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Abstract 

Urbanization and urban expansion has been a widely recognized problem throughout 

the world due to its negative influences on of land-use/land-cover changes. The growth 

of urbanization leads to impervious surfaces replacing natural landscapes. As 

impervious surfaces increase, surface runoff produced from rainfall and other sources 

also increases. This is one of the primary cause of urban flooding. 

Adelaide metropolitan area is the capital city of South Australia. The city is in a low-

lying region and upstream catchments flow across the urban area. It still has much of 

the original stormwater drainage infrastructure, which was built in the period of 1940s 

to 1980s and the drainage systems have not been frequently reconstructed. This leads 

to an inadequate flow capacity or lack of drainage infrastructure, resulting in the 

increase of surface runoff and vulnerability to flooding. 

WetSpass model developed by Batelaan and De Smedt in 2001 is used for estimating 

surface runoff based on a water balance calculation. It assumes that each pixel in a land-

use map contains proportions of land cover types (endmember), that are more or less 

conducive to surface water runoff; these include vegetation, impervious surfaces, bare 

soil, and open water. The proportions of those contributions are assumed to be the same 

for every pixel in a land-cover category. This could be subjective when applying the 

model to different study areas due to different characteristics of the landscape. 

This research introduces the use of Spectral Unmixing of Landsat imagery to produce 

fractional maps of these endmembers as substitute for using the land-use category alone 

in order to improve the efficiency of WetSpass model in estimating surface runoff over 
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the Adelaide metropolitan area. The result of surface runoff estimation is used to help 

in indicating the areas vulnerable to flooding in the study area.  
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Chapter 1 – Introduction 

1.1 Background of study 

Urbanization has been a widely recognized problem around the world due to its negative 

influences on land use/land-cover (LULC) changes. As urbanization increases, natural 

environs and agricultural lands will be steadily replaced by impervious surfaces 

resulting in increases in the amount, intensity and duration of surface runoff (Weng 

2001). According to Bauer et al. (2008), the expansion of impermeable surfaces is the 

primary factor affecting the water quality of streams and lakes as well as volumes of 

stormwater runoff in urban areas raising flooding risks. 

Surface runoff or overland flow is known as the water derived from different sources 

like rainfall or snowmelts that flow over landscapes. This phenomenon occurs when the 

amount of water infiltrated by the surface and evaporated to the atmosphere is smaller 

than that of the water falling on the ground (Pidwirny 2006). In urban areas, the urban 

landscapes often contain a high density of manmade objects such as buildings, concretes 

and roads where water is unable to infiltrate into the soil causing surface runoff and it 

is considered the major cause of urban flooding (Chen et al. 2009).  

Over the last twenty years, there has been a significant increase in flooding events 

reported. Jha et al. (2012) in the report named “Cities and Flooding, A Guide to 

Integrated Urban Flood Risk Management for the 21st Century” show that people 

affected by flooding in 1990 are around 50 million. It rapidly increased to 178 million 

in 2010. In Australia, despite the benefit of preparedness to adapt to environmental 

impacts, flooding still causes substantial damages for economic, social and 
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environmental aspects every year. It directly damages residential, commercial, 

industrial and recreational buildings, critical infrastructure, equipment and facilities, 

and causes injury and death and polluted water supplies (Commonwealth of Australia 

2009). 

Adelaide is the capital city of South Australia with a population around 1.32 million 

people, while the population of South Australia is approximately 1.7 million in 2015 

(ABS 2016). According to Wright and Kemp (2016), this city is in a low-lying region 

and flash floods are a problem most commonly experienced in the urban environment. 

As many rural areas are located in the higher-lying regions, in many cases, upstream 

catchments flow down into urban areas. They also indicate that some urbanized areas 

are likely to be affected by overland flow that does not originate from the creek system. 

This might lead to the increase of flood risks in metropolitan Adelaide. In addition, 

Adelaide metropolitan area contains much of original stormwater drainage 

infrastructure, which were built in the period of 1940s to 1980s. Those systems were 

designed and relied on an assumed percentage of impermeable surfaces, which was 

derived from early predictions of urban development at the time of design. Some 

significant improvement based on rainfall intensity and a catchment response have been 

created over time. However, the drainage systems have not catered for increases in 

urban infill and development since the 1980s (Parliament of Australia 2015). This could 

lead to an inadequate flow capacity or a lack of drainage infrastructure in the context of 

a higher population living in the metropolitan Adelaide and thus resulting in increasing 

surface runoff and vulnerability of flooding.  
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There are different hydrological models that can be used for estimating the surface 

runoff distribution varying over space. One such model is WetSpass (Water and Energy 

Transfer between Soil, Plants, and Atmosphere under quasi-Steady State) developed by 

Batelaan and De Smedt (2001), which is integrated into a geographical information 

system (GIS) as a raster-based model. WetSpass is used for estimating spatial 

distributions of groundwater recharge, surface runoff, and evapotranspiration by 

investigating physical and empirical relationships over a long-term. When this model 

was published, several studies have relied on it for understanding the hydrological 

process in urban areas. Poelmans et al. (2010) couple WetSpass model and urban 

expansion models in order to evaluate the significance of scale effects, while Al Kuisi 

and El-Naqa (2013) utilize this model to estimate spatial groundwater recharge in the 

Jafr basin, Jordan. WetSpass considers LULC as an important factor in its operation. It 

assumes that an individual LULC unit contains fractions of Vegetation, Soil, 

Impervious Surface, and Open Water. The sum of those fractions is equal to 1 or 100 

percent. By using vegetated, impervious area, soil and open-water fractions present 

within each pixel in WetSpass, the mixed-pixel problem can be solved (Batelaan & De 

Smedt 2001). 

Surface runoff estimation for preventing flood hazards in the future by accessing the 

influence of LULC changes is challenging in many research (Breuer et al. 2009). 

Recently, remote sensing (RS) is known as the most common data source, which is used 

to detect, quantify and map LULC patterns and changes due to the repetition of data 

acquisition, data format and the accuracy of georeferencing procedures (Jensen 2005; 

Lu et al. 2004). Many satellite programs are currently in operation. However, for the 
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studies in change detection, the Landsat system is a the unique program which supports 

a historical and continuous record of imagery (El-Kawy et al. 2011). Consequently, 

Landsat imagery is a viable approach to obtaining data that is repetable and suitable for 

hydrological models. By using Landsat images, LULC can be mapped repeatably over 

large areas, helping in mapping, monitoring and managing LULC changes (Wulder et 

al. 2008). This largely includes changes of impervious areas typical of many LULC 

types that cause surface runoff.  These changes changes can be derived from Landsat 

data with appropriate image analysis methods. Monitoring the spatial distribution of 

surface runoff will help to indicate the areas vulnerable to flooding in urban areas in 

general and in the metropolitan Adelaide in particular. 

1.1 Problem statement 

Urbanization causes an increase of flood risk in cities because of local changes in 

hydrological conditions. Accompanying urbanization is an increase in the population 

living in cities. According to the Uunited Nations (2006), an increase in population in 

urban areaqs more likely occurs in developing countries rather than in developed 

countries and at a more rapid rate. Consequently, with increasing human settlements, 

infrastructure development and industrial growth, the sprawl of urban areas is often 

uncontrolled. Urban development also causes LULC changes, resulting in changes of 

hydrological conditions and increase of flood hazard. This is particularly true in the 

author’s home country of Vietnam and cities like Ho Chi Minh City where a lack of 

urban stormwater infrastructure results in sevier flooding during and after large rainfall 

events. 
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In tropical and developing countries such as Vietnam, the annual rainfall is significant. 

According to Vietnam Government Portal (2016), the annual rainfall in Vietnam is from 

1500 to 2000 mm with the humidity is around 80%. Vietnam is also one of the countries 

affected by El Niño events which cause the increase of rainfall intensity. Furthermore, 

Vietnam is also struck by four to six typhoons every year on average (Garcia 2002). 

Most large cities like Hanoi and Ho Chi Minh City in Vietnam are in low-lying regions 

with poor quality of infrastructure. In the context of climate change, the country likely 

suffers from different types of natural disasters and one of the most common and serious 

being flooding (Navrud et al. 2012). These problems increasingly cause flood risks in 

both frequency and severity. In addition, there are few studies focused on floods in 

Vietnam urban environments where the development of stormwater and flood 

mitigation infrastructure has not kept pace with urban development. Therefore, it is 

necessary to investigate vulnerability to urban flooding in Vietnam through applying 

techniques for estimating surface runoff changes over time. However, the data in 

Vietnam used in this research are limited due to its scarcity and lower accuracy. While 

the author of this research is employed by the Vietnam's Ministry of Natural and 

Resources and Environment, it is difficult to obtain the required spatial datasets from 

relevant government authorities without being present in the country. Moreover, to 

collect enough data in Vietnam to support this research, it also required field-data 

collection and contacts with Vietnamese authorities. This proved too costly and 

consumed a large amount of time. Thus, this research focussed on applying methods for 

surface runoff estimation in metropolitan Adelaide, South Australia where the urban 

area is dominant and flood often occurs in the rainy season. The intent is to develop 
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methods that are transferable to other urban cities like those of the author’s home 

country. 

Like other hydrological models that are applied to calculate water balance components 

in different areas, the WetSpass model provides spatial distributed surface runoff raster 

maps by using highly relevant input data such as elevation, soil, LULC and climate data 

(rainfall, temperature and wind speed) (Batelaan & De Smedt 2001). However, the 

model uses the default material fractions of LULC types (vegetated, soil, impervious 

and open water area) within a regular spatial unit (pixel) in its operation. This could be 

subjective when applied to different study areas due to the different contributions of 

these materials. Therefore, the estimation of material proportions at the pixel level for 

a particular study area will help to improve the efficiency of WetSpass model. 

Furthermore, as mentioned earlier, LULC plays a significant role in generating surface 

runoff and it is an indispensable component in the input data of WetSpass. In mapping 

LULC patterns, remotely sensed data is considered as the most common data source 

(Lu et al. 2004) and depending upon a sufficient understanding of landscape 

characteristics, imaging systems, and information extraction techniques that be used to 

employ in the relation to the analyzing aim (Yang, X & Lo 2002). Nowadays, remote 

sensing data with high spatial and spectral resolution can be used for mapping LULC. 

However, compared to medium resolution imagery, this kind of data has some 

disadvantages, for example, its high cost, low temporal resolution, and relatively small 

footprint. In addition, hard and soft classification are the two most common methods to 

derived LULC from remotely sensed data. However, hard classification approach has a 

significant disadvantage when working with heterogeneous land scapes such as urban 
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environments where a single pixel contains a mix of land cover types, while soft 

classification method is able to solve this problem (Binaghi et al. 1999; Foody & Cox 

1994). The basic idea of soft classification method is that proportions of more than one 

land-cover type within a pixel can be extracted by using spectral compositions. Spectral 

Unmixing is a technique that can calculate the proportion of each contribution like 

Vegetation, Soil, Impervious Surface, and Open Water in each pixel and produce 

fractional maps of these categories that may improve the WetSpass model. As Canters 

et al. (2011) and Montzka et al. (2008) show, improving the parameterization of urban 

LULC results will significantly improve the predictions of the hydrological model.  

1.2 Research question 

Specifically, this research attempts to answer these following questions: 

- Can Spectral Unmixing of Landsat imagery help identify the key spectral 

parameter of Soil Vegetation, Open Water and Impervious Surface for runoff 

estimation? 

- Is the result of Spectral Unmixing Analysis applied with multispectral imagery 

reliable? 

- Which approach, WetSpass using Spectral Unmixing Analysis or using the 

default land-use setting, is better? 

- Where are the areas vulnerable to surface runoff and flooding? 

1.3 Research aims and objectives 

From the research questions posed, the primary aim of this study is to model the 

monthly and annual spatial distribution in runoff potential to help in identifying areas 

vulnerable to surface runoff and flooding in metropolitan Adelaide. 
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The objectives of the research are: 

- To create the necessary input data for the WetSpass model from raw data. 

- To spectrally unmix Landsat imagery to identify the key spectral parameters of 

Vegetation, Soil, Water and Impervious surfaces for runoff estimation. 

- To map changes in the spatial distribution of surface runoff of metropolitan Adelaide 

over a 12-month period in 2016. 

- Compare surface runoff results between default fractions of vegetation, bare soil, 

surface runoff and open water with the abundance results of those components from the 

Spectral Unmixing Analysis. 

1.4 Scope of study and anticipated outcomes 

This research examines the use of spectral unmixing of Landsat imagery in estimating 

surface runoff in metropolitan Adelaide, South Australia with the intent of apply the 

methodology and findings to Ho Chi Minh City where urban floods occur frequently 

and causing serious damage to property and life during the rainy season (from May to 

November). This city is characterized by unplanned developments with poor 

stormwater drainage. The contribution of impervious surface runoff that exacerbates 

flooding in this urban area is significant. However, due to the limited time for 

conducting this research, in the data collection stage, the author could not collect enough 

input data for running the hydrological model on Ho Chi Minh City. Therefore, the 

study area was moved to metropolitan Adelaide where key data sets are available and 

reliable. After implementing this research in the Adelaide region, it is expected the 

methods used in this study will be applied in some urban areas in Vietnam, especially 

in Ho Chi Minh City.  
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Irrespective of the location, this study investigates the use of Spectral Unmixing 

Analysis in estimating the spatial distribution of surface runoff and those areas 

potentially vulnerable to surface runoff and flooding. The results of this study will be 

used to identify the areas vulnerable to surface runoff and flooding in metropolitan 

Adelaide. Consequently, some prioritising flood mitigation measures should be 

considered based on the current status of those areas. This is also illustrates the 

application of remote sensing method coupling with a hydrological model in order to 

achieve a better result. Spectral Unmixing method can also help in exploring urban 

composition using remotely sensed information at a single pixel scale. It is possibly 

meaningful for urban planners in monitoring urban expansion based on the changes of 

impervious element resulting from this method. 

1.5 Thesis structure 

Chapter 2 of this thesis will provide general information about floods; discuss 

characteristics of floods in developing and developed countries; illustrate the 

characteristics of the urban environment and metropolitan Adelaide; point out the 

relationship between impervious surfaces and surface runoff. Chapter 2 also shows a 

review of remote sensing techniques in investigating LULC including revealing the 

mixed pixel problem, hard and soft classification in mapping LULC. Finally, the 

background of the hydrological cycle and water balance and the application of 

WetSpass model in different studies will be demonstrated. 

Chapter 3 describes the study area where the research will be applied and a description 

of the input data for the WetSpass model to estimate surface runoff across metropolitan 

Adelaide. 
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Chapter 4 focuses on describing the methods that have been used when conducting this 

research. It illustrates the principle of remote sensing methods like such as supervised 

classification and spectral unmixing analysis; GIS methods and the WetSpass model 

calculations. 

Chapter 5 presents the results of this study including a land-use map derived from 

coupling an original land-use map and a land-cover map, which is the result of a 

supervised classification approach; the abundance maps of four endmembers, including 

vegetation, bare soil, impervious surfaces and open water and the distribution of surface 

runoff monthly and annually over the study area. Surface runoff maps include the results 

of two methods, which use land-use map and the fractional maps as input data to the 

WetSpass model. 

Chapter 6 provides a discussion based on the results with general findings, limitations 

and considerations for the future studies. 

Chapter 7 concludes the thesis and proposes some recommendations. 
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Chapter 2 – Literature Review 

2.1 Background of floods 

Flooding comprises 32 percent of all natural disasters and is the most well-known 

(Eisensee & Strömberg 2007). As Jonkman (2005) indicates, floods are responsible for 

enormous damage throughout the world every year. Floods killed approximately 

100,000 and affected over 1.4 billion people over the last decade of the twentieth 

century. 

There are various definitions used to describe floods based on the purposes of research 

and the context used (Brooks 2003; World Health Organization 2013). According to 

National Geographic (nd), flooding occurs when water overflows or inundates land that 

is normally dry and this phenomenon can occur in different ways. There are different 

flooding kinds such as river floods, coastal floods, flash floods and urban floods. 

The U.S. Department of Commerce (2005) illustrates that river floods are the inundation 

over a normally dry area due to the increasing level of water level in an established 

watercourse. River floods form with slow speed and cause less fatalities, however, their 

effects can spread across large areas with much damage (Klijn 2009).  

Flash floods relate to the rapid rise of water in low-lying urbanized areas or along 

streams and creeks. This kind of flood often develops in less than six hours (Bureau of 

Meteorology 2016) and it is the most common form experienced in urban areas of South 

Australia (Wright & Kemp 2016). 
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Coastal floods are often the result of extreme storm events accompanying by strong 

onshore coastal winds and vast waves and high tides. This causes floods at coastal zones 

and estuaries with ocean water (Klijn 2009). 

Lastly, urban floods can be caused by river floods, flash floods or coastal floods due to 

the poor condition of drainage systems, and impervious surfaces accompanied by high 

intensity of rainfall. In most cases where urban floods occur, those urban areas are often 

characterized by sealed surfaces that reduce the infiltration along with poor drainage 

system (Chen, Hill & Urbano 2009). 

2.2 Urban floods in developing and developed countries 

2.2.1 Urban floods in developing countries 

Urban development in developing countries are characterized by the high density of 

population concentrated in a small area with poor public transportation, lack of sewage 

and stormwater facilities and air and water pollution (Szöllösi-Nagy & Zevenbergen 

2005). Main causes of flooding in developing countries is that of uncontrolled urban 

development that occurs rapidly and unpredictably. Urban development tendency in 

developing countries often commence downstream then move upstream leading to 

rising damage impacts (Dunne 1986). WHO (1988) also indicates that the population in 

peri-urban and risk regions (flood plains and hillside areas) often has low income and 

is living in poorly constructed dwellings and occupy other infrastructure in poor 

condition. Furthermore, the cities and population usually cannot afford to supply the 

fundamental needs of water, drainage as well as sanitation due to lack of sufficient funds 

(Szöllösi-Nagy & Zevenbergen 2005). Those problems prevent the possibility of 

adequate water drainage during storms or heavy rain periods of any duration. In 
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addition, when undertaking flood research in some developing countries like India, 

Bangladesh, and Nepal, Mirza (2011) poses that precipitation significantly causes 

flooding in those countries because over 80 percent of the rainfall falls intensity in the 

rainy months (from June to September). Most floods occur in every river basin where 

the intensive rainfall is high during July and August. 

Vietnam is characterized by the tropical monsoon climate where the annual rainfall is 

between 1500 and 2000 mm and the humidity is around 80% (Vietnam Government 

Portal 2016). The country is likely to suffer from different types of natural disasters 

with flooding is the most common and serious (Navrud et al. 2012). Largest cities in 

Vietnam such as Hanoi, Hai Phong, Ho Chi Minh City and Can Tho are in low-lying 

areas with poor condition of stormwater drainage. According to Storch and Downes 

(2011), only 28 percent of the current urban area of Ho Chi Minh City lies 2 meters 

above the sea-level and around 58% is above 1 m causing the city to be extremely 

vulnerable to inudation under the context of climate change. In Hanoi, as Bich et al. 

(2011) argue, the long and heavy rainfall in November 2008 led to the most devasting 

flood since 1973 for the capital city. This caused 90 inundated locations within Hanoi 

with the depth from 0.3m to 2.5m, 22 persons died and 3 were injured. It also 

significantly impacted health, social, economic, environmental of citizens living in 

Hanoi for a long term (Hanoi capital city's People Committee 2008). 

2.2.2 Urban floods in developed countries 

Differently to developing countries, the waste process system and drainage systems in 

most developed countries are in a relatively good condition (Szöllösi-Nagy & 

Zevenbergen 2005). Those nations often have much better preparation in managing the 
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consequences of natural disasters in which flooding is the majority. Notably, 95 percent 

of the deaths caused by flood disasters is in developing countries (Price & Vojinovic 

2008). According to Douben (2006), flooding duration in developed nations is usually 

relatively short. This is possibly because the flood mitigation activities in developed 

countries is better. They also have good policies to adapt to climate change and flooding 

risks such as providing future scenarios for dealing with flooding, balancing between 

adaptation and mitigation (Hamin & Gurran 2009). 

In Australia, as Attorney-General's Department (nd) indicates, flooding occurring along 

watercourses after heavy rain is the most common form recorded. Furthermore, in some 

urban areas with high density of population, drainage systems can overflow, also 

causing floods. For coastal areas that are low-lying, storms and tropical cyclones can 

cause inundation in those areas.  

Floods in Australia are grouped into three categories, slow onset flooding, quick onset 

flooding and flash flooding. The first type often occurs in Queensland, the West of New 

South Wales, some regions of North West Victoria and Western Australia. The duration 

of this flooding type is often in one or more weeks. In some cases, the flooding duration 

can happen lasting months. The effects of this flooding type typically include losing 

crops and livestock, disconnecting the traffic systems and isolating some whole 

communities. Quick onset flooding often occurs quickly in the mountain watershed area 

of large rivers and the rivers that drain to coastal areas. The duration of this flooding 

type can sometimes last for only one or two days. Because this form of flooding occurs 

quickly, there is less time for preventative actions. Therefore, it potentially causes 

significant risks to losing life and property. This flooding type often affects cities and 
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major towns, more frequently occurs in South Australia and Tasmania. Flash flooding 

occurs in a relatively short time, resulting from heavy rainfall and thunderstorms. It can 

occur in urbanized areas if the drainage systems in those areas cannot cope. 

Furthermore, flash flooding is also able to occur in un-urbanized areas due to the 

characteristics of natural terrain and steepness of streams in those areas. 

2.3 The characteristics of urban environment 

2.3.1 Urban characteristics 

Urban ecosystems are characterized by humanity’s impact on the environment where 

usually there are heterogeneous landscapes like roads, buildings, concretes, trees, grass, 

water, soil, and so on. Urban landscapes can be categorized into two types, built urban 

environment and the natural urban environment. The former involves man-made 

infrastructures like residential areas, transportation systems and buildings and the latter 

concerns parks, native vegetation areas and river surfaces. Generally, urban 

development has significant impacts on the changes of land cover types at local, 

regional and global scales (Xian 2015). As urban growth changes, urban infrastructure 

will alter natural features resulting in significantly changing urban landscapes from 

natural to anthropogenic impervious surfaces. 

Nowadays, the population of the world living in urban areas is about 54% (UN 2015) 

and in the next 40 years, it is estimated that the population living in expanding urban 

centers will increase to two-thirds of the total (UN 2009). As the growth of population 

in metropolitans and the increasing influence of climate change, flooding risks and the 

expansion of pollution when flooding occurs is gradually increasing. Furthermore, as 

indicated by Güneralp, Güneralp and Liu (2015), coastal urban areas will be expanding 
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through vulnerable regions of low elevation with higher frequency of flooding. Heavy 

rain over upstream areas and the complexities in urban land-cover and drainage systems 

inherently affect surface runoff and pose challenges in predicting flood risk (Chen, Hill 

& Urbano 2009). 

2.3.2 Adelaide metro area 

Adelaide’s annual rainfall is around 600mm and mainly falls in the months of the winter 

months (June, July and August) with storms of high intensity that cause flooding 

problems, which also infrequently happen in the summer months (Kellogg Brown & 

Root Pty Ltd 2004). As Wright and Kemp (2016) pose, metropolitan Adelaide is lying 

on a floodplain leading to high flood risk. In most cases, the flood risk is flash floods, 

which are developed in an hour or less due to the small basin areas (catchment areas are 

often about 10 to 20 km2) where the streams often flow from rural upper catchments 

through urbanized areas. In addition, many sections of creeks belong privately owned 

lands leading to difficulties in maximizing the flood capacity of channel maintenance. 

For example, removing debris and waste in the stream channel, and opening the channel 

space. Due to these problems with the rapid formation of flash floods, there is a need to 

calculate surface runoff estimation as a reference for monitoring and predicting flood 

risk. 

Wilkinson et al. (2004) shows the relationship between urbanization and rainfall season 

in metropolitan Adelaide. According to these authors, land-use has heavy influences on 

water flow. In this zone, the catchments with heavy urbanization are affected by rainfall 

intensity whereas catchments predominated by rural areas experience extreme water 

deficit due to a lack of soil moisture where significant runoff is only produced by rural 
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catchments in the later months of the winter (from July to October). The writers also 

indicate the empirical result that impervious surfaces are an integral part of estimating 

annual rainfall flow. By using the volumetric runoff coefficient (VRC), a calculation of 

rainfall, which falls on each basin and actually flows to the drainage system then 

contributes to runoff to the sea can be made. They indicate that the VRC is greater when 

the proportion of impervious surfaces is high and it is lower in un-urbanised areas. 

Other research focuses on flood hazard assessment at Port Adelaide and Brown Hill and 

Keswick Creek. According to Russell and Drew (2006), Port Adelaide Enfield coastal 

areas contain land portions that are low-lying. Some of these areas are significantly 

affected by vast tide levels. They found that stormwater heavily affects the low-lying 

land in Port Adelaide Enfield. The single flood flow path was not clear because the local 

catchments are extremely flat. Therefore, it needs a rigorous assessment of influences 

from larger storm events. The Government of South Australia (2013) indicates that 

some areas in metropolitan Adelaide have a mixture of urban and rural areas resulting 

in significant flooding during storms. Most of the lower catchment in Adelaide region 

is urbanized. As a consequence, flooding typically occurs when reaches of water ways 

are lower during the storms that have shorter duration. 

2.4 Impervious surfaces and surface runoff 

According to Arnold and Gibbons (1996), and Slonecker et al. 2001, impervious 

surfaces are the materials that prevent the water infiltration into the soil leading to 

changes in the flow dynamics and sedimentation of stormwater runoff. There are 

different materials presenting impervious surfaces. Some are easy to identify and the 

most prevalent are roads, rooftops, and others such as sidewalks, patios, bedrock 
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outcrops and compacted soil. Because impervious areas prevent infiltration and usually 

have a small initial storage, those surfaces consequently contribute runoff quicker and 

at a higher rate (Boyd, Bufill & Knee 1993), and reduce the time of runoff concentration 

leading to higher and sooner peak discharges after rainfall starts in basins (Weng 2001).  

Surface runoff is the water flowing over the surface of the ground towards the stream 

channel (Rumynin, 2015). Freeze (1974) shows that surface runoff is generated from 

upland areas and its intensity depends on topography, soil characteristics, LULC and 

climate such as precipitation, temperature and wind. Those factors need to be 

considered in any hydrological model. In urban areas, trees and vegetation removal as 

well as street and house construction can lead to increases in impervious surfaces 

resulting in decreasing infiltration, lower groundwater table and increasing storm flows. 

In addition, impermeable surfaces are able to affect local streams like streamflow and 

water quality as well as flooding characteristics. Those conditions result in increasing 

the intensity of surface runoff during heavy rains and storms.  

2.5 Remote sensing techniques in mapping land-cover 

Land-cover can be used to estimate the abundance of impervious surfaces across a land 

scape and is considered to be a fundamental variable. However, mapping and 

monitoring land-cover changes in urban environments with medium and coarse spatial 

resolution imagery is challenging because of the problems causing by mixed-pixels (Lu 

et al. 2011), especially in Landsat TM data (Lu & Weng 2004). 
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2.5.1 Mixed pixel 

Traditional image analysis techniques assume that an area represented in each pixel 

belongs to a unique land cover type. However, Fisher (1997) argues that the landscape, 

in reality, does not fit into the elemental squares of the finest pixel. As a result, land-

cover information needs to be extracted by assumption that one pixel contains more 

than one land-cover type. Cracknell (1998), inheriting Fisher’s research, demonstrates 

that if the land forms observed are plains, desert and water, the result could be improved 

because those are homogeneous surfaces over an area. Foody (2004) more illustrates 

that the sensor primarily defines the spatial unit or the pixel in other words. 

Consequently, the pixel is an arbitrary spatial unit. Furthermore, fundamental attributes 

of a pixel like shape, size and location are mainly determined by the sensor and not 

directly by the ground’s properties. In general, there is more than one thematic class 

contained in one pixel of an image. If conventional approaches are used, mapping using 

remotely sensed data could lead to errors where mixed pixels are present. There are two 

approaches of imperviousness extraction, which are hard and soft classification. 

2.5.2 Hard classification 

According to Lu and Weng (2007), in hard classification approach, the spectral 

information of all pixels in the training set are used for developing a signature of a given 

class. Therefore, all materials that are present inside the training pixel set contribute to 

the resulting signature and the impact of mixed pixels is omitted. Myint et al. (2013) 

further demonstrate that individual features of an urban lanscape often have different 

size and shape to that of the image pixels. If the spatial resolution is refined and the area 

of the pixel is reduced, the accuracy of classification might not improve. In the case that 
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pixels are smaller than urban objects, this probably leads to additional spectral noise. 

Therefore, when working with urban environments, the hard classification method may 

be a disadvantage. Liu, Zhang and Wu (2011) indicate that hard classification is likely 

to work better over larger homogeneous areas and where adjacient classes are clearly 

separated. 

2.5.3 Soft classification 

As mentioned above, the hard classification approach assumes the land-cover categories 

are mutually exclusive and classifies each pixel into one class. However, urban 

landscapes are mostly heterogeneous, and where the spatial resolution of remotely 

sensed images is limited by medium and coarse spatial resolution data, mixed pixels 

will occur (Lu & Weng 2007). Fisher (1997) and Cracknell (1998) point out a major 

problem that the presence of mixed pixels limit the effective use of remotely sensed 

data in hard classification, especially in urban environments where they primarily 

contain impervious surface materials with the heterogeneity and complexity. Despite 

the fact that there are different methods used to derive the allocation of those pixels, 

they are still inappropriately allocated in a single class.  

Ridd (1995) proposed that vegetation, soil and impervious surfaces are three land-cover 

elements that contribute to the spatial component of a segment of an urban environment, 

which is called VIS (Vegetation, Impervious Surfaces and Soil) model. According to 

this model, each subdivision of an urban area can be calculated based on the 

contribution of vegetation, soil, and impervious surface within each spatial unit. When 

the changes of VIS constituency are observed over the time, the VIS model not only 

provides information arising from urban development such as dynamic and 
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environmental impacts, but also discriminates complex characteristics of urban 

landscapes in cities. Due to the useful information in urban change detection that the 

VIS model can provide, several studies have relied on this fundamental framework for 

investigating metropolitan ecosystems. Madhavan et al. (2001) used VIS model in 

evaluating the anatomy and spatial development of metropolitan Bangkok. In this 

research, Landsat 5-TM imagery was used to produce the land cover types in urban 

environment over time where changes were recorded. This research emphasizes that 

remote sensing data is able to be utilized with the VIS in visualizing the changing trends 

in urban ecosystems. Phinn et al. (2002) and (Lu & Weng 2006) adopt VIS model with 

the most appropriate image processing methodologies to produce compositions for 

urban landscapes. They found that VIS can be combined with spectral mixture analysis 

to produce more accurate results with moderate spatial resolution images. However, 

they also recognize that impervious surfaces are often overestimated in urbanized 

regions and underestimated in un-urbanized areas when medium spatial resolution 

imagery is used.  

Due to the complex landscape in urban envrionment and the mixed pixel problem in 

medium spatial resolution imagery, the soft classification approach has been developed 

to achieve a better depiction and accurate estimation of land covers than hard 

classification approach (Binaghi et al. 1999; Foody & Cox 1994). According to Eastman 

and Laney (2002), the principle of soft classification lies in the fact that the intercepted 

radiance is integrated in a solid-state detector at its instantaneous field of view (IFOV). 

The energy reflecting from a type of land-cover is frequently intercepted by the IFOV 

at any effective resolution of the detector. As a result, a pixel is able to exhibit 
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intermediately spectral characteristics of each of the endmember classes. The 

information derived from sub-pixel estimation will be usually mapped as a fraction of 

imagery (Shimabukuro, Y, Carvalho & Rudorff 1997) or continuous field (Frizzelle & 

Moody 2001). However, although sub-pixel analysis is able to be used for quantifying 

urban impervious areas, it poses some difficulties when working with spectral 

heterogeneity deriving from urban features (Ji & Jensen 1999). 

2.6 GIS applications in hydrological modelling 

Hydrological models usually work with multiple spatial data types like topography, soil 

land use and hydrometeorology. Hydrological models also require watershed partitions 

into homogeneous units leading to a hydrologic unit derived from those data. 

Furthermore, one of the crucial components in hydrological modelling is the spatial 

pattern which can reveal the spatial distribution of hydrological results. Therefore, it is 

necessary to use GIS, which provides significant tools for analysis of spatial data (Singh 

& Fiorentino 2013). 

2.6.1 GIS data 

GIS has the ability to integrate data from multiple sources  such as LULC, satelite 

imagery, boreholes and wells, terrain and surface geology. It allows those data to be 

used simultaneously to improve our understanding in interactions of the hydrological 

circle (Ian 2010). Goodchild (1993) argues that six types of data are used in GIS: 

i) Irregular point sampling, which includes a set of triples (x, y, z) representing the value 

of points at a set of locations that are irregular such as precipitation measurement. 
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ii) Regular point sampling, which includes points arrayed on a rectangular or square 

grid. An example for this type of sampling is the digital elevation model (DEM). 

iii) Contours, which holds a set of lines like digital countour data. 

iv) Polygons: each polygon represent an area with the information for that whole area. 

For example, soil and land use. 

v) Cell grid: each cell has a value representing the value of a location within the cell. 

For example, remote sensing data and rainfall map in raster type. 

vi) Triangular Irregular NetWork in which the area is divded into irregular triangles 

where the verticy ends are pint locations of known maginitude, such as height. 

Nowadays, much data used for hydrological models are available for free. Some of the 

surface data can be derived from the U.S. Geological Survey (USGS) (Landsat imagery 

and digital elevation models) and FAO (land use and land cover types maps). There are 

two data types used in GIS, which are vector and raster data. Those data can be used 

simultaneously for hydrological model calculation by integrating them into the same 

coordinated system. 

2.6.2 Hydrological modelling with GIS 

GIS has been integrated into hydrological models for different purposes. Singh and 

Fiorentino (2013) categorize the integration of GIS and hydrological modelling in 

stormwater management, watershed modelling, flood prediction and groundwater 

modelling. Batelaan and De Smedt (2001) integrate GIS in their model name WetSpass 

for estimating a long-term average spatial distribution of actual evapotranspiration, 
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groundwater recharge and surface runoff. Fadil et al. (2011) use GIS and the Soil and 

Water Assessment Tool (SWAT) for stream flow simulation, water balance 

establishment and monthly volum inflow estimation in Gouregreg basin, Morocco. In 

the future, with the availability of GIS and remote sensing data sources and the 

development those technology, hydrological modelling will become more global with 

a larger distribution and increasing sophistication. 

2.7 Hydrological model 

2.7.1 Hydrological cycle and water balance 

In the natural environment, the occurrence of water circulation is near the surface of the 

Earth. Figure 2.1 demonstrates the hydrologycal cycle. When the solar radiation from 

the sun reaches to the Earth’s surface in general and the ocean in particular, it causes 

the evaporation of water from oceans. The moisture resulting from the evaporation 

transports to the atmosphere. In this stage, if favourable conditions are enough, 

precipitation may be produced. When precipitation occurs, it might be evaporated again 

to the atmosphere and intercepted by vegetation. A portion of it may infiltrate the soil 

to become groundwater, be evaporated from the surface of soil and transpired by 

vegetation. It also can become surface runoff. Groundwater and surface runoff then may 

travel to lakes and streams and transport back to the ocean. 
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Figure 2.1. Hydrological cycle (Zhang, Walker & Dawes 2002) 

There are four essential components in the hydology cycle, which are precipitation, 

evapotranspiration, surface runoff and groundwater (Zhang, Walker & Dawes 2002). 

Freeze (1974) explains that the surface runoff component is able to be produced from 

two mechanisms including saturation and infiltration excess runoff. The infiltration 

excess runoff is generated by a principle that the different amount between water in and 

out a system must be equal to the change in the water content of this system. It means, 

when infiltration or capillary rise to add water to the system, its water content will 

increase. In contrast, when evapotranspiration or deep drainage cause water decrease, 

its water content will reduce.  
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2.7.2 Application of WetSpass Model 

As introduced by Batelaan and De Smedt (2001), the WetSpass model was built based 

on a physical methodology for long-term average and spatial distribution of water 

balance components including actual evapotranspiration, groundwater recharge and 

surface runoff. According to those authors, the model was applied in the Grote Nete 

basin, Belgium for a land-planning project. This study used WetSpass to analyse the 

influences of land-use changes on groundwater discharge and indicate the necessity of 

distributed recharge estimation. Pan et al. (2011) evaluate the impact of land-use 

changes on groundwater recharge under  rapid urbanization in Guishui River Basin, 

China. The WetSpass model was used in this analysis and the results point out that land-

use changes resulting from urbanization cause the decrease of early groundwater 

recharge in the study site. Al Kuisi and El-Naqa (2013) used WetSpass to estimage 

groundwater recharge for Jafr basin in Jordan. By comparing the results from the 

WetSpass model with earlier reports of that study area, they concluded that the 

WetSpass model works well in that study area. Dams et al. (2013) applied sub-pixel 

imperviousness regression model to produce fraction maps of impervious surfaces from 

Landsat imagery. This research uses both fixed impervious surface fractions providing 

by the WetSpass model for urban land-use types and a remote sensing method for 

estimating imperviousess percentage. The results of their study show that the accuracy 

of impervious surface fractions is reasonable when deriving from medium resolution 

remotely sensed imagery. This study also indicates that although there is a similarity of 

the average spatial changes in water balance constituents caused by urban expansion, 

WetSpass using land-use data still overestimates the urbanized component in some 
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smaller urbanized areas and underestimates that component in larger urbanized centres. 

This leads to the problem that the decrease of groundwater is underestimated in largest 

urban centres and overestimated in some smaller urban areas. 

In general, urbanization and urban expansion cause the increase of impervious surfaces, 

which are the primary determinant of surface runoff. Hydrological models within a GIS 

framework are well placed to quantify surface runoff and map its distribution and areas 

at risk. The WetSpass model can be used to map the spatial distribution of surface 

runoff. However, this model uses land-use map for its input data and assumes each land 

use type contains a fixed fractions of vegetation, bare soil, impervious surfaces and open 

water within a spatial unit. This could be subjective when applied to different study 

areas due to the different contributions of these materials. Furthermore, mapping 

impervious surfaces as one input parameter to the hydrological model can be achieved 

by using remote sensing. Therefore, capturing the variability of land cover types within 

the pixel could be improve the effectiveness of the WetSpass model. 

The next chapter describes the methodology undertaken in this study to estimate surface 

runoff over the Adelaide Metropolitan areas 
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Chapter 3 - Study area and data 

3.1 The study area 

Adelaide is the capital city of South Australia which is located at Latitude 34° 55” S 

and Longitude 138° 35' E with an area of approximately 633.10km2. The population of 

Adelaide is around 1.32 million while that of the state of South Australia is 

approximately 1.7 million in 2015 (ABS 2016). The Western boundary of metropolitan 

Adelaide is the beach facing Gulf St. Vincent, the South-East is the low lying Mount 

Lofty Ranges, and the North is the agricultural region shown in Figure 3.1. The average 

elevation of Adelaide is 50 meters above sea level.   

 

Figure 3.1. The study area 
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According to Wright and Kemp (2016), this city is in a low-lying region. In many cases, 

stream catchments from higher rural areas often flow through urbanized areas in 

metropolitan Adelaide. Some parts of the city are also likely affected by overland flow 

which is not originating from the creek system. The metropolitan Adelaide has several 

watercourses like Sturt River, River Torrens, Gawler River, Light River and Wakefield 

River and a number of small creeks enter the plain from the hills such as Adams Creek, 

Smiths Creeks, Dry Creek, Magazine Creek, Brownhill/Keswick Creek, Waterfall 

Creek, Christie Creek and Pedler Creek but most dry during summer (Gerges 2006). 

According to BOM (2016), the annual rainfall of Adelaide is 546.3 mm, the highest 

temperature is 44.10C on the 2nd of January and the lowest temperature was 1.80C on 

the 20th of July 2015. 

3.1.1 Hydrogeological zones 

According to (Gerges 2006), Adelaide metropolitan area contains six hydrogeological 

zones (Figure 3.2). Zone 1 covers the area of Adelaide hills basement rocks. Zone 2 

covers a region lying between Brown Hill Creek and Gulf St. Vincent. Zone 2a connects 

zone 2 with zone 3. Zone 3 includes a large flat area of the Adelaide plain. Zone 4 

covers a large portion of the Golden Grove-Adelaide Embayment and zone 4a is the 

area between the Eden-Burnside Fault and the extension of the proposed Hope Valley 

Fault. The upper catchments have an influence on the lower catchments. 
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Figure 3.2. Hydrogeological zones (Gerges 2006) 

3.1.2 Stormwater in Adelaide 

According to the Parliament of Australia (2015), Adelaide contains much of the old 

trunk stormwater drainage infrastructure, which was built in the period of 1940s to 

1980s. In 2007, the South Australia Government cooperated with the Local Government 
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Act to produce the plans of storm water management on an agreed catchment basis 

(Government of South Australia, 2007). This is useful to adapt to the increase of 

stormwater flows and urban flooding. 

3.2 Data 

To research surface runoff estimation, spatial data in 2016 was collected for processing 

and analysing, including Landsat surface reflectance images, soil types, elevation, 

groundwater depth, climate data such as temperature, rainfall, wind and 

evapotranspiration. All these data sets were acquired in raster form and were resampled 

to have the same spatial resolution of 30 m. 

3.2.1 Landsat surface reflectance imagery 

Landsat satellite imagery has been provided by the U.S. Geological Survey (USGS) 

since 1972. Usually, when using this data, users need to pre-process the raw data such 

for radiometric calibration or atmosphere correction. To alleviate this burden, higher 

level Landsat satellite products have been distributed by USGS which are called 

Landsat surface reflectance imagery. These data will contribute science data collection 

in order to monitor, assess and predict changes of land surface through time and have 

been calibrated to surface reflectance. USGS has supported Landsat surface reflectance 

imagery with three versions, which are Landsat 4-5, Landsat 7 and Landsat 8 Surface 

Reflectance Imagery. In this study, the Landsat 8 Surface Reflectance image acquired 

on 07 January 2016 was used for analysis. This kind of Landsat satellite data includes 

elements like original input products, original input metadata, Top of Atmosphere 

Reflectance, Surface Reflectance and Brightness Temperature. The image collected 

covers all of the study area at path number 97 and row number 84 (Figure 3.3). 
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Figure 3.3. Landsat scene path 97, row 84 

The spatial resolution of this data is 30 meters and is projected to the Universal 

Transverse Mercator (UTM) coordinate system using the World Geodetic System 1984 

(WGS 1984). The Surface Reflectance data represents the reflectance of the Earth’s 

surface. Therefore, the surface reflectance spectra are not affected by atmospheric 

components. This image, then, was reprojected to The Geocentric Datum of Australia 

(GDA94) UTM zone 54S. The Landsat 8 surface reflectance image in this study uses 6 

spectral bands (band 1, 2, 3, 4, 5, 7) illustrating in Table 3.1. 
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Table 3.1. Spectral bands of Landsat 8 imagery used in the research 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 30 

Band 7 – Shortwave Infrared (SWIR) 2 2.11- 2.29 30 

3.2.2 Land-cover map 

The land-cover map of Adelaide region of 2016 was derived from Landsat 8 Surface 

Reflectance images by using a supervised classification method. The map includes six 

classes: Urban, Grass, Road, Bare Soil, Vegetation and Water Body. 

3.2.3 Land use 

The land use map 2016 was obtained from the Department of Planning, Transport and 

Infrastructure, South Australia. The original data includes 21 land-use layers: 

commercial, agriculture, education, food industry, forestry, golf, horticulture, livestock, 

mine quarry, non-private residential, public institution, recreation, reserve, residential, 

ret-commercial, river, road, rural residential, utility industry, vacant and vacant 

residential.  

3.2.4 Elevation data 

The Digital Elevation Model (DEM) of South Australia has a pixel resolution of 30 m, 

supplied by the South Australian Government Data Directory was used with a vertical 

accuracy of 10 meters. The DEM of the metropolitan Adelaide was subset from the 

lager DEM of South Australia. The elevation of the metropolitan Adelaide ranges from 
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-4.7 to 300.8 meters above sea level with the highest area is mainly located on the North-

East, East and South-East (Figure 3.4). 

 

Figure 3.4. The DEM of the study area 

3.2.5 Slope 

Slope data was created from the DEM by using the Slope tool in Spatial Analyst, 

ArcGIS version 10.3.1. Its pixel size is 30 m and its value ranges from 0 to 30.5 degree 

(Figure 3.5). The function of Slope tool assumes that in each cell, the maximum 

changing rate in value from that cell to its eight surrounding cells is calculated. By 

calculating this change, the steepest downhill descent from that cell will be identified.  
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Figure 3.5. Slope data of the study area 

3.2.6 Soil 

Soil data was obtained from the digital version map of the Atlas of Australian soils. The 

Soil map of the study area was then extracted by using the study boundary and identified 

based on the soil texture. Soil types of Adelaide region consist of loamy sand, sandy 

loam, sandy clay loam, clay loam, sandy clay and clay (Figure 3.6). 
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Figure 3.6. Soil types in the study area 

3.2.7 Rainfall map 

Rainfall data for 12 months in 2016 was collected from 38 rain gauge observations. Due 

to missing data for November and December in each rainfall station, the data for those 

two months were calculated by using the average rainfall of corresponding months of 

previous years. Kriging interpolator was then used to generate rainfall maps for a 12-

month period. The highest average monthly precipitation falls in July, around 134.7 mm 

and the lowest average monthly precipitation falls in January with approximately 12.7 

mm. 
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3.2.8 Temperature 

The average temperature data for 12 months in 2016 was collected at 8 temperature 

observed stations include Edinburgh RAAF, Adelaide Kent Town, Parafield Airport, 

Adelaide Airport, Mount Banker, Kuitpo Forest Reserve, Noarlunga and Price. The 

missing data of November and December were observed by calculating the average 

temperature of previous years. Temperature maps were produced by using Universal 

Kriging interpolator in ArcGIS. Table 3.2 shows the average maximum and minimum 

temperature at 8 temperature observed stations: 

Table 3.2. Average monthly maximum and minimum temperature at 8 observed 

stations across the study area in 2016 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

T(0C) 
Max 14.5 13.3 13.5 11.7 9.5 7.9 7.3 8 9.4 10.7 12.4 13.2 

Min 24.7 22.9 22.7 18.7 16.1 12.7 11.6 12.5 17.2 17.2 20.4 21.8 

3.2.9 Wind 

The mean wind speed values of the period between 1990 and 2010 at 14 wind observed 

stations across the study region were collected. The wind data was then used to produce 

the mean wind map for the study area by using the Kriging interpolator. The highest 

value of mean wind speed is around 21.9 km/h and the lowest value is 11.4 km/h. 

3.2.10 Potential Evapotranspiration (Pet) 

Average Potential Evapotranspiration maps for 12 months over the study area were 

derived from the Annual Potential Evapotranspiration map of Australia supported by 

Bureau of Meteorology. The lowest and highest value of average monthly potential 

evapotranspiration across the study area are illustrated in Table 3.3: 
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Table 3.3. Average monthly potential evapotranspiration in Adelaide metropolitan area 

2016 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Pet 

(mm) 

Max 176 142 116 72 49 39 44 57 79 118 146 155 

Min 162 132 109 69 43 30 36 51 75 113 135 142 

3.2.11 Groundwater Depth 

To produce groundwater depth raster map, the well data information was collected from 

the Bureau of Meteorology database. A groundwater depth map of the study area was 

created using Inverse Distance Weighting (IDW) interpolator with the interpolating 

value groundwater depth at each well. The highest value of groundwater depth is about 

138m and the lowest value is approximately 0.1m (Figure 3.7). 

 

Figure 3.7. Groundwater depth across the study area 
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Chapter 4 - Methodology 

4.1 Remote sensing method 

4.1.1 Subset image 

A satellite image often contains areas much larger than a particular study area. In this 

project, the metropolitan Adelaide is only a small part of the Landsat image. Subsetting 

the study area of this image can eliminate the extraneous data in the image file and 

increase the speed of the processing because of the smaller data volume in the process. 

ERDAS Imagine software version 2015 supports the Subset tool for cutting the area of 

interest. In this study, a Landsat 8 surface reflectance image of Adelaide region in 2016 

was used to derive the study area by using Subset tool in ERDAS software with the 

boundary of the study area. 

4.1.2 Supervised classification 

Supervised classification was used to produce the land-cover map over study area. This 

map was then used to extract water class for the input data of the WetSpass model. As 

Richards (1999) introduces, a supervised classification technique is often used for 

deriving land cover information from remotely sensed data. According to the principle 

of this technique, the spectral domain of bands can be segmented into regions that are 

able to be associated with ground cover classes of interest. In other words, supervised 

classification is basically a representation of ground cover type of interest by 

segmenting multispectral image space and labelling these segments (classes) according 

land cover types in the field.  

The empirical steps applied in the supervised classification technique include: 
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i) Decide the land-cover types. In reality, one ground-cover type can reflect 

different spectrum to the sensor. For example, shallow and deep water, they are the 

open water. However, that spectral reflectance is different. Therefore, one land-

cover type can be an aggregation of sub-ground-cover types. 

ii) Choose the materials of interest which represent pixels for each class. Those 

pixels are called the training data. The training sets are established through image 

visual interpretation supported by using Google Earth images. 

iii) Next, those training data are used to estimate the parameters of Maximum 

Likelihood Classifier algorithm. Those set of parameters are call signatures of the 

classes. 

iv) Every pixel in the image is then labelled to the corresponding class from the 

classes determined in the step i) by using the trained classifier. 

v) Produce the thematic map of land-cover types and the tables summarizing class 

memberships of all pixel in the image. 

vi) When acquiring all of the classes, the sub-ground-cover types representing one 

type of ground-cover will be recorded to be only one corresponding ground-cover 

class. 

vii) Finally, the accuracy of the classification map is evaluated by checking with 

Google Earth images. 
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In this research, six land-cover classes were used to use in producing land-cover map 

of the metropolitan Adelaide including urban, grass, infrastructure, bare soil, vegetation 

and open water. 

4.1.3 Spectral Unmixing 

According to Keshava and Mustard (2002), Spectral Unmixing Analysis is the process 

that spectrum of a mixed pixel was decomposed into a constituent spectra set and a 

correspondingly fractional set. Those constituents of spectra area are known as 

endmembers (land cover types) and corresponding fractions of these endmembers are 

named abundances. If calibrated correctly, fractional abundances specify the percentage 

of each endmember presenting in each pixel location. According to Ghosh et al. (2012), 

Linear mixture model (LMM) is the most common approach applying in unmixing pixel 

spectra. In this research, LMM was used to implement spectral unmixing analysis where 

the results will be input to the WetSpass model to measure the spatial distribution of 

water balance and surface water runoff. The mathematic expression of LMM is 

presented as follows: 

Ri = ∑ 𝑓𝑘 ∗ 𝑅𝑖𝑘 + 𝜀𝑖
𝑛
𝑘=1      (Equation 1) 

In Equation 1, i and k are the number of spectral bands and endmembers respectively. 

i is from 1 to m and k ranges from 1 to n. Ri is the spectral reflectance at band i of the 

pixel; fk is the fractional abundance of endmember k in the pixel; Rik is the spectral 

reflectance of endmember k at wavelength i of the pixel and 𝜺𝒊 is the uncertainty of 

band i. 
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To conduct Spectral Unmixing Analysis, a constrained unmixing condition of fk was 

applied where fraction sum to 1: 

{
∑ 𝑓𝑘 = 1𝑛

𝑘=1

0 ≤  𝑓𝑘  ≤ 1
   (Equation 2) 

In this research, four endmembers in each Landsat image were investigated which are 

Vegetation, Impervious Surface, Soil and Open Water (V, I, S and W). Each Landsat 

image of the study area contains 6 bands. Therefore, the linear relationship among Ri, 

fk, Rik and 𝜺𝒊 in each pixel can be written as a following matrix equation: 

 Endmembers       

    V        I        S         W  Fraction  Error  Image reflectance 

Band 1: 

Band 2: 

Band 3: 

Band 4: 

Band 5: 

Band 6: [
 
 
 
 
 
𝑅1𝑉 𝑅1𝐼 𝑅1𝑆 𝑅1𝑊

𝑅2𝑉 𝑅2𝐼 𝑅2𝑆 𝑅2𝑊

𝑅3𝑉 𝑅3𝐼 𝑅3𝑆 𝑅3𝑊

𝑅4𝑉 𝑅4𝐼 𝑅4𝑆 𝑅4𝑊

𝑅5𝑉 𝑅5𝐼 𝑅5𝑆 𝑅5𝑊

𝑅6𝑉 𝑅6𝐼 𝑅6𝑆 𝑅6𝑊]
 
 
 
 
 

 

 

* 

 

[

𝐹𝑉

𝐹𝐼

𝐹𝑆

𝐹𝑊

] + 

[
 
 
 
 
 
𝜀1

𝜀2

𝜀3

𝜀4

𝜀5

𝜀6]
 
 
 
 
 

 = 

[
 
 
 
 
 
𝑅1

𝑅2

𝑅3

𝑅4

𝑅5

𝑅6]
 
 
 
 
 

 

The Root Mean Square of error (RMSE) is used to evaluate the fitness of the model. It 

was computed by the following formula: 

RMSE = √
∑ 𝜺𝑖

2𝑚
1

𝑚
   (Equation 3) 

As Mather and Koch (1999) state, smaller RMSE indicates better fit of the sum of 

fractions, while higher RMSE shows poor fit of the model. Consequently, the indication 

and the fractional images of the endmembers are better when the RMSE image is lower.  
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The spectra of the known endmember are required in linear spectral unmixing analysis. 

Those spectra can be acquired directly from the image by measurement or obtained 

from a spectral library (Yang, C, Everitt & Du 2010). In this study, three broad 

endmember classes were directly selected from the image, which are vegetation, 

impervious surface and bare-soil. Open water was derived directly from land-cover 

map. The spectral unmixing analysis was conducted by the ENVI software version 5.0. 

The region of interest of vegetation, impervious area and bare-soil was created. When 

selecting endmembers on the image, Google Earth imagery was used as an extra source 

to ensure achieving suitable endmembers.  

4.2 GIS method 

4.2.1 Kriging 

Kriging is a statistical technique that calculates the weight in the weighted moving 

average formula. It assumes that with points closer together, they are spatially correlated 

and their correlation reduces when the distance between the sample points increases. 

The points close together have higher probability of having similar values. This is 

measured by using an experimental semi-variogram (Borough & McDonnell 1998, p. 

155). There are different types of Kriging such as Ordinary Kriging, Universal Kriging 

and Co-Kriging. In this research, the Universal Kriging was used to produce rainfall, 

temperature, groundwater depth and wind speed maps. Universal Kriging is the 

interpolation method used in the presence of external trends. It assumes that there are 

some underlying deterministic trends present in its structure (Borough & McDonnell 

1998, p. 149; Kalkhan 2011, p. 87). 
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4.2.2 Inverse Distance Weighting (IDW) 

In this study, IDW was used to generate the groundwater depth map by using known 

groundwater depth values measured from wells across the Adelaide metropolitan area. 

In the IDW operation, cell values are determined by using a linearly weighted 

combination of a point group from the sample points (Figure 4.1). An inverse distance 

function is used for the weight. Therefore, the resulting interpolated surface will have 

the influence of a locally dependent variable (in this case, the locally dependent variable 

is the groundwater depth values of nearest wells of the interpolated wells). The 

assumption of IDW is that influence of the variable being interpolated between points 

(in this case groundwater depth) reduces due to the increase of distance from its sampled 

location (ArcGIS ESRI 2016). In Figure 4.1, the values of red points which have a local 

influence on the yellow point are used to interpolate the value of yellow point. 

 

Figure 4.1. Neighbourhood (red points) for selected point (yellow point)  

(ArcGIS ESRI, 2016) 
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4.2.3 Recoding the data  

The 2016 land-use map contains 21 layers as described in the section 3.2.3. These 

classes were minimized to 12 land-use classes by aggregation in order to conform to the 

requirements of the WetSpass model. Google Earth imagery, along with land-cover map 

derived from the supervised classification, were used to help guide the aggregation of 

land-use classes using the Raster Calculator tool in ArcGIS. Then, those land-use types 

were used determine the corresponding land-use types provided by WetSpass model to 

obtain corresponding codes (Table 4.1). By the same way, soil types of Adelaide were 

assigned to the corresponding soil types provided by the model with soil codes including 

loamy sand (code = 2), sandy loam (code = 3), sandy clay loam (code = 7), clay loam 

(code = 9), sandy clay (code = 10) and clay (code = 12). Those codes of land use and 

soil types were used for calculation in WetSpass model. All assigning data work were 

implemented in ArcGIS software. 

Table 4.1. Derived land-use types of the study area and corresponding information in 

the WetSpass model 

Code LUSE_TYPE 

Runoff 

vegetation 

VEG 

AREA 

BARE 

AREA 

IMP 

AREA 

Land use 

2 Orchard forest 0.2 0.8 0 Agriculture 

5 Grassland grass 1 0 0 Golf 

8 Coniferous forest forest 0.9 0.1 0 Reserve 

11 Dunes bare soil 0.3 0.7 0 Vacant 

13 Water open water 0 0 0 River 

16 Residential grass 0.5 0 0.5 

Horticulture and 

residential 

17 Military areas grass 0.6 0.1 0.3 

Education and public 

institute 

18 Commerce and services grass 0.3 0 0.7 Commercial and road 

19 Industry grass 0.4 0 0.6 Industry 

20 Mining bare soil 0 1 0 Mine quarry 

21 Infrastructure grass 0.6 0.1 0.3 Livestock 

22 Harbour grass 0.6 0.1 0.3 

Recreation and rural 

residential 
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4.3 The WetSpass model 

WetSpass model was developed by Batelaan and De Smedt (2001). The model is used 

for estimating the spatial distribution of groundwater recharge, evapotranspiration and 

surface runoff by investigating physical and empirical relationships in a long-term. The 

WetSpass model requres input data in raster form including land-use/land cover, 

elevation, soil texture, slope and climate data like rainfall, potential evapotranspiration, 

wind and temperature. According to Batelaan and De Smedt (2001), in order to address 

the heterogeneous nature of LULC, four sub-pixel proportions or fractions of LULC are 

defined at the raster cell (pixel) scale, including vegetated cover, impervious surfaces, 

bare soil and open water fractions. In this research, the more recent WetSpass-M 

software model, developed by Abdollahi et al. (2015), which is the raster-based monthly 

water balance was used to calculate surface runoff.  

4.3.1 Model concept 

The performance of WetSpass is based on the computation of water balance at the pixel 

level. water balances is obtained by summing the independent water balances for 

vegetation, impervious surfaces bare soil and open water proportions/fractions of of 

each raster cell. Therefore, the total water balance of a given area is computed by 

summing the water balance of each raster cell. Notabibly, the WetSpass model provides 

predefined/default proportions of land cover fractions for specific LULC types, but 

according to Batelaan and De Smedt (2001), the calculated water balance for each raster 

cell can be improved if actual land cover (LC) fractions can be derived.  In this case the 

proportion of each land cover fraction can more realistically vary within each land use 

type. 
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4.3.2 Calculating water balance for each raster cell 

The total water balance is calculated by using water balance components of vegetation, 

impervious surface, bare-soil and open-water. This calculation is demonstrated as 

below: 

ETraster = avETv + asEs + ao Eo + aiEi  (Equation 4) 

Sraster = avSv + asSs + aoSo + aiSi   (Equation 5) 

Rraster = avR + asRs + aoRo + aiRi   (Equation 6) 

where ETraster is the total evapotranspiration, Sraster is surface runoff and R raster is 

groundwater recharge of a raster cell; av, as, ao and ai are the vegetation, bare-soil, open-

water and impervious area component correspondingly; E is evapotranspiration 

(Batelaan and De Smedt, 2001) 

4.3.3 Calculating Surface runoff 

According to Abdollahi et al. (2015), a rational approach applying for a monthly time-

step is used in calculating surface runoff volume in WetSpass-M. This approach uses 

two coefficients and it is demonstrated in Equation 7: 

SRm = CsrCh (Pm – Im)  (Equation 7) 

Where Pm is monthly precipitation (mm/month), Im is monthly interception 

(mm/month), SRm is the monthly surface runoff (mm/month) and Csr is the coefficient 

of actual surface runoff, Ch is the coefficient representing the condition of soil moisture 

as Bahremand et al. (2007) indicated and it is calculated using the following formula: 
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Ch = (
𝜃𝑆

𝜃𝑠𝑎𝑡
)

𝑏

   (Equation 8) 

Where 𝜃𝑆 is the soil moisture content of the cell (m3/m3), 𝜃𝑠𝑎𝑡 is soil porosity (m3/m3) 

and b is an exponent which represents the influence of rainfall intensity. If b is equal to 

one, the relation between soil moisture and its condition (Ch) is assumed to be linear. 

According to Bahremand et al. (2007), when temporal changes of discharge are used, 

the optimal value can be obtained with conducting calibration. By integrating Ch in 

Equation 7, over-estimation of surface runoff is avoided in semi-arid areas having low 

soil moisture and high potential evapotranspiration. When soil moisture data at monthly 

time-step is scarce, the evaporative efficiency ratio (introduced by Creutzfeldt et al. 

2010; Xingnan & Göran 1997) is integrated into the adapted approach of Turc (1955) 

at monthly level: 

𝐶ℎ =
mP

𝐿𝑃(𝑃𝑚
𝛼+𝐸𝑇𝑚

𝛼)
1
𝛼

𝑖𝑓 𝐸𝑇𝑚 > 𝑃𝑚
 (Equation 9) 

𝐶ℎ = 1 𝑖𝑓 𝐸𝑇𝑚 ≤ 𝑃𝑚 

Where ETm is monthly potential evapotranspiration (mm/month), LP is a calibration 

parameter used to reduce the potential evapotranspiration. 

In this study, the WetSpass model was used to run using both the predefined and ‘actual’ 

fractions of LULC to produce the results of surface runoff over study area. These results 

of these two methods were then compared to evaluate the reliability of the result. 

As detailed above, remote sensing methods including subset imagery, supervised 

classification and Spectral Unmixing Analysis and GIS methods such as Kriging and 
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IDW were used to generate the input data for the WetSpass model. The calculation of 

surface runoff in the recent version of WetSpass model (WetSpass-M) was introduced. 

Importantly, both the land-use with predefined/default LC proportions and the LC 

proportions/fractions derived from the SMA approach were input to theWetSpass model 

to calculate two optional results of surface runoff maps.     
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Chapter 5 - Results 

This chapter presents the result of the land-use map derived from minimizing 

information; the fractional maps obtaining from Spectral Unmixing method and the 

monthly and annual distribution of surface runoff. The full view of the results is 

illustrated in the Appendices section of this thesis. 

5.1 Land use map 

After combining the original land-use map obtained from the Department of Planning, 

Transport and Infrastructure, South Australia and the land-cover map derived from 

supervised classification process, the resulting new land-use map is presented in Figure 

5.1.  

 

Figure 5.1. Land-use map of the study area 
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The study area consists of 12 land-use types (Table 5.1) with the predomination of 

horticulture and residential (22,916.80 ha). Commercial and road rank as the second 

largest with the area of 17,033.00 ha where this kind of land-cover type also contains 

the highest abundance of impervious surfaces. Reserve and industry have a similar area, 

which is 4105.26 and 4854.78 ha respectively. Livestock and Golf have the smallest 

area with 305.37 and 732.33 ha respectively. 

Table 5.1. Land use types in the study area 

Code Name Area (hectare) 

21 Livestock 305.37 

5 Golf 732.33 

2 Agriculture 1411.29 

13 River 1902.69 

22 Recreation and rural residential 2164.41 

20 Mine quarry 2244.15 

11 Vacant 2400.12 

17 Education and public institute 3217.14 

8 Reserve 4105.26 

19 Industry 4854.78 

18 Commercial and road 17033.00 

16 Horticulture and residential 22916.80 

 Total 63287.34 

5.2 Spectral Unmixing Analysis results 

5.2.1 Endmember selection 

Three endmember signatures of vegetation, impervious surface and bare soil within the 

study area were collected. The spectral reflectance of those endmembers are plotted in 

Figure 5.2. Vegetation exhibits strong reflectance in the near-infrared wavelengths 

(0.85 - 0.88 micrometers) and low reflectance in the blue and red wavelengths (0.45 - 

0.51 and 0.64 - 0.67 micrometers respectively), while soil reflects strongly in the 
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middle-infradred wavelength (0.85 - 0.88). Impervious surfaces have different 

reflectances due to highly mixed materials between and within a pixel. 

and a low reflectance at band 1 and 2 while soil significantly responses at band 6 and 

impervious surfaces have different reflectance due to highly mixed materials within a 

pixel. 

 
     (a)    

    

       (b)                  (c) 

Figure 5.2. Spectral reflectance of vegetation (a), bare soil (b) and impervious surface 

(c) at six spectral bands of the image 

The statistics of each endmember signature are shown in Table 5.2, Table 5.3 and 

Table 5.4 bellows. The mean reflectance values of impervious surfaces in all six bands 

are significantly greater than those of the two other endmembers.  
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Table 5.2. Statistics of selected vegetation endmember 

Basic Stats Min Max Mean 
Standard 

deviation 

     Band 1 93 101 95.05634 2.254439 

     Band 2 127 156 138.6338 6.370108 

     Band 3 265 331 290.6479 11.49546 

     Band 4 195 248 219.2535 9.845548 

     Band 5 1664 2076 1898.662 88.58345 

     Band 6 244 315 275.7183 16.89225 

Table 5.3. Statistics of selected bare soil endmember 

Basic Stats Min Max Mean 
Standard 

deviation 

     Band 1 483 566 533.5926 21.37982 

     Band 2 815 1006 949.3333 39.12603 

     Band 3 1396 1608 1526.519 50.58684 

     Band 4 1488 1710 1622.185 57.91707 

     Band 5 2146 2321 2225.296 51.23537 

     Band 6 3842 4330 4110.037 124.4275 

Table 5.4. Statistics of selected impervious surface endmember 

Basic Stats Min Max Mean 
Standard 

deviation 

     Band 1 486 2150 1352.696 494.32 

     Band 2 552 2699 1771.652 645.9223 

     Band 3 957 3611 2318.261 763.7657 

     Band 4 1044 4352 2629.174 846.8335 

     Band 5 1710 4433 2946.522 797.0649 

     Band 6 1444 10286 5984.174 2290.501 

5.2.2 Endmember abundance maps 

The fractional abundance maps of vegetation, bare soil and impervious surfaces 

resulting from Spectral Unmixing analysis and map of open water derived from the 

supervised classification are presented in Figure 5.3. As can be seen from these maps, 

the highest abundance of vegetation is concentrated on the East and North-East of 

Torrens Island. Furthermore, a higher proportion of vegetation also appears along rivers 

and creeks, and where there are parks and recreation areas. Vegetation does not appear 

in the open water area, some bare soil areas and some commercial regions. In terms of 
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bare soil, the highest abundance of bare soil can be found surrounding the Salt 

Crystallisation Pans located in the Northern Greenfields Wetlands, Southern Tramway 

museum, around Golden Grove Recyclers and in the North of the study area where 

agricultural land is predominant. Lower abundance of bare soil can be found in the 

Southern parts of the study area where the residential density is higher. The open water 

‘abundance’ map was directly obtained from the land cover map, derived from the 

supervised classification result. It is presented here as a binary map of open water and 

non-water areas with ‘abundance’ values of 1 (100%) and 0 (0%) respectively. 

Impervious fractions are abundant and at their highest in the CBD of Adelaide city and 

industrial and commercial areas like supermarkets and car parks. The proportion of 

impervious surfaces gradually decreases from the CBD to the Northern metropolitan 

areas where the density of residential allotments is lower and conversion to some 

agricultural land areas exists. 

In general, the proportions of vegetation, impervious surfaces, bare soil and open water 

within every pixel sum closely to 1. Therefore, if the abundance of any one of those 

endmembers is 1 (or 100%), the fractions of other endmembers elsewhere are zero.  
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Figure 5.3. Fractional maps of vegetation, bare soil, open water and impervious 

surfaces 

Table 5.5 shows the mean abundance value for each of the four endmembers over study 

area. As can be seen, the mean proportion of impervious surfaces at 0.459 is 
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significantly higher than for vegetation and bare soil at 0.263 and 0.247 respectively. 

The proportion of open water is lowest at 0.031. 

Table 5.5. Mean values of vegetation, bare soil, open water and impervious surfaces 

over the study area 

 Vegetation Bare soil Open water Impervious surfaces 

Mean value 0.263 0.247 0.031 0.459 

5.3 Spatial distribution of surface runoff 

The spatial distribution of surface runoff was derived from the WetSpass model by 

conducting two methods, using the land cover map and fractional maps as the input data 

separately. The results were calculated monthly and annually. 

5.3.1 Monthly surface runoff patterns 

Figure 5.4. Spatial patterns of surface runoff 2016 over metropolitan Adelaide using 

land-use typesand Figure 5.5 bellows show the spatial distribution of surface runoff 

across the study area during 12 months in 2016. . Overall, the amount of surface runoff 

resulting from the WetSpass model using the land cover fractions derived directly from 

the Landsat image using Spectral Unmixing is greater than that of the land-use map 

with predetermined/default fractions of vegetation, bare soil, impervious surfaces and 

open water. 

As the results from using the land-use map with default land cover fractions in 

WetSpass (Figure 5.4) show, the lowest amount of surface runoff falls in April when 

the monthly precipitation for this month is lowest; almost no runoff anywhere 

irrespective of the LULC type. The mean value of rainfall in April for every pixel is 
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around 8.3 mm and the mean value of surface runoff in that month is approximately 1.5 

mm for each cell within the study area. In contrast, the highest surface runoff volume is 

in July at appropriately 40.7 mm for each pixel when the precipitation is highest (mean 

rainfall value of every pixel within the study area is nearly 102.5 mm). The mean 

amount of runoff in May is second highest, about 33.9 mm per pixel. The mean surface 

runoff in February and October are similar, about 6.3 and 6.2 mm perpixel respectively. 

In every month, most of the higher values of surface runoff are in open water area and 

in some areas in inland where the rainfall intensity is higher.  

 

Figure 5.4. Spatial patterns of surface runoff 2016 over metropolitan Adelaide using 

land-use types and default land cover fractions 
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As the results using Spectral Unmixing Analysis derived land cover fraction of 

vegetation, bare soil, impervious surfaces and open water in WetSpass (Figure 5.5) 

show, the highest and lowest amount of surface runoff are in July and April at 47.8 and 

2.0 mm respectively. Except for the result in April, which has the lowest amount of 

surface runoff, it can be seen that the higher volume of surface runoff can be found in 

the open water areas and in areas of high density impervious surfaces such as 

commercial and residential areas. These results also reveal lower surface runoff value 

in the vegetated areas surrounding the CBD; contrasting with the higher surface runoff 

within the CBD. 

 

Figure 5.5. Monthly spatial distribution of surface runoff 2016 using fractional maps 

derived from Spectral Unmixing 
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5.3.2 Annual surface runoff distribution 

The annual surface runoff maps from these two methods were derived by summing the 

monthly surface runoff maps over the 12-month period for 2016. 

a. WetSpass using land-use map and default land cover fractions 

Figure 5.6 – (a) presents the spatial distribution of annual surface runoff across the 

study area. As the figure shows, the highest amount of annual surface runoff is 

associated with the open water areas like Torren River, Hope Valley Reservoir and Port 

Adelaide River. These annual surface runoff values range between 363.4 and 616 mm 

per pixel. In the inland areas, the highest annual surface runoff value is allocated in the 

red colour and is found in South-Eastern Adelaide (Figure 5.6 – b). These red coloured 

areas have annual surface runoff ranging between 282.2 and 363.3 mm per pixel and 

are typically roads and commercial areas as defined in the land-use map. Three 

categories of the highest annual surface runoff value in Figure 5.6 are located in open 

water areas and they are not marked. 
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(a)     (b) 

Figure 5.6. Annual surface runoff 2016 using land-use map: a) – The whole study 

area; b) – The highest annual runoff in the inland area (red colour) 

The two lowest surface runoff value ranges are from 24.8 to 68.8 mm and 68.9 to 112.9 

mm and are mainly distributed in the Northern part of the study area. The two lowest 

value ranges (yellow and green colour) mostly lie over open reserves, vacant lands, 

public institutions, golf courses and along some rivers and creeks where vegetation and 

grass are predominant (Figure 5.7).  



74 

 

 

Figure 5.7. The lowest values of annual surface runoff  

b. WetSpass using fractional maps from Spectral Unmixing Analysis 

Figure 5.8 illustrates the spatial distribution (Figure 5.8 – a) and the highest annual 

surface runoff values over study area (distinguished by the red colour in Figure 5.8 – 

b). Overall, the higher values of surface runoff are distributed fairly evenly over the 

congested areas where impervious surfaces are predominant, such as buildings and 

commercial areas. The lower values are mainly found in the Northern areas and in some 

parts of the South-West of the study area. 

In Figure 5.8 – b, the highest range of surface runoff values range between 558.2 and 

687.6 mm per pixel and are represented with the colour red. The majority are found in 

some parts of the Torrens River and over the Hope Valley Reservoir and the high 

density buildings and houses such as in the CBD, the area near the Maid Hotel, 
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surrounding the Good Guys at Mile End and PETstock Melrose Park along with Harvey 

Norman at Gepps Cross. 

 

(a)       (b) 

Figure 5.8. Annual surface runoff 2016 using fractional maps of Spectral Unmixing 

Analysis: a) – For the whole study area, b) – The highest annual runoff across the 

study area 

Figure 5.9 presents the two lowest ranges of annual runoff surface values resulting from 

using the fractional maps (portrayed in the yellow and green colour). These values are 

primarily distributed over the areas where vegetation and grass are predominant. Those 

areas include most of Torrens Island, the large area of vegetation surrounding Torrens 

Island, some areas in the Northern and South-Eastern Adelaide, along rivers and creeks 

and in recreation areas. 
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Figure 5.9. The lowest values of annual surface runoff resulting from Spectral 

Unmixing Analysis 
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Chapter 6 - Discussion 

6.1 General findings 

6.1.1 Spectral Unmixing Analysis 

To assess the reliability of fractional maps resulting from Spectral Unmixing Analysis, 

the Zonal Statistics as Table tool in ArcGIS was used to statistically test the land cover 

fractions of vegetation, bare soil, impervious surfaces and open water against known 

impervious land-use types. The two land-use categories of ‘Commercial and Road’ and 

‘Industry’ were chosen for this test as they are dominated by impervious surface areas 

such as buildings, car parks and roads. Therefore, it is expected that the mean value of 

impervious surface fractions within these two land-use categories would be greater than 

that of vegetation and bare soil. 

After implementing the Zonal Statistics tool in ArcGIS, the mean values of endmembers 

covering each land-use category were calculated and are illustrated in Figure 6.1. 

  

Figure 6.1. Proportions of vegetation, bare soil and impervious surfaces covering each 

‘impervious’ land-use type 
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As Figure 6.1 shows, impervious surfaces predominates the Commercial and Road 

category with the proportion of 52%. The contributions of vegetation and bare soil are 

much lower at 20% and 28% respectively. In terms of the Industry category, impervious 

surfaces and bare soil equally contribute to land-cover proportion with 42% for each; 

the percentage of vegetation in this category is 15%. Thus, the results of Spectral 

Unmixing Analysis are reasonable and reliable. 

6.1.2 Spatial distribution Surface runoff volume 

Surface runoff distribution is affected considerably by soil types in both the WetSpass 

predifiend/default land cover fractions and Spectral Unmixing dervied land cover 

fractions. It can be clearly recognized in the months that have higher rainfall, such as in 

May, June, July, and August, that loamy sand seems to allow more infiltration according 

to the WetSpass model, while clay likely prevents more water running into the ground 

(Figure 6.2).  

 

Figure 6.2. Surface runoff distribution and soil types in the study area in July, 2016 

(surface runoff map + soil map + overlayed soil map and surface runoff map) 
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The WetSpass model uses land-use data in calculating the water balance, including 

surface runoff. This land-use data contains different descrete land-use catagories 

separated by boundaries where each catagory defines a unique land use type (Koomen 

et al. 2011). However, one descrete land-use type might hold many different land cover 

types. For example, an educational land-use category may contain buildings, paths, 

lakes and vegetated areas. These features or land cover types may occupy different 

proportions within the area of a single pixel location and thus is a mixed pixel. A single 

land-use catagory usually consists of many contiguous pixels consisting of both  pure 

and mixed pixels of varying land cover types. The WetSpass model typically assumes 

fixed proportions of land cover fractions for each land-use type. This means that every 

pixel within the boundary of a land-use type has the same proportions of vegetation, 

bare soil, impervious surfaces and open water. This only partley addresses the mixed 

pixel problem. As the results show, the surface runoff volume of each pixel in one land-

use type, where it has the same soil type and rainfall, tends to have the same value. 

For instance, in Figure 6.3 an area near the Adelaide Airport is defined as a golf course 

in the land-use map with the area being around 85 hectares. It consistis of approximately 

944 pixels (the cell size is 30 meters). The fractions that WetSpass assigns for each pixel 

in that land-use type are 1, 0, 0 and 0 for vegetation (it is grass in this case), bare soil, 

impervious surfaces and water respectively. This means that only vegetation covers the 

golf course. However, in reality, each pixel in that area includes a different mixed 

proportion of vegetation, soil and impervious surface. Therefore, using the land-use 

map with default LC fractions in WetSpass may overestimate or underestimate surface 
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runoff volumes in some areas, especially in areas having mixed pixels with different 

contributions of vegetation, bare soil, impervious surfaces and open water. 

 

Figure 6.3. Mixed vegetation, soil and impervious surfaces in one land-use type 

Conversely, Spectral Unmixing Analysis attempts to map the actual variation in land 

cover composition in each pixel. Because the mapped proportions of vegetation, bare 

soil, impervious surface and open water contributing to one pixel varies based on the 

reflectance spectrum of each endmember, the surface runoff volume also varies within 

each land-use category and across the study area. The approach lends itself to both 

homogeneous and heterogeneous landscapes. In homogeneous areas the surface runoff 

volumes are similar where the fractional proportions of land cover types are consistent 

with adjacent pixels derived from consistently similar spectral reflectance curves 

between pixels (Small 2004). Therefore, the proportions of vegetation, bare soil, 
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impervious surfaces and open water are similar to adjacent pixels in those areas (Figure 

6.4).  

 

Figure 6.4. Homogeneous pixels in surface runoff map of July and the corresponding 

land cover 

On the other hand, in heterogeneous areas like residential and commercial areas, the 

fractional contributions of the four endmembers in each adjacent pixel varies based on 

the complexity of these areas (Shimabukuro, YE & Smith 1991). Consequently, the 

amount of estimated surface runoff for each pixel will also vary (Figure 6.5).  
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Figure 6.5. Heterogeneous pixels in surface runoff map of July and the corresponding 

land cover 

6.1.3 Comparisons between two approaches 

a. At the monthly level 

As the discussion above shows, the results of WetSpass model using the land-use map 

with predefined/default LC fractions is likely to under or overestimate surface runoff 

volumes in some areas where complex and differing land cover types exist. In contrast, 

the results when using Spectral Unmixing of land cover types with the WetSpass model 

are likely to be more reliable. By using a Spectral Unmixing approach, the variation of 

vegetated, bare soil, impervious and open water proportions across heterogeneous areas 

in the urban environment can be better estimated as they are more indicative of the 

actual land cover composition in these areas. Therefore, the ‘classic’ remote sensing 
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problem of mixed pixels is solved. However, to gain more confidence in determining 

which approach is more accurate requires validation of the results by using statistics 

and comparing the results with previous studies in the Adelaide metropolitan area. 

Figure 6.6 shows the surface runoff results in a heterogeneous area of two approaches 

used in this research. WetSpass using land-use data underestimates the amount of 

surface runoff while Spectral Unmixing method coupled with WetSpass can determine 

the difference in surface runoff volume in this area. This is reasonable because Spectral 

Unmixing method not only can solve mixed pixel problems, but also reveals the relation 

between impervious surfaces and the amount of surface runoff as reviewed in the 

section Impervious surfaces and surface runoff’. Because the study area is the urban 

environment and it is predominated by the mixture of land cover types, the results of 

monthly surface runoff derived from WetSpass using land-use data are probably 

underestimated.  
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Figure 6.6. Surface runoff in a heterogeneous area resulting from the two approaches 

In addition, Figure 6.7 shows the mean value of monthly surface runoff in 2016 using 

both the default and derived LC fractions in the WetSpass model. Overall, the surface 

runoff volume in every month from the Spectral Unmixing approach is higher than that 

using the land-use map and default LC fractions in the WetSpass model. The highest 

difference between the mean surface runoff values of the two methods are in the months 

having the highest rainfall intensity such as in May, June and July.  
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Figure 6.7. Mean values of monthly surface runoff resulting from using land-use map 

and fractional maps from Spectral Unmixing Analysis in 2016 

b. At the annual level 

The mean value of annual surface runoff derived using the land-use map and default 

LC fractions in WetSpass is considerably smaller than that of the derived LC fractions 

derived using Spectral Unmixing, which are 194.94 and 232.10 mm respectively. As 

discussed above in the monthly level of spatial surface runoff distribution, monthly 

surface runoff is likely to be underestimated using the land-use map and default LC 

fractions in WetSpass . Consequently, the annual surface runoff volume resulting from 

the sum of monthly runoff volumes is also likely to be underestimated. 
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Figure 6.8. Differences between annual surface runoff of WetSpass using Spectral 

Unmixing Analysis and Land-use data 

Figure 6.8 illustrates the results of annual surface runoff of WetSpass using derived LC 

fractions from the Spectral Unmixing method minus the annual surface runoff of 

WetSpass using land-use maps and default fractions. Generally, there are some 

significant differences between two results. 

Firstly, there are some large red areas which are salt fields in the North-East of the study 

area. Those areas show significantly higher values using derived fractions from the 

Spectral Unmixing method in WetSpass and remarkably low values using land-use and 
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default LC fractions in WetSpass. This issue can be explained as follows: The Landsat 

8 surface reflectance image acquired on 07 January 2016 was used for conducting the 

supervised classification. At that time, those salt fields contained water and they were 

recorded on the satellite image (the red circle in Figure 6.9). The classification 

identified these areas as open water in the derived land cover map. This open water 

class in classification map was extracted and directly used as the fractional map of open 

water in WetSpass with the value of ‘1’ for the presence of open water and ‘0’ for the 

absence of water on the derived map (Figure 5.3). However, these same areas on the 

land-use map are categorised as mine-quarry (the percentage of bare soil is 100%, 

percentage of others is zero), industry (the percentage of vegetation and impervious 

surface is 40% and 60% respectively, percentage of others is zero), and agricultural land 

(percentage of vegetation and bare soil is 20% and 80% respectively, percentage of 

others is zero). Due to the difference in features that cover these areas, this leads to the 

significant difference in surface runoff results between methods. 
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Figure 6.9. Open water and mixed water-vegetation-bare soil areas marked on 

Landsat 8 Reflectance Image 

Furthermore, the dark green region in Figure 6.8 shows considerably lower values of 

surface runoff resulting from WetSpass using the derived LC fractions from the Spectral 

Unmixing method and significantly higher values when using the land-use map and 

default LC fractions. As recorded on the Landsat image, these areas are a mixture of 

water, vegetation and bare soil (the yellow circle in Figure 6.9). However, those areas 

in land-use map are river. This leads to result in high values of surface runoff results 

when using land-use map while the values of those areas are lower when using 

fractional maps. 

Finally, observed differences between surface runoff results between the two 

approaches is scattered throughout the study area, while notably more concentrated in 

more heterogeneous areas where natural variation in land cover composition occurs, 

such as across the residential, commercial and CBD areas. This is explained by the 
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likely underestimation of surface runoff volumes in some urban environments when the 

land-use map and default LC fractions are used in the WetSpass model, as discussed 

above. Otherwise, the yellow colour in Figure 6.8 demonstrates that surface runoff 

values between the two methods are much closer together. 

With the discussion above, the results of Wetspass model using derived LC fractions 

from Spectral Unmixing are arguably more reasonable and more reliable than using the 

land-use map and default LC fractions in this research. The Spectral Unmixing results 

better reflect the abundance of vegetation, bare soil and impervious surfaces in 

heterogeneous environments like urban areas. Therefore, if land cover fractions can be 

accurately derived using Spectral Unmixing Analysis, these derived parameters 

(fractions) should replace the land-use map and default fractions in the WetSpass model. 

6.1.4 Areas vulnerable to surface runoff and flooding 

‘Surface runoff’ is water that flows over a land surface before accumulating in a 

channel, while ‘flooding’ typically occurs when the water volume exceeds the capacity 

of the channel and overflows into and beyond the flood plain. There are different factors 

affecting flooding in a catchment, such as rainfall; river characteristics, including size 

and nature of the river; vegetation in and around the river; downstream water levels; 

and stormwater drainage (The Queensland Government 2011). Identifying areas 

vulnerable to flooding requires research on all these causative factors relevant to each 

individual catchment before mitigation efforts can be applied to these areas throughout 

the Adelaide metropolitan area. In this study, only surface runoff is considered and 

vulnerability to ‘flooding’ from surface runoff largely ignores these causative factors. 

This might seem subjective, however, it is meaningful for urban areas where rainfall 
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intensity is high, the drainage system is in poor condition or is absent in areas where 

urban development is unplanned, as is the case in Hanoi and Ho Chi Minh City in 

Vietnam. The areas vulnerable to surface runoff flooding in Adelaide are shown in 

Figure 6.10 and are based on high amounts of surface runoff determined by the 

WetSpass model using derived LC fractions from Spectral Unmixing Analysis. As 

Figure 6.10 presents, the areas vulnerable to flooding have a high amount of surface 

runoff, such as the South-West of the City of Norwood Payneham and St Peter, the 

CBD area, the East of Marion adjacent to the West of Mitcham, the South-East of the 

City of West Torrens and the North of Charles Sturt adjacent to Port Adelaide Enfield. 

Notably, there is no evidence that flooding has occurred in these areas due to surface 

runoff. Importantly, though these areas are identified in this study as being vulnerable 

to surface runoff (Figure 28) based on the LC parameters used and the assumption there 

is no suitable stormwater infrastructure to manage surface runoff; despite no assessment 

of the later in this study. Consequently, this analysis, while valid for the Adelaide urban 

environs, lends itself more to developing countries where urban development is 

uncontrolled and stormwater infrastructure is poorly planned or non-existent potentially 

leading to greater surface runoff vulnerability. 
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Figure 6.10. Areas vulnerable to flooding based on surface runoff volume 

6.2 Limitations 

The primary limitation of this study’s mythological approach is the reliance on specific 

spatial and environmental data necessary for the WetSpass model, which may not be 

available.  This study initially planned to investigate surface runoff vulnerability in Ho 

Chi Minh City, Vietnam, (the author’s home country) where flooding often occurs due 

to the high intensity of rainfall, high level of tides, and poor condition of drainage 

systems. Substantial progress was made to access and ‘create’ the necessary data for Ho 

Chi Minh City, however, its availability was limited and of much lower accuracy. Field 
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work would be required to improve the quality of data, which was not an option. While, 

discrete or fractional Land cover maps are typical products derived from remotely 

sensed imagery globally, land-use is a more challenging and time consuming product 

to acquire. Moreover, access to other spatial and environmental data necessary for the 

WetSpass model can be difficult, such as soil maps, elevation, groundwater depth, 

temperature, rainfall, wind and evapotranspiration. Access to data often requires a 

highly developed and rigorous data capture campaign sanctioned by the state and driven 

by a sophisticated spatial infrastructure industry.  Accordingly, the study was changed 

to the Adelaide metropolitan area resulting in a more restrictive timeframe for 

completion, but where high quality data was available. Thus as indicated in the last 

section, it’s unfortunate that the results from this method may best serve developing 

countries but where the necessary input data may not be readily available. 

When conducting Spectral Unmixing Analysis, resulting composition of LC fractions 

that accurately sum to one (and are non-negative) require suitably accurate candidate 

endmember signatures as input to the linear unmixing algorithm.  In this study, the 

purest endmember signatures were subjectively collected from training locations 

throughout Adelaide with the help of high resolution Google Earth imagery.  While the 

resulting fraction images produced good results in this study, a more objective approach 

to signature suitability is to use ENVI’s Pixel Purity Index (PPI), which arguably could 

improve the accuracy of the final LC fraction images prior to input to WetSpass.  The 

PPI method uses thousands of random unit vectors (skewers) projected through the 

multispectral ‘data cloud’ where pixels found to be ‘extreme’ or at the edges of the data 

cloud are more spectrally pure and thus more representative of the endmember features 
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(land cover types) to be mapped. Furthermore, the results of endmember abundance 

(fraction images) are not validated due to the limited time of conducting the thesis. The 

validation for Spectral Unmixing Analysis results can be implemented by two methods, 

field investigation or lab-processing. In terms of a field investigation method, random 

validation locations in the study area are chosen to measure the proportions of 

vegetation, bare soil and impervious surfaces using field sampling measurements. Each 

location (quadrat) should have an area of 90x90 meters (8,100 m2) taking account of 

the geometric accuracy of the Landsat imagery of +/- one pixel for a spatial resolution 

of 30m. Coordinates of the four corners of the quadrat need to be recorded to adequately 

identify the field location in the image. The accuracy of unmixing results is determined 

by comparing (through correlation) the measured percentage of land cover (for each 

endmember) at each field location with the endmember proportions (fractions) at 

corresponding locations derived by the unmixing process. The lab-processing method 

aims to achieve the same objective comparison but high resolution imagery is used as a 

surrogate for field validation sites.  

Finally, input data such as rainfall and temperature can be improved in accuracy by 

exploring the raw data before applying interpolators. A suitable interpolator can be 

determined by exploring the distribution of values in the raw data. In addition, research 

by Saveliev et al. (1998) indicates that rainfall and the natural terrain have a strong 

correlation. Therefore, this relationship should be considered and suitably analysed.  
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Chapter 7 - Conclusion 

This study has illustrated the application of Spectral Unmixing of Landsat imagery 

coupling with the hydrological model WetSpass in surface runoff estimation. In 

consideration of the research aim, the study modelled monthly and annually spatial 

distribution of potential surface runoff. In doing so the annual surface runoff resulting 

from the WetSpass model, derived using derived LC fractions from Spectral Unmixing 

Analysis, was used to identify areas vulnerable to surface runoff flooding over 

metropolitan Adelaide. Vulnerability in this context is determined using surface runoff 

volume. Importantly, to achieve the aim, the study collected and produced the input data 

for the WetSpass model including land-use, elevation, slope, soil types, rainfall, 

temperature, wind, potential evapotranspiration and groundwater depth using GIS 

methods. Notably, this research investigated the application of Spectral Unmixing 

Analysis of multispectral Landsat imagery to produce land cover fractions as input 

parameters to replace the default land cover proportions assigned to the land-use 

categories in the WetSpass model. Furthermore, the spatial distribution of surface 

runoff over 12 months in 2016 was mapped. The result of both methods, WetSpass 

using land-use and default LC data and using Spectral Unmixing Analysis, indicates 

higher volumes of surface runoff in the months having higher rainfall intensity. In the 

results shown using the land-use and default fractions, the volume of monthly surface 

runoff is likely to be similar in adjacent pixels where they have the same soil type, land-

use and rainfall. In contrast, the results shown using the derived LC fractions vary 

depending on the contribution of vegetation, bare soil, impervious surfaces and open 
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water in those pixels. The mean values of the latter method are greater than that of the 

former in every month and over the whole year. 

Regarding the research questions, the research findings show that fractional maps 

resulting from Spectral Unmixing of Landsat imagery can represent better parameters 

for WetSpass model in estimating surface runoff instead of using the land-use map and 

default LC proportions. The results from the method using land-use are likely 

underestimated in the Adelaide metropolitan area due to the heterogeneous landscape, 

while the results from the method using Spectral Unmixing Analysis are likely more 

reliable. Furthermore, by conducting the test of measuring the proportions of vegetation, 

impervious surfaces and bare soil in the fractional maps within the boundaries of 

Commercial and Road, and Industry land-use types, the statistics show that the results 

of Spectral Unmixing Analysis are reasonable and reliable. The outcomes of WetSpass 

using Spectral Unmixing Analysis are better than that using land-use alone in this study. 

In addition, this study also indicates some areas vulnerable to surface runoff flooding 

in the metropolitan Adelaide based on high volumes of surface runoff. 

The outcomes of this study are necessary for prioritised flooding mitigation measures 

based on the current status of the areas vulnerable to surface runoff. This also indicates 

that using remote sensing and GIS method in deriving data as the input data for a 

hydrological model can achieve a better result. Spectral Unmixing results are also 

meaningful in understanding urban environment. 

Lastly, there are some limitations in this research. The Pure Pixel Index should be 

applied with Landsat image data before conducting endmember selection to help 
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achieve a better result. The land cover fractional maps resulting from Spectral Unmixing 

Analysis also need to be validated and the raw data such as rainfall, temperature and 

groundwater depth need further investigation in order to identify a potentially better 

interpolation method for raster surface generation.  

Recommendations 

As discussed in the Literature review section, impervious surfaces significantly affect 

surface runoff volume. In areas where the necessary data required for the WetSpass 

model is limited or of low accuracy, alternative approaches could be used to ‘indicate’ 

potential vulnerable areas to surface runoff. The Normalized Difference Built-up Index 

(NDBI) is sensitive to impervious surfaces, which are characteristic of urban 

environments. Thus while the NDBI is a quantitative index, where higher index values 

indicate the presence of more impervious surfaces, it does not provide surface runoff 

volumes.  However, there is likely to be a correlation between the two and thus could 

be used as a surrogate assessment of surface runoff vulnerability where the index is 

easly derived using globally available data sets, for example, Landsat imagery. 

Furthermore, the Normalized Difference Vegetation Index (NDVI) also measures the 

presence of green vegetation. Therefore, future research should also consider how 

NDBI and NDVI can be used as the parameters for impervious surfaces and vegetation 

that vary over a landscape in a hydrological model. 

In future research, it is also advisable to apply the WetSpass model to specific 

catchments separately. Research on flooding in a catchment can help to achieve more 

understanding of local conditions and causative factors before applying the research to 
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a wider area. The research also should be done in a temporal scale to investigate changes 

of impervious surfaces and runoff potential over time. Notably, changes in NDBI and 

NDVI results over time may play a role and could be used to help predict the trend of 

surface runoff changes. Importantly, this study demonstrates that if the appropriate data 

is available, WetSpass provides modelled surface runoff volumes over time and to 

highlight areas vulnerable to surface runoff and flooding. 
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