 101 102 

Regorafenib 5.3 7.6 4.8 8.7 3.1 12.1 107 97 

Ruxolitinib 2.9 7.4 4.1 9.1 1.9 5.1 104 111 
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Analyte 

Precision: Variability (% RSD) 
Recovery (%) 

Lowest Mid Highest 

Intra-day Inter-day Intra-day Inter-day Intra-day Inter-day Absolute Relative 

Sorafenib 3.8 12.2 6.4 10.3 1.2 2.8 110 112 

Sunitinib 4.8 8.9 2.7 11.8 5.3 9.0 104 110 

N-desethyl 
Suntinib 5.3 8.1 9.4 7.4 3.8 7.8 95 105 

Trametinib 4.7 1.7 3.6 4.0 6.9 10.7 103 107 

Vandatinib 6.5 7.5 7.2 9.1 1.4 3.7 101 111 

Vemurafenib 6.9 15.7 6.7 11.2 3.6 12.8 105 108 
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Table 5.4: Assay accuracy. 

Analyte 

QC Concentrations (µg/L) 

Low Mid High 

Nominal Measured % True Nominal Measured % True Nominal Measured % True 

Afatinib 12.5 14.3 114 125 133 105 375 370 99 

Axitinib 12.5 13.1 104 125 141 113 375 375 100 

Dabrafenib 25 25.3 101 250 267 107 750 756 101 

Dasatinib 25 23.8 95 250 230 92 750 746 99 

Erlotinib 125 122 98 1250 1310 105 3750 3864 103 

Gefitinib 125 142 113 1250 1112 89 3750 3582 96 

Ibrutinib 12.5 12.7 101 125 133 106 375 368 98 

Imatinib 75 74.4 99 750 705 94 1875 1910 102 

Lapatinib 25 26.2 105 250 272 109 750 757 101 

Nilotinib 75 81.3 108 750 718 96 1875 1910 102 

Pazopanib 2500 2576 103 25000 25924 104 75000 76452 102 

Regorafenib 125 130 104 1250 1227 98 3750 3552 95 

Ruxolitinib 125 115 92 1250 1364 109 3750 3986 106 
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Analyte 

QC Concentrations (µg/L) 

Low Mid High 

Nominal Measured % True Nominal Measured % True Nominal Measured % True 

Sorafenib 125 141 113 1250 1368 110 3750 3913 104 

Sunitinib 6.25 6.31 101 62.5 68.6 110 187.5 185 99 

N-desethyl Suntinib 6.25 5.60 90 62.5 64.1 102 187.5 178 96 

Trametinib 6.25 6.05 97 62.5 71.4 114 187.5 191 102 

Vandatinib 12.5 12.7 101 125 128 102 375 371 99 

Vemurafenib 62.5 63.5 102 625 609 97 1875 1872 100 
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5.2.6.3 Analytical Accuracy and Matrix effects 

Assay accuracy was assessed on the basis of accuracy of QC sample determination, and matrix 

effects. The accuracy of QC samples prepared at 3 concentrations within the calibration range 

was assessed in five replicates on three separate days (Table 5.4).  

Matrix effects were assessed by quantifying the concentration of analytes in spiked plasma 

from 6 separate individuals (3 healthy volunteers and 3 oncology patients). The potential for 

variability in analyte response due to suppression or enrichment of ionization by matrix 

components (primarily phospholipids) was characterised by determining the chromatographic 

retention of the most abundant phospholipids and fragments reported to affect sample 

ionization with an ESI+ source (261-263). In-source suppression and enrichment of ionization 

was also assessed by post column infusion. Post-column infusion experiments were conducted 

in which a 250 µg/L analyte solution in mobile phase B was constantly infused (10 µL/min) 

post-column into the MS. A 200 µL aliquot of drug free plasma was prepared as described in 

Section 5.2.2.3, and injected pre-column (264). 

5.2.6.4 Linearity, Lower Limit of Detection and Quantification Range 

Assay sensitivity and linear detection range were determined for each analyte. The lower limit 

of detection (LLOD) was defined on the basis of a 5:1 signal to noise ratio. The LLOQ was 

defined as the lowest calibration standard for each analyte. This criteria for the LLOQ is 

acceptable on the basis that for all analytes the lowest calibrator was greater than the LLOD 

(analyte response at least 5 times the response compared to blank response), and analyte peaks 

were identifiable, discrete, and reproducible with a precision defined by a % relative standard 

deviation (RSD) less than 20% and accuracy within 80 and 120% of the true value. Linear 

response, assessed by least squares regression of 6 non-zero calibrators and expressed as a 

coefficient of determination (r2) > 0.99, was confirmed across the respective calibration ranges 
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for each analyte. The linear regression equation and r2 for each analyte are specified in Table 

5.2.  

5.2.6.5. Selectivity 

Assay selectivity was assessed by evaluating the endogenous response from healthy individua ls 

and oncology patients (n = 6) not currently undergoing therapy with a KI. 

 

5.3. Results  

5.3.1 Sample Collection and Preparation 

Statistical analysis (Appendix Table 1) demonstrated comparable analyte recovery across all 

KIs from LH-S vacuettes (Greiner bio-one - ref no: 455083, lot no: A141237C) compared to 

controls (glass and Eppendorf plastic tubes). For all other collection tubes tested, a significant 

difference in recovery was observed for one or more analytes compared to the control tubes. 

5.3.2 Analyte Separation, Detection and Quantification 

Analytes were detected at m/z values corresponding to the [M+H]+ for the parent compound 

(Table 5.2 and Figure 5.1). To optimise the sensitivity and selectivity of the assay, m/z spectra 

were used to determine ionization maxima for each analyte. A range of capillary voltages, 

sample cone voltages and collision energies were assessed and it was determined that optimal 

detection and quantification of analytes was achieved at capillary, sample cone and collision 

energies 2.4 keV, 25 eV and 2 eV, respectively (Table 5.1). Blank plasma and mobile phase 

samples were also subjected to the same sample preparation and then analysed to ensure there 

were no co-eluting peaks originating from the matrix or sample preparation protocol. 

Employing the optimised chromatographic and mass spectrometer conditions outlined in 
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Sections 5.2.3 and 5.2.4 clear, sharp peaks were obtained for all analytes, with individua l 

analytes eluting at retention times between 3.2 and 10.2 min (Table 5.2). Individual selected 

ion extraction (pseudo-MRM) data from a representative plasma sample containing all analytes 

is shown in Figure 5.2 (panels 1 to 19).  

Based on the chromatographic resolution and recovery characteristics of the individual KIs, 

d6-erlotinib, d3-O-methyl-gefitinib, d7-lapatinib and d3-sorafenib were selected as the IS panel 

(Figure 5.2; panels 21-24). Individual deuterated IS were used to normalise the response of 

co-eluting analytes; d6-erlotinib (RT 5.11 min) the for analytes eluting between 4.6 and 5.2 

min, d3-O-methyl-gefitinib (RT 3.16 min) for analytes eluting between 3.2 and 4.2 min, d7-

lapatinib (6.62 min) for analytes eluting between 6.6 and 8.1 min, and d3-sorafenib (RT 9.75 

min) for analytes eluting between 9.0 and 10.2 min.   
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Figure 5.2: Representative pooled spiked plasma (100 µg/L) chromatogram (quadrupole acquiring data between m/z 250 and 750). 

Panels 1 to 19: extracted ion chromatograms at resolution of ± 0.05 AMU for each of the analytes of interest; panel 1: nilotinib (m/z 530.191), 

panel 2: vandetanib (m/z 475.098), panel 3: gefitinib (m/z 447.159), panel 4: ruxolitinib (m/z 307.166), panel 5: N-desethyl sunitinib (m/z 

371.187), panel 6: dabrafenib (m/z 520.108), panel 7: regorafenib (m/z 483.084), panel 8: axitinib (m/z 387.127), panel 9: dasatinib (m/z 
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488.162), panel 10: erlotinib (m/z 394.176), panel 11: vemurafenib (m/z 490.079), panel 12: trametinib (m/z 616.085), panel 13: sunitinib (m/z 

399.219), panel 14: sorafenib (m/z 465.093), panel 15: imatinib (m/z 494.246), panel 16: lapatinib (m/z 581.142), panel 17: afatinib (m/z 

486.143), panel 18: pazopanib (m/z  438.170), panel 19: ibrutinib (m/z 441.175). Panel 20: total ion count chromatogram. Panels 21 to 24: 

extracted ion chromatograms at resolution of ± 0.05 AMU for each of the deuterated internal standards: panel 21: d7-lapatinib (m/z 588.175), 

panel 22: d3-sorafenib (m/z 468.0945), panel 23: d3-O-methyl-gefitinib (m/z 450.186), panel 24: d6-erlotinib (m/z 400.207). Y-axis (% Maximal 

Response) scale is -5 to 95%  
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5.3.3 Calibration and Validation 

Calibration curves generated for each analyte were linear over the concentration ranges 

described in Table 5.2. Coefficients of determination (r2) were invariably greater than 0.99. 

Assay precision was assessed on the basis of inter- and intra-day variability at three 

concentrations as described in section 5.2.6.2. Results are shown in Table 5.3. The percent 

relative standard deviation (%RSD; also known as the coefficient of variation) for intra-day 

and inter-day variability was less than 10 and 17 %, respectively, for all analytes. With the 

exception of the inter-day precision determination at the LLOQ for dabrafenib, nilotinib and 

vemurafenib the % RSD did not exceed 15 %, in these cases the % RSD did not exceed 20%. 

Precision determination are within the specified acceptable criteria of “<15 % in all cases 

except for the LLOQ (< 20 %)” for all analytes.  

Assessment of absolute analyte recovery by quantification of detector response obtained for 

extracted plasma samples compared to that for a true concentration of pure authentic standard 

(non-extracted) demonstrated mean recovery of between 92 and 113 % for all analytes (Table 

5.3). Assessment of relative recovery (plasma versus mobile phase extracted calibration curves) 

demonstrated >95 % mean recovery for all analytes. Assay sensitivity was determined on the 

basis of the LLOD and assay precision and accuracy at the LLOQ (defined as the lowest 

calibrator) for all analytes. Following the criteria described in section 5.2.6.4, the LLOD ranged 

from 0.07 to 1.43 µg/L for undiluted samples (Table 5.2; 13 µg/L post-dilution for pazopanib). 

Assay precision and accuracy (defined as the mean % deviation from the nominal value in five 

replicates) at the LLOQ was invariably < 20 %, and within 80 to 120 %, respectively, for all 

analytes (Table 5.2).  

Matrix effects were assessed by comparison of the recovery of each analyte spiked into human 

plasma from 6 individuals (3 healthy volunteers and 3 oncology patients), characterisation of 
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the chromatographic retention of common matrix components implicated in suppression and 

enrichment of ionization, and post-column infusion of analytes into a drug free plasma matrix. 

In all cases variability across the 6 samples (assessed as %RSD) was less than 10 %. 

Quantification of diluted pazopanib patient samples using the UPLC-MS approach described 

here when compared to undiluted samples analysed by a validated HPLC-UV approach 

resulted in measured analyte concentrations within 8%. Assay selectivity was assessed in blank 

plasma from 6 individuals (3 healthy volunteers and 3 oncology patients); no peaks resulting 

from endogenous analytes were observed at the RT and m/z values for any of the analytes (KIs) 

measured. A lack of endogenous response in plasma from oncology patients demonstrated is 

consisted with a lack of effect from concomitant medications. Furthermore, the 

chromatographic retention of matrix components (phospholipids) and their fragments know to 

affect (through enrichment or suppression) ionization within an ESI+ source was assessed. 

These analyses demonstrated a lack of co-elution of the most common plasma phospholipids 

1-Stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (m/z 810.5), 1-(9Z,12Z- 

Octadecadienoyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine (m/z 

806.5), Glycerophosphocholine 36:2  (m/z 786.5), 1-Hexadecanoyl-2-(9Z,12Z-

octadecadienoyl)-sn-glycero-3-phosphocholine  (m/z 785.5), 1-Stearoyl-2-hydroxy-sn-

glycero-3-phosphocholine (m/z 524.3), 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine 

(m/z 496.3), and their fragments (m/z 184.3 and 104.0) implicated in the suppression or 

enrichment of ionization within an ESI+ source (261, 264). Post-column infusion of analytes 

demonstrated an absence of matrix effect for all analytes between 1.5 and 10.5 min; 

representative extracted response change chromatograms associated with post-column infusion 

of analytes with a pre-column injection of drug free plasma are shown in the supplemental 

Figure 5.1. Taken together, these analyses demonstrate clear chromatographic resolution 

between all analytes of interest and the major matrix components implicated in suppression or 
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enrichment of source ionization, and a lack of matrix effect for all analytes.  

Post-preparative analyte stability was assessed at the lowest and highest calibrator 

concentrations at 15 °C over 96 hours. Over this time course, detector response diminished by 

less than 6 % for all analytes. This time course for analyte stability would facilitate analysis of 

480 samples. 

5.3.4 Application to Clinical Trial Samples 

The primary application of this approach will be the quantification of KI concentrations in 

pharmacokinetic studies and subsequently in clinical practice. Indeed, the approach described 

here is currently being used to support clinical studies (HREC/13/SAC/347). Increasingly 

treatment regimens including multiple KIs are being trialled (e.g. combination dabrafenib / 

trametinib for metastatic melanoma). The capacity to simultaneously quantify multiple KIs in 

a single patient sample is an important and novel feature of the current approach. The capacity 

of this approach to quantify multiple KIs (dabrafenib / trametinib) and the parent KI plus 

metabolite (sunitinib / N-desethyl sunitinib) in oncology patient samples is demonstrated in 

Figures 5.3 and 5.4 and 5.6 
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Figure 5.3: Representative chromatogram for a patient taking a standard combination 

dose of dabrafenib (150mg BD) and trametinib (2mg OD).  

Panel 1 and 2: extracted ion chromatogram at resolution of ± 0.05 AMU for trametinib (m/z 

616.085) and dabrafenib (m/z 520.108), respectively.  Panel 3: total ion count 

chromatogram. Y-axis (% Maximal Response) scale is 0 to 100%  
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Figure 5.4: Representative chromatogram for a patient taking a standard dose of 

sunitinib on a 4 week on and 2 weeks off cycle.  

Panel 1 and 2: extracted ion chromatogram at resolution of ± 0.05 AMU for N-desethyl 

sunitinib (m/z 371.187) and sunitinib (m/z 399.219), respectively.  Panel 3: total ion count 

chromatogram. Y-axis (% Maximal Response) scale is 0 to 100% 
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5.4. Discussion 

The rapid development of KIs as a class of antineoplastic drugs has substantially improved the 

outcomes for patients with a range of malignancies. However, potential for additional benefit 

from the use of KI through optimised dosing remains to be universally addressed. This chapter 

describes a simple and robust UPLC-QToF-MS approach that facilitates the quantification of 

the plasma-KI concentration for a panel of 18 KIs. In order to facilitate direct application as a 

clinical trials platform, this approach has been developed, validated and reported in accordance 

with the 2015 version of the FDA guidance for industry on analytical procedures and methods 

validation for drugs and biologics.  

While the importance of standardised specimen collection and storage protocols are widely 

accepted (265, 266) for clinical trials, specific conditions (e.g. the chemistry of specimen tubes) 

routinely vary between studies, potentially confounding comparison of results. As KIs are 

lipophilic (logP values > 2.5) weak organic bases that are generally non-ionized at 

physiological pH (111), variable recovery from specimen tubes is a potential major confounder. 

Thus, a comparison of analyte recoveries from a panel of collection tube of differing 

chemistries was performed. This analysis demonstrated that for all analytes analysed, LH-S 

(Greiner Bio-One) specimen collection vacuettes provided consistent and high recoveries 

comparable to control tubes.  

In addition to this approach providing the most extensive platform for the quantification of 

plasma-KI concentrations, another key feature is the extended dynamic range providing linear 

response across up to three orders of magnitude for an individual analyte and across five orders 

of magnitude between analytes. As the doses, distribution and elimination characteristics of 

KIs vary substantially between individual agents, plasma-KI concentrations vary across several 

orders of magnitude. As identified by van Erp et al. 2013 (257), limitations in terms of dynamic 
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range have previously precluded the incorporation of KIs such as pazopanib in multi-analyte 

platforms due to the comparatively high plasma concentrations resulting in non-linear 

response. The approach described here facilitates calibrated linear response for analytes as low 

as 2.5 µg/L (sunitinib, trametinib) and up to 5,000 µg/L (erlotinib, gefitinib, regorafenib, 

ruxolitinib and sorafenib) using a common sample preparation protocol, in all cases facilitating 

the quantification of plasma-KI concentrations across a clinically relevant plasma 

concentration range for the analyte. In the case of pazopanib patient plasma samples were 

diluted 1 in 20 using blank calibrator matrix to facilitate linear detection across a substantially 

higher concentration range (1,000 – 100,000 µg/L). Validation studies demonstrated that 

dilution in matched blank matrix (i.e. calibration blank plasma) did not alter relative analyte 

response, assay precision or accuracy. For individual analytes, the extended linear dynamic 

range for achieved using this approach (typically three orders of magnitude) is critical to 

facilitate PK (particularly dose escalation) studies, which may be performed across a spectrum 

of doses. Evidence has recently shown improved efficacy against resistance in patients with 

metastatic melanoma undergoing combination KI therapy with dabrafenib and trametinib 

compared to dabrafenib alone (267). Given that combination KI therapy is quite novel with 

increasing prevalence, a panel based UPLC-MS-MS approach for the quantification of plasma 

concentrations of these small molecule kinase inhibitors are of great importance to make inter-

individual variability with KI exposure available to aid in TDM to ensure optimal use of these 

powerful drug class.  The assay described is particularly advantageous for the establishment of 

target trough concentrations through retrospective studies for the newer KIs. The assay 

described is one of the first approaches to facilitate the simultaneous quantification of plasma 

concentrations for such a broad range of KIs that includes the recently approved combination 

of dabrafenib and trametinib. 
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5.5. Conclusion 

This chapter describes the development and validation of a novel ultra-performance liquid 

chromatography, quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) based 

approach for the quantification of plasma concentrations for 18 KIs (Figure 5.1). The approach 

provides a robust analytical platform to facilitate PK studies to establish optimised 

concentration ranges for newer KIs and a TDM platform to assist in guiding KI dosing for 

agents where an optimised KI-concentration range exists.  

The novel UPLC-QToF-MS approach described in this chapter represents a substantial advance 

in the quantification of plasma-KI concentrations, with a capacity to quantify twice the number 

of analytes of any existing approach, including the recently approved KI combination of 

dabrafenib and trametinib. This approach provides immediate clinical utility as a TDM 

platform for monitoring of plasma-KI concentrations where an established or accepted ‘target 

concentration range’ exists (i.e. axitinib, erlotinib, gefitinib, imatinib, pazopanib, sorafenib and 

sunitinib) (125). The approach also provides a platform to support PK studies involving a 

diverse range of KIs where such concentration ranges remain to be established (i.e. afatinib, 

dabrafenib, dasatinib, ibrutinib, lapatinib, nilotinib, regorafenib, ruxolitinib, vandetanib and 

vemurafenib). Accordingly, this approach will facilitate a significant expansion in the number 

of KIs with established target concentration ranges. Furthermore, as this occurs, this approach 

will facilitate the most comprehensive TDM platform for KI dose optimisation.
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CHAPTER VI: APPLICATION OF 
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6.1 Introduction 

Chapter I of this thesis introduced the potential for inconsistent patient outcomes due to 

variability in KI exposure. Subsequent chapters described the development and verification of 

strategies that may be used to help characterise variability in such KI exposure ranging from 

PBPK modelling (Chapter II), to reaction phenotyping (Chapter IV) and TDM (Chapter V). 

The results presented in this chapter demonstrate the potential application of two of these 

approaches. 

The first approach involves the use of a case study to demonstrate the application of model 

informed precision dosing (MIPD) for dabrafenib. Like many KIs, dabrafenib is generally well 

tolerated but exhibits substantial BSV in exposure (268). A recent study of 27 patients with 

metastatic BRAFV600mut melanoma reported that a dabrafenib Css_trough of > 48ng/mL was 

associated with an increased risk of Grade ≥2 adverse events requiring dose reduction (269). 

While intriguing, the clinical utility of this finding to guide dosing would traditionally require 

a costly prospective clinical trial sufficiently powered to demonstrate any advantages of using 

this upper-limit of concentration to inform prescribing (232). Novel and efficient strategies to 

predict which patients may be at risk of steady-state plasma concentrations > 48 ng/mL could 

decrease the costs involved in translating such evidence into clinical practice.  

Chapter II introduced the mechanistic basis of PBPK models, which combine physiological 

and molecular characteristics (‘population variables’) with drug physiochemical and in vitro 

kinetic data (‘drug variables’) to predict PK (270, 271). Currently, PBPK models are used 

throughout drug development to support decisions about when and how to conduct clinical PK 

studies in specific populations and to support dose recommendations (272, 273). Given the 

mechanistic basis of PBPK models,  it is likely that this strategy may also be valuable for 

MIPD; a proof-of-concept study for this approach was recently been published by this 
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laboratory using olanzapine (228, 274). Interrogation of simulation outputs at a physiological 

and molecular level represents a novel and efficient approach to predict baseline markers that 

drive BSV in drug exposure. Importantly, the ‘population variables’ contained within PBPK 

platforms such as Simcyp® are based on reported demographic characteristics from broad but 

defined populations, and are more likely to reflect the ‘real world’ treatment population 

compared with a clinical trial cohort. Additionally, PBPK modelling is now recommended by 

the major regulatory agencies (275, 276), meaning that the parameters that underpin the 

population files must already, by extension, be accepted as at least partially validated.  

The aim of the first study described in this chapter was to apply a PBPK model for dabrafenib 

to identify baseline physiological and molecular characteristics that drive BSV in exposure to 

this drug. The capacity to discriminate a dabrafenib Css_trough above and below 48 ng/mL was 

evaluated as an exploratory extension. 

It was also introduced in Chapter I that TDM can be utilised to optimise KI dosing to maximise 

efficacy while minimising toxicity. Target concentrations for a subset of KIs have been 

established to guide such optimised dosing (section 1.6.1). The aim of the second study 

described in this chapter was to conduct a pilot study to measure KI trough concentrations in a 

‘real world’ oncology cohort to assess BSV and to compare the results to established target 

concentrations. A case study from this cohort is described as an example of how KI TDM can 

be applied.  
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6.2 Methods 

6.2.1 Application 1: Identification of physiological and molecular 

characteristics driving between subject variability in dabrafenib 

exposure  

6.2.1.1 Dabrafenib PBPK Model 

The physicochemical, blood binding, absorption, distribution, elimination, interaction and 

transport parameters used to construct the dabrafenib compound file are summarised in Table 

6.1. Physiochemical properties were taken from published literature (177). Unless specified, 

blood binding, permeability and distribution parameters were predicted in Simcyp® based on 

physicochemical properties using previously validated in-built prediction tools.  

Metabolism and interaction parameters were based on reported in vitro data (97). Robust 

determination of in vitro dabrafenib transporter kinetics is precluded by limited aqueous 

solubility, which confounds assessment of compartmentalised drug concentrations in systems 

such as trans-well based transporter assays (111). In the absence of robust in vitro data, 

intestinal and hepatic transporter (transporter-mediated intrinsic clearance; CLintT) and 

diffusion (passive diffusion clearance; CLPD) kinetics were determined using the parameter 

estimation (PE) function in Simcyp® (277). Parameter estimations were based on in vivo data 

from a phase I single dose escalation trial [GSK trial ID: 112680] involving 94 melanoma 

patients over 6 dose levels (37.5 to 300 mg). Data from this trial were not used in the subsequent 

verification of the dabrafenib model and no adjustment to the model was required during the 

verification phase (Figures 6.1 and 6.2). Simulations performed to assess markers of 

dabrafenib Css_trough in oncology patients used the ‘Genentech Cancer’ population (194). 
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Table 6.1: Input parameters for the dabrafenib compound file. 

 Parameter Value Source 

Physiochemical properties 

Molecular weight 519.56 (177) 

log Po:w 4.8 (177) 

Species Neutral (177) 

Protein Binding 

B/P 0.708 Predicted 

fup 0.0038  (177) 

Absorption (advanced dissolution, absorption and metabolism model) 

fa 0.2246 Predicted 

ka (1/hr) 0.0776 Predicted 

PSA 147.5 (177) 

HBD 2 (177) 

  Peff,man (10-4 cm/s) 0.189 Predicted 

Dosage form Immediate release  

Reabsorption after biliary excretion 100 Parameter estimation 

In vivo pharmacokinetic properties (full PBPK model) 

Vss (L/kg) 0.31 Predicted (Model 2) 

Metabolism: HLM enzyme kinetics (CLint; µL/min/mg) 

CYP2C8 46.20 (97) 

CYP3A4 4.79 (97) 

Intestinal Transport (CLintT; µL/min) 

Apical Uptake (Apical Influx) 0.05 Parameter estimation 

Apical Efflux (P-gp) 341.8 Parameter estimation 

Hepatic Transport (CLint,T; µL/min/106 cells) 
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Passive diffusion (CLPD) 7.165 Parameter estimation 

P-gp (Cannicular Efflux) 341.8 Parameter estimation 

Competitive inhibition (Ki; µM) 

CYP2C8  4.1 (97) 

CYP3A4 8.0 (97) 

CYP3A4 Induction 

Calibrated INDmax 30.0 (97) 

IndC50 (nM) 1.0 (97) 

Abbreviations: Po:w, neutral species octanol:buffer partition coefficient;  B/P, blood-to-plasma 

partition ratio; fup, fraction unbound in plasma; fa, fraction available from dosage form; ka, 

absorption rate, PSA; polar surface area, HBD; hydrogen bond donor; Peff,man, human jejunum 

effective permeability; Vss; volume of distribution at steady state; CLint, in vitro intrinsic 

clearance; CLint,T, in vitro transporter mediated intrinsic clearance; CLPD, passive diffusion 

clearance; Ki, concentration that supports half maximal inhibition; Indmax; maximum fold 

induction; IndC50 concentration that supports half maximal induction. 
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Figure 6.1: Representative [GSK trial ID: 11346] overlay showing the simulated and observed (95% observed range) plasma 

concentration time curves (0 to 24 hours) for dabrafenib following a single 150 mg oral dose.  

Solid line is the mean model predicted exposure, dark (green) dotted line is the mean observed exposure and light (orange) dotted lines are 95% 

minimal and maximal observed range of exposures. Panel A: linear plasma concentration scale, Panel B: logarithmic plasma concentration 

scale.  
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Figure 6.2: Representative [GSK trial ID: 113771 Part D] overlay showing the simulated and observed (95% observed range) plasma 

concentration time curves (408 to 432 hours) for dabrafenib when dosed for 14 days (150 mg BD).  

Solid line is the mean model predicted exposure, dark (green) dotted line is the mean observed exposure and light (orange) dotted lines are 95% 

minimal and maximal observed range of exposures. Panel A: linear plasma concentration scale, Panel B: logarithmic plasma concentration 

scale. 



175 
 

6.2.1.2 Trial Design 

A verified dabrafenib model was used to evaluate potential associations between physiological 

and molecular characteristics and dabrafenib exposure, taken as Css_trough. Ten virtual trials each 

comprising 100 subjects (total = 1000) from the Genentech Cancer population (Table 6.2) were 

simulated over 336 hours, with 150mg of dabrafenib dosed orally in a fasted state every 12 

hours for 14 days. The Css_trough was determined 12 hours after the final dose of dabrafenib on 

day 14. Univariate logistic regression analysis was used to screen the associations between the 

characteristics and Css_trough >48ng/mL. Continuous variables were evaluated for normality and 

non-linearity of association. A baseline multivariate logistic regression model was developed 

via backwards deletion (AIC) of the baseline characteristics significant in the univariate 

analysis. The predictive performance of the developed multivariable models was assessed via 

the area under the receiver operating characteristic curve (ROC AUC) and model prediction 

accuracy (% of model predictions that match the observed data). The predictive performance 

was externally validated in two separate verification cohorts of 250 cancer patients.   

Table 6.2: Characteristics describing the core simulated cancer patient cohort (n = 1,000). 
 

Mean Range 

Physiological characteristics 

Female (% of cohort) 48.7  

Age (Years) 58.9 29.2 – 87.8 

Weight (kg) 71.5 39.0 – 123 

Height (cm) 168 143 – 194 

BSA (m²) 1.80 1.28 – 2.44 

BMI (kg/m²) 25.4 16.1 – 45.7 

Combine kidney weight (g) 304 110 – 621 

Liver weight (g) 1531 875 – 2612 
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Cardiac output (L/h) 282 191 – 413 

Haematocrit (%) 37.1 23.5 – 56.3 

Albumin (g/L) 38.3 28.3 – 53.0 

GFR (mL/min/1.73m²) 90.4 29.8 – 232.1 

Intestinal CYP abundance (nmol P450) 

CYP3A4 64.7 6.6 – 421 

CYP3A5 4.0 0 – 91.2 

Liver CYP abundance (nmol P450) 

CYP2C8 1132 78 – 9927 

CYP3A4 6231 288 – 54309 

CYP3A5 944 0 – 18574 

CYP3A7 174 0 – 5577 

Active CYP 3A5 / 3A7 (% of cohort) 

CYP3A5 17.6  

CYP3A7 10.7  

CYP3A4 induction (% baseline expression) 

Liver 180.6 106 – 459 

Intestine 519.7 161 - 1504 

Liver transporter abundance (nmol protein) 

P-gp 28.6 3.8 – 234 

OATP1B1 595 58.2 – 4525 

OATP1B3 589 108 - 2881 

Abbreviations: BSA, body surface area; BMI, body mass index; GFR, glomerular filtration 

rate. 
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6.2.2 Application 2: Use of KI TDM in a ‘real world’ Cohort 

 6.2.2.1 Study Protocol  

TKI-Opt was an observational study evaluating the cohort of oncology patients treated at 

Flinders Centre for Innovation in Cancer with KIs for various cancer indications. The trial 

protocol was approved by the Southern Adelaide Clinical Human Research Ethics Committee 

(SAHREC EC00188), and written informed consent was obtained from each participant. The 

study was conducted according to the principles stated in the Declaration of Helsinki and is 

compliant with CPMP/ICH/135/95 GCP standards. 

6.2.2.2 Study Cohort 

Adult male and female (18+ years old) patients from all demographic, ethnic and cultural 

backgrounds were included to facilitate analysis of a diverse patient cohort. Patients with 

documented impaired cognitive function, who were deemed incapable of providing legitimate 

informed consent, were excluded from this study.  

6.2.2.3 Study Design 

Two blood samples were collected at steady-state two weeks apart to confirm KI trough 

concentrations. Patient results were used for research purposes and results were made available 

only upon requests from the patient’s treating oncologist. If dose-adjustments were made and 

TDM was requested, further blood samples were collected.  

6.2.2.4 Sample Preparation and Analysis 

The method that was used to perform sample preparation and analysis has previously been 

described in Chapter V, section 5.2.2.1-5.2.2.3.  
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6.3 Results  

6.3.1 Application 1: Identification of physiological and molecular 

characteristics driving between subject variability in dabrafenib 

exposure 

The results of the univariate logistic regression analysis assessing the association between 

various molecular and physiological characteristics and a Css_trough >48ng/mL are presented in 

Table 6.3.  

Table 6.3: Univariate logistic regression analysis of physiological and molecular 

characteristic associated with a dabrafenib Css_trough > 48 mg/mL 

Variable Level OR (95% CI) P -value AUC 

Physiological characteristics 

Gender 
Female   

0.732 0.51 
Male 0.96 (0.74-1.24) 

Age  1.02 (1.01-1.03) 0.003 0.56 

Weight  1.02 (1.01-1.03) < 0.001 0.58 

BSA  2.95 (1.5-5.87) 0.002 0.56 

BMI  1.09 (1.05-1.12) < 0.001 0.59 

Cardiac 
output 

 1.00 (1-1.01) 0.057 0.54 

Haematocrit  1.00 (0.97-1.03) 0.914 0.51 

Albumin  1.03 (0.99-1.06) 0.137 0.53 

GFR  1.00 (1-1.01) 0.407 0.52 

CYP phenotypes 

CYP2C19 PM   0.073 0.54 
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Abbreviations: BSA; body surface area, BMI; body mass index, ExM; extensive metaboliser, 

GFR; glomerular filtration rate, IM; intermediate metaboliser, OR; odds ratio, PM; poor 

metaboliser, U.ExM; ultra-extensive metaboliser 

 

IM 1.08 (0.48-2.32) 

ExM 1.11 (0.49-2.37) 

U.ExM 0.76 (0.34-1.62) 

CYP2D6 

PM   

< 0.001 0.59 
IM 1.71 (1.04-2.82) 

ExM 1.77 (1.07-2.91) 

U.ExM 0.82 (0.5-1.34) 

CYP3A5 
PM   

0.493 0.51 
ExM 0.89 (0.64-1.25) 

CYP3A7 
PM   

0.215 0.51 
ExM 0.77 (0.52-1.17) 

Absolute CYP and transporter abundances  

CYP1A2 log 0.69 (0.57-0.83) < 0.001 0.57 

CYP2B6 log 0.93 (0.83-1.04) 0.180 0.53 

CYP2C8 log 0.20 (0.16-0.25) < 0.001 0.77 

CYP2C9 log 0.65 (0.53-0.79) < 0.001 0.59 

CYP2J2 log 0.95 (0.86-1.06) 0.382 0.52 

CYP3A4 log 0.20 (0.16-0.25) < 0.001 0.79 

P-gp log 1.89 (1.52-2.36) < 0.001 0.61 

OATP1B1 log 1.11 (0.93-1.33) 0.251 0.53 

OATP1B3 log 0.87 (0.68-1.1) 0.235 0.52 
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A multivariable logistic regression model that considered baseline weight (Odds ratio (OR) 

1.05; 95% CI 1.02-1.08), BMI (OR 1.09; 95% CI 0.99 – 1.19), and ln CYP2C8 (OR 0.05; 95% 

CI 0.03-0.08), CYP3A4 (OR 0.07; 95% CI 0.05-0.1) and P-gp (OR 6.68; 95% CI 4.47-10.25) 

liver abundance provides a strong predictive performance of Css_trough > 48ng/mL (ROC AUC 

= 0.94; Accuracy = 86%). The predictive performance of the multivariable model was 

maintained, as represent by a ROC AUC of 0.94 and 0.93, and an accuracy of 88% and 85% 

for verification cohort’s 1 and 2, respectively (Figure 6.3). 
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Figure 6.3: Receiver operating characteristic curves demonstrating multivariate model performance in the training set (Panel A) and 

verification sets (Panel B and C) 
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6.3.2 Application 2: TDM Patient Population 

Between March 2014 and November 2017, 40 patients taking a KI for various cancers were 

enrolled. Of these 30 patients completed both PK blood samples and were evaluable for 

assessment. Four of these patients were evaluated for both dabrafenib and trametinib 

(administered as a combination therapy). Ten patients did not complete the study due to either 

disease progression or death. Table 6.4 describes the demographic data for included patients. 
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Table 6.4: Participant demographics by drug 

 Dabrafenib Erlotinib Gefitinib Imatinib Osimertinib Sunitinib Pazopanib Trametinib 

N 6 5 3 4 2 6 4 4 

Age 58-78 32-73 77 43-78 35-73 58-73 54 58-78 

% female 50 60 0 25 50 0 25 75 

Height (cm) 

Mean 168 161 162 173 162 172 170 163 

Range 162-180 155-167 158-166 162-193 NA NA 159-182 162-163 

Weight (kg) 

Mean 84 65 73 87 70 75 76 72 

Range 54-109 50-76 66-80 63-105 NA NA 52-124 54-90 

BMI (kg/m2) 

Mean 29 25 28 29 27 25 26 27 

Range 20-34 21-27 26-29 24-35 NA NA 18-37 20-34 

Ethnicity (%) 

Caucasian 100 60 100 100 100 83 100 100 

Other  40    17   



184 
 

6.3.3 Plasma Concentrations  

Table 6.5 presents a summary of the trough concentrations obtained from this cohort. The 

performance of standard fixed dosing of KIs was assessed using the following criteria (i) BSV 

as % of mean and absolute (fold) (ii) the proportion of patients who failed to achieve the desired 

exposure (% of patients below threshold) and (iii) the lowest exposure for an individual relative 

to the desired exposure (i.e. worst case scenario; maximum deviation as % of target).  

Wide variability was observed in this small cohort with BSV showing a 335, 147, 87, 65, 62, 

159, 149, and 28 % of the mean concentrations for dabrafenib, erlotinib, gefitinib, imatinib, 

osimertinib, pazopanib, sunitinib and trametinib, respectively. The absolute BSV was between 

1.3- and 6- fold for the majority of the KIs with dabrafenib and sunitinib showing substantially 

greater variability of 16- and 32- fold, respectively. Sixty percent of patients tested were below 

the established minimum target concentrations. The maximum individual patient variability 

relative to the target concentration differed considerably between KIs ranging from 6 to 850 % 

of the established target concentration.  

The poorest exposure was observed for sunitinib with one patient achieving a Css_trough that was 

only 6 % of the established target concentration (i.e. 3 vs 50ng/mL).  Poor compliance was 

excluded as the cause of this low exposure. To provide context to the potential implications of 

sub-therapeutic dosing an interesting observation will be described.  One patient treated with 

adjuvant imatinib following the surgical removal of a primary gastrointestinal stromal tumour 

(GIST) had an observed imatinib Css_trough of 913ng/mL. Imatinib was continued for 19 months 

before disease recurrence was observed in 2017. At this time imatinib Css_trough were analysed 

and the concentration was measured to be 360ng/mL, nearly 3- fold less than the starting 

concentration. This observation is consistent with auto-induction of CYP3A4 by imatinib, 

resulting in greater clearance and lower exposure to this drug. At this time dose adjustments of 
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up to double the standard dose were made and although the patient tolerated this dose well, 

scans showed that the patient had already progressed with lesions in multiple organs therefore 

imatinib was discontinued. Poor compliance was excluded and a case of increased imatinib 

clearance was suspected. A more extensive patient case study is described below as a strong 

exemplar of the potential benefit of the application of TDM guided KI dosing. 
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Table 6.5: Variability in KI exposure relative to target concentration 

KI 

Concentration (trough ng/mL) Between Subject Variability Maximum 
deviation as % 

of target 

% of patients 
below 

threshold Mean Range Established 
target % of mean Absolute (fold) 

Dabrafenib 118 13-408 <48a 335 32 850 33b 

Erlotinib 533 164-948 >500 147 6 33 60 

Gefitinib 261 134-360 >200 NE NE 67 33 

Imatinib 1,164 637-1,397 >1100 65 2 58 50 

Osimertinib 176 121-230 NA NE NE NA NA 

Pazopanib 11,993 4,713-23,716 >20,000 159 5 24 75 

Sunitinib 39 3-61 50-100 149 20 6 67 

Trametinib 18 16-21 NA 28 1.3 NA NA 

a threshold for toxicity, all other targets associated with efficacy. b above threshold. 

Abbreviations: NA; not applicable, NE; not evaluated.
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6.3.4 Therapeutic Drug Monitoring Case Study 

A 32 year old, non-smoker, physically active (ECOG 0-1) Caucasian male was diagnosed with 

stage 4 NSCLC with a primary lesion in his left lung measuring 43 x 34mm and bilateral 

metastatic lymph node involvement (Figure 6.4 A). The primary lesion was positive for an 

EGFR active mutation (E746_A750del; see section 1.4.2).  The tumour was inoperable and the 

patient was treated with 150mg erlotinib daily.  No concomitant medications or morbidit ies 

were reported. Initially the treatment was effective with a partial response observed five months 

after commencing erlotinib (Figure 6.4 B). The patient developed recurrent Grade 2 skin rashes 

that impacted on the patient’s medication adherence.  

 

Figure 6.4: Computed tomography (CT) scan showing primary tumour  

Panel A: 4cm taken November 2014, Panel B: 1cm taken April 2015. Panel C: 2.5cm taken 

May 2016, Panel D: 3.5cm taken November 2016. Panel E: 4cm taken February 2017. 
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Monitoring of disease between April 2015 and May 2016 demonstrated slow disease 

progression and between December 2015 and January 2016 two rounds of concurrent IV 

chemotherapy were administered. This was not tolerated well by the patient and it was 

preferred by the patient to cease chemotherapy. The CT scan in May 2016 (Figure 6.4 C) 

demonstrated marked disease progression that was not associated with the development of the 

T790M EGFR mutation which causes resistance to erlotinib. It is standard practice at this time 

to commence the second-line treatment. Instead, TDM was performed and revealed trough 

concentrations of 164 and 248 ng/mL on two different days which were more than 2- fold lower 

than the established target trough concentration (target >500ng/mL) for erlotinib. Erlotinib was 

therefore increased to 175mg daily. Erlotinib trough concentrations were measured and 

observed to be >400ng/mL with good tolerance and compliance. A CT scan performed in 

November 2016 demonstrated a slowing of disease progression attributed to the increased 

erlotinib dose.   

A CT scan taken in February 2017 demonstrated continued disease progression and the patient 

progressed to a second line KI (osimertinib). Through the application of erlotinib TDM this 

patient achieved a total time to progression (TTP) of 27 months. The median TTP for first-line 

EGFR MT+ NSCLC is 9.7 months as reported in Lancet Oncology (52). Notably, this case 

demonstrated an increase in TTP of 9 months directly resulting from adjustment of dosing 

based on the capacity to evaluate erlotinib exposure. 
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6.4 Discussion 

This is the first report describing the use of a PBPK modelling strategy to identify baseline 

physiological and molecular characteristics driving BSV in drug exposure. Novel strategies, 

such as the one described here, play an increasingly important role in guiding the efficient 

generation of evidence defining relationships between patient characteristics and BSV in drug 

exposure. Specifically, this strategy will be useful during drug development to prospectively 

guide collection of pertinent patient information during clinical trials. The strategy is also 

useful for existing drugs, as it can be applied to inform analysis of archived samples from 

pivotal RCTs to help define such associations. In this regard, Pfizer recently retrospectively 

genotyped patients in pivotal axitinib RCTs for CYP3A genotype using archived blood samples 

(231). The analysis was unsuccessful due to the poor ability of genotype to predict CYP3A 

activity but did demonstrate the ability to retrospectively and efficiently generate high-quality 

evidence and the interest of industry and trialists in identifying baseline predictors of exposure.  

The requirement for more sophisticated modelling to robustly define physiological and 

molecular characteristics defining BSV in exposure is highlighted with dabrafenib. As a BCS 

Class II drug that exhibits pH dependent solubility, dabrafenib absorption is influenced by 

intestinal pH and food, in particular high fat meals [GSK trial ID: 113468]. As such, there is 

potential for BSV in intestinal permeability, metabolism and transporter to influence exposure. 

The ADAM absorption sub-model in Simcyp® considers each of these factors and provided a 

robust description of the dabrafenib absorption phase as demonstrated by the concordance of 

simulated and observed Cmax and Tmax values. Indeed, following dosing recommendations to 

administer dabrafenib in a fasted state, i.e. 1 hour before or 2+ hour after a meal, the mean 

(90% confidence interval; CI) simulated and observed oral bioavailabilities were 91.6% (78.4 

to 104.8%) and 94.5% (81.3 to 109.7%), respectively [GSK trial ID: 113479]. Similarly, mean 
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simulated and observed times to peak plasma concentration (Tmax) were concordant in the range 

1.0 to 4.0 hours. Furthermore, in order to robustly evaluate potential physiological and 

molecular characteristics driving BSV in clearance, a sound mechanistic description of all 

pathways involved in the clearance of the drug is crucial. Dabrafenib is primarily cleared by 

CYP2C8 and CYP3A4 mediated metabolism to form hydroxy-dabrafenib, which is further 

oxidized via CYP3A4 to form carboxy-dabrafenib which is excreted in bile and urine. 

Carboxy-dabrafenib can be decarboxylated in the gastrointestinal tract via a non-enzymatic 

processes to form desmethyl-dabrafenib, which is reabsorbed (entero-hepatic recirculation) 

(278), a process that is accounted for in the dabrafenib PBPK model. Dabrafenib is also a 

substrate for intestinal uptake and P-gp mediated hepatic and intestinal efflux. Approximately 

75% of the dose is recovered, primarily as metabolites, in the faeces and approximately 25% 

is recovered as metabolites in the urine. Further adding to the complexity of PK analyses, but 

still readily defined within the PBPK model, the mean (90% CI) elimination half-life for 

dabrafenib in Caucasians following a single oral dose of 4.2 (3.1 – 9.6) hours, is reduced to 2.1 

(1.1 to 3.6) hours with steady state dosing, indicating that with repeated dosing dabrafenib has 

the capacity to induce its own clearance. Indeed, in addition to being a substrate for CYP2C8 

and CYP3A4, dabrafenib is also a known competitive inhibitor of these enzymes, with Ki 

values of 4.1 and 8.0 µM, respectively, and strong inducer of CYP3A4 (rifampin normalized 

INDmax = 30-fold).  Importantly, as displayed by the multiple dose simulations, by defining 

dabrafenib’s induction and inhibition capacity (Table 6.1), this auto-induction is described by 

the PBPK model. While accounting for these PK complexities, using dabrafenib as a test-case, 

we propose that assessment of baseline weight, BMI, and CYP2C8, CYP3A4 and P-gp protein 

abundances is likely to predict the increased risk of steady state exposure associated with dose 

limiting toxicity (assessed as a trough concentration >48ng/mL) (269). 
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Understanding and accounting for factors that contribute to BSV in drug exposure has 

important benefits throughout a drugs life-span. During drug development failure to account 

for sources of variability in exposure has the potential to contribute to an unexplained lack of 

effect or increased incidence of toxicity within certain populations, and is overrepresented as a 

factor contributing to the post-marketing failure of a drug. Similarly, in clinical practice, failure 

to account for sources of variability in drug exposure can result in sub-optimal patient 

outcomes). Standard population PK analyses are often used as a component of regulatory 

submissions. However, as these models are built by fitting observed parameters to reported 

exposure in trial populations, these models are implicitly limited to describing the influence of 

observed parameters and cannot readily predict or define the influence of unknown factors that 

underpin the observed effect. Understanding these core covariates that drive BSV in drug 

exposure will facilitate the optimal implementation of clinical precision dosing platforms such 

as Virtual TwinTM (279, 280).  In practice PBPK model informed biomarker discovery is the 

first step in a process of precision dosing. The identified markers will guide individua l 

assessment of characteristics beyond genotype that lead to more insightful individualisation. 

The identified markers inform a second round of simulation (Virtual Twin) where individua l 

patient exposure is simulated based on individual assessment of the characteristics known to 

most substantially influence exposure.   

In the second study KI trough concentrations were measured in a ‘real world’ oncology cohort 

to assess BSV and to compare the results to established target concentrations. The study cohort 

comprised of 70% males and 30% females. The older age (32-78 years old), weight and height 

range observed in this cohort were consistent with typical cancer patient demographics (194). 

Ninety-three percent of the cohort were Caucasian with two patients identified as Indigenous 

and Torres Strait Islander.  
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When BSV was assessed, wide variability was observed in this cohort with concentrations 

showing a 335, 147, 65, 159, 149, and 28 % variability of the mean concentrations for 

dabrafenib, erlotinib, imatinib, pazopanib, sunitinib and trametinib, respectively. BSV was not 

evaluated for gefitinib (n=3) or osimetinib (n=2) due to low sample size. With the exception of 

dabrafenib and sunitinib, which exhibited variability of 16- and 32- fold, respectively, the 

absolute BSV of 1.3 to 6- fold were observed for the majority of the KIs. It is worth noting 

however that a limitation of this study was that it comprised only 30 patients with four to six 

patients per KI; the large BSV observed in this cohort is consistent with larger studies (125).  

When KI trough concentrations were compared to the established target concentrations it was 

found that 60 % of patients were under the established target concentrations, which is also 

consistent with several studies from the literature as summarised in recent publications 

resulting from this thesis (268) and other groups (125). When dabrafenib concentrations were 

compared to the target Css_trough of <48ng/mL, it was observed that two of the six patients were 

significantly above the target concentration with 208 and 404 ng/mL. These observed higher 

concentrations are not entirely explainable, however, the patient with the highest observed 

concentration of 404 ng/mL died shortly after commencing dabrafenib. It was unclear if this 

patient’s death was directly related to severe toxicity. The maximum individual patient 

variability relative to the target concentration differed considerably between KIs ranging from 

6-67 % of the established target concentration with dabrafenib showing a much higher 

variability of 850 %. In scenarios where extremely low (< 20% minimum threshold) is 

observed, increasing dose alone may not be the most suitable strategy.  

Given that CYP3A4 is the major enzyme responsible for KI clearance in most instances, it is 

possible that the co-administration of a pharmacokinetic enhancer such as cobicistat or 

ritonavir, which inhibit CYP3A4, may be a more appropriate and cost effective strategy. Indeed 
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there are existing examples such as HIV protease inhibitor cocktails were these drugs are used 

to improve exposure to high cost CYP3A4 substrates (281).  

With the majority of patients under the target concentrations with some patients only achieving 

6 % of the established target concentration (i.e. 3 vs 50 ng/mL) and some patients experiencing 

over exposure of up to 850 %, it is clear that this demonstrates some of the potential 

complications arising from standard fixed KI dosing regimens. Another interesting finding 

further underlined complications with such dosing protocols for patients taking KIs long-term. 

One of the patients experienced a decrease in imatinib trough concentration of more than 3- 

fold over the course of 19 months. As compliance was excluded, this may have been a case of 

increased clearance as described by Eechoute et al (2012), where a study of 50 patients 

demonstrated a 30% decrease in imatinib plasma trough concentrations after as soon as three 

months (282). This patient was taking imatinib for 19 months when the decreased concentration 

was observed. Given that imatinib is used for long-term treatment in many patients for up to 

several years, it further demonstrates the potential benefit that TDM can provide in such 

patients.  

When a patient case study was analysed as an example of the potential benefit of the application 

of TDM guided KI dosing it was observed that a TTP of 27 months was achieved when 9.7 

months have been reported previously. This study demonstrated that an additional 9 months 

were observed as a direct attribution of TDM. Although, this study has shown where the 

approach of TDM can be effective, this approach is not currently able to be translated into 

clinical practice. 
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GENERAL CONCLUSIONS 

As discussed throughout this thesis KIs are an important novel and rapidly expanding class of 

anti-cancer medicines used to target the identified hallmark characteristics of cancer. KIs 

exhibit many complex and unconventional pharmacokinetic characteristics with both CYP 

mediated metabolism and P-gp mediated transport involved in determining exposure. As such 

KIs exhibit marked BSV in exposure which can have clinically important consequences that 

may manifest as sub-optimal outcomes or toxicity.  As narrow therapeutic index drugs the 

general principle of optimising KI dosing on the basis of exposure is intuitively supported.  

Indeed, prior to this thesis studies had demonstrated the benefit of using TDM to individualise 

KI dosing on the basis of plasma-KI concentration. Despite this evidence precision KI dosing 

has not been broadly translated into clinical practice. The broader clinical uptake of precision 

KI dosing is hindered by: (i) the requirement to establish and validate separate analytical 

methods for each KI as they enter clinical practice in order to perform TDM, and (ii) the 

preclusive cost and complexity of generating sufficiently powered evidence to support the 

clinical validity of the benefit of concentration guided dosing. Given these limitations, novel 

and practical strategies are required to: (i) optimise the efficiency of TDM based precision KI 

dosing, and (ii) provide complementary avenues to support prospective dose optimisation and 

assist in identifying patients for whom TDM is most critical. By addressing these challenges it 

will be possible to more readily facilitate the clinical application of KI dose optimisation.  

The first major challenge to addressing prospective KI dose optimisation is the currently 

incomplete understanding of the molecular and physiological characteristics driving variability 

in KI exposure. Results presented in Chapter II confirm that CYP3A4 is the major enzyme 

involved in KI clearance and that variability in CYP3A4 activity is likely a major cause of 
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variability in KI exposure. Given that EGFR KIs have shown promising results in the treatment 

of NSCLC but indeed exhibit substantial BSV in exposure which may result in either a lack of 

efficacy or toxicity due to fixed dosing regimens, PBPK profiles for afatinib, erlotinib and 

gefitinib were developed and validated. A more comprehensive demonstration of the 

application is later described using dabrafenib as an example in Chapter VI.  

The capacity of the profiles to account for the impact of covariates on in vivo clearance was 

assessed by quantifying the rate of microsomal KI metabolism in the presence and absence of 

CYP and UGT cofactors as well as a selective CYP3A4 inhibitor (CYP3Cide). Microsomal 

clearance was assessed on the basis of the substrate depletion. Robust mechanistic models with 

the capacity to describe EGFR KI exposure and the impact of covariates such as age, gender, 

and ethnicity, and the impact of co-administration with strong CYP3A4 inhibitors and inducers 

on exposure were developed and validated. Such PBPK modelling may be used to account for 

sources of variability in KI exposure and may be applied to inform the impact of different 

dosing regimens on EGFR KI exposure, the potential impact of poor compliance on EGFR KI 

efficacy, the need to perform bridging studies when introducing EGFR KIs to new international 

markets, and the potential impact of DDIs on EFGR KI exposure.  

In particular for EGFR inhibitors PBPK modelling demonstrated that race was a likely source 

of variability in exposure that was currently poorly accounted in clinical trials. Similarly , 

broader review of the literature revealed that outside of the assessment of differences in 

genotype frequency, very little is known regarding racial differences in CYP3A4 activity. 

Results presented in Chapter III demonstrate that race is a potential source of variability in 

CYP3A4 exposure as significantly higher midazolam clearance was observed in healthy age 

matched males of South Asian compared to Caucasian ancestry that was not explained by 

differences in the frequency of CYP3A genotypes. This variability has important implications 
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for the regulatory approval of KIs as clinical trials are often performed in homogenous 

Caucasian cohorts, and it is likely that bridging studies would be necessary to define the 

effective concentration of KIs in non-Caucasian cohorts in order to avoid systemic sub-

therapeutic dosing. Taken together the results presented in Chapters II and III provide 

important new insights regarding sources of variability in KI exposure and describe the 

development and verification of a novel strategy to characterise such variability. These results 

have direct application in terms of prospectively optimising KI dosing. They also provide 

broader translation though future research efforts to more extensively assess alternate potential 

sources of variability in KI exposure such as age and gender using the approach employed here 

to assess race.   

In order to translate the findings regarding the value of prospectively characterising variability 

in CYP3A4 novel strategies are required. Current methods to assess variability in CYP3A 

activity have notable limitations and there remains a need for a minimally-invasive clinically 

translatable biomarker to define CYP3A activity. Results in Chapter IV demonstrate that 

CYP3A4 activity may be accounted for using the caffeine/TMU ratio as a dietary marker of 

activity. The strength of correlations was retained post-rifampin dosing and appreciably weaker 

correlations were observed between the change in midazolam AUC and change in 

caffeine/TMU ratios post-/pre- rifampin dosing. BSV in CYP3A activity was well described 

by caffeine/TMU ratios pre- and post- induction. However, WSV caused by induction was 

poorly described. A dietary caffeine/TMU ratio may be a convenient tool to assess BSV in 

CYP3A activity, but assessment of caffeine/TMU ratio alone is unlikely to account for all 

sources of variability in CYP3A activity. 

In addition to developing novel strategies to complement KI TDM there is also considerable 

scope to help facilitate clinical translation by addressing the technical inefficiencies of existing 
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analytical approaches used to underpin this strategy. Improving the efficiency of the analytical 

platform underpinning TDM assists pathology providers in justifying the investment in assays 

to quantify patient samples for drugs that individually are used in limited populations. 

Specifically, the development of a common platform to assess all KIs is important in this 

regard. Chapter V describes a novel approach for the quantification of 18 KIs in plasma, 

providing a platform that is unparalleled in terms of scope for the assessment of KI TDM and 

facilitating pharmacokinetic studies with KIs. This approach was developed, validated and 

reported in accordance with the 2015 version of the FDA guidance for industry on ‘analytical 

procedures and methods validation for drugs and biologics’ facilitating direct application as a 

clinical trials platform. The application of this approach was explored in Chapter VI. 

Overall this thesis has contributed to a greater understanding of KI dosing. The results 

presented here have identified a number of sources of variability in KI exposure and have 

demonstrated the development, verification and application of these strategies to improve KI 

dosing and patient outcomes. This is highlighted by the 9 month additional survival benefit 

achieved by the patient described in Chapter VI, which was directly attributed to the work 

undertaken in this thesis. In conclusion this thesis contributed to better understand developing 

pathways to investigate/establish variability, thereby unmasking opportunities for optimised 

KI dosing.  
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Appendix 1: Appendix Table 1 

TKI BCT Serum Z Gel K3 EDTA Lithium 
Heparin 

Lithium 
Heparin Gel 

Glass Plastic 

Axitinib 

Serum Z Gel 1.000 0.367 1.000 0.182 0.020 0.000 

K3 EDTA  1.000 0.445 0.995 0.475 0.009 

Lithium Heparin   1.000 0.464 0.026 0.000 

Lithium Heparin Gel    1.000 0.755 0.021 

Glass     1.000 0.191 

Plastic      1.000 

Dabrafenib 

Serum Z Gel 1.000 0.999 0.975 0.036 0.053 0.000 

K3 EDTA  1.000 0.999 0.064 0.094 0.001 

Lithium Heparin   1.000 0.119 0.172 0.001 

Lithium Heparin Gel    1.000 1.000 0.128 

Glass     1.000 0.088 

Plastic      1.000 

Dasatinib Serum Z Gel 1.000 0.995 0.584 0.998 0.999 0.999 
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K3 EDTA  1.000 0.851 0.932 0.953 0.944 

Lithium Heparin   1.000 0.359 0.398 0.380 

Lithium Heparin Gel    1.000 1.000 1.000 

Glass     1.000 1.000 

Plastic      1.000 

Erlotinib 

Serum Z Gel 1.000 0.006 0.117 0.048 0.511 0.388 

K3 EDTA  1.000 0.504 0.805 0.115 0.166 

Lithium Heparin   1.000 0.993 0.888 0.957 

Lithium Heparin Gel    1.000 0.611 0.743 

Glass     1.000 1.000 

Plastic      1.000 

Gefitinib 

Serum Z Gel 1.000 0.001 0.987 1.000 0.988 0.310 

K3 EDTA  1.000 0.003 0.001 0.000 0.000 

Lithium Heparin   1.000 0.993 0.810 0.123 

Lithium Heparin Gel    1.000 0.978 0.277 

Glass     1.000 0.631 

Plastic      1.000 
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Imatinib 

Serum Z Gel 1.000 0.200 0.006 0.000 0.000 0.000 

K3 EDTA  1.000 0.355 0.018 0.025 0.020 

Lithium Heparin   1.000 0.464 0.563 0.498 

Lithium Heparin Gel    1.000 1.000 1.000 

Glass     1.000 1.000 

Plastic      1.000 

Lapatinib 

Serum Z Gel 1.000 0.657 0.274 0.003 0.002 0.000 

K3 EDTA  1.000 0.970 0.036 0.024 0.002 

Lithium Heparin   1.000 0.126 0.086 0.566 

Lithium Heparin Gel    1.000 1.000 0.566 

Glass     1.000 0.702 

Plastic      1.000 

Nilotinib 

Serum Z Gel 1.000 0.410 0.992 0.541 0.243 0.007 

K3 EDTA  1.000 0.719 1.000 0.999 0.183 

Lithium Heparin   1.000 0.843 0.498 0.018 

Lithium Heparin Gel    1.000 0.986 0.125 

Glass     1.000 0.319 
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Plastic      1.000 

Pazopanib 

Serum Z Gel 1.000 0.537 0.663 0.240 0.089 0.080 

K3 EDTA  1.000 1.000 0.986 0.792 0.756 

Lithium Heparin   1.000 0.950 0.673 0.633 

Lithium Heparin Gel    1.000 0.986 0.977 

Glass     1.000 1.000 

Plastic      1.000 

Regorafenib 

Serum Z Gel 1.000 0.008 1.000 0.778 0.291 0.976 

K3 EDTA  1.000 0.006 0.001 0.000 0.002 

Lithium Heparin   1.000 0.896 0.376 0.994 

Lithium Heparin Gel    1.000 0.930 0.990 

Glass     1.000 0.661 

Plastic      1.000 

Ruxolitinib 

Serum Z Gel 1.000 0.000 0.008 0.210 0.394 0.015 

K3 EDTA  1.000 0.000 0.000 0.000 0.000 

Lithium Heparin   1.000 0.991 0.213 0.998 

Lithium Heparin Gel    1.000 0.459 1.000 
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Glass     1.000 0.367 

Plastic      1.000 

Sorafenib 

Serum Z Gel 1.000 0.110 0.213 0.490 0.031 0.000 

K3 EDTA  1.000 0.509 0.949 0.989 0.177 

Lithium Heparin   1.000 0.935 0.834 0.009 

Lithium Heparin Gel    1.000 1.000 0.043 

Glass     1.000 0.068 

Plastic      1.000 

Sunitinib 

Serum Z Gel 1.000 0.443 0.949 0.105 0.151 0.283 

K3 EDTA  1.000 0.893 0.908 0.967 0.999 

Lithium Heparin   1.000 0.372 0.490 0.730 

Lithium Heparin Gel    1.000 1.000 0.984 

Glass     1.000 0.998 

Plastic      1.000 

N-desethyl 
Sunitinib 

Serum Z Gel 1.000 0.224 0.988 0.992 0.999 1.000 

K3 EDTA  1.000 0.086 0.468 0.361 0.190 

Lithium Heparin   1.000 0.842 0.923 0.995 
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Lithium Heparin Gel    1.000 1.000 0.982 

Glass     1.000 0.997 

Plastic      1.000 

Vemurafenib 

Serum Z Gel 1.000 0.850 0.286 0.112 0.185 0.023 

K3 EDTA  1.000 0.875 0.548 0.730 0.155 

Lithium Heparin   1.000 0.987 1.000 0.632 

Lithium Heparin Gel    1.000 0.999 0.926 

Glass     1.000 0.796 

Plastic      1.000 

Trametinib 

Serum Z Gel 1.000 0.583 0.940 0.938 1.000 0.453 

K3 EDTA  1.000 0.970 0.971 0.712 1.000 

Lithium Heparin   1.000 1.000 0.982 0.912 

Lithium Heparin Gel    11.000 0.981 0.915 

Glass     1.000 0.578 

Plastic      1.000 
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