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Abstract

Joint replacement is a highly successful and frequent surgical intervention. It can
improve function and reduce pain in patients with end-stage arthritis of the joints.
However, there is a wide variation in the outcome of prostheses/devices used in
primary total hip replacements (THRs) and primary total knee replacements (TKRS).
Joint replacement registries have significant roles in assessing the comparative
performance of devices. The Australian Orthopaedic Association National Joint
Replacement Registry (AOANJRR) has established a standardised multi-stage
approach for identifying prostheses with a higher than anticipated revision rate, also
referred to as ‘outliers’. The AOANJRR standard compares the revision rate of
prostheses to the average revision rate of all other prostheses that belong to the same
broad device class—comparator. However, as changes are made in the design and
performance of devices over time, the hip and knee comparator classes need to be
re-evaluated. This study first aimed to explore how the rate of revision estimated in the
comparator groups differs according to specific prosthesis design constructs. The
cumulative percent revision (CPR) was calculated for 413,417 primary THR and
640,045 TKR undertaken for osteoarthritis from 1S January 2003 to 315t December
2019. The final hip comparator, which only includes satisfactory-performed prostheses
of contemporary design and use, had a 10-year CPR of 4.30% (4.2, 4.41) which is
lower than the current THR comparator used by the AOANJRR of 4.93% (4.84, 5.02).
Using a comparator that only includes contemporary devices with modern bearings
and excludes special devices used in more complex primary procedures has the
potential to improve the early assessment of modern primary total hip prostheses
sensitively. The AOANJRR standard detected 13 additional total conventional hip
components utilizing the modified comparator. The final comparator group for
conventional TKRs, which only includes the Cruciate Retaining and Posterior
Stabilised designs, indicated a 10-year CPR of 5.2% (5.1, 5.3). Moreover, a
comparator group of complex knee devices with 10.3% (8.6, 12.0) 10-year CPR was
explored to reflect devices used only for specific purposes in primary TKR. The use of
modified knee comparator groups led to identifying additional conventional knee
prostheses but fewer complex knee designs as being at risk. The AOANJRR currently
recommends the modern comparator groups for the early assessment of primary total

hip and knee prostheses. Ideally, early identification of outliers uses a time-to-event



outcome while reducing the confounding effects of other components in the device
and patient characteristics. Machine learning (ML), which contains self-learning
algorithms, is one approach to consider many variables simultaneously to reduce the
impact of confounding. Another principal objective of this study was to compare the
effectiveness of using either Random  Survival Forest (RSF) or
regularized/unregularized Cox regression to account for patient and associated device
confounding factors to current standard techniques. The effectiveness of the ML
approaches was assessed based on the ability to detect the outliers identified by the
AOANJRR standardised approach, where the standard identified ten individual THR
prostheses and five TKR prosthesis combinations. The ML approaches identified
some but not all the outliers detected by the AOANJRR in the study cohort. Both the
methods identified three of the same THR prostheses, and the RSF identified the other
five of the detected THR components. In primary TKR, both feature selection
techniques identified two of the same total knee prostheses, and Cox detected one
additional prosthesis as at higher risk of revision. In addition, both the RSF and Cox
techniques detected a number of additional device components that were not
previously identified by the standard approach. The results showed ML might be able
to offer a supplementary approach to enhance the early identification of outlier
devices. RSF was a more comparable feature selection technique to the AOANJRR
standard. Further studies are required to better understand the potential of ML to

improve the early identification of outliers.
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Introduction

Total joint replacement surgery is commonly performed on patients with severe joint
osteoarthritis (OA). However, there are concerns about prostheses being at increased
risk of failure. The early identification of these prostheses can be a challenge because
of the many distinct components available, and it is a complicated process to estimate
their performance in the presence of prosthesis-, patient- and surgeon-related
confounders. In orthopedics, joint registries (JRs) collect and record data of joint
replacements to observe the survival rate of prostheses. The Australian Orthopaedic
Association National Joint Replacement Registry (AOANJRR) dataset shows that
most prostheses have comparable outcomes, although some have a higher-than-
expected revision rate (called outliers). Machine Learning (ML)-based models are
increasingly being used in the medical field to identify risk factors and possible
outcomes. In orthopedics, ML methods can play a role in detecting components that
are at an increased risk of failure and can be a useful tool for the initial screening of
prosthesis components. First, the aim of this study was to improve the sensitivity of
conventional analyses by identifying modified comparator groups to detect outliers as
early as possible and with a high confidence level. The second aim was to evaluate
the ability of feature selection techniques to identify outlier prostheses based on the
historical data. It is anticipated that the findings of this research in regard to statistical
techniques and the identification of outlier prostheses will be a significant step toward
reducing the risk of using poor-performing prostheses implanted in large numbers of

patients around the world.

Chapter 1: A comprehensive literature review of the previous research on total hip
replacement (THR) and total knee replacement (TKR) is provided. This includes
sections on the causation, outcome, reason for revision, and recent advances made
in hip and knee replacements. We also review the studies on the potential risk factors
and the role of joint registries in monitoring the performance of prostheses. The review
reveals a need to examine novel statistical methodologies to improve the outlier

identification process by JRs.

Chapter 2: This chapter reviews the use of supervised ML techniques in regression,
classification and survival problems associated with the post-operative outcomes of
THR and TKR. The different types of ML techniques such as Random Forest, SVM,

Xi



Naive Bayes, and Deep Learning were reviewed, focusing on the data source,
domains, limitations, and the quality of reported outcomes. The literature shows that
ML adoption for post-operative THR and TKR is still in the emergent phase, offering

opportunities for ML-based research studies in this area.

Chapter 3: The chapter includes an investigation of a number of different comparator
options to provide a more relevant standard for comparing the performance of new hip
devices. Subsequently, the current comparator was upgraded to adequately reflect
contemporary practices and avoid an overestimation of the revision rate. The
AOANJRR standard detected 13 additional device components utilizing the modified
comparator. The registry currently recommends the modern comparator for early

assessment of total hip prostheses.

Chapter 4: The use of ML methods (random survival Forest (RSF) and
regularised/unregularized Cox regression) was evaluated for surveillance of total hip
arthroplasty components. Their effectiveness was determined based on their ability to
detect the same hip outliers identified by the AOANJRR standard using the comparator
developed in chapter three. Both the RSF and Cox techniques detected a humber of
additional device components not found through the standardised approach, and RSF
was a more comparable feature selection technique to the AOANJRR standard.
Machine Learning might be able to offer a supplementary approach to improve the

early identification of outlier devices.

Chapter 5: Given the higher revision risk of complex knee designs in primary total knee
surgeries, this chapter was designed to identify more relevant comparator groups to
better reflect conventional and complex surgical practices. Conventional designs
include cruciate retaining (CR) and posterior stabilised (PS), and the knee designs
used in more complex surgery include fully stabilised (FS) and hinged designs. The
CR and PS groups were combined to produce the final conventional comparator. In
addition, the FS and hinged designs were combined as a comparator group of complex
devices. The use of modified comparator groups led to the identification of additional

conventional prostheses but fewer complex designs as being at risk.

Chapter 6: The chapter assessed the ability of the algorithms developed in chapter
four to identify total knee outliers among 160 unique prosthesis combinations. These

outliers were detected using the modified comparator groups defined in the previous



chapter. The two-step Cox yielded outcomes similar to those of the RSF but had
significant advantages in terms of the number of prostheses identified, computational
time, interpretation of variable importance, and reduction of confounding effects. Cox
modelling is a more conventional method of selecting significant variables and
documenting the confounding. Further studies are required to better understand the
potential of ML to improve the early identification of outliers.

Chapter 7: This chapter includes further investigations of the outlier prostheses similar
to those identified by all the statistical approaches in terms of clinically-known
confounding factors. The impact of design- and patient-related variables was
examined closely to determine the factors contributing to the poor performance of
outlier prostheses. There were significant differences in the survival outcomes of the
identified prostheses in terms of bearing surface and fixation method.

Chapters 8 discusses the main findings and limitations, and chapter 9 provides

conclusion remarks and recommendations for future research.
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Chapter 1. Literature Review on Hip and Knee

Replacement



1.1 Overview

Total hip replacement (THR) is more likely than any other elective surgical
procedure to improve a patient’s quality of life [1]. Implant technology has continuously
advanced since the pioneering work of Wiles [2], Charnley, and others in the mid-20th
century [3]. Nowadays, over 95% of artificial hip joints last longer than 10 years, far
longer than predicted by Charnley. Total knee replacement (TKR) surgery has been
performed consistently for more than 40 years, and its popularity worldwide is
increasing [4]. It has had proven success in reducing pain and improving the long-term
knee function in people with arthritis. However, some patients are unhappy with the
results of their hip and/or knee surgery; hence, this field has been the focus of research
and development. On one hand, the medical device industry continues to develop new
implants and supporting technology, although more rigorous evidence is still needed
to justify their products. On the other hand, enhanced rehabilitation programmes are

becoming more common, given their potential to improve patient outcomes.

1.2 Causation

In Australia, Osteoarthritis (OA) is the leading cause of medical issues that
ultimately require total hip and/or knee replacements, accounting for 88.2% and 97.7%
of primary total procedures in 2020, respectively [5]. Osteoarthritis is caused by a
combination of biochemical and mechanical processes that are influenced by
hereditary and environmental variables [6]. Age, gender, trauma, and joint morphology
are all important patient-specific risk factors. Femoroacetabular impingement is
becoming more widely recognised as a cause of hip pain [7]. For unknown reasons,
the relationship between obesity and hip OA is substantially weaker than obesity and
knee OA [8]. Moreover, there is no convincing evidence that there is a link between
OA and diet. As the world's population ages, the prevalence of OA is expected to rise.
In Australia, the mean age of patients requiring primary THR for all diagnoses is 67.7
years and 68.5 years for the knee. Primary total hip and knee replacement for all

diagnoses are more common in women than men [5].

1.3 Assessment of Outcome

Kaplan-Meier survival analysis with revision surgery as the endpoint is the most

common method for evaluating hip and knee surgery outcomes. A revision occurs
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when one or more components of a prosthetic hip or knee are replaced. The revision
treatment is recommended only when serious symptoms, such as pain or fracture,
appear or are expected [5]. This is because a revision can result in major complications

and poorer functional outcomes than first hip or knee surgery.

Joint replacement registries are valuable sources for measuring the rate of implant
revision. Since the establishment of the first hip arthroplasty registry in Sweden, it has
been successful in identifying devices with significant failure rates [9]. The
International Society of Arthroplasty Registries (ISAR) now includes members from
arround 25 nations, indicating that geographic coverage has gradually expanded. In
Australia, since 1999, the registry has reported an overall 19-year implant survival of
89.4% (95% ClI, 92.6-92.9) for 421,141 primary total conventional hip replacements
(excluding resurfacing procedures) and 91% for 699,283 primary total knee for OA
[10].

The collection of additional data enables comparisons to be made regarding the
effects of patient, procedure, hospital, and surgeon variables. Currently, the outcomes
of revision procedures performed by individual surgeons are not being documented. It
should be highlighted that revision surgery as the sole measure of success has limits
because patients can experience problems, discomfort, or poor function without
undergoing a revision. Patient-reported outcome scores are used alongside with
survival outcomes to better reflect pain, function, quality of life, and satisfaction after
joint replacements. The Oxford Hip Score which measures pain and functional status,
and the EuroQol five-domain score that analyses the quality of life, are two patient-
reported outcomes that are now regularly recorded for hip surgery [11, 12].

Although only a few of these approaches have been assessed for reliability, validity,
and responsiveness, there has been a significant increase in the number of knee
instruments and rating scales developed to measure outcomes from the patient’s
perspective. The Western Ontario and McMaster Universities Osteoarthritis
(WOMAC), the Knee Injury and Osteoarthritis Outcome Score, and the Oxford Knee
Score (OKS) were all frequently utilised in a recent systematic review [13]. However,
because age and comorbidities influence patient-reported outcomes, it is impossible

to have a universal threshold as a discriminator of success [14].



Joint replacement places a significant cost load on healthcare systems. For
example, the annual cost of hip replacement in the United States exceeds $15 billion
[15]. Hip replacement costs between $1,500 and $10,402 per quality-adjusted life year
(QALY) gained [16, 17]. This figure is significantly lower than the £20000—-30000 per
QALY benchmark set by the National Institute for Health and Care Excellence (NICE)
to guide cost-effectiveness assessments of novel technologies [18].

Total joint replacement surgery for the hips and knees is the most common inpatient
operation for Medicare recipients, and the recovery time can be lengthy. However,
data suggests that in the long run, arthroplasty saves money on healthcare. The
healthcare costs for a patient with a hip or knee replacement are lower than those for
a patient who does not have either prosthesis [19]. For patients with a reasonable life
expectancy, a hip and/or knee replacement can be a cost-effective procedure.

1.4 Reasons for Revision

As indicated in Table 1.1, aseptic loosening is the most common reason for revision,
accounting for 24.2% of all revisions of primary total conventional hip surgeries
reported by the Australian Orthopaedic Association National Joint Replacement
Registry (AOANJRR); this is followed by fracture (21.1%), prosthesis dislocation
(20.3%), and infection (18.6%) [5].Wear of the bearing surfaces, which produces
particle debris inside the enough joint space, is the most common cause of aseptic
loosening. In registry records, the incidence of fretting and corrosion is definitely
understated. Pain [20], infection [21, 22], and aseptic loosening of implants [23-27]
can all be caused by the products of corrosion and particles of debris. Dislocations
affect 0.2-10% of patients after hip replacement, with 77% of them occurring within
the first year [28].
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Table 1. 1. Primary total conventional hip for OA by reason for revision [5].

Reason for revision Number Percent
Loosening 3958 24.2
Fracture 3447 21.1
Prosthesis Dislocation 3329 20.3
Infection 3038 18.6
Lysis 357 2.2
Pain 322 2.0
Leg Length Discrepancy 257 1.6
Malposition 234 1.4
Instability 221 1.4
Implant Breakage Stem 192 1.2
Implant Breakage Acetabular Insert 151 0.9
Wear Acetabular Insert 142 0.9
Metal Related Pathology 141 0.9
Incorrect Sizing 106 0.6
Implant Breakage Acetabular 100 0.6
Implant Breakage Head a7 0.3
Other 327 2.0
Total 16,369 100.0

The dislocation rate is influenced by patients’ age, muscle tone, failure to avoid
particular movements, surgical approach, and the size and positioning of components
[28]. Periprosthetic joint infection is a serious arthroplasty complication that can lead
to pain, loss of function, systemic illness, and even death. Within two years of surgery,
the frequency of such infection is 1-2% [29]. Biofilms are formed by microbes on
implant surfaces, which reduce antibiotic penetration [30]. The most common reasons
for revision vary depending on patient characteristics. Loosening is the most prevalent
reason necessitating revision procedures for both males and females under 75 years
of age, whereas fracture is the most common reason for revision in patients beyond

75 years of age [5].

Similar to the hip, aseptic loosening of the prosthesis is the most prevalent reason
for a primary knee replacement to be revised [31-34], accounting for 24.7% of all
revisions in Australia shown in Table 1.2 [5]. Implant wear is the most common cause
of loosening. Because the rate of wear is a function of both time and activity, it is most
concerning in young and energetic patients [35]. Infection is the second most common
reason for primary knee revisions [34, 36], accounting for 23.7% of all primary knee
revisions [5]. Although this dangerous outcome is frequently detected soon after

surgery, it can occur at any time following the surgery [37, 38].



Table 1. 2. Primary total knee for OA by reason for revision [5].

Reason for revision Number Percent

Loosening 6805 24.7
Infection 6539 23.7
Patellofemoral Pain 2519 9.1
Instability 2345 8.5
Pain 2250 8.2
Patella Erosion 1645 6.0
Arthrofibrosis 990 3.6
Fracture 860 3.1
Malalignment 592 21
Lysis 541 2.0

Wear Tibial Insert 521 1.9
Metal Related Pathology 354 1.3
Incorrect Sizing 295 1.1
Other 1324 4.8

Total 27,580 100.0

Other reasons for revisions are pain following surgery, particularly patellofemoral
pain, and instability which, along with loosening and infection, account for the majority
of the revisions [5, 33, 34]. Although all of these reasons for revision may be related
to the design or manufacture of implants, there are other factors that increase the
likelihood of revision. Preoperative diagnosis, patient characteristics, the surgical
procedure, the surgeon’s experience and expertise, the facilities in the operating

theatre, and postoperative care are other considerations [39].

According to a recent review of the New Zealand registry, early revision due to
infection increased and similar patterns have been documented in Sweden and
Australia. [5, 34, 40]. The rise in the number of patients with periprosthetic joint
infection in the hip and knee has been attributed in part to an increase in the number
of patients with diabetes or obesity or patients in younger age categories [41]. There
is a need to improve the diagnosis of periprosthetic joint infection, and more research
is also needed for better management [42]. The gathering of more relevant outcome
data, such as microbiological profiles, antimicrobial medication, and the general health
status of patients, is critical to this improvement, together with infection-specific

outcomes from registry survival findings [43].

1.5 Advances in Hip Practice

In England, adults aged 65 to 74 spend an average of 6.5 hours a week engaged
in physical activities [44]. There is a high demand for new hip implants, and the
development of devices that can better withstand wear at the bearing interface, the
femoral head and acetabular cup articulate, continues to be a major problem. In vivo,

the ideal bearing surface is chemically inert, wears slowly, produces non-immunogenic
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wear debris, and is robust enough to withstand fracture. Implants with metal-on-
polyethylene bearings, as well as ceramic-on-polyethylene and ceramic-on-ceramic
bearings, were used in the majority of surgeries in Australia, shown in Table 1.3 [5].
Because the softer polythene generated wear-related debris, early models of metal-
on-polyethylene bearings had a high failure rate at long follow-up times [5]. Current
highly cross-linked polythene (XLPE) is more durable than the earlier materials, and
the registry indicated no difference in mid-time revision rates for modern metal-on-

polyethylene, ceramic-on-polyethylene, and ceramic-on-ceramic bearings [5, 45].

Table 1. 3. Percent revision of primary total conventional hip for OA by bearing surface [5].

; N N
Bearing Surface - Total 1Yr 3Yrs 5Yrs 10 Yrs 15 Yrs 19 Yrs
Ceramic/Ceramic 3876 94733 | 15(L4,1.6) | 2.4(23, 25) 3.1(3.0,3.2) 5.0 (4.8, 5.1) 7.1(6.8, 7.4) 8.4 (7.9, 8.8)

Ce’i’:;fé”‘)" 582 7986 19(1.6,23) | 3.2(28 36) 3.8 (3.4, 4.3) 7.2(6.5,7.9) 11.8 (10.8,12.9) | 15.3(13.9, 16.7)
Ceramic/XLPE 2484 91245 | 1.7(16,18) | 2524 26) 3129 32) 43 (4.1, 4.6) 59 (5.4, 6.4) 75 (6.4, 8.8)
Ceramic/Metal 26 299 17(07,40) | 37 (21 656) 4.4 (26, 74) 8.4 (5.7, 12.3)
Metal/Metal>32mm 3415 14422 | 17(1519) | 57(53.61) | 118(112 12.3) | 225(218,232) | 285 (275, 295) | 32.2(29.1, 355)
Metal/Metal<32mm 211 5146 16(1320) | 33(29 38 4.4 39,50) 6.7 (6.0, 7.4) 9183, 10.0) 101 (9.4, 11.3)
Metal/Non XLPE 2821 35266 | 1.4(13 1.6) | 25(23 27) 35(33,37) 6562 6.7) 11.0 (106, 11.4) | 13.6 (13.0, 14.2)
Metal/XLPE 5792 165771 | 1.6(1.6,1.7) | 2.4 (2.3 25) 3.0(2.9,3.0) 2.6 (45,4.7) 6.3 (6.1, 6.6) 7.3 (6.9, 7.8)
Cermicised
MetalNon XLPE 50 297 17(0.7,40) | 38(2.16.7) 41(24,72) 12.5(8.9,17.3) | 20.7 (15.7,27.1)
Cermicised
Mot PE 724 25323 | 1.8(1.6,20) | 23(21,25) 2.6 (2.4, 2.9) 3.8(35 4.1) 5.5 (4.8, 6.3)
Total 20181 440487

Note. Excludes 213 procedures with unknown bearing surface, 1 procedure with ceramicised metal/ceramic
bearing surface, 8 procedures with metal/ceramic bearing surface.

With only minor changes evident in the rate of revisions, various criteria may help
surgeons determine which bearing to use. Although modern ceramic-on-ceramic
bearings are more expensive than others and sometimes produce a squeaking sound,
they do not have a higher risk of implant fracture compared to the previous, more brittle
version [46]. Because metal-on-metal prostheses have less linear wear on the surface
of the bearing compared with metal-on-polyethylene prostheses, they became popular
20 years ago. When registry data revealed the higher risk of metal-on-metal implants,
this implantation peaked in 2008, accounting for 21% of all prostheses [5]. However,
we know that cementless metal-on-metal THRs have a revision rate of more than 18%
at 10 years [47].

The ideal method of fixation in THR is still a subject of debate (Figure 1.1).
Cemented fixation has superior long-term performance and, it has a lower overall rate
of revision than cementless fixation after 14 years. Cemented fixation continues to
show excellent long-term revision rates and achieves a lower overall revision rate in
longer times than cementless fixation [5, 47, 48]. It has also been found that higher

failure rates of implants with cementless fixation indicate early fixation failure. Beyond

7



the first decade of implantation, however, cementless fixation may have lower revision
rates than cemented fixation [49]; This may result in a decreased revision rate in
patients under the age of 65 [50].

205 HR - adjusted for age and gender
= Cemented Cemented vs Hybrid
2% — Eig}“*gﬂe“ Entire Period: HR=1.09 (0.94, 1.26),p=0270
20% .
Cementless vs Hybrid

18% 0- 2Wk: HR=2.15 (183, 257)5<0.001
e 2Wk - Mth: HR=1.38 (1.23, 155)p<0.001
Thth - 1.5 HR=123 (1.15, 132)p<0.001
14% 15¥r+: HR=1.13 (107, 121)p<0001
12% Cementless vs Cemented
10% 0- 2Wk: HR=1.98 (1.60, 244) 5<0.001
2Wk - TMth; HR=1.27 (1.06, 152) p=0.009
Mth - 15V HR=113 (0.07, 132)p=0.106

8%

Cumulative Percent Revision

6% 1.5¥r+: HR=1.04 (090, 1.22)p=03563
4%
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602 111 1

Cemented ‘ 6751 5992 4655 3286
Cementless ‘ 220473 194040 147887 106008 30362 4908 28
Hybrid ‘ 117756 103480 79460 57955 20700 3979 50

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces

Figure 1. 1. Percent revision of primary total conventional hip replacement for OA by fixation [5].

In Australia, the United Kingdom, and the United States, cementless fixing is the
most popular. Acetabular aseptic loosening has been recognised as a primary cause
of cemented implant failure in patients under the age of 60 [51]. Hybrid fixation, which
combines cemented femoral and cementless acetabular components, was developed
as an alternative and has outperformed the other fixations over a 15-year follow-up
period [47]. Short cementless femoral stems are also gaining popularity. These
designs maintain proximal bone stock and enable more physiological loading, which

means less stress shielding, thigh pain, and invasive revision surgery.

In the last decade, there has been a tendency to increase the diameters of the
femoral head, which reduces the risk of dislocation following hip replacement because
a larger head enables a greater range of motion before impingement than does a
smaller head [52]. Previous concerns about the use of large diameter heads stemmed
from evidence that these implants cause increased polythene volumetric wear;
however, with modern generations of highly cross-linked polythene, larger
articulations do not appear to cause increased wear when compared to smaller

articulations [53].
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In the United Kingdom, posterior and lateral surgical approaches accounted for 95%
of hip replacements, and both had excellent outcomes [47]. The posterior method has
become more popular than the lateral approach in recent years. This rise may be due
to mounting evidence that the posterior technique is linked to better patient-reported
outcomes with no greater risk of dislocation [54, 55]. Interest in minimally invasive
surgical methods has grown as a result of a desire to perform hip replacements with

less soft tissue injury.

The direct anterior approach is one such technique. Despite early reports of better
results, comprehensive studies indicated no significant difference in overall
complication rate, dislocation rate, gait, or patient function after six weeks compared
to other routine approaches. As yet there is no clear evidence showing how it affects
fracture rate and the length of stay in the hospital [56, 57]. In New Zealand, the UK,
and Sweden, the method is now used in less than 5% of procedures.

The percutaneously-assisted, super capsular, and direct superior approaches
utilise a modified posterior incision and provide access to the joint without disturbing
the external rotator muscles. Low rates of complications and dislocation have been
documented in case studies [58]. All minimally invasive surgical procedures, however,
require long-term monitoring. Impingement, increased surface wear of bearings,
dislocation, and the need for revision can all result from the misalignment of acetabular

and femoral components [59].

Computer-assisted surgical methods for hip replacement have been created in
order to improve the accuracy and dependability of implant placement. From passive
computer navigation to patient-specific instrumentation to active robotic-assisted
surgery, there is a wide range of options. Computer navigation assists surgeons
intraoperatively by using anatomic data from preoperative CT imaging, intraoperative
fluoroscopic pictures, or imageless intraoperative registration of bone landmarks. In a
meta-analysis of 473 patient data, researchers discovered that computer navigation
improves the precision of the acetabular component positioning when compared non-
navigated implantations [60]. However, as yet there is no evidence of better clinical

outcomes.

In the case of knee replacement, research conducted in Australia suggests that

computer guidance reduces the number of revisions in patients under the age of 65



[61]. The reasons for this disparity are unknown. Overall, robotic-assisted orthopaedic
surgery involves procedures that are quite distinct from those used for soft-tissue
surgery. The computer-assisted surgery system analyses an extensive amount of
imaging data and searches for any deviations from a surgical plan. Some systems
provide haptic feedback to surgeons to avoid the re-sectioning of bone beyond certain
limits, while others automatically stop bone milling. Although the accuracy of
acetabular positioning has improved, the impact on clinical outcomes has yet to be
determined [62].

A single-center cohort study found that dislocation rates are lower following robotic-
assisted hip replacement than a routine non-assisted hip replacement [63]. Three-
dimensional templates produced from preoperative photographs are used to create a
patient-specific apparatus. The procedures are designed to improve acetabular
placement without the significant amount of time required for robotic surgery [64]. To
determine the advantage of modified computer-assisted surgery systems, high-quality

longitudinal studies are required.

1.6 Advances in Knee Practice

The outcomes of modern knee replacements are quite acceptable and are
continuing to improve. The Swedish knee registry was able to track this development
throughout its long history (Figure 1.2) [65]. With the current surgical procedures used
for knee replacement, few patients require revision, especially in cases of young
people. However, the patients who are not totally satisfied with the TKR outcome
outnumber those who require revision. For most knee replacements, metal on
polyethylene is still being used and, as a result, polyethylene wear remains a major
reason for failure [34, 47, 66]. Highly cross-linked polythene, also known as second-
generation polythene, was introduced around 20 years ago and successfully reduced
polythene wear, thereby decreasing the rate of aseptic loosening and revision [67].
Recently, vitamin-E-infused highly cross-linked polythene, also known as a third
generation development, has been used although its efficacy needs further

investigation [68].
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Figure 1. 2. Cumulative revision rate after TKR [65].

For more than 30 years, the standard method to TKR surgery has been to strive for
mechanical alignment, which means that the hip, the center of the reconstructed knee,
and the ankle are all in line [69]. Recently, the kinematic approach has been planned
as an alternate implantation strategy to mimic the alignment of the pre-disease joint
surface. This procedure is thought to improve ligament balance and knee kinematics
without requiring ligament releases [70]. The global experience with kinematic
alignment in TKR is limited [71], although a recent literature review found that
kinematically-aligned surgery resulted in a better outcome than did mechanical
alignment [72]. The pattern of OA may influence the benefit of different alignment
methods for each individual patient. Mechanical alignment is still the most commonly
used implantation method, and more research is needed on the safety of kinematic

alignment before considering it for more widespread use.

The majority of patients receive total knee implants but about 8% of cases currently
receive partial (unicompartmental) knee replacement [5]. Partial knee replacement
has several advantages over total knee replacement: improved functional outcome,
shorter postoperative length of stay, decreased mortality rate, and greater cost-
effectiveness [73]. Recent evidence has reinforced these findings in randomised
controlled studies, and similar results of current studies are being anticipated [74, 75].
The fundamental argument against widespread acceptance of partial knee as an
alternative to TKR is that almost all the national registries report a greater revision rate
[47, 66]. There is some evidence to suggest that the greater revision rate of partial
knee replacements is related to the number of these surgeries performed by specific

surgeons and private units [76]. In addition, recent evidence derived from registry data
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analysis indicates that the introduction of cementless fixation may decrease the

revision rate of partial knee arthroplasty [40].

In knee replacement surgery, computer navigation and patient-specific
instrumentation have been introduced to help reach a more accurate alignment [77].
Possible improvements are expected to produce better results and improve
intraoperative efficiency and cost-effectiveness. Although the literature contains
inconsistent reports, there is no significant clinical difference in terms of implant
component placement, lower extremity alignment, or patient outcomes [64, 78]. The
main advantage of patient-specific instrumentation or computer navigation lies in its
potential to help less experienced surgeons achieve greater precision and accuracy.
Some evidence suggests that computer-assisted surgery may reduce the revision rate
for young patients undergoing total knee arthroplasty [61]. To date, there has been
only a limited application of robotic technology in knee replacement surgery, and high-
guality comparative studies are still needed to show that its potential efficacy is better

than that of conventional techniques [78].

1.7 Joint Registries

Joint registries (JRs) are now one of the greatest and most essential sources of
comparative data for hip and knee replacement surgery [79-81]. They can give us
useful information about implants and show how patient variables, surgical
procedures, and surgeon experience affect outcomes [5, 34, 47]. These JRs provide
information on potential issues regarding implants and surgical procedures. Statistical
studies of these registries are being conducted to discover problems with implants and
surgical procedures. The Swedish hip and knee replacement registries were the
leaders in this field, and their main goal was to collect data related to short-term
problems. The registries quickly demonstrated their potential as a safe and reliable
source, focusing on reporting outcomes related to the effectiveness of surgeries and

prostheses.

The monitoring of revision rates is an acceptable way of determining the factor(s)
affecting the survival outcome. This is especially practical in the field of joint
replacement, where the goal has always been to improve the longevity of medical
implants and reduce the incidence of failure. Significant international relationships

between various registries and research groups should be established as one means
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of achieving this goal. Furthermore, the nationwide statistics published by registries
can provide surgeons and patients with valuable information about what can be
expected after surgery. The statistical analysis of registry data has become a key
approach for evaluating the outcome of joint replacements associated with
advancements in data collection [34, 40, 66]. In recent times, big data has been used
in healthcare applications to develop prediction models and clinical decision support
systems [82-86]. Hence, the mining of big data could yield valuable insights into the
factors that contribute to the success or otherwise of hip and/or knee replacement

surgery.

Overall, although most primary total knee prosthetic implants are well-established
cruciate-retaining or posterior-stabilised devices with a long track record, new implant
modifications or novel designs are being introduced regularly [5, 34, 47, 66]. Moreover,
THR is mostly limited to the surgeries performed using a choice of modern bearings:
XLPE with metal, ceramic or ceramicised metal heads, and ceramic on ceramic
bearings with mixed ceramic [5]. Here, the importance of registries is underscored by
introducing the Beyond Compliance in the UK, which is working narrowly with the
Orthopaedic Data Evaluation Panel and the UK national joint replacement registry.

1.8 Potential Risk Factors in Hip and Knee

Surgery

The most important patient-related factor influencing the outcome of hip and knee
replacement is age. The majority of patients who require joint replacement surgery are
elderly; the average age at the time of surgery is close to 70 years [5, 34, 47]. Because
the incidence of OA increases with age [87], this finding is not unusual. Patients with
OA and who are under 65 years old had 2.5 times more risk of knee revision than
those who were 65 years or older [5, 34, 88]. When revision rates for various age
groups are examined, it becomes clear that there is an inverse relationship between
risk of revision and age, with younger patients having a higher risk of requiring revision
surgery [5]. Other patient characteristics, such as preoperative diagnosis and gender,
have also been shown to affect joint replacement surgery outcomes. In both hip and
knee surgeries, men have a somewhat greater rate of revision than women [5, 34],

particularly for infection (p<0.001) [5].
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The AOANJRR is collecting data on other patient characteristics that could affect
the outcome of hip and knee procedures, such as the American Society of
Anaesthesiologists (ASA) score and Body Mass Index (BMI) [5]. A number of implant-
related variables were described in the literature that may affect hip replacement
failure rates, including head size, bearing material combination, and fixation method
[5, 47, 66]. In regard to primary total knee risk factors, other variables can contribute
to the outcome of surgeries: bearing mobility, stability, utilisation of patella component,
and method of fixation [5, 47, 66].

The type and class of implants also have an impact on the result. The most
prevalent type of primary partial hip is unipolar modular, which is defined by the class
of prosthesis utilised [5]. This accounts for 45.6% of all partial hip surgeries, with two
categories of unipolar monoblock (28.5%) and bipolar (25.9%). The major revision
diagnostic for the three main classifications of primary partial hip replacement is a
fractured neck of the femur, which is likely to have a greater rate of revision than
primary total hip surgery [5]. All partial knee replacements (unicompartmental, patella
and trochlear, and bicompartmental) have a greater revision rate than do the total knee
[34, 40, 66]. Partial knee replacement is preferred over TKR for a variety of reasons,
including a more natural feeling in the knee, less invasive surgery with a lower risk of
infection [89, 90].

1.9 Prostheses with Higher Than Anticipated Rate

of Revision

The majority of registries have recorded implants that have a much higher risk of
revision than others within the same broad class. When considerable disparities in the
revision rate for specific implants are observed, it is usually due to a problem with the
design or the materials. When an implant has a higher risk of revision, its use
decreases as surgeons subsequently choose other options. The implant may then be

removed gradually from the market by reducing the usage.

Orthopaedic manufacturers and clinicians are constantly introducing new designs
with a view to improving survival outcomes. The registries, which are the ultimate
guality-assurance monitoring system, should track the results of novel implants and
technologies. Based on the evidence [81, 91-93], many of these new-design implants

are launched with little or no clinical evidence to support the manufacturers’ claims.
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The complex interaction of factors is becoming more apparent over the time.
Understanding how these factors interact and how to appropriately weigh other

variables will help surgeons to improve patient outcomes.

To detect an outlier prosthesis, the registries’ procedures must be transparent and
accountable. The various arthroplasty registries differ in terms of the methods used
for the identification. The Swedish Hip Arthroplasty Register offers survival curves for
prosthetic devices but does not provide any specific comparisons [34, 94]. The joint
registry of New Zealand releases tables on prosthetic results but does not identify
outlier prostheses [40]. The National Joint Registry for England, Wales, Northern
Ireland and the Isle of Man (NJR) has formed an outlier subcommittee to explore
strategy and methodology for analysing data on each implant specifically that has
been identified as requiring further examination [47].

On September 1, 1999, the AOANJRR began a phased installation of data
collection and had been registered complete national data since 2002. This registry
has created a standardised three-stage process shortly for identifying prostheses with
a higher-than-expected revision rate [66]. Stage 1 has been in place since the
registry's inception, stage 2 was established in 2003, and stage 3 in 2007. The method
by which the AOANJRR identifies prostheses with higher-than-expected revision rates
has both advantages [94] and disadvantages [95].

Stage 1 involves a good screening test of prostheses; however, it does not take into
account variations in revision rate over time. Because of this constraint, it is
challenging to recognize a variance if the higher risk of revision happens later in the
follow-up period [96]. The addition of stage 2 enabled more in-depth research of a
variety of variables, both device- and non-device-related. Stage 3 has also proven to
be beneficial because it expands the AOANJRR's clinical perspective. Because of the
vast number of prostheses data submitted to the registry, it is impossible for the
surgeons to be familiar with all of them. Surgeons involved in stage 3 have a sound
knowledge of several of the devices and can add more detail to the registry's findings.
This increases the Annual Report's transparency and accountability by assuring peer
assessment of the data from a leading arthroplasty organisation.
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1.10 Summary

Hip replacement surgery is still one of the most effective and reliable surgical
procedures. Millions of patients with significant hip pain and functional limitations have
subsequently been able to recover a much-improved quality of life. Implant material
and design, surgical technique, and perioperative treatment have all improved. Most
patients can expect their prostheses to last more than 20 years without causing issues.
There are continued challenges that include improving implant function for active
young patients, guaranteeing the safe introduction of novel implants, and developing
techniques for the early detection of OA and control of its progression. The most
significant advancements in modern total hip producers have been made by increasing

the usage of only those devices that contain modern bearings.

Knee replacement surgery is a well-established procedure with a high rate of
successful treatment outcomes and long-term implant survival. However, a
percentage of patients continue to experience poor outcomes, and tackling this
problem is a key challenge for improving treatment, especially in regard to the growing
number of younger patients undergoing surgery. Because incremental changes in
implant design have not significantly improved patient outcomes, more research is
needed to optimise the performance of surgery based on unique patient
characteristics.

Joint registries help progress the understanding of patient-reported knee
replacement outcomes, but it still needs to be refined. National registries are helping
us learn more about joint arthroplasty, and new analysis approaches must be used to
derive the most information from the collected data. As with many medical fields, new
technology is rapidly evolving in joint replacement, which may assist clinicians in the
future to choose devices based on unique safety criteria for each specific patient.
Innovative assessment approaches, including more randomised controlled trials and

adaptable designs, are required prior to introducing new devices.

For many years, JRs have assessed outcomes after hip and knee replacement
surgery. The established methodology estimates the time before a revision operation
is required to identify poor-performing implants. Nevertheless, novel statistical
methodologies such as machine learning algorithms can be suggested for future works

using big data from JRs. Recent outcomes according to patient-reported data have
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also enabled the community to better evaluate functional results. A combination of
revision and patient-reported measures as the endpoints could be a more practical
indicator of the success or otherwise of an implant. The value of the registry data could
be enhanced by conducting registry-based randomised controlled trials and improving
the quality of research studies. Registered evidence can also directly contribute to
healthcare delivery, as seen in Australia, where the AOANJRR reports are utilised

routinely in individual consulting evaluations and hospital-level feedback.
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Chapter 2. Literature Review on Supervised Machine

Learning in Hip and Knee Replacements
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2.1 Overview

Prediction models are being increasingly used in the medical field to identify risk
factors and possible outcomes. Some of these are presently being used to develop
guidelines for improving clinical practice. The application of Machine Learning (ML),
comprising a powerful set of computational tools for analysing data, has been clearly
expanding in the role of predictive modelling. This chapter reviews the latest
developments of supervised ML techniques that have been used to analyse data
related to post-operative total hip and knee replacements. The aim was to review the
most recent findings of relevant published studies by outlining the methodologies
employed (most-widely used supervised ML techniques), data sources, domains,

limitations of predictive analytics and the quality of predictions.

Machine Learning (ML) provides systems the ability to produce mathematical
models by learning patterns from empirical data. In medical research, ML is mostly
used to extract information regarding diagnosis and treatment patterns. Examples
include data-driven predictions of drug effects and interactions, the detection of
comorbidity groups in autism spectrum disorders [97], and the identification of type 2

diabetes subgroups [98].

The most widely used ML approach in medical sciences is supervised learning. This
technique estimates the mapping function for new input data in order to predict
categorised, real values, or time-to-event outputs. Examples of supervised ML
algorithms in orthopaedics include Linear Regression and similar techniques, Decision
Trees (DTs), Random Forests (RFs), Neural Networks (NNs), Naive Bayes, Support
Vector Machines (SVMs) and Nearest Neighbors [99].

ML technology is relatively new to the field of orthopaedic surgery. Recent
applications of ML technology include the development of image-based diagnoses
[100-102] and the improvement of value-based care [103-106]. Gait analysis
algorithms may be used to notice early warning indications of revision arthroplasty,
such as undiagnosed infection or instability [107]. Kotti et al. [102] used RF-based
modelling to detect osteoarthritis (OA) through gait analysis, reporting a mean
accuracy of 72% in 47 patients with this disease. In the area of value-based payment
models, Navarro et al. [104] evaluated applying a Naive Bayesian model to assess

patient-level factors and forecast value metrics prior to the total knee arthroplasty
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episode of care. Similarly, Ramkumar et al. [103] explored the use of a Naive Bayesian
classifier in primary total hip arthroplasty, and found an excellent predictive capacity

with respect to costs and hospital length of stay (LOS).

ML is increasingly used in the medical sciences because it offers alternative
approaches to address the probability of confounding, particularly in high-dimensional
datasets. For instance, Kaplan-Meier is a common statistical method that uses lifetime
data to estimate the survival function of primary Total Hip Replacement (THR) and
Total Knee Replacement (TKR) implants [79, 108-115]. However, an ideal method
uses a time-to-event endpoint though reducing the confounding effect of other

variables.

There are a number of important questions that need to be addressed given the
recent advances and increasing use of supervised learning methods in various
medical areas, including orthopaedics. These comprise: What are the main
justifications for using supervised ML methods and their effectiveness in assisting with
the THR and TKR procedures? Are the ML results affected by data volume and data

quality?

The aim of this chapter was to address these questions by reviewing the use of
supervised ML techniques in regression, classification and survival problems
associated with the post-operative outcomes of THR and TKR. The different types of
ML techniques (including RF, SVM, Naive Bayes, and Deep Learning) were reviewed,
focusing on the data source, domains, limitations, and quality of outcomes reported in
the literature.

2.2 Method (Literature search and selection criteria)

For this review, the English-based literature was searched online, including
PubMed search engine and Scopus Elsevier databases using various key terms:
supervised learning, machine learning, hip replacement, knee replacement, predictive,
and data. A comprehensive search was conducted across these databases for the
period of each database inception to the end of 2019. Only articles and their
corresponding references reporting studies that utilised supervised ML techniques
were reviewed for inclusion. Non-peer-reviewed studies, non-English language

studies, unpublished manuscripts were excluded. The studies using unsupervised (or
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semi-supervised) ML learning approaches, or employing learning methods to train
unreal data, or with a focus on pre-operative outcomes of THR and TKR were not

considered. Titles and abstracts of the remaining articles were then carefully screened.

2.3 Random Forest (RF)

The RF is a tree-based ensemble learning method widely used to predict an
outcome or rank and select the most significant variables. Cafri et al. [116] defined the
time to first revision in elective primary THR as the outcome in order to compare two
ML techniques (elastic-net VS. random survival forest) with the principal aim of
assessing their performance in identifying recalled components. The concept of
training an ML model to identify significant features differs from predicting the survival
probability of components. The authors used 348 unique components as indicator
variables in addition to patient covariates, which were all categorised and treated as
potential confounders to detect the components based on the statistical significance.
Two of the six recalled components (ASR shell/lhead and Rejuvenate) with P<0.001
and minimal depth rank of 1 and 2 in the RF model, were identified in both approaches.
However, one more component (Durom shell/Metasul femoral head) was also picked
by the regularized Cox model, even while maintaining the false discovery rate at .05.
The results suggested that the ML methods can be effective for detection, although
the Cox technique with a more traditional way to address confounding performed more
effectively [116].

Gabriel et al. [117] trained predictive models using RF, ridge and lasso regression,
and multivariable logistic regression to determine those patients who would not need
prolonged hospital LOS after THR. The discriminatory ability was reported as 0.735
(95% confidence interval, 0.675—-0.787) using the area under the receiver operating
characteristic curve (AUC) for multivariable logistic regression (the best-fit algorithm).
Also, 'P=0.37>.05" was obtained as fitting goodness by the Hosmer—Lemeshow test.
Nine variables - age, sex, anaemia, opioid use, obesity, metabolic equivalents score,
chronic obstructive pulmonary disease, primary anaesthesia type, and hypertension -
were included in the proposed calculator. The authors stated that this model might
assist clinicians in the strategic planning of bed availability to reduce both

overcrowding and underutilisation [117]. However, this sort of single-institution studies
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needs to add external validations and use larger sample sizes before reporting big

statements.

Prediction of patient-reported outcomes (130,945 observations ) by eight
supervised binary classifiers (logistic regression, extreme gradient boosting, multistep
adaptive elastic-net, RF, neural net, Naive Bayes, k-Nearest Neighbors and boosted
logistic regression) was the aim of a study on THR and TKR [118]. The generic and
disease-specific improvement was considered as the dependent outcome based on
the Oxford Hip and Knee Score (Q score) and the EQ-5D-3L visual analogue scale
(VAS). Results showed that RF, extreme gradient boosting, linear model, and
multistep elastic net had the highest overall J-statistic (as a statistic that shows
diagnostic tests' performance). The AUC of the best-fit models was reported as around
0.86 (VAS) and 0.70 (Q score) for knee replacements, and 0.87 (VAS) and 0.78 (Q
score) for hip replacements. All these models were used to depict the most significant
variables but some methods, such as RF with random permutations, can introduce
bias and artificial variable selection under specific circumstances [119, 120]. If several
significant variables were correlated, they share the importance, suggesting that the
variable importance may be shown lower than the reality [121].

2.4 Support-Vector Machine (SVM)

The SVM is a supervised ML algorithm, suitable for creating subtle patterns from
complex datasets in both classification and regression problems. The SVM classifier
was examined through an image-based approach for its usefulness in rating the
corrosion damage on the THR prostheses (at the head-neck taper junction) [122]. The
classifier was applied to capture local and textural information (as two approaches of
object recognition); then, Goldberg's scores were given to rank the images. The
hyperparameters were tuned to minimise the cross-validation error by Bayesian
optimisation; the features with greater discriminatory power were selected after
analysis of the Neighbourhood components as a supervised learning method to
classify the multivariable dataset into separate groups. An accuracy level of 85% was
obtained using five-fold cross-validation, whereas a limited pool of available
prostheses made a significant limitation in terms the validity. Fontana et al. [123]
investigated whether ML algorithms are able to predict the patients who will attain
Minimal Clinically Important Difference in THR and TKR post-operatively. Based on
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patient-reported outcome measures (PROMs), 6,480 TKRs and 7,239 THRs were
selected from only a single hospital. Linear SVM, logistic LASSO, and RF were trained
on 80% of the dataset to predict two-year minimal clinically important differences. The
AUCs of the three ML methods varied from 0.60 to 0.89 with the best result for the
LASSO but Theoretically these values cover a range of poor to acceptable prediction
but the presence of high multicollinearity breaks one of the assumptions promising
that logistic regression can produce unbiased coefficients. Although the authors noted
that ML holds much guarantee for assisting as a clinical decision-making support
system, it should be considered that most similar studies were only limited to small

number of observations.

2.5 Naive Bayes

Ramkumar et al. [103] aimed to develop and validate a Naive Bayesian model using
pre-operative primary THR data to predict LOS and patient-specific inpatient
payments, and then recommended the use of a risk-adjusted patient-specific payment
model that reflects patient comorbidity. The data of 122,334 primary THRs, including
race, age, gender, and comorbidity scores, was used to train and evaluate the model
using AUC and training accuracy. Inpatient payments were categorised as the output
variable, and the AUC showed the validity of 0.71 and 0.87 for payment and LOS,
respectively. Naive Bayesian methods assume conditional independence which,
however, fail to identify confounding variables. The validation of the developed model
required that, first, an initial viability be established before proceeding with the
resource-intensive task of developing other available models. This may mean that the
other ML methods such as deep learning can create a more accurate model [124,
125]. SVM and NNs algorithms can take into account confounding relationships

among the variables and may create better machine automation [125].

2.6 Deep Learning

There are several major differences between deep learning and other ML methods
[126]. Deep learning is a subset of machine learning that reproduces the mechanisms
of the human brain in learning from big data and generating patterns for decision
makings. Deep learning techniques have become popular in research studies since
they can automatically perform the raw data engineering by finding the optimal inner

representation, which is necessary for the discriminative (mapping) task. Deep
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learning methods are often mysterious because of their black-box nature, which is
often the main source of concern in medical applications [127]. However, they can
analyse data efficiently and can capture the more complex structure of big datasets
for THR and TKR despite computational complexity [128]. For instance, in a recent
study, Qiu et al. [129] used a large commercial claims dataset to identify patients with
a strong likelihood of requiring TKR and THR surgeries. Supervised ML methods (RF,
LASSO, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN))
were investigated using 540,000 observations of patient data and 2,000 variables. The
deep learning methods showed much better performance than LASSO, RF, and
RNN (a common type of ANNin the medical area [130, 131]) with a pooling
mechanism that recorded the best accuracy using different metrics: 0.8339 + 0.0024
as AUC and 0.0662 + 0.0008 for precision with recall set to 0.9. As a function to reduce
the number of parameters and computation in the network, the applied pooling
mechanism positively influenced the performance by detecting the additional signals

from the hidden intermediate states.

2.7 Other Machine Learning Methods Used in THR and TKR

In one of the first studies to develop a pre-operative algorithm for predicting post-
operative opioid use after THR [132], five ML algorithms (stochastic gradient boosting,
RF, SVM, NNs, elastic-net penalized logistic regression) were developed. The elastic-
net penalized logistic regression attained the best performing method for calibration,
discrimination (C-statistic = 0.77), and decision curve analysis; whereas, the NNs and
stochastic gradient boosting models recorded the same AUC (0.77) with elastic-net

penalized logistic regression.

Predictive risk models were developed and validated in another study [133] to
forecast the risk of death and major complications after THR and TKR. This involved
70,569 observations of OA patients who received primary THR and TKR and the
highest C-statistics and bootstrapped confidence intervals (Cls) were reported for 30-
day mortality (0.73; 0.66-0.79) and cardiac complications (0.75; 0.71-0.79) based on
the cross-validation of the boosted regression models. The lowest values were also
reported for returns to the operating room (0.60; 0.57-0.63), and for deep vein
thrombosis (0.59; 0.55-0.64).
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A similar study to predict the risk of complications and 30-day mortality after TKR
and THR trained LASSO regression models on 107,792 data, including clinical inputs
and pre-operative demographic variables. The results demonstrated an acceptable
prediction accuracy for death (0.73; 95% CI, 0.70-0.76), a renal complication (C-
statistic, 0.78; 95% CI, 0.76-0.80), and a cardiac complication (0.73; 95% CI, 0.71-
0.75) within 30 days of arthroplasty, although poor accuracy was reported for venous
thromboembolism (C-statistic, 0.61; 95% CI, 0.60-0.62). Importantly, it was suggested
that these are the most accurate and validated prediction models; however, the
models performed poorly in terms of external validation (prediction of outcomes from
another dataset) [134].

Given the effect of THR on health-related quality of life (HRQoL), Nemes et al. [135]
suggested a clinical decision support system (DSS) using Swedish joint registry data
to help clinicians evaluate the future profits of THR by providing predictions of 1-year
post-operative HRQoL. Three groups of supervised ML algorithms were used: (1)
linear regression and its variants, (2) nonlinear regression algorithms, and (3)
classification trees and rule-based models. The multivariate adaptive regression
splines (R? = 0.158) were shown to have the best predictive capability. However, it
was not significantly better than the developed linear regression model (R? = 0.157).
Although eleven patient-related predictors were considered, more variables need to
be analysed as predictors to construct a comprehensive and successful DSS. There
is no set criterion on a good R? value as it may increase by adding even non-important
predictors in a multivariate model; it is often preferred to compare the performance of
models with the same variables [136].

To predict patients' pain and function levels after undergoing TKR, 1,649 patient-
reported data in the UK were studied with the aim of training and validating a
supervised ML model. Clinical factors and patient characteristics were used as pre-
operative inputs to predict the Oxford Knee Score (OKS) after 12-months of TKR. This
prediction model provided an individualised estimation of post-operative OKS, and
also changes in OKS. The bootstrap backward linear regression showed predictive
validity with R? of 0.175 (internal validation) and 0.211 (external validation) [137].
These low values explained 17.5% and 21.1% variability in the outcome, suggesting
that the models' generalizability is dependant on considering more potential predictive

factors.
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2.8 Summary

Both ML and conventional statistical methods with similarities and differences have
made great strides in the support they can offer clinicians, although conventional
methods have been the main statistical approach in the domain of THR and TKR to
date. For example, the generation of risk-predictive models is a common approach
taken for estimating the risk of an event of interest occurring in post-operative THR
and TKR. In previous studies, most of these models have been developed using the
conventional methods (e.g. logistic regression, Cox proportional hazards regression)
[138, 139] rather than the more modern ML strategies. These strategies are becoming
the main approach for addressing prediction problems across a wide range of industry
and science domains. Although to date there has been very limited adoption of these
strategies for the purpose of THR and TKR predictions, it is anticipated that more
studies will be published on ML predictive models for THR and TKR.

One misconception is that conventional statistical methods rely on predetermined
assumptions and mathematical equations to formalise relations between the variables,
whereas ML techniques use the data to recognize these relationships [140]. The key
benefit of ML methods over conventional statistical methods is the ability to link a large
amount of data and variables together and capture complex non-linear relationships.
ML, as a useful and powerful set of computational tools, is now a common choice for
the development of predictive models in the medical community [141-143]. The
successful adoption of several Electronic Medical Record (EMR) systems developed
for various purposes (prognosis, diagnosis, or treatment) have been noted in several
studies [144, 145]. Greatly improved subsets of ML models, known as ANNs, have
been notable in total joint replacement contexts because of a great potential for

processing "big data" [146].

2.9 Limitations of ML and Potential for Future Research

ML has proved its undeniable capability, although it is not free of issues. The
accuracy of predictive models is dependent on the quality of the data sources, and
predictions may be significantly affected by the amount of data and the number of
variables included. Therefore, care should be taken when dealing with limited data, as
it is not advisable to report that these models are reliable with acceptable accuracy

levels. Furthermore, ML models should be assessed and evaluated using a
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randomised cohort of studies and controlled trials in real-world settings. Hence, more
improvements are needed in ML orthopaedic applications to translate the research

aims into clinical practices.

It is essential to understand the difference between two different types of studies
with a focus on the impact of variables on the outcome or predicting outcomes for a
separate data. While ML has the potential to offer more accurate predictions, this can
cost a poorer understanding of the relationships among the variables. The output of
ML models needs to be interpreted carefully, and the expectations of predictive
analytics can be raised with a consciousness of the matters associated with

misinterpretation and over-fitting in clinical settings.

To date, multivariable predictive models have been developed for THR and TKR
based mainly on patient-reported factors and imaging variables. The literature shows
that ML adoption for post-operative THR and TKR is still in the basic phase with only
a few studies confirming that the models are entirely available for a THR or TKR
practice. This suggests future research opportunities for studies on the post-operative
clinical outcomes of THR and TKR. There is still a need for models that can predict
various outcomes such as the early identification of prostheses outliers based on the
available big data from the national joint registries around the world. Perhaps, this
indicates that now is the time to enter a new era of THR and TKR by developing
decision-making support systems comprising effective predictors based on big data.
A future global direction of ML in the domain of joint arthroplasty could be to enable

surgeons to determine what is the best for their patients.

2.10 Research Gap and Objectives

Because changes occur in the design and performance of devices over time, the
first aim of this study was to identify more specific and relevant comparator groups in
order to better reflect contemporary surgical practice in primary total hip and knee
communities. Ideally, the early identification of outliers needs a time-to-event outcome
while limiting the confounding effects of patient characteristics and device
components. Given that ML is one approach that allows us to consider many variables
simultaneously to reduce the impact of confounding, this research then compared the
effectiveness of using either Random  Survival Forest (RSF) or
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regularized/unregularized Cox with control for patient and associated device
confounding according to current standard techniques.



Chapter 3. The Most Appropriate Comparator in

Assessing the Performance of Hip Prostheses



3.1 Overview

For end-stage hip osteoarthritis (OA), total hip replacement (THR) is the surgical
procedure [3, 147]. Even though joint replacement is an effective surgical procedure
with high success rates, concerns continue to exist with respect to variation in
prosthesis performance. In particular, prostheses introduced to the market are
consequently shown to have a higher than anticipated revision rate (HTARR). Recent
data show that the outcomes of THR have improved over time but suboptimal results
due to less than satisfactory implant performance do still occur [5]. An important role
for joint replacement registries is to monitor the comparative performance of implants

to identify factors that are associated with higher rates of revision.

Registries record detailed information on procedures performed as well as patient
outcomes [5, 47, 148-150]. They are also able to deliver population-based data on the
comparative result within a community. Outcome data on the revision rate of individual
devices are essential to allow an evidence-based method for prosthesis selection.
Analyses of registry data have found that the majority of the prostheses currently in
use have satisfactory outcomes [66, 151]. However, a number of prostheses have
been identified as having a rate of revision that is much higher than other prostheses
within the same class. The Australian Orthopaedic Association National Joint
Replacement Registry (AOANJRR) registry detects these as “prostheses with a higher

than anticipated rate of revision”, or outliers [5].

The AOANJRR has developed a standardised multi-stage approach for detecting
outliers, which includes a preliminary test based on a comparison of the revision rate
of an individual prosthesis with the comparator group, defined as all other prostheses
in the same procedure class. This is done by comparing the revision rates of individual
prostheses to all other prostheses in that class, with the exception of large head metal-
on-metal (LHMOM) prostheses. The entire class of LHMOM devices has been
previously identified as having a significantly higher risk of revision. The purpose of
this activity is the early identification of those devices that are not performing to
standard. The identification of outlier devices assists surgeon prosthesis selection,

improves patient outcomes, and reduces healthcare costs [152].

The current comparator used by the AOANJRR has some significant limitations as

non-routine procedures reflected by the use of complex prostheses are not excluded.
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Prostheses parts or bearing surfaces that are known to be associated with higher
revision rates are currently included. High-risk prostheses such as modular-neck
stems or prostheses used for specific purposes (including constrained, dual mobility,
and head size smaller than 28 mm) are still considered in the current comparator [153-
155]. In addition, improvements have been made in the design, manufacture and
performance of many devices over time. As a consequence, the comparator does not
adequately reflect contemporary practices and is likely to overestimate the revision
rate [5]. The aim of this study was to assess a number of different comparator options
to provide a more relevant standard for evaluating the comparative performance of

new devices.

3.2 Materials and Methods

The study period was from the first year that the AOANJRR collected THR data
from all Australian hospitals (January 2003) to the closure of the dataset at the end of
December 2019. The study population included all patients undergoing a primary total
conventional hip replacement performed for primary osteoarthritis (OA). This selection
initially included 413,417 procedures. A number of specific exclusions were then
undertaken to assess the impact on the cumulative percent revision of the different
comparator groups. The first exclusion was LHMOM, followed by other non-modern
bearing surfaces (defined as all the bearing couples except metal or ceramic heads
on cross-linked polyethylene and mixed ceramic-on-ceramic), and then devices with
modular neck-stem design or used for specific purposes (including constrained, dual
mobility, and head size smaller than 28 mm). Lastly, all remaining HTARR prostheses
previously identified by the multi-stage standardised approach were excluded (see
Figure 3.1). Further analyses were also conducted to study the changes in the most
common types of revision and reasons for revision, and the AOANJRR standard was
employed to determine the impact of modified comparator on the number of identified
outliers. A comparative analysis of revision rates between the final modified
comparator group and the current was conducted in regards to studying the effect of
fixation options and bearing couples. This was done by undertaking the 15t stage of
the AOANJRR standardised approach. The number of procedures and revisions for
each study population reported each year to the registry was also detailed.

31



All THR for OA
n=413,417
Excl. LHMOM
n=14155
r
Comparator /l
n=399,262
4 N
_| Excl. all non-modern bearings
n=59,605
r LS A
Comparator ll]
n= 339,657 4 Y

Excl. <28 head sizes,
constrained, dual mobility
and modular neck-stem

Y

]

y n=14,803
.
Comparator IV
n=324,854
4 N
- Excl. HTARR
" n= 25,093
b AN A

Comparator V
n=299,761

i

Figure 3. 1. Flow chart showing stages of exclusion criteria and study populations.
(Note. The AOANJRR currently uses Comparator Il for initial screening of prostheses.)

Apart from the first exclusion to generate the current comparator, all non-modern
bearing surfaces were excluded because they account for less than 4% of primary
THR procedures performed in 2019 [5]. Devices with modular neck-stem design or
used for specific purposes were also excluded for different reasons. These
components can rarely dissociate and break each other due to corrosion and wear at
the modular junction [154, 155]. Dual mobility and constrained acetabular prostheses
are used more frequently for patients with a higher risk of dislocation [156]. Head sizes
28 or less have a higher revision rate for dislocation and are used uncommonly in
standard modern total hip [153, 157]. The remaining prostheses previously identified
as having HTARR by the AOANJRR were also excluded because of the higher
revision rate. The research was conducted according to the ethical principles of the
Helsinki Declaration Il. The Southern Adelaide Clinical Human Research Ethics

Committee has also provided ethics approval for this study (No. 485.13).

3.3 Statistical Method

The time to first revision surgery is the outcome, and the first revision was defined
as replacing, removing or adding the previous hip replacements (including one or more

of the prosthetic components). Death was treated as a censored case with survival
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time based on the time those cases exited the study sample. Patients with no revision
or death had survival times based on the time elapsed between their initial implantation
date and the end of the follow-up period. Five comparator groups, the study
populations (Figure 3.1), all in primary conventional THR performed for OA were
studied using Kaplan-Meier (KM) survival analysis [5]. The unadjusted cumulative
percentage revision (CPR) was calculated after the primary surgery, with an
accompanying 95% confidence interval (Cl) using unadjusted pointwise Greenwood
estimates. Since each study population is defined as a subset after the exclusion,
statistical comparisons of revision rates were not undertaken with Hazard Ratios
(HRs). However, given the significant role of bearing surface on the survivorship of
comparator, revision rates of the prostheses with non-modern against modern
bearings were compared for the entire period using Cox proportional-hazards model
when adjusting for age and sex. The cumulative incidence of reasons for revisions
was analysed to look at the risk of most common reasons for the current and the
modified comparator groups. A descriptive analysis was also performed comparatively
with a view to studying the most common types of revisions. Finally, the effectiveness
of the modified comparator was evaluated based on the ability to detect additional
individual prostheses by performing the first two stages of the AOANJRR standard.
This is done by comparing the revision rate of individual prostheses to twice the
average revision rate of all other prostheses that belong to the same broad device
class. In addition, the impact of confounding factors is examined by calculating age-
and gender-adjusted HRs to check if there is a significant difference compared to the
combined HR of the comparator group. The revision rate per 100 component years
was calculated for each study population by fixation options, bearing couples, and the
yearly number of procedures/revisions. The statistical analysis was performed using
R software [158], including the packages Survival [159] version 3.2-11 and Survminer
[160] version 0.4.9.

3.4 Results

Results shown in Figure 3.2 present the CPR among the comparator groups
showing the proportion revised over the years. The CPR at 10 years for the current
comparator was 4.93% (95% CI, 4.84-5.02), and the subsequent exclusions
progressively reduced the CPR rate. The curve for Comparator V showed the lowest
10-year CPR of 4.30% (95% CI, 4.20-4.41). However, there was no significant
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difference in the 10-year CPR compared to Comparator IV 4.40% (95% Cl, 4.30-4.50).
The selection of modern bearings resulted in the greatest reduction in the comparators
from CPR of 6.06% to 4.51% at 10 years (Table 3.1).
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Figure 3. 2. CPR of the study populations over the study period.

Table 3. 1. Yearly CPR of the study populations.

All THR 17,888 413,417 1.64 (1.60, 1.68) | 2.16(2.12,2.21) | 2.62(2.57,2.67) | 3.07 (3.0, 3.13)
Comparator Il 14,549 399,262 1.64 (1.60, 1.68) | 2.12 (2.07, 2.16) | 2.48(2.43, 2.53) | 2.80 (2.75, 2.86)
Comparator Ill 10,659 339,657 1.64 (1.60, 1.68) | 2.08 (2.03,2.13) | 2.42 (2.37, 2.47) | 2.71(2.65, 2.77)
Comparator IV 9,955 324,854 1.62 (15.70, 166) | 2.05(2.00, 2.10) | 2.38 (2.33, 2.44) | 2.66 (2.60, 2.72)
Comparator V 8,992 299,761 1.54 (150, 1.58) | 1.96(1.91, 2.01) | 2.29 (2.23,2.35) | 2.56 (2.50, 2.63)

All THR 3.54 (3.48,3.60) | 4.05(3.98 4.12) | 4.54(4.47,4.62) | 5.01(4.93,5.09) | 554 (5.45 563) | 6.06 (5.96, 6.16)
Comparator Il | 3.13 (3.07, 3.18) | 3.46 (3.40, 3.52) | 3.81(3.74,3.88) | 4.14 (4.07,4.22) | 4.54 (4.45 4.62) | 4.93(4.84,5.02)
Comparator Il | 3.00 (2.93, 3.06) | 3.28 (3.22, 3.35) | 3.60 (3.52, 3.67) | 3.88(3.79, 3.96) | 4.20 (4.11, 4.29) | 4.51 (4.41,4.61)

Comparator IV

2.93 (2.87, 3.00)

3.20 (3.13, 3.27)

3.51 (3.43, 3.58)

3.78 (3.69, 3.86)

4.09 (4.00, 4.18)

4.40 (4.30,4.50)

Comparator V

2.84 (2.77, 2.90)

3.11 (3.04, 3.18)

3.41 (3.33, 3.48)

3.68 (3.59, 3.76)

3.99 (3.90, 4.09)

430 (4.2, 4.41)

All THR 6.64 (6.53, 6.75) | 7.22(7.09,7.35) | 7.81(7.67,7.96) | 8.36(8.20,8.53) | 8.88(8.69,9.07) | 9.61(9.37, 9.85)
Comparator Il | 5.38 (5.27, 5.48) | 5.86 (5.74, 5.97) | 6.37 (6.24, 6.51) | 6.87 (6.71, 7.02) | 7.38 (7.20, 7.56) | 8.10 (7.86, 8.33)
Comparator Il | 4.81 (4.70, 4.93) | 5.14 (5.01,5.27) | 552 (5.37,5.67) | 5.85 (5.67,6.02) | 6.20(5.98, 6.41) | 6.65 (6.37, 6.93)

Comparator IV

471 (4.59, 4.82)

5.02 (4.89, 5.15)

5.39 (5.23, 5.54)

5.69 (5.51, 5.87)

6.02 (5.80, 6.24)

6.49 (6.19, 6.78)

Comparator V

4.60 (4.49, 4.72)

4.90 (4.77, 5.04)

5.26 (5.10, 5.42)

5.57 (5.38, 5.75)

5.91 (5.69, 6.13)

6.38 (6.08, 6.68)

Given the substantial effect of excluding non-modern bearings (15t and 2
exclusions) on the CPR of all primary THR, the risk of revision was compared by the
type of bearing surfaces. Figure 3.3 illustrates a significantly higher rate of revision for
the non-modern compared to the modern bearing surfaces (HR, 2.00 [95% CI, 1.94 to

2.06], p < 0.001).
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Figure 3. 3. CPR of primary conventional THR by the type of bearing surface.

Table 3.2 demonstrates the additional prostheses identified by the standard using
Comparator V. The revision rates per 100 component years of these individual devices
exceeded twice that of all other total conventional hip prostheses. In addition, there
are significant differences in HRs of the identified devices with the comparator V over
the entire period. The AOANJRR standard detected 13 additional device components
utilizing the modified comparator, including six femoral stems and seven acetabular

components with at least 10 number of observations.

35



Table 3. 2. Additional device components identified utilizing the Comparator V.

Descriptive information 1st stage 2d stage Comparator
Acetabular N N Obs.Years Revisions/100 aH:a-\::luesr:Z(:::OI;- Current (Il) \%
cup Revised Total : Obs.Years 9 vaﬁue '
Device | 38 384 3194.5 1.19 (0.84, 1.63) 2'53p(<1(')8§(')f'49) 0.6 (0.59, 0.61) 0.54 (0.53, 0.55)
Device I 10 76 859.7 1.16 (0.56, 2.14) 2'72;}6436307) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device Ill 43 712 36401 | 1.18(0.85, 1.59) 2'12p(<1(')5g(‘)12'86) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device IV 61 453 5266.2 1.16 (0.89, 1.49) 2.67p(<2(.)05613.44) 0.6 (0.59, 0.61) 0.54 (0.53, 0.55)
Device V 163 7006 14786.1 1.10 (0.94, 1.28) 1'23;}(')03(');'44) 0.6 (0.59, 0.61) 0.54 (0.53, 0.55)
Device VI 72 509 6104.2 1.18 (0.92, 1.48) 2'75p(<2(')l§613'48) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Femoral N N Obs.Years Revisions/100 aHeR;::luesr:ZderfO;’- Current (Il) V
stem Revised Total : Obs.Years 9 9 '
value
Device VII 21 184 1904.2 1.10 (0.68, 1.68) 2.47’)(3(.)636]?.80) 0.6 (0.59,0.61) | 0.54 (0.53, 0.55)
Device VIII 13 99 1184.7 1.10 (0.58, 1.88) 2'53;}64563'36) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device IX 36 344 3207.3 1.12 (0.79, 1.55) 2'51p(<1683613'48) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device X 46 417 3978 1.16 (0.85, 1.54) 2.55p(j(:)9;6f.41) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device XI 11 72 956.6 1.15 (0.57, 2.06) 2'68;564&;'85) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device XII 71 2232 6493.5 1.09 (0.85, 1.38) 1.52p(<1(:)286 11'92) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)
Device XilI 36 346 3136 1.15 (0.80, 1.59) 2.50p(<l(.)88(‘)13.47) 0.6 (0.59, 0.61) | 0.54 (0.53, 0.55)

One of the main aims of this chapter was to report the additional individual components
aligned with the current assessment of the registry in order to improve the “capture”
rate of under-performing prostheses within the community. Hence, the same criteria
were used for the screening test to identify prostheses with higher-than-expected
revision rates than the final modified comparator (Comparator V). The criteria include:
(1) The revision rate (per 100 component years) exceeds twice that of Comparator V;
(2) The inclusion of the component requires at least ten primary procedures, and there
have been at least two revisions; and (3) The hazard ratio of that particular prosthesis
-compared to all other prostheses in the same class combined- is statistically
significant through examining the impact of specific confounders (e.g. age and gender)
using Cox regression models, which are known to influence implant survival and the
learning curve. If an individual prosthesis was detected with at least ten procedures
and two revisions using the modified comparator, and if the difference in HRs was also

statistically significant, the outlier prosthesis was then listed in Table 3.2.
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3.4.1 Reason for Revision and Type of Revision

Figure 3.4 details the cumulative incidence of the most common revision reasons

for Comparator V. Figure 3.5 shows a comparative graph that provides the cumulative

incidence of the same revision causes for the current comparator. The 10-year

cumulative incidence with 95% CI of fracture for comparator V was 1.05% (1.0, 1.11),

marginally lower than 1.10% (1.05, 1.15) for the current comparator. All the other

common reasons for revision followed a similar pattern although the risk of revision

due to loosening showed the most significant variation from 1.22% (1.17, 1.27) to

0.99% (0.93, 1.04) at 10 years. In the short term, early infection is the most probable

for both study populations: 0.39% for comparator V and 0.38% for the current

comparator at 6 months. Late loosening, as a major cause of failure in the current

comparator, could be associated with the wear of hip arthroplasty components.
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Figure 3. 4. Cumulative incidence of most common revision diagnosis for comparator V.
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Figure 3. 5. Cumulative incidence of most common revision diagnosis for comparator II.

The results for types of revision (Table 3.3) show that the femoral component is the

most common major revised for both comparator V with 35.99% (acetabular

component: 17.74%, THR (Femoral/Acetabular): 9.17%, and cement spacer: 4.57%)

and the current comparator with 34.28% (acetabular component: 19.93%, THR:
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11.28%, and cement spacer: 4.29%). In addition, ‘head/insert’ had the highest
percentages in the list of minor revised components followed by ‘head only’.

Table 3. 3. Comparator V VS current comparator - Type of revision (follow-up limited to 17 years).

Comparator V Current comparator (Il)
Type of Revision Number % Pm.na”es % Number % Pr".nanes % Revisions
Revised Revisions Revised

Femoral Component 3236 1.08 35.99 4988 1.25 34.28
Acetabular Component 1595 0.53 17.74 2900 0.73 19.93
THR (Femoral/Acetabular) 825 0.27 9.17 1641 0.41 11.28
Cement Spacer 411 0.14 4.57 625 1.16 4.29
Removal of Prostheses 51 0.02 0.57 84 0.02 0.58
Reinsertion of Components 14 0.00 0.15 15 0.00 0.10
Total Femoral 1 0.00 0.01 2 0.00 0.01
Bipolar Head and Femoral 1 0.00 0.01 1 0.00 0.01
Saddle - - - 1 0.00 0.01

N Major 6134 2.05 68.22 10257 2.57 70.50
Head/Insert 2098 0.70 23.33 3022 0.76 20.77

Head Only 479 0.16 5.33 733 0.18 5.04
Minor Components 174 0.06 1.93 266 0.07 1.83
Insert Only 105 0.03 1.17 147 0.04 1.01
Bipolar Only 2 0.00 0.02 3 0.00 0.02
Head/Neck/Insert - - - 68 0.02 0.47
Head/Neck - - - 46 0.01 0.32
Neck Only - - - 5 0.00 0.03
Cement Only - - - 1 0.00 0.01
Neck/Insert - - - 1 0.00 0.01

N Minor 2858 0.95 31.78 4292 1.07 29.50

N Revision 8,992 3.0 100.00 14,549 3.64 100.00

N Primary 299,761 399,262

Note. % Primaries Revised: The proportional contribution as a percentage of all primary procedures.
% Revisions: The number of revisions as a percentage of the total number of revisions.

3.4.2 Revision Rates of Comparator Groups by Fixation

Revision rates of comparators Il and V by fixation were analysed (Table 3.4) as
some prostheses have more than one option for fixation. For example, a prosthesis
with a recommendation to use cemented fixation may be utilised as cementless or
vice-versa. Hybrid (femur cementless) has the highest rate of revision with a minimum
number of observations followed by Cementless fixation for Comparator V and
cemented for the current comparator. The best-performing fixation was Hybrid (Femur

Cemented) for the final modified and the current comparator groups.

Table 3. 4. Revision rates of total hip comparator groups by fixation.

Fixation N N Obs.Years Revisions/100
Revised Total Obs.Years (95% ClI)
Comparator V

Cemented 182 6369 32631.5 0.56 (0.48, 0.64)
Cementless 6061 189646 1031506 0.59 (0.57, 0.60)

Hybrid (Femur Cemented) 2735 103534 586768.4 0.47 (0.45, 0.48)
Hybrid (Femur Cementless) 14 212 1036.8 1.35 (0.74, 2.26)

Current comparator

Cemented 978 19466 32810.7 2.98 (2.80, 3.17)
Cementless 12658 263025 1106007 1.14 (1.12, 1.16)

Hybrid (Femur Cemented) 4191 130286 619730.3 0.68 (0.66, 0.70)
Hybrid (Femur Cementless) 61 640 1126.8 5.41 (4.14, 6.95)
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3.4.3 Revision Rates of Comparator Groups by Bearing
Surface

Table 3.5 shows revision rates for the comparator groups according to bearing
surface, with a view of reporting variations in the outcomes of surface material
combinations. The highest revision rates for non-modern bearing surfaces were for
metal-on-metal (2.03% (1.97, 2.10)) and ceramicised metal combined with non-XLPE
(1.59% (1.18, 2.10)). There are higher revision rates for ceramic and metal femoral
heads combined with antioxidant XLPE within the group of modern bearings. Overall,

modern surfaces indicate a lower risk of revision than non-modern bearing couples.

Table 3. 5. Revision rates of total hip comparator groups by Bearing Surface.

Bearing surface N N Obs.Years Revisions/100
Revised Total Obs.Years (95% CI)
Comparator V
Ceramic/Ceramic 1523 55023 294751 0.52 (0.49, 0.54)
Ceramic/Metal - - - -
Ceramic/Non XLPE - - - -
Ceramic/XLPE 1792 66476 297170.8 0.60 (0.57, 0.63)
Ceramic/XLPE + Antioxidant 199 10377 26188.2 0.76 (0.66, 0.87)
Ceramicised Metal/Ceramic - - - -
Ceramicised Metal/Non XLPE - - - -
Ceramicised Metal/XLPE 706 24854 143470 0.49 (0.46, 0.53)
Ceramicised Metal/XLPE + Antioxidant 5 234 1510.5 0.33(0.11, 0.77)
Metal/Ceramic - - - -
Metal/Metal
Metal/Non XLPE - - - -
Metal/XLPE 4677 139376 876764.2 0.53 (0.52, 0.55)
Metal/XLPE + Antioxidant 90 3421 12087.9 0.74 (0.60, 0.91)
Current comparator
Ceramic/Ceramic 3512 90004 619411 0.57 (0.55, 0.59)
Ceramic/Metal 26 299 2792.6 0.93 (0.61, 1.36)
Ceramic/Non XLPE 321 5810 37915.4 0.85 (0.76, 0.94)
Ceramic/XLPE 2153 75873 332247.9 0.65 (0.62, 0.67)
Ceramic/XLPE + Antioxidant 281 14706 33889.2 0.83(0.73, 0.93)
Ceramicised Metal/Ceramic 0 1 10.88 0.00 (0.00, 33.90)
Ceramicised Metal/Non XLPE 50 297 3133.2 1.59 (1.18, 2.10)
Ceramicised Metal/XLPE 719 25083 144329 0.50 (0.46, 0.53)
Ceramicised Metal/XLPE + Antioxidant 5 240 1530.8 0.33(0.12, 0.76)
Metal/Ceramic 0 7 71.66 0.00 (0.00, 5.15)
Metal/Metal 3644 17835 179197.9 2.03 (1.97, 2.10)
Metal/Non XLPE 1615 21969 210467.7 0.77 (0.73, 0.80)
Metal/XLPE 5410 155329 977253.3 0.55 (0.54, 0.57)
Metal/XLPE + Antioxidant 143 5785 16712.2 0.85(0.72, 1.01)

3.4.4 Number of Total and Revision by Year of Implantation

This section details the number of procedures performed and revised each year
(Table 3.6) to study the difference in outcomes when only modern bearing surfaces
are selected. Note that the number revised is expected to be less for the primary
operations performed in later years than the number revised in earlier years as they
have had less follow-up time. The use of modern bearing designs increases due to the

better outcomes reported by the AOANJRR annual reports.
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Table 3. 6. Number of total and revision for comparator groups by year of implantation.

Comparator V Current comparator (Il)
Year of implant N N N N
Total Revised Total Revised
2003 4770 256 15033 1236
2004 6414 345 16125 1177
2005 7351 312 16793 1267
2006 8539 367 17408 1464
2007 9557 399 18096 1521
2008 11725 494 19790 1624
2009 14162 592 21060 1318
2010 16366 612 22565 1041
2011 18291 671 23681 961
2012 20164 614 24525 836
2013 21933 670 26337 849
2014 24130 732 28648 920
2015 25482 678 30143 829
2016 27174 709 31919 870
2017 27406 621 32617 774
2018 28130 560 33960 703
2019 28167 360 34717 498

3.5 Discussion

This study aimed to explore how the rate of revision estimated for the study
populations differs according to specific prosthesis design constructs. Time to first
revision was estimated for 413,417 primary total conventional hip replacements
undertaken for osteoarthritis (OA) from 1St January 2003 to 315t December 2019.
Survivorship analyses with stepwise exclusions were undertaken. First, large head
metal-on-metal (LHMOM) procedures were excluded, followed by other non-modern
bearing surfaces (defined as all the bearing couples except metal or ceramic heads
on cross-linked polyethylene and mixed ceramic-on-ceramic), and then devices with
modular neck-stem design or those used for specific purposes (including constrained,
dual mobility, and head size smaller than 28 mm). Lastly, all remaining prostheses
previously identified by the AOANJRR as having a higher than anticipated rate of

revision were also excluded.

The cumulative percent revision (CPR) rate for all primary conventional THR for OA
was 6.06% (95% CI 5.96, 6.16) at 10 years. After all the exclusions, the final
comparator group, which only includes satisfactory-performing prostheses of
contemporary design and use, had an estimated 10-year CPR of 4.3% (4.2, 4.41).
This is considerably lower than the current comparator (all prostheses excluding
LHMOM) used by the AOANJRR of 4.93% (4.84, 5.02). The AOANJRR standardised
approach detected 13 additional device components utilizing the final modified
comparator. The registry currently recommends the modern comparator for the early

assessment of primary total hip prostheses.
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Utilizing only contemporary device components has the potential to be a more
relevant comparator for the early assessment of modern primary total hip prostheses.
The use of comparator V led to the additional devices identified after 2" stage of the
AOANJRR standard. Increased survivorship and improved functional performance
might be expected because key design modification areas are targeted to address
THR complications [161]. Survivorship studies with stepwise exclusions of prostheses
with high-risk designs or used for specific purposes are required periodically to
introduce a more relevant and effective comparator. The modified comparator with
higher sensitivity may contribute to the early detection of an outlier prosthesis with
smaller sample size and shorter length of follow-up. More exclusions can potentially

be added to select a group of prostheses with the lowest revision rate.

While comparator V had the lowest CPR, there was a slight difference between
comparator IV and V (Comparator IV was selected for the rest of this study). This was
because many of the HTARR prostheses previously excluded were LHMOM, modular-
neck femoral components, or used as non-modern bearings [154, 162, 163].
Identification can bring a device to the attention of surgeons, alerting them to the fact
that it shows a higher rate of revision [9]. However, it has become evident that the
method to identify outliers may be too broad, and it is crucial to perform a careful
comparative analysis of total hip prostheses. The AOANJRR approach takes into
account the complexities of a small number of procedures [116], devices implanted by
a single surgeon [164], and the effect of other components on the surveillance of a
device [165]. After identifying a device by the AOANJRR, use of the device usually
declines with a positive impact on subsequent patient outcomes. For example, ASR
acetabular was first reported in 2008, then removed from the market, and the use of
LHMOM prostheses was subsequently reduced [166].

There were several limitations to this research. Although the new comparator could
successfully contribute to the early identification of specific prostheses within a
broader group, a reduction in the number of observations available for analysis may
decrease the statistical precision. More variables may produce the variance in
survivorship results, such that the impact of patient characteristics was not studied on
the comparator due to the study design. The other limitation includes the descriptive
nature of analysing the type of revision that has not been adjusted for confounders.

However, there are also some strengths, including large high-quality data with minimal
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loss of follow-up over a longer-term period provided by the AOANJRR, which allowed
us to compare the study populations effectively. Registry outlier detection is a process
that needs to evolve for optimising the detection. This would be enhanced by
international collaborations between registries including data sharing [167]. Results of
this study indicate that increasing the relevance of the comparator may be helpful for
the early identification of a higher number of outlier prostheses.

3.6 Summary

Using a comparator that only includes contemporary devices with modern bearings
and excludes special devices used in more complex primary procedures has the
potential to improve the early assessment of modern primary total hip prostheses

sensitively.



Chapter 4. Can Machine Learning Algorithms Contribute
to the Early Identification of Primary Total Hip Outliers?



4.1 Overview

Given their extensive usage and the presence of poor-performing prostheses, total
hip arthroplasty devices are among the most relevant medical devices with a lack of
pre- and post-market safety assurances [3, 157]. It is known that there is variation in
the safety and effectiveness of hip device components [116, 152]. While most
prostheses perform acceptably, some of them may have higher than anticipated rates
of revision. This variability underlines the need for attentive post-market surveillance
of hip prostheses for the early detection of poor-performing components in the
community [165, 168, 169]. National arthroplasty registries have acted critically in
detecting these devices that are performing poorly [5, 66, 148, 149, 170, 171]. Data
collected, analysed and reported by registries exposed the issue and led to the

identification of prostheses with higher than anticipated revision rates called outliers.

There is growing agreement by the community that large-scale evaluations of
prostheses using data from all joint registries are crucial for indicating if a device is at
increased risk of revision [167, 172]. The Australian Orthopaedic Association National
Joint Replacement Registry (AOANJRR) has established an effective multistep
approach to inform surgeons about the relative performance of prostheses [5].
Arthroplasty devices are composed of multiple components combined in a prosthesis
construct to ensure the success of the procedure. Femoral stems and acetabular
components are two major components, and revision surgery may mostly occur due
to the failure in one or both of these total hip components. Identifying specific
components that show a much higher risk of revision is challenging as numerous

individual components are used in different combinations.

The initial screening effectively flags the hip components but does not account for
revision rate variations over time [165]. This may cause difficulties in detecting a
difference if the higher risk of revision happens later in the follow-up time [173]. The
method also does not address the potential presence of other confounding factors due
to device and patient variables. Ideally, an approach uses a time-to-event endpoint to
identify individual components with a much higher rate of revision surgery while also
reducing the confounding effects of device and patient characteristics in other
components. Machine learning (ML) methods are attractive for this sort of problem

because they are able to handle high-dimensional data, which conventional methods
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generally cannot. In addition, the methods address the additional difficulty introduced
by the confounding effects. The principal objective of this study was to evaluate the
use of ML methods for assessing the surveillance of total hip prostheses. The
effectiveness of the methods was determined based on their ability to detect the same
outliers identified by the AOANJRR gold standard.

4.2 Materials and Methods

The dataset for this research consists of 163,356 primary total conventional hip
procedures with a primary diagnosis of Osteoarthritis (OA). The study period was 1%t
January 2015 — when the registry commenced collection of body mass index (BMI)
data - to 315t December 2019. The restriction to procedures only for OA accounted for
88.2% of all surgeries over this period. There were 87 acetabular components and
126 femoral stems made by various manufacturers [5]. Patient factors and device
components were the predictors and the elapsed time from primary procedure to first

revision was the outcome.

Each device component was distinctly introduced with an indicator variable that
showed its model name. Patient covariates comprised age, gender, BMI and American
Society of Anesthesiologists (ASA) score treated as potential confounders. Gender
and ASA score (less than 3 vs. greater than or equal to 3) were patient covariates with
two levels; age (< 65, 65-74, and 275 years) and BMI (< 25, 25-29.9, and = 30) were
classified into three levels. Head size (£32mm vs. >32mm) and bearing surface
(modern vs non-modern) were also categorized as potential confounding, each of the

variables into two ordinal groups.

Modern bearings are defined as metal or ceramic heads on cross-linked
polyethylene and mixed ceramic-on-ceramic. The covariates were selected to control
the impacts of relatively few patient characteristics and implant types (i.e., bearing
surface, femoral head size) [111]. Missing data were only present on the patient
covariates (6.35% BMI and 0.41% ASA score) handled by multiple imputations using
chained equations [174]. Death was treated as a censored case with survival time up
to the quit date of the study sample. Patients without experiencing a revision or death

have survival times based on their initial implantations and the end of follow-up.
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The effectiveness of the ML techniques was assessed to account for patient and
associated device confounding factors to the AOANJRR gold standard (15t and 2"
stages). The first stage (initial screening test) is done by comparing the revision rate
of individual prostheses to twice the average revision rate of all other prostheses that
belong to the same broad device class. In addition, the impact of confounding factors
was examined by calculating age- and gender-adjusted hazard ratios (HRs) to check
if there is a significant difference compared to the combined hazard rate of the modified

comparator (IV) developed in the previous chapter.

4.3 ML Statistical Analyses

As the concept of variable selection differs from prediction, ML models need to be
trained with a careful selection of hyperparameters. Two feature selection techniques
were conducted to explore the significance of inputs and find their contributions
effectively in the presence of confounding effects.

For the first approach, this study employed random survival forest (RSF) as an
extension of the random forest algorithm to analyse right-censored survival data [175,
176]. Large forests with a group of 2000 trees were used to reduce bias in the highly-
correlated structure. Each tree of the forest was grown by repetitively performing
binary splits of the AOANJRR data using the log-rank test until terminal nodes had no
fewer than two revisions [177]. A random set of variables including all device
components and covariates were chosen as candidates to split each parent node into
two daughter nodes. It is more appropriate to develop the model such that the chance
of having substantial variations between variables increases. Each tree needed to be
grown deep to have as many levels as possible without limiting the node depth.
Variable selection is randomized with the use of the parameter '1 <= mtry <= P' which
was fixed at 'P/4' [116]. The number of variables considered at each split is larger than
convention (VP) because the bias in feature selection with correlated predictors can
be limited by an increased number of variables considered at each split [178]. A
backward selection procedure was then implemented to obtain a reduced set of
informative variables by computing a new RSF with the remaining variables. A similar
algorithm was suggested by Ishwaran et al. [121] and Dietrich et al. [179]. Minimal
depth was used for ranking the variables [180]. In a tree, minimal depth is the distance
from the tree's root node to the node a variable is first split on. The distance of each
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variable is recorded based on an average taken over all trees and shorter distances
denote variables with stronger effects. A threshold of 0.05 was used for permutation
P-values to determine whether the minimal depth of a component exceeds chance
[116, 181]. Given the small number of permutations implemented due to high
computational cost, P-values adjusted based on false discovery rate (FDR) were not
calculated.

The second approach was applied using a combination of ML and a well-
recognized conventional regression method. A regularized model with a mixture of L1
(lasso) and L2 (ridge) penalties was developed with the aim to select a subset group
of components that are most predictive of survival [182, 183]. The extent of the
penalties was determined based on taking a priori value for a parameter (a = 0.5; a
ranges from O to 1). This is the midpoint among lasso and ridge regression called
elastic-net. The parameter that specified model complexity was chosen using 10-fold
cross-validation [182]. No penalty was applied to patient covariates according to a
tendency to fully control the impacts of comparatively few patient characteristics
(including age, gender, BMI, and ASA). The regularized Cox model does not report P-
values because it does not test variables against null hypotheses. The selected
variables by the elastic-net were entered in an unregularized Cox proportional hazards
model. The reported P-values are based on a Wald test; the P-values that maintain
the FDR at 0.05 [184] were also calculated using the selected variables by the elastic
net. The FDR at 0.05 is much less conservative and adjusts for the more actual P-
value distribution when 5% of all declared positive variables are genuinely negative.
R statistical software was used for all analyses, glmnet [185] version 4.1-1 for Cox
elastic net, and the survival package [186] version 3.2-11 for unregularized Cox
regression, and randomForestSRC [174] version 2.11.0 for RSF and MICE package
version 3.14.0 for multiple imputations [187].

4.4 Results

Prostheses survival for 163,356 procedures recorded by the AOANJRR were
provided over the study period with the yearly number at risk (Figure 4.1 and Table
4.1). The majority of patients had an ASA score less than 3 (63.47%), were female
(53.25%), had an age from 65 to 74 years (36.42%), and BMI greater than or equal to
30 kg/m? (38.86%). In the study cohort, the AOANJRR standardised approach
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identified three acetabular components and seven femoral stems. Note that the
registry has not reported a number of these devices due to other confounding effects
discussed in Sections 4.5 and 4.6 of this chapter but their continual real-time

performance is monitored within a community.
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Figure 4. 1. Time to first revision for 163,356 procedures of AOANJRR data.

Table 4. 1. Individual outliers identified by the 1st and 2nd stages of the AOANJRR standard.

Descriptive information 1st stage 2nd stage
Component N N Obs.Years Revisions/100 HR - adjusted for age Comparator
Revised Total : Obs.Years (95% CI) and gender, P-Value (other total)
Acetabular
) 3.42 (2.23, 5.26)
Device | 21 300 587.6 3.57(3.29, 3.91) p<0.001 0.95 (0.92, 0.98)
Device I 5) 59 228.8 2.18 (2.03, 2.36) 3.14 51_.3%17.54) 0.95 (0.92, 0.98)
) 2.09 (1.50, 2.92)
Device Il 35 760 1735.6 2.02(1.93, 2.11) 0<0.001 0.95 (0.92, 0.98)

Femoral stem

4.34 (2.17, 8.68)

Device IV 8 71 245.4 3.26 (3.01, 3.56) 0.95 (0.92, 0.98)

p<0.001
Device V 18 288 458.7 3.92 (3.59, 4.31) 3'28p(<2£g(’)15'21) 0.95 (0.92, 0.98)
Device VI 48 1266 2271 2.11(2.04, 2.2) 1.88p(<1(.;.1§612.51) 0.94 (0.91, 0.98)
Device VII 13 195 666.5 1.95 (1.86, 2.05) 2.55p(:.(.;.1(2)3(’)f.40) 0.95 (0.92, 0.98)
Device VIl 17 320 3747 4.54 (4.25, 4.87) 3‘02p(<1£g(')f'86) 0.95 (0.92, 0.98)
Device IX 28 561 1438.8 1.95 (1.86, 2.04) 222;:6?36322) 0.95 (0.92, 0.98)
Device X 16 199 589 2.72 (2.54, 2.91) 3'32p(<26(_)§615'42) 0.95 (0.92, 0.98)

Note. The comparator includes all other prostheses with modern bearing surfaces excluding head sizes smaller
than 28mm, constrained, dual mobility, and modular neck-stem cases. Modern bearings include only mixed
ceramic/mixed ceramic and all femoral head materials used in conjunction with cross-linked polyethylene
(XLPE).

The devices 1V, V, and VIII were identified using both approaches and the only
undetected components by ML were Il and VI (Table 4.2). The random survival was
able to identify eight out of ten outliers identified by the standard. These components
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include the acetabular components | and Il and the femoral stems IV, V, VII, VIII, X,
and X. In the case of RSF, the device X has the lowest minimal depth rank with the
most contribution to the surveillance of hip prostheses. However, Given the exact P-
values are unknown, these ranks may not directly associate with the comparative

performance of the components used.

Table 4. 2. Results for the outliers by the ML methods.

Regularized/Unregularized

Descriptive information Random Survival Forest Cox
Component N N e Minimal depth rank Pl
Revised Total ' Permutation P-value
Acetabular
. 8
Device | 21 300 587.6 0.019
Device I 5 59 228.8 20 0.773
’ 0.079 ’
Device llI 35 760 1735.6 15
’ 0.039
Femoral stem
. 2
Device IV 8 71 2454 0.009 0.009
Device V 18 288 458.7 14 <0.001
’ 0.029 ’
Device VI 48 1266 2271 21
0.089
Device VII 13 195 666.5 13 0.434
’ 0.029 ’
) 3
Device VIII 17 320 374.7 0.009 0.012
) 5
Device IX 28 561 1438.8 0.009
. 1
Device X 16 199 589 0.009

Note. Regularized Cox model selected 113 components. In the case of the regularized/unregularized Cox
model approach, "-" denotes that the device was not selected; therefore, no P-value is provided. The Cox
approach only identified one device component (V) when we ensured that the FDR was maintained at 0.05.
In the case of the RSF, “-” denotes that the device feature was not included in any trees in the forest; therefore,
no rank or P-value is provided.

Both the RSF and Cox techniques detected additional device components that were
not previously identified by the standardised approach. A number of these devices
with at least 10 observations exceeded 1.5 times the revision rate for other
contemporary total hip prostheses with a significant difference in HRs (Table 4.3). The
femoral stem XIV was detected by both the techniques and the other three were

identified only by one of the approaches.
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Table 4. 3. Results for the additional device components detected by ML.

. 1.93 (1.50, 2.48) 4

Device XI 62 1444 3466.08 1.79 (1.37, 2.29) p<0.001 0.009

Device XlI 132 5048 9640.42 1.37 (1.15, 1.62) 1'26p(i'60§6;"50) 0.005
. 1.66 (1.22, 2.27) 18

Device XIII 40 1063 | 2550.11 1.56 (1.12, 2.13) 0,001 0.039 0.052

2.21(1.30, 3.73) 17
p=0.003 0.039

Device XIV 14 250 804.43 1.74 (0.95, 2.92) 0.038

Given a primary desire to control potential confounding, the extent of patient- and
associated device confounding was evaluated. The coefficients in a Cox regression
are related to HRs of device components given by the exponent of its coefficient. The
next part compared the HR for specific components in two different models: (a) Cox
model with a variable representing the use of that component adjusted for age and
gender (2" stage of the standard) and (b) the unregularized Cox model, which
includes all the variables selected by the elastic net. This represents the effect of each
component after conditioning on the selected variables (including age, gender, BMI,
ASA, head size, and bearing surface). Therefore, the difference in the HRs between
these two models presents the extent of potential confounding (Figure 4.2). There is
at least reasonable evidence of confounding for most components; relative changes

in model coefficients range from 38% for the device V to 204% for the II.
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Device VI

group
Device W #  Ad) for all potential confounding factors

# Adj. only for age and gender

Device IV

Device ll

0.0 25 5.0 75

HR (Revision Surgery)

Figure 4. 2. HR comparison to illustrate the effect of potential confounding.
%Diff = [ln (H RAdj. for age and gender) —1In (H RAdj. for all potential confounding factors)]/[ln (H RAdj. for all potential confounding factors)]

In 2007, the AOANJRR added a third stage that enabled an extensive examination
of the prostheses identified in stage Il. The AOANJRR professions and orthopaedic
surgeons evaluate the whole range of prostheses data during a two-day workshop to
finalise the list of newly-identified outliers in the AOANJRR annual reports. This stage
reconsiders the potential confounding variables such as the effect of a single surgeon,
catalogue ranges, or the use of a prosthesis for a specific purpose. Hence, a post-
analysis was conducted to assess the interaction between surgeons and outlier subset

designs (catalogue ranges).

45 Subsets or Catalogue Ranges

The identification method has shown an argument to carefully examine which range
of prosthesis is responsible for a significantly higher than expected revision rate. The
results presented in Tables 4.4 to 4.23 show that Devices Il and VI might not be poor-
performing prostheses as the results show an issue only with a subset of these
prostheses. These devices show higher than expected revision rates for a number of
subset designs while other ranges indicated acceptable outcomes. Conversely, real
outliers usually have higher-than-anticipated revision rates in a significant number of
catalogue ranges. Note that the number of total procedures performed with a subset
design of the device needs to be reconsidered. For instance, there were significantly
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higher revision rates for the most subset designs of device V used in a greater number
of procedures. Our post-analysis found strong evidence of confounding effects that

may better reflect the actual performance of outlier prostheses.

Table 4. 4. Catalogue range description for Device | primary total conventional hip replacement.

Device | 1704607-1706607 H-A.C. CSF Plus Acetabular Cup NO Metal
Device | 1754607-1756807 H-A.C. CSF Plus Acetabular Cup NO Metal

Table 4. 5. Revision rates of Device | primary total conventional hip replacement by catalogue number
range.

1704607-1706607 13 147 296.4 4.39(2.33,7.5)
1754607-1756807 8 153 291.2 2.75(1.18, 5.41)
21 300 587.6 3.57 (3.29, 3.91)

Table 4. 6. Catalogue range description for Device Il primary total conventional hip replacement.

B PLASMA COATED NO-HOLE/CLUSTER-
Device Il 1800048 — 1800068 HOLE ACETABULAR SHELL 48-60MM OD NO Metal

] PLASMA COATED CLUSTER-HOLE
Device Il 1801140 — 1801162 ACETABULAR SHELL 48-62MM OD NO Metal

Table 4. 7. Revision rates of Device Il primary total conventional hip replacement by catalogue
number range.

1800048 — 1800068 28 110.3 2.72 (0.56, 7.95)
1801140 — 1801162 2 31 118.5 1.69 (0.2, 6.1)
5 59 228.8 2.18 (2.03, 2.36)

Table 4. 8. Catalogue range description for Device Ill primary total conventional hip replacement.

w

Device Il 012646MB-012664MB Dual Mobility Acetabular Shell without holes NO Metal

Table 4. 9. Revision rates of Device Il primary total conventional hip replacement by catalogue
number range.

012646MB-012664MB . 2.02(1.4,2.8)

2.02 (1.93, 2.11)

Table 4. 10. Catalogue range description for Device IV primary total conventional hip replacement.

Device IV 71291101-71291901 Primary Femoral Stem Standard Offset Metal
Device IV 71291150 71292351 Revision Femoral Stem SH Polished NO Metal
Device IV 71290902-71290902 Sz 9 Primary Femoral Stem Standard Offset NO Metal
Device IV 71291102-71291902 Primary Femoral Stem High Offset NO Metal

Table 4. 11. Revision rates of Device IV primary total conventional hip replacement by catalogue
number range.

71291101-71291901 4 51 180.7 2.21 (0.6, 5.67)
71291150 71292351 1 3 0.8 10.15 (0.26, 56.58)
71290902-71290902 1 1 25 39.66 (1.00, 220.96)
71291102-71291902 2 16 52.3 3.82 (0.46, 13.81)
8 71 2454 3.26 (3.01, 3.56)
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Table 4. 12. Catalogue range description for Device V primary total conventional hip replacement.

Model Catalogue Range Catalogue Description Cement Material
Device V 4330106-4330117 Collared 133° Neck Angle NO Metal
Device V 4330206-4330214 Collarless 133° Neck Angle NO Metal
Device V 4335107-4335117 Collared 133° Neck Angle High Offset Ti6Al NO Metal
Device V 4260210-4260212 Collarless 126° Neck Angle Std Offset Ti6Al NO Metal
Device V 4265111-4265211 Collarless 126° Neck Angle High Offset Ti6Al NO Metal
Device V 4335208-4335217 Collarless 133° Neck Angle High Offset Ti6Al NO Metal
Device V 4260106-4260117 Collared 126° Neck Angle Std Offset NO Metal
Device V 4265106-4265117 Collared 126° Neck Angle High Offset Ti6AI~ NO Metal

Table 4. 13. Revision rates of Device V primary total conventional hip replacement by catalogue
number range.

Catalogue range N N Obs.Years Revisions/100
Revised Total Obs. Years (95% CI)
4330106-4330117 10 147 2149 4.65 (2.23, 8.56)
4330206-4330214 1 14 54.5 1.83 (0.05, 10.21)
4335107-4335117 3 67 99.7 3.01 (0.29, 4.08)
4260210-4260212 0 1 4.3 0.00 (0.00, 86.09)
4265111-4265211 0 6 13.5 0.00 (0.00, 27.23)
4335208-4335217 0 B 13.9 0.00 (0.00, 26.46)
4260106-4260117 1 24 30.7 3.26 (0.08, 18.16)
4265106-4265117 3 26 27.2 11.01 (2.27, 32.19)
Total 18 288 458.7 3.92 (3.59, 4.31)

Many prostheses have several catalogue ranges that are specific to particular
design features. More than one catalogue range usually specifies a minor difference
in the design of one specific prosthetic device. This statistical analysis was undertaken
to determine the variations in these design modifications. For example, Device IV has
the lowest revision rate with the standard design among high-offset designs and

polished surfaces (Tables 4.10 and 4.11).

Table 4. 14. Catalogue range description for Device VI primary total conventional hip replacement.

Model Catalogue Range Catalogue Description Cement Material
Device VI H49007-H49020 HA NO Metal
Device VI H49L009-H49L020 HA Lateral NO Metal
Device VI H49LC009-H49LC020 High Off-Set Collared NO Metal
Device VI H49C009-H49C020 HAC collared NO Metal

Table 4. 15. Revision rates of Device VI primary total conventional hip replacement by catalogue

number range.

Catalogue range N N Obs.Years Revisions/100
Revised Total Obs. Years (95% ClI)
H49007-H49020 9 380 729.5 1.23 (0.56, 2.34)
H49L009-H49L020 8 337 803.7 0.99 (0.43, 1.96)
H49LC009-H49L.C020 16 184 214.3 7.46 (4.27,12.12)
H49C009-H49C020 15 365 523.4 2.86 (1.6, 4.73)
Total 48 1266 2271 2.11 (2.04, 2.2)

Table 4. 16. Catalogue range description for Device VII primary total conventional hip replacement.

Model Catalogue Range Catalogue Description Cement Material
Device VII 42501006-42501017 Beaded Porous Standard Offset Reduced Neck Stem NO Metal
Device VII 42511006-42511019 Beaded Porous Lateral Offset Reduced Neck Stem NO Metal
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Table 4. 17. Revision rates of Device VIl primary total conventional hip replacement by catalogue
number range.

Catalogue range N N Obs.Years RETRIETELY
Revised Total Obs. Years (95% CI)

42501006-42501017 3 32 101.17 2.96 (0.61, 8.66)

42511006-42511019 10 163 565.38 1.77 (0.85, 3.25)

Total 13 195 666.5 1.95 (1.86, 2.05)

Table 4. 18. Catalogue range description for Device VIII primary total conventional hip replacement.

[ Model [ Catalogue Range [ Catalogue Description [ Cement | Material |
| Devicevil | 0113100L - 0113108R | Anatomical Femoral Stem TiBAITNbHA [ NO | Metal |

Table 4. 19. Revision rates of Device VIII primary total conventional hip replacement by catalogue
number range.

Catalogue range N N Obs.Years RETEIER/100
Revised Total Obs. Years (95% CI)

0113100L - 0113108R 17 320 374.66 4.54 (4.25, 4.87)

Total 17 320 374.7 4.54 (4.25, 4.87)

Table 4. 20. Catalogue range description for Device IX primary total conventional hip replacement.

Catal L .
Model atalogue Catalogue Description Cement Type Material
Range
) Femoral Stem Standard 30-42 REQUIRES MODULAR
Device IX 523191 - 523396 STD Neck NO BODY Metal
Device IX 563514 - 563626 Femoral Stem Standard STD NO REQUIRES MODULAR Metal
Neck + Lateral BODY
) Standard Femoral Stem REQUIRES MODULAR
Device IX 526676 - 526684 36+21 CR Neck NO BODY Metal
Femoral Stem
Device IX 563016L - Left/Straight/Right Long 36+21 NO REQUIRES MODULAR Metal
563026R BODY
CR Neck + Lateral
Femoral Stem
. 563118L - . R REQUIRES MODULAR
Device IX 563216R Left/Straight/Right Long STD NO BODY Metal
Neck + Lateral
; 910000001 - Femoral Stem Standard 30-36 REQUIRES MODULAR
Device X 910000097 STD Neck NO BODY Metal
) Femoral Stem Standard REQUIRES MODULAR
Device IX 523418 - 523424 36MM + 8 STD Neck NO BODY Metal
. 563138L - Femoral Stem Left/Right REQUIRES MODULAR
Device IX 563144R XLong NO BODY Metal
. 563158L - Femoral Stem Left/Right REQUIRES MODULAR
Device IX 563164R XXLong NO BODY Metal

Table 4. 21. Revision rates of Device IX primary total conventional hip replacement by catalogue
number range.

Catalogue range N N Obs.Years Revisions/100
Revised Total Obs. Years (95% ClI)

523191 - 523396 10 283 706.24 1.41 (1.32, 1.52)

563514 - 563626 9 164 436.75 2.06 (1.9, 2.25)
526676 - 526684 0 1 4.04 0.00 (0.00, 91.31)
563016L - 563026R 0 1 3.33 0.00 (0.00, 110.78)
563118L - 563216R 4 17 32.03 12.49 (8.49, 18.1)
910000001 - 910000097 0 2 6.69 0.00 (0.00, 55.14)

523418 - 523424 5 90 243.68 2.05(1.84, 2.31)
563138L - 563144R 0 1 1.58 0.00 (0.00, 233.47)
563158L - 563164R 0 2 4.4 0.00 (0.00, 83.84)

Total 28 561 1438.8 1.95 (1.29, 2.81)

Table 4. 22. Catalogue range description for Device X primary total conventional hip replacement.

Model Catalogue Range Catalogue Description Cement Material
Device X 00787101360 - 00787101960 Femoral Stem Cemented Revision/calcar Yes Metal
Device X 00784501000 - 00784501800 Fiber Metal Midcoat Collarless Femoral Stem NO Metal

STD Size 10-18

Device X 00784501230 - 00784501830 Fiber Metal M'dcosaitzscilai'gss Femoral Stem NO Metal
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Table 4. 23. Revision rates of Device X primary total conventional hip replacement by catalogue
number range.

Catalogue range N N Obs.Years FETEIS Y
Revised Total Obs. Years (95% ClI)
00787101360 - 00787101960 1 17 39.7 2.52(1.85, 3.92)
00784501000 - 00784501800 15 169 517.2 2.9 (2.71, 3.11)
00784501230 - 00784501830 0 13 31.1 0.00 (0.00, 11.86)
Total 16 199 589 2.72 (1.55, 4.41)

46 Number of Surgeons

The Registry is aware that a single surgeon may be responsible for a prosthesis
combination with a higher-than-expected revision rate. This situation has occurred
twice and, on both occasions, the use of combinations ceased after they appeared in
the AOANJRR annual reports [5, 165]. Revision rates per 100 component years of the
prostheses by surgeons were evaluated in order to study the effect of a single surgeon
on prosthesis performance. An investigation of the number of surgeons enables
clinicians to look at the other potential confounding variables contributing to the
performance of a prosthesis (Table 4.24-4.33). Note that only the surgeons who used
more than ten specific prostheses were included in our statistical analyses. The study
was conducted to determine the performance of surgeons when they used (i) a device
of interest, (ii) all the device components, and (iii) excluded the outliers detected by
the AOANJRR standardised approach.

Table 4. 24. Revision rates of Device | primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100
Surgeon 1D Revised Total Obs.Years Obs.Years (95% CI)

Device | 0 21 91.2 0.00 (0.00, 4.04)

354 Overall 0 86 214 0.00 (0.00, 1.72)
Exc. outliers 0 65 122.8 0.00 (0.00, 3.01)
Device | 1 13 53.3 1.87 (0.05, 10.45)

544 Overall 2 88 289.3 0.69 (0.08, 2.5)
Exc. outliers 1 75 236 0.42 (0.01, 2.36)

Device | 3 36 68.4 4.38 (0.9, 12.81)

587 Overall 12 177 506.3 2.37 (1.22, 4.14)
Exc. outliers 3 39 50.8 5.9 (1.22, 17.26)

Device | 2 17 26.8 7.46 (0.9, 26.95)

1246 Overall 7 191 406.4 1.72 (0.69, 3.55)
Exc. outliers 5 174 379.6 1.31 (0.43, 3.07)

Device | 1 27 105.4 0.95 (0.02, 5.29)

1357 Overall 12 269 620.2 1.93(1.00, 3.38)
Exc. outliers 9 179 451.5 1.99 (0.91, 3.78)

Device | 1 47 32.3 3.1 (0.08, 17.26)

1726 Overall 9 457 1147.7 0.78 (0.36, 1.49)
Exc. outliers 8 396 1090.8 0.73 (0.32, 1.44)
Device | 9 113 1445 6.23 (2.85, 11.82)

1745 Overall 10 145 258.4 3.87 (1.85, 7.12)
Exc. outliers 1 28 95.6 1.04 (0.03, 5.83)
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Table 4. 25. Revision rates of Device Il primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100

Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
Device Il 4 57 226.9 1.76 (0.48, 4.51)
142 Overall 12 237 536.9 2.23 (1.15, 3.90)
Excl. outliers 8 180 310 2.58 (1.11, 5.08)

Table 4. 26. Revision rates of Device Il primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)

Device IlI 0 33 80.4 0.00 (0.00, 4.58)

155 Overall 3 354 914.5 0.33 (0.07, 0.96)
Exc. outliers 3 321 834.1 0.35 (0.07, 1.05)

Device IlI 15 436 1034.9 1.45 (0.81, 2.39)

1041 Overall 18 484 1144.4 1.57 (0.93, 2.48)
Exc. outliers 2 42 100.2 1.99 (0.24, 7.21)

Device IlI 10 96 2315 4.32 (2.07, 7.94)

1078 Overall 11 103 248.7 4.42 (2.21,7.91)
Exc. outliers 1 7 17.2 5.81 (0.15, 32.39)

Device IlI 2 63 57.8 3.46 (0.42, 12.49)

1357 Overall 12 269 620.2 1.93 (1.00, 3.38)
Exc. outliers 9 179 451.5 1.99 (0.91, 3.78)

Device IlI 5 60 168.7 2.96 (0.96, 6.91)

1717 Overall 31 1087 2799.4 1.11 (0.75, 1.57)
Exc. outliers 26 1018 2619.3 0.99 (0.65, 1.45)

Table 4. 27. Revision rates of Device IV primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100

Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
Device IV 4 53 188.3 2.12 (0.58, 5.44)
685 Overall 8 149 323.2 2.47 (1.07, 4.88)
Excl. outliers 4 96 134.9 2.96 (0.81, 7.59)

Table 4. 28. Revision rates of Device V primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100
Surgeon ID Revised Total NG Obs.Years (95% CI)
Device V 1 19 38.4 2.6 (0.6, 14.5)
587 Overall 12 177 506.3 2.37 (1.22, 4.14)
Exc. outliers 3 39 50.8 5.9 (1.217, 17.26)
Device V 2 17 26.8 7.46 (0.9, 26.95)
1246 Overall 7 191 406.41 1.72 (0.69, 3.55)
Exc. outliers 5 174 379.6 1.31 (0.43, 3.07)
Device V 1 27 105.4 0.95 (0.2, 5.29)
1357 Overall 12 269 620.2 1.93(1.00, 3.38)
Exc. outliers 9 179 451.5 1.99 (0.91, 3.78)
Device V 0 19 9 0.00 (0.00, 41.13)
1421 Overall 18 490 990.8 1.82(1.08, 2.87)
Exc. outliers 17 445 945.7 1.80 (1.05, 2.88)
Device V 1 61 56.9 1.76 (0.04, 9.79)
1726 Overall 9 457 1147.7 0.78 (0.36, 1.49)
Exc. outliers 8 396 1090.8 0.73 (0.32, 1.44)
Device V 9 112 144.4 6.23 (3.32, 12.74)
1745 Overall 10 145 258.4 3.87 (1.85, 7.12)
Exc. outliers 1 28 95.6 1.04 (0.03, 5.83)
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Table 4. 29. Revision rates of Device VI primary total conventional hip replacement by surgeon id and
the use of prostheses.

Surgeon ID Revl;lsed T::al Obs.Years Obi?;salrc;n(sgg;ocb
Device VI 4 11 1.9 212.05 (57.77, 542.92)
39 Overall 15 394 1000.7 1.50 (0.84, 2.47)
Exc. outliers 11 382 994 1.11 (0.55, 1.98)
Device VI 1 19 12.7 7.89 (0.2, 43.94)
153 Overall 5 219 590.4 0.85 (0.27, 1.98)
Exc. outliers 4 200 371.4 1.01 (0.29, 2.76)
Device VI 1 10 19.1 5.24 (0.13, 29.21)
156 Overall 4 96 206.5 1.94 (0.53, 4.96)
Exc. outliers 3 86 187.4 1.6 (0.33, 4.68)
Device VI 2 145 425.4 0.47 (0.06, 1.7)
275 Overall 2 223 634 0.32 (0.04, 1.14)
Exc. outliers 0 77 205.5 0.00 (0.00, 1.79)
Device VI 1 20 43.5 2.3(0.06, 12.8)
495 Overall 6 187 479.3 1.25 (0.46, 2.72)
Exc. outliers 5 167 435.8 1.15 (0.37, 2.68)
Device VI 1 34 126.8 0.79 (0.01, 4.39)
895 Overall 7 149 373.7 1.87 (0.75, 3.86)
Exc. outliers 6 115 246.9 2.43(0.89, 5.29)
Device VI 3 58 83.9 3.58 (0.74, 10.45)
961 Overall 3 79 165.5 1.81(0.37, 5.3)
Exc. outliers 0 21 81.6 0.00 (0.00, 4.52)
Device VI 1 115 347.8 0.29 (0.01, 1.6)
1001 Overall 11 633 1302.2 0.84 (0.42, 1.51)
Exc. outliers 9 510 942 0.95 (0.44, 1.81)
Device VI 174 190 3.16 (1.16, 6.87)
1149 Overall 14 392 924.2 1.51 (0.83, 2.54)
Exc. outliers 217 730.8 1.09 (0.47, 2.16)
Device VI 134 275.7 2.17 (0.8, 4.74)
1177 Overall 30 425 1303.9 2.30 (1.55, 3.28)
Exc. outliers 24 291 1028.2 2.72 (1.49, 3.47)
Device VI 0 36 128.8 0.00 (0.00, 2.86)
1195 Overall 10 752 1814.3 0.55 (0.26, 1.01)
Exc. outliers 8 693 1675.2 0.48 (0.21, 0.94)
Device VI 16 366 404.2 3.96 (2.26, 6.43)
1218 Overall 43 763 1666.6 2.58 (1.87, 3.47)
Exc. outliers 27 397 1262.4 2.14 (1.41, 3.11)
Device VI 84 85.2 1.17 (0.03, 4.33)
1260 Overall 371 772.1 0.52 (0.14, 1.33)
Exc. outliers 286 686 0.44 (0.09, 1.28)

Table 4. 30. Revision rates of Device VII primary total conventional hip replacement by surgeon id

and the use of prostheses.

N N Revisions/100
Surgeon 1D Revised Total Obs.Years Obs.Years (95% CI)

Device VII 8 117 413.1 1.94 (0.83, 3.81)

587 Overall 12 177 506.3 2.37 (1.22, 4.14)
Exc. outliers 3 39 50.8 5.9 (1.22, 17.26)

Device VII 1 13 38.7 2.58 (0.06, 14.39)

1066 Overall 9 262 568.3 1.58 (0.72, 3.00)
Exc. outliers 8 249 529.6 1.51 (0.65, 2.98)

Device VII 4 63 207.1 1.93 (0.53, 4.94)

1226 Overall 8 107 315.2 2.54 (1.09, 5.00)
Exc. outliers 4 44 108.1 3.70 (1.01, 9.51)
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Table 4. 31. Revision rates of Device VIII primary total conventional hip replacement by surgeon id
and the use of prostheses.

Surgeon ID Rev’;lsed To'\:al Obs.Years Obii;,;jrzn(zlg‘?ﬂ)o(:l)
Device VIII 2 93 94.2 2.12 (0.26, 7.67)
804 Overall 19 1204 3078.2 0.62 (0.37, 0.96)
Exc. outliers 17 1106 2976 0.57 (0.33, 0.91)
Device VIII 5 110 173.7 2.88(0.93, 6.72)
1041 Overall 18 484 1144.4 1.57 (0.93, 2.48)
Exc. outliers 2 42 100.2 1.99 (0.24, 7.21)
Device Xl 2 17 51 39.19 (4.75, 141.57)
1195 Overall 10 752 1814.3 0.55 (0.26, 1.01)
Exc. outliers 8 693 1675.2 0.48 (0.21, 0.94)
Device Xl 1 22 29.1 3.43 (0.09, 19.14)
1421 Overall 18 490 990.8 1.82 (1.08, 2.87)
Exc. outliers 17 445 945.7 1.80 (1.05, 2.88)
Device VIII 2 20 28.7 6.96 (0.84, 25.14)
1529 Overall 3 161 241.6 1.24 (0.26, 3.63)
Exc. outliers 1 138 206 0.48 (0.01, 2.7)
Device VIII 0 10 13 0.00 (0.00, 28.36)
1717 Overall 31 1087 2799.4 1.11 (0.75, 1.57)
Exc. outliers 26 1018 2619.3 0.99 (0.65, 1.45)
Device VIII 1 13 6 16.68 (0.42, 92.92)
1914 Overall 2 99 171.3 1.17 (0.14, 4.22)
Exc. outliers 1 86 165.3 0.6 (0.01, 3.37)

Table 4. 32. Revision rates of Device I1X primary total conventional hip replacement by surgeon id and
the use of prostheses.

Surgeon ID Rev’;lsed T(;\:al Obs.Years Obz?;:rzn(zg&om)

Device IX 0 10 30.5 0.00 (0.00, 12.09)

19 Overall 0 205 486.8 0.00 (0.00, 0.76)
Exc. outliers 0 195 456.3 0.00 (0.00, 0.81)

Device IX 1 20 62.2 1.61 (0.04, 8.95)

203 Overall 21 1284 3130.3 0.67 (0.41, 1.02)
Exc. outliers 20 1264 3068.1 0.65 (0.4, 1.01)

Device IX 0 26 70.8 0.00 (0.00, 5.21)

207 Overall 7 387 892.65 0.78 (0.31, 1.61)
Exc. outliers 7 261 821.85 0.85(0.34, 1.75)
Device IX 3 21 40.8 7.34 (1.51, 21.46)
261 Overall 4 26 55.6 7.19 (1.96, 18.42)
Exc. outliers 1 5 14.8 6.76 (0.17, 37.65)
Device IX 0 10 13.9 0.00 (0.00, 26.43)

294 Overall 2 105 304.5 0.66 (0.08, 2.37)
Exc. outliers 2 95 290.6 0.68 (0.08, 2.49)

Device IX 4 40 134.8 2.97 (0.81, 7.6)

297 Overall 9 281 706.8 1.27 (0.58, 2.42)
Exc. outliers 5 241 572 0.87 (0.28, 2.04)

Device IX 1 43 123.1 0.81 (0.02, 4.53)

562 Overall 6 512 1341.1 0.45 (0.16,0.97)
Exc. outliers 5 469 1218 0.41 (0.13, 0.96)

Device IX 0 10 36.6 0.00 (0.00, 10.1)

676 Overall 0 183 457.6 0.00 (0.00, 0.81)
Exc. outliers 0 173 421 0.00 (0.00, 0.88)
Device IX 0 10 28.8 0.00 (0.00, 12.79)

1111 Overall 6 337 833.6 0.72 (0.26, 1.57)
Exc. outliers 6 327 804.8 0.74 (0.27, 1.62)

Device IX 0 20 49.8 0.00 (0.00, 7.4)

1163 Overall 6 277 733.3 0.82 (0.3, 1.78)
Exc. outliers 6 257 683.5 0.87 (0.32, 1.91)
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Device IX 2 84 166.4 1.20 (0.14, 4.34)

1372 Overall 22 790 1607.5 1.37 (0.857, 2.07)
Exc. outliers 20 706 1441.1 1.38 (0.85, 2.14)

Device IX 0 14 19.9 0.00 (0.00, 18.49)

1760 Overall 5 255 524.9 0.95 (0.31, 2.22)
Exc. outliers 5 241 505 0.99 (0.32, 2.31)

Table 4. 33. Revision rates of Device X primary total conventional hip replacement by surgeon id and
the use of prostheses.

N N Revisions/100

Surgeon 1D Revised Total SR Obs.Years (95% CI)
Device X 15 176 524.1 2.86 (1.6, 4.72)
747 Overall 21 272 725.7 2.89(1.79, 4.42)
Excl. outliers 6 96 201.6 2.98 (1.09, 6.48)

This study noticed important interactions between surgeons and device
components, such as in the case of Devices Il, IV, and X. Higher-than-anticipated
revision rates of these devices could be associated with either the poor performance
of the surgeon or the device itself or even both. The idea of assessing the number of
surgeons originated from our clinical pre-knowledge intended to determine whether
the performance of the prosthesis was linked to the surgeon who performed the
procedure. For example, Table 4.32 gives a list of surgeons with experience using
Device IX, showing that one poor-performing surgeon (261) had a relatively much
higher revision rate than the others. It would be challenging to discuss surgeons’
effects in terms of Devices IX and VI which are used by many surgeons, albeit with a
variety of outcomes. However, there was no significant interaction for a number of
devices such as VIl and VIl because these two show a higher-than-expected rate of
revisions regardless of the surgeon’s performance. These findings should be

considered before reporting the hip outlier prostheses.

4.7 Discussion

Early identification of outliers ideally uses a time-to-event outcome while reducing
the confounding effects of other components in the device and patient characteristics.
ML, which contains self-learning algorithms, is one approach to consider many
variables simultaneously to limit the impact of confounding. The principal objective of
this study was to compare the effectiveness of using either RSF or
regularized/unregularized Cox regression to account for patient and associated device

confounding factors to current standard techniques.

This study evaluated RSF and regularized/unregularized Cox regression using data
from the AOANJRR to detect outlier devices among 213 individual primary total hip
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components performed in 163,356 procedures from 15t January 2015 to the end of
2019. Patient characteristics and device components were the inputs, and time to first
revision operation was the primary outcome treated as a censored case for death. The
effectiveness of the ML approaches was assessed based on the ability to detect the

same outliers identified by the AOANJRR standardised approach.

The standard AOANJRR approach identified three acetabular components and
seven femoral stems. The ML approaches identified some but not all the outliers
detected by the AOANJRR. Both the methods identified three of the same femoral
stems, and the RSF identified the other five components, including two of the same
acetabular cups and three of the same femoral stems. In addition, both the RSF and
Cox techniques detected a number of additional device components that were not
previously identified by the standardised approach.

This study showed that the RSF technique was more comparable to the AOANJRR
standard in terms of detecting more outlier prostheses. Of the ten outliers identified by
the AOANJRR gold standard, ML was able to identify eight of the same device
components, including two acetabular cups and six femoral stems. The group of
detected prostheses by both the feature selection techniques includes IV, V, and VIII.
By contrast, two out of the ten listed components (Il and VI) and were identified neither
by RSF nor Cox. The outcome highlights the significance of studying potential

confounding effects on the comparative performance of primary total hip prostheses.

The results indicate that the ML methods explored can be effective at detecting
outliers. However, a single model may not necessarily be the best choice because the
inclusion or exclusion of inputs can affect the strength and even sign of a given
predictor. For tree growing, RSF uses random subsets of variables per node that may
cause an independent split of correlated variables. This may lead to breaking the
structure of highly-correlated predictors and providing an interesting approach for
explorative variable-selection studies [188]. However, false-positive discoveries due
to overfitting are considered to be a major problem [189]. On the other hand, the Cox
regression has a significant advantage in computational cost, interpreting variable

strength, and documenting confounding effects.

Feature selection may be able to offer a supplementary identification approach with

the potential to identify most of the devices detected by the standard. This similarity in
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the results becomes more apparent by looking at the outliers reported after meeting
all the stages due to further investigation of confounding factors. The AOANJRR has
not reported the two non-detected devices (Il and VI). However, the three identified
components identified by both the techniques were detected considering larger
sample sizes and over longer times [5]. These identified femoral stems include
Emperion, Furlong Evolution, and MiniMax total conventional hip prostheses. The
current technique used by the registry is pragmatic and effective at detecting the
relative performance of total hip prostheses with a higher risk of revision through in-

depth knowledge of potential confounding factors.

The current study has several limitations. The effectiveness of screening tests
depends on recognizing relevant component characteristics; the process will be
compromised if some attributes that contribute to the prosthesis survival are not
accounted for (see Appendix A). This study included well-known clinically relevant
attributes, and head size showed the most significant contribution to the initial
screening of total hip devices. However, other factors related to surgeons and
catalogue ranges can also be investigated. In some cases, it appeared (solely from
the overall revision rate) that surgeon-specific factors contributed to a higher-than-
expected revision rate. This draws attention to the need for action to be taken in regard
to the impact of the surgeon and surgical procedure on the performance of prostheses.
As a limitation, this thesis did not investigate key factors associated with surgeons,
such as their experience and surgical volume, due to the complexity of translating this

information into classified meaningful inputs.

The contrary may be a concern as well; considering too many attributes may cause
delayed detection. One possibility to address this issue is to expand the dataset by
involving several registries worldwide that have information on the same prostheses.
The proposed methods can be applied to knee and shoulder arthroplasty devices as
a research opportunity. Utilizing prediction to understand the variables linked with the
outcome may improve shared decision-making, leading to fewer patients at risk of

receiving poor devices.
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4.8 Summary

Machine learning may be able to offer a supplementary approach to enhance the
early identification of outlier devices within the community. This study showed that the
RSF technique was more comparable to the AOANJRR standardised approach and
head size was the most significant device-related covariate for the initial screening of
total hip devices. Further studies are required to better understand the potential of
feature selection techniques to improve the early assessment of total hip outlier
prostheses.






Chapter 5. The Most Appropriate Comparator in

Assessing the Performance of Knee Prostheses



Knee Comparator

5.1 Overview

Knee replacement was first widely performed in the 1970s and 1980s [190].
Osteoarthritis (OA) is the most common primary diagnosis for this cost-effective
surgical procedure [47]. The demand for knee replacement surgery is projected to rise
due to the increasingly ageing population. Early detection mechanisms are required
to identify poor-performing prostheses (outlier prostheses) with unreliable clinical
outcomes for patients. The identification and documentation of outlier prostheses

reduce their usage leading to better clinical outcomes [116].

Joint registries aim to reduce the revision rates of arthroplasty surgeries by early
detection of outlier joint arthroplasty devices [5, 34, 47]. They deliver population-based
data on the comparative surveillance of prostheses within the community. Survival
outcome data are essential for an evidence-based approach to identify prostheses
with statistically higher than anticipated revision rates. Given the signal detection
efforts to exclude outliers over time, the Australian Orthopaedic Association National
Joint Replacement Registry (AOANJRR) reports 90% survival for primary total knee
replacement (TKR) for OA at 19 years [5].

There are different types of knee replacements that can be classified based on the
type of articulation. All registries report variations in the outcomes of total knee
prostheses by stability. Stability is used for various purposes and the type of stability
used for prostheses may affect the overall outcomes within the same class. Most total
knee prostheses implanted are either cruciate retaining (CR) or posterior stabilised
(PS) prostheses [4]. In Australia, these two stability types have remained the most
widely and commonly used primary TKR procedures [34, 40, 66]. On the other hand,
complex designs (i.e., FS and hinged implants) are also used in a limited number of

primary procedures based on the clinical circumstance [5].

The AOANJRR has developed a standardised multi-stage approach to identify
primary total knee outliers by performing an initial screening test. This is done by
comparing the revision rate of individual prostheses to the average revision rate of all
prostheses belonging to the same broad TKR class. However, the current comparator
does not adequately differentiate between complex and conventional procedures. This
may result in less conventional and more complex devices being identified as being at

risk [5, 66]. Given the higher associated risk of failure with complex knee prostheses,
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this study aims to identify more specific and relevant comparator groups by stability
design to better reflect the corresponding type of prostheses.

5.2 Materials and Methods

The study period was from the first year that the AOANJRR collected TKR data
from all Australian hospitals (January 2003) to the closure of the dataset at the end of
December 2019. The study population included all patients undergoing a primary TKR
performed for primary OA. The outcome was time to first revision surgery, defined as
reoperations of previous knee replacements where one or more prosthetic device
components are replaced, removed, or added. Death was treated as a censored case
with survival time based on the date those cases exited the study. Patients with no
revision or death had survival times based on the time elapsed between the initial
surgery and the end of follow-up. Further analyses were conducted to study the
changes in the most common types of revision and reasons for revision. The
AOANJRR standardised approach was then employed to determine the impact of
modified comparator groups on the number of identified outliers. The revision rate of
primary total knee surgery by fixation, bearing surface, bearing mobility, and use of
patella was also calculated to evaluate the differences between the complex and

conventional study populations.

5.3 Standard Designs

The AOANJRR defines CR prostheses with a flat or bowl-shaped tibial articulation,
regardless of congruency. PS design prostheses mostly offer additional posterior
stability with a box and peg design; or less often using a groove and cam. The use of
CR prostheses has continued comparatively constant over the last 10 years. In 2019,
CR stability accounted for 71.6% of primary procedures. However, the use of PS
design prostheses experienced a reduction in trend from 32.9% in 2008 to 19.2% in
2019 [5].



Knee Comparator

Figure 5. 1. Left presents the photograph of a cruciate-retaining and right offers posterior stabilized
femoral components, showing a higher transition height from the trochlear groove to the intercondylar
box in the posterior stabilized femoral component [191].

5.4 Complex Designs

Hinged knees with added collateral and posterior ligament stability, and FS with a
large peg and box design are used less often. These designs are usually considered
as revision components or only performed in complex clinical situations of primary
surgeries. Complex design prostheses are mostly used for patients with the primary

diagnosis of tumours, fractures, and rheumatoid arthritis [5].

5.5 Statistical Methods

Two study populations in primary TKR performed for OA were studied using Kaplan-
Meier survival analysis [5]. The unadjusted CPR was estimated after the primary
surgery. This measure was calculated using unadjusted pointwise Greenwood
estimates with an accompanying 95% confidence interval (Cl). To compare revision
rates between the two modified comparator groups, age- and gender-adjusted hazard
ratios (HRs) for the entire period were calculated using the Cox proportional hazard
model. The secondary outcome measure was the cumulative incidence of reasons for
revisions. This concept was analysed to study the competing risk of most common
revision reasons amongst the complex and conventional TKRs. A descriptive analysis
was also performed comparatively to analyse the contribution of each reason for
revision and type of revision. In addition, the CPR rate by fixation, bearing surface,
bearing mobility, and the use of patella were calculated. The effectiveness of the
modified comparator to detect individual prostheses was evaluated by performing the
first two stages of the AOANJRR standardised approach. This involved comparing the
revision rate of individual prostheses to twice the average revision rate of all

prostheses belonging to the same broad device class. The impact of confounding

65



factors was examined by calculating age- and gender-adjusted HRs to check for a
significant difference compared to the combined HR of the comparator group. The
statistical analysis was performed using R software [158], including the packages

Survival [159] version 3.2-11 and Survminer [160] version 0.4.9.

5.6 Results

Fully stabilised and hinged designs show higher CPR rates than CR and PS over
the entire period (Figure 5.2). Table 5.1 shows the yearly CPRs of primary TKR by
stability design. The use of PS design led to a higher overall CPR than the CR design
for conventional prostheses, and the hinged design had a higher CPR than FS for

complex prosthesis constructs. In total, there was a higher risk of revision for the two

complex designs compared to the conventional prostheses.

Curmnulative Percent Revision
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Figure 5. 2. CPR of primary total knee replacement by stability.
Table 5. 1. Yearly CPR of primary total knee replacement by stability.
CR 16,406 463,863 0.9 (0.9, 1.0) 1.9 (1.8, 1.9) 2.5 (2.4, 2.5) 2.9 (2.9, 3.0)
PS 7,725 172,530 12(1.2,1.3) 22(2.2,23) 3.0 (2.9, 3.1) 3.6 (35, 3.7)
FS 139 2,519 2.6(1.9,3.2) 4.2 (3.4,5.1) 4.8 (3.9,5.7) 5.4 (4.4, 6.4)
Hinged 86 1,133 35 (2.4, 4.6) 5.3 (3.9, 6.7) 6.5 (4.8, 8.1) 7.7 (5.8, 9.4)
5yr 6 yrs 7yrs 8yrs 9yrs 10 yrs
CR 3.3(3.2,3.3) 3.6 (3.5, 3.7) 3.9 (3.8, 4.0) 4.2 (4.1,4.3) 4.5 (4.5, 4.6) 4.8 (4.8, 4.9)
PS 4.0 (3.9, 4.1) 4.4 (4.3,45) 4.8 (4.7, 4.9) 5.2 (5.1, 5.3) 56 (5.5,5.7) 6.0 (5.9, 6.1)
FS 6.3 (5.1, 7.4) 6.5(5.3,7.7) 6.8 (5.6, 8.1) 8.1 (6.5, 9.6) 8.6 (6.8, 10.2) 8.9 (7.0, 1.07)
Hinged 88(6.7,109) | 10.6(81 131) | 11.0(84,136) | 125(9.3 155) | 135(98,17.2) | 135(9.8, 17.2)
11yr 12 yrs 13 yrs 14 yrs 15yrs 16 yrs
CR 5.2 (5.1, 5.3) 5.5 (5.4, 5.6) 5.9 (5.8, 6.0) 6.2 (6.1, 6.4) 6.7 (6.6, 6.9) 7.1(6.9,7.3)
PS 6.4 (6.3, 6.6) 6.8 (6.6, 7.0) 7.2 (7.0, 7.4) 75(7.3,7.8) 8.0(7.7,83) 85 (8.1, 8.9)
FS 8.9 (7.0, 1.07) 10.6 (7.8,13.7) 11.4 (8.0, 14.7) 11.4 (8.0, 14.7) 11.4 (8.0, 14.7) -
Hinged 135(9.8,17.2) | 135(9.8,17.2) | 135(9.8,17.2) | 135(9.8,17.2) | 135(98,17.2) | 135(98 17.2)
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Figure 5.3 presents the CPR among the study populations for conventional and

complex procedures showing the proportion revised. The conventional curve shows a
10-year CPR of 10.3% (8.6, 12.0) for the complex designs and a 10-year CPR of 5.2%
(5.1, 5.2) for the conventional prostheses performed in primary TKR (Table 5.2).
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Figure 5. 3. CPR of conventional and complex comparator groups.

Table 5. 2. Yearly CPR of the comparator groups.

CPR N Revised N Total \ 1yr \ 2yrs \ 3yrs 4yrs
Conventional 24,131 636,393 1.0 (1.0, 1.1) 2.0 (1.9, 2.0) 2.6 (2.6, 2.7) 3.10 (3.0, 3.1)
Complex 225 3,652 2.8 (2.3, 3.4) 45 (3.8, 52) 5.3 (4.5, 6.1) 6.0 (5.1, 6.9)
Conventional 3.5 (3.4, 3.5) 3.8 (3.8, 3.9) 4.2 (4.1, 4.2) 4.5 (4.4, 4.5) 4.9 (4.8, 4.9) 5.2 (5.1, 5.3)
Complex 7.0 (6.0, 8.0) 7.7 (6.6, 8.8) 7.9 (6.8, 9.0) 9.2 (7.8, 10.6) 99(83,11.4) | 10.3 (86, 12.0)
11 yr 12 yrs \ 13 yrs | 14 yrs | 15 yrs 16 yrs
Conventional 5.5 (5.5, 5.6) 5.9 (5.8, 6.0) 6.2 (6.1, 6.3) 6.6 (6.5, 6.7) 7.1(6.9,7.2) 7.5 (7.4, 7.7)

Complex

10.3 (8.6, 12.0)

13.1 (10.2, 16.0)

13.9 (10.6, 17.0)

13.9 (10.6, 17.0)

13.9 (10.6, 17.0)

13.9 (10.6, 17.0)

Our findings show a higher sensitivity obtained for the early assessment of

conventional prostheses with the potential to detect outliers with greater accuracy. The

modified conventional comparator caused the identification of additional conventional

and fewer complex prostheses through stages | and Il of the standardised approach.

The non-detected devices with complex designs could not be actual outlier

prostheses. They were mostly used in high-risk surgeries and needed to be compared

statistically to the more relevant comparator.

Table 5.3 shows the details of the two additional combinations detected utilising the

modified comparator focusing on the routinely used devices. Defining the specific

comparator for complex design prostheses reduced the number of identified outliers

by the AOANJRR standard (Table 5.4). The revision rates of these devices exceeded

67



stage | but there was no significant difference between the HRs of the listed

components and the complex comparator. The use of modified comparator groups

caused a meaningful change in the number of identified prostheses as being at risk.

Table 5. 3. Additional identified conventional prostheses using the modified comparator.

Descriptive information 1st stage 2nd stage Comparator
Femoral/Tibial N N Obs.Years Revisions/100 ZRe- ::(Jius:\%::?r Current Conventioanl
Revised Total : Obs.Years (95% CI) 9 9 '
P-value
Device | 43 481 3555.7 1.21 (0.87, 1.63) 2'l7p(<1(')6é'(’)12'93) 0.61 (0.6, 0.61) 0.60 (0.59, 0.61)
. 2.37 (1.83,3.06
Device Il 58 438 4844.4 1.20 (0.91, 1.55) p(<0 L ) 0.61 (0.6, 0.61) 0.60 (0.59, 0.61)

Table 5. 4. Non-detected complex prostheses

using the modified comparator.

Descriptive information 1st stage 2nd stage Comparator
Femoral/Tibial N N Obs.Years Revisions/100 ZRe_ ::éuséi%::f Current Complex
Revised Total : Obs.Years (95% CI) 9 g ! P
P-value
Device Il 11 124 655.6 1.68 (0.84, 3.0) 1'18;96625'16) 0.61(0.6,0.61) | 1.42(1.23,1.61)
Device IV 21 211 974.4 2.15 (1.33, 3.29) 1.44p(?6gf(‘)82.26) 0.61(0.6,0.61) | 1.42(1.19, 1.58)
Device V 27 478 2121.7 1.27 (0.84, 1.85) 0.92,3(9(.)6625:.38) 0.61 (0.6, 0.61) 1.42 (1.25, 1.66)
Device VI 7 124 476 1.47 (0.59, 3.03) 0'85p(964gé;'82) 0.61 (0.6, 0.61) | 1.42 (1.24,1.62)
Device VII 3 38 231.8 1.29 (0.27, 3.78) 0'96’)(963;;173'01) 0.61(0.6,0.61) | 1.42(1.24,1.62)
Device VIII 8 115 371.3 2.15 (0.93, 4.24) 1'31p(f’66:é 62'65) 0.61(0.6,0.61) | 1.42(1.22, 1.60)
Device IX 17 295 1074.1 1.58 (0.92, 2.53) 1.04p(9(.)6§%:.71) 0.61 (0.6, 0.61) 1.42 (1.22,1.62)
Device X 6 75 433.6 1.38 (0.51, 3.01) 0.85p(9(.)3$(') 11'92) 0.61 (0.6, 0.61) | 1.42(1.24,1.62)
5.6.1 Reason for Revision and Type of
Revision

The descriptive results of reasons for revisions are listed in Table 5.5 for the two

modified comparator groups. For both the comparator groups, infection was the most

common reason for revision. Infection occurred in 24.2% (5846 of 24131) of

conventional TKR prostheses, followed by loosening (23.9%), patellofemoral pain
(9.2%), and instability (8.2%). Infection occurred in 52% (117 of 225) of complex knee
procedures, followed by fracture (9.8%), loosening (9.3%), and instability (6.7%).
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Table 5. 5. Comparator groups - Reason for revision (follow-up limited to 17 years).

Complex Conventional
Reason for Revision Number % Prlrparles % Revisions Number % Prlr.narles % Revisions
Revised Revised
Infection 117 3.2 52.0 5846 0.9 24.2
Fracture 22 0.6 9.8 750 0.1 3.1
Loosening 21 0.6 9.3 5770 0.9 23.9
Instability 15 0.4 6.7 2108 0.3 8.2
Patella Erosion 8 0.2 35 1518 0.2 6.3
Pain 7 0.2 3.1 1983 0.3 8.2
Bearing Dislocation 7 0.2 3.1 148 0.0 0.6
Malalignment 4 0.1 1.8 520 0.1 2.1
Implant 'ﬁ;esae':‘ge Tibial 4 0.1 18 129 0.0 05
Incorrect Sizing 4 0.1 1.8 269 0.0 11
Patellofemoral Pain 3 0.1 13 2227 0.3 9.2
Patella Maltracking 2 0.1 0.9 161 0.0 0.7
Prosthesis Dislocation 2 0.1 0.9 66 0.0 0.3
Implant Breakage 2 01 09 24 00 01
Femoral
Lysis 1 0.0 0.4 402 0.1 1.7
Implant Breakage Tibial 1 0.0 0.4 47 0.0 0.2
Heterotopic Bone 1 0.0 0.4 8 0.0 0.0
Arthrofibrosis - - 896 0.1 3.7
Wear Tibial Insert 366 0.1 1.5
Metal Related Pathology 339 0.1 14
Implant Breakage Patella 125 0.0 0.5
Synovitis 78 0.0 0.3
Osteonecrosis 51 0.0 0.2
Wear Patella 33 0.0 0.1
Tumour 19 0.0 0.1
Wear Tibial 9 0.0 0.0
Progression Of Disease 4 0.0 0.0
Wear Femoral 3 0.0 0.0
Incorrect Side 1 0.0 0.0
Post Operative 1 00 00
Haematoma
Patella Dislocation - - - - - -
Other 4 0.1 1.8 230 0.0 0.9
N Revision 225 6.2 100.0 24,131 3.8 100.0
N Primary 3,652 636,393

Note. % Primaries Revised: The contribution of each revision diagnosis as a percent of all primary practices.
% Revisions: The percentage of each revision diagnosis of the total number of revisions.

Figure 5.4 details the cumulative incidence of the most common revision reasons

for complex design prostheses in primary total knee surgeries. Figure 5.5 illustrates a

comparative graph that provides the cumulative incidence of the same revision causes

for the conventional comparator group. The 10-year cumulative incidence with 95% CI

of infection for the complex group was 4.8%, higher than the 1.1% incidence for the

conventional designs. The overall risk of other revision causes for the complex designs

was also higher than that of the conventional prostheses. Early infection is the most

probable scenario for each study population, particularly underlined for the complex

devices with 6-month cumulative incidences of 1.4%.
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Figure 5. 4. Cumulative incidence revision diagnosis for the complex primary total knee.
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Figure 5. 5. Cumulative incidence revision diagnosis for the conventional primary total knee.

The changes of the most common types of revisions were studied by undertaking
a descriptive analysis limited to 17 years of follow-up for the two study populations.
Table 5.6 shows that TKR (tibial/femoral)’ and ‘finsert only’ were the most common
major and minor types of revision respectively, for both the comparator groups.
However, there are variations in the incidence probability of the other types for the
complex and conventional total knee. Overall, the results for minor components
(54.5%) presented a higher proportion revised than the major device components
(45.5%).
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Table 5. 6. Comparator groups - Type of revision (follow-up limited to 17 years).

Complex Conventioan|
Type of Revision Number % Prlrparles % Revisions Number % Prlmarles % Revisions
Revised Revised
TKR (Tibial/Femoral) 32 0.9 14.2 6206 1.0 25.7
Tibial Component 10 0.3 4.4 2070 0.3 8.6
Cement Spacer 21 0.6 9.3 1309 0.2 5.4
Femoral Component 23 0.6 10.2 1262 0.2 5.2
Removal of Prostheses 3 0.1 13 122 0.0 0.5
Total Femoral 1 0.0 0.4 11 0.0 0.0
Reinsertion of Components - - - 10 0.0 0.0
N Major 90 25 40.0 10,990 17 455
Insert Only 102 2.8 45.3 5820 0.9 24.1
Patella Only 21 0.6 9.3 4783 0.8 19.8
Insert/Patella 8 0.2 3.6 2479 0.4 10.3
Minor Components 3 0.1 13 48 0.0 0.2
Cement Only 1 0.0 0.4 11 0.0 0.0
N Minor 135 3.7 60.0 13,141 2.1 54.5
N Revision 225 6.2 100.0 24,131 3.8 100.0
N Primary 3,652 636,393

Note. % Primaries Revised: The proportional contribution as a percentage of all primary procedures.
% Revisions: The number of revisions as a percentage of the total number of revisions.

5.6.2
Fixation

Revision Rates of Comparator Groups by

Prostheses typically have a recommended fixation method but can be used with an
alternative fixation according to patient characteristics and the primary diagnosis. For
primary conventional TKR, cementless fixation has a higher rate of revision than
cemented fixation and hybrid (tibial-cemented) after three months. Figure 5.6
illustrates that hybrid (tibial-cementless) has the highest CPR up to 15.5 years of
follow-up when a conventional stabilised knee is used. Significant differences were
shown in the HR of the cementless against both cemented [HR 1.15 (1.12, 1.19),
p<0.001] and hybrid (tibial-cemented) [HR 1.27 (1.23, 1.32), p<0.001] using Cox
proportional hazard model. The cementless fixation with less than 10 observations has
the lowest revision rate when a complex design prosthesis is used (Figure 5.7).
However, this needs to be reassessed later over a larger sample size due to the limited
numbers at risk. Cemented fixation shows better overall outcomes than both hybrid
fixations for complex procedures. There is no significant difference in the HR between

the revision rate of the fixation methods for complex procedures over the entire period.
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Figure 5. 6. CPR of conventional primary total knee replacement by fixation.
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Figure 5. 7. CPR of complex primary total knee replacement by fixation.

5.6.3 Revision Rates of Comparator Groups by
Bearing Surface

Two main polyethylene types are used in primary TKR: cross-linked polyethylene
(XLPE) and non-XLPE. The XLPE includes a sub-group that has antioxidants added.
After three months, XLPE has a lower revision rate than the non-XLPE for
conventional procedures (Figure 5.8). The primary reason for this difference is a
decreased cumulative incidence of late loosening. The difference between XLPE and
non-XLPE is more apparent over a longer period. For complex procedures, there is a

lower overall rate of revision for the XLPE compared to non-XLPE whereas the
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antioxidant version still needs more data to better reflect the revision outcome (Figure
5.9). The 15-year CPR rate of conventional procedures for XLPE is 4.92% (4.64, 5.21)
and for non-XLPE is 7.66% (7.51, 7.81). Within the community of complex prostheses,
the 15-year CPR for XLPE is 10.18% (4.97, 15.10) and for non-XLPE is 14.15%
(10.67, 17.50). There are significant differences when non-XLPE is used compared to
XLPE subtypes (including the antioxidant version) for the standard design prostheses
[HR 1.40 (1.36, 1.44), p<0.001]. However, there was no statistical difference when
XLPE was analysed with/without the addition of antioxidants. The same analysis for
the complex procedures also shows no significant difference among the HRs of the

types of bearing surfaces.
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Figure 5. 8. CPR of conventional primary total knee replacement by tibial bearing surface.

-
=
=)

7
1=}
=

Bearing Surface
— XLPE
Mon-XLPE
— XLPE + ANTIOXIDANT

]
=
=

Cumulative Percent Revision
=
=
[

0.0%

0 2 4 6 8 10 12 14 16
Years Since Primary Procedure

Number at risk

== | 489 318 178 102 51 27 1 5 3
3082 2179 1425 887 518 263 120 55 9
L 49 0 0 0 0 0 0 0 0

Figure 5. 9. CPR of complex primary total knee replacement by tibial bearing surface.
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5.6.4 Revision Rates of Comparator Groups by
Bearing Mobility

The CPR rate of complex and conventional TKR by bearing mobility is shown in
Figures 5.10 and 5.11. Surgeons selected a variety of mobility designs with respect to
patient characteristics. Tibial prostheses may be modular or non-modular. Modular
prostheses with fixed or mobile designs have a metal base plate and tibial insert. Non-
modular prostheses are either all-polyethylene or polyethylene moulded to a metal
baseplate. Fixed bearings comprise non-modular tibial prostheses and those with fixed
inserts that do not relatively move to the baseplate. Fixed-bearing prostheses have a
lower overall CPR than all types of mobile bearings for complex and conventional
procedures. Note that there is no complex primary TKR performed with rotating-sliding
and sliding bearing mobility. When types of mobile bearings are compared for
conventional prostheses, rotating mobility has a lower overall revision rate than the
other types. However, the group of prostheses with sliding mobility design has been
registered in only a limited number of observations. In total, there is a significant
difference when comparing the combined group of mobile against fixed conventional

prostheses using Cox proportional hazard model [HR 1.25 (1.21, 1.29), p<0.001].
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Figure 5. 10. CPR of conventional primary TKR by bearing mobility.
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Figure 5. 11. CPR of complex primary TKR by bearing mobility.
(Note. There is no complex primary TKR performed with “Rotating - Sliding” and “Sliding” bearing mobility.)

5.6.5 Revision Rates of Comparator Groups by
Patella Usage

Primary conventional TKR with patellar resurfacing has a lower revision rate
significantly than procedures without patellar resurfacing [HR 1.32 (1.29, 1.36),
p<0.001]. However, HR does not show a significant statistical difference when the
patella is resurfaced for complex prostheses [HR 1.04 (0.79, 1.37), p=.78]. It is noted
that outcomes related to the use of patellar resurfacing differ by the type of prosthesis
used (Figures 5.12 and 5.13).

50.0 ;
HR - adjusted for age and gender
Entire Period- HR =1 .32 (1 29, 1 36),p < 0. 001
5400
o
A Patella
i
€ 30.0% 1 — Patella Used
@
2 Mo Patella
@
o
200
=
=
£
3 10.0
—_—t
[ ————
0.0% -
0 2 4 6 8 10 12 12 16

Years Since Primary Procedure

Number at risk

== | 358612 278199 207896 147986 99671 61799 35135 16584 4298
277781 238393 197062 154546 113495 75758 44507 21549 5361

Figure 5. 12. CPR of conventional primary TKR by patella usage.
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Figure 5. 13. CPR of complex primary TKR by patella usage.

5.7 Discussion

The problem with the current approach is that it does not adequately differentiate
between the complex and conventional design prostheses. Given the higher revision
risk of complex knee designs in primary total knee surgeries, this study aims to identify
more relevant comparator groups to better reflect conventional and complex surgical
practices. Conventional designs include CR and PS, and the knee designs used in

more complex surgery includes fully stabilised (FS) and hinged designs.

When the CR and PS groups were combined as the final conventional comparator
group, the 10-year CPR was 5.2% (5.1, 5.3). When the FS and hinged design groups
were combined as a comparator group of complex devices to reflect devices used only
for specific purposes, the CPR at 10-year was 10.3% (8.6, 12.0). The use of modified
comparator groups led to identifying additional conventional prostheses but fewer

complex designs as being at risk.

The conventional comparator improved sensitivity for the comparative assessment
of standard design prostheses. In addition, a focus on complex prostheses generated
a more relevant approach for the early identification of prostheses used for specific
purposes in primary TKR. Through undertaking the AOANJRR standardised
approach, fewer complex designs and additional conventional prostheses were

identified as being at risk by utilising the modified comparator groups.
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These findings may enhance the signal detection of poor-performing prostheses in
a more relevant and effective comparative statistical analysis. Improved survivorship
and better functional performance are projected when a new knee system surpasses
a former model. However, these novel systems have design justifications to address
stability, wear, and patellofemoral articulation. All design modifications do not deliver
a consequence in improved survivorship [115]. Due to these ongoing changes to
reduce complications, extend implant lifespan, and improve functional outcomes, the
comparator needed to be reconsidered by the stability design to improve the relevance

of comparative analyses.

This study also has several limitations. First, there was no further subdivision by
other potential factors such as patella usage, fixation, bearing surface, and bearing
mobility. However, each factor may influence the survivorship of comparator groups
for complex and conventional designs [5, 34, 40]. At this stage, further subdivisions
may adversely affect the effectiveness of initial screening for a conservative
meaningful comparison of the prosthesis performance. Second, the AOANJRR has
recently expanded classification to include medial pivot designs separately in its
annual reports. This conventional design of total knee prostheses was not included in
our scope as registered much less than CR and PS. The AOANJRR annual reports
show that the medial pivot design provided satisfactory pain relief and functional

improvement [5].

Some pre-existing conditions may affect the outcome of TKR because of the
complexity of the surgery or the specific state of the affected limb. For example, when
the surgeon is dealing with an unusual deformity of the bone or a soft-tissue envelope
around the knee, there is the likelihood of increased risk of revision, thereby affecting
the performance of individual prostheses [192-194]. Complex knees related to the type
of patient or local conditions of the knee is considered and assessed by senior
clinicians during the final stage of the AOANJRR standardised approach and are
outside the scope of initial screening. Therefore, the focus of this chapter was on the
first and second stages of the AOANJRR screening process. Future studies could be
conducted to study a variety of factors, including the use of prostheses in complex
primary situations, inadequate sample size, or whether they have been combined with
prostheses already known to have a higher rate of revision or major differences in

primary diagnosis.
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The safety and effectiveness of medical devices such as knee arthroplasty
prostheses are significant public health concerns [169]. Outlier detection will continue
to evolve by reconsidering the improvements made periodically in prosthesis design
and use. Joint registries play a significant role in controlling the harm and cost of using
poor-performing devices in knee replacement surgeries [152]. An international
collaboration between joint arthroplasty registries may enhance the process by
generating a more comprehensive comparator for total complex and conventional

knee prostheses [167].

5.8 Summary

This research suggests more relevant and effective comparator groups in primary
TKR for a more appropriate comparison of device components. Utilising the
conventional comparator improved the sensitivity for the comparative assessment of
standard design prostheses. In addition, a focus on only complex prostheses
generated a more specific approach for the early identification of prostheses used for
specific purposes. The use of modified comparator groups led to identifying fewer

complex and additional conventional prostheses as being at risk.



Chapter 6. Can Machine Learning Approach Contribute
to Monitoring Post-Market Surveillance of Total Knee
Arthroplasty Prostheses?



6.1 Overview

The industry continues to develop new implants and associated technologies,
although more rigorous data is still needed to justify their introduction [165, 168, 169].
Total knee prostheses used in primary procedures are among the most relevant due
to their widespread use and the number of poorly-performing devices [4, 190].
Monitoring the prostheses that have a higher risk of requiring revision, and early
detection of these devices will produce better results in longer times and reduce health
expenses [4, 152].

Most medical devices and surgical implants, including knee replacements, do not
cause a problem or concern. However, joint replacement registries have played an
important role in identifying the devices with a higher-than-anticipated revision rate
called outliers [34, 44], particularly since it is difficult to ascertain the safety and
comparative advantages of innovative knee implants that have been recently
introduced into the market [152]. Hence, large-scale device evaluation using
multinational registry data has become an essential means of determining whether a

device itself has an increased risk of failure [167, 172].

A practical multistage approach has been developed by the Australian Orthopaedic
Association National Joint Replacement Registry (AOANJRR) to report the relative
performance of prostheses [5]. Total knee devices are comprised of multiple parts
working together, including two major femoral and tibial components. Revision surgery
may occur because of the failure of one or both of these components. Both the tibial
and femoral components used for primary total knee surgery are usually manufactured
by the same company. This means that, generally, prosthesis combinations are
identified by the AOANJRR rather than individual devices. The detection of total knee
outliers with higher-than-anticipated revision rates is challenging as many prosthesis
combinations are used differently depending on their purpose.

The aim of the initial screening method developed by the registry is to identify
prostheses that differ significantly (twice than other total knee prostheses) from the
combined revision rate per 100 observed component years for all other prostheses
within the same class—comparator. The impact of confounding factors is also
investigated by calculating the age- and gender-adjusted hazard ratio (HR) to
determine whether there is a significant difference compared to the HR of the
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comparator. However, the method ignores the time ordering and does not address the
confounding that may be due to device- and patient-related variables. Ideally, a time-
to-event analysis needs to be undertaken to detect poor-performing devices while
limiting the confounding effect of other components, device attributes, and patient

characteristics.

Machine learning (ML) techniques are adopted for a variable selection problem
because they have shown the potential to handle high-dimensional data with a vast
number of interactions. This feature can be a solution to the additional complexity of
confounding in medical research. The primary purpose of this thesis was to evaluate
the use of ML for monitoring total knee prostheses. The effectiveness of the two
proposed methods is determined by their ability to identify the same outliers identified
by the AOANJRR standardised approach. The outcome can be used as a step towards

improving post-market surveillance—evaluation efforts using AOANJRR-registry data.

6.2 Materials and Methods

The scope of this study is primary total knee replacement with primary diagnoses
of Osteoarthritis (OA). The AOANJRR dataset contains 265,655 observations from the
15t of January 2015 (when the registry began collecting body mass index (BMI)) to the
end of December 2019, as there was a desire to include all the possible patient-related
confounding factors. Because almost all patients who underwent primary total knee
arthroplasty had a major diagnosis of OA (98%), the data were filtered to only include
cases with primary diagnosis OA. This comprehensive database comprises 160
unique prosthesis combinations, each of which consists of two major tibial and femoral
components [5]. The same company's tibial/femoral components are typically
combined and used in a total knee intervention, which was the reason for studying

combinations rather than individuals [5].

Tibial/femoral components, device attributes, and patient characteristics are the
inputs, and the time to the first revision surgery is the outcome of survival analysis.
Each device component was clearly introduced to the model by an indicator variable
showing the name of the model. Device attributes include prosthesis stability, bearing
mobility, bearing surface, fixation, and use of patella (Table 6.1). The reason for using

the covariates is to enable the algorithm to consider the linear and non-linear
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correlations. For example, the effect of fixation varies depending on prosthesis stability
that needs to be considered in training [5].

Most patients were female (55.3%), had an American Society of Anesthesiologists
(ASA) score of less than 3 (60.1%), the average age of 68.2 with a BMI of 32.1 kg/mz.
Patient covariates were age, gender, BMI, and American Society of Anesthesia (ASA)
scores; all considered potential factors contributing to survival outcomes. Gender and
ASA score (less than 3 vs. 3) were patient covariates defined in two levels. Age and
BMI were categorized into three groups according to the distribution of our data. There
were only missing values for BMI (6.26%) and ASA scores (0.41%) of patient data
substituted using multiple imputation [174].

Table 6. 1. Descriptive information of patient- and device-related covariates.

Patient characteristics

Level

n (%)

<65 88,961 (33.5%)
Age 65-74 110,138 (41.5%)
>75 66,556 (25.0%)
Gender Female 146,841 (55.3%)
Male 118,814 (44.7%)

<25 25,992 (9.8%)
BMI 25-29.9 77,326 (29.1%)
230 145,704 (54.8%)
>3 104,978 (39.5%)
ASA score <3 159,586 (60.1%)

Lovel n %)
Fully Stabilised 1,378 (0.5%)
Hinged 628 (0.2%)
Stability Medial Pivot Design 19,918 (7.5%)

Minimally Stabilised

183,470 (69.1%)

Posterior Stabilised

60,261 (22.7%)

Bearing mobility Fixed 230,106 (86.6%)
Mobile 35,549 (13.4%)

Bearing surface Non XLPE 103,947 (39.1%)
XLPE 161,708 (60.9%)

Cemented 177,522 (66.8%)

Fixation Cementless 31,398 (11.8%)
Hybrid 56,735 (21.4%)

Yes 177,660 (66.9%)

Patella used No 87,995 (33.1%)

Death was treated as a censored case, and survival time was calculated from the
time of the primary implantation to the end of December 2019 for those patients who
had not experienced revision or who had died. The main objective was to evaluate the
use of ML to monitor primary total knee prostheses using data from the AOANJRR to
control and reduce confounding. The exploration of the variable importance using ML
technigues needs a model that includes carefully-selected hyperparameters [195]. A
two-step ML approach was proposed for both the random survival and Cox models to
ascertain the significance of variables in the presence of confounding effects. The
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effectiveness was determined by the model’s ability to detect the same outliers
identified after | and Il stages of the AOANJRR standardised approach.

The first stage of the standard is a screening test that identifies prostheses that
exceed twice the combined revision rate per 100 observed component years of all
other prostheses in the same class. In the second stage, age- and gender-adjusted
HR is calculated to check whether there is a significant difference compared to the
combined hazard rate of the comparator and take into consideration the impact of
confounding. The comparator for the conventional practices contains all other
prostheses designed with only PS and CR stability. In addition, the comparator for
complex procedures used only for specific purposes in primary total knee replacement
involves FS and hinged designs. These comparator groups are the modified final
versions developed in Chapter 5.

R Statistical software glmnet package [185] version 4.1-1 was used for the Cox
elastic net, survival package [186] version 3.2-11 for the unregularized Cox and
randomForestSRC [174] version 2.11.0 for random survival modelling and MICE

package [187] version 3.14.0 for multiple imputations of missing values.

6.3 Machine Learning Statistical Analyses

The first method used was an extension of random forest called Random Survival
Forest (RSF) to analyse survival data with right-censored cases [175, 176]. A forest is
a group of 2,000 trees; each tree grows by iterating the binary split of the AOANJRR
data using a log-rank test until a stopping rule is reached. A random set of variables
splits the candidate-selected node into two daughter nodes from each parent node.
This variable maximizes the log-rank statistic [177] until a terminal node has no fewer
than two revisions. Because of a focus on feature selection rather than prediction, this
study chose deep trees to improve the probability of reflecting variations between the

predictors.

Variable selection is randomized using the parameter ‘mtry’. The algorithm selects
X of the maximum of the input variables (P) randomly on each node. The variables
considered in each division of each tree were randomly selected, but the number of

variables was fixed at * P / 4’ [116]. The number of variables considered in each
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splitting is greater than the conventional (VP), as an increasing number of variables in
each split is able to limit the bias in the selection of correlated input variables [178].

The method excluded noisy variables using a backward selection procedure in
order to determine the most important variables. To obtain a reduced set of salient
variables, the following stepwise selection method was implemented to systematically
remove noise variables: (i) calculate RSF using all the covariates and all device
components; (ii) evaluate the inputs and remove noisy variables; (iii) compute a new
RSF using the remaining variables; and (iv) select a set of components with a higher
risk of revision. Finally, a P-value cut-off of 0.05 was selected to characterize outliers.

A similar algorithm was proposed by Ishwaran et al. [121] and Dietrich et al. [179].

Variables were ranked according to the minimal depth [180]. The minimal depth of
a variable is the distance from the tree’s root node to the node where the variable is
split first. The distance is recorded for each variable, and then their average within the
forest is computed. Shorter distances show variables with more significant impacts.
To determine whether the minimum depth of the device component exceeds the
probability, a threshold P-value of 0.05 was determined according to the empirical null
distribution for each variable [116, 181]. The null distribution is based on 1,000
permutations of the response, grows a forest with 200 trees in each, and calculates
the minimal depth of each variable. The adjusted P-values based on false discovery
rate (FDR) were not calculated because of the small number of permutations
implemented while it would incur a higher computational cost. A variable is considered

significant if the permutation P-value was less than 0.05.

Secondly, regularized/unregularized Cox was applied using an ML supervised
algorithm combined with a well-known conventional method. The second step
suggests a more understandable approach for the interpretation of outcomes and the
reporting of statistical significance of inputs. Some of the device components that best
predicted survival were selected using a standardized model with a combination of L1
(lasso) and L2 (ridge) penalties. The elastic-net in the presence of lasso or ridge was
chosen due to its superior performance with highly-correlated variables [182, 183].
The elastic-net was specified by a value (a = 0.5; ranged from 0 to 1) between ridge
regression (a = 0) and LASSO (a = 1). The parameters determining the complexity of

the model were chosen by 10-fold Cross-Validation [182]. No penalty was applied to
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any of the four patient variables in the model, as the intention was to fully control the
effects of a relatively small number of patient characteristics.

The regularized Cox model does not report a P-value because it does not test the
variable for the null hypothesis. This was the reason for using the second step, where
the selected variables are included in the unregularized Cox proportional hazards
model. Given a need to draw inferences while appreciating that a selection process
was initially undertaken, P-values that maintain the FDR at 0.05 [184] were also
discovered. This was done by using the total number of device components that were
included in the regularized model (we set P-values = 1 for unselected variables, as
implied by zero coefficient in the model). Control over the FDR keeps the portion of

false discoveries at the chosen nominal value among the rejected null hypotheses.

6.4 Results

Figure 6.1 shows the survival of devices over the period chosen for this study.
Initially, the AOANJRR standard was employed as the metric to evaluate the
performance of ML in the initial screening of knee prostheses. The prostheses
identified as having higher-than-expected rates of revision according to the AOANJRR
standard are listed in Table 6.2. The AOANJRR standardised approach identified five
conventional/non-complex design combinations. From the prostheses listed below,
the registry has reported all these devices through previous annual investigations with
a greater number of observations. A device with a complex design is not generally
identified as an outlier after all the stages due to an expected higher risk of revision

for the use of these devices in primary total knee surgery.

Table 6. 2. Identified outlier combinations by the 1st and 2nd stages of the AOANJRR standard.

Femoral/Tibial Descriptive information 1st stage 2d stage Comparator
Conventional N N Obs.Years Revisions/100 HR - adjusted for age Other total knee
Revised Total ' Obs.Years (95% Cl) and gender, P-value (PS &CR)
) 2.33(1.48, 3.65)
Device | 19 401 1068.8 1.78 (1.07, 2.78) p<0.001 0.76 (0.74, 0.78)
Device I 25 561 1405.8 1.78 (1.15, 2.62) 2.23 (181, 3.31) 0.76 (0.74, 0.78)
p<0.001
Device Il 22 436 1416.4 1.55(0.97, 2.35) 2.07 (1.36, 3.15) 0.76 (0.74, 0.78)
p<0.001
Device IV 116 2648 7109.6 1.63 (1.35, 1.96) 2.21 (1.84, 2.66) 0.75 (0.73, 0.77)
p<0.001
Device V 15 222 560.1 2.68 (1.50, 4.42) 3.28,)(;[(.)9;(’)544) 0.76 (0.74, 0.78)

Note. The comparator for conventional prostheses includes all other prostheses with PS and CR stability, and
the comparator used for complex prostheses involves only FS and hinged designs.
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Table 6.3 indicates the extent to which outliers were detected using the RSF
backward selection procedure and regularized/unregularized Cox. Devices IV and V
were identified using both the ML methods, taking into account patient- and device-
related confounding. However, only one of the same outliers (IV) was detected when
the FDR was maintained at 0.05 by regularized Cox. The Cox approach showed

greater performance by reporting an additional device (Il1).
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Figure 6. 1. Time to first revision for the AOANJRR primary total knee dataset.

In the case of RSF, closer proximity to the root node means a smaller average
minimal depth and indicates a more significant contribution by the predictor. However,
a lower minimal depth rank does not necessarily imply a poorer prosthesis. Since RSF
cannot report the exact P-value, the distribution of importance under the null
hypothesis of no association to the response was created by several replications of
permutation responses. Note that the noisy variables were removed in an initial step

and were not included in the second RSF model in order to avoid bias.

Table 6. 3. Results for identified prosthesis combinations by RSF and regularised/unregularised Cox.

Femoral/Tibial Descriptive information Random Survival Forest Regularized/Unregularized Cox
Conventional N N Obs.Years Minimal depth rank P-value
Revised Total P-value
Device | 19 401 1068.8
Device Il 25 561 1405.8
Device IlI 22 437 1417.8 - 0.018
: 4
Device IV 116 2648 7109.6 P=0.009 p<0.001
. 6
Device V 15 222 560.1 P=0.009 0.004

Note. Regularized Cox model selected 85 components. P-values reported for the Cox technique are based on
a Wald test from an unregularized Cox model with the selected variables. The rank column is based on the
values for minimal depth. Ranks closer to zero indicate smaller minimal depths representing more substantial
variable effects. In the case of the regularized/unregularized Cox, “-” signifies that no P-value is provided, and
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the prosthesis was not selected by the model. For the RSF, “-” means that the prosthesis was not included in
any trees of the second forest after removing noisy variables; thus, there is no rank or P-value.

The AOANJRR gold standard provided an ideal means of evaluating the
performance of ML in detecting outlier prostheses. Although the Cox method identified
three of the same prostheses, only one of them was detected after controlling for the
FDR. Due to the data-dependent nature of ML, a limited number of observations
imposes practical constraints on the identification. The main reason for using ML is to
control potential confounding. This was evaluated by comparing HR for specific
components in two models: (a) the age and gender-adjusted Cox proportional hazard
model with a variable representing the use of that component; and (b) the
unregularized Cox model that includes all the variables selected using the elastic-net
(i.e., when it was conditioned on the other components and selected covariates).
Therefore, the difference in HRs between these two models indicates the extent of
potential confounding with respect to the AOANJRR standard. Most prostheses have
some reasonable evidence of confounding. The relative difference of 34%, 9%, and
43% in model coefficients are shown in Figure 6.2 for Devices Ill, IV, and V,

respectively.

Device V

3 group
Device IV *  Ad) for all potential confounding factors

#  Ad]. only for age and gender

Device Il

0 2 4 f
HR (Revision Surgery)

Figure 6. 2. HR comparison to illustrate the potential confounding.
(Note. %Diff = [|I'1 (HRAdj. for age and gender) —In (HRAdL for all potential confounding factors)]/[m (HRAdj. for all potential confounding
factors)])
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An additional step (stage IIl) of the AOANJRR standard allows clinicians to obtain
further information about the identified prosthesis derived from stages | and II. A full
range analysis is conducted, and the results are discussed during a two-day workshop
before the outliers are documented in the annual reports. Workshop participants
consider the factors that could contribute to potential errors, such as the effect of a
single surgeon, range of catalogue numbers, or a device having a specific purpose.
This stage enables more real outliers to be recognised and additional confounding
factors to be considered, supported by more robust evidence. As a result, this study
designed a compelling and particular method for the comparative study of newly-
introduced prostheses with the view to assessing the impact of surgeons and
catalogue ranges as a post-statistical analysis. The use of a current comparator leads
to the identification of much more complex prostheses during the first and second
stages, although most of them might not be true outliers as they are mostly used for
specific purposes with an expected higher rate of revision.

6.5 Subsets of Prosthesis — Catalogue Ranges

There is a solid argument for using the identification method to examine catalogue
ranges so as to detect the type of prosthesis that is likely to have a higher revision rate
than the comparator. The results presented in Tables 6.5 and 6.7 show that Devices |
and Il might not be poor-performing prostheses, as only a subset of these prostheses
has issues. There are significant variations in the performance of prosthesis subset
designs (Tables 6.4-6.13). This shows strong evidence to suggest the role of
confounding factors in detecting poor-performing prostheses. The clinicians should be
informed about the current status of prostheses using a further analysis of all the
potential confounders.

Table 6. 4. Catalogue range description of Device | primary total knee replacement.

Catalogue Range Catalogue Description [ Cement | Coating [ Fixation
Femoral
KFTCPCOL-KFTCPC6R CR Porous Primary Femoral Component (Wright) NO - POROUS
KFTCHALL-KFTCHA6R CR HA Primary Femoral Component (Wright) NO HA Coated POROUS
KFTCPN2L-KFTCPN4R Advance Stature CR Porous Femoral Component (Wright) NO - POROUS
KFTCPCOL-KFTCPC6R CR Porous Primary Femoral Component (MicroPort) NO - POROUS
KFTCPN2L-KFTCPN4R Advance Stature CR Porous Femoral Component (MicroPort) NO - POROUS
Tibial

KTSCFM10-KTSCFM51 BioFoam Tibial Base w/ Screwholes Ti (Wright) NO
KTSCFM10-KTSCFM51 BioFoam Tibial Base w/ Screwholes Ti (MicroPort) NO




Table 6. 5. Revision rates of Device | by catalogue humber range.
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_ N N Revisions/100

Femoral range Tibial range Revised Total Obs.Years Obs. Yrs (95% Cl)
KFTCPCOL-KFTCPC6R KTSCFM10-KTSCFM51 7 89 372.8 1.88 (0.75, 3.87)
KFTCPCOL-KFTCPC6R KTSCFM10-KTSCFM51 0 3] 14.0 0.00 (0.00, 26.37)
KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 2 5.0 0.00 (0.00, 74.22)
KFTCPCOL-KFTCPC6R KTSCFM10-KTSCFM51 1 16 58.3 1.71 (0.04, 9.56)
KFTCPCOL-KFTCPC6R KTSCFM10-KTSCFM51 0 16 50.9 0.00 (0.00, 7.24)
KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 5 15.7 0.00 (0.00, 23.44)
KFTCPCOL-KFTCPC6R KTSCFM10-KTSCFM51 11 259 535.7 2.05 (1.02, 3.87)
KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 11 16.3 0.00 (0.00, 22.63)
Total 19 401 1068.8 1.78 (1.16, 2.61)

Table 6. 6. Catalogue range description of Device Il primary total knee replacement.

Catalogue Range Catalogue Description | Cement | Coating
Femoral
NO582K-NO688K FP/UC Cementless Femoral Component NO HA COATED
NB702K-NB758K PS CoCr Cemented Standard Femoral Component YES -
NO502Z-NO608Z AS FP/UC Cemented Premium Femoral Component YES -
NB702Z-NB758Z AS PS CoCr Cemented Premium Femoral Component YES -
NO502K-NO608K FP/UC Cemented Standard Femoral Component YES -
Tibial

NB731Z-NB788Z AS UC/PS Cemented Modular Tibial Plateau YES -
NB741K-NB798K UC/PS Cementless Modular Tibial Plateau NO HA COATED
NX731K-NX788K UC/PS Cemented Pro Modular Tibial Component YES -
NB731K-NB788K UC/PS Cemented Modular Tibial Plateau YES -

Table 6. 7. Revision rates of Device Il by catalogue number range.

_ N N Revisions/100
Femoral range Tibial range Revised Total Obs.Years Obs.Years (95% Cl)

NO582K-NO688K NB731Z-NB788Z 0 2 6.9 0.00 (0.00, 53.08)
NO582K-NO688K NB741K-NB798K 14 130 458.3 3.05(1.67, 5.12)
NO582K-NO688K NX731K-NX788K 0 56 85.7 0.00 (0.00, 4.30)
NO582K-NO688K NB731K-NB788K 0 1 4.8 0.00 (0.00, 76.37)
NB702K-NB758K NB731Z-NB788Z2 2 94 151.6 1.32 (0.16, 4.76)
NB702K-NB758K NX731K-NX788K 0 15 4.0 0.00 (0.00, 92.68)
NO502Z-NO608Z NB731Z-NB788Z 3 159 407.0 0.74 (0.15, 2.15)
NO502Z-NO608Z NB741K-NB798K 0 1 4.2 0.00 (0.00, 88.67)
NB702Z-NB758Z2 NB731Z-NB788Z2 0 1 23 0.00 (0.0, 161.79)
NB702Z-NB758Z NX731K-NX788K 0 4 19.3 0.00 (0.00, 19.11)
NO502K-NO608K NX731K-NX788K 6 98 261.7 2.29 (0.84, 4.99)

Total 25 561 1405.8 1.78 (1.24, 2.48)

Table 6. 8. Catalogue range description of Device Il primary total knee replacement.

Catalogue Range Catalogue Description | Cement
Femoral
196008400-196009400 PS RPF CoCr Femoral Component YES
196040100-196050600 PS Cemented Femoral Component YES
196004400-196005400 CS Cemented Femoral Component YES
196081100-196091600 PS150 CoCr High Flex Femoral Component YES
960042-960058 Cruciate Sacrificing NonPorous Femoral Component YES
950010-950027 RPF CoCr Cemented Femoral Component YES
Tibial
129433110-129433170 Cemented Keel Tibial Tray YES
129435215-129435415 Revision Cemented 15mm Tibial Tray YES
129431110-129431170 Cemented Tibial Tray YES
129435110-129435160 CoCr Revision Cemented Tibial Tray YES
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Table 6. 9. Revision rates of Device Il by catalogue number range.

- N N Revisions/100
Femoral range Tibial range Revised Total Obs.Years Obs. Yrs (95% Cl)

196008400-196009400 129433110-129433170 1 21 79.4 1.26 (0.3, 9.10)
196040100-196050600 129433110-129433170 4 46 119.7 3.34 (0.91, 8.56)
196040100-196050600 129435215-129435415 0 2 57 0.00 (0.00, 65.06)
196040100-196050600 129431110-129431170 4 50 94.4 4.24 (1.15, 10.85)
196040100-196050600 129431110-129431170 0 1 3.4 0.00 (0.0, 107.23)
196040100-196050600 129435110-129435160 4 77 194.2 2.06 (0.56, 5.27)
196004400-196005400 129431110-129431170 1 3 11.3 8.88 (0.22, 49.48)
196081100-196091600 129433110-129433170 0 16 56.4 0.00 (0.00, 6.54)
196081100-196091600 129431110-129431170 0 1 1 0.00 (0.0, 380.3)
960042-960058 129431110-129431170 2 133 526.9 0.38 (0.04, 1.37)
960042-960058 129435110-129435160 2 7 26.4 7.56 (0.91, 27.31)
950010-950027 129433110-129433170 4 80 299 1.34 (0.36, 3.42)
Total 22 436 1416.4 1.55(0.97, 2.35)

Table 6. 10. Catalogue range description of Device IV primary total knee replacement.

Catalogue Range Catalogue Description | Cement | Coating
Femoral
10200201-10200217 CoCr Min. Stab. Femoral Component YES -
10200101-10200117 CoCr Min Stab. HA Pegged Stippled Surface Femoral Component NO HA COATED
Tibial
10200501-10200507 CoCr Polished Tibial Baseplate YES -
10200401-10200407 CoCr HA Stippled Surface Tibial Baseplate NO HA COATED

Table 6. 11. Revision rates of Device IV by catalogue number range.

- N N Revisions/100
Femoral range Tibial range Revised Total Obs.Years Obs.Yrs (95% Cl)
10200201-10200217 10200501-10200507 14 482 1323.2 1.06 (0.58, 1.77)
10200201-10200217 10200401-10200407 0 3 9.6 0.00 (0.00, 38.27)
10200101-10200117 10200501-10200507 51 1212 3338.5 1.53 (1.14, 2.01)
10200101-10200117 10200401-10200407 51 951 2438.2 2.09 (1.56, 2.75)
Total 116 2648 7109.6 1.63 (1.35, 1.96)

Table 6. 12. Catalogue range description of Device V primary total knee replacement.

Catalogue Range Catalogue Description Cement Fixation
Femoral
184500-184536 Vanguard PS Open Box Femoral Porous Coated/Bond Coated NO POROUS
183100-183136 Vanguard PS Open Box Femoral Interlok YES MATT
Tibial
141270-141278 Porous Tibial Tray NO POROUS

Table 6. 13. Revision rates of Device V by catalogue number range.

Femoral range Tibial range Rev’?se d To’\':al Obs.Years ob'zi\(/:esalrc;n(zg‘?ﬁaom)

184500-184536 141270-141278 2 48 154.0 1.30 (0.16, 4.69)

183100-183136 141270-141278 13 174 406.1 3.20 (1.70, 5.47)
Total 15 222 560.1 2.68 (1.50, 4.42)

6.6 Number of Surgeons

The registry is aware that a single surgeon may be responsible for a prosthesis that
has a higher revision rate. This situation has occurred twice, and on both occasions,
subsequent use of the femoral/tibial combination ceased following the publication of
the Annual Report [5, 165]. Revision rates per 100 component years of the identified
prostheses were evaluated to determine the effect that a surgeon had on the

performance of prostheses. By investigating the revision rate of surgeons for each
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identified device component, those who did not perform well with a device of interest
can be determined (Table 6.14-6.18). The tables below show surgeon IDs and the

results of surgical procedures.

This analysis shows the most significant interactions of devices and surgeons using
the first stage of the AOANJRR standardised approach. Only the surgeons who had
performed more than 10 procedures using a device of interest were included. This
status is significant for two reasons: (i) some surgeons may show a relatively
acceptable performance with the same device component, or (ii) in the case when a
device is still not being used to a great extent by various surgeons. All these knee
prostheses show significant interaction with the experience and expertise of the
surgeon. For example, surgeons 1177, 1218, 1745 could be responsible for a higher
than expected rate of revision for Device IV, or the device might affect the performance
of the surgeon (Table 6.14).

Table 6. 14. Revision rates of Device | primary total knee replacement by surgeon id.

N N Revisions/100
Surgeon 1D Revised Total Obs years Obs.Years (95% Cl)
Device | 2 134 335.1 0.59 (0.07, 2.16)
283 Overall 3 163 407.1 0.74 (0.15, 2.15)
Ex. Outliers 1 29 72 1.39 (0.03, 7.73)
Device | 17 264 723.0 2.35(1.37, 3.76)
482 Overall 18 281 790.6 2.28 (1.35, 3.6)
Ex. Outliers 1 17 67.7 1.48 (0.04, 8.23)

Table 6. 15. Revision rates of Device |l primary total knee replacement by surgeon id.

N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
Device Il 0 11 53.1 0.00 (0.00, 6.95)
101 Overall 4 437 12249 0.33 (0.09, 0.84)
Ex. Outliers 4 426 1171.8 0.34 (0.09, 0.87)
Device I 16 247 652.7 2.55 (1.40, 3.98)
153 Overall 17 281 751.5 2.26 (1.32, 3.62)
Ex. Outliers 0 11 9.3 0.00 (0.00, 39.54)
Device Il 0 48 166.5 0.00 (0.00, 2.21)
975 Overall 8 297 690.3 1.16 (0.50, 2.28)
Ex. Outliers 7 237 492.3 1.42 (0.57, 2.93)
Device Il 2 107 276 0.72 (0.09, 2.62)
1037 Overall 2 107 276 0.72 (0.09, 2.62)
Ex. Outliers - - - -
Device Il 2 115 159.2 1.26 (0.15, 4.54)
1070 Overall 4 272 674 0.59 (0.16, 1.52)
Ex. Outliers 2 157 514.9 0.39 (0.05, 1.4)
Device Il 1 15 54.7 1.82 (0.05, 10.18)
1290 Overall 2 72 111.8 1.79 (0.22, 6.46)
Ex. Outliers 1 57 57.1 1.75 (0.04, 9.75)

Table 6. 16. Revision rates of Device Ill primary total knee replacement by surgeon id.

N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
Device Il 2 19 63.0 3.17 (0.38, 11.46)
3 Overall 169 7408 21454.9 0.79 (0.67, 0.91)
Ex. outliers 166 7364 21319.3 0.78 (0.66, 0.90)
266 Device Il 0 16 45.5 0.00 (0.00, 8.11)
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Overall 12 356 814.8 1.47 (0.76, 2.57)
Ex. outliers 12 340 769.3 1.56 (0.80, 2.72)
Device Il 3 80 239.8 1.25 (0.26, 3.65)
431 Overall 3 80 239.8 1.25 (0.26, 3.65)
Ex. outliers - - - -
Device Il 1 14 33.5 2.98 (0.07, 16.63)
651 Overall 7 603 1518.6 0.46 (0.18, 0.95)
Ex. outliers 6 589 1485.1 0.40 (0.15, 0.88)
Device Il 5 99 368.7 1.35 (0.44, 3.16)
810 Overall 9 255 629.9 1.43 (0.65, 2.71)
Ex. outliers 4 156 261.2 1.53(0.42, 3.92)
Device Il 2 14 38.8 5.16 (0.62, 18.63)
1167 Overall 4 105 245.3 1.63(0.44, 4.17)
Ex. outliers 2 91 206.5 0.97 (0.12, 3.50)
Device Il 1 11 28.2 3.55 (0.09, 19.76)
1372 Overall 18 804 1622.1 1.11 (0.66, 1.75)
Ex. outliers 17 793 1593.9 1.07 (0.62, 1.71)
Device IlI 0 12 43.1 0.00 (0.00, 8.55)
1434 Overall 2 156 331 0.60 (0.07, 2.18)
Ex. outliers 2 144 287.9 0.69 (0.08, 2.51)
Device Il 2 79 315.1 0.63 (0.08, 2.29)
1721 Overall 5 206 515 0.97 (0.31, 2.26)
Ex. outliers 3 127 199.9 1.50 (0.31, 4.39)
Table 6. 17. Revision rates of Device IV primary total knee replacement by surgeon id.
N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% ClI)
Device IV 1 28 125.5 0.8 (0.02, 4.44)
57 Overall 9 630 1496.1 0.6 (0.27, 1.14)
Ex. outliers 8 602 1370.6 0.58 (0.25, 1.15)
Device IV 1 23 89.4 1.12 (0.03, 6.23)
153 Overall 17 281 751.5 2.26 (1.32, 3.62)
Ex. outliers 0 11 9.3 0.00 (0.00, 39.54)
Device IV 1 45 146.3 0.68 (0.02, 3.81)
173 Overall 10 352 864.3 1.16 (0.55, 2.13)
Ex. outliers 9 307 717.9 1.25 (0.57, 2.38)
Device IV 4 143 516.5 0.77 (0.21, 1.98)
275 Overall 4 218 610.9 0.65 (0.18, 1.68)
Ex. outliers 0 75 94.5 0.00 (0.00, 3.90)
Device IV 6 152 618 0.97 (0.36, 2.11)
282 Overall 11 787 1993.2 0.55 (0.27, 0.99)
Ex. outliers 5 635 1375.2 0.36 (0.12, 0.85)
Device IV 0 10 12.3 0.00 (0.00, 30.09)
456 Overall & 132 374.1 0.80 (0.16, 2.34)
Ex. outliers & 122 361.8 0.83(0.17, 2.42)
Device IV 9 191 623.9 1.44 (0.66, 2.74)
495 Overall 12 369 926.9 1.29 (0.67, 2.26)
Ex. outliers 3 178 303 0.99 (0.20, 2.89)
Device IV 8 85 332.9 0.9 (0.18, 2.63)
895 Overall 9 773 1763.3 0.51 (0.23, 0.97)
Ex. outliers 6 688 1430.4 0.42 (0.15, 0.91)
Device IV 0 11 34.3 0.00 (0.00, 10.75)
934 Overall 12 644 1498.7 0.8 (0.41, 1.40)
Ex. outliers 12 633 1464.4 0.82(0.42, 1.43)
Device IV 5 159 243.6 2.05 (0.67, 4.79)
961 Overall 5 202 422.3 1.18 (0.38, 2.76)
Ex. outliers 0 43 178.7 0.00 (0.00, 2.06)
Device IV 2 58 2395 0.83 (0.10, 3.02)
1009 Overall 18 1116 2610.4 0.69 (0.41, 1.09)
Ex. outliers 16 1058 2370.9 0.67 (0.38, 1.09)
Device IV 34 511 1637.8 2.07 (1.44, 2.9)
1119 Overall 37 826 2046.3 1.81(1.27, 2.49)
Ex. outliers 3 315 408.4 0.73 (0.15, 2.15)
Device IV 16 379 716.9 2.23(1.27, 3.62)
1149 Overall 23 566 1390.9 1.65 (1.05, 2.48)
Ex. outliers 7 187 674 1.04 (0.42, 2.14)
Device IV 15 197 649.9 2.31(1.29, 3.81)
1177 Overall 21 219 721.5 2.91 (1.80, 4.45)
Ex. outliers 6 22 71.6 8.38 (3.07, 18.24)
1195 Device IV 0 38 111.6 0.00 (0.00, 3.30)
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Overall 17 1154 28115 0.60 (0.35, 0.97)
Ex. outliers 17 1116 2700 0.62 (0.37, 1.01)
Device IV 7 439 414.4 1.69 (0.68, 3.48)
1218 Overall 39 921 1963.8 1.98 (1.41, 2.71)
Ex. outliers 32 482 1549.4 2.06 (1.41, 2.91)
Device IV 0 17 64.6 0.00 (0.00, 5.71)
1258 Overall 1 48 98.6 1.01 (0.02, 5.65)
Ex. outliers 1 31 33.9 2.94 (0.07, 16.41)

Device IV 12 106 374.5 3.2 (1.65, 5.6)
1745 Overall 15 231 561.7 2.67 (1.49, 4.40)
Ex. outliers 3 125 187.2 1.60 (0.33, 4.68)
Device IV 0 20 72.1 0.00 (0.00, 5.11)
1810 Overall 6 219 745.6 0.80 (0.29, 1.75)
Ex. outliers 6 199 673.4 0.89 (0.33, 1.94)

Table 6. 18. Revision rates of Device V primary total knee replacement by surgeon id.

N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
Device V 2 42 135.9 1.47 (0.18,5.32)
253 Overall 10 745 1742.5 0.57 (0.27, 1.05)
Ex. outliers 8 703 1606.6 0.50 (0.21, 0.98)
Device V 13 172 401.2 3.24 (1.72, 5.54)
660 Overall 17 260 670.2 2.54 (1.48, 4.06)
Ex. outliers 4 88 269 1.49 (0.40, 3.81)

6.7 Discussion

The results of this chapter suggest that the proposed ML methods may be effective
for the detection of poor-performing arthroplasty devices. ML methods do not require
the analyst to know in advance the linear and non-linear relationships between
variables over time. However, one single model could not be necessarily the best
method to deal with a high-dimensional dataset with multicollinearity in a feature
selection problem. Any inclusion or exclusion of noisy variables influences the
outcome in terms of a given predictor's strength and sign. A backward selection step
was added to illustrate the applicability of RSF to exploratory data analysis in a
prospective cohort [179, 196]. This method allowed us to reduce the dimensions of a
complex dataset and improve variable selection since many noisy variables are

excluded.

In some cases, the prosthesis identified after the second stage of the AOANJRR
standard may not be a real outlier due to a single surgeon, or it might be a poor-
performing subset of a device with a specific attribute and design. Although the registry
does not identify these prostheses, their ongoing real-time performance is monitored.
There is evidence of the issue of having only a subset of unidentified prostheses
(Device | and II) from the AOANJRR online documents provided to further indicate the

performance of total knee prostheses. In addition, our investigation of the catalogue
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ranges showed significant variations in the revision rates with respect to design

features.

Regularized/unregularized Cox produced results more comparable to the
AOANJRR standard in detecting the same total knee devices, whereas there was not
a significant difference in the performance of the proposed methods. Using an
unregularized step for the Cox enabled us to apply a more conventional method of
documenting confounding and reducing the mistrust in the black-box nature of ML
analysis. To handle multicollinearity which may increase the risk of selecting an
arbitrary predictor [196], the two-step approach was proposed for RSF modelling to
reduce the dimension by removing the noisy variables. In addition, RSF grows the tree
using a random subset of variables per node and splitting the nodes by independently
selecting the input variables [188]. This feature provides random survival attractive for
exploratory variable selection, where false-positive discovery due to overfitting is still

an important issue [189].

One of the key aims of the current work was to limit the confounding that was
handled by both the ML methods used. The regularized/unregularized Cox conditions
simultaneously in device- and patient-related factors. With the RSF approach, it is
assumed that many variables are competing at the same time in the splitting process.
The Cox approach showed significant advantages in terms of reducing computational
time, interpreting variable effects, and documenting confounding effects. The random
survival reduces variance and bias using many variables and automatically assesses
linear or complex non-linear interactions. Various extensions of random forests have
been successfully employed in clinical studies [197, 198]. This research shows that
correlated variables can be dealt with more effectively when elastic-net is used for
regularisation. This study also showed that the regularisation technique performed
better than the RSF using the AOANJRR knee data.

More studies are needed to further document the potential role of ML in clinical
settings. Machine learning may be able to act as a supplementary initial screen with
increased sensitivity in detecting outlier prostheses. One of the considerations is that
the success of the screening process is dependent on having a pre-knowledge of
clinical parameters, as this contributes significantly to the accuracy of results. In other

words, the process will be compromised if some attributes that contribute to the
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survival of the device are not accounted for (see Appendix B). This study comprised
all the recognized clinical attributes, and the most significant covariates included
stability and fixation. However, other factors related to the surgeon and the subset
design of devices could be investigated to study the effect of design modifications and

the surgeon’s performance and experience.

Registries are recommended to use a transparent and accountable process to
identify an outlier prosthesis. Aligned with the Australian standardised registry
approach, time to first revision (all-cause) was the principal measure of primary joint
replacement surgery. This measure is a clear indication of a problem with the primary
procedure, where both the patient and surgeon have agreed that it is serious enough
to require further surgical intervention [79, 199]. However, there is still scope for future
studies to investigate other outcome measures for a fairer reflection of implant failure
and limit the clinical end-point to specific implant-related causes. One of the principal
objectives of this study was to improve the sensitivity of the initial screening rather
than that of the entire identification process. Moreover, further analyses were also
conducted on the prostheses identified by both the conventional and the ML
approaches to determine the extent of the difference with the comparator, and the
possible explanations for the variation in outcomes related to reasons for revision, type

of revision, number of surgeons, etc. (detailed more in Chapter 7).

Effective feature selection techniques need to be employed for the early detection
of arthroplasty devices that are at high risk of revision. Future studies can apply the
proposed method to various classes of device components used for arthroplasty
surgeries. The concept of prediction models to understand the significance of variables
may have considerable potential to provide important context for the initial screening
of prosthetic devices. The identification process developed over this comprehensive
research can reduce the number of patients at risk of receiving potentially harmful

devices.

6.8 Summary

The two-step feature selection may be promising as an intuitive method of outlier
identification, and the Cox produced results comparable to the AOANJRR standard.
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However, there was not a significant difference in the ability of the proposed
techniques to detect total knee outliers.






Chapter 7. Investigations of Identified Outlier Prostheses



Investigations of Identified Outlier Prostheses

7.1 Overview

An exceptional and significant function of registries is that they are able to prepare
population-based data on the comparative outcome of prostheses. Outcome data are
required to assist an evidence-based approach to poor-performing prosthesis
selection. The only source of survival outcome data for many prostheses is joint
registry reports, and it is apparent that most prostheses have comparable outcomes.
However, a number of them statistically have a much higher revision rate than other
prostheses within the same class. The registry categorizes these prostheses as

‘prostheses with higher than anticipated rates of revision’.

The Australian Orthopaedic Association National Joint Replacement Registry
(AOANJRR) has the capacity to evaluate the outcome of individual prostheses or
prosthesis combinations used in a surgical procedure. It seems that individual
prostheses that perform well in one combination may not perform well in another
combination of prosthesis construct. Therefore, the performance of a device
component is relatively reliant on the prosthesis construct. The registry approach
involves examining the impact of associated device components and a limited number
of other confounders such as age, gender and primary diagnosis. However, it does
not consider all the potential confounders simultaneously in the initial screening of total
hip and knee prostheses.

The identified prostheses can be categorised according to specific groups: i) newly-
identified prostheses that have been identified for the first time and are still being used;
(ii) prostheses that are re-identified through the yearly statistical analysis and are still
being used; and (iii) prostheses that have a much higher revision rate and are no
longer available on the market. This chapter investigates the prostheses detected by
all the approaches in Chapters 4 and 6. Furlong Evolution and Minimax, in addition to
Score/Score and VanguardPS/Regenerex were listed in the group of re-identified
devices and are still being used. However, the Emperion primary total hip replacement

is no longer on the market [5].

Given the dependency of the standardised approach on the sample size and the
length of follow-up time, it is becoming evident that this approach cannot as readily
identify prostheses that have a delayed onset of higher rates of revision. Therefore,
the registry planned to develop further strategies to solve the challenge with these
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poor-performing prostheses. This is why other approaches are being explored to
generate comparative outcomes of primary total hip and knee prostheses.

7.2 Statistical Method

The output of our survival analyses was time-to-first-revision surgery, defined as
reoperations of previous hip and knee replacements where one or more of the
prosthetic components are replaced, removed, or added. The study period was 1%t
January 2015 to 315t December 2019. Patients with no revision or death had implant-
survival times based on the time that elapsed between their initial implantation date
and the end of the follow-up period. By means of the Kaplan-Meier (KM) survival
analysis, five identified prostheses in primary total conventional hip and knee for OA
were studied further based on their corresponding modified comparator groups
developed in Chapters 3 and 5. In addition, the impact of confounding factors is
examined by calculating age- and gender-adjusted hazard ratios (HRs) to check if
there is a significant difference compared to the combined hazard rate of the
comparator group. The unadjusted cumulative percent revision (CPR), with an
accompanying 95% confidence interval (Cl), was calculated after the primary surgery.
This was also calculated for primary total hip and knee replacements according to
each of the patient factors (i.e., age, gender, BMI, and ASA). The cumulative incidence
of reasons for revisions was analysed to look at the risk associated with the most
common reasons for the identified prostheses. A descriptive comparative analysis was
also conducted to examine the most common types of revisions. Lastly, other potential
device-related confounding impacts were investigated separately using the first stage
of the AOANJRR standard. This is done by calculating revisions per 100 observed
component years of the identified prostheses. The statistical analysis was performed
using R software [158], including the packages Survival [159] version 3.2-11 and

Survminer [160] version 0.4.9.

7.3 ldentified Prostheses Investigation (follow-up
limited to 5 years)

This section compares the identified prostheses with all other total conventional hip
and knee prostheses. All the applied techniques (including Random survival and Cox
regression) identified the same five prostheses as having a significantly higher rate of

revision over the five-year period. These prostheses, detected by both the machine
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learning (ML) techniques and the standard approach, are listed in Table 7.1. Their
names are given for the first time in this research as the registry reports have already
reported them. Note that these devices were all detected using a greater number of

observations and length of follow-up time at the time of identification.

Table 7. 1. Results for the identified prostheses detected by all the approaches.

Descriptive information AOANJRR standard RSF Cox
Minimal depth rank
C t
omponen N N Obs.Years Stage | Stage Il Permutation P- P-value
Revised Total
value
Total Hip
) 4.34 (2.17, 8.68) 2
Emperion 8 71 245.4 3.26 (3.01, 3.56) p<0.001 0.009 0.009
) 3.28 (2.06, 5.21) 14
Furlong Evolution 18 288 458.7 3.92 (3.59, 4.31) p<0.001 0.029 <0.001
o 3.02 (1.87, 4.86) 3
MiniMax 17 320 374.7 4.54 (4.25, 4.87) p<0.001 0.009 0.012
Total Knee
2.21(1.84, 2.66) 4
Score/Score 116 2648 7109.6 1.63 (1.35, 1.96) p<0.001 P=0.009 p<0.001
VanguardPS/ 3.28 (1.97, 5.44) 6
R — 15 222 560.1 2.68 (1.50, 4.42) p<0.001 P=0.009 0.004

This analysis compares the total hip and knee prostheses identified as having a
significantly higher revision rate with all other total prostheses correspondingly. In
addition, hazard ratios are reported for the entire period to enable more specific and
valid comparisons of the level of risk of revision over the entire period (Figures 7.1 to
7.5).

e HR - adjusted for age and gender
Entire Period: HR = 4.34 (2.17, 8.68),p < 0.001
5 Emperion vs Other Total Conventional Hip
w % -
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== | 151263 116729 84757 54545 25896
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Figure 7. 1. CPR of Emperion vs modified hip comparator.
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HR - adjusted for age and gender
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Figure 7. 2. CPR of Furlong Evolution vs modified hip comparator.
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Figure 7. 3. CPR of MiniMax vs modified hip comparator.
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Figure 7. 4. CPR of Score/Score vs conventional knee comparator.
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HR - adjusted for age and gender
Entire Period: HR = 3.28 (1.97, 5.44)p < 0.001

VanguardPS/Regenerex vs Other Total Conventional Knee

g
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Curmulative Percent Revision
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z 3
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Figure 7. 5. CPR of Vanguard PS/Regenerex vs conventional knee comparator.

7.4 Reason for Revision

The competing risk of reasons for revisions is shown in Figures 7.6 to 7.9. These
results can be used to estimate the risk of requiring revision for each of the listed
diagnoses such as infection, loosening, prosthesis dislocation, and fracture. Different
outcomes for the reasons for revision with the same distribution of follow-up time may
identify problems of concern. Given the criterion that a diagnosis should require more
than two revisions, the most common revision diagnosis is dislocation for the Emperion
femoral stem, infection for Furlong Evolution, and fracture for MiniMax primary total
hip outliers. Infection appears to be the most probable cause of revision for both of the
identified primary total knee outliers. The figures below detail the cumulative incidence
of the most common reasons for revisions. The most common reasons for revision are
included if each of these reasons accounts for more than two procedures. For
example, two of the outlier prostheses have only one revision diagnosis according to
the criterion.
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Figure 7. 6. Cumulative incidence of most common revision diagnosis for Emperion.
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Figure 7. 7. Cumulative incidence of most common revision diagnosis for Furlong Evolution.
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Figure 7. 8. Cumulative incidence of most common revision diagnosis for MiniMax.
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Figure 7. 9. Cumulative incidence of most common revision diagnosis for Score/Score.
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Figure 7. 10. Cumulative incidence of most common revision diagnosis for Vanguard PS/Regenerex.
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7.5 Type of Revision

This section discusses the type of revision or the components responsible for
revising the total hip and knee outlier prostheses. This part undertook this comparison
to determine whether one or more of the components that are replaced differ from the
components replaced in revisions of the corresponding comparator groups. The most
common major types of revisions were the femoral component for the hip outliers and
TKR (tibial/femoral)’ for the knee outlier prostheses. In addition, the hip prostheses
had minor revisions for ‘head/insert’ or ‘head only’, and the knee outliers for ‘insert
only’. These descriptive analyses show the same outcomes for the corresponding

comparator groups.

Table 7. 2. Type of revision performed for primary total conventional hip replacement.

Emperion Modified hip comparator
Type of Revision Number Percent Number Percent
Femoral Component 2 25.0 1076 317
Acetabular Component - - 569 16.8
THR (Femoral/Acetabular) 1 12.5 290 8.5
Cement Spacer - - 102 3.0
Removal of Prostheses - - 22 0.6
Reinsertion of Components - - 9 0.3
Bipolar Head and Femoral - - 1 0.0
N Major 3 37.5 2069 61.2
Head/Insert 4 50.0 995 29.3
Head Only 1 12.5 216 6.4
Minor Components - - 57 1.7
Insert Only - - 45 1.3
N Minor 5 62.5 1313 38.8
Total 8 100.0 3382 100.0
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Table 7. 3. Type of revision performed for primary total conventional hip replacement.

Femoral Component 7 38.9 1071 31.8
Acetabular Component 4 22.2 565 16.7
THR (Femoral/Acetabular) 2 11.1 289 8.6
Cement Spacer 2 11.1 100 3.0
Removal of Prostheses - - 22 0.6
Reinsertion of Components - - 9 0.3
Bipolar Head and Femoral - - 1 0.0

Table 7. 4. Type of revision performed for primary total conventional hip replacement.

Head/Insert 2 11.1 997 29.6
Head Only 1 55 216 6.4
Minor Components - - 57 1.7
Insert Only - - 45 1.3

Table 7. 5. Type of revision performed for primary total conventional knee replacement.

Femoral Component 9 52.94 1069 31.7
Acetabular Component 1 5.88 568 16.8
THR (Femoral/Acetabular) - - 291 8.6
Cement Spacer 1 5.88 101 3.0
Removal of Prostheses - - 22 0.6
Reinsertion of Components 1 5.88 8 0.2
Bipolar Head and Femoral - - 1 0.0
[ NMaor ] 2 [ 76 ] 20 [ el ]
Head/Insert 2 11.76 997 29.5
Head Only 3 17.65 214 6.3
Minor Components - - 57 1.7
Insert Only - - 45 1.3

TKR (Tibial/Femoral) 50 43.1 890 20.5
Tibial Component 4 3.4 305 7.0
Cement Spacer 8 6.9 234 5.4
Femoral Component 4 34 223 5.1
Removal of Prostheses - - 31 0.7
Total Femoral - - 3 0.1
Reinsertion of Components - - 1 0.0

Insert Only 33 28.4 1710 39.3
Patella Only 15 12.9 637 14.6
Insert/Patella 2 17 302 6.9

Minor Components - - 9 0.2
Cement Only - - 3 0.1
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Table 7. 6. Type of revision performed for primary total conventional knee replacement.

TKR (Tibial/Femoral) 7 46.7 933 21.0
Tibial Component - - 309 6.9
Cement Spacer 3 20.0 239 54
Femoral Component 2 13.3 225 5.0
Removal of Prostheses - - 31 0.7
Total Femoral - - 3 0.1
Reinsertion of Components - - 1 0.0
Insert Only 3 20.0 1740 39.1
Patella Only - - 652 14.6
Insert/Patella - - 304 6.8
Minor Components - - 9 0.2
Cement Only - - 3 0.1

7.6 Prosthesis-related Confounding Factors

Revision Rates of Outlier Prostheses by Fixation

Tables 7.7 to 7.11 present revision rates of primary total hip and knee outliers by
fixation as several prostheses have more than one option for fixation. Moreover,
prostheses with an alternative fixation may be used by surgeons regardless of the
recommended approach (e.g., a cementless prosthesis that is cemented or
cementless). Total hip outliers were used only with a recommended cementless
fixation. However, there are variations in the outcome of total knee outliers by fixation.

The hybrid fixation was the most chosen option by surgeons for the total knee outliers.

Table 7. 7. Revision rates of Emperion primary total conventional hip replacement by fixation.

326 (301, 350

8 71 2454 3.26 (3.01, 3.56)

Table 7. 8. Revision rates of Furlong Evolution primary total conventional hip replacement by fixation.

392 (2.9, 4.31)

18 288 458.7 3.92 (3.59, 4.31)

Table 7. 9. Revision rates of MiniMax primary total conventional hip replacement by fixation.

Cementless

454 (4.25, 4.87)
17 320 374.7 454 (4.25, 4.87)

Table 7. 10. Revision rates of Score/Score primary total knee replacement by fixation.

Cemented 14 497 1366.9 1.02 (0.56, 1.72)
Cementless 50 932 2390.8 2.09 (1.55, 2.76)
Hybrid (Tibial cemented) 51 1213 3330.4 1.53(1.14, 2.01)
Hybrid (Tibial cementless) 1 6 215 4.65 (0.12, 25.91)
116 2648 7109.6 1.63 (1.35, 1.96)
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Table 7. 11. Revision rates of Vanguard PS/Regenerex primary total knee replacement by fixation.

Fixation N N Obs.Years Revisions/100
Revised Total Obs. Years (95% CI)
Cemented 0 2 4.8 0.00 (0.00, 76.53)
Cementless 2 48 154 1.30 (0.16, 4.69)
Hybrid (Tibial cementless) 13 172 401.2 3.24 (1.72, 5.54)
Total 15 222 560.1 2.68 (1.50, 4.42)

Revision Rates of Outlier Prostheses by Bearing Surface

This analysis was conducted because some prostheses had a combination of

various bearing surfaces. All bearing surfaces used with these outlier prostheses are

listed below in Tables 7.12 to 7.16. The investigation of the revision rates according to

the bearing surface indicates the role of material designs in the performance of

prostheses. This information is expected to lead to better long-term outcomes for

prostheses with modern bearing surfaces (including ceramic/ceramic and the femoral

head materials in conjunction with XLPE) [112, 200]. However, this outcome was not

obtained through our comparative analyses because of a significant sample

size/follow-up variation. The limited five-year follow-up may be a constraint preventing

the accurate reflection of the difference between the bearing couples.

Table 7. 12. Revision rates of Emperion primary total conventional hip replacement by bearing

surface.

. N N Revisions/100
Bearing Surface Revised Total Obs.Years Obs. Years (95% ClI)
Ceramic/Ceramic 4 54 191.2 2.09 (0.57, 5.35)

Ceramicised Metal/XLPE 3 12 37.6 7.97 (1.64, 23.30)
Metal/XLPE 1 5 16.5 6.06 (0.15, 33.79)
Total 8 71 245.4 3.26 (3.01, 3.56)

Table 7. 13. Revision rates of Furlong Evolution primary total conventional hip replacement by bearing

surface.
. N N Revisions/100

Bearing Surface Revised Total Obs.Years Obs. Years (95% ClI)
Ceramic/Ceramic 10 142 235.8 4.24 (2.03, 7.80)
Ceramic/Non-XLPE 7 114 129.6 5.40 (2.17, 11.13)
Ceramic/XLPE 0 13 23.9 0.00 (0.00, 15.46)
Ceramic/XLPE + Antioxidant 0 4 12.3 0.00 (0.00, 29.97)
Metal/Non-XLPE 1 15 57.2 1.75 (0.04, 9.74)
Total 18 288 458.7 3.92 (3.59, 4.31)

Table 7. 14. Revision rates of MiniMax primary total conventional hip replacement by bearing surface.

N

N

Revisions/100

Bearing Surface Revised Total Obs.ears Obs. Years (95% CI)
Ceramic/Ceramic 8 163 161.6 4.89 (2.14, 9.75)
Ceramic/Non-XLPE 5 111 179.2 2.79 (0.90, 6.51)
Ceramic/XLPE 3 43 31.8 9.43 (1.94, 27.57)

Metal/Non-XLPE 0 1 0.2 0.00 (0.00, 1676.76)

Metal/XLPE 1 2 1.8 55.55 (1.41, 309.53)
Total 17 320 374.7 4.54 (4.25, 4.87)
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Table 7. 15. Revision rates of Score/Score primary total conventional knee replacement by bearing

surface.

. N N Revisions/100
Bearing Surface Revised Total Obs.Years Obs. Years (95% ClI)
Non-XLPE 116 2648 7109.6 1.63 (1.35, 1.96)

Total 116 2648 7109.6 1.63 (1.35, 1.96)

Table 7. 16. Revision rates of Vanguard PS/Regenerex primary total conventional knee replacement
by bearing surface.

. N N Revisions/100
ST Revised Total SR Obs. Years (95% CI)
Non-XLPE 15 218 543.1 2.76 (1.54, 4.55)
XLPE + Antioxidant 0 4 17 0.00 (0.00, 21.75)
Total 15 222 560.1 2.68 (1.50, 4.42)

Revision Rates of Outlier Prostheses by Surgeon ID

The surgeon IDs were used to determine the number of surgeons who used the
outlier prostheses in the primary total joint procedures. The aim was to find whether
there was a correlation between surgeons and the outlier prostheses they used. To
the best of our information, this is the first research designed to investigate the role of
a single surgeon in outlier identification. Results show that Furlong Evolution, MiniMax,
Score/Score, and Vanguard PS/Regenerex have a higher-than-expected rate of
revisions for most surgeons (Tables 7.17-7.21). This can be an indication of the poor-
performing prostheses regardless of the expertise or experience of the surgeon.
However, the interaction between the Emperion femoral stem and the surgeons needs

further analysis as this hip prosthesis had been used by only one surgeon (685).

Table 7. 17. Revision rates of Emperion primary total conventional hip replacement by surgeon id.

N N Revisions/100
Surgeon 1D Revised Total Obs.Years Obs.Years (95% CI)
685 4 53 188.3 2.12 (0.58, 5.44)

Table 7. 18. Revision rates of Furlong Evolution primary total conventional hip replacement by

surgeon id.
N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)

587 1 19 38.4 2.6 (0.6, 14.5)
1246 2 17 26.8 7.46 (0.9, 26.95)
1357 1 27 105.4 0.95 (0.2, 5.29)
1421 0 19 9 0.00 (0.00, 41.13)
1726 1 61 56.9 1.76 (0.04, 9.79)
1745 9 112 144.4 6.23 (3.32, 12.74)

Table 7. 19. Revision rates of Minimax primary total conventional hip replacement by surgeon id.

Surgeon ID Rev,?sed Tol\tlal Obs.Years ObF:i\(/(Ie:rosn(sglé?A:OCI)
804 2 93 94.2 2.12 (0.26, 7.67)
1041 5! 110 173.7 2.88 (0.93, 6.72)
1195 2 17 51 39.19 (4.75, 141.57)
1421 1 22 29.1 3.43 (0.09, 19.14)
1529 2 20 28.7 6.96 (0.84, 25.14)
1717 0 10 13 0.00 (0.00, 28.36)
1914 1 13 6 16.68 (0.42, 92.92)
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Table 7. 20. Revision rates of Score/Score primary total knee replacement by surgeon id.

N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
57 1 28 1255 0.8 (0.02, 4.44)
153 1 23 89.4 1.12 (0.03, 6.23)
173 1 45 146.3 0.68 (0.02, 3.81)
275 4 143 516.5 0.77 (0.21, 1.98)
282 6 152 618 0.97 (0.36, 2.11)
456 0 10 12.3 0.00 (0.00, 30.09)
495 9 191 623.9 1.44 (0.66, 2.74)
895 3 85 332.9 0.9 (0.18, 2.63)
934 0 11 34.3 0.00 (0.00, 10.75)
961 5 159 243.6 2.05 (0.67, 4.79)
1009 2 58 239.5 0.83 (0.10, 3.02)
1119 34 511 1637.8 2.07 (1.44, 2.9)
1149 16 379 716.9 2.23(1.27, 3.62)
1177 15 197 649.9 2.31(1.29, 3.81)
1195 0 38 111.6 0.00 (0.00, 3.30)
1218 7 439 414.4 1.69 (0.68, 3.48)
1258 0 17 64.6 0.00 (0.00, 5.71)
1745 12 106 3745 3.2 (1.65, 5.6)
1810 0 20 72.1 0.00 (0.00, 5.11)
Table 7. 21. Revision rates of Vanguard PS/Regenerex primary total knee replacement by surgeon id.
N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)
253 2 42 135.9 1.47 (0.18, 5.32)
660 13 172 401.2 3.24 (1.72, 5.54)

The criterion that was taken into account was twice the modified comparator over a
five-year follow-up. This can also be modified to 1.5 times the comparator to better
reflect the role of surgeons when using a specific hip or knee outlier. Results show
that the same surgeons (1195 and 1745) used most of the outlier prostheses and
provided significant interactions on Furlong Evolution, MiniMax and Score/Score
performance. These surgeons recorded revision rates much higher than twice the
comparator and even higher than most of the other surgeons who used the same
device components, such as for the MiniMax primary total hip replacement.

Number of Total and Revision of Outlier Prostheses by Year of Implant

Table 7.22 shows the number of primary joint procedures performed annually using
the outlier prostheses and the number revised. There is less follow-time for the primary
operations performed in later years; consequently, the number revised is estimated to
be less than the number of revisions in earlier years. For example, a primary procedure
performed in 2018 has a maximum of two years to be revised although a primary
procedure performed in 2016 has a maximum of four years until a potential revision

surgery.
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Table 7. 22. Number of total and revision of total hip outliers by year of implant.

Emperion Furlong Evolution MiniMax
Year of implant N N N N N N
Revised Total Revised Total Revised Total
2015 4 32 2 31 0 0
2016 4 29 0 11 0 4
2017 0 10 3 52 3 37
2018 0 0 7 94 6 155
2019 0 0 6 100 8 124
Total 8 71 18 288 17 320
Vanguard
Score/Score PS/Regenerex
Year of implant N N N N
Revised Total Revised Total
2015 36 703 0 18
2016 34 579 5 76
2017 22 527 10 58
2018 19 419 0 56
2019 5 420 0 14
Total 116 2648 15 222

Revision Rates of Total Hip Outlier Prostheses by Associated Component

An individual total hip prosthesis may be combined and used with several
components. This analysis has been conducted to investigate whether the revision
rate varies according to the combined component. This part of the analysis was
conducted to investigate the individual hip outliers (femoral stems) combined with
acetabular cups. Tables 7.23-7.25 show that the issue could be related to outlier
femoral stems rather than the matched acetabular cups. The higher-than-expected
revision rate is not significantly correlated with the performance of acetabular cups.
The Emperion femoral stem was mainly combined with‘R3’ cup, Furlong Evolution with
the Furlong cup, and Minimax with a broader range of cups such as ‘Mpact’,
Versafitcup CC’, and Versafitcup DM’

Table 7. 23. Revision rates of Emperion primary total conventional hip replacement by acetabular

component.
N N Revisions/100
Acetabular component Revised Total Obs.Years Obs. Years (95% Cl)
R3 8 70 240.6 3.32(1.43, 6.55)
Trabecular Metal (Shell) 0 1 4.8 0.00 (0.00, 77.17)
Total 8 71 245.4 3.26 (3.01, 3.56)

Table 7. 24. Revision rates of Furlong Evolution primary total conventional hip replacement by
acetabular component.

N N Revisions/100
Acetabular component Revised Total Obs.Years Obs. Years (95% Cl)
Acetabular Shell (Global) 0 4 17.5 0.00 (0.00, 21.11)
Adaptive 0 4 12.3 0.00 (0.00, 29.97)
Delta-TT 0 2 4.3 0.00 (0.00, 85.99)
Furlong 18 241 381.7 4.71 (2.79, 7.45)
Logical G 0 14 24.6 0.00 (0.00, 14.97)
Mpact 0 18 9.1 0.00 (0.00, 40.63)
PINNACLE 0 1 0.2 0.00 (0.00, 1676.76)
Trident/Tritanium (Shell) 0 1 3.4 0.00 (0.00, 109.46)
Versafitcup CC 0 3 5.7 0.00 (0.00, 65.06)
Total 18 288 458.7 3.92 (3.59, 4.31)
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Table 7. 25. Revision rates of MiniMax primary total conventional hip replacement by acetabular

component.
N N Revisions/100
Acetabular component Revised Total Obs.Years Obs. Years (95% Cl)
Agilis 0 1 0.2 0.00 (0.00, 1756.61)
Mpact 8 123 99.5 8.04 (3.47, 15.85)
Trinity 0 1 3.4 0.00 (0.00, 106.92)
Versafitcup CC 4 87 98.9 4.05 (1.10, 10.36)
Versafitcup DM 5 108 172.7 2.89 (0.94, 6.76)
Total 17 320 374.7 4.54 (4.25, 4.87)

Revision Rates of Total Hip Outlier Prostheses by Head Size

To assess the effect of head size on the prosthesis survillance, an analysis was
conducted to compare head size groups (<32mm versus =32mm) for the total hip
outliers. The Emperion femoral stem with head sizes 232mm has a higher revision
rate than the other constructs of this device with smaller head sizes. Larger head sizes
showed better outcomes for Furlong Evolution, although our sample size was less
than 10 for both Emperion and Furlong Evolution primary total hip replacements
(Tables 7.26 and 7.27). However, in the case of Minimax, there was a higher revision
rate for larger head sizes over the 5-years follow-up (Table 7.28). The results illustrate
that the outcomes of outlier prostheses vary according to head size, although better
outcomes are expected for larger head sizes as there could be a lower risk of early
dislocation [153, 157].

Table 7. 26. Revision rates of Emperion primary total conventional hip replacement by head size.

N N Revisions/100
Patella used Revised Total Obs.Years Obs. Years (95% CI)
<32 0 4 14.9 0.00 (0.00, 24.77)
>= 32 8 67 230.5 3.47 (1.50, 6.84)
Total 8 71 245.4 3.26 (3.01, 3.56)

Table 7. 27. Revision rates of Furlong Evolution primary total conventional hip replacement by head

size.
N N Revisions/100
Patella used Revised Total Obs.Years Obs.Years (95% Cl)
<32 1 6 11.4 8.77 (0.22, 48.87)
>= 32 17 282 447.3 3.80 (2.21, 6.08)
Total 18 288 458.7 3.92 (359, 4.31)

Table 7. 28. Revision rates of MiniMax primary total conventional hip

replacement by head size.

N N Revisions/100

Patella used Revised Total Obs.Years Obs. Years (95% CI)
<32 5 113 179.7 2.78 (0.90, 6.49)
>=32 12 207 194.9 6.16 (3.18, 10.75)
Total 17 320 374.7 4.54 (4.25, 4.87)

Revision Rates of Total Knee Outlier Prostheses by Patella Usage
According to the AOANJRR reports, primary total knee procedures with patellar
component have less overall revision rate than procedures without patellar resurfacing

[201, 202]. This is also indicated by the results provided in Table 7.29 for Score/Score
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primary total conventional knee replacement. However, when the patella is resurfaced,
the revision rate of Vanguard PS/Regenerex was much higher than that of with no
patella (Table 7.30). Overall, patellar resurfacing effects vary dependent on the outlier

prosthesis used, as other factors can potentially contribute to the outcome.

Table 7. 29. Revision rates of Score/Score primary total knee replacement by patella usage.

N N Revisions/100

Patella used Revised Total Obs.Years Obs. Years (95% CI)
YES 97 2232 6210.5 1.56 (1.27, 1.90)
NO 19 416 899 2.11 (1.27, 3.30)
Total 116 2648 7109.6 1.63 (1.35, 1.96)

Table 7. 30. Revision rates of Vanguard PS/Regenerex primary total knee replacement by patella

usage.
N N Revisions/100
Patella used Revised Total Obs.Years Obs. Years (95% CI)
YES 15 200 495.2 3.03 (1.69, 5.00)
NO 0 22 64.9 0.00 (0.00, 5.69)
Total 15 222 560.1 2.68 (1.50, 4.42)

Revision Rates of Total Knee Outlier Prostheses by Bearing Mobility

Revision rates of primary total knee outliers by bearing mobility were calculated as
some prosthesis constructs are combined with various bearing mobilities. All the
mobilities used with these two outlier combinations are listed in Tables 7.31-7.32.
Fixed-bearing prostheses include non-modular tibial knee constructs and those
prostheses with fixed inserts without the ability to move relative to the baseplate.
According to the registry report, fixed designs have a lower revision rate than do mobile
designs during the first seven years [5]. However, the identified outliers were only used

by one specific mobility design.

Table 7. 31. Revision rates of Score/Score primary total knee replacement by bearing mobility.

. L . Revisions/100
Bearing mobility N Revised N Total Obs.Years Obs. Years (95% Cl)

Rotating 116 2648 7109.6 1.63 (1.35, 1.96)

Total 116 2648 7109.6 1.63 (1.35, 1.96)

Table 7. 32. Revision rates of Vanguard PS/Regenerex primary total knee replacement by bearing

mobility.
. L . Revisions/100
Bearing mobility N Revised N Total Obs.Years Obs. Years (95% Cl)
Fixed 15 222 560.1 2.68 (1.50, 4.42)
Total 15 222 560.1 2.68 (1.50, 4.42)

Revision Rates of Total Knee Outlier Prostheses by Stability Design
This analysis was conducted because some prostheses are combined with various
stability designs. All stabilities used with these outlier combinations are listed in Tables

7.33 and 7.34. Stability denotes specific prosthetic features proposed to substitute for
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the intrinsic stability of knee ligaments. The five groups are: minimally stabilised,
medial pivot design, posterior stabilised, fully stabilised, and hinged prostheses. The
two knee outliers were manufactured only by standard stability; Minimally stabilised
was the design used for ‘Score/Score’ and posterior stabilised for the ‘Vanguard

PS/Regenerex’.

Table 7. 33. Revision rates of Score/Score primary total knee replacement by stability.

o~ N N Revisions/100

Slalodlisy Revised Total Oy Obs. Years (95% CI)
Minimally Stabilised 116 2648 7109.6 1.63 (1.35, 1.96)
Total 116 2648 7109.6 1.63 (1.35, 1.96)

Table 7. 34. Revision rates of Vanguard PS/Regenerex primary total knee replacement by bearing

mobility.
. L N N Revisions/100
Ezall kil Revised Total Do ieare Obs. Years (95% CI)
Posterior Stabilised 15 222 560.1 2.68 (1.50, 4.42)
Total 15 222 560.1 2.68 (1.50, 4.42)

7.7 Patient Characteristics

CPR of Outlier Prostheses by Age and Gender

The identified femoral stems were most commonly implanted for primary total hip
replacement in patients younger than 65-years (Figures 7.11-7.13). This is also more
common for patients aged 65 to 74, where outlier prosthesis combinations were mainly
used in primary total conventional knee surgeries (Figures 7.14 and 7.15). In the short
term (less than three months), older patients who underwent an outlier total hip
replacement had a higher rate of revision, while this risk is higher in younger patients
over the long term. This is because younger patients could potentially engage in a
higher level of routine activities that increase revision risk. When the Furlong Evolution
stem or the Score/Score were used, female patients showed a higher number at risk
with lower overall CPR compared to male patients. However, female patients showed
higher rates of revision than males for the other outlier prostheses, including
Emperion, MiniMax, and Vanguard PS/Regenerex.
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Figure 7. 11. CPR of Emperion primary total conventional hip by age and gender.
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Figure 7. 12. CPR of Furlong Evolution primary total conventional hip by age and gender.
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Figure 7. 13. CPR of MiniMax primary total conventional hip by age and gender.
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Figure 7. 14. CPR of Score/Score primary total conventional knee by age and gender.
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Figure 7. 15. CPR of Vanguard PS/Regenerex primary total conventional knee by age and gender.

CPR of Outlier Prostheses by BMI and ASA Score

The CPR rates of the identified prostheses according to the classified levels of Body
Mass Index (BMI) and the American Society of Anesthesiologists (ASA) are shown in
Figures 7.16-7.20. Patients with ASA scores less than 3, and BMI equal to or greater
than 30, usually had operations using outlier prostheses identified. Except for the
Emperion femoral stem, no difference is observed in the CPRs for outlier prostheses
by ASA scores (Figures 7.16-7.20). For the hip and knee replacements where poorly-
performing prostheses were used, most procedures involved patients with high levels
of obesity. Overall, there was a difference in the outcome of outlier prostheses when
the classified BMI values were compared. Although our understanding of patient-
reported knee and hip replacement outcomes has progressed, it still needs to be
refined. National registries are helping us learn more about knee replacements, and

new statistical approaches should be used to derive the most from collected data.
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Figure 7. 16. CPR of Emperion primary total conventional hip by BMI and ASA score.
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Figure 7. 17. CPR of Furlong Evolution primary total conventional hip by BMI and ASA score.
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18. CPR of MiniMax primary total conventional hip by BMI and ASA score.

Score / Score - BMI
— =25

25-29.99
— =2990

Cumulative Percent Revision

Score / Score - ASA
— <3

=23

J_K—’—F

o

o

0 1

Number at risk

2 3
Years Since Primary Procedure

0 1 2 3
Years Since Primary Procedure

Number at risk

= | 310 241
776 605
== | 1371 1146

5.0%

0.0%

179 124
465 309
902 596

63
159
287

1719 1392 1087 756 424
925 784 639 438 212

Figure 7. 19. CPR of Score/Score primary total conventional knee by BMI and ASA score.

— <25
25-29.99
— =29.99

Vanguard PS / Regenerex - BMI

-

r—

Cumulative Percent Revision

0 1

Number at risk

2 3
Years Since Primary Procedure

26 24
68 80
111 101

17 8
35 23
73 44

2
6
6

Vanguard PS / Regenerex - ASA
— <3
»=3
—
0 1 2 3 4
Years Since Primary Procedure
Number at risk
156 143 99 60 10
66 58 42 28 8
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7.8 Discussion

This study analysed the three poor-performing total hip femoral stems and two
identified total knee prosthesis combinations. Emperion, Furlong Evolution, and
MiniMax were detected by both the ML techniques as well as the standard approach.
This was done by utilising the modified comparator groups developed in Chapters 3
and 5 and by taking into account the confounding presented in Chapters 4 and 6. Non-
contemporary practices have been excluded from the comparator for all primary total
conventional hip studies. Complex procedures were excluded from the comparator
group of total conventional knee prostheses. The revision rates of the detected
prostheses exceeded twice that of the modified comparator groups. In addition, the
proposed ML techniques detected these outliers, taking into account the four available
patient factors and prosthesis-related confounding factors.

Many factors may impact the effectiveness of joint replacement surgery over time.
Joint replacement registries are able to detect differences in outcomes based on
patient-, surgery-, or prosthesis-specific factors [203-206]. The comparative analyses
presented in this chapter were designed to study the outlier prostheses, taking into
account the potential confounding. Arthroplasty registries critically play a role in
preparing post-market surveillance, helping practitioners to comprehend prosthetic
use and positively affect patient outcomes [81, 207, 208]. Registries should use a
precise and reliable approach to identify an outlier. This chapter was an attempt to
evaluate the extent of confounding and determine the possible impacts of confounding
on outlier prosthesis survival. The details regarding the prostheses with higher-than-
expected revision rates are far less widely reported. Therefore, there is a need to
investigate the various device- and non-device-related factors that may clinically affect

the survival outcome.

This research showed that routine screening might require a specific post-analysis
that includes more confounding factors. In addition, ML is able to assist the process
by considering more salient factors and evaluating their interactions. The registry will
improve the identification approach progressively, considering that decreasing the
number of procedures available may adversely affect statistical accuracy. Two
different statistical methods were used for this comparative post-analysis with respect

to the available number of observations. The component year formula is able to
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provide better comparative outcomes of study populations when there are limitations
related to sample sizes. However, a more precise rate of revision was obtained by
undertaking KM survival analyses for a number of confounding factors with reasonable

sample sizes and follow-ups.

7.9 Summary

In this chapter, the performance of outlier prostheses was studied in terms of
clinically-known confounding factors to determine the impact of design- and patient-
related variables on the performance of outlier prostheses. The results showed
variations in the outcome of identified total hip and knee outliers in regard to bearing
surfaces. In addition, the longevity of total knee outliers was associated with the
method of fixation and the patella that was used. There was also a significant variation
in the surveillance of total hip prostheses with the femoral head size and the

associated device component.
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Chapter 8. Discussion



Discussion

8.1 Joint Registry Approach for the Identification

of Outlier Prostheses

Arthroplasty registries differ in their approaches to identifying outlier prostheses
within the community. The Swedish hip arthroplasty register circulates survivorship
curves but there is no specific comparison of the prostheses performance [170]. The
Norwegian registry documents the surveillance of prostheses and distributes
outcomes in peer-reviewed journals, but the annual report does not include any
particular survivorship curves [209]. The New Zealand registry publishes tables of
prostheses outcomes but does not identify outlier prostheses [40]. The National Joint
Registry for England and Wales has developed a subcommittee to discuss unique
strategies for each prosthesis [5]. The Swedish Knee Arthroplasty Register uses an
implant as a reference when comparing the outcomes of other prostheses [34]. The
main challenge of all these approaches is to identify the most appropriate comparator
for a liable comparative study of prostheses performance.

A number of devices are identified annually as poor-performing prostheses given
the post-surgery outcomes. Joint registries (JRs) need to apply appropriate and
effective methods to recognize poor-performing prostheses and evaluate all the
potential variables impacting the monitoring process of total joint prostheses. JRs can
identify variations in the outcome by estimating time to first revision using Kaplan-
Meier survival analyses [203-206]. The variation in the performance of prostheses
indicates the necessity for thorough pre-market evaluation and careful post-market

assessment.

Joint registries assist the community in understanding the use of prosthetic devices
and improve patient outcomes by providing high-quality post-market survival results
[207, 208]. Individuals or prosthesis combinations are regularly identified if they
indicate a much higher revision rate than others within the same broad class [210,
211]. Ouitlier detection will continue to improve with the application of more effective
strategies. Many approaches have been investigated for systematically reducing the
revision rate but the details were far less widely reported. International collaborations
can improve the identification by sharing data and assessing the surveillance of

prostheses using a more extensive database.
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The Australian Orthopaedic Association National Joint Replacement Registry
(AOANJRR) determines the possible reasons for higher-than-expected revision rates
of outlier prostheses. The registry developed a standardized multi-stage approach with
an initial screening analysis that automatically identifies an outlier individually or in
combination with the associated components. This occurs when the revision rate per
100 component years exceeds twice that of all others [212]. Then, a limited number of
potential confounding factors (including age, gender, and primary diagnosis) are

reviewed as a part of this early assessment [15].

The registry assesses patient-, surgeon- and device-related variables that may
significantly contribute to the observed higher revision rate. For example, some
prostheses may be detected by the initial screening test but not be reported for various
reasons such as inadequate sample size, their use in complex primary situations or
when combined with a poor-performing component. However, there are several
limitations with the standardised approach as it is not able to consider all the known
confounding factors simultaneously. The method has significant limitations when

handling interactions of highly-correlated variables.

Joint replacement registries are able to identify differences in such outcomes based
on patient-, surgery- and prosthesis-specific factors [167-169]. An important part of
this study was the analysis conducted to examine the impact of potential confounders
which are known to influence implant survival. This analysis sought to identify patient
and surgeon factors, as well as prosthesis-related variables that may have contributed
to the observed higher rate of revisions. This research studied a number of surgeons
(after applying the exclusion criteria) to determine whether the poor results of outlier
prostheses were influenced by one or a few surgeon(s). However, a more detailed
analysis on the experience of surgeons and their surgical load (e.g. number of
replacements performed per year) was not conducted due to some major limitations,
such as the complexity of converting such information into classified meaningful

inputs. This is a limitation in this study that needs further investigation in future work.

This research identified hip and knee outlier prostheses, taking into consideration
all the known confounding factors such as the number of surgeons and the subset
designs. A particular surgeon or a specific design of device could be responsible for a
higher-than-anticipated rate of revision (HTARR). These two factors were not included
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in the model training but were studied through a careful post-analysis of the surgeon
effects and subset details. This study also identified the surgeons with the most
contribution to the performance of identified total hip and knee prostheses. The

outcomes of the outlier prostheses by these surgeons are shown in Table 8.1.

Table 8. 1. The most significant interactions between surgeon IDs and prostheses.

Primary Total Conventional Knee for OA (1st January 2015 to 31st December 2019)
N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)

Device IV 15 197 649.9 2.31(1.29, 3.81)

1177 Overall 21 219 721.5 2.91 (1.80, 4.45)
Ex. outliers 6 22 71.6 8.38 (3.07, 18.24)

Device IV 7 439 414.4 1.69 (0.68, 3.48)

1218 Overall 39 921 1963.8 1.98 (1.41, 2.71)
Ex. outliers 32 482 1549.4 2.06 (1.41, 2.91)

Device IV 12 106 374.5 3.2 (1.65, 5.6)

1745 Overall 15 231 561.7 2.67 (1.49, 4.40)
Ex. outliers 3 125 187.2 1.60 (0.33, 4.68)

Primary Total Conventional Hip for OA (1st January 2015 to 315t December 2019)
N N Revisions/100
Surgeon ID Revised Total Obs.Years Obs.Years (95% CI)

Device | 9 113 1445 6.23 (2.85, 11.82)
1745 Overall 10 145 258.4 3.87(1.85, 7.12)
Ex. outliers 1 28 95.6 1.04 (0.03, 5.83)

Device VI 6 134 275.7 2.17 (0.8, 4.74)
1177 Overall 30 425 1303.9 2.30 (1.55, 3.28)
EX. outliers 24 291 1028.2 2.72 (1.49, 3.47)
Device VI 16 366 404.2 3.96 (2.26, 6.43)
1218 Overall 43 763 1666.6 2.58(1.87, 3.47)
Ex. outliers 27 397 1262.4 2.14 (1.41, 3.11)
Device V 9 112 144.4 6.23 (3.32, 12.74)
1745 Overall 10 145 258.4 3.87 (1.85, 7.12)
EX. outliers 1 28 95.6 1.04 (0.03, 5.83)

8.2 Primary Total Hip Comparator

Given the advancements in the design and use of hip prostheses, this research
aimed first to develop a specific comparator for the early assessment of total hip
prostheses. Currently, the standard hip prosthesis is constructed with modern bearing
surfaces. Hence, all non-modern bearing surfaces were excluded in order to identify
a modern comparator. Then devices with modular neck-stem design or those used for
specific purposes including constrained, dual mobility, and head size smaller than 28
mm were excluded. Lastly, all remaining prostheses previously identified as having
HTARR were also excluded. These exclusions progressively reduced the revision rate
of the comparator. Therefore, contemporary device components can be a more
effective and relevant comparator with greater sensitivity for the early assessment of

newly-introduced prostheses.

The AOANJRR standardised approach detected additional femoral stems and

acetabular components using the final modified comparator. The registry takes into
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account the complexities with small sample sizes, the effect of a single surgeon, and
the confounding impact of associated device components [164, 165]. Therefore, these
devices were investigated further to determine the effect of surgeons and subset
designs. Such identification usually has a significant positive influence on the clinical
outcomes of patients. However, a careful comparative analysis needs to be
undertaken to monitor and record the performance of joint arthroplasty prostheses.
Surgeons, regulatory authorities, and industry should be aware of individual hip

prostheses identified through a practical and modern initial screening test.
8.3 Primary Total Knee Comparator

There are variations in primary total knee outcomes by stability design referring to
certain prosthetic structures designed to substitute for the inherent stability of knee
ligaments. Most of the implanted prostheses are established cruciate retaining (CR)
or posterior stabilised (PS) prostheses with long-term follow-ups [4]. These two
designs remained the most popular and were used in 90.8% of all the primary
procedures [34, 40, 66]. The current knee comparator does not differentiate amongst
other total complex or conventional procedures. This may cause the detection of less
conventional and more complex design devices within the community. Our results
showed that the final conventional comparator, which includes only the conventionally-
designed prostheses, has a lower revision rate than the current comparator. A
comparator of complex prostheses was also identified with a higher revision rate than

the current comparator to better reflect high-risk devices used for specific purposes.

The use of the modified comparator groups resulted in more conventional and less
complex prostheses detected by the AOANJRR standardised approach. Although the
comparator was modified in terms of the stability design, there was no further
subdivision by patella, fixation, mobility, or technology assist (including robotic
assistance, image-derived instrumentation, or computer navigation). Further
subdivisions may provide meaningless comparator groups with too-small sample sizes
at the time of writing this study. However, the registry is aware that other factors can
be further investigated for more relevant and specific comparator groups. For example,
using only the total knee prostheses with patellar resurfacing components may

improve the sensitivity of the conventional comparator [5, 34, 40]. Regular
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reconsiderations of initial screening are needed as modifications occur in the use and

design of total knee prostheses.
8.4 Methods for Outlier Detection

Many diverse models exist for analysing and studying high-dimensional survival
data. While some statistical models and implementations contain tuning automatism
of a parameter internally, others may necessitate the user to modify defaults
accurately. Survival analysis agreements with the analysis of failure times or time to
events are observed in various application fields, such as medical statistics. The main
interest of researchers usually is in computing the effect of other variables on the
survival time. For example, the Cox proportional hazards model is a standard method

used to analyse the impact of clinical variables on the outcome.

An established research method is the development of appropriate multivariate
survival models in addition to the comparative study of their potential to generalize
using unseen data. However, new challenges have appeared in recent years due to
the quick expansion of data collection technologies and computer science. One
particular challenge involves the reliable and simultaneous measurement of
thousands of variables such as patient data and prosthesis attributes. Common
techniques comprise linear regression methods that penalize extreme parameter
estimates with a shrinkage format such as a Ridge penalty [213], a Lasso penalty [214]
or a combined version called elastic net [215]. The last two have the advantage of
automatically implementing feature selection for subsequent interpretation. However,
it has been found that Ridge regression — which keeps all parameters in its final
coefficient vector —often performs superior with a greater power of prediction [216,
217].

Although comprehensive comparisons have been performed between ML statistical
methods, comparative study of survival methods is still commonly conducted. There
is a strong need for reproducible and objective comparative studies in the field of joint
arthroplasty surgeries. Despite the aforementioned penalized approaches, survival
trees/forests seem promising approaches that have not been severely compared in
the high-dimensional survival setting. The effectiveness of the developed models may
vary by tuning of hyper-parameters, as the default settings are often not optimal. Even
experts might struggle with the tuning process but prefiltering has been recommended
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and proven to be effective. For example, most variables are unrelated to survival
outcomes in typical signal detection and can be regarded as irrelevant or even

detrimental to prediction.

Various filtering methods can be used, requiring the analyst to set the respective
control parameters. The in-depth evaluation of all algorithm and parameter
combinations is impractical even if parallelisation is employed, especially for the high-
dimensional structures. A modern approach to solving this dilemma is to make all
choices through an efficient black-box optimisation that considers the desired
performance measure. Modern methods are exclusively customised for the
characteristics of optimisation problems. The emerging research field has become
known as a hot modern topic called algorithm configuration. Two leading procedures
are iterated racing [218] and model-based optimization [219].

8.5 Survival Analysis

In survival analysis, the time to a particular event (first revision) is observed. The
predefined event may not be observable due to the censoring for a patient who may
die or survive until the end of this study. This important concept is called right-
censoring and holds essential information about the event that did not occur before a
certain point. Therefore, one primary goal is to involve both non-censored and
censored observations. This research assumed that there are n patients with a survival
time ‘ti” for each of them. These survival times are supposed to be generated from a
non-negative random variable T with cumulative distribution function F(t) and density

f(t). The probability of surviving more than t is specified by the survival function S(t):
S(t) = PHT > t}) =] f(w)du = 1 — F(t)
t

The number of observations is defined as ni and also, when it is still under risk at ti
is defined as the number of risk at ti. The Kaplan—Meier estimator can estimate hazard
function A(t) that is closely associated with the survival function and express the risk
for an event (revision) at a definite point in time t with respect to surviving until t and

the cumulative hazard function A(t):

A = lim S@) — St+4)  f(0)

At—0 At S(t) —S() A1) :fo A(w)du = —log S(¢t)
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This study assumed the censoring to be non-informative, which means that the
censoring distribution of data contains no information about the surveillance. In
addition, a covariate vector xi € Rp was observed for each patient, which then formed
the (n x p)-matrix by all covariate vectors. The covariates can only include a limited
number of variables (e.g., age and gender) or constantly a large number of
orthopaedic variables. They are mostly considered to predict the risk of occurring an
event expressed by A(t) or A(t). The concordance index (C-index) is a standard
performance measure to assess survival models [220]. The C-index, including a

correction for ties, is estimated by maximizing the partial log-likelihood.
8.6 Feature Selection and Algorithms

As a strategy for mining high-dimensional datasets, feature selection shows this
ability to be efficient and effective. The aim of feature selection is to build more
straightforward and understandable models and improve data-mining performance.
The current proliferation of big data is suggested considerable challenges and
research opportunities. It is required to apply data mining strategies to discover
knowledge from big data. Learning models tend to overfit with many features, leading
to performance decay on unseen data. High-dimensional data can considerably

increase the memory storage necessities and computational requirements.

Real-world data hold a large number of unrelated, redundant, and noisy variables
that can be handled by one of the most influential tools called dimensionality reduction.
On the one hand, feature extraction changes the dataset with original high-
dimensional variables to a new space with lower dimensionality. The newly-created
variable space can typically be a nonlinear or linear combination of the original
variables. On the other hand, feature selection directly chooses a subgroup of relevant

variables for model development [195, 221].

Basic filtering methods exist to handle the correlations and there are more elaborate
alternates that demand extensive computational resources. The pre-selection of
features is a two-edged sword: the model may be untrustworthy as it might not reveal
potentially useful information. By contrast, limiting the features to a logical subset can
meaningfully increase the performance of models and preliminary dimension reduction
decreases the computational necessities [21]. A backward selection procedure may

help provide a more informative subset of variables.
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The removal of noisy variables also decreases computational cost and
simultaneously prevents significant information loss or degradation of learning
performance. Both feature selection and extraction can improve learning performance,
reduce memory storage, and fit models with better generalization. Feature selection
keeps the physical meanings of the original variables and provides models with greater
interpretability, and is frequently desired in many applications such as medical

analytics.

Algorithms have different unique implementations. Survival trees use binary
selections to split data into sets of similar hazard rates recursively. A rule for binary
splits is to search all variables and their corresponding probable cut points to minimize
the P-value of the log-rank test [222]. For prediction purposes, new data are released
to the tree and a cumulative hazard function A(?) is created for each separate terminal
node. This function can be used to compute the risk of revision with respect to the
follow-up time. Random survival forests are built by fitting survival trees on
bootstrapped data samples and randomly sampling candidate feature sets for each

node.

In the case of Cox regression, Lambda represented the complexity of the model
determined via 10-fold Cross-Validation (CV). An acceptable value for lambda is
typically identified using CV to provide a stable model with the minimum variance in
the reported outcomes. This occurs by a random subdivision of the dataset into ten
parts, and each block then acts as the test set per CV iteration. Cross-validation is a
common resampling process for the assessment and comparative evaluation of the
model [223]. A rather high number of folds was selected as there were enough
samples to evaluate the C-index in a meaningful way. Note that the proposed models

were all developed with a tuning of the most critical parameters using CV.

8.7 Machine Learning Approach for the Identification of

Outlier Prostheses

The AOANJRR multi-stage approach ignores the order of time. This means that
although the registry is successful at evaluating the performance of recently-
introduced devices, those with delayed onset of higher revision rates are not simply
detected by the same method. It also does not limit the confounding effect of the

potential factors. Ideally, a survival method to identify outliers should determine the
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confounding effects of patient characteristics and other associated components using
a time-to-first revision outcome. Stage | of the standardised approach does not
account appropriately for the changes in the rate of revision over time. This constraint
may cause difficulty in detecting the outlier prostheses later in the follow-up period
[173]. In addition, stage Il is a further analysis only on a limited number of confounding
variables such as age, gender and primary diagnosis.

In medical research, predictive models are often used to derive patterns from
diagnoses and treatments. Examples include data-driven predictions of drug effects,
the detection of comorbidity groups in autism spectrum disorders, and the identification
of type 2 diabetes subgroups [97, 98]. Machine learning (ML) seems promising for
solving complex problems as many variables can be considered simultaneously and
learning patterns are produced from empirical data. However, more investigations are
needed to document the ability of feature selection in orthopaedics and the monitoring
of joint arthroplasty, particularly total joint replacement. For example, the success of
outlier detection relies on detecting appropriate component characteristics, and the
process is compromised in the absence of relevant attributes. The contrary may be a
concern because when too many features are used to describe components, outliers
may be difficult to detect. One possibility to address this issue is to use data from

several joint registries with information about the components of the same prostheses.

In medical sciences, supervised ML is widely used to train models with a known set
of predictors and outcomes. The supervised algorithms are able to identify the
predictors most strongly associated with the outcome. Larger sample sizes may
improve the performance of ML in the variable selection or prediction problems. The
potential to handle big data with high-correlated structures may assist clinicians by
providing information about the components of the medical device. In addition,
retrieval studies add significant insights on the mechanisms of failed implants, and
should be used in conjunction with joint replacement registry reports [224, 225].
Implant retrieval studies and joint registry data analysis of THR and TKR are
multidisciplinary areas that require contributions from clinicians, engineers and data
scientists. To date, multivariable predictive models have been developed for THR and
TKR using patient-reported factors and image-based data. Perhaps now is the right
time to enter a new era of THR and TKR by developing decision-making support

systems.
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The principal objective of evaluating ML techniques was to investigate their potential
in monitoring the performance of joint arthroplasty components. There was variation
in the outcome of methods employed to detect hip and knee outliers with respect to
the standardised approach. Hip models were trained with smaller sample sizes and
more highly-correlated inputs than the knee models due to entering the individual
components rather than combinations. By contrast, more covariates were defined in
the case of total knee replacements in order to consider further complex interactions.
It is noted that the ML approach necessitates clinical knowledge prior to selecting a

reasonable number of input factors.

More feature selection techniques could be evaluated using shared data from joint
registries to improve signal detection efforts. Machine learning has limitations in
identifying outlier prostheses with concerns about accurately interpreting statistics to
indicate the impact of variables on the outcome [226, 227]. Random forests are unable
to specify variable effects in a substantively meaningful approach, and it is also more

challenging to achieve a substantive understanding of variable effects [6].

The AOANJRR standard provided an acceptable criterion by which to assess the
effectiveness of the methods on both reported and non-reported prostheses. We
suggest that ML can be used as a supplementary approach in the outlier detection
and tree-based methods offer better performance for data mining [175, 227]. To date,
several techniques (e.g., permutation importance) have been used to interpret variable
effects determined by random survival modelling [227]. Permutation importance does

not characterize variable effects, and it only describes a conditional strength.

This study found that the estimate of variable importance is less biased and more
accurate when the sample size is increased with a corresponding increase in the
computational time. Both of the proposed ML methods reduced the dimensionality of
our complex data to a subset of more informative inputs. This was done by excluding
noisy variables that could possibly improve the prediction error rate to select the most
significant predictors. Hyperparameters were also tuned carefully to achieve the most
informative predictors. Random forests require the user to examine the impact of tuned
hyperparameters on the error rate. A more computational cost should be expected for

RSF than for the parametric or semi-parametric models.
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The conventional parametric models such as multiple linear regression necessitate
a correct model specification. To the extent that the fitted Cox models rely on a more
conventional approach of measuring variable significance, it may be a more desirable
option for similar feature selection problems. However, limitations exist for the Cox
modelling regarding the extrapolation and model misspecification [228]. Other
advantages of the Cox models include higher efficiency in computational time and
reporting the adjusted predictor’s strength when there is a need to maintain the false
discovery rate (FDR) at 0.05. Conversely, calculating a sufficient number of
permutations with respect to the FDR rate was computationally too burdensome for
the RSF approach.

In future applications, Cox and random survival may support the initial screening
test to effectively monitor the performance of prostheses. A single model is not
necessarily the best as the inclusion or exclusion of predictors can affect the strength
and sign of predictors. Some points of the two methods are sorted in order. First, more
components were detected using RSF within the total conventional hip community.
Second, the primary motivation of this study was to limit both device- and patient-level
confounding when identifying harmful prostheses, and the two approaches could
handle this difficulty. The Cox was conditioned on device and patient characteristics

simultaneously while the RSF had many competing variables for splitting.

Overall, the RSF backward selection was more aligned with the AOANJRR
standard as random subsets of variables were used per node to grow trees. In
addition, the correlated variables were selected independently, leading to the
interruption of multicollinearity [188]. This feature of the RSF provides an attractive
approach for explorative variable selection; however, false-positive discoveries due to
overfitting are still considered a major problem [189]. Machine learning identified
additional hip prostheses to the AOANJRR standard, and some of those were newly
detected for the first time based on the registered historical data. Future studies can
apply the developed approaches to monitor other arthroplasty devices such as those
for shoulders. Utilizing prediction to understand the link between inputs and the
outcome may improve decision makings for the early identification of outlier

prostheses.
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Chapter 9. Conclusions
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9.1 Conclusion remarks

One of the main functions of all joint registries (JRS) is to enable the comparison of
the performance of individuals, prosthesis combinations, or an entire class of devices.
This study illustrates that increasing the relevance of the comparator could be helpful
for the early identification of a higher number of outlier prostheses. In addition, the
most challenging part was the reduction of the confounding effects by taking into
account the patient factors and prosthesis attributes. For example, several total knee
replacements (TKRs) have a higher revision rate only with posterior stabilized or
cementless versions, and total hip replacements (THRs) show the same risk with
smaller head sizes. The results enable surgeons to make an informed choice of
devices, and are essential for registries to identify variations, leading to the adoption

of best practices.

Several prostheses currently being used extensively in the Australian market were
identified for the first time. The use of modified comparator groups led to identifying
fewer complex knee designs and additional conventional hip and knee prostheses that
pose a risk. The final comparator groups had an estimated 10-year CPR of 4.3% (4.2,
4.41) for conventional THR, 5.2% (5.1, 5.3) for conventional TKR, and 10.3% (8.6,
12.0) for Complex TKR. The publication of these data could contribute to better clinical
outcomes by reducing the revision rate. This research studied in detail and statistically
reported the performance of prostheses utilising the modified comparator. This
includes patient factors, prosthesis attributes, and the potential interaction between

the confounding factors.

This study evaluated random survival forest (RSF) and Cox regression based on
their ability to detect the outliers identified by the standardised approach. In addition,
the performance of these hip and knee devices was assessed with a view to limiting
the effect of potential confounding factors. This study showed that the random survival
approach was more comparable to the Australian Orthopaedic Association National
Joint Replacement Registry (AOANJRR) standard in terms of detecting more outlier
prostheses. However, the Cox regression has a significant advantage in terms of
computational cost, interpreting variable effects, and documenting confounding
effects. Overall, five prostheses met all the criteria established by the approaches (P
value < .05) and several devices had higher than expected revision rates.
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The registries have the common goal of improving joint arthroplasty outcomes over
time. The early identification of outliers may be associated with a substantial reduction
in usage of a certain prosthesis and the subsequent withdrawal of the device from the
Australian market. The registry and NICE (National Institute for Health and Care
Excellence) currently recommend the modern comparator for the early detection of
primary total hip and knee prostheses. In addition, random survival and Cox regression
techniques might offer a supplementary approach to improve the statistical process
strengthened by the registry. The AOANJRR verifies this research findings that

sensitively improved the early assessment of prostheses.

A number of total knee prostheses were identified as combinations but more
consideration should be given to reporting the individual components. Monitoring the
real performance of prostheses with more combinations can better reflect the
performance of individual components. Further weight is also given to the argument
that the non-modern bearing surfaces were an issue with a broad range of joint
arthroplasty prostheses. To the best of our knowledge, this is the first comparative
study to report the poorer performance of non-modern THR compared to the modern
bearing surfaces. The continued use of such prostheses may increase the risk of using

poor-performing prostheses for more patients with osteoarthritis.

The AOANJRR aims to develop a better understanding of confounding factors
associated with outlier detection. According to the machine learning chapters, the most
significant device-related covariates include head size for the initial screening of hip
devices, and the stability and fixation for that of knee prostheses. Moreover, the
conventional statistical analyses showed variations in the outcome of identified total
hip prostheses with the femoral head size, bearing surface and the associated device
component, and knee outliers in regard to bearing surfaces, method of fixation and the

patella usage.

This finding suggests the importance of identifying the confounding factors and
evaluating their impacts on the detection. Machine learning seems promising as an
initial screening method for a more effective assessment of prostheses. Utilizing
prediction to understand the variables linked with the outcome may improve shared

decision-making, leading to fewer patients at risk of receiving poor devices. The
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outcome may cause a considerable reduction in the number of patients exposed to
the outlier prostheses.

9.2 Suggestions for future works

The AOANJRR has been instrumental in improving the joint arthroplasty outcomes,
and this research on the registry data could have an increasingly widespread global
influence. The registry has worked closely with all stakeholders involved in THRs and
TKRs including industry, surgeons, hospitals, government and regulatory bodies,
medical insurers and patients. Collaboration between JRs for the purpose of sharing
data, will enable researchers to conduct for more extensive analyses of the prosthesis
outcomes of surgery performed internationally. Future studies can apply the proposed
method to various classes of device components used for arthroplasty surgeries. The
concept of prediction models to understand the significance of variables may have
considerable potential to provide important context for the initial screening of prosthetic
devices. In addition, this research included significant clinically-known attributes but

other factors related to surgeons and subset designs can be investigated.
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Appendix A

Primary Total Hip Prostheses
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Figure 1. Cumulative percent revision of Device |I.

Table 1. Revision rates of Device | primary total conventional hip replacement by fixation.

Cementless 572.6 3.67 (2.27, 5.60)
Hybrid (Femur cemented) 0 4 15 0.00 (0.00, 24.58)
21 300 587.6 3.57(3.29, 3.91)

Table 2. Revision rates of Device | primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 13 147 296.4 4.39 (2.33, 7.50)
Ceramic/ Non XLPE 7 136 223.7 3.13 (1.26, 6.45)
Metal/Non XLPE 1 17 67.5 1.48 (0.04, 8.25)
21 300 587.6 3.57 (3.29, 3.91)

Table 3. Revision rates of Device | primary total conventional hip replacement by approach.

Anterior 13 158 5.34 (2.84, 9.14)
Lateral 4 34 101.3 3.95 (1.07, 10.11)

Posterior 4 96 187.7 2.13(0.58, 5.46)
21 300 587.6 3.57 (3.29, 3.91)




Table 4. Reason for revision (follow-up limited to 5 years).

Device |

Revision diagnosis Number % Primaries revised % Revisions

Infection 5 1.67 23.81

Prosthesis Dislocation 0.67 9.52

Fracture 1.33 19.05

Loosening 1.67 23.81

Leg Length Discrepancy 0.33 4.76

Lol lll 20 E SN N

Instability 0.33 4.76

Pain - - -

Malposition 0.67 9.52
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Incorrect Sizing 0.33 4.76
Implant Breakage Acetabular Insert - - R
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Figure 2. Cumulative incidence revision diagnosis for Device |.
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Table 5. Type of revision performed for primary total conventional hip replacement.

Femoral Component 9 42.85
Acetabular Component 5 23.81
THR (Femoral/Acetabular) 2 9.52
Cement Spacer 2 9.52

Removal of Prostheses

Reinsertion of Components

Total Femoral

Bipolar Head and Femoral

Saddle

Head/Insert

Head Only

Minor Components

Insert Only

Head/Neck/Insert

Head/Neck

Bipolar Only

Neck Only

Cement Only

Neck/Insert

Table 6. Revision rates of Device | primary total conventional hip replacement by femoral stem.

Exeter V40 0.00 (0.00, 132.22)
Furlong 72 5 1.38 (0.03, 7.68)
Furlong Evolution 18 241 381.7 4.71 (2.79, 7.45)
GTH 0 3 122 0.00 (0.00, 30.19)
Linear 2 15 26 7.68 (0.93, 27.73)
Novation 0 21 91.2 0.00 (0.00, 4.04)
Origin 0 1 11 0.00 (0.00, 320.77)
_ 21 300 587.6 3.57 (3.29, 3.91)
Table 7. Number of revisions of Device | primary total conventional hip replacement by year of
implant.
2015 3 63
2016 0 11
2017 3 53
2018 9 93
2019 6 80
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Figure 3. Cumulative percent revision of Device II.

Table 8. Revision rates of Device Il primary total conventional hip replacement by fixation.

Cementless

2.18 (2.03, 2.36)
5 59 228.8 2.18 (2.03, 2.36)

2.18 (2.03, 2.36)
5 59 228.8 2.18 (2.03, 2.36)

Table 10. Revision rates of Device Il primary total conventional hip replacement by approach.

Anterior 1 32 128.3 0.78 (0.02, 4.34)
Posterior 1 2 1.9 53.76 (1.36, 299.55)




Table 11

. Reason for revision (follow-up limited to 5 years).
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Device Il
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Table 12. Type of revision performed for primary total conventional hip replacement.

Femoral Component 2 40.0

Acetabular Component 1 20.0
THR (Femoral/Acetabular) - -
Cement Spacer - -
Removal of Prostheses - -
Reinsertion of Components = o
Total Femoral - -
Bipolar Head and Femoral - -
Saddle - -

Head/Insert 1 20.0

Head Only 1 20.0
Minor Components - _
Insert Only - -
Head/Neck/Insert - N
Head/Neck = B
Bipolar Only - B
Neck Only - -
Cement Only - -
Neck/Insert - -

Table 13. Revision rates of Device Il primary total conventional hip replacement by femoral stem.

2.18 (2.03, 2.36)
5 59 22838 2.18 (2.03, 2.36)

Table 14. Number of revisions of Device Il primary total conventional hip replacement by year of

implant.
2015 3 39
2016 1 18
2017 1 1
2018 0 1
2019 0 0
ol 7] 5 59




Appendix A

Device Il
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Figure 5. Cumulative percent revision of Device |II.

Table 15. Revision rates of Device Il primary total conventional hip replacement by fixation.

Cementless 34 684 1598.9 2.13(1.47, 2.97)
Hybrid (Femur cemented) 1 76 136.8 0.73 (0.02, 4.07)
35 760 1735.6 2.02 (1.93, 2.11)

Table 16. Revision rates of Device Il primary total conventional hip replacement by bearing surface.

Ceramic/Non XLPE 31 710 1623.3 1.91 (1.30, 2.71)

Metal/Non XLPE 4 50 112.3 3.56 (0.97, 9.12)
35 760 1735.6 2.02 (1.93, 2.11)

Table 17. Revision rates of Device Il primary total conventional hip replacement by approach.

Anterior 26 576 1410.4 1.84 (1.20, 2.70)
Lateral 0 25 47.8 0.00 (0.00, 7.71)
Posterior 8 150 245.3 3.26 (1.41, 6.42)

A-g



Table 18. Reason for revision (follow-up limited to 5 years).

Device llI

Revision diagnosis Number % Primaries revised % Revisions

Infection 7 0.92 20.0

Prosthesis Dislocation 2 0.26 5.71

Fracture 13 1.71 37.14

Loosening 7 0.92 20.0

Leg Length Discrepancy - - R

Instability

Pain

1
Malposition 1 0.13 2.86
Incorrect Sizing 2

Implant Breakage Acetabular Insert -

Implant Breakage Stem - - R

Lysis - - -

Implant Breakage Acetabular - - R

Wear Head - - -

Metal Related Pathology - - R

Wear Acetabular Insert - o R

Implant Breakage Head - - -

Tumour © o o

Heterotopic Bone - - R

Wear Acetabulum - > R

Synovitis - - -

Osteonecrosis - - -

Progression Of Disease - - R

Other 2

N Revision 35 4.6 100

N Primary 760

5.0%

fd
S
L

Reason for Revision

= Infection

"
=
L

Fracture

= Loosening

Cumulative Incidence
b

T

0.0%

0 1 2 3 4
Years Since Primary Procedure

Figure 6. Cumulative incidence revision diagnosis for Device lII.
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Table 19. Type of revision performed for primary total conventional hip replacement.

Device Il

Type of Revision

Number

Percent

Femoral Component

15

42.86

Acetabular Component

20.0

THR (Femoral/Acetabular)

11.43

Cement Spacer

ESEY

2.86

Removal of Prostheses

Reinsertion of Components

Total Femoral

Bipolar Head and Femoral

Saddle

N Major

Head/Insert

Head Only

Minor Components

Insert Only

Head/Neck/Insert

Head/Neck

Bipolar Only

Neck Only

Cement Only

Neck/Insert

N Minor

22.86

Total

100.0

Table 20. Revision rates of Device Il primary total conventional hip

replacement by femoral stem.

Femoral stem N N Obs.Years Revisions/100
Revised Total Obs. Years (95% ClI)
AMIStem H 1 35 68.8 1.45 (0.04, 8.09)
CORAIL 0 B 4.4 0.00 (0.00, 83.65)
GHE 2 9 34.7 5.76 (0.70, 20.83)
M/L Taper 0 4 13.7 0.00 (0.00, 26.87)
MasterLoc 0 3 3 0.00 (0.00, 124.20)
MiniMax 5 108 172.7 2.89 (0.94, 6.76)
Modulus 0 1 4.7 0.00 (0.00, 78.32)
Polarstem 0 1 24 0.00 (0.00, 154.99)
Quadra-C 0 61 97.9 0.00 (0.00, 3.77)
Quadra-H 26 501 1240.5 2.09 (1.37, 3.07)
Revision Hip 0 2 1.6 0.00 (0.00, 236.47)
S-Rom 0 1 2.8 0.00 (0.00, 129.43)
Taperloc 0 16 49.6 0.00 (0.00, 7.44)
X-Acta 1 15 38.8 2.57 (0.06, 14.34)
Total 35 760 1735.6 2.02(1.93, 2.11)

Table 21. Number of revisions of Device Il primary total conventional hip replacement by year of

implant.
N N
Acetabular component Revised Total
2015 6 116
2016 8 163
2017 11 173
2018 7 160
2019 3 148
Total 35 760




Device IV

%
HR - adjusted for age and gender
Entire Period: HR = 4.34 (2.17, 8.68),p < 0.001

S Device IV vs Comparator
RLBETE
z — Comparator
E — Device IV
[
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o
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Figure 7. Cumulative percent revision of Device IV.

Table 22. Revision rates of Device IV primary total conventional hip replacement by fixation.

3.26 (3.01, 3.56)
3.26 (3.01, 3.56)

Cementless

8 71 245.4

Table 23. Revision rates of Device IV primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 4 54 191.2 2.09 (0.57, 5.35)
Ceramicised Metal/XLPE 3 12 37.6 7.97 (1.64, 23.30)
Metal/XLPE 1 5 16.5 6.06 (0.15, 33.79)

[ TJota ] 8 71 2454 3.26 (3.01, 3.56)

Table 24. Revision rates of Device IV primary total conventional hip replacement by approach.

Lateral

41 140.5

2.85 (0.77, 7.29)

Posterior

3.45 (0.71, 10.07)
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Table 25

. Reason for revision (follow-up limited to 5 years).

Device IV

Revision diagnosis

Number % Primaries revised

% Revisions

Infection

2.82

25.0

Prosthesis Dislocation

4.22

37.5

Fracture

Loosening

1.41

12.5

Leg Length Discrepancy

Instability

Pain

Malposition

Incorrect Sizing

Implant Breakage Acetabular Insert

Implant Breakage Stem

Lysis

Implant Breakage Acetabular

Wear Head

Metal Related Pathology

Wear Acetabular Insert

Implant Breakage Head

Tumour

Heterotopic Bone

Wear Acetabulum

Synovitis

Osteonecrosis

Progression Of Disease

Other

N Revision

N Primary

71

5.0%

m w -
= = =
L L L

Cumulative Incidence

=
L

0.0%

Reason for Revision

— Prosthesis Dislocation

Figure 8. Cumulative incidence revision diagnosis for Device IV.

2 3
Years Since Primary Procedure
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Table 26. Type of revision performed for primary total conventional hip replacement.

Femoral Component 2 25.0
Acetabular Component - -
THR (Femoral/Acetabular) 1 12.5

Cement Spacer - -
Removal of Prostheses - -
Reinsertion of Components = o
Total Femoral - -
Bipolar Head and Femoral - -
Saddle - -

Head/Insert 4 50.0

Head Only 1 125
Minor Components - _
Insert Only - -
Head/Neck/Insert - N
Head/Neck = B
Bipolar Only - B
Neck Only - -
Cement Only - -
Neck/Insert - -

Table 27. Revision rates of Device IV primary total conventional hip replacement by acetabular
component.

R3 8 70 240.6 3.32(1.43, 6.55)

Trabecular Metal (Shell) 0 1 4.8 0.00 (0.00, 77.17)
8 71 245.4 3.26 (3.01, 3.56)

Table 28. Number of revisions of Device IV primary total conventional hip replacement by year of

implant.
2015 4 32
2016 4 29
2017 0 10
2018 0 0
2019 0 0
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Device V
%
HR - adjusted for age and gender
Entire Period: HR = 3.28 (2.06, 5.21),p < 0.001
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Figure 9. Cumulative percent revision of Device V.

Table 29. Revision rates of Device V primary total conventional hip replacement by fixation.

3.92 (3.59, 4.31)
18 288 4587 3.92 (3.59, 4.31)

Cementless

Table 30. Revision rates of Device V primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 10 142 235.8 4.24 (2.03, 7.80)
Ceramic/Non XLPE 7 114 129.6 5.40 (2.17,11.13)
Ceramic/XLPE 0 13 23.9 0.00 (0.00, 15.46)
Ceramic/XLPE + Antioxidant 0 4 12.3 0.00 (0.00, 29.97)
Metal/Non XLPE 1 15 57.2 1.75 (0.04, 9.74)

18 288 458.7 3.92 (3.59, 4.31)

Table 31. Revision rates of Device V primary total conventional hip replacement by approach.

Anterior 11 166 230.9 4.76 (2.37, 8.52)
Lateral 4 15 28.3 14.14 (3.85, 36.21)
Posterior 3 100 167.7 1.79 (0.37, 5.23)




Table 32. Reason for revision (follow-up limited to 5 years).

Device V

Revision diagnosis Number % Primaries revised % Revisions

Infection 5 1.74 27.78

Prosthesis Dislocation 0.35 5.55

Fracture 1.39 22.22

Loosening 1.04 16.67

Leg Length Discrepancy 0.35 5.55

RN

Instability 0.35 5.55

Pain - -

Malposition 0.69 11.11

=N

Incorrect Sizing 0.35 5.55
Implant Breakage Acetabular Insert - - R

Implant Breakage Stem - - R

Lysis - - -

Implant Breakage Acetabular - - R

Wear Head - - -

Metal Related Pathology - - R

Wear Acetabular Insert - o R

Implant Breakage Head - - -

Tumour © o o

Heterotopic Bone - - R

Wear Acetabulum - > R

Synovitis - - -

Osteonecrosis - - -

Progression Of Disease - - R

Other - - -

N Revision 18 6.25 100

N Primary 288

5.0% 1

Pl
2
L

Reason for Revision

— Infection

w
=
L

Fracture

— Loosening

—

o
=
L

Cumulative Incidence

0.0%

%

2 3 4
Years Since Primary Procedure

Figure 10. Cumulative incidence revision diagnosis for Device V.
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Table 33. Type of revision performed for primary total conventional hip replacement.

Cement Spacer

Femoral Component 7 38.89
Acetabular Component 4 22.22
THR (Femoral/Acetabular) 2 11.11
2 11.11

Removal of Prostheses

Reinsertion of Components

Total Femoral

Bipolar Head and Femoral

Saddle

Head/Insert

Head Only

Minor Components

Insert Only

Head/Neck/Insert

Head/Neck

Bipolar Only

Neck Only

Cement Only

Neck/Insert

Table 34. Revision rates of Device V primary total conventional hip replacement by acetabular

component.

Acetabular Shell (Global) 0 175 0.00 (0.00, 21.11)
Adaptive 0 12.3 0.00 (0.00, 29.97)
Delta-TT 0 2 4.3 0.00 (0.00, 85.99)
Furlong 18 241 381.7 4.71 (2.79, 7.45)
Logical G 0 14 24.6 0.00 (0.00, 14.97)
Mpact 0 18 9.1 0.00 (0.00, 40.63)
PINNACLE 0 1 0.2 0.00 (0.00, 1676.76)
Trident/Tritanium (Shell) 0 1 3.4 0.00 (0.00, 109.46)
Versafitcup CC 0 3 5.7 0.00 (0.00, 65.06)
[ Tota ] 18 288 458.7 3.92 (3,59, 4.31)

Table 35. Number of revisions of Device V primary total conventional hip replacement by year of

implant.
2015 2 31
2016 0 11
2017 3 52
2018 7 9%
2019 6 100

A-0



Device VI

HR - adjusted for age and gender
Entire Period: HR = 1.88 (1.42, 2.51),p < 0.001
Device VI vs Comparator

— Comparator

— Device VI

Cumulative Percent Revision

Number at risk

2 3
Years Since Primary Procedure

== | 150439

| 1266 863

116965

84925 54638
442 221

26000
134

Figure 11. Cumulative percent revision of Device VI.

Table 36. Revision rates of Device VI primary total conventional hip replacement by fixation.

Cementless 1265 2269.2 2.11 (1.56, 2.80)
Reverse Hybrid (Femur cementless) 0 1 1.8 0.00 (0.00, 203.80)
48 1,266 2271 2.11(2.04, 2.2)

Table 37. Revision rates of Device VI primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 5 152 403.9 1.24 (0.40, 2.89)
Ceramic/Non XLPE 1 174 400.1 0.25 (0.01, 1.39)
Ceramic/XLPE 38 805 1082.1 3.51 (2.48, 4.82)
Ceramic/XLPE + Antioxidant 1 59 258.6 0.39 (0.01, 2.15)
Metal/Non XLPE 3 39 62.5 4.80 (0.99, 14.04)
Metal/XLPE 0 35 57.2 0.00 (0.00, 6.45)
Metal/XLPE + Antioxidant 0 2 6.7 0.00 (0.00, 55.30)
48 1,266 2271 2.11 (2.04, 2.2)

Table 38. Revision rates of Device VI primary total conventional hip replacement by approach.

Anterior 9 329 551.6 1.63(0.75, 3.1)
Lateral 1 215 599.3 0.17 (0.00, 0.93)
Posterior 37 698 1023.2 3.62 (2.55, 4.98)
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Table 39. Reason for revision (follow-up limited to 5 years).

Device VI
Revision diagnosis Number % Primaries revised % Revisions
Infection 12 0.95 25.0
Prosthesis Dislocation 10 0.79 20.83
Fracture 16 1.26 33.33
Loosening 3 0.24 6.25
Leg Length Discrepancy - - -
Instability 2 0.16 4.17
Pain 2 0.16 4.17
Malposition 1 0.08 2.08
Incorrect Sizing - - -
Implant Breakage Acetabular Insert - - -
Implant Breakage Stem 1 0.08 2.08
Lysis - - -
Implant Breakage Acetabular - - -
Wear Head - - -
Metal Related Pathology - - -
Wear Acetabular Insert - - -
Implant Breakage Head - - -
Tumour - - -
Heterotopic Bone - - -
Wear Acetabulum - - -
Synovitis - - -
Osteonecrosis - - -
Progression Of Disease - - -
Other 1 0.08 2.08
N Revision 48 3.79 100
N Primary 1,266
5.0%
0% 7 Reason for Revision
% — Infection
% 3.0% = Prosthesis Dislocation
% Fracture
% i — Loosening
= 2.0% 1
g
O
1.0%%
0.0%
0 1 2 3 4

Years Since Primary Procedure

Figure 12. Cumulative incidence of revision diagnosis for Device VI.
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Table 40. Type of revision performed for primary total conventional hip replacement.

Femoral Component 31.25
Acetabular Component 0.35
THR (Femoral/Acetabular) 7 0.14
Cement Spacer 2 4.17

Removal of Prostheses - -
Reinsertion of Components = o
Total Femoral - -
Bipolar Head and Femoral - -
Saddle
—
Head/Insert 125
Head Only 1 2.08
Minor Components - -
Insert Only - -
Head/Neck/Insert - -
Head/Neck - -
Bipolar Only - -
Neck Only - -
Cement Only - -
Neck/Insert - -

Table 41. Revision rates of Device VI primary total conventional hip replacement by acetabular

component.
1655 | 12(0.15,436) |
F|n Il 0(0.00, 614.81)
Logical G 41 855 1113.1 3.68 (2.64, 5.0)
Marathon 0 1 18 0(0.00, 204.94)
PINNACLE 0 4 18.3 0 (0.00, 20.16)
R3 0 1 2.6 0(0.00, 144.1)
Saturne 4 213 462.6 0.86 (0.23, 2.21)
Trident/Tritanium (Shell) 0 6 5.1 0 (0.00, 71.91)
Trinity 1 119 501.4 0.2 (0.00, 1.11)
[ TJota | 48 1,266 2271 2.11 (156, 2.8)
Table 42. Number of revisions of Device VI primary total conventional hip replacement by year of
implant.
2015 1 144
2016 1 92
2017 15 236
2018 12 419
2019 19 375
S 7 N 1,266
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Device VIl

Device VIl vs Comparator

HR - adjusted for age and gender
Entire Period: HR = 2.55 (1.48, 4.40),p < 0.001
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Figure 13. Cumulative percent revision of Device VII.

Table 43. Revision rates of Device VIII primary total conventional hip replacement by fixation.

Cementless

1.95 (1.86, 2.05)

13

195

666.5

1.95 (1.86, 2.05)

Table 44. Revision rates of Device VII primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 7 93 323.8 2.16 (0.87, 4.45)
Ceramic/XLPE 2 39 135.6 1.47 (0.18, 5.33)
Metal/XLPE 4 63 207.2 1.93 (0.53, 4.94)

[ TJota ] 13 195 666.5 1.95 (1.86, 2.05)

Table 45. Revision rates of Device VII primary total conventional hip replacement by approach.

Anterior 7 104 365.6 1.91 (0.77, 3.94)
Lateral 2 38 121.2 1.65 (0.20, 5.96)
Posterior 1 23 62.3 1.60 (0.04, 8.94)

A-s



Table 46. Reason for revision (follow-up limited to 5 years).

Device VII

Revision diagnosis Number % Primaries revised % Revisions

Infection 1 0.51 7.69

Prosthesis Dislocation 3 154 23.08

Fracture

Loosening 2.05 30.77

Leg Length Discrepancy 0.51 7.69

Instability 1.02 15.38

Pain 0.51 7.69

DTSN N

Malposition 0.51 7.69

Incorrect Sizing

Implant Breakage Acetabular Insert - - R

Implant Breakage Stem - - R

Lysis - - -

Implant Breakage Acetabular - - R

Wear Head - - -

Metal Related Pathology - - R

Wear Acetabular Insert - o R

Implant Breakage Head - - -

Tumour © o o

Heterotopic Bone - - R

Wear Acetabulum - > R

Synovitis - - -

Osteonecrosis - - -

Progression Of Disease - - R

Other - - -

N Revision 13 6.67 100

N Primary 195

5.0%

Fod
‘?
L

Reason for Revision

— Prosthesis Dislocation

w
=
L

= Loosening

[
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L
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=
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Figure 14. Cumulative incidence revision diagnosis for Device VII.
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Table 47. Type of revision performed for primary total conventional hip replacement.

Femoral Component 5 38.46
Acetabular Component 3 23.08
THR (Femoral/Acetabular) 3 23.08

Cement Spacer

Removal of Prostheses

Reinsertion of Components

Total Femoral

Bipolar Head and Femoral

Saddle

Head/Insert

Head Only

Minor Components

Insert Only

Head/Neck/Insert

Head/Neck

Bipolar Only

Neck Only

Cement Only

Neck/Insert

Table 48. Revision rates of Device VII primary total conventional hip replacement by acetabular

component.
Acetabular Shell (Global) 7 325.2 2.15(0.86, 4.43)
FM 3] 157.8 1.90 (0.39, 5.56)
Furlong 2 15 26.0 7.68 (0.93, 27.73)
Logical G 1 57 157.5 0.63 (0.02, 3.54)
13 195 666.5 1.95 (1.86, 2.05)

implant.
5
2016 5 68
2017 1 26
2018 2 12
2019 0 4
I I I S

A-u

Table 49. Number of revisions of Device VII primary total conventional hip replacement by year of



Device VIlI

%
HR - adjusted for age and gender
Entire Period: HR = 3.02 (1.87, 4.86),p < 0.001
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Figure 15. Cumulative percent revision of Device VIII.

Table 50. Revision rates of Device VIII primary total conventional hip replacement by fixation.

454 (4.25, 4.87)
17 320 3747 454 (4.25, 4.87)

Cementless

Table 51. Revision rates of Device VIII primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 8 163 161.6 4.89 (2.14, 9.75)

Ceramic/Non XLPE 5 111 179.2 2.79 (0.90, 6.51)

Ceramic/XLPE 3 43 31.8 9.43 (1.94, 27.57)
Metal/Non XLPE 0 1 0.2 0.00 (0.00, 1676.76)
Metal/XLPE 1 2 1.8 55.55 (1.41, 309.53)

17 320 374.7 4.54 (4.25, 4.87)

Table 52. Revision rates of Device VIII primary total conventional hip replacement by approach.

Anterior 17 308 355.4 4.78 (2.79, 7.66)
Posterior 0 12 19.2 0.00 (0.00, 19.17)
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Table 53

. Reason for revision (follow-up limited to 5 years).

Device VIl

Revision diagnosis

Number

% Primaries revised

% Revisions

Infection

2

0.65

11.76

Prosthesis Dislocation

Fracture

2.81

52.94

Loosening

0.31

5.88

Leg Length Discrepancy

NP |©

0.62

11.76

Instability

Pain

Malposition

Incorrect Sizing

Implant Breakage Acetabular Insert

Implant Breakage Stem

Lysis

Implant Breakage Acetabular

Wear Head

Metal Related Pathology

Wear Acetabular Insert

Implant Breakage Head

Tumour

Heterotopic Bone

Wear Acetabulum

Synovitis

Osteonecrosis

Progression Of Disease

Other

N Revision

N Primary

320

5.0%

2.0%

Fra
3.0%

Curmulative Incidence

0.0%

Reason for Revision

cture

Figure 16. Cumulative incidence revision diagnosis for Device VIII.
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Table 54. Type of revision performed for primary total conventional hip replacement.

Femoral Component 9 52.94
Acetabular Component 1 5.88
THR (Femoral/Acetabular) - -
Cement Spacer 1 5.88
Removal of Prostheses - -
Reinsertion of Components 1 5.88

Total Femoral - -
Bipolar Head and Femoral - -
Saddle

Head/Insert 11.76

Head Only 3 17.65
Minor Components - _
Insert Only - -
Head/Neck/Insert - N
Head/Neck = B
Bipolar Only - B
Neck Only - -
Cement Only - -
Neck/Insert - -

Table 55. Revision rates of Device VIII primary total conventional hip replacement by acetabular

Component
Agilis 0 0.00 (0.00, 1756.61)
Mpact 8 99 5 8.04 (3.47, 15.85)
Trinity 0 1 3.4 0.00 (0.00, 106.92)
Versafitcup CC 4 87 98.9 4.05 (1.10, 10.36)
Versafitcup DM 5 108 172.7 2.89 (0.94, 6.76)
17 320 374.7 4.54 (4.25, 4.87)

Table 56. Number of revisions of Device VIII primary total conventional hip replacement by year of

implant.
2015 0 0
2016 0 4
2017 3 37
2018 6 155
2019 8 124
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Device IX
%
HR - adjusted for age and gender
Entire Period: HR = 2.22 (1.53, 3.22) p < 0.001
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Figure 17. Cumulative percent revision of Device IX.

Table 57. Revision rates of Device IX primary total conventional hip replacement by fixation.

Cemented 0 1 0.7 0.00 (0.00, 519.56)
Cementless 28 554 1424 1.97 (1.88, 2.07)
Hybrid (Femur cemented) 0 2 5.6 0.00 (0.00, 65.75)
Reverse Hybrid (Femur cementless) 0 4 8.4 0.00 (0.00, 43.71)
28 561 1438.8 1.95(1.29, 2.81)

Table 58. Revision rates of Device IX primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 11 181 527.6 1.31(1.04, 3.73)
Ceramic/Non XLPE 0 4 10.5 0.00 (0.00, 35.2)
Ceramic/XLPE 13 226 605.7 1.22(1.14, 3.67)
Ceramic/XLPE + Antioxidant 0 50 59.4 0.00 (0.00, 6.21)
Metal/Non XLPE 1 7 16.4 2.88(0.15, 33.89)

Metal/XLPE 2 85 212.3 0.50 (0.11, 3.4)
Metal/XLPE + Antioxidant 1 8 6.8 2.99 (0.37, 81.34)
28 561 1438.8 1.95(1.29, 2.81)

Table 59. Revision rates of Device IX primary total conventional hip replacement by approach.

Anterior 1 16 36.6 2.73(0.07, 15.21)
Lateral 4 108 302.7 1.32 (0.36, 3.38)
Posterior 20 416 1025 4.81(1.19, 3.01)

Ay



Table 60. Reason for revision (follow-up limited to 5 years).

Device IX

Revision diagnosis Number % Primaries revised % Revisions

Infection 6 11 21.4

Prosthesis Dislocation 11 21.4

Fracture 0.7 14.2

Loosening 14 28.6

R|o|~lO

Leg Length Discrepancy 0.2 3.6

Instability - = B

Pain - - -

Malposition - - -

Incorrect Sizing - - R

Implant Breakage Acetabular Insert - - R

Implant Breakage Stem 1 0.2 3.6

Lysis - - -

Implant Breakage Acetabular - - R

Wear Head - - -

Metal Related Pathology 1 0.2 3.6

Wear Acetabular Insert - o R

Implant Breakage Head - - -

Tumour © o o

Heterotopic Bone - - R

Wear Acetabulum - > R

Synovitis - - -

Osteonecrosis - - -

Progression Of Disease - - R

Other 1 0.2 3.6

N Revision 28 5.1 100

N Primary 561
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Fod
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Figure 18. Cumulative incidence of revision diagnosis for Device IX.
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Table 61. Type of revision performed for primary total conventional hip replacement.

Device IX
Type of Revision Number Percent
Femoral Component 15 53.6
Acetabular Component 2 7.1
THR (Femoral/Acetabular) 4 14.3
Cement Spacer 2 7.1
Removal of Prostheses - -
Reinsertion of Components = -
Total Femoral - -
Bipolar Head and Femoral - -
Saddle - -
N Major 23 82.1
Head/Insert 4 14.3
Head Only - -
Minor Components - -
Insert Only 1 3.6
Head/Neck/Insert - -
Head/Neck - -
Bipolar Only - -
Neck Only - -
Cement Only - -
Neck/Insert - -
N Minor 5 17.9
Total 28 100.0

Table 62. Revision rates of Device IX primary total conventional hip replacement by acetabular

component.
N N Revisions/100
Acetabular component Revised Total Obs.Years Obs. Years (95% Cl)
Acetabular Shell (Global) 0 9 11.6 0.00 (0.00, 31.85)
Cc2 0 1 3.1 0.00 (0.00, 119)
Continuum 1 3 7.2 13.87 (0.35, 77.28)
Custom Made (Lima) 0 1 24 0.00 (0.00, 151.8)
Delta-TT 1 4 1.2 83.33 (2.11, 464.30)
DeltaMotion 1 9 22.7 4.39 (3.23,6.9)
Dual Mobility Cup 0 2 3.2 0.00 (0.00, 115.64)
G7 1 19 19.1 5.22 (4.02, 7.5)
Mallory-Head 0 1 1.6 0.00 (0.00, 226.31)
Muller 0 2 5.2 0.00 (0.00, 70.26)
Novae 0 4 13.4 0.00 (0.00, 27.43)
PINNACLE 21 414 1163.2 1.8 (1.72, 1.9)
R3 0 4 111 0.00 (0.00, 33.23)
Trabecular Metal (Shell) 1 7 21 4.77 (3.38, 8.07)
Trident (Shell) 1 14 35.1 2.85(2.14, 4.28)
Trident/Tritanium (Shell) 0 4 11 0.00 (0.00, 33.44)
Trinity 1 62 103.6 0.96 (0.81, 1.2)
Versafitcup DM 0 1 2.8 0.00 (0.00, 129.43)
Total 28 561 1438.8 1.95 (1.29, 2.81)

Table 63. Number of revisions of Device IX primary total conventional hip replacement by year of

implant.

N N
Acetabular component Revised Total
2015 10 153

2016 9 112

2017 3 99

2018 3 102

2019 3 95

Total 28 561
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Figure 19. Cumulative percent revision of the Device X.

Table 64. Revision rates of Device X primary total conventional hip replacement by fixation.

Cemented 1 4 6 16.52 (8.62, 203.25)
Cementless 15 182 549.3 2.73 (2.56, 2.92)
Hybrid (Femur cemented) 0 13 33.6 0.00 (0.00, 10.96)
16 199 589 2.72 (1.55, 4.41)

Table 65. Revision rates of Device X primary total conventional hip replacement by bearing surface.

Ceramic/Ceramic 0 1 5 0.00 (0.00, 74.37)
Ceramic/XLPE 0 4 17.8 0.00 (0.00, 20.77)
Ceramic/XLPE + Antioxidant 0 1 5 0.00 (0.00, 74.07)
Metal/Non XLPE 1 3 14.1 7.07 (0.18, 39.40)
Metal/XLPE 15 188 566.3 2.65 (1.48, 4.37)
Metal/XLPE + Antioxidant 0 2 9.9 0.00 (0.00, 37.07)
16 199 589 2.72 (1.55, 4.41)

Table 66. Revision rates of Device X primary total conventional hip replacement by approach.

Anterior 0 1 4.4 0.00 (0.00, 84.22)
Lateral 2 32 96.8 2.07 (0.25, 7.46)
Posterior 14 150 4218 3.32 (1.81, 5.57)
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Table 67. Reason for revision (follow-up limited to 5 years).

Device X

Revision diagnosis

Number % Primaries revised

% Revisions

Infection

2

1.0

12.5

Prosthesis Dislocation

3.0

37.5

Fracture

3.0

375

Loosening

N oo

1.0

12.5

Leg Length Discrepancy

Instability

Pain

Malposition

Incorrect Sizing

Implant Breakage Acetabular Insert

Implant Breakage Stem

Lysis

Implant Breakage Acetabular

Wear Head

Metal Related Pathology

Wear Acetabular Insert

Implant Breakage Head

Tumour

Heterotopic Bone

Wear Acetabulum

Synovitis

Osteonecrosis

Progression Of Disease

Other

N Revision

N Primary

199

5.0%

Reason for Revision

Fad
‘?
L

Fracture

w
=
L

Cumulative Incidence
P

=
L

0.0%

— Prosthesis Dislocation

Figure 20. Cumulative incidence revision diagnosis for Device X.

2 3
Years Since Primary Procedure
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Table 68. Type of revision performed for primary total conventional hip replacement.

Femoral Component 8
Acetabular Component 1 6.25

1

2

THR (Femoral/Acetabular)

Cement Spacer
Removal of Prostheses - -
Reinsertion of Components = o
Total Femoral - -
Bipolar Head and Femoral - -
Saddle - -

Head/Insert 1

Head Only 1
Minor Components 1 6.25

Insert Only 1
Head/Neck/Insert - N
Head/Neck - -
Bipolar Only - B
Neck Only - -
Cement Only - -
Neck/Insert - -

Table 69. Revision rates of Device X primary total conventional hip replacement by acetabular

component.
Allofit 0 1 49 0.00 (0.00, 74.67)
Continuum 0 2 5.9 0.00 (0.00, 62.1)
Fitmore 0 2 538 0.00 (0.00, 63.71)
G7 0 3 2.4 0.00 (0.00, 155.65)
PINNACLE 0 1 3.6 0.00 (0.00, 103.04)
Trabecular Metal (Shell) 0 3 53 0.00 (0.00, 69.08)
Trilogy 15 183 555 2.7 (2.54, 2.9)
ZCA 1 4 6 16.52 (8.62, 203.25)
[ Tota | 16 199 589 2.72 (1.55, 4.41)
Table 70. Number of revisions of Device X primary total conventional hip replacement by year of
implant.
[ Acetabular component [ NRevised [ NTotal |
2015 6 61
2016 4 60
2017 2 39
2018 3 35
2019 1 4
I - R 19
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Device |
20.0% |
HR - adjusted for age and gender
Entire Period: HR = 2.33 (1.48, 3.65),p < 0.001
15.0% |
Device | vs Comparator
— Comparator
10.0% - — Devicel
5.0%
0.0%
0 1 2 3 4
Years Since Primary Procedure
Number at risk
= | 243828 190820 139276 89671 43639
= 40 338 263 172 84

Figure 1. Cumulative percent revision of Device |I.

Table 1. Revision rates of Device | primary total knee replacement by fixation.

Cementless 19 399 1060.0 1.79 (1.08, 2.80)
Hybrid (Tibial cemented) 0 1 4.7 0.00 (0.00, 77.66)
Hybrid (Tibial cementless) 0 1 4 0.00 (0.00, 92.45)
19 401 1068.8 1.78 (1.07, 2.78)

Table 2. Revision rates of Device | primary total knee replacement by bearing surface.

Non XLPE

1.78 (1.07, 2.78)

19 401 1068.8

1.78 (1.07, 2.78)

Table 3. Revision rates of Device | primary total knee replacement by bearing mobility.

1.78 (1.07, 2.78)

19 401 1068.8

1.78 (1.07, 2.78)

Table 4. Revision rates of Device | primary total knee replacement by stability.

Medial Pivot Design

1.78 (1.07, 2.78)

19 401 1068.8

1.78 (1.07, 2.78)
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Table 5. Reason for revision (follow-up limited to 5 years).

Device |
Revision diagnosis Number % Primaries revised % Revisions
Infection 7 17 36.8
Fracture - - -
Loosening 3 0.7 15.8
Instability 3 0.7 15.8
Patella Erosion - - -
Pain - - -
Bearing Dislocation - - -
Malalignment 1 0.2 5.3

Implant Breakage Tibial Insert - - R

Incorrect Sizing - = R

Patellofemoral Pain 1 0.2 5.3

Patella Maltracking - = B

Prosthesis Dislocation - - R

Implant Breakage Femoral - = -

Lysis - - R

Implant Breakage Tibial - -

Heterotopic Bone - - R

Arthrofibrosis 4 1.0 211
Wear Tibial Insert - - R

Metal Related Pathology - - R

Implant Breakage Patella - - R

Synovitis - = R

Osteonecrosis - - R

Wear Patella - S R

Tumour - - R

Wear Tibial - S R

Progression Of Disease - - R

Wear Femoral - > R

Incorrect Side - - R

Post Operative Haematoma - . _

Patella Dislocation - - R

Other R N -
N Revision 19 4.7 100.0
N Primary 401

5.0% |

0% Reason for Revision
@
2 — Infection
@
% 3.0% — Arhrofibrosis
L= -
?; Instability
= = Loosening
= 2.0%
£
30
(&)

1.0%

0.0%

0 1 2 3 4

Years Since Primary Procedure

Figure 2. Cumulative incidence revision diagnosis for Device I.
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Table 6. Type of revision (follow-up limited to 5 years).

TKR (Tibial/Femoral) 10 25
Tibial Component - -
Cement Spacer - -

Femoral Component 3 0.7

Removal of Prostheses

Total Femoral

Reinsertion of Components

Insert Only

Patella Only

Insert/Patella

Minor Components

Cement Only

Table 7. Revision rates of Device | primary total knee replacement by state.

NSW

134

335.1

0.59 (0.07, 2.16)

267

733.7

2.32 (1.35, 3.71)

=

401

1068.8

1.78 (1.07, 2.78)

Table 8. Number of revisions of Device | primary total knee replacement by year of implant.

2015 6 91
2016 6 97
2017 5 89
2018 1 68
2019 1 56
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Device Il

20.0% |
HR - adjusted for age and gender
Entire Period: HR = 2.23 (1.51, 3.31),p < 0.001

15.0% )
Device Il vs Comparator

10.0%
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3
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Figure 3. Cumulative percent revision of Device II.

Table 9. Revision rates of Device Il primary total knee replacement by fixation.

Cemented 14 373 855.3 1.64 (0.89, 2.75)
Cementless 11 128 449.8 2.44 (1.22, 4.37)
Hybrid (Tibial cemented) 0 59 96.5 0.00 (0.00, 3.82)
Hybrid (Tibial cementless) 0 1 4.2 0.00 (0.00, 88.67)
25 561 1405.8 1.78 (1.15, 2.62)

Table 10. Revision rates of Device Il primary total knee replacement by bearing surface.

Table 11. Revision rates of Device Il primary total knee replacement by bearing mobility.

Non XLPE

Rotating

1.78 (1.15, 2.62)

25

561

1405.8

1.78 (1.15, 2.62)

1.78 (1.15, 2.62)

25

561

1405.8

1.78 (1.15, 2.62)

Table 12. Revision rates of Device Il primary total knee replacement by stability.

Minimally Stabilised 16 303 729.2 2.19 (1.25, 3.56)
Posterior Stabilised 9 258 676.5 1.33 (0.61, 2.52)
25 561 1405.8 1.78 (1.15, 2.62)
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Table 13. Reason for revision (follow-up limited to 5 years).

Device Il

Revision diagnosis

Number % Primaries revised

% Revisions

Infection

7

1.2

28.0

Fracture

Loosening

6

11

24.0

Instability

Patella Erosion

0.2

4.0

Pain

|-

0.2

4.0

Bearing Dislocation

Malalignment

[N

0.2

4.0

Implant Breakage Tibial Insert

Incorrect Sizing

N

0.4

8.0

Patellofemoral Pain

Patella Maltracking

Prosthesis Dislocation

Implant Breakage Femoral

Lysis

Implant Breakage Tibial

Heterotopic Bone

Arthrofibrosis

N

Wear Tibial Insert

Metal Related Pathology

[y

Implant Breakage Patella

Synovitis

Osteonecrosis

Wear Patella

Tumour

Wear Tibial

Progression Of Disease

Wear Femoral

Incorrect Side

Post Operative Haematoma

Patella Dislocation

Other

N Revision

25

N Primary

561

5.0%

-
S
L

Reason for Revision
— Infection

= Loosening

— Arthrofibrosis

Cumulative Incidence

=
L

-

e

T

0.0%

Figure 4. Cumulative incidence revision diagnosis for Device II.
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Table 14. Type of revision (follow-up limited to 5 years).

TKR (Tibial/Femoral) 7 1.2
Tibial Component 1 0.2
Cement Spacer 1 0.2
Femoral Component 4 0.7

Removal of Prostheses

Total Femoral

Reinsertion of Components

Insert Only

Patella Only

Insert/Patella

Minor Components

Cement Only

Table 15. Revision rates of Device Il primary total knee replacement by state.

NSW

21

562

1381.6

1.52 (0.94, 2.32)

4

9

24.1

16.57 (4.51, 42.42)

z

25

561

1405.8

1.78 (1.24, 2.48)

Table 16. Number of revisions of Device Il primary total knee replacement by year of implant.

2015 6 112
2016 14 125
2017 5 140
2018 0 94
2019 0 90
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Device Ill
20.0% |
HR - adjusted for age and gender
Entire Period: HR = 2.07 (1.36, 3.15),p < 0.001
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Figure 5. Cumulative percent revision of Device lII.

Table 17. Revision rates of Device Il primary total knee replacement by fixation.

1.55 (0.97, 2.35)
22 436 1416.4 155 (0.97, 2.35)

Table 18. Revision rates of Device Ill primary total knee replacement by bearing surface.

Non XLPE

1.55 (0.97, 2.35)
22 436 1416.4 1.55 (0.97, 2.35)

Table 19. Revision rates of Device Il primary total knee replacement by bearing mobility.

Rotating

1.55 (0.97, 2.35)
22 436 1416.4 1.55 (0.97, 2.35)

Table 20. Revision rates of Device Il primary total knee replacement by stability.

Posterior Stabilised

1.55 (0.97, 2.35)
22 436 1416.4 1.55 (0.97, 2.35)
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Table 21. Reason for revision (follow-up limited to 5 years).

Device llI

Revision diagnosis

Number % Primaries revised

% Revisions

Infection

10

23

45.4

Fracture

0.2

4.5

Loosening

11

22.7

Instability

Patella Erosion

Pain

Bearing Dislocation

Malalignment

0.5

9.1

Implant Breakage Tibial Insert

Incorrect Sizing

Patellofemoral Pain

0.5

9.1

Patella Maltracking

0.2

4.5

Prosthesis Dislocation

Implant Breakage Femoral

Lysis

Implant Breakage Tibial

Heterotopic Bone

Arthrofibrosis

Wear Tibial Insert

Metal Related Pathology

Implant Breakage Patella

Synovitis

Osteonecrosis

Wear Patella

Tumour

Wear Tibial

Progression Of Disease

Wear Femoral

Incorrect Side

Post Operative Haematoma

Patella Dislocation

Other

N Revision

5.0

N Primary

436

5.0%

4.0%

3.0%

Curmnulative Incidence

0.0%

Reason for Revision
— Infection

— Loosening

2 3
Years Since Primary Procedure

Figure 6. Cumulative incidence revision diagnosis for Device lII.
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Table 22. Type of revision (follow-up limited to 5 years).

TKR (Tibial/Femoral) 5 11
Tibial Component 3 0.7
Cement Spacer 1 0.2
Femoral Component 1 0.2

Removal of Prostheses

Total Femoral

Reinsertion of Components

Insert Only 8 18
Patella Only 4 0.9
Insert/Patella - -

Minor Components - -
Cement Only - -

Table 23. Revision rates of Device Il primary total knee replacement by state.

NSW 0 82 242.3 0.00 (0.00, 1.52)
viC 4 33 85.5 4.68 (1.27, 11.98)
QLD 14 272 968.1 1.45 (0.79, 2.43)
WA 4 41 1032 3.88 (1.06, 9.92)
SA 0 8 174 0.00 (0.0, 21.20)
[ TJota ] 22 436 1416.4 155 (0.97, 2.35)

Table 24. Number of revisions of Device Ill primary total knee replacement by year of implant.

2015 7 165
2016 7 127
2017 5 70
2018 2 50
2019 1 24
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Device IV

20.0% 1
HR - adjusted for age and gender
Entire Period: HR = 2.21 (1.84, 2.66),p < 0.001
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Figure 7. Cumulative percent revision of Device IV.

Table 25. Revision rates of Device IV primary total knee replacement by fixation.

Cemented 14 497 1366.9 1.02 (0.56, 1.72)
Cementless 50 932 2390.8 2.09 (1.55, 2.76)
Hybrid (Tibial cemented) 51 1213 3330.4 1.53(1.14, 2.01)
Hybrid (Tibial cementless) 1 6 215 4.65 (0.12, 25.91)
116 2,648 7109.6 1.63 (1.35, 1.96)

Table 26. Revision rates of Device IV primary total knee replacement by bearing surface.

Non XLPE

1.63 (1.35, 1.96)
116 2,648 7109.6 1.63 (1.35, 1.96)

Table 27. Revision rates of Device IV primary total knee replacement by Bearing mobility.

Rotating

1.63 (1.35, 1.96)
116 2,648 7109.6 1.63 (1.35, 1.96)

Table 28. Revision rates of Device IV primary total knee replacement by stability.

Minimally Stabilised

1.63 (1.35, 1.96)
116 2,648 7109.6 1.63 (1.35, 1.96)
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Table 29. Reason for revision (follow-up limited to 5 years).
Device IV
Revision diagnosis Number % Primaries revised % Revisions
Infection 39 15 33.6
Fracture 5 0.2 4.3
Loosening 29 11 25.0
Instability 13 0.5 11.2
Patella Erosion 4 0.2 3.4
Pain 12 0.5 10.3
Bearing Dislocation 1 0.0 0.9
Malalignment 0.2 3.4
Implant Breakage Tibial Insert - - -
Incorrect Sizing - - -
Patellofemoral Pain 2 0.1 1.7
Patella Maltracking 2 0.1 1.7
Prosthesis Dislocation - - -
Implant Breakage Femoral - -
Lysis - - -
Implant Breakage Tibial - - -
Heterotopic Bone - - -
Arthrofibrosis 1 0.0 0.9
Wear Tibial Insert - - -
Metal Related Pathology 2 0.1 1.7
Implant Breakage Patella - -
Synovitis - -
Osteonecrosis - - -
Wear Patella - - -
Tumour - - -
Wear Tibial - - -
Progression Of Disease - - -
Wear Femoral - - -
Incorrect Side - - -
Post Operative Haematoma - - -
Patella Dislocation - - -
Other 2 0.1 17
N Revision 116 4.4 100.0
N Primary 2,648
5.0°%
20% Reason for Revision
s = Infection
é — Loosening
g 30%7 Instability
_g Pain
g 2.0% Malalignment P
g
O
1.0%
0.0%
0 1 2 3 4

Figure 8. Cumulative incidence revision diagnosis for Device V.

Years Since Primary Procedure
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Table 30. Type of revision (follow-up limited to 5 years).

TKR (Tibial/Femoral) 50 1.9
Tibial Component 4 0.2
Cement Spacer 8 0.3
Femoral Component 4 0.2

Removal of Prostheses

Total Femoral

Reinsertion of Components

Insert Only 33 1.2
Patella Only 15 0.6
Insert/Patella 2 0.1

Minor Components - -
Cement Only - -

Table 31. Revision rates of Device IV primary total knee replacement by state.

NSW 18 578 2189.6 0.82 (0.49, 1.3)
QLD 0 58 183.3 0.00 (0.00, 2.01)
WA 55 1293 2415 2.28 (1.71, 2.96)
SA 43 719 2321.7 1.85 (1.34, 2.49)
[ Tom 116 2,648 7109.6 1.63 (1.35, 1.96)

Table 32. Number of revisions of Device IV primary total knee replacement by year of implant.

2015 36 703
2016 34 579
2017 22 527
2018 19 419
2019 5 420
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Device V
20.0% |
HR - adjusted for age and gender
Entire Period: HR = 3.28 (1.97, 5.44) p < 0.001
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Figure 9. Cumulative percent revision of Device V.

Table 33. Revision rates of Device V primary total knee replacement by fixation.

Cemented 0 2 4.8 0.00 (0.00, 76.53)
Cementless 2 48 154 1.30 (0.16, 4.69)
Hybrid (Tibial cementless) 13 172 401.2 3.24 (1.72,5.54)
15 222 560.1 2.68 (1.50, 4.42)

Table 34. Revision rates of Device V primary total knee replacement by bearing surface.

Non XLPE 15 218 543.1 2.76 (1.54, 4.55)
XLPE + Antioxidant 0 4 17 0.00 (0.00, 21.75)
15 222 560.1 2.68 (1.50, 4.42)

Table 35. Revision rates of Device V primary total knee replacement by bearing mobility.

2.68 (1.50, 4.42)

15 222

560.1

2.68 (1.50, 4.42)

Table 36. Revision rates of Device V primary total knee replacement by bearing mobility.

Posterior Stabilised

2.68 (1.50, 4.42)

15 222

560.1

2.68 (1.50, 4.42)
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Table 37. Reason for revision (follow-up limited to 5 years).

Device V
Revision diagnosis Number % Primaries revised % Revisions
Infection 7 3.2 46.7
Fracture 1 0.5 6.7
Loosening 6 2.7 40.0
Instability - - -
Patella Erosion - -
Pain - =

Bearing Dislocation - -

Malalignment - - R

Implant Breakage Tibial Insert - - R

Incorrect Sizing - = R

Patellofemoral Pain - - R

Patella Maltracking - = B

Prosthesis Dislocation - - -

Implant Breakage Femoral - = -

Lysis - - R

Implant Breakage Tibial - - R

Heterotopic Bone - - R

Arthrofibrosis 1 0.5 6.7

Wear Tibial Insert - - R

Metal Related Pathology - - R

Implant Breakage Patella - - R

Synovitis - = R

Osteonecrosis - - R

Wear Patella - S R

Tumour - - R

Wear Tibial - S R

Progression Of Disease - - R

Wear Femoral - > R

Incorrect Side - - R

Post Operative Haematoma - . _

Patella Dislocation - - R

Other - - -
N Revision 15 6.8 100.0
N Primary 222

5.0% -

4.0%
© Reason for Revision
o
5 — Infection
2 0% — : B
g - Loosening
@«
2
[ &
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3
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Figure 10. Cumulative incidence revision diagnosis for Device V.
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Table 38. Type of revision (follow-up limited to 5 years).

TKR (Tibial/Femoral) 7 3.2
Tibial Component - -

Cement Spacer 3 14

Femoral Component 2 0.9

Removal of Prostheses - -
Total Femoral - -
Reinsertion of Components

Insert Only
Patella Only - -
Insert/Patella - -

Minor Components - -
Cement Only

Table 39. Revision rates of Device V primary total knee replacement by state.

NSW 2 47 150.3 1.33(0.16, 4.81)
VIC 13 175 409.8 3.17 (1.69, 5.42)
15 222 560.1 2.68 (1.50, 4.42)

Table 40. Number of revisions of Device V primary total knee replacement by year of implant.

2015 0 18
2016 5 76
2017 10 58
2018 0 56
2019 0 14
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