
  

 

 

 

Statistical Approaches to the Early 

Assessment of Hip and Knee 

Replacement Prostheses 
 

by 

 

Khashayar Ghadirinejad 

 
 

 

 Thesis  

Submitted to Flinders University  

for the degree of 

 

 

Doctor of Philosophy  

College of Science and Engineering 

June 2022  



Table of Contents 

CHAPTER 1. LITERATURE REVIEW ON HIP AND KNEE REPLACEMENT ........................................................ 1 

1.1 Overview ........................................................................................................................................................ 2 

1.2 Causation ....................................................................................................................................................... 2 

1.3 Assessment of Outcome ................................................................................................................................ 2 

1.4 Reasons for Revision ..................................................................................................................................... 4 

1.5 Advances in Hip Practice................................................................................................................................ 6 

1.6 Advances in Knee Practice ........................................................................................................................... 10 

1.7 Joint Registries ............................................................................................................................................. 12 

1.8 Potential Risk Factors in Hip and Knee Surgery ........................................................................................... 13 

1.9 Prostheses with Higher Than Anticipated Rate of Revision.......................................................................... 14 

1.10 Summary .................................................................................................................................................. 16 

CHAPTER 2. LITERATURE REVIEW ON SUPERVISED MACHINE LEARNING IN HIP AND KNEE 

REPLACEMENTS ................................................................................................................................................. 18 

2.1 Overview ...................................................................................................................................................... 19 

2.2 Method (Literature search and selection criteria) ......................................................................................... 20 

2.3 Random Forest (RF) .................................................................................................................................... 21 

2.4 Support-Vector Machine (SVM) .................................................................................................................... 22 

2.5 Naïve Bayes ................................................................................................................................................. 23 

2.6 Deep Learning .............................................................................................................................................. 23 

2.7 Other Machine Learning Methods Used in THR and TKR ............................................................................ 24 

2.8 Summary ...................................................................................................................................................... 26 

2.9 Limitations of ML and Potential for Future Research .................................................................................... 26 

2.10 Research Gap and Objectives ................................................................................................................. 27 

CHAPTER 3. THE MOST APPROPRIATE COMPARATOR IN ASSESSING THE PERFORMANCE OF HIP 

PROSTHESES...................................................................................................................................................... 29 

3.1 Overview ...................................................................................................................................................... 30 

3.2 Materials and Methods ................................................................................................................................. 31 

3.3 Statistical Method ......................................................................................................................................... 32 

3.4 Results ......................................................................................................................................................... 33 

3.4.1 Reason for Revision and Type of Revision .......................................................................................... 36 

3.4.2 Revision Rates of Comparator Groups by Fixation .............................................................................. 38 

3.4.3 Revision Rates of Comparator Groups by Bearing Surface................................................................. 39 

3.4.4 Number of Total and Revision by Year of Implantation........................................................................ 39 

3.5 Discussion .................................................................................................................................................... 40 

3.6 Summary ...................................................................................................................................................... 42 

CHAPTER 4. CAN MACHINE LEARNING ALGORITHMS CONTRIBUTE TO THE EARLY IDENTIFICATION OF 

PRIMARY TOTAL HIP OUTLIERS? ..................................................................................................................... 43 

4.1 Overview ...................................................................................................................................................... 44 

4.2 Materials and Methods ................................................................................................................................. 45 

4.3 ML Statistical Analyses................................................................................................................................. 46 

4.4 Results ......................................................................................................................................................... 47 

4.5 Subsets or Catalogue Ranges ...................................................................................................................... 51 

4.6 Number of Surgeons .................................................................................................................................... 55 

4.7 Discussion .................................................................................................................................................... 59 

4.8 Summary ...................................................................................................................................................... 62 

CHAPTER 5. THE MOST APPROPRIATE COMPARATOR IN ASSESSING THE PERFORMANCE OF KNEE 

PROSTHESES...................................................................................................................................................... 62 

5.1 Overview ...................................................................................................................................................... 63 

5.2 Materials and Methods ................................................................................................................................. 64 

5.3 Standard Designs ......................................................................................................................................... 64 

5.4 Complex Designs ......................................................................................................................................... 65 

5.5 Statistical Methods ....................................................................................................................................... 65 

5.6 Results ......................................................................................................................................................... 66 

5.6.1 Reason for Revision and Type of Revision .......................................................................................... 68 

5.6.2 Revision Rates of Comparator Groups by Fixation .............................................................................. 71 

5.6.3 Revision Rates of Comparator Groups by Bearing Surface................................................................. 72 

5.6.4 Revision Rates of Comparator Groups by Bearing Mobility ................................................................. 74 

5.6.5 Revision Rates of Comparator Groups by Patella Usage .................................................................... 75 

5.7 Discussion .................................................................................................................................................... 76 

5.8 Summary ...................................................................................................................................................... 78 



 

iii 
 

CHAPTER 6. CAN MACHINE LEARNING APPROACH CONTRIBUTE TO MONITORING POST-MARKET 

SURVEILLANCE OF TOTAL KNEE ARTHROPLASTY PROSTHESES? ............................................................ 79 

6.1 Overview ...................................................................................................................................................... 80 

6.2 Materials and Methods ................................................................................................................................. 81 

6.3 Machine Learning Statistical Analyses ......................................................................................................... 83 

6.4 Results ......................................................................................................................................................... 85 

6.5 Subsets of Prosthesis – Catalogue Ranges ................................................................................................. 88 

6.6 Number of Surgeons .................................................................................................................................... 90 

6.7 Discussion .................................................................................................................................................... 93 

6.8 Summary ...................................................................................................................................................... 95 

CHAPTER 7. INVESTIGATIONS OF IDENTIFIED OUTLIER PROSTHESES ..................................................... 96 

7.1 Overview ...................................................................................................................................................... 97 

7.2 Statistical Method ......................................................................................................................................... 98 

7.3 Identified Prostheses Investigation (follow-up limited to 5 years) ................................................................. 98 

7.4 Reason for Revision ................................................................................................................................... 101 

7.5 Type of Revision ......................................................................................................................................... 103 

7.6 Prosthesis-related Confounding Factors .................................................................................................... 105 

7.7 Patient Characteristics................................................................................................................................ 112 

7.8 Discussion .................................................................................................................................................. 116 

7.9 Summary .................................................................................................................................................... 117 

CHAPTER 8. DISCUSSION ................................................................................................................................ 118 

8.1 Joint Registry Approach for the Identification of Outlier Prostheses ........................................................... 119 

8.2 Primary Total Hip Comparator .................................................................................................................... 121 

8.3 Primary Total Knee Comparator ................................................................................................................. 122 

8.4 Methods for Outlier Detection ..................................................................................................................... 123 

8.5 Survival Analysis ........................................................................................................................................ 124 

8.6 Feature Selection and Algorithms .............................................................................................................. 125 

8.7 Machine Learning Approach for the Identification of Outlier Prostheses .................................................... 126 

CHAPTER 9. CONCLUSIONS ............................................................................................................................ 130 

9.1 Conclusion remarks .................................................................................................................................... 131 

9.2 Suggestions for future works ...................................................................................................................... 133 

REFERENCES.................................................................................................................................................... 134 

APPENDICES ..................................................................................................................................................... 145 

APPENDIX A - PRIMARY TOTAL HIP PROSTHESES .......................................................................................... A 

APPENDIX B - PRIMARY TOTAL KNEE PROSTHESES ...................................................................................... B 
 

  



Abstract 

Joint replacement is a highly successful and frequent surgical intervention. It can 

improve function and reduce pain in patients with end-stage arthritis of the joints. 

However, there is a wide variation in the outcome of prostheses/devices used in 

primary total hip replacements (THRs) and primary total knee replacements (TKRs). 

Joint replacement registries have significant roles in assessing the comparative 

performance of devices. The Australian Orthopaedic Association National Joint 

Replacement Registry (AOANJRR) has established a standardised multi-stage 

approach for identifying prostheses with a higher than anticipated revision rate, also 

referred to as ‘outliers’. The AOANJRR standard compares the revision rate of 

prostheses to the average revision rate of all other prostheses that belong to the same 

broad device class—comparator. However, as changes are made in the design and 

performance of devices over time, the hip and knee comparator classes need to be 

re-evaluated. This study first aimed to explore how the rate of revision estimated in the 

comparator groups differs according to specific prosthesis design constructs. The 

cumulative percent revision (CPR) was calculated for 413,417 primary THR and 

640,045 TKR undertaken for osteoarthritis from 1st January 2003 to 31st December 

2019. The final hip comparator, which only includes satisfactory-performed prostheses 

of contemporary design and use, had a 10-year CPR of 4.30% (4.2, 4.41) which is 

lower than the current THR comparator used by the AOANJRR of 4.93% (4.84, 5.02). 

Using a comparator that only includes contemporary devices with modern bearings 

and excludes special devices used in more complex primary procedures has the 

potential to improve the early assessment of modern primary total hip prostheses 

sensitively. The AOANJRR standard detected 13 additional total conventional hip 

components utilizing the modified comparator. The final comparator group for 

conventional TKRs, which only includes the Cruciate Retaining and Posterior 

Stabilised designs, indicated a 10-year CPR of 5.2% (5.1, 5.3). Moreover, a 

comparator group of complex knee devices with 10.3% (8.6, 12.0) 10-year CPR was 

explored to reflect devices used only for specific purposes in primary TKR. The use of 

modified knee comparator groups led to identifying additional conventional knee 

prostheses but fewer complex knee designs as being at risk. The AOANJRR currently 

recommends the modern comparator groups for the early assessment of primary total 

hip and knee prostheses. Ideally, early identification of outliers uses a time-to-event 
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outcome while reducing the confounding effects of other components in the device 

and patient characteristics. Machine learning (ML), which contains self-learning 

algorithms, is one approach to consider many variables simultaneously to reduce the 

impact of confounding. Another principal objective of this study was to compare the 

effectiveness of using either Random Survival Forest (RSF) or 

regularized/unregularized Cox regression to account for patient and associated device 

confounding factors to current standard techniques. The effectiveness of the ML 

approaches was assessed based on the ability to detect the outliers identified by the 

AOANJRR standardised approach, where the standard identified ten individual THR 

prostheses and five TKR prosthesis combinations. The ML approaches identified 

some but not all the outliers detected by the AOANJRR in the study cohort. Both the 

methods identified three of the same THR prostheses, and the RSF identified the other 

five of the detected THR components. In primary TKR, both feature selection 

techniques identified two of the same total knee prostheses, and Cox detected one 

additional prosthesis as at higher risk of revision. In addition, both the RSF and Cox 

techniques detected a number of additional device components that were not 

previously identified by the standard approach. The results showed ML might be able 

to offer a supplementary approach to enhance the early identification of outlier 

devices. RSF was a more comparable feature selection technique to the AOANJRR 

standard. Further studies are required to better understand the potential of ML to 

improve the early identification of outliers.  
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Introduction  

Total joint replacement surgery is commonly performed on patients with severe joint 

osteoarthritis (OA). However, there are concerns about prostheses being at increased 

risk of failure. The early identification of these prostheses can be a challenge because 

of the many distinct components available, and it is a complicated process to estimate 

their performance in the presence of prosthesis-, patient- and surgeon-related 

confounders. In orthopedics, joint registries (JRs) collect and record data of joint 

replacements to observe the survival rate of prostheses. The Australian Orthopaedic 

Association National Joint Replacement Registry (AOANJRR) dataset shows that 

most prostheses have comparable outcomes, although some have a higher-than-

expected revision rate (called outliers). Machine Learning (ML)-based models are 

increasingly being used in the medical field to identify risk factors and possible 

outcomes. In orthopedics, ML methods can play a role in detecting components that 

are at an increased risk of failure and can be a useful tool for the initial screening of 

prosthesis components. First, the aim of this study was to improve the sensitivity of 

conventional analyses by identifying modified comparator groups to detect outliers as 

early as possible and with a high confidence level. The second aim was to evaluate 

the ability of feature selection techniques to identify outlier prostheses based on the 

historical data. It is anticipated that the findings of this research in regard to statistical 

techniques and the identification of outlier prostheses will be a significant step toward 

reducing the risk of using poor-performing prostheses implanted in large numbers of 

patients around the world. 

Chapter 1: A comprehensive literature review of the previous research on total hip 

replacement (THR) and total knee replacement (TKR) is provided. This includes 

sections on the causation, outcome, reason for revision, and recent advances made 

in hip and knee replacements. We also review the studies on the potential risk factors 

and the role of joint registries in monitoring the performance of prostheses. The review 

reveals a need to examine novel statistical methodologies to improve the outlier 

identification process by JRs. 

Chapter 2: This chapter reviews the use of supervised ML techniques in regression, 

classification and survival problems associated with the post-operative outcomes of 

THR and TKR. The different types of ML techniques such as Random Forest, SVM, 



Naive Bayes, and Deep Learning were reviewed, focusing on the data source, 

domains, limitations, and the quality of reported outcomes. The literature shows that 

ML adoption for post-operative THR and TKR is still in the emergent phase, offering 

opportunities for ML-based research studies in this area. 

Chapter 3: The chapter includes an investigation of a number of different comparator 

options to provide a more relevant standard for comparing the performance of new hip 

devices. Subsequently, the current comparator was upgraded to adequately reflect 

contemporary practices and avoid an overestimation of the revision rate. The 

AOANJRR standard detected 13 additional device components utilizing the modified 

comparator. The registry currently recommends the modern comparator for early 

assessment of total hip prostheses. 

Chapter 4: The use of ML methods (random survival Forest (RSF) and 

regularised/unregularized Cox regression) was evaluated for surveillance of total hip 

arthroplasty components. Their effectiveness was determined based on their ability to 

detect the same hip outliers identified by the AOANJRR standard using the comparator 

developed in chapter three. Both the RSF and Cox techniques detected a number of 

additional device components not found through the standardised approach, and RSF 

was a more comparable feature selection technique to the AOANJRR standard. 

Machine Learning might be able to offer a supplementary approach to improve the 

early identification of outlier devices. 

Chapter 5: Given the higher revision risk of complex knee designs in primary total knee 

surgeries, this chapter was designed to identify more relevant comparator groups to 

better reflect conventional and complex surgical practices. Conventional designs 

include cruciate retaining (CR) and posterior stabilised (PS), and the knee designs 

used in more complex surgery include fully stabilised (FS) and hinged designs. The 

CR and PS groups were combined to produce the final conventional comparator. In 

addition, the FS and hinged designs were combined as a comparator group of complex 

devices. The use of modified comparator groups led to the identification of additional 

conventional prostheses but fewer complex designs as being at risk. 

Chapter 6: The chapter assessed the ability of the algorithms developed in chapter 

four to identify total knee outliers among 160 unique prosthesis combinations. These 

outliers were detected using the modified comparator groups defined in the previous 
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chapter. The two-step Cox yielded outcomes similar to those of the RSF but had 

significant advantages in terms of the number of prostheses identified, computational 

time, interpretation of variable importance, and reduction of confounding effects. Cox 

modelling is a more conventional method of selecting significant variables and 

documenting the confounding. Further studies are required to better understand the 

potential of ML to improve the early identification of outliers. 

Chapter 7: This chapter includes further investigations of the outlier prostheses similar 

to those identified by all the statistical approaches in terms of clinically-known 

confounding factors. The impact of design- and patient-related variables was 

examined closely to determine the factors contributing to the poor performance of 

outlier prostheses. There were significant differences in the survival outcomes of the 

identified prostheses in terms of bearing surface and fixation method. 

Chapters 8 discusses the main findings and limitations, and chapter 9 provides 

conclusion remarks and recommendations for future research. 

 





  

 

 

 

 

 

Chapter 1. Literature Review on Hip and Knee 

Replacement 

  



1.1   Overview 

Total hip replacement (THR) is more likely than any other elective surgical 

procedure to improve a patient’s quality of life [1]. Implant technology has continuously 

advanced since the pioneering work of Wiles [2], Charnley, and others in the mid-20th 

century [3]. Nowadays, over 95% of artificial hip joints last longer than 10 years, far 

longer than predicted by Charnley. Total knee replacement (TKR) surgery has been 

performed consistently for more than 40 years, and its popularity worldwide is 

increasing [4]. It has had proven success in reducing pain and improving the long-term 

knee function in people with arthritis. However, some patients are unhappy with the 

results of their hip and/or knee surgery; hence, this field has been the focus of research 

and development. On one hand, the medical device industry continues to develop new 

implants and supporting technology, although more rigorous evidence is still needed 

to justify their products. On the other hand, enhanced rehabilitation programmes are 

becoming more common, given their potential to improve patient outcomes.  

1.2   Causation  

In Australia, Osteoarthritis (OA) is the leading cause of medical issues that 

ultimately require total hip and/or knee replacements, accounting for 88.2% and 97.7% 

of primary total procedures in 2020, respectively [5]. Osteoarthritis is caused by a 

combination of biochemical and mechanical processes that are influenced by 

hereditary and environmental variables [6]. Age, gender, trauma, and joint morphology 

are all important patient-specific risk factors. Femoroacetabular impingement is 

becoming more widely recognised as a cause of hip pain [7]. For unknown reasons, 

the relationship between obesity and hip OA is substantially weaker than obesity and 

knee OA [8]. Moreover, there is no convincing evidence that there is a link between 

OA and diet. As the world's population ages, the prevalence of OA is expected to rise. 

In Australia, the mean age of patients requiring primary THR for all diagnoses is 67.7 

years and 68.5 years for the knee. Primary total hip and knee replacement for all 

diagnoses are more common in women than men [5]. 

1.3   Assessment of Outcome  

Kaplan-Meier survival analysis with revision surgery as the endpoint is the most 

common method for evaluating hip and knee surgery outcomes. A revision occurs 
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when one or more components of a prosthetic hip or knee are replaced. The revision 

treatment is recommended only when serious symptoms, such as pain or fracture, 

appear or are expected [5]. This is because a revision can result in major complications 

and poorer functional outcomes than first hip or knee surgery. 

Joint replacement registries are valuable sources for measuring the rate of implant 

revision. Since the establishment of the first hip arthroplasty registry in Sweden, it has 

been successful in identifying devices with significant failure rates [9]. The 

International Society of Arthroplasty Registries (ISAR) now includes members from 

arround 25 nations, indicating that geographic coverage has gradually expanded. In 

Australia, since 1999, the registry has reported an overall 19-year implant survival of 

89.4% (95% CI, 92.6–92.9) for 421,141 primary total conventional hip replacements 

(excluding resurfacing procedures) and 91% for 699,283 primary total knee for OA 

[10].  

The collection of additional data enables comparisons to be made regarding the 

effects of patient, procedure, hospital, and surgeon variables. Currently, the outcomes 

of revision procedures performed by individual surgeons are not being documented. It 

should be highlighted that revision surgery as the sole measure of success has limits 

because patients can experience problems, discomfort, or poor function without 

undergoing a revision. Patient-reported outcome scores are used alongside with 

survival outcomes to better reflect pain, function, quality of life, and satisfaction after 

joint replacements. The Oxford Hip Score which measures pain and functional status, 

and the EuroQol five-domain score that analyses the quality of life, are two patient-

reported outcomes that are now regularly recorded for hip surgery [11, 12].  

Although only a few of these approaches have been assessed for reliability, validity, 

and responsiveness, there has been a significant increase in the number of knee 

instruments and rating scales developed to measure outcomes from the patient’s 

perspective. The Western Ontario and McMaster Universities Osteoarthritis 

(WOMAC), the Knee Injury and Osteoarthritis Outcome Score, and the Oxford Knee 

Score (OKS) were all frequently utilised in a recent systematic review [13]. However, 

because age and comorbidities influence patient-reported outcomes, it is impossible 

to have a universal threshold as a discriminator of success [14].  



Joint replacement places a significant cost load on healthcare systems. For 

example, the annual cost of hip replacement in the United States exceeds $15 billion 

[15]. Hip replacement costs between $1,500 and $10,402 per quality-adjusted life year 

(QALY) gained [16, 17]. This figure is significantly lower than the £20000–30000 per 

QALY benchmark set by the National Institute for Health and Care Excellence (NICE) 

to guide cost-effectiveness assessments of novel technologies [18]. 

Total joint replacement surgery for the hips and knees is the most common inpatient 

operation for Medicare recipients, and the recovery time can be lengthy. However, 

data suggests that in the long run, arthroplasty saves money on healthcare. The 

healthcare costs for a patient with a hip or knee replacement are lower than those for 

a patient who does not have either prosthesis [19]. For patients with a reasonable life 

expectancy, a hip and/or knee replacement can be a cost-effective procedure. 

1.4   Reasons for Revision  

As indicated in Table 1.1, aseptic loosening is the most common reason for revision, 

accounting for 24.2% of all revisions of primary total conventional hip surgeries 

reported by the Australian Orthopaedic Association National Joint Replacement 

Registry (AOANJRR); this is followed by fracture (21.1%), prosthesis dislocation 

(20.3%), and infection (18.6%) [5].Wear of the bearing surfaces, which produces 

particle debris inside the enough joint space, is the most common cause of aseptic 

loosening. In registry records, the incidence of fretting and corrosion is definitely 

understated. Pain [20], infection [21, 22], and aseptic loosening of implants [23-27] 

can all be caused by the products of corrosion and particles of debris. Dislocations 

affect 0.2–10% of patients after hip replacement, with 77% of them occurring within 

the first year [28]. 
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Table 1. 1. Primary total conventional hip for OA by reason for revision [5]. 

Reason for revision Number Percent 

Loosening 3958 24.2 

Fracture 3447 21.1 

Prosthesis Dislocation 3329 20.3 

Infection 3038 18.6 

Lysis 357 2.2 

Pain 322 2.0 

Leg Length Discrepancy 257 1.6 

Malposition 234 1.4 

Instability 221 1.4 

Implant Breakage Stem 192 1.2 

Implant Breakage Acetabular Insert 151 0.9 

Wear Acetabular Insert 142 0.9 

Metal Related Pathology 141 0.9 

Incorrect Sizing 106 0.6 

Implant Breakage Acetabular 100 0.6 

Implant Breakage Head 47 0.3 

Other 327 2.0 

Total  16,369 100.0 

The dislocation rate is influenced by patients’ age, muscle tone, failure to avoid 

particular movements, surgical approach, and the size and positioning of components 

[28]. Periprosthetic joint infection is a serious arthroplasty complication that can lead 

to pain, loss of function, systemic illness, and even death. Within two years of surgery, 

the frequency of such infection is 1–2% [29]. Biofilms are formed by microbes on 

implant surfaces, which reduce antibiotic penetration [30]. The most common reasons 

for revision vary depending on patient characteristics. Loosening is the most prevalent 

reason necessitating revision procedures for both males and females under 75 years 

of age, whereas fracture is the most common reason for revision in patients beyond 

75 years of age [5]. 

Similar to the hip, aseptic loosening of the prosthesis is the most prevalent reason 

for a primary knee replacement to be revised [31-34], accounting for 24.7% of all 

revisions in Australia shown in Table 1.2 [5]. Implant wear is the most common cause 

of loosening. Because the rate of wear is a function of both time and activity, it is most 

concerning in young and energetic patients [35]. Infection is the second most common 

reason for primary knee revisions [34, 36], accounting for 23.7% of all primary knee 

revisions [5]. Although this dangerous outcome is frequently detected soon after 

surgery, it can occur at any time following the surgery [37, 38].  

 

 

 

 

 



Table 1. 2. Primary total knee for OA by reason for revision [5]. 

Reason for revision Number Percent 

Loosening 6805 24.7 

Infection 6539 23.7 

Patellofemoral Pain 2519 9.1 

Instability 2345 8.5 

Pain 2250 8.2 

Patella Erosion 1645 6.0 

Arthrofibrosis 990 3.6 

Fracture 860 3.1 

Malalignment 592 2.1 

Lysis 541 2.0 

Wear Tibial Insert 521 1.9 

Metal Related Pathology 354 1.3 

Incorrect Sizing 295 1.1 

Other 1324 4.8 

Total  27,580 100.0 

Other reasons for revisions are pain following surgery, particularly patellofemoral 

pain, and instability which, along with loosening and infection, account for the majority 

of the revisions [5, 33, 34]. Although all of these reasons for revision may be related 

to the design or manufacture of implants, there are other factors that increase the 

likelihood of revision. Preoperative diagnosis, patient characteristics, the surgical 

procedure, the surgeon’s experience and expertise, the facilities in the operating 

theatre, and postoperative care are other considerations [39].  

According to a recent review of the New Zealand registry, early revision due to 

infection increased and similar patterns have been documented in Sweden and 

Australia. [5, 34, 40]. The rise in the number of patients with periprosthetic joint 

infection in the hip and knee has been attributed in part to an increase in the number 

of patients with diabetes or obesity or patients in younger age categories [41]. There 

is a need to improve the diagnosis of periprosthetic joint infection, and more research 

is also needed for better management [42]. The gathering of more relevant outcome 

data, such as microbiological profiles, antimicrobial medication, and the general health 

status of patients, is critical to this improvement, together with infection-specific 

outcomes from registry survival findings [43]. 

1.5   Advances in Hip Practice 

In England, adults aged 65 to 74 spend an average of 6.5 hours a week engaged 

in physical activities [44]. There is a high demand for new hip implants, and the 

development of devices that can better withstand wear at the bearing interface, the 

femoral head and acetabular cup articulate, continues to be a major problem. In vivo, 

the ideal bearing surface is chemically inert, wears slowly, produces non-immunogenic 
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wear debris, and is robust enough to withstand fracture. Implants with metal-on-

polyethylene bearings, as well as ceramic-on-polyethylene and ceramic-on-ceramic 

bearings, were used in the majority of surgeries in Australia, shown in Table 1.3 [5]. 

Because the softer polythene generated wear-related debris, early models of metal-

on-polyethylene bearings had a high failure rate at long follow-up times [5]. Current 

highly cross-linked polythene (XLPE) is more durable than the earlier materials, and 

the registry indicated no difference in mid-time revision rates for modern metal-on-

polyethylene, ceramic-on-polyethylene, and ceramic-on-ceramic bearings [5, 45].  

Table 1. 3. Percent revision of primary total conventional hip for OA by bearing surface [5]. 

Bearing Surface 
N 

Revised 

N 

Total 
1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 19 Yrs 

Ceramic/Ceramic 3876 94733 1.5 (1.4, 1.6) 2.4 (2.3, 2.5) 3.1 (3.0, 3.2) 5.0 (4.8, 5.1) 7.1 (6.8, 7.4) 8.4 (7.9, 8.8) 

Ceramic/Non 

XLPE 
582 7986 1.9 (1.6, 2.3) 3.2 (2.8, 3.6) 3.8 (3.4, 4.3) 7.2 (6.5, 7.9) 11.8 (10.8, 12.9) 15.3 (13.9, 16.7) 

Ceramic/XLPE 2484 91245 1.7 (1.6, 1.8) 2.5 (2.4, 2.6) 3.1 (2.9, 3.2) 4.3 (4.1, 4.6) 5.9 (5.4, 6.4) 7.5 (6.4, 8.8) 

Ceramic/Metal 26 299 1.7 (0.7, 4.0) 3.7 (2.1, 6.6) 4.4 (2.6, 7.4) 8.4 (5.7, 12.3)   

Metal/Metal>32mm 3415 14422 1.7 (1.5, 1.9) 5.7 (5.3, 6.1) 11.8 (11.2, 12.3) 22.5 (21.8, 23.2) 28.5 (27.5, 29.5) 32.2 (29.1, 35.5) 

Metal/Metal≤32mm 411 5146 1.6 (1.3,2.0) 3.3 (2.9, 3.8) 4.4 (3.9, 5.0) 6.7 (6.0, 7.4) 9.1 (8.3, 10.1) 10.1 (9.1, 11.3) 

Metal/Non XLPE 2821 35266 1.4 (1.3, 1.6) 2.5 (2.3, 2.7) 3.5 (3.3, 3.7) 6.5 (6.2, 6.7) 11.0 (10.6, 11.4) 13.6 (13.0, 14.2) 

Metal/XLPE 5792 165771 1.6 (1.6, 1.7) 2.4 (2.3, 2.5) 3.0 (2.9, 3.1) 4.6 (4.5, 4.7) 6.3 (6.1, 6.6) 7.3 (6.9, 7.8) 

Cermicised 

Metal/Non XLPE 
50 297 1.7 (0.7, 4.0) 3.8 (2.1, 6.7) 4.1 (2.4, 7.2) 12.5 (8.9, 17.3) 20.7 (15.7, 27.1)  

Cermicised 

Metal/XLPE 
724 25323 1.8 (1.6, 2.0) 2.3 (2.1, 2.5) 2.6 (2.4, 2.9) 3.8 (3.5, 4.1) 5.5 (4.8, 6.3)  

Total  20181 440487  

Note. Excludes 213 procedures with unknown bearing surface, 1 procedure with ceramicised metal/ceramic 

bearing surface, 8 procedures with metal/ceramic bearing surface. 

With only minor changes evident in the rate of revisions, various criteria may help 

surgeons determine which bearing to use. Although modern ceramic-on-ceramic 

bearings are more expensive than others and sometimes produce a squeaking sound, 

they do not have a higher risk of implant fracture compared to the previous, more brittle 

version [46]. Because metal-on-metal prostheses have less linear wear on the surface 

of the bearing compared with metal-on-polyethylene prostheses, they became popular 

20 years ago. When registry data revealed the higher risk of metal-on-metal implants, 

this implantation peaked in 2008, accounting for 21% of all prostheses [5]. However, 

we know that cementless metal-on-metal THRs have a revision rate of more than 18% 

at 10 years [47].  

The ideal method of fixation in THR is still a subject of debate (Figure 1.1). 

Cemented fixation has superior long-term performance and, it has a lower overall rate 

of revision than cementless fixation after 14 years. Cemented fixation continues to 

show excellent long-term revision rates and achieves a lower overall revision rate in 

longer times than cementless fixation [5, 47, 48]. It has also been found that higher 

failure rates of implants with cementless fixation indicate early fixation failure. Beyond 



the first decade of implantation, however, cementless fixation may have lower revision 

rates than cemented fixation [49]; This may result in a decreased revision rate in 

patients under the age of 65 [50].  

 
Figure 1. 1. Percent revision of primary total conventional hip replacement for OA by fixation [5]. 

In Australia, the United Kingdom, and the United States, cementless fixing is the 

most popular. Acetabular aseptic loosening has been recognised as a primary cause 

of cemented implant failure in patients under the age of 60 [51]. Hybrid fixation, which 

combines cemented femoral and cementless acetabular components, was developed 

as an alternative and has outperformed the other fixations over a 15-year follow-up 

period [47]. Short cementless femoral stems are also gaining popularity. These 

designs maintain proximal bone stock and enable more physiological loading, which 

means less stress shielding, thigh pain, and invasive revision surgery. 

In the last decade, there has been a tendency to increase the diameters of the 

femoral head, which reduces the risk of dislocation following hip replacement because 

a larger head enables a greater range of motion before impingement than does a 

smaller head [52]. Previous concerns about the use of large diameter heads stemmed 

from evidence that these implants cause increased polythene volumetric wear; 

however, with modern generations of highly cross-linked polythene, larger 

articulations do not appear to cause increased wear when compared to smaller 

articulations [53]. 
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In the United Kingdom, posterior and lateral surgical approaches accounted for 95% 

of hip replacements, and both had excellent outcomes [47]. The posterior method has 

become more popular than the lateral approach in recent years. This rise may be due 

to mounting evidence that the posterior technique is linked to better patient-reported 

outcomes with no greater risk of dislocation [54, 55]. Interest in minimally invasive 

surgical methods has grown as a result of a desire to perform hip replacements with 

less soft tissue injury.  

The direct anterior approach is one such technique. Despite early reports of better 

results, comprehensive studies indicated no significant difference in overall 

complication rate, dislocation rate, gait, or patient function after six weeks compared 

to other routine approaches. As yet there is no clear evidence showing how it affects 

fracture rate and the length of stay in the hospital [56, 57]. In New Zealand, the UK, 

and Sweden, the method is now used in less than 5% of procedures.  

The percutaneously-assisted, super capsular, and direct superior approaches 

utilise a modified posterior incision and provide access to the joint without disturbing 

the external rotator muscles. Low rates of complications and dislocation have been 

documented in case studies [58]. All minimally invasive surgical procedures, however, 

require long-term monitoring. Impingement, increased surface wear of bearings, 

dislocation, and the need for revision can all result from the misalignment of acetabular 

and femoral components  [59].  

Computer-assisted surgical methods for hip replacement have been created in 

order to improve the accuracy and dependability of implant placement. From passive 

computer navigation to patient-specific instrumentation to active robotic-assisted 

surgery, there is a wide range of options. Computer navigation assists surgeons 

intraoperatively by using anatomic data from preoperative CT imaging, intraoperative 

fluoroscopic pictures, or imageless intraoperative registration of bone landmarks. In a 

meta-analysis of 473 patient data, researchers discovered that computer navigation 

improves the precision of the acetabular component positioning when compared non-

navigated implantations [60]. However, as yet there is no evidence of better clinical 

outcomes.  

In the case of knee replacement, research conducted in Australia suggests that 

computer guidance reduces the number of revisions in patients under the age of 65 



[61]. The reasons for this disparity are unknown. Overall, robotic-assisted orthopaedic 

surgery involves procedures that are quite distinct from those used for soft-tissue 

surgery. The computer-assisted surgery system analyses an extensive amount of 

imaging data and searches for any deviations from a surgical plan. Some systems 

provide haptic feedback to surgeons to avoid the re-sectioning of bone beyond certain 

limits, while others automatically stop bone milling. Although the accuracy of 

acetabular positioning has improved, the impact on clinical outcomes has yet to be 

determined [62].  

A single-center cohort study found that dislocation rates are lower following robotic-

assisted hip replacement than a routine non-assisted hip replacement [63]. Three-

dimensional templates produced from preoperative photographs are used to create a 

patient-specific apparatus. The procedures are designed to improve acetabular 

placement without the significant amount of time required for robotic surgery [64]. To 

determine the advantage of modified computer-assisted surgery systems, high-quality 

longitudinal studies are required.  

1.6   Advances in Knee Practice  

The outcomes of modern knee replacements are quite acceptable and are 

continuing to improve. The Swedish knee registry was able to track this development 

throughout its long history (Figure 1.2) [65]. With the current surgical procedures used 

for knee replacement, few patients require revision, especially in cases of young 

people. However, the patients who are not totally satisfied with the TKR outcome 

outnumber those who require revision. For most knee replacements, metal on 

polyethylene is still being used and, as a result, polyethylene wear remains a major 

reason for failure [34, 47, 66]. Highly cross-linked polythene, also known as second-

generation polythene, was introduced around 20 years ago and successfully reduced 

polythene wear, thereby decreasing the rate of aseptic loosening and revision [67]. 

Recently, vitamin-E-infused highly cross-linked polythene, also known as a third 

generation development, has been used although its efficacy needs further 

investigation [68]. 
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Figure 1. 2. Cumulative revision rate after TKR [65]. 

For more than 30 years, the standard method to TKR surgery has been to strive for 

mechanical alignment, which means that the hip, the center of the reconstructed knee, 

and the ankle are all in line [69]. Recently, the kinematic approach has been planned 

as an alternate implantation strategy to mimic the alignment of the pre-disease joint 

surface. This procedure is thought to improve ligament balance and knee kinematics 

without requiring ligament releases [70]. The global experience with kinematic 

alignment in TKR is limited [71], although a recent literature review found that 

kinematically-aligned surgery resulted in a better outcome than did mechanical 

alignment [72]. The pattern of OA may influence the benefit of different alignment 

methods for each individual patient. Mechanical alignment is still the most commonly 

used implantation method, and more research is needed on the safety of kinematic 

alignment before considering it for more widespread use. 

The majority of patients receive total knee implants but about 8% of cases currently 

receive partial (unicompartmental) knee replacement [5]. Partial knee replacement 

has several advantages over total knee replacement: improved functional outcome, 

shorter postoperative length of stay, decreased mortality rate, and greater cost-

effectiveness [73]. Recent evidence has reinforced these findings in randomised 

controlled studies, and similar results of current studies are being anticipated [74, 75]. 

The fundamental argument against widespread acceptance of partial knee as an 

alternative to TKR is that almost all the national registries report a greater revision rate 

[47, 66]. There is some evidence to suggest that the greater revision rate of partial 

knee replacements is related to the number of these surgeries performed by specific 

surgeons and private units [76]. In addition, recent evidence derived from registry data 



analysis indicates that the introduction of cementless fixation may decrease the 

revision rate of partial knee arthroplasty [40]. 

In knee replacement surgery, computer navigation and patient-specific 

instrumentation have been introduced to help reach a more accurate alignment [77]. 

Possible improvements are expected to produce better results and improve 

intraoperative efficiency and cost-effectiveness. Although the literature contains 

inconsistent reports, there is no significant clinical difference in terms of implant 

component placement, lower extremity alignment, or patient outcomes [64, 78]. The 

main advantage of patient-specific instrumentation or computer navigation lies in its 

potential to help less experienced surgeons achieve greater precision and accuracy. 

Some evidence suggests that computer-assisted surgery may reduce the revision rate 

for young patients undergoing total knee arthroplasty [61]. To date, there has been 

only a limited application of robotic technology in knee replacement surgery, and high-

quality comparative studies are still needed to show that its potential efficacy is better 

than that of conventional techniques [78].  

1.7   Joint Registries  

Joint registries (JRs) are now one of the greatest and most essential sources of 

comparative data for hip and knee replacement surgery [79-81]. They can give us 

useful information about implants and show how patient variables, surgical 

procedures, and surgeon experience affect outcomes [5, 34, 47]. These JRs provide 

information on potential issues regarding implants and surgical procedures. Statistical 

studies of these registries are being conducted to discover problems with implants and 

surgical procedures. The Swedish hip and knee replacement registries were the 

leaders in this field, and their main goal was to collect data related to short-term 

problems. The registries quickly demonstrated their potential as a safe and reliable 

source, focusing on reporting outcomes related to the effectiveness of surgeries and 

prostheses. 

The monitoring of revision rates is an acceptable way of determining the factor(s) 

affecting the survival outcome. This is especially practical in the field of joint 

replacement, where the goal has always been to improve the longevity of medical 

implants and reduce the incidence of failure. Significant international relationships 

between various registries and research groups should be established as one means 
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of achieving this goal. Furthermore, the nationwide statistics published by registries 

can provide surgeons and patients with valuable information about what can be 

expected after surgery. The statistical analysis of registry data has become a key 

approach for evaluating the outcome of joint replacements associated with 

advancements in data collection [34, 40, 66]. In recent times, big data has been used 

in healthcare applications to develop prediction models and clinical decision support 

systems [82-86]. Hence, the mining of big data could yield valuable insights into the 

factors that contribute to the success or otherwise of hip and/or knee replacement 

surgery. 

Overall, although most primary total knee prosthetic implants are well-established 

cruciate-retaining or posterior-stabilised devices with a long track record, new implant 

modifications or novel designs are being introduced regularly [5, 34, 47, 66]. Moreover, 

THR is mostly limited to the surgeries performed using a choice of modern bearings: 

XLPE with metal, ceramic or ceramicised metal heads, and ceramic on ceramic 

bearings with mixed ceramic [5]. Here, the importance of registries is underscored by 

introducing the Beyond Compliance in the UK, which is working narrowly with the 

Orthopaedic Data Evaluation Panel and the UK national joint replacement registry. 

1.8   Potential Risk Factors in Hip and Knee 

Surgery  

The most important patient-related factor influencing the outcome of hip and knee 

replacement is age. The majority of patients who require joint replacement surgery are 

elderly; the average age at the time of surgery is close to 70 years [5, 34, 47]. Because 

the incidence of OA increases with age [87], this finding is not unusual. Patients with 

OA and who are under 65 years old had 2.5 times more risk of knee revision than 

those who were 65 years or older [5, 34, 88]. When revision rates for various age 

groups are examined, it becomes clear that there is an inverse relationship between 

risk of revision and age, with younger patients having a higher risk of requiring revision 

surgery [5]. Other patient characteristics, such as preoperative diagnosis and gender, 

have also been shown to affect joint replacement surgery outcomes. In both hip and 

knee surgeries, men have a somewhat greater rate of revision than women [5, 34], 

particularly for infection (p<0.001) [5]. 



The AOANJRR is collecting data on other patient characteristics that could affect 

the outcome of hip and knee procedures, such as the American Society of 

Anaesthesiologists (ASA) score and Body Mass Index (BMI) [5]. A number of implant-

related variables were described in the literature that may affect hip replacement 

failure rates, including head size, bearing material combination, and fixation method 

[5, 47, 66]. In regard to primary total knee risk factors, other variables can contribute 

to the outcome of surgeries: bearing mobility, stability, utilisation of patella component, 

and method of fixation [5, 47, 66].  

The type and class of implants also have an impact on the result. The most 

prevalent type of primary partial hip is unipolar modular, which is defined by the class 

of prosthesis utilised [5]. This accounts for 45.6% of all partial hip surgeries, with two 

categories of unipolar monoblock (28.5%) and bipolar (25.9%). The major revision 

diagnostic for the three main classifications of primary partial hip replacement is a 

fractured neck of the femur, which is likely to have a greater rate of revision than 

primary total hip surgery [5]. All partial knee replacements (unicompartmental, patella 

and trochlear, and bicompartmental) have a greater revision rate than do the total knee 

[34, 40, 66]. Partial knee replacement is preferred over TKR for a variety of reasons, 

including a more natural feeling in the knee, less invasive surgery with a lower risk of 

infection [89, 90]. 

1.9   Prostheses with Higher Than Anticipated Rate 

of Revision 

The majority of registries have recorded implants that have a much higher risk of 

revision than others within the same broad class. When considerable disparities in the 

revision rate for specific implants are observed, it is usually due to a problem with the 

design or the materials. When an implant has a higher risk of revision, its use 

decreases as surgeons subsequently choose other options. The implant may then be 

removed gradually from the market by reducing the usage. 

Orthopaedic manufacturers and clinicians are constantly introducing new designs 

with a view to improving survival outcomes. The registries, which are the ultimate 

quality-assurance monitoring system, should track the results of novel implants and 

technologies. Based on the evidence [81, 91-93], many of these new-design implants 

are launched with little or no clinical evidence to support the manufacturers’ claims. 
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The complex interaction of factors is becoming more apparent over the time. 

Understanding how these factors interact and how to appropriately weigh other 

variables will help surgeons to improve patient outcomes. 

To detect an outlier prosthesis, the registries’ procedures must be transparent and 

accountable. The various arthroplasty registries differ in terms of the methods used 

for the identification. The Swedish Hip Arthroplasty Register offers survival curves for 

prosthetic devices but does not provide any specific comparisons [34, 94]. The joint 

registry of New Zealand releases tables on prosthetic results but does not identify 

outlier prostheses [40]. The National Joint Registry for England, Wales, Northern 

Ireland and the Isle of Man (NJR) has formed an outlier subcommittee to explore 

strategy and methodology for analysing data on each implant specifically that has 

been identified as requiring further examination [47]. 

On September 1, 1999, the AOANJRR began a phased installation of data 

collection and had been registered complete national data since 2002. This registry 

has created a standardised three-stage process shortly for identifying prostheses with 

a higher-than-expected revision rate [66]. Stage 1 has been in place since the 

registry's inception, stage 2 was established in 2003, and stage 3 in 2007. The method 

by which the AOANJRR identifies prostheses with higher-than-expected revision rates 

has both advantages [94] and disadvantages [95].  

Stage 1 involves a good screening test of prostheses; however, it does not take into 

account variations in revision rate over time. Because of this constraint, it is 

challenging to recognize a variance if the higher risk of revision happens later in the 

follow-up period [96]. The addition of stage 2 enabled more in-depth research of a 

variety of variables, both device- and non-device-related. Stage 3 has also proven to 

be beneficial because it expands the AOANJRR's clinical perspective. Because of the 

vast number of prostheses data submitted to the registry, it is impossible for the 

surgeons to be familiar with all of them. Surgeons involved in stage 3 have a sound 

knowledge of several of the devices and can add more detail to the registry's findings. 

This increases the Annual Report's transparency and accountability by assuring peer 

assessment of the data from a leading arthroplasty organisation. 

 

 



1.10   Summary 

Hip replacement surgery is still one of the most effective and reliable surgical 

procedures. Millions of patients with significant hip pain and functional limitations have 

subsequently been able to recover a much-improved quality of life. Implant material 

and design, surgical technique, and perioperative treatment have all improved. Most 

patients can expect their prostheses to last more than 20 years without causing issues. 

There are continued challenges that include improving implant function for active 

young patients, guaranteeing the safe introduction of novel implants, and developing 

techniques for the early detection of OA and control of its progression. The most 

significant advancements in modern total hip producers have been made by increasing 

the usage of only those devices that contain modern bearings.  

Knee replacement surgery is a well-established procedure with a high rate of 

successful treatment outcomes and long-term implant survival. However, a 

percentage of patients continue to experience poor outcomes, and tackling this 

problem is a key challenge for improving treatment, especially in regard to the growing 

number of younger patients undergoing surgery. Because incremental changes in 

implant design have not significantly improved patient outcomes, more research is 

needed to optimise the performance of surgery based on unique patient 

characteristics.  

Joint registries help progress the understanding of patient-reported knee 

replacement outcomes, but it still needs to be refined. National registries are helping 

us learn more about joint arthroplasty, and new analysis approaches must be used to 

derive the most information from the collected data. As with many medical fields, new 

technology is rapidly evolving in joint replacement, which may assist clinicians in the 

future to choose devices based on unique safety criteria for each specific patient. 

Innovative assessment approaches, including more randomised controlled trials and 

adaptable designs, are required prior to introducing new devices. 

For many years, JRs have assessed outcomes after hip and knee replacement 

surgery. The established methodology estimates the time before a revision operation 

is required to identify poor-performing implants. Nevertheless, novel statistical 

methodologies such as machine learning algorithms can be suggested for future works 

using big data from JRs. Recent outcomes according to patient-reported data have 
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also enabled the community to better evaluate functional results. A combination of 

revision and patient-reported measures as the endpoints could be a more practical 

indicator of the success or otherwise of an implant. The value of the registry data could 

be enhanced by conducting registry-based randomised controlled trials and improving 

the quality of research studies. Registered evidence can also directly contribute to 

healthcare delivery, as seen in Australia, where the AOANJRR reports are utilised 

routinely in individual consulting evaluations and hospital-level feedback. 

  



  

 

 

 

 

 

Chapter 2. Literature Review on Supervised Machine 

Learning in Hip and Knee Replacements 
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2.1    Overview 

Prediction models are being increasingly used in the medical field to identify risk 

factors and possible outcomes. Some of these are presently being used to develop 

guidelines for improving clinical practice. The application of Machine Learning (ML), 

comprising a powerful set of computational tools for analysing data, has been clearly 

expanding in the role of predictive modelling. This chapter reviews the latest 

developments of supervised ML techniques that have been used to analyse data 

related to post-operative total hip and knee replacements. The aim was to review the 

most recent findings of relevant published studies by outlining the methodologies 

employed (most-widely used supervised ML techniques), data sources, domains, 

limitations of predictive analytics and the quality of predictions.  

Machine Learning (ML) provides systems the ability to produce mathematical 

models by learning patterns from empirical data. In medical research, ML is mostly 

used to extract information regarding diagnosis and treatment patterns. Examples 

include data-driven predictions of drug effects and interactions, the detection of 

comorbidity groups in autism spectrum disorders [97], and the identification of type 2 

diabetes subgroups [98].  

The most widely used ML approach in medical sciences is supervised learning. This 

technique estimates the mapping function for new input data in order to predict 

categorised, real values, or time-to-event outputs. Examples of supervised ML 

algorithms in orthopaedics include Linear Regression and similar techniques, Decision 

Trees (DTs), Random Forests (RFs), Neural Networks (NNs), Naive Bayes, Support 

Vector Machines (SVMs) and Nearest Neighbors [99].  

ML technology is relatively new to the field of orthopaedic surgery. Recent 

applications of ML technology include the development of image-based diagnoses 

[100-102] and the improvement of value-based care [103-106]. Gait analysis 

algorithms may be used to notice early warning indications of revision arthroplasty, 

such as undiagnosed infection or instability [107]. Kotti et al. [102] used RF-based 

modelling to detect osteoarthritis (OA) through gait analysis, reporting a mean 

accuracy of 72% in 47 patients with this disease. In the area of value-based payment 

models, Navarro et al. [104] evaluated applying a Naïve Bayesian model to assess 

patient-level factors and forecast value metrics prior to the total knee arthroplasty 



episode of care. Similarly, Ramkumar et al. [103] explored the use of a Naïve Bayesian 

classifier in primary total hip arthroplasty, and found an excellent predictive capacity 

with respect to costs and hospital length of stay (LOS).  

ML is increasingly used in the medical sciences because it offers alternative 

approaches to address the probability of confounding, particularly in high-dimensional 

datasets. For instance, Kaplan-Meier is a common statistical method that uses lifetime 

data to estimate the survival function of primary Total Hip Replacement (THR) and 

Total Knee Replacement (TKR) implants [79, 108-115]. However, an ideal method 

uses a time-to-event endpoint though reducing the confounding effect of other 

variables. 

There are a number of important questions that need to be addressed given the 

recent advances and increasing use of supervised learning methods in various 

medical areas, including orthopaedics. These comprise: What are the main 

justifications for using supervised ML methods and their effectiveness in assisting with 

the THR and TKR procedures? Are the ML results affected by data volume and data 

quality?  

The aim of this chapter was to address these questions by reviewing the use of 

supervised ML techniques in regression, classification and survival problems 

associated with the post-operative outcomes of THR and TKR. The different types of 

ML techniques (including RF, SVM, Naive Bayes, and Deep Learning) were reviewed, 

focusing on the data source, domains, limitations, and quality of outcomes reported in 

the literature. 

2.2    Method (Literature search and selection criteria)  

For this review, the English-based literature was searched online, including 

PubMed search engine and Scopus Elsevier databases using various key terms: 

supervised learning, machine learning, hip replacement, knee replacement, predictive, 

and data. A comprehensive search was conducted across these databases for the 

period of each database inception to the end of 2019. Only articles and their 

corresponding references reporting studies that utilised supervised ML techniques 

were reviewed for inclusion. Non-peer-reviewed studies, non-English language 

studies, unpublished manuscripts were excluded. The studies using unsupervised (or 



 __________________________________________________________ Literature Review – Machine Learning 

21 
 

semi-supervised) ML learning approaches, or employing learning methods to train 

unreal data, or with a focus on pre-operative outcomes of THR and TKR were not 

considered. Titles and abstracts of the remaining articles were then carefully screened.  

2.3    Random Forest (RF) 

The RF is a tree-based ensemble learning method widely used to predict an 

outcome or rank and select the most significant variables. Cafri et al. [116] defined the 

time to first revision in elective primary THR as the outcome in order to compare two 

ML techniques (elastic-net VS. random survival forest) with the principal aim of 

assessing their performance in identifying recalled components. The concept of 

training an ML model to identify significant features differs from predicting the survival 

probability of components. The authors used 348 unique components as indicator 

variables in addition to patient covariates, which were all categorised and treated as 

potential confounders to detect the components based on the statistical significance. 

Two of the six recalled components (ASR shell/head and Rejuvenate) with P<0.001 

and minimal depth rank of 1 and 2 in the RF model, were identified in both approaches. 

However, one more component (Durom shell/Metasul femoral head) was also picked 

by the regularized Cox model, even while maintaining the false discovery rate at .05. 

The results suggested that the ML methods can be effective for detection, although 

the Cox technique with a more traditional way to address confounding performed more 

effectively [116].  

Gabriel et al. [117] trained predictive models using RF, ridge and lasso regression, 

and multivariable logistic regression to determine those patients who would not need 

prolonged hospital LOS after THR. The discriminatory ability was reported as 0.735 

(95% confidence interval, 0.675–0.787) using the area under the receiver operating 

characteristic curve (AUC) for multivariable logistic regression (the best-fit algorithm). 

Also, 'P=0.37>.05' was obtained as fitting goodness by the Hosmer–Lemeshow test. 

Nine variables - age, sex, anaemia, opioid use, obesity, metabolic equivalents score, 

chronic obstructive pulmonary disease, primary anaesthesia type, and hypertension - 

were included in the proposed calculator. The authors stated that this model might 

assist clinicians in the strategic planning of bed availability to reduce both 

overcrowding and underutilisation [117]. However, this sort of single-institution studies 



needs to add external validations and use larger sample sizes before reporting big 

statements.  

Prediction of patient-reported outcomes (130,945 observations ) by eight 

supervised binary classifiers (logistic regression, extreme gradient boosting, multistep 

adaptive elastic-net, RF, neural net, Naïve Bayes, k-Nearest Neighbors and boosted 

logistic regression) was the aim of a study on THR and TKR [118]. The generic and 

disease-specific improvement was considered as the dependent outcome based on 

the Oxford Hip and Knee Score (Q score) and the EQ-5D-3L visual analogue scale 

(VAS). Results showed that RF, extreme gradient boosting, linear model, and 

multistep elastic net had the highest overall J-statistic (as a statistic that shows 

diagnostic tests' performance). The AUC of the best-fit models was reported as around 

0.86 (VAS) and 0.70 (Q score) for knee replacements, and 0.87 (VAS) and 0.78 (Q 

score) for hip replacements. All these models were used to depict the most significant 

variables but some methods, such as RF with random permutations, can introduce 

bias and artificial variable selection under specific circumstances [119, 120]. If several 

significant variables were correlated, they share the importance, suggesting that the 

variable importance may be shown lower than the reality [121]. 

2.4    Support-Vector Machine (SVM) 

The SVM is a supervised ML algorithm, suitable for creating subtle patterns from 

complex datasets in both classification and regression problems. The SVM classifier 

was examined through an image-based approach for its usefulness in rating the 

corrosion damage on the THR prostheses (at the head-neck taper junction) [122]. The 

classifier was applied to capture local and textural information (as two approaches of 

object recognition); then, Goldberg's scores were given to rank the images. The 

hyperparameters were tuned to minimise the cross-validation error by Bayesian 

optimisation; the features with greater discriminatory power were selected after 

analysis of the Neighbourhood components as a supervised learning method to 

classify the multivariable dataset into separate groups. An accuracy level of 85% was 

obtained using five-fold cross-validation, whereas a limited pool of available 

prostheses made a significant limitation in terms the validity. Fontana et al. [123] 

investigated whether ML algorithms are able to predict the patients who will attain 

Minimal Clinically Important Difference in THR and TKR post-operatively. Based on 
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patient-reported outcome measures (PROMs), 6,480 TKRs and 7,239 THRs were 

selected from only a single hospital. Linear SVM, logistic LASSO, and RF were trained 

on 80% of the dataset to predict two-year minimal clinically important differences. The 

AUCs of the three ML methods varied from 0.60 to 0.89 with the best result for the 

LASSO but Theoretically these values cover a range of poor to acceptable prediction 

but the presence of high multicollinearity breaks one of the assumptions promising 

that logistic regression can produce unbiased coefficients. Although the authors noted 

that ML holds much guarantee for assisting as a clinical decision-making support 

system, it should be considered that most similar studies were only limited to small 

number of observations.  

2.5    Naïve Bayes 

Ramkumar et al. [103] aimed to develop and validate a Naïve Bayesian model using 

pre-operative primary THR data to predict LOS and patient-specific inpatient 

payments, and then recommended the use of a risk-adjusted patient-specific payment 

model that reflects patient comorbidity. The data of 122,334 primary THRs, including 

race, age, gender, and comorbidity scores, was used to train and evaluate the model 

using AUC and training accuracy. Inpatient payments were categorised as the output 

variable, and the AUC showed the validity of 0.71 and 0.87 for payment and LOS, 

respectively. Naïve Bayesian methods assume conditional independence which, 

however, fail to identify confounding variables. The validation of the developed model 

required that, first, an initial viability be established before proceeding with the 

resource-intensive task of developing other available models. This may mean that the 

other ML methods such as deep learning can create a more accurate model [124, 

125]. SVM and NNs algorithms can take into account confounding relationships 

among the variables and may create better machine automation [125].  

2.6    Deep Learning 

There are several major differences between deep learning and other ML methods 

[126]. Deep learning is a subset of machine learning that reproduces the mechanisms 

of the human brain in learning from big data and generating patterns for decision 

makings. Deep learning techniques have become popular in research studies since 

they can automatically perform the raw data engineering by finding the optimal inner 

representation, which is necessary for the discriminative (mapping) task. Deep 



learning methods are often mysterious because of their black-box nature, which is 

often the main source of concern in medical applications [127]. However, they can 

analyse data efficiently and can capture the more complex structure of big datasets 

for THR and TKR despite computational complexity [128]. For instance, in a recent 

study, Qiu et al. [129] used a large commercial claims dataset to identify patients with 

a strong likelihood of requiring TKR and THR surgeries. Supervised ML methods (RF, 

LASSO, Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)) 

were investigated using 540,000 observations of patient data and 2,000 variables. The 

deep learning methods showed much better performance than LASSO, RF, and 

RNN (a common type of ANN in the medical area [130, 131]) with a pooling 

mechanism that recorded the best accuracy using different metrics: 0.8339 ± 0.0024 

as AUC and 0.0662 ± 0.0008 for precision with recall set to 0.9. As a function to reduce 

the number of parameters and computation in the network, the applied pooling 

mechanism positively influenced the performance by detecting the additional signals 

from the hidden intermediate states.  

2.7    Other Machine Learning Methods Used in THR and TKR 

In one of the first studies to develop a pre-operative algorithm for predicting post-

operative opioid use after THR [132], five ML algorithms (stochastic gradient boosting, 

RF, SVM, NNs, elastic-net penalized logistic regression) were developed. The elastic-

net penalized logistic regression attained the best performing method for calibration, 

discrimination (C-statistic = 0.77), and decision curve analysis; whereas, the NNs and 

stochastic gradient boosting models recorded the same AUC (0.77) with elastic-net 

penalized logistic regression. 

Predictive risk models were developed and validated in another study [133] to 

forecast the risk of death and major complications after THR and TKR. This involved 

70,569 observations of OA patients who received primary THR and TKR and the 

highest C-statistics and bootstrapped confidence intervals (CIs) were reported for 30-

day mortality (0.73; 0.66-0.79) and cardiac complications (0.75; 0.71-0.79) based on 

the cross-validation of the boosted regression models. The lowest values were also 

reported for returns to the operating room (0.60; 0.57-0.63), and for deep vein 

thrombosis (0.59; 0.55-0.64).  
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A similar study to predict the risk of complications and 30-day mortality after TKR 

and THR trained LASSO regression models on 107,792 data, including clinical inputs 

and pre-operative demographic variables. The results demonstrated an acceptable 

prediction accuracy for death (0.73; 95% CI, 0.70-0.76), a renal complication (C-

statistic, 0.78; 95% CI, 0.76-0.80), and a cardiac complication (0.73; 95% CI, 0.71-

0.75) within 30 days of arthroplasty, although poor accuracy was reported for venous 

thromboembolism (C-statistic, 0.61; 95% CI, 0.60-0.62). Importantly, it was suggested 

that these are the most accurate and validated prediction models; however, the 

models performed poorly in terms of external validation (prediction of outcomes from 

another dataset) [134].  

Given the effect of THR on health-related quality of life (HRQoL), Nemes et al. [135] 

suggested a clinical decision support system (DSS) using Swedish joint registry data 

to help clinicians evaluate the future profits of THR by providing predictions of 1‐year 

post-operative HRQoL. Three groups of supervised ML algorithms were used: (1) 

linear regression and its variants, (2) nonlinear regression algorithms, and (3) 

classification trees and rule‐based models. The multivariate adaptive regression 

splines (R2 = 0.158) were shown to have the best predictive capability. However, it 

was not significantly better than the developed linear regression model (R2 = 0.157). 

Although eleven patient-related predictors were considered, more variables need to 

be analysed as predictors to construct a comprehensive and successful DSS. There 

is no set criterion on a good R2 value as it may increase by adding even non-important 

predictors in a multivariate model; it is often preferred to compare the performance of 

models with the same variables [136].  

To predict patients' pain and function levels after undergoing TKR, 1,649 patient-

reported data in the UK were studied with the aim of training and validating a 

supervised ML model. Clinical factors and patient characteristics were used as pre-

operative inputs to predict the Oxford Knee Score (OKS) after 12-months of TKR. This 

prediction model provided an individualised estimation of post-operative OKS, and 

also changes in OKS. The bootstrap backward linear regression showed predictive 

validity with R2 of 0.175 (internal validation) and 0.211 (external validation) [137]. 

These low values explained 17.5% and 21.1% variability in the outcome, suggesting 

that the models' generalizability is dependant on considering more potential predictive 

factors. 



2.8    Summary 

Both ML and conventional statistical methods with similarities and differences have 

made great strides in the support they can offer clinicians, although conventional 

methods have been the main statistical approach in the domain of THR and TKR to 

date. For example, the generation of risk-predictive models is a common approach 

taken for estimating the risk of an event of interest occurring in post-operative THR 

and TKR. In previous studies, most of these models have been developed using the 

conventional methods (e.g. logistic regression, Cox proportional hazards regression) 

[138, 139] rather than the more modern ML strategies. These strategies are becoming 

the main approach for addressing prediction problems across a wide range of industry 

and science domains. Although to date there has been very limited adoption of these 

strategies for the purpose of THR and TKR predictions, it is anticipated that more 

studies will be published on ML predictive models for THR and TKR.  

One misconception is that conventional statistical methods rely on predetermined 

assumptions and mathematical equations to formalise relations between the variables, 

whereas ML techniques use the data to recognize these relationships [140]. The key 

benefit of ML methods over conventional statistical methods is the ability to link a large 

amount of data and variables together and capture complex non-linear relationships. 

ML, as a useful and powerful set of computational tools, is now a common choice for 

the development of predictive models in the medical community [141-143]. The 

successful adoption of several Electronic Medical Record (EMR) systems developed 

for various purposes (prognosis, diagnosis, or treatment) have been noted in several 

studies [144, 145]. Greatly improved subsets of ML models, known as ANNs, have 

been notable in total joint replacement contexts because of a great potential for 

processing "big data" [146]. 

2.9    Limitations of ML and Potential for Future Research 

ML has proved its undeniable capability, although it is not free of issues. The 

accuracy of predictive models is dependent on the quality of the data sources, and 

predictions may be significantly affected by the amount of data and the number of 

variables included. Therefore, care should be taken when dealing with limited data, as 

it is not advisable to report that these models are reliable with acceptable accuracy 

levels. Furthermore, ML models should be assessed and evaluated using a 
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randomised cohort of studies and controlled trials in real-world settings. Hence, more 

improvements are needed in ML orthopaedic applications to translate the research 

aims into clinical practices.  

It is essential to understand the difference between two different types of studies 

with a focus on the impact of variables on the outcome or predicting outcomes for a 

separate data. While ML has the potential to offer more accurate predictions, this can 

cost a poorer understanding of the relationships among the variables. The output of 

ML models needs to be interpreted carefully, and the expectations of predictive 

analytics can be raised with a consciousness of the matters associated with 

misinterpretation and over-fitting in clinical settings. 

To date, multivariable predictive models have been developed for THR and TKR 

based mainly on patient-reported factors and imaging variables. The literature shows 

that ML adoption for post-operative THR and TKR is still in the basic phase with only 

a few studies confirming that the models are entirely available for a THR or TKR 

practice. This suggests future research opportunities for studies on the post-operative 

clinical outcomes of THR and TKR. There is still a need for models that can predict 

various outcomes such as the early identification of prostheses outliers based on the 

available big data from the national joint registries around the world. Perhaps, this 

indicates that now is the time to enter a new era of THR and TKR by developing 

decision-making support systems comprising effective predictors based on big data. 

A future global direction of ML in the domain of joint arthroplasty could be to enable 

surgeons to determine what is the best for their patients. 

2.10    Research Gap and Objectives 

Because changes occur in the design and performance of devices over time, the 

first aim of this study was to identify more specific and relevant comparator groups in 

order to better reflect contemporary surgical practice in primary total hip and knee 

communities. Ideally, the early identification of outliers needs a time-to-event outcome 

while limiting the confounding effects of patient characteristics and device 

components. Given that ML is one approach that allows us to consider many variables 

simultaneously to reduce the impact of confounding, this research then compared the 

effectiveness of using either Random Survival Forest (RSF) or 



regularized/unregularized Cox with control for patient and associated device 

confounding according to current standard techniques.  

  



  

 

 

 

 

 

Chapter 3. The Most Appropriate Comparator in 

Assessing the Performance of Hip Prostheses 

  



3.1    Overview 

For end-stage hip osteoarthritis (OA), total hip replacement (THR) is the surgical 

procedure [3, 147]. Even though joint replacement is an effective surgical procedure 

with high success rates, concerns continue to exist with respect to variation in 

prosthesis performance. In particular, prostheses introduced to the market are 

consequently shown to have a higher than anticipated revision rate (HTARR). Recent 

data show that the outcomes of THR have improved over time but suboptimal results 

due to less than satisfactory implant performance do still occur [5]. An important role 

for joint replacement registries is to monitor the comparative performance of implants 

to identify factors that are associated with higher rates of revision.  

Registries record detailed information on procedures performed as well as patient 

outcomes [5, 47, 148-150]. They are also able to deliver population-based data on the 

comparative result within a community. Outcome data on the revision rate of individual 

devices are essential to allow an evidence-based method for prosthesis selection. 

Analyses of registry data have found that the majority of the prostheses currently in 

use have satisfactory outcomes [66, 151]. However, a number of prostheses have 

been identified as having a rate of revision that is much higher than other prostheses 

within the same class. The Australian Orthopaedic Association National Joint 

Replacement Registry (AOANJRR) registry detects these as “prostheses with a higher 

than anticipated rate of revision”, or outliers [5].  

The AOANJRR has developed a standardised multi-stage approach for detecting 

outliers, which includes a preliminary test based on a comparison of the revision rate 

of an individual prosthesis with the comparator group, defined as all other prostheses 

in the same procedure class. This is done by comparing the revision rates of individual 

prostheses to all other prostheses in that class, with the exception of large head metal-

on-metal (LHMOM) prostheses. The entire class of LHMOM devices has been 

previously identified as having a significantly higher risk of revision. The purpose of 

this activity is the early identification of those devices that are not performing to 

standard. The identification of outlier devices assists surgeon prosthesis selection, 

improves patient outcomes, and reduces healthcare costs [152]. 

The current comparator used by the AOANJRR has some significant limitations as 

non-routine procedures reflected by the use of complex prostheses are not excluded. 
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Prostheses parts or bearing surfaces that are known to be associated with higher 

revision rates are currently included. High-risk prostheses such as modular-neck 

stems or prostheses used for specific purposes (including constrained, dual mobility, 

and head size smaller than 28 mm) are still considered in the current comparator [153-

155]. In addition, improvements have been made in the design, manufacture and 

performance of many devices over time. As a consequence, the comparator does not 

adequately reflect contemporary practices and is likely to overestimate the revision 

rate [5]. The aim of this study was to assess a number of different comparator options 

to provide a more relevant standard for evaluating the comparative performance of 

new devices.  

3.2    Materials and Methods 

The study period was from the first year that the AOANJRR collected THR data 

from all Australian hospitals (January 2003) to the closure of the dataset at the end of 

December 2019. The study population included all patients undergoing a primary total 

conventional hip replacement performed for primary osteoarthritis (OA). This selection 

initially included 413,417 procedures. A number of specific exclusions were then 

undertaken to assess the impact on the cumulative percent revision of the different 

comparator groups. The first exclusion was LHMOM, followed by other non-modern 

bearing surfaces (defined as all the bearing couples except metal or ceramic heads 

on cross-linked polyethylene and mixed ceramic-on-ceramic), and then devices with 

modular neck-stem design or used for specific purposes (including constrained, dual 

mobility, and head size smaller than 28 mm). Lastly, all remaining HTARR prostheses 

previously identified by the multi-stage standardised approach were excluded (see 

Figure 3.1). Further analyses were also conducted to study the changes in the most 

common types of revision and reasons for revision, and the AOANJRR standard was 

employed to determine the impact of modified comparator on the number of identified 

outliers. A comparative analysis of revision rates between the final modified 

comparator group and the current was conducted in regards to studying the effect of 

fixation options and bearing couples. This was done by undertaking the 1st stage of 

the AOANJRR standardised approach. The number of procedures and revisions for 

each study population reported each year to the registry was also detailed. 



 
Figure 3. 1. Flow chart showing stages of exclusion criteria and study populations. 

 (Note. The AOANJRR currently uses Comparator II for initial screening of prostheses.) 

Apart from the first exclusion to generate the current comparator, all non-modern 

bearing surfaces were excluded because they account for less than 4% of primary 

THR procedures performed in 2019 [5]. Devices with modular neck-stem design or 

used for specific purposes were also excluded for different reasons. These 

components can rarely dissociate and break each other due to corrosion and wear at 

the modular junction [154, 155]. Dual mobility and constrained acetabular prostheses 

are used more frequently for patients with a higher risk of dislocation [156]. Head sizes 

28 or less have a higher revision rate for dislocation and are used uncommonly in 

standard modern total hip [153, 157]. The remaining prostheses previously identified 

as having HTARR by the AOANJRR were also excluded because of the higher 

revision rate. The research was conducted according to the ethical principles of the 

Helsinki Declaration II. The Southern Adelaide Clinical Human Research Ethics 

Committee has also provided ethics approval for this study (No. 485.13). 

3.3    Statistical Method 

The time to first revision surgery is the outcome, and the first revision was defined 

as replacing, removing or adding the previous hip replacements (including one or more 

of the prosthetic components). Death was treated as a censored case with survival 
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time based on the time those cases exited the study sample. Patients with no revision 

or death had survival times based on the time elapsed between their initial implantation 

date and the end of the follow‐up period. Five comparator groups, the study 

populations (Figure 3.1), all in primary conventional THR performed for OA were 

studied using Kaplan-Meier (KM) survival analysis [5]. The unadjusted cumulative 

percentage revision (CPR) was calculated after the primary surgery, with an 

accompanying 95% confidence interval (CI) using unadjusted pointwise Greenwood 

estimates. Since each study population is defined as a subset after the exclusion, 

statistical comparisons of revision rates were not undertaken with Hazard Ratios 

(HRs). However, given the significant role of bearing surface on the survivorship of 

comparator, revision rates of the prostheses with non-modern against modern 

bearings were compared for the entire period using Cox proportional-hazards model 

when adjusting for age and sex. The cumulative incidence of reasons for revisions 

was analysed to look at the risk of most common reasons for the current and the 

modified comparator groups. A descriptive analysis was also performed comparatively 

with a view to studying the most common types of revisions. Finally, the effectiveness 

of the modified comparator was evaluated based on the ability to detect additional 

individual prostheses by performing the first two stages of the AOANJRR standard. 

This is done by comparing the revision rate of individual prostheses to twice the 

average revision rate of all other prostheses that belong to the same broad device 

class. In addition, the impact of confounding factors is examined by calculating age- 

and gender-adjusted HRs to check if there is a significant difference compared to the 

combined HR of the comparator group. The revision rate per 100 component years 

was calculated for each study population by fixation options, bearing couples, and the 

yearly number of procedures/revisions. The statistical analysis was performed using 

R software [158], including the packages Survival [159] version 3.2-11 and Survminer 

[160] version 0.4.9.  

3.4    Results 

Results shown in Figure 3.2 present the CPR among the comparator groups 

showing the proportion revised over the years. The CPR at 10 years for the current 

comparator was 4.93% (95% CI, 4.84–5.02), and the subsequent exclusions 

progressively reduced the CPR rate. The curve for Comparator V showed the lowest 

10-year CPR of 4.30% (95% CI, 4.20–4.41). However, there was no significant 



difference in the 10-year CPR compared to Comparator IV 4.40% (95% CI, 4.30–4.50). 

The selection of modern bearings resulted in the greatest reduction in the comparators 

from CPR of 6.06% to 4.51% at 10 years (Table 3.1).  

 
Figure 3. 2. CPR of the study populations over the study period.  

Table 3. 1. Yearly CPR of the study populations. 

Given the substantial effect of excluding non-modern bearings (1st and 2nd 

exclusions) on the CPR of all primary THR, the risk of revision was compared by the 

type of bearing surfaces. Figure 3.3 illustrates a significantly higher rate of revision for 

the non-modern compared to the modern bearing surfaces (HR, 2.00 [95% CI, 1.94 to 

2.06], p < 0.001).  

CPR N Revised N Total 1 yr 2 yrs 3 yrs 4 yrs 

All THR 17,888 413,417 1.64 (1.60, 1.68) 2.16 (2.12, 2.21) 2.62 (2.57, 2.67) 3.07 (3.01, 3.13) 

Comparator II 14,549 399,262 1.64 (1.60, 1.68) 2.12 (2.07, 2.16) 2.48 (2.43, 2.53) 2.80  (2.75, 2.86) 

Comparator III 10,659 339,657 1.64 (1.60, 1.68) 2.08 (2.03, 2.13) 2.42 (2.37, 2.47) 2.71 (2.65, 2.77) 

Comparator IV 9,955 324,854 1.62 (15.70, 166) 2.05 (2.00, 2.10) 2.38 (2.33, 2.44) 2.66 (2.60, 2.72) 

Comparator V 8,992 299,761 1.54 (1.50, 1.58) 1.96 (1.91, 2.01) 2.29 (2.23, 2.35) 2.56 (2.50, 2.63) 

 5 yr 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

All THR 3.54 (3.48, 3.60) 4.05 (3.98, 4.12) 4.54(4.47, 4.62) 5.01 (4.93, 5.09) 5.54 (5.45, 5.63) 6.06 (5.96, 6.16) 

Comparator II 3.13 (3.07, 3.18) 3.46 (3.40, 3.52) 3.81 (3.74, 3.88) 4.14 (4.07, 4.22) 4.54 (4.45, 4.62) 4.93 (4.84, 5.02) 

Comparator III 3.00 (2.93, 3.06) 3.28 (3.22, 3.35) 3.60 (3.52, 3.67) 3.88 (3.79, 3.96) 4.20 (4.11, 4.29) 4.51 (4.41,4.61) 

Comparator IV 2.93 (2.87, 3.00) 3.20 (3.13, 3.27) 3.51 (3.43, 3.58) 3.78 (3.69, 3.86) 4.09 (4.00, 4.18) 4.40 (4.30,4.50) 

Comparator V 2.84 (2.77, 2.90) 3.11 (3.04, 3.18) 3.41 (3.33, 3.48) 3.68 (3.59, 3.76) 3.99 (3.90, 4.09) 4.30 (4.2, 4.41) 

 11 yr 12 yrs 13 yrs 14 yrs 15 yrs 16 yrs 

All THR 6.64 (6.53, 6.75) 7.22 (7.09, 7.35) 7.81 (7.67, 7.96) 8.36 (8.20, 8.53) 8.88 (8.69, 9.07) 9.61 (9.37, 9.85) 

Comparator II 5.38 (5.27, 5.48) 5.86 (5.74, 5.97) 6.37 (6.24, 6.51) 6.87 (6.71, 7.02) 7.38 (7.20, 7.56) 8.10 (7.86, 8.33) 

Comparator III 4.81 (4.70, 4.93) 5.14 (5.01, 5.27) 5.52 (5.37, 5.67) 5.85 (5.67, 6.02) 6.20 (5.98, 6.41) 6.65 (6.37, 6.93) 

Comparator IV 4.71 (4.59, 4.82) 5.02 (4.89, 5.15) 5.39 (5.23, 5.54) 5.69 (5.51, 5.87) 6.02 (5.80, 6.24) 6.49 (6.19, 6.78) 

Comparator V 4.60 (4.49, 4.72) 4.90 (4.77, 5.04) 5.26 (5.10, 5.42) 5.57 (5.38, 5.75) 5.91 (5.69, 6.13) 6.38 (6.08, 6.68) 
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Figure 3. 3. CPR of primary conventional THR by the type of bearing surface. 

Table 3.2 demonstrates the additional prostheses identified by the standard using 

Comparator V. The revision rates per 100 component years of these individual devices 

exceeded twice that of all other total conventional hip prostheses. In addition, there 

are significant differences in HRs of the identified devices with the comparator V over 

the entire period. The AOANJRR standard detected 13 additional device components 

utilizing the modified comparator, including six femoral stems and seven acetabular 

components with at least 10 number of observations. 

 

 

 

 

 

 

 

 

 

 



Table 3. 2. Additional device components identified utilizing the Comparator V. 

 Descriptive information 1st stage 2nd stage Comparator 

Acetabular 

cup 

N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years 

HR - adjusted for 

age and gender, P-

value 

Current (II) V 

Device I 38 384 3194.5 1.19 (0.84, 1.63) 
2.53 (1.84, 3.49) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device II 10 76 859.7 1.16 (0.56, 2.14) 
2.72 (1.46, 5.07) 

P=0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device III 43 712 3640.1 1.18 (0.85, 1.59) 
2.12 (1.57, 2.86) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device IV 61 453 5266.2 1.16 (0.89, 1.49) 
2.67 (2.07, 3.44) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device V 163 7006 14786.1 1.10 (0.94, 1.28) 
1.23 (1.05, 1.44) 

P=0.008 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device VI 72 509 6104.2 1.18 (0.92, 1.48) 
2.75 (2.18, 3.48) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Femoral 

stem 

N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years 

HR - adjusted for 

age and gender, P-

value 

Current (II) V 

Device VII 21 184 1904.2 1.10 (0.68, 1.68) 
2.47 (1.61, 3.80) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device VIII 13 99 1184.7 1.10 (0.58, 1.88) 
2.53 (1.47, 4.36) 

P=0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device IX 36 344 3207.3 1.12 (0.79, 1.55) 
2.51 (1.81, 3.48) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device X 46 417 3978 1.16 (0.85, 1.54) 
2.55 (1.91, 3.41) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device XI 11 72 956.6 1.15 (0.57, 2.06) 
2.68 (1.48, 4.85) 

P=0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device XII 71 2232 6493.5 1.09 (0.85, 1.38) 
1.52 (1.20, 1.92) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

Device XIII 36 346 3136 1.15 (0.80, 1.59) 
2.50 (1.80, 3.47) 

p<0.001 
0.6 (0.59, 0.61) 0.54 (0.53, 0.55) 

One of the main aims of this chapter was to report the additional individual components 

aligned with the current assessment of the registry in order to improve the “capture” 

rate of under-performing prostheses within the community. Hence, the same criteria 

were used for the screening test to identify prostheses with higher-than-expected 

revision rates than the final modified comparator (Comparator V). The criteria include: 

(1) The revision rate (per 100 component years) exceeds twice that of Comparator V; 

(2) The inclusion of the component requires at least ten primary procedures, and there 

have been at least two revisions; and (3) The hazard ratio of that particular prosthesis 

-compared to all other prostheses in the same class combined- is statistically 

significant through examining the impact of specific confounders (e.g. age and gender) 

using Cox regression models, which are known to influence implant survival and the 

learning curve. If an individual prosthesis was detected with at least ten procedures 

and two revisions using the modified comparator, and if the difference in HRs was also 

statistically significant, the outlier prosthesis was then listed in Table 3.2. 
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3.4.1    Reason for Revision and Type of Revision 

Figure 3.4 details the cumulative incidence of the most common revision reasons 

for Comparator V. Figure 3.5 shows a comparative graph that provides the cumulative 

incidence of the same revision causes for the current comparator. The 10-year 

cumulative incidence with 95% CI of fracture for comparator V was 1.05% (1.0, 1.11), 

marginally lower than 1.10% (1.05, 1.15) for the current comparator. All the other 

common reasons for revision followed a similar pattern although the risk of revision 

due to loosening showed the most significant variation from 1.22% (1.17, 1.27) to 

0.99% (0.93, 1.04) at 10 years. In the short term, early infection is the most probable 

for both study populations: 0.39% for comparator V and 0.38% for the current 

comparator at 6 months. Late loosening, as a major cause of failure in the current 

comparator, could be associated with the wear of hip arthroplasty components. 

 
Figure 3. 4. Cumulative incidence of most common revision diagnosis for comparator V. 

 
Figure 3. 5. Cumulative incidence of most common revision diagnosis for comparator II. 

The results for types of revision (Table 3.3) show that the femoral component is the 

most common major revised for both comparator V with 35.99% (acetabular 

component: 17.74%, THR (Femoral/Acetabular): 9.17%, and cement spacer: 4.57%) 

and the current comparator with 34.28% (acetabular component: 19.93%, THR: 



11.28%, and cement spacer: 4.29%). In addition, ‘head/insert’ had the highest 

percentages in the list of minor revised components followed by ‘head only’. 

Table 3. 3. Comparator V VS current comparator - Type of revision (follow-up limited to 17 years). 

 Comparator V Current comparator (II) 

Type of Revision Number 
% Primaries 

Revised 

% 

Revisions 
Number 

% Primaries 

Revised 
% Revisions 

Femoral Component 3236 1.08 35.99 4988 1.25 34.28 

Acetabular Component 1595 0.53 17.74 2900 0.73 19.93 

THR (Femoral/Acetabular) 825 0.27 9.17 1641 0.41 11.28 

Cement Spacer 411 0.14 4.57 625 1.16 4.29 

Removal of Prostheses 51 0.02 0.57 84 0.02 0.58 

Reinsertion of Components 14 0.00 0.15 15 0.00 0.10 

Total Femoral 1 0.00 0.01 2 0.00 0.01 

Bipolar Head and Femoral 1 0.00 0.01 1 0.00 0.01 

Saddle - - - 1 0.00 0.01 

N Major 6134 2.05 68.22 10257 2.57 70.50 

Head/Insert 2098 0.70 23.33 3022 0.76 20.77 

Head Only 479 0.16 5.33 733 0.18 5.04 

Minor Components 174 0.06 1.93 266 0.07 1.83 

Insert Only 105 0.03 1.17 147 0.04 1.01 

Bipolar Only 2 0.00 0.02 3 0.00 0.02 

Head/Neck/Insert - - - 68 0.02 0.47 

Head/Neck - - - 46 0.01 0.32 

Neck Only - - - 5 0.00 0.03 

Cement Only - - - 1 0.00 0.01 

Neck/Insert - - - 1 0.00 0.01 

N Minor 2858 0.95 31.78 4292 1.07 29.50 

N Revision 8,992 3.0 100.00 14,549 3.64 100.00 

N Primary 299,761   399,262   

Note. % Primaries Revised: The proportional contribution as a percentage of all primary procedures.  

% Revisions: The number of revisions as a percentage of the total number of revisions. 

3.4.2    Revision Rates of Comparator Groups by Fixation 

Revision rates of comparators II and V by fixation were analysed (Table 3.4) as 

some prostheses have more than one option for fixation. For example, a prosthesis 

with a recommendation to use cemented fixation may be utilised as cementless or 

vice-versa. Hybrid (femur cementless) has the highest rate of revision with a minimum 

number of observations followed by Cementless fixation for Comparator V and 

cemented for the current comparator. The best-performing fixation was Hybrid (Femur 

Cemented) for the final modified and the current comparator groups. 

Table 3. 4. Revision rates of total hip comparator groups by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

Comparator V  

Cemented 182 6369 32631.5 0.56 (0.48, 0.64) 

Cementless 6061 189646 1031506 0.59 (0.57, 0.60) 

Hybrid (Femur Cemented) 2735 103534 586768.4 0.47 (0.45, 0.48) 

Hybrid (Femur Cementless) 14 212 1036.8 1.35 (0.74, 2.26) 

Current comparator  

Cemented 978 19466 32810.7 2.98 (2.80, 3.17) 

Cementless 12658 263025 1106007 1.14 (1.12, 1.16) 

Hybrid (Femur Cemented) 4191 130286 619730.3 0.68 (0.66, 0.70) 

Hybrid (Femur Cementless) 61 640 1126.8 5.41 (4.14, 6.95) 
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3.4.3    Revision Rates of Comparator Groups by Bearing 

Surface 

Table 3.5 shows revision rates for the comparator groups according to bearing 

surface, with a view of reporting variations in the outcomes of surface material 

combinations. The highest revision rates for non-modern bearing surfaces were for 

metal-on-metal (2.03% (1.97, 2.10)) and ceramicised metal combined with non-XLPE 

(1.59% (1.18, 2.10)). There are higher revision rates for ceramic and metal femoral 

heads combined with antioxidant XLPE within the group of modern bearings. Overall, 

modern surfaces indicate a lower risk of revision than non-modern bearing couples. 

Table 3. 5. Revision rates of total hip comparator groups by Bearing Surface. 

Bearing surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

Comparator V  

Ceramic/Ceramic 1523 55023 294751 0.52 (0.49, 0.54) 

Ceramic/Metal - - - - 

Ceramic/Non XLPE - - - - 

Ceramic/XLPE 1792 66476 297170.8 0.60 (0.57, 0.63) 

Ceramic/XLPE + Antioxidant 199 10377 26188.2 0.76 (0.66, 0.87) 

Ceramicised Metal/Ceramic - - - - 

Ceramicised Metal/Non XLPE - - - - 

Ceramicised Metal/XLPE 706 24854 143470 0.49 (0.46, 0.53) 

Ceramicised Metal/XLPE + Antioxidant 5 234 1510.5 0.33 (0.11, 0.77) 

Metal/Ceramic - - - - 

Metal/Metal - - - - 

Metal/Non XLPE - - - - 

Metal/XLPE 4677 139376 876764.2 0.53 (0.52, 0.55) 

Metal/XLPE + Antioxidant 90 3421 12087.9 0.74 (0.60, 0.91) 

Current comparator  

Ceramic/Ceramic 3512 90004 619411 0.57 (0.55, 0.59) 

Ceramic/Metal 26 299 2792.6 0.93 (0.61, 1.36) 

Ceramic/Non XLPE 321 5810 37915.4 0.85 (0.76, 0.94) 

Ceramic/XLPE 2153 75873 332247.9 0.65 (0.62, 0.67) 

Ceramic/XLPE + Antioxidant 281 14706 33889.2 0.83 (0.73, 0.93) 

Ceramicised Metal/Ceramic 0 1 10.88 0.00 (0.00, 33.90) 

Ceramicised Metal/Non XLPE 50 297 3133.2 1.59 (1.18, 2.10) 

Ceramicised Metal/XLPE 719 25083 144329 0.50 (0.46, 0.53) 

Ceramicised Metal/XLPE + Antioxidant 5 240 1530.8 0.33 (0.12, 0.76) 

Metal/Ceramic 0 7 71.66 0.00 (0.00, 5.15) 

Metal/Metal 3644 17835 179197.9 2.03 (1.97, 2.10) 

Metal/Non XLPE 1615 21969 210467.7 0.77 (0.73, 0.80) 

Metal/XLPE 5410 155329 977253.3 0.55 (0.54, 0.57) 

Metal/XLPE + Antioxidant 143 5785 16712.2 0.85 (0.72, 1.01) 

3.4.4    Number of Total and Revision by Year of Implantation  

This section details the number of procedures performed and revised each year 

(Table 3.6) to study the difference in outcomes when only modern bearing surfaces 

are selected. Note that the number revised is expected to be less for the primary 

operations performed in later years than the number revised in earlier years as they 

have had less follow-up time. The use of modern bearing designs increases due to the 

better outcomes reported by the AOANJRR annual reports. 



Table 3. 6. Number of total and revision for comparator groups by year of implantation. 

 Comparator V Current comparator (II) 

Year of implant 
N 

Total  

N 

Revised 

N 

Total  

N 

Revised 

2003 4770 256 15033 1236 

2004 6414 345 16125 1177 

2005 7351 312 16793 1267 

2006 8539 367 17408 1464 

2007 9557 399 18096 1521 

2008 11725 494 19790 1624 

2009 14162 592 21060 1318 

2010 16366 612 22565 1041 

2011 18291 671 23681 961 

2012 20164 614 24525 836 

2013 21933 670 26337 849 

2014 24130 732 28648 920 

2015 25482 678 30143 829 

2016 27174 709 31919 870 

2017 27406 621 32617 774 

2018 28130 560 33960 703 

2019 28167 360 34717 498 

3.5    Discussion 

This study aimed to explore how the rate of revision estimated for the study 

populations differs according to specific prosthesis design constructs. Time to first 

revision was estimated for 413,417 primary total conventional hip replacements 

undertaken for osteoarthritis (OA) from 1st January 2003 to 31st December 2019. 

Survivorship analyses with stepwise exclusions were undertaken. First, large head 

metal-on-metal (LHMOM) procedures were excluded, followed by other non-modern 

bearing surfaces (defined as all the bearing couples except metal or ceramic heads 

on cross-linked polyethylene and mixed ceramic-on-ceramic), and then devices with 

modular neck-stem design or those used for specific purposes (including constrained, 

dual mobility, and head size smaller than 28 mm). Lastly, all remaining prostheses 

previously identified by the AOANJRR as having a higher than anticipated rate of 

revision were also excluded.  

The cumulative percent revision (CPR) rate for all primary conventional THR for OA 

was 6.06% (95% CI 5.96, 6.16) at 10 years. After all the exclusions, the final 

comparator group, which only includes satisfactory-performing prostheses of 

contemporary design and use, had an estimated 10-year CPR of 4.3% (4.2, 4.41). 

This is considerably lower than the current comparator (all prostheses excluding 

LHMOM) used by the AOANJRR of 4.93% (4.84, 5.02). The AOANJRR standardised 

approach detected 13 additional device components utilizing the final modified 

comparator. The registry currently recommends the modern comparator for the early 

assessment of primary total hip prostheses. 
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Utilizing only contemporary device components has the potential to be a more 

relevant comparator for the early assessment of modern primary total hip prostheses. 

The use of comparator V led to the additional devices identified after 2nd stage of the 

AOANJRR standard. Increased survivorship and improved functional performance 

might be expected because key design modification areas are targeted to address 

THR complications [161]. Survivorship studies with stepwise exclusions of prostheses 

with high-risk designs or used for specific purposes are required periodically to 

introduce a more relevant and effective comparator. The modified comparator with 

higher sensitivity may contribute to the early detection of an outlier prosthesis with 

smaller sample size and shorter length of follow-up. More exclusions can potentially 

be added to select a group of prostheses with the lowest revision rate.  

While comparator V had the lowest CPR, there was a slight difference between 

comparator IV and V (Comparator IV was selected for the rest of this study). This was 

because many of the HTARR prostheses previously excluded were LHMOM, modular-

neck femoral components, or used as non-modern bearings [154, 162, 163]. 

Identification can bring a device to the attention of surgeons, alerting them to the fact 

that it shows a higher rate of revision [9]. However, it has become evident that the 

method to identify outliers may be too broad, and it is crucial to perform a careful 

comparative analysis of total hip prostheses. The AOANJRR approach takes into 

account the complexities of a small number of procedures [116], devices implanted by 

a single surgeon [164], and the effect of other components on the surveillance of a 

device [165]. After identifying a device by the AOANJRR, use of the device usually 

declines with a positive impact on subsequent patient outcomes. For example, ASR 

acetabular was first reported in 2008, then removed from the market, and the use of 

LHMOM prostheses was subsequently reduced [166].  

There were several limitations to this research. Although the new comparator could 

successfully contribute to the early identification of specific prostheses within a 

broader group, a reduction in the number of observations available for analysis may 

decrease the statistical precision. More variables may produce the variance in 

survivorship results, such that the impact of patient characteristics was not studied on 

the comparator due to the study design. The other limitation includes the descriptive 

nature of analysing the type of revision that has not been adjusted for confounders. 

However, there are also some strengths, including large high-quality data with minimal 



loss of follow-up over a longer-term period provided by the AOANJRR, which allowed 

us to compare the study populations effectively. Registry outlier detection is a process 

that needs to evolve for optimising the detection. This would be enhanced by 

international collaborations between registries including data sharing [167]. Results of 

this study indicate that increasing the relevance of the comparator may be helpful for 

the early identification of a higher number of outlier prostheses. 

3.6    Summary 

Using a comparator that only includes contemporary devices with modern bearings 

and excludes special devices used in more complex primary procedures has the 

potential to improve the early assessment of modern primary total hip prostheses 

sensitively. 



  

 

 

 

 

 

Chapter 4. Can Machine Learning Algorithms Contribute 

to the Early Identification of Primary Total Hip Outliers? 

  



4.1    Overview 

Given their extensive usage and the presence of poor-performing prostheses, total 

hip arthroplasty devices are among the most relevant medical devices with a lack of 

pre‐ and post-market safety assurances [3, 157]. It is known that there is variation in 

the safety and effectiveness of hip device components [116, 152]. While most 

prostheses perform acceptably, some of them may have higher than anticipated rates 

of revision. This variability underlines the need for attentive post-market surveillance 

of hip prostheses for the early detection of poor-performing components in the 

community [165, 168, 169]. National arthroplasty registries have acted critically in 

detecting these devices that are performing poorly [5, 66, 148, 149, 170, 171]. Data 

collected, analysed and reported by registries exposed the issue and led to the 

identification of prostheses with higher than anticipated revision rates called outliers.  

There is growing agreement by the community that large‐scale evaluations of 

prostheses using data from all joint registries are crucial for indicating if a device is at 

increased risk of revision [167, 172]. The Australian Orthopaedic Association National 

Joint Replacement Registry (AOANJRR) has established an effective multistep 

approach to inform surgeons about the relative performance of prostheses [5]. 

Arthroplasty devices are composed of multiple components combined in a prosthesis 

construct to ensure the success of the procedure. Femoral stems and acetabular 

components are two major components, and revision surgery may mostly occur due 

to the failure in one or both of these total hip components. Identifying specific 

components that show a much higher risk of revision is challenging as numerous 

individual components are used in different combinations.  

The initial screening effectively flags the hip components but does not account for 

revision rate variations over time [165]. This may cause difficulties in detecting a 

difference if the higher risk of revision happens later in the follow-up time [173]. The 

method also does not address the potential presence of other confounding factors due 

to device and patient variables. Ideally, an approach uses a time‐to‐event endpoint to 

identify individual components with a much higher rate of revision surgery while also 

reducing the confounding effects of device and patient characteristics in other 

components. Machine learning (ML) methods are attractive for this sort of problem 

because they are able to handle high‐dimensional data, which conventional methods 
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generally cannot. In addition, the methods address the additional difficulty introduced 

by the confounding effects. The principal objective of this study was to evaluate the 

use of ML methods for assessing the surveillance of total hip prostheses. The 

effectiveness of the methods was determined based on their ability to detect the same 

outliers identified by the AOANJRR gold standard.  

4.2    Materials and Methods 

The dataset for this research consists of 163,356 primary total conventional hip 

procedures with a primary diagnosis of Osteoarthritis (OA). The study period was 1st 

January 2015 – when the registry commenced collection of body mass index (BMI) 

data - to 31st December 2019. The restriction to procedures only for OA accounted for 

88.2% of all surgeries over this period. There were 87 acetabular components and 

126 femoral stems made by various manufacturers [5]. Patient factors and device 

components were the predictors and the elapsed time from primary procedure to first 

revision was the outcome.  

Each device component was distinctly introduced with an indicator variable that 

showed its model name. Patient covariates comprised age, gender, BMI and American 

Society of Anesthesiologists (ASA) score treated as potential confounders. Gender 

and ASA score (less than 3 vs. greater than or equal to 3) were patient covariates with 

two levels; age (< 65, 65-74, and ≥75 years) and BMI (< 25, 25-29.9, and ≥ 30) were 

classified into three levels. Head size (≤32mm vs. >32mm) and bearing surface 

(modern vs non-modern) were also categorized as potential confounding, each of the 

variables into two ordinal groups.  

Modern bearings are defined as metal or ceramic heads on cross-linked 

polyethylene and mixed ceramic-on-ceramic. The covariates were selected to control 

the impacts of relatively few patient characteristics and implant types (i.e., bearing 

surface, femoral head size) [111]. Missing data were only present on the patient 

covariates (6.35% BMI and 0.41% ASA score) handled by multiple imputations using 

chained equations [174]. Death was treated as a censored case with survival time up 

to the quit date of the study sample. Patients without experiencing a revision or death 

have survival times based on their initial implantations and the end of follow-up.  



The effectiveness of the ML techniques was assessed to account for patient and 

associated device confounding factors to the AOANJRR gold standard (1st and 2nd 

stages). The first stage (initial screening test) is done by comparing the revision rate 

of individual prostheses to twice the average revision rate of all other prostheses that 

belong to the same broad device class. In addition, the impact of confounding factors 

was examined by calculating age- and gender-adjusted hazard ratios (HRs) to check 

if there is a significant difference compared to the combined hazard rate of the modified 

comparator (IV) developed in the previous chapter. 

4.3    ML Statistical Analyses 

As the concept of variable selection differs from prediction, ML models need to be 

trained with a careful selection of hyperparameters. Two feature selection techniques 

were conducted to explore the significance of inputs and find their contributions 

effectively in the presence of confounding effects.  

For the first approach, this study employed random survival forest (RSF) as an 

extension of the random forest algorithm to analyse right-censored survival data [175, 

176]. Large forests with a group of 2000 trees were used to reduce bias in the highly-

correlated structure. Each tree of the forest was grown by repetitively performing 

binary splits of the AOANJRR data using the log-rank test until terminal nodes had no 

fewer than two revisions [177]. A random set of variables including all device 

components and covariates were chosen as candidates to split each parent node into 

two daughter nodes. It is more appropriate to develop the model such that the chance 

of having substantial variations between variables increases. Each tree needed to be 

grown deep to have as many levels as possible without limiting the node depth. 

Variable selection is randomized with the use of the parameter '1 <= mtry <= P' which 

was fixed at 'P/4' [116]. The number of variables considered at each split is larger than 

convention (√P) because the bias in feature selection with correlated predictors can 

be limited by an increased number of variables considered at each split [178]. A 

backward selection procedure was then implemented to obtain a reduced set of 

informative variables by computing a new RSF with the remaining variables. A similar 

algorithm was suggested by Ishwaran et al. [121] and Dietrich et al. [179]. Minimal 

depth was used for ranking the variables [180]. In a tree, minimal depth is the distance 

from the tree's root node to the node a variable is first split on. The distance of each 
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variable is recorded based on an average taken over all trees and shorter distances 

denote variables with stronger effects. A threshold of 0.05 was used for permutation 

P-values to determine whether the minimal depth of a component exceeds chance 

[116, 181]. Given the small number of permutations implemented due to high 

computational cost, P-values adjusted based on false discovery rate (FDR) were not 

calculated.  

The second approach was applied using a combination of ML and a well-

recognized conventional regression method. A regularized model with a mixture of L1 

(lasso) and L2 (ridge) penalties was developed with the aim to select a subset group 

of components that are most predictive of survival [182, 183]. The extent of the 

penalties was determined based on taking a priori value for a parameter (α = 0.5; α 

ranges from 0 to 1). This is the midpoint among lasso and ridge regression called 

elastic-net. The parameter that specified model complexity was chosen using 10‐fold 

cross-validation [182]. No penalty was applied to patient covariates according to a 

tendency to fully control the impacts of comparatively few patient characteristics 

(including age, gender, BMI, and ASA). The regularized Cox model does not report P-

values because it does not test variables against null hypotheses. The selected 

variables by the elastic-net were entered in an unregularized Cox proportional hazards 

model. The reported P-values are based on a Wald test; the P-values that maintain 

the FDR at 0.05 [184] were also calculated using the selected variables by the elastic 

net. The FDR at 0.05 is much less conservative and adjusts for the more actual P-

value distribution when 5% of all declared positive variables are genuinely negative. 

R statistical software was used for all analyses, glmnet [185] version 4.1-1 for Cox 

elastic net, and the survival package [186] version 3.2-11 for unregularized Cox 

regression, and randomForestSRC [174] version 2.11.0 for RSF and MICE package 

version 3.14.0 for multiple imputations [187].  

4.4    Results 

Prostheses survival for 163,356 procedures recorded by the AOANJRR were 

provided over the study period with the yearly number at risk (Figure 4.1 and Table 

4.1). The majority of patients had an ASA score less than 3 (63.47%), were female 

(53.25%), had an age from 65 to 74 years (36.42%), and BMI greater than or equal to 

30 kg/m² (38.86%). In the study cohort, the AOANJRR standardised approach 



identified three acetabular components and seven femoral stems. Note that the 

registry has not reported a number of these devices due to other confounding effects 

discussed in Sections 4.5 and 4.6 of this chapter but their continual real-time 

performance is monitored within a community.  

 

Figure 4. 1. Time to first revision for 163,356 procedures of AOANJRR data. 

Table 4. 1. Individual outliers identified by the 1st and 2nd stages of the AOANJRR standard. 

Component 

Descriptive information 1st stage  2nd stage  

N  

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

HR - adjusted for age 

and gender, P-Value 

Comparator 

(other total) 

Acetabular   

Device I 21 300 587.6 3.57 (3.29, 3.91) 
3.42 (2.23, 5.26)  

p<0.001 
0.95 (0.92, 0.98) 

Device II 5 59 228.8 2.18 (2.03, 2.36) 
3.14 (1.30, 7.54) 

p=0.01 
0.95 (0.92, 0.98) 

Device III 35 760 1735.6 2.02 (1.93, 2.11) 
2.09 (1.50, 2.92) 

p<0.001 
0.95 (0.92, 0.98) 

Femoral stem   

Device IV 8 71 245.4 3.26 (3.01, 3.56) 
4.34 (2.17, 8.68) 

p<0.001 
0.95 (0.92, 0.98) 

Device V 18 288 458.7 3.92 (3.59, 4.31) 
3.28 (2.06, 5.21) 

p<0.001 
0.95 (0.92, 0.98) 

Device VI 48 1266 2271 2.11 (2.04, 2.2) 
1.88 (1.42, 2.51) 

p<0.001 
0.94 (0.91, 0.98) 

Device VII 13 195 666.5 1.95 (1.86, 2.05) 
2.55 (1.48, 4.40) 

p<0.001 
0.95 (0.92, 0.98) 

Device VIII 17 320 374.7 4.54 (4.25, 4.87) 
3.02 (1.87, 4.86)  

p<0.001 
0.95 (0.92, 0.98) 

Device IX 28 561 1438.8 1.95 (1.86, 2.04) 
2.22 (1.53, 3.22) 

p<0.001 
0.95 (0.92, 0.98) 

Device X 16 199 589 2.72 (2.54, 2.91) 
3.32 (2.03, 5.42) 

p<0.001 
0.95 (0.92, 0.98) 

Note. The comparator includes all other prostheses with modern bearing surfaces excluding head sizes smaller 

than 28mm, constrained, dual mobility, and modular neck-stem cases. Modern bearings include only mixed 

ceramic/mixed ceramic and all femoral head materials used in conjunction with cross-linked polyethylene 

(XLPE).  

The devices IV, V, and VIII were identified using both approaches and the only 

undetected components by ML were II and VI (Table 4.2). The random survival was 

able to identify eight out of ten outliers identified by the standard. These components 
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include the acetabular components I and III and the femoral stems IV, V, VII, VIII, IX, 

and X. In the case of RSF, the device X has the lowest minimal depth rank with the 

most contribution to the surveillance of hip prostheses. However, Given the exact P-

values are unknown, these ranks may not directly associate with the comparative 

performance of the components used.   

Table 4. 2. Results for the outliers by the ML methods. 

Component 

Descriptive information Random Survival Forest 
Regularized/Unregularized 

Cox  

N  

Revised 

N 

Total 
Obs.Years 

Minimal depth rank 

Permutation P-value 
P-value 

Acetabular  

Device I 21 300 587.6 
8 

0.019 
- 

Device II 5 59 228.8 
20 

0.079 
0.773 

Device III 35 760 1735.6 
15 

0.039 
- 

Femoral stem  

Device IV 8 71 245.4 
2 

0.009 
0.009 

Device V 18 288 458.7 
14 

0.029 
<0.001 

Device VI 48 1266 2271 
21 

0.089 
- 

Device VII 13 195 666.5 
13 

0.029 
0.434 

Device VIII 17 320 374.7 
3 

0.009 
0.012 

Device IX 28 561 1438.8 
5 

0.009 
- 

Device X 16 199 589 
1 

0.009 
- 

Note. Regularized Cox model selected 113 components. In the case of the regularized/unregularized Cox 

model approach, "‐" denotes that the device was not selected; therefore, no P-value is provided. The Cox 

approach only identified one device component (V) when we ensured that the FDR was maintained at 0.05. 

In the case of the RSF, “-” denotes that the device feature was not included in any trees in the forest; therefore, 

no rank or P-value is provided. 

Both the RSF and Cox techniques detected additional device components that were 

not previously identified by the standardised approach. A number of these devices 

with at least 10 observations exceeded 1.5 times the revision rate for other 

contemporary total hip prostheses with a significant difference in HRs (Table 4.3). The 

femoral stem XIV was detected by both the techniques and the other three were 

identified only by one of the approaches. 

 

 

 

 



Table 4. 3. Results for the additional device components detected by ML. 

Component 

Descriptive information 
Random Survival 

Forest 

Regularized/Unre

gularized Cox 

N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years 

(95% CI) 

HR - adjusted for 

age and gender, 

P-Value 

Minimal depth rank 

Permutation P-

value 

P-value 

Acetabular    

Device XI 62 1444 3466.08 1.79 (1.37, 2.29) 
1.93 (1.50, 2.48) 

p<0.001 
4 

0.009 
- 

Device XII 132 5048 9640.42 1.37 (1.15, 1.62) 
1.26 (1.06, 1.50) 

p=0.008 
- 0.005 

Device XIII 40 1063 2559.11 1.56 (1.12, 2.13) 
1.66 (1.22, 2.27) 

p=0.001 
18 

0.039 
0.052 

Femoral 

stem 
   

Device XIV 14 250 804.43 1.74 (0.95, 2.92) 
2.21 (1.30, 3.73) 

p=0.003 

17 

0.039 
0.038 

 

Given a primary desire to control potential confounding, the extent of patient- and 

associated device confounding was evaluated. The coefficients in a Cox regression 

are related to HRs of device components given by the exponent of its coefficient. The 

next part compared the HR for specific components in two different models: (a) Cox 

model with a variable representing the use of that component adjusted for age and 

gender (2nd stage of the standard) and (b) the unregularized Cox model, which 

includes all the variables selected by the elastic net. This represents the effect of each 

component after conditioning on the selected variables (including age, gender, BMI, 

ASA, head size, and bearing surface). Therefore, the difference in the HRs between 

these two models presents the extent of potential confounding (Figure 4.2). There is 

at least reasonable evidence of confounding for most components; relative changes 

in model coefficients range from 38% for the device V to 204% for the II.  
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Figure 4. 2. HR comparison to illustrate the effect of potential confounding.  

%Diff = [ln (HRAdj. for age and gender) – ln (HRAdj. for all potential confounding factors)]/[ln (HRAdj. for all potential confounding factors)] 

In 2007, the AOANJRR added a third stage that enabled an extensive examination 

of the prostheses identified in stage II. The AOANJRR professions and orthopaedic 

surgeons evaluate the whole range of prostheses data during a two-day workshop to 

finalise the list of newly-identified outliers in the AOANJRR annual reports. This stage 

reconsiders the potential confounding variables such as the effect of a single surgeon, 

catalogue ranges, or the use of a prosthesis for a specific purpose. Hence, a post-

analysis was conducted to assess the interaction between surgeons and outlier subset 

designs (catalogue ranges). 

4.5    Subsets or Catalogue Ranges 

The identification method has shown an argument to carefully examine which range 

of prosthesis is responsible for a significantly higher than expected revision rate. The 

results presented in Tables 4.4 to 4.23 show that Devices II and VI might not be poor-

performing prostheses as the results show an issue only with a subset of these 

prostheses. These devices show higher than expected revision rates for a number of 

subset designs while other ranges indicated acceptable outcomes. Conversely, real 

outliers usually have higher-than-anticipated revision rates in a significant number of 

catalogue ranges. Note that the number of total procedures performed with a subset 

design of the device needs to be reconsidered. For instance, there were significantly 



higher revision rates for the most subset designs of device V used in a greater number 

of procedures. Our post-analysis found strong evidence of confounding effects that 

may better reflect the actual performance of outlier prostheses. 

Table 4. 4. Catalogue range description for Device I primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device I 1704607-1706607 H-A.C. CSF Plus Acetabular Cup NO Metal 

Device I 1754607-1756807 H-A.C. CSF Plus Acetabular Cup NO Metal 

Table 4. 5. Revision rates of Device I primary total conventional hip replacement by catalogue number 

range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

1704607-1706607 13 147 296.4 4.39 (2.33, 7.5) 

1754607-1756807 8 153 291.2 2.75 (1.18, 5.41) 

Total 21 300 587.6 3.57 (3.29, 3.91) 

Table 4. 6. Catalogue range description for Device II primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device II 1800048 – 1800068 
PLASMA COATED NO-HOLE/CLUSTER-

HOLE ACETABULAR SHELL 48-60MM OD 
NO Metal 

Device II 1801140 – 1801162 
PLASMA COATED CLUSTER-HOLE 

ACETABULAR SHELL 48-62MM OD 
NO Metal 

Table 4. 7. Revision rates of Device II primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

1800048 – 1800068 3 28 110.3 2.72 (0.56, 7.95) 

1801140 – 1801162 2 31 118.5 1.69 (0.2, 6.1) 

Total 5 59 228.8 2.18 (2.03, 2.36) 

Table 4. 8. Catalogue range description for Device III primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device III 012646MB-012664MB Dual Mobility Acetabular Shell without holes NO Metal 

Table 4. 9. Revision rates of Device III primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

012646MB-012664MB 35 760 1735.6 2.02 (1.4, 2.8) 

Total 35 760 1735.6 2.02 (1.93, 2.11) 

Table 4. 10. Catalogue range description for Device IV primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device IV 71291101-71291901 Primary Femoral Stem Standard Offset NO Metal 

Device IV 71291150 71292351 Revision Femoral Stem SH Polished NO Metal 

Device IV 71290902-71290902 Sz 9 Primary Femoral Stem Standard Offset NO Metal 

Device IV 71291102-71291902 Primary Femoral Stem High Offset NO Metal 

Table 4. 11. Revision rates of Device IV primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

71291101-71291901 4 51 180.7 2.21 (0.6, 5.67) 

71291150 71292351 1 3 9.8 10.15 (0.26, 56.58) 

71290902-71290902 1 1 2.5 39.66 (1.00, 220.96) 

71291102-71291902 2 16 52.3 3.82 (0.46, 13.81) 

Total 8 71 245.4 3.26 (3.01, 3.56) 
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Table 4. 12. Catalogue range description for Device V primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device V 4330106-4330117 Collared 133° Neck Angle NO Metal 

Device V 4330206-4330214 Collarless 133° Neck Angle NO Metal 

Device V 4335107-4335117 Collared 133° Neck Angle High Offset Ti6Al NO Metal 

Device V 4260210-4260212 Collarless 126° Neck Angle Std Offset Ti6Al NO Metal 

Device V 4265111-4265211 Collarless 126° Neck Angle High Offset Ti6Al NO Metal 

Device V 4335208-4335217 Collarless 133° Neck Angle High Offset Ti6Al NO Metal 

Device V 4260106-4260117 Collared 126° Neck Angle Std Offset NO Metal 

Device V 4265106-4265117 Collared 126° Neck Angle High Offset Ti6Al~ NO Metal 

Table 4. 13. Revision rates of Device V primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

4330106-4330117 10 147 214.9 4.65 (2.23, 8.56) 

4330206-4330214 1 14 54.5 1.83 (0.05, 10.21) 

4335107-4335117 3 67 99.7 3.01 (0.29, 4.08) 

4260210-4260212 0 1 4.3 0.00 (0.00, 86.09) 

4265111-4265211 0 6 13.5 0.00 (0.00, 27.23) 

4335208-4335217 0 3 13.9 0.00 (0.00, 26.46) 

4260106-4260117 1 24 30.7 3.26 (0.08, 18.16) 

4265106-4265117 3 26 27.2 11.01 (2.27, 32.19) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Many prostheses have several catalogue ranges that are specific to particular 

design features. More than one catalogue range usually specifies a minor difference 

in the design of one specific prosthetic device. This statistical analysis was undertaken 

to determine the variations in these design modifications. For example, Device IV has 

the lowest revision rate with the standard design among high-offset designs and 

polished surfaces (Tables 4.10 and 4.11).  

Table 4. 14. Catalogue range description for Device VI primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device VI H49007-H49020 HA NO Metal 

Device VI H49L009-H49L020 HA Lateral NO Metal 

Device VI H49LC009-H49LC020 High Off-Set Collared NO Metal 

Device VI H49C009-H49C020 HAC collared NO Metal 

Table 4. 15. Revision rates of Device VI primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

H49007-H49020 9 380 729.5 1.23 (0.56, 2.34) 

H49L009-H49L020 8 337 803.7 0.99 (0.43, 1.96) 

H49LC009-H49LC020 16 184 214.3 7.46 (4.27, 12.12) 

H49C009-H49C020 15 365 523.4 2.86 (1.6, 4.73) 

Total 48 1266 2271 2.11 (2.04, 2.2) 

Table 4. 16. Catalogue range description for Device VII primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device VII 42501006-42501017 Beaded Porous Standard Offset Reduced Neck Stem NO Metal 

Device VII 42511006-42511019 Beaded Porous Lateral Offset Reduced Neck Stem NO Metal 

 

 



Table 4. 17. Revision rates of Device VII primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

42501006-42501017 3 32 101.17 2.96 (0.61, 8.66) 

42511006-42511019 10 163 565.38 1.77 (0.85, 3.25) 

Total 13 195 666.5 1.95 (1.86, 2.05) 

Table 4. 18. Catalogue range description for Device VIII primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device VIII 0113100L - 0113108R Anatomical Femoral Stem Ti6Al7Nb HA NO Metal 

Table 4. 19. Revision rates of Device VIII primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

0113100L - 0113108R 17 320 374.66 4.54 (4.25, 4.87) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Table 4. 20. Catalogue range description for Device IX primary total conventional hip replacement. 

Model 
Catalogue 

Range 
Catalogue Description Cement Type Material 

Device IX 523191 - 523396 
Femoral Stem Standard 30-42 

STD Neck 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 563514 - 563626 
Femoral Stem Standard STD 

Neck + Lateral 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 526676 - 526684 
Standard Femoral Stem 

36+21 CR Neck 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 
563016L - 

563026R 

Femoral Stem 

Left/Straight/Right Long 36+21 

CR Neck + Lateral 

NO 
REQUIRES MODULAR 

BODY 
Metal 

Device IX 
563118L - 

563216R 

Femoral Stem 

Left/Straight/Right Long STD 

Neck + Lateral 

NO 
REQUIRES MODULAR 

BODY 
Metal 

Device IX 
910000001 - 

910000097 

Femoral Stem Standard 30-36 

STD Neck 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 523418 - 523424 
Femoral Stem Standard 

36MM + 8 STD Neck 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 
563138L - 

563144R 

Femoral Stem Left/Right 

XLong 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Device IX 
563158L - 

563164R 

Femoral Stem Left/Right 

XXLong 
NO 

REQUIRES MODULAR 

BODY 
Metal 

Table 4. 21. Revision rates of Device IX primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

523191 - 523396 10 283 706.24 1.41 (1.32, 1.52) 

563514 - 563626 9 164 436.75 2.06 (1.9, 2.25) 

526676 - 526684 0 1 4.04 0.00 (0.00, 91.31) 

563016L - 563026R 0 1 3.33 0.00 (0.00, 110.78) 

563118L - 563216R 4 17 32.03 12.49 (8.49, 18.1) 

910000001 - 910000097 0 2 6.69 0.00 (0.00, 55.14) 

523418 - 523424 5 90 243.68 2.05 (1.84, 2.31) 

563138L - 563144R 0 1 1.58 0.00 (0.00, 233.47) 

563158L - 563164R 0 2 4.4 0.00 (0.00, 83.84) 

Total 28 561 1438.8 1.95 (1.29, 2.81) 

Table 4. 22. Catalogue range description for Device X primary total conventional hip replacement. 

Model Catalogue Range Catalogue Description Cement Material 

Device X 00787101360 - 00787101960 Femoral Stem Cemented Revision/calcar Yes Metal 

Device X 00784501000 - 00784501800 
Fiber Metal Midcoat Collarless Femoral Stem 

STD Size 10-18 
NO Metal 

Device X 00784501230 - 00784501830 
Fiber Metal Midcoat Collarless Femoral Stem 

Size 12-18 
NO Metal 
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Table 4. 23. Revision rates of Device X primary total conventional hip replacement by catalogue 

number range. 

Catalogue range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

00787101360 - 00787101960 1 17 39.7 2.52 (1.85, 3.92) 

00784501000 - 00784501800 15 169 517.2 2.9 (2.71, 3.11) 

00784501230 - 00784501830 0 13 31.1 0.00 (0.00, 11.86) 

Total 16 199 589 2.72 (1.55, 4.41) 

4.6    Number of Surgeons 

The Registry is aware that a single surgeon may be responsible for a prosthesis 

combination with a higher-than-expected revision rate. This situation has occurred 

twice and, on both occasions, the use of combinations ceased after they appeared in 

the AOANJRR annual reports [5, 165]. Revision rates per 100 component years of the 

prostheses by surgeons were evaluated in order to study the effect of a single surgeon 

on prosthesis performance. An investigation of the number of surgeons enables 

clinicians to look at the other potential confounding variables contributing to the 

performance of a prosthesis (Table 4.24-4.33). Note that only the surgeons who used 

more than ten specific prostheses were included in our statistical analyses. The study 

was conducted to determine the performance of surgeons when they used (i) a device 

of interest, (ii) all the device components, and (iii) excluded the outliers detected by 

the AOANJRR standardised approach.  

Table 4. 24. Revision rates of Device I primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

354 

Device I 0 21 91.2 0.00 (0.00, 4.04) 

Overall 0 86 214 0.00 (0.00, 1.72) 

Exc. outliers 0 65 122.8 0.00 (0.00, 3.01) 

544 

Device I 1 13 53.3 1.87 (0.05, 10.45) 

Overall 2 88 289.3 0.69 (0.08, 2.5) 

Exc. outliers 1 75 236 0.42 (0.01, 2.36) 

587 

Device I 3 36 68.4 4.38 (0.9, 12.81) 

Overall 12 177 506.3 2.37 (1.22, 4.14) 

Exc. outliers 3 39 50.8 5.9 (1.22, 17.26) 

1246 

Device I 2 17 26.8 7.46 (0.9, 26.95) 

Overall 7 191 406.4 1.72 (0.69, 3.55) 

Exc. outliers 5 174 379.6 1.31 (0.43, 3.07) 

1357 

Device I 1 27 105.4  0.95 (0.02, 5.29) 

Overall 12 269 620.2 1.93 (1.00, 3.38) 

Exc. outliers 9 179 451.5 1.99 (0.91, 3.78) 

1726 

Device I 1 47 32.3 3.1 (0.08, 17.26) 

Overall 9 457 1147.7 0.78 (0.36, 1.49) 

Exc. outliers 8 396 1090.8 0.73 (0.32, 1.44) 

1745 

Device I 9 113 144.5 6.23 (2.85, 11.82) 

Overall 10 145 258.4 3.87 (1.85, 7.12) 

Exc. outliers 1 28 95.6 1.04 (0.03, 5.83) 

 



Table 4. 25. Revision rates of Device II primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

142 

Device II 4 57 226.9 1.76 (0.48, 4.51) 

Overall 12 237 536.9 2.23 (1.15, 3.90) 

Excl. outliers 8 180 310 2.58 (1.11, 5.08) 

Table 4. 26. Revision rates of Device III primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

155 

Device III 0 33 80.4 0.00 (0.00, 4.58) 

Overall  3 354 914.5 0.33 (0.07, 0.96) 

Exc. outliers  3 321 834.1 0.35 (0.07, 1.05) 

1041 

Device III 15 436 1034.9 1.45 (0.81, 2.39) 

Overall  18 484 1144.4 1.57 (0.93, 2.48) 

Exc. outliers  2 42 100.2 1.99 (0.24, 7.21) 

1078 

Device III 10 96 231.5 4.32 (2.07, 7.94) 

Overall  11 103 248.7 4.42 (2.21, 7.91) 

Exc. outliers  1 7 17.2 5.81 (0.15, 32.39) 

1357 

Device III 2 63 57.8 3.46 (0.42, 12.49) 

Overall  12 269 620.2 1.93 (1.00, 3.38) 

Exc. outliers  9 179 451.5 1.99 (0.91, 3.78) 

1717 

Device III 5 60 168.7 2.96 (0.96, 6.91) 

Overall  31 1087 2799.4 1.11 (0.75, 1.57) 

Exc. outliers  26 1018 2619.3 0.99 (0.65, 1.45) 

Table 4. 27. Revision rates of Device IV primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

685 

Device IV 4 53 188.3 2.12 (0.58, 5.44) 

Overall 8 149 323.2 2.47 (1.07, 4.88) 

Excl. outliers 4 96 134.9 2.96 (0.81, 7.59) 

Table 4. 28. Revision rates of Device V primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID  
N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

587 

Device V 1 19 38.4 2.6 (0.6, 14.5) 

Overall 12 177 506.3 2.37 (1.22, 4.14) 

Exc. outliers 3 39 50.8 5.9 (1.217, 17.26) 

1246 

Device V 2 17 26.8 7.46 (0.9, 26.95) 

Overall 7 191 406.41 1.72 (0.69, 3.55) 

Exc. outliers 5 174 379.6 1.31 (0.43, 3.07) 

1357 

Device V 1 27 105.4 0.95 (0.2, 5.29) 

Overall 12 269 620.2 1.93 (1.00, 3.38) 

Exc. outliers 9 179 451.5 1.99 (0.91, 3.78) 

1421 

Device V 0 19 9 0.00 (0.00, 41.13) 

Overall 18 490 990.8 1.82 (1.08, 2.87) 

Exc. outliers 17 445 945.7 1.80 (1.05, 2.88) 

1726 

Device V 1 61 56.9 1.76 (0.04, 9.79) 

Overall 9 457 1147.7 0.78 (0.36, 1.49) 

Exc. outliers 8 396 1090.8 0.73 (0.32, 1.44) 

1745 

Device V 9 112 144.4 6.23 (3.32, 12.74) 

Overall 10 145 258.4 3.87 (1.85, 7.12) 

Exc. outliers 1 28 95.6 1.04 (0.03, 5.83) 
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Table 4. 29. Revision rates of Device VI primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID  
N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

39 

Device VI 4 11 1.9 212.05 (57.77, 542.92) 

Overall 15 394 1000.7 1.50 (0.84, 2.47) 

Exc. outliers 11 382 994 1.11 (0.55, 1.98) 

153 

Device VI 1 19 12.7 7.89 (0.2, 43.94) 

Overall 5 219 590.4 0.85 (0.27, 1.98) 

Exc. outliers 4 200 371.4 1.01 (0.29, 2.76) 

156 

Device VI 1 10 19.1 5.24 (0.13, 29.21) 

Overall 4 96 206.5 1.94 (0.53, 4.96) 

Exc. outliers 3 86 187.4 1.6 (0.33, 4.68) 

275 

Device VI 2 145 425.4 0.47 (0.06, 1.7) 

Overall 2 223 634 0.32 (0.04, 1.14) 

Exc. outliers 0 77 205.5 0.00 (0.00, 1.79) 

495 

Device VI 1 20 43.5 2.3 (0.06, 12.8) 

Overall 6 187 479.3 1.25 (0.46, 2.72) 

Exc. outliers 5 167 435.8 1.15 (0.37, 2.68) 

895 

Device VI 1 34 126.8 0.79 (0.01, 4.39) 

Overall 7 149 373.7 1.87 (0.75, 3.86) 

Exc. outliers 6 115 246.9 2.43 (0.89, 5.29) 

961 

Device VI 3 58 83.9 3.58 (0.74, 10.45) 

Overall 3 79 165.5 1.81 (0.37, 5.3) 

Exc. outliers 0 21 81.6 0.00 (0.00, 4.52) 

1001 

Device VI 1 115 347.8 0.29 (0.01, 1.6) 

Overall 11 633 1302.2 0.84 (0.42, 1.51) 

Exc. outliers 9 510 942 0.95 (0.44, 1.81) 

1149 

Device VI 6 174 190 3.16 (1.16, 6.87) 

Overall 14 392 924.2 1.51 (0.83, 2.54) 

Exc. outliers 8 217 730.8 1.09 (0.47, 2.16) 

1177 

Device VI 6 134 275.7 2.17 (0.8, 4.74) 

Overall 30 425 1303.9 2.30 (1.55, 3.28) 

Exc. outliers 24 291 1028.2 2.72 (1.49, 3.47) 

1195 

Device VI 0 36 128.8 0.00 (0.00, 2.86) 

Overall 10 752 1814.3 0.55 (0.26, 1.01) 

Exc. outliers 8 693 1675.2 0.48 (0.21, 0.94) 

1218 

Device VI 16 366 404.2 3.96 (2.26, 6.43) 

Overall 43 763 1666.6 2.58 (1.87, 3.47) 

Exc. outliers 27 397 1262.4 2.14 (1.41, 3.11) 

1260 

Device VI 1 84 85.2 1.17 (0.03, 4.33) 

Overall 4 371 772.1 0.52 (0.14, 1.33) 

Exc. outliers 3 286 686 0.44 (0.09, 1.28) 

Table 4. 30. Revision rates of Device VII primary total conventional hip replacement by surgeon id 

and the use of prostheses. 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

587 

Device VII 8 117 413.1 1.94 (0.83, 3.81) 

Overall 12 177 506.3 2.37 (1.22, 4.14) 

Exc. outliers 3 39 50.8 5.9 (1.22, 17.26) 

1066 

Device VII 1 13 38.7 2.58 (0.06, 14.39) 

Overall 9 262 568.3 1.58 (0.72, 3.00) 

Exc. outliers 8 249 529.6 1.51 (0.65, 2.98) 

1226 

Device VII 4 63 207.1 1.93 (0.53, 4.94) 

Overall 8 107 315.2 2.54 (1.09, 5.00) 

Exc. outliers 4 44 108.1 3.70 (1.01, 9.51) 

 



Table 4. 31. Revision rates of Device VIII primary total conventional hip replacement by surgeon id 

and the use of prostheses. 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

804 

Device VIII 2 93 94.2 2.12 (0.26, 7.67) 

Overall 19 1204 3078.2 0.62 (0.37, 0.96) 

Exc. outliers 17 1106 2976 0.57 (0.33, 0.91) 

1041 

Device VIII 5 110 173.7 2.88 (0.93, 6.72) 

Overall 18 484 1144.4 1.57 (0.93, 2.48) 

Exc. outliers 2 42 100.2 1.99 (0.24, 7.21) 

1195 

Device XIII 2 17 5.1 39.19 (4.75, 141.57) 

Overall 10 752 1814.3 0.55 (0.26, 1.01) 

Exc. outliers 8 693 1675.2 0.48 (0.21, 0.94) 

1421 

Device XIII 1 22 29.1 3.43 (0.09, 19.14) 

Overall 18 490 990.8 1.82 (1.08, 2.87) 

Exc. outliers 17 445 945.7 1.80 (1.05, 2.88) 

1529 

Device VIII 2 20 28.7 6.96 (0.84, 25.14) 

Overall 3 161 241.6 1.24 (0.26, 3.63) 

Exc. outliers 1 138 206 0.48 (0.01, 2.7) 

1717 

Device VIII 0 10 13 0.00 (0.00, 28.36) 

Overall 31 1087 2799.4 1.11 (0.75, 1.57) 

Exc. outliers 26 1018 2619.3 0.99 (0.65, 1.45) 

1914 

Device VIII 1 13 6 16.68 (0.42, 92.92) 

Overall 2 99 171.3 1.17 (0.14, 4.22) 

Exc. outliers 1 86 165.3 0.6 (0.01, 3.37) 

Table 4. 32. Revision rates of Device IX primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

19 

Device IX 0 10 30.5 0.00 (0.00, 12.09) 

Overall 0 205 486.8 0.00 (0.00, 0.76) 

Exc. outliers 0 195 456.3 0.00 (0.00, 0.81) 

203 

Device IX 1 20 62.2 1.61 (0.04, 8.95) 

Overall 21 1284 3130.3 0.67 (0.41, 1.02) 

Exc. outliers 20 1264 3068.1 0.65 (0.4, 1.01) 

207 

Device IX 0 26 70.8 0.00 (0.00, 5.21) 

Overall 7 387 892.65 0.78 (0.31, 1.61) 

Exc. outliers 7 261 821.85 0.85 (0.34, 1.75) 

261 

Device IX 3 21 40.8 7.34 (1.51, 21.46) 

Overall 4 26 55.6 7.19 (1.96, 18.42) 

Exc. outliers 1 5 14.8 6.76 (0.17, 37.65) 

294 

Device IX 0 10 13.9 0.00 (0.00, 26.43) 

Overall 2 105 304.5 0.66 (0.08, 2.37) 

Exc. outliers 2 95 290.6 0.68 (0.08, 2.49) 

297 

Device IX 4 40 134.8 2.97 (0.81, 7.6) 

Overall 9 281 706.8 1.27 (0.58, 2.42) 

Exc. outliers 5 241 572 0.87 (0.28, 2.04) 

562 

Device IX 1 43 123.1 0.81 (0.02, 4.53) 

Overall 6 512 1341.1 0.45 (0.16,0.97) 

Exc. outliers 5 469 1218 0.41 (0.13, 0.96) 

676 

Device IX 0 10 36.6 0.00 (0.00, 10.1) 

Overall 0 183 457.6 0.00 (0.00, 0.81) 

Exc. outliers 0 173 421 0.00 (0.00, 0.88) 

1111 

Device IX 0 10 28.8 0.00 (0.00, 12.79) 

Overall 6 337 833.6 0.72 (0.26, 1.57) 

Exc. outliers 6 327 804.8 0.74 (0.27, 1.62) 

1163 

Device IX 0 20 49.8 0.00 (0.00, 7.4) 

Overall 6 277 733.3 0.82 (0.3, 1.78) 

Exc. outliers 6 257 683.5 0.87 (0.32, 1.91) 
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1372 

Device IX 2 84 166.4 1.20 (0.14, 4.34) 

Overall 22 790 1607.5 1.37 (0.857, 2.07) 

Exc. outliers 20 706 1441.1 1.38 (0.85, 2.14) 

1760 

Device IX 0 14 19.9 0.00 (0.00, 18.49) 

Overall 5 255 524.9 0.95 (0.31, 2.22) 

Exc. outliers 5 241 505 0.99 (0.32, 2.31) 

Table 4. 33. Revision rates of Device X primary total conventional hip replacement by surgeon id and 

the use of prostheses. 

Surgeon ID  
N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

747 

Device X 15 176 524.1 2.86 (1.6, 4.72) 

Overall 21 272 725.7 2.89 (1.79, 4.42) 

Excl. outliers 6 96 201.6 2.98 (1.09, 6.48) 

This study noticed important interactions between surgeons and device 

components, such as in the case of Devices II, IV, and X. Higher-than-anticipated 

revision rates of these devices could be associated with either the poor performance 

of the surgeon or the device itself or even both. The idea of assessing the number of 

surgeons originated from our clinical pre-knowledge intended to determine whether 

the performance of the prosthesis was linked to the surgeon who performed the 

procedure. For example, Table 4.32 gives a list of surgeons with experience using 

Device IX, showing that one poor-performing surgeon (261) had a relatively much 

higher revision rate than the others. It would be challenging to discuss surgeons’ 

effects in terms of Devices IX and VI which are used by many surgeons, albeit with a 

variety of outcomes. However, there was no significant interaction for a number of 

devices such as VII and VIII because these two show a higher-than-expected rate of 

revisions regardless of the surgeon’s performance. These findings should be 

considered before reporting the hip outlier prostheses. 

4.7    Discussion 

Early identification of outliers ideally uses a time-to-event outcome while reducing 

the confounding effects of other components in the device and patient characteristics. 

ML, which contains self-learning algorithms, is one approach to consider many 

variables simultaneously to limit the impact of confounding. The principal objective of 

this study was to compare the effectiveness of using either RSF or 

regularized/unregularized Cox regression to account for patient and associated device 

confounding factors to current standard techniques.  

This study evaluated RSF and regularized/unregularized Cox regression using data 

from the AOANJRR to detect outlier devices among 213 individual primary total hip 



components performed in 163,356 procedures from 1st January 2015 to the end of 

2019. Patient characteristics and device components were the inputs, and time to first 

revision operation was the primary outcome treated as a censored case for death. The 

effectiveness of the ML approaches was assessed based on the ability to detect the 

same outliers identified by the AOANJRR standardised approach.  

The standard AOANJRR approach identified three acetabular components and 

seven femoral stems. The ML approaches identified some but not all the outliers 

detected by the AOANJRR. Both the methods identified three of the same femoral 

stems, and the RSF identified the other five components, including two of the same 

acetabular cups and three of the same femoral stems. In addition, both the RSF and 

Cox techniques detected a number of additional device components that were not 

previously identified by the standardised approach. 

This study showed that the RSF technique was more comparable to the AOANJRR 

standard in terms of detecting more outlier prostheses. Of the ten outliers identified by 

the AOANJRR gold standard, ML was able to identify eight of the same device 

components, including two acetabular cups and six femoral stems. The group of 

detected prostheses by both the feature selection techniques includes IV, V, and VIII. 

By contrast, two out of the ten listed components (II and VI) and were identified neither 

by RSF nor Cox. The outcome highlights the significance of studying potential 

confounding effects on the comparative performance of primary total hip prostheses.  

The results indicate that the ML methods explored can be effective at detecting 

outliers. However, a single model may not necessarily be the best choice because the 

inclusion or exclusion of inputs can affect the strength and even sign of a given 

predictor. For tree growing, RSF uses random subsets of variables per node that may 

cause an independent split of correlated variables. This may lead to breaking the 

structure of highly-correlated predictors and providing an interesting approach for 

explorative variable-selection studies [188]. However, false-positive discoveries due 

to overfitting are considered to be a major problem [189]. On the other hand, the Cox 

regression has a significant advantage in computational cost, interpreting variable 

strength, and documenting confounding effects.  

Feature selection may be able to offer a supplementary identification approach with 

the potential to identify most of the devices detected by the standard. This similarity in 
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the results becomes more apparent by looking at the outliers reported after meeting 

all the stages due to further investigation of confounding factors. The AOANJRR has 

not reported the two non-detected devices (II and VI). However, the three identified 

components identified by both the techniques were detected considering larger 

sample sizes and over longer times [5]. These identified femoral stems include 

Emperion, Furlong Evolution, and MiniMax total conventional hip prostheses. The 

current technique used by the registry is pragmatic and effective at detecting the 

relative performance of total hip prostheses with a higher risk of revision through in-

depth knowledge of potential confounding factors.  

The current study has several limitations. The effectiveness of screening tests 

depends on recognizing relevant component characteristics; the process will be 

compromised if some attributes that contribute to the prosthesis survival are not 

accounted for (see Appendix A). This study included well-known clinically relevant 

attributes, and head size showed the most significant contribution to the initial 

screening of total hip devices. However, other factors related to surgeons and 

catalogue ranges can also be investigated. In some cases, it appeared (solely from 

the overall revision rate) that surgeon-specific factors contributed to a higher-than-

expected revision rate. This draws attention to the need for action to be taken in regard 

to the impact of the surgeon and surgical procedure on the performance of prostheses. 

As a limitation, this thesis did not investigate key factors associated with surgeons, 

such as their experience and surgical volume, due to the complexity of translating this 

information into classified meaningful inputs. 

The contrary may be a concern as well; considering too many attributes may cause 

delayed detection. One possibility to address this issue is to expand the dataset by 

involving several registries worldwide that have information on the same prostheses. 

The proposed methods can be applied to knee and shoulder arthroplasty devices as 

a research opportunity. Utilizing prediction to understand the variables linked with the 

outcome may improve shared decision-making, leading to fewer patients at risk of 

receiving poor devices. 

 



4.8    Summary 

Machine learning may be able to offer a supplementary approach to enhance the 

early identification of outlier devices within the community. This study showed that the 

RSF technique was more comparable to the AOANJRR standardised approach and 

head size was the most significant device-related covariate for the initial screening of 

total hip devices. Further studies are required to better understand the potential of 

feature selection techniques to improve the early assessment of total hip outlier 

prostheses.  

  





  

 

 

 

 

 

Chapter 5. The Most Appropriate Comparator in 

Assessing the Performance of Knee Prostheses 
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5.1   Overview 

Knee replacement was first widely performed in the 1970s and 1980s [190]. 

Osteoarthritis (OA) is the most common primary diagnosis for this cost-effective 

surgical procedure [47]. The demand for knee replacement surgery is projected to rise 

due to the increasingly ageing population. Early detection mechanisms are required 

to identify poor-performing prostheses (outlier prostheses) with unreliable clinical 

outcomes for patients. The identification and documentation of outlier prostheses 

reduce their usage leading to better clinical outcomes [116].  

Joint registries aim to reduce the revision rates of arthroplasty surgeries by early 

detection of outlier joint arthroplasty devices [5, 34, 47]. They deliver population-based 

data on the comparative surveillance of prostheses within the community. Survival 

outcome data are essential for an evidence-based approach to identify prostheses 

with statistically higher than anticipated revision rates. Given the signal detection 

efforts to exclude outliers over time, the Australian Orthopaedic Association National 

Joint Replacement Registry (AOANJRR) reports 90% survival for primary total knee 

replacement (TKR) for OA at 19 years  [5]. 

There are different types of knee replacements that can be classified based on the 

type of articulation. All registries report variations in the outcomes of total knee 

prostheses by stability. Stability is used for various purposes and the type of stability 

used for prostheses may affect the overall outcomes within the same class. Most total 

knee prostheses implanted are either cruciate retaining (CR) or posterior stabilised 

(PS) prostheses [4]. In Australia, these two stability types have remained the most 

widely and commonly used primary TKR procedures [34, 40, 66]. On the other hand, 

complex designs (i.e., FS and hinged implants) are also used in a limited number of 

primary procedures based on the clinical circumstance [5]. 

The AOANJRR has developed a standardised multi-stage approach to identify 

primary total knee outliers by performing an initial screening test. This is done by 

comparing the revision rate of individual prostheses to the average revision rate of all 

prostheses belonging to the same broad TKR class. However, the current comparator 

does not adequately differentiate between complex and conventional procedures. This 

may result in less conventional and more complex devices being identified as being at 

risk [5, 66]. Given the higher associated risk of failure with complex knee prostheses, 



this study aims to identify more specific and relevant comparator groups by stability 

design to better reflect the corresponding type of prostheses. 

5.2   Materials and Methods 

The study period was from the first year that the AOANJRR collected TKR data 

from all Australian hospitals (January 2003) to the closure of the dataset at the end of 

December 2019. The study population included all patients undergoing a primary TKR 

performed for primary OA. The outcome was time to first revision surgery, defined as 

reoperations of previous knee replacements where one or more prosthetic device 

components are replaced, removed, or added. Death was treated as a censored case 

with survival time based on the date those cases exited the study. Patients with no 

revision or death had survival times based on the time elapsed between the initial 

surgery and the end of follow‐up. Further analyses were conducted to study the 

changes in the most common types of revision and reasons for revision. The 

AOANJRR standardised approach was then employed to determine the impact of 

modified comparator groups on the number of identified outliers. The revision rate of 

primary total knee surgery by fixation, bearing surface, bearing mobility, and use of 

patella was also calculated to evaluate the differences between the complex and 

conventional study populations. 

5.3   Standard Designs 

The AOANJRR defines CR prostheses with a flat or bowl-shaped tibial articulation, 

regardless of congruency. PS design prostheses mostly offer additional posterior 

stability with a box and peg design; or less often using a groove and cam. The use of 

CR prostheses has continued comparatively constant over the last 10 years. In 2019, 

CR stability accounted for 71.6% of primary procedures. However, the use of PS 

design prostheses experienced a reduction in trend from 32.9% in 2008 to 19.2% in 

2019 [5].  
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Figure 5. 1. Left presents the photograph of a cruciate-retaining and right offers posterior stabilized 

femoral components, showing a higher transition height from the trochlear groove to the intercondylar 

box in the posterior stabilized femoral component [191]. 

5.4   Complex Designs 

Hinged knees with added collateral and posterior ligament stability, and FS with a 

large peg and box design are used less often. These designs are usually considered 

as revision components or only performed in complex clinical situations of primary 

surgeries. Complex design prostheses are mostly used for patients with the primary 

diagnosis of tumours, fractures, and rheumatoid arthritis [5]. 

5.5   Statistical Methods 

Two study populations in primary TKR performed for OA were studied using Kaplan-

Meier survival analysis [5]. The unadjusted CPR was estimated after the primary 

surgery. This measure was calculated using unadjusted pointwise Greenwood 

estimates with an accompanying 95% confidence interval (CI). To compare revision 

rates between the two modified comparator groups, age- and gender-adjusted hazard 

ratios (HRs) for the entire period were calculated using the Cox proportional hazard 

model. The secondary outcome measure was the cumulative incidence of reasons for 

revisions. This concept was analysed to study the competing risk of most common 

revision reasons amongst the complex and conventional TKRs. A descriptive analysis 

was also performed comparatively to analyse the contribution of each reason for 

revision and type of revision. In addition, the CPR rate by fixation, bearing surface, 

bearing mobility, and the use of patella were calculated. The effectiveness of the 

modified comparator to detect individual prostheses was evaluated by performing the 

first two stages of the AOANJRR standardised approach. This involved comparing the 

revision rate of individual prostheses to twice the average revision rate of all 

prostheses belonging to the same broad device class. The impact of confounding 



factors was examined by calculating age- and gender-adjusted HRs to check for a 

significant difference compared to the combined HR of the comparator group. The 

statistical analysis was performed using R software [158], including the packages 

Survival [159] version 3.2-11 and Survminer [160] version 0.4.9. 

5.6   Results 

Fully stabilised and hinged designs show higher CPR rates than CR and PS over 

the entire period (Figure 5.2). Table 5.1 shows the yearly CPRs of primary TKR by 

stability design. The use of PS design led to a higher overall CPR than the CR design 

for conventional prostheses, and the hinged design had a higher CPR than FS for 

complex prosthesis constructs. In total, there was a higher risk of revision for the two 

complex designs compared to the conventional prostheses. 

 
Figure 5. 2. CPR of primary total knee replacement by stability.  

Table 5. 1. Yearly CPR of primary total knee replacement by stability. 

CPR N Revised N Total 1 yr 2 yrs 3 yrs 4 yrs 

CR 16,406 463,863 0.9 (0.9, 1.0) 1.9 (1.8, 1.9) 2.5 (2.4, 2.5) 2.9 (2.9, 3.0) 

PS 7,725 172,530 1.2 (1.2, 1.3) 2.2 (2.2, 2.3) 3.0 (2.9, 3.1) 3.6 (3.5, 3.7) 

FS 139 2,519 2.6 (1.9, 3.2) 4.2 (3.4, 5.1) 4.8 (3.9, 5.7) 5.4 (4.4, 6.4) 

Hinged 86 1,133 3.5 (2.4, 4.6) 5.3 (3.9, 6.7) 6.5 (4.8, 8.1) 7.7 (5.8, 9.4) 

 5 yr 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

CR 3.3 (3.2, 3.3) 3.6 (3.5, 3.7) 3.9 (3.8, 4.0) 4.2 (4.1, 4.3) 4.5 (4.5, 4.6) 4.8 (4.8, 4.9) 

PS 4.0 (3.9, 4.1) 4.4 (4.3, 4.5) 4.8 (4.7, 4.9) 5.2 (5.1, 5.3) 5.6 (5.5, 5.7) 6.0 (5.9, 6.1) 

FS 6.3 (5.1, 7.4) 6.5 (5.3, 7.7) 6.8 (5.6, 8.1) 8.1 (6.5, 9.6) 8.6 (6.8, 10.2) 8.9 (7.0, 1.07) 

Hinged 8.8 (6.7, 10.9) 10.6 (8.1, 13.1) 11.0 (8.4, 13.6) 12.5 (9.3, 15.5) 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 

 11 yr 12 yrs 13 yrs 14 yrs 15 yrs 16 yrs 

CR 5.2 (5.1, 5.3) 5.5 (5.4, 5.6) 5.9 (5.8, 6.0) 6.2 (6.1, 6.4) 6.7 (6.6, 6.9) 7.1 (6.9, 7.3) 

PS 6.4 (6.3, 6.6) 6.8 (6.6, 7.0) 7.2 (7.0, 7.4) 7.5 (7.3, 7.8) 8.0 (7.7, 8.3) 8.5 (8.1, 8.9) 

FS 8.9 (7.0, 1.07) 10.6  (7.8, 13.7)  11.4 (8.0, 14.7) 11.4 (8.0, 14.7) 11.4 (8.0, 14.7) - 

Hinged 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 13.5 (9.8, 17.2) 
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Figure 5.3 presents the CPR among the study populations for conventional and 

complex procedures showing the proportion revised. The conventional curve shows a 

10-year CPR of 10.3% (8.6, 12.0) for the complex designs and a 10-year CPR of 5.2% 

(5.1, 5.2) for the conventional prostheses performed in primary TKR (Table 5.2).  

 
Figure 5. 3. CPR of conventional and complex comparator groups.  

Table 5. 2. Yearly CPR of the comparator groups. 

Our findings show a higher sensitivity obtained for the early assessment of 

conventional prostheses with the potential to detect outliers with greater accuracy. The 

modified conventional comparator caused the identification of additional conventional 

and fewer complex prostheses through stages I and II of the standardised approach. 

The non-detected devices with complex designs could not be actual outlier 

prostheses. They were mostly used in high-risk surgeries and needed to be compared 

statistically to the more relevant comparator.  

Table 5.3 shows the details of the two additional combinations detected utilising the 

modified comparator focusing on the routinely used devices. Defining the specific 

comparator for complex design prostheses reduced the number of identified outliers 

by the AOANJRR standard (Table 5.4). The revision rates of these devices exceeded 

CPR N Revised N Total 1 yr 2 yrs 3 yrs 4 yrs 

Conventional 24,131 636,393 1.0 (1.0, 1.1) 2.0 (1.9, 2.0) 2.6 (2.6, 2.7) 3.10 (3.0, 3.1) 

Complex 225 3,652 2.8 (2.3, 3.4) 4.5 (3.8, 5.2) 5.3 (4.5, 6.1) 6.0 (5.1, 6.9) 

 5 yr 6 yrs 7 yrs 8 yrs 9 yrs 10 yrs 

Conventional 3.5 (3.4, 3.5) 3.8 (3.8, 3.9) 4.2 (4.1, 4.2) 4.5 (4.4, 4.5) 4.9 (4.8, 4.9) 5.2 (5.1, 5.3) 

Complex 7.0 (6.0, 8.0) 7.7 (6.6, 8.8) 7.9 (6.8, 9.0) 9.2 (7.8, 10.6) 9.9 (8.3, 11.4) 10.3 (8.6, 12.0) 

 11 yr 12 yrs 13 yrs 14 yrs 15 yrs 16 yrs 

Conventional 5.5 (5.5, 5.6) 5.9 (5.8, 6.0) 6.2 (6.1, 6.3) 6.6 (6.5, 6.7) 7.1 (6.9, 7.2) 7.5 (7.4, 7.7) 

Complex 10.3 (8.6, 12.0) 13.1 (10.2, 16.0) 13.9 (10.6, 17.0) 13.9 (10.6, 17.0) 13.9 (10.6, 17.0) 13.9 (10.6, 17.0) 



stage I but there was no significant difference between the HRs of the listed 

components and the complex comparator. The use of modified comparator groups 

caused a meaningful change in the number of identified prostheses as being at risk.  

Table 5. 3. Additional identified conventional prostheses using the modified comparator. 

 Descriptive information 1st stage 2nd stage Comparator 

Femoral/Tibial 
N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

HR - adjusted for 

age and gender, 

P-value 

Current Conventioanl 

Device I 43 481 3555.7 1.21 (0.87, 1.63) 
2.17 (1.61, 2.93) 

p<0.001 
0.61 (0.6, 0.61) 0.60 (0.59, 0.61) 

Device II 58 438 4844.4 1.20 (0.91, 1.55) 
2.37 (1.83,3.06) 

p<0.001 
0.61 (0.6, 0.61) 0.60 (0.59, 0.61) 

Table 5. 4. Non-detected complex prostheses using the modified comparator. 

 Descriptive information 1st stage 2nd stage Comparator 

Femoral/Tibial 
N 

Revised 

N 

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

HR - adjusted for 

age and gender, 

P-value 

Current Complex 

Device III 11 124 655.6 1.68 (0.84, 3.0) 
1.18 (0.64, 2.16) 

P=0.594 
0.61 (0.6, 0.61) 1.42 (1.23, 1.61) 

Device IV 21 211 974.4 2.15 (1.33, 3.29) 
1.44 (0.92, 2.26) 

p=0.108 
0.61 (0.6, 0.61) 1.42 (1.19, 1.58) 

Device V 27 478 2121.7 1.27 (0.84, 1.85) 
0.92 (0.62, 1.38) 

p=0.694 
0.61 (0.6, 0.61) 1.42 (1.25, 1.66) 

Device VI 7 124 476 1.47 (0.59, 3.03) 
0.85 (0.40, 1.82) 

p=0.685 
0.61 (0.6, 0.61) 1.42 (1.24, 1.62) 

Device VII 3 38 231.8 1.29 (0.27, 3.78) 
0.96 (0.31, 3.01) 

p=0.947 
0.61 (0.6, 0.61) 1.42 (1.24, 1.62) 

Device VIII 8 115 371.3 2.15 (0.93, 4.24) 
1.31 (0.64, 2.65) 

p=0.456 
0.61 (0.6, 0.61) 1.42 (1.22, 1.60) 

Device IX 17 295 1074.1 1.58 (0.92, 2.53) 
1.04 (0.63, 1.71) 

p=0.874 
0.61 (0.6, 0.61) 1.42 (1.22, 1.62) 

Device X 6 75 433.6 1.38 (0.51, 3.01) 
0.85 (0.38, 1.92) 

p=0.701 
0.61 (0.6, 0.61) 1.42 (1.24, 1.62) 

5.6.1    Reason for Revision and Type of 

Revision 

The descriptive results of reasons for revisions are listed in Table 5.5 for the two 

modified comparator groups. For both the comparator groups, infection was the most 

common reason for revision. Infection occurred in 24.2% (5846 of 24131) of 

conventional TKR prostheses, followed by loosening (23.9%), patellofemoral pain 

(9.2%), and instability (8.2%). Infection occurred in 52% (117 of 225) of complex knee 

procedures, followed by fracture (9.8%), loosening (9.3%), and instability (6.7%). 
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Table 5. 5. Comparator groups - Reason for revision (follow-up limited to 17 years). 

 Complex Conventional 

Reason for Revision Number 
% Primaries 

Revised 
% Revisions Number 

% Primaries 

Revised 
% Revisions 

Infection 117 3.2 52.0 5846 0.9 24.2 

Fracture 22 0.6 9.8 750 0.1 3.1 

Loosening 21 0.6 9.3 5770 0.9 23.9 

Instability 15 0.4 6.7 2108 0.3 8.2 

Patella Erosion 8 0.2 3.5 1518 0.2 6.3 

Pain 7 0.2 3.1 1983 0.3 8.2 

Bearing Dislocation 7 0.2 3.1 148 0.0 0.6 

Malalignment 4 0.1 1.8 520 0.1 2.1 

Implant Breakage Tibial 

Insert 
4 0.1 1.8 129 0.0 0.5 

Incorrect Sizing 4 0.1 1.8 269 0.0 1.1 

Patellofemoral Pain 3 0.1 1.3 2227 0.3 9.2 

Patella Maltracking 2 0.1 0.9 161 0.0 0.7 

Prosthesis Dislocation 2 0.1 0.9 66 0.0 0.3 

Implant Breakage 

Femoral 
2 0.1 0.9 24 0.0 0.1 

Lysis 1 0.0 0.4 402 0.1 1.7 

Implant Breakage Tibial 1 0.0 0.4 47 0.0 0.2 

Heterotopic Bone 1 0.0 0.4 8 0.0 0.0 

Arthrofibrosis - - - 896 0.1 3.7 

Wear Tibial Insert - - - 366 0.1 1.5 

Metal Related Pathology - - - 339 0.1 1.4 

Implant Breakage Patella - - - 125 0.0 0.5 

Synovitis - - - 78 0.0 0.3 

Osteonecrosis - - - 51 0.0 0.2 

Wear Patella - - - 33 0.0 0.1 

Tumour - - - 19 0.0 0.1 

Wear Tibial - - - 9 0.0 0.0 

Progression Of Disease - - - 4 0.0 0.0 

Wear Femoral - - - 3 0.0 0.0 

Incorrect Side - - - 1 0.0 0.0 

Post Operative 

Haematoma 
- - - 1 0.0 0.0 

Patella Dislocation - - - - - - 

Other 4 0.1 1.8 230 0.0 0.9 

N Revision 225 6.2 100.0 24,131 3.8 100.0 

N Primary 3,652   636,393   

Note. % Primaries Revised: The contribution of each revision diagnosis as a percent of all primary practices.  

   % Revisions: The percentage of each revision diagnosis of the total number of revisions. 

Figure 5.4 details the cumulative incidence of the most common revision reasons 

for complex design prostheses in primary total knee surgeries. Figure 5.5 illustrates a 

comparative graph that provides the cumulative incidence of the same revision causes 

for the conventional comparator group. The 10-year cumulative incidence with 95% CI 

of infection for the complex group was 4.8%, higher than the 1.1% incidence for the 

conventional designs. The overall risk of other revision causes for the complex designs 

was also higher than that of the conventional prostheses. Early infection is the most 

probable scenario for each study population, particularly underlined for the complex 

devices with 6-month cumulative incidences of 1.4%. 



 
Figure 5. 4. Cumulative incidence revision diagnosis for the complex primary total knee. 

 
Figure 5. 5. Cumulative incidence revision diagnosis for the conventional primary total knee. 

The changes of the most common types of revisions were studied by undertaking 

a descriptive analysis limited to 17 years of follow-up for the two study populations. 

Table 5.6 shows that ‘TKR (tibial/femoral)’ and ‘insert only’ were the most common 

major and minor types of revision respectively, for both the comparator groups. 

However, there are variations in the incidence probability of the other types for the 

complex and conventional total knee. Overall, the results for minor components 

(54.5%) presented a higher proportion revised than the major device components 

(45.5%). 
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Table 5. 6. Comparator groups - Type of revision (follow-up limited to 17 years). 

 Complex Conventioanl 

Type of Revision Number 
% Primaries 

Revised 
% Revisions Number 

% Primaries 

Revised 
% Revisions 

TKR (Tibial/Femoral)  32 0.9 14.2 6206 1.0 25.7 

Tibial Component 10 0.3 4.4 2070 0.3 8.6 

Cement Spacer 21 0.6 9.3 1309 0.2 5.4 

Femoral Component 23 0.6 10.2 1262 0.2 5.2 

Removal of Prostheses 3 0.1 1.3 122 0.0 0.5 

Total Femoral 1 0.0 0.4 11 0.0 0.0 

Reinsertion of Components - - - 10 0.0 0.0 

N Major 90 2.5 40.0 10,990 1.7 45.5 

Insert Only  102 2.8 45.3 5820 0.9 24.1 

Patella Only 21 0.6 9.3 4783 0.8 19.8 

Insert/Patella 8 0.2 3.6 2479 0.4 10.3 

Minor Components 3 0.1 1.3 48 0.0 0.2 

Cement Only 1 0.0 0.4 11 0.0 0.0 

N Minor 135 3.7 60.0 13,141 2.1 54.5 

N Revision 225 6.2 100.0 24,131 3.8 100.0 

N Primary 3,652   636,393   

Note. % Primaries Revised: The proportional contribution as a percentage of all primary procedures.  

% Revisions: The number of revisions as a percentage of the total number of revisions. 

5.6.2    Revision Rates of Comparator Groups by 

Fixation 

Prostheses typically have a recommended fixation method but can be used with an 

alternative fixation according to patient characteristics and the primary diagnosis. For 

primary conventional TKR, cementless fixation has a higher rate of revision than 

cemented fixation and hybrid (tibial-cemented) after three months. Figure 5.6 

illustrates that hybrid (tibial-cementless) has the highest CPR up to 15.5 years of 

follow-up when a conventional stabilised knee is used. Significant differences were 

shown in the HR of the cementless against both cemented [HR 1.15 (1.12, 1.19), 

p<0.001] and hybrid (tibial-cemented) [HR 1.27 (1.23, 1.32), p<0.001] using Cox 

proportional hazard model. The cementless fixation with less than 10 observations has 

the lowest revision rate when a complex design prosthesis is used (Figure 5.7). 

However, this needs to be reassessed later over a larger sample size due to the limited 

numbers at risk. Cemented fixation shows better overall outcomes than both hybrid 

fixations for complex procedures. There is no significant difference in the HR between 

the revision rate of the fixation methods for complex procedures over the entire period. 



 
Figure 5. 6. CPR of conventional primary total knee replacement by fixation. 

 
Figure 5. 7. CPR of complex primary total knee replacement by fixation. 

5.6.3    Revision Rates of Comparator Groups by 

Bearing Surface 

Two main polyethylene types are used in primary TKR: cross-linked polyethylene 

(XLPE) and non-XLPE. The XLPE includes a sub-group that has antioxidants added. 

After three months, XLPE has a lower revision rate than the non-XLPE for 

conventional procedures (Figure 5.8). The primary reason for this difference is a 

decreased cumulative incidence of late loosening. The difference between XLPE and 

non-XLPE is more apparent over a longer period. For complex procedures, there is a 

lower overall rate of revision for the XLPE compared to non-XLPE whereas the 
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antioxidant version still needs more data to better reflect the revision outcome (Figure 

5.9). The 15-year CPR rate of conventional procedures for XLPE is 4.92% (4.64, 5.21) 

and for non-XLPE is 7.66% (7.51, 7.81). Within the community of complex prostheses, 

the 15-year CPR for XLPE is 10.18% (4.97, 15.10) and for non-XLPE is 14.15% 

(10.67, 17.50). There are significant differences when non-XLPE is used compared to 

XLPE subtypes (including the antioxidant version) for the standard design prostheses 

[HR 1.40 (1.36, 1.44), p<0.001]. However, there was no statistical difference when 

XLPE was analysed with/without the addition of antioxidants. The same analysis for 

the complex procedures also shows no significant difference among the HRs of the 

types of bearing surfaces. 

 

Figure 5. 8. CPR of conventional primary total knee replacement by tibial bearing surface. 

 

Figure 5. 9. CPR of complex primary total knee replacement by tibial bearing surface. 



5.6.4    Revision Rates of Comparator Groups by 

Bearing Mobility 

The CPR rate of complex and conventional TKR by bearing mobility is shown in 

Figures 5.10 and 5.11. Surgeons selected a variety of mobility designs with respect to 

patient characteristics. Tibial prostheses may be modular or non-modular. Modular 

prostheses with fixed or mobile designs have a metal base plate and tibial insert. Non-

modular prostheses are either all-polyethylene or polyethylene moulded to a metal 

baseplate. Fixed bearings comprise non-modular tibial prostheses and those with fixed 

inserts that do not relatively move to the baseplate. Fixed-bearing prostheses have a 

lower overall CPR than all types of mobile bearings for complex and conventional 

procedures. Note that there is no complex primary TKR performed with rotating-sliding 

and sliding bearing mobility. When types of mobile bearings are compared for 

conventional prostheses, rotating mobility has a lower overall revision rate than the 

other types. However, the group of prostheses with sliding mobility design has been 

registered in only a limited number of observations. In total, there is a significant 

difference when comparing the combined group of mobile against fixed conventional 

prostheses using Cox proportional hazard model [HR 1.25 (1.21, 1.29), p<0.001].  

 
Figure 5. 10. CPR of conventional primary TKR by bearing mobility. 
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Figure 5. 11. CPR of complex primary TKR by bearing mobility.  

(Note. There is no complex primary TKR performed with “Rotating - Sliding” and “Sliding” bearing mobility.) 

5.6.5    Revision Rates of Comparator Groups by 

Patella Usage 

Primary conventional TKR with patellar resurfacing has a lower revision rate 

significantly than procedures without patellar resurfacing [HR 1.32 (1.29, 1.36), 

p<0.001]. However, HR does not show a significant statistical difference when the 

patella is resurfaced for complex prostheses [HR 1.04 (0.79, 1.37), p=.78]. It is noted 

that outcomes related to the use of patellar resurfacing differ by the type of prosthesis 

used (Figures 5.12 and 5.13).   

 
Figure 5. 12. CPR of conventional primary TKR by patella usage. 



 
Figure 5. 13. CPR of complex primary TKR by patella usage. 

5.7   Discussion 

The problem with the current approach is that it does not adequately differentiate 

between the complex and conventional design prostheses. Given the higher revision 

risk of complex knee designs in primary total knee surgeries, this study aims to identify 

more relevant comparator groups to better reflect conventional and complex surgical 

practices. Conventional designs include CR and PS, and the knee designs used in 

more complex surgery includes fully stabilised (FS) and hinged designs.  

When the CR and PS groups were combined as the final conventional comparator 

group, the 10-year CPR was 5.2% (5.1, 5.3). When the FS and hinged design groups 

were combined as a comparator group of complex devices to reflect devices used only 

for specific purposes, the CPR at 10-year was 10.3% (8.6, 12.0). The use of modified 

comparator groups led to identifying additional conventional prostheses but fewer 

complex designs as being at risk. 

The conventional comparator improved sensitivity for the comparative assessment 

of standard design prostheses. In addition, a focus on complex prostheses generated 

a more relevant approach for the early identification of prostheses used for specific 

purposes in primary TKR. Through undertaking the AOANJRR standardised 

approach, fewer complex designs and additional conventional prostheses were 

identified as being at risk by utilising the modified comparator groups.  
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These findings may enhance the signal detection of poor-performing prostheses in 

a more relevant and effective comparative statistical analysis. Improved survivorship 

and better functional performance are projected when a new knee system surpasses 

a former model. However, these novel systems have design justifications to address 

stability, wear, and patellofemoral articulation. All design modifications do not deliver 

a consequence in improved survivorship [115]. Due to these ongoing changes to 

reduce complications, extend implant lifespan, and improve functional outcomes, the 

comparator needed to be reconsidered by the stability design to improve the relevance 

of comparative analyses. 

This study also has several limitations. First, there was no further subdivision by 

other potential factors such as patella usage, fixation, bearing surface, and bearing 

mobility. However, each factor may influence the survivorship of comparator groups 

for complex and conventional designs [5, 34, 40]. At this stage, further subdivisions 

may adversely affect the effectiveness of initial screening for a conservative 

meaningful comparison of the prosthesis performance. Second, the AOANJRR has 

recently expanded classification to include medial pivot designs separately in its 

annual reports. This conventional design of total knee prostheses was not included in 

our scope as registered much less than CR and PS. The AOANJRR annual reports 

show that the medial pivot design provided satisfactory pain relief and functional 

improvement [5]. 

Some pre-existing conditions may affect the outcome of TKR because of the 

complexity of the surgery or the specific state of the affected limb. For example, when 

the surgeon is dealing with an unusual deformity of the bone or a soft-tissue envelope 

around the knee, there is the likelihood of increased risk of revision, thereby affecting 

the performance of individual prostheses [192-194]. Complex knees related to the type 

of patient or local conditions of the knee is considered and assessed by senior 

clinicians during the final stage of the AOANJRR standardised approach and are 

outside the scope of initial screening. Therefore, the focus of this chapter was on the 

first and second stages of the AOANJRR screening process. Future studies could be 

conducted to study a variety of factors, including the use of prostheses in complex 

primary situations, inadequate sample size, or whether they have been combined with 

prostheses already known to have a higher rate of revision or major differences in 

primary diagnosis. 



The safety and effectiveness of medical devices such as knee arthroplasty 

prostheses are significant public health concerns [169]. Outlier detection will continue 

to evolve by reconsidering the improvements made periodically in prosthesis design 

and use. Joint registries play a significant role in controlling the harm and cost of using 

poor-performing devices in knee replacement surgeries [152]. An international 

collaboration between joint arthroplasty registries may enhance the process by 

generating a more comprehensive comparator for total complex and conventional 

knee prostheses [167]. 

5.8   Summary 

This research suggests more relevant and effective comparator groups in primary 

TKR for a more appropriate comparison of device components. Utilising the 

conventional comparator improved the sensitivity for the comparative assessment of 

standard design prostheses. In addition, a focus on only complex prostheses 

generated a more specific approach for the early identification of prostheses used for 

specific purposes. The use of modified comparator groups led to identifying fewer 

complex and additional conventional prostheses as being at risk. 

  



  

 

 

 

 

 

Chapter 6. Can Machine Learning Approach Contribute 

to Monitoring Post-Market Surveillance of Total Knee 

Arthroplasty Prostheses? 

  



6.1    Overview 

The industry continues to develop new implants and associated technologies, 

although more rigorous data is still needed to justify their introduction [165, 168, 169]. 

Total knee prostheses used in primary procedures are among the most relevant due 

to their widespread use and the number of poorly-performing devices [4, 190]. 

Monitoring the prostheses that have a higher risk of requiring revision, and early 

detection of these devices will produce better results in longer times and reduce health 

expenses [4, 152].  

Most medical devices and surgical implants, including knee replacements, do not 

cause a problem or concern. However, joint replacement registries have played an 

important role in identifying the devices with a higher-than-anticipated revision rate 

called outliers [34, 44], particularly since it is difficult to ascertain the safety and 

comparative advantages of innovative knee implants that have been recently 

introduced into the market [152]. Hence, large-scale device evaluation using 

multinational registry data has become an essential means of determining whether a 

device itself has an increased risk of failure [167, 172]. 

A practical multistage approach has been developed by the Australian Orthopaedic 

Association National Joint Replacement Registry (AOANJRR) to report the relative 

performance of prostheses [5]. Total knee devices are comprised of multiple parts 

working together, including two major femoral and tibial components. Revision surgery 

may occur because of the failure of one or both of these components. Both the tibial 

and femoral components used for primary total knee surgery are usually manufactured 

by the same company. This means that, generally, prosthesis combinations are 

identified by the AOANJRR rather than individual devices. The detection of total knee 

outliers with higher-than-anticipated revision rates is challenging as many prosthesis 

combinations are used differently depending on their purpose. 

The aim of the initial screening method developed by the registry is to identify 

prostheses that differ significantly (twice than other total knee prostheses) from the 

combined revision rate per 100 observed component years for all other prostheses 

within the same class—comparator. The impact of confounding factors is also 

investigated by calculating the age- and gender-adjusted hazard ratio (HR) to 

determine whether there is a significant difference compared to the HR of the 
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comparator. However, the method ignores the time ordering and does not address the 

confounding that may be due to device- and patient-related variables. Ideally, a time‐

to‐event analysis needs to be undertaken to detect poor-performing devices while 

limiting the confounding effect of other components, device attributes, and patient 

characteristics. 

Machine learning (ML) techniques are adopted for a variable selection problem 

because they have shown the potential to handle high-dimensional data with a vast 

number of interactions. This feature can be a solution to the additional complexity of 

confounding in medical research. The primary purpose of this thesis was to evaluate 

the use of ML for monitoring total knee prostheses. The effectiveness of the two 

proposed methods is determined by their ability to identify the same outliers identified 

by the AOANJRR standardised approach. The outcome can be used as a step towards 

improving post-market surveillance–evaluation efforts using AOANJRR-registry data. 

6.2    Materials and Methods 

The scope of this study is primary total knee replacement with primary diagnoses 

of Osteoarthritis (OA). The AOANJRR dataset contains 265,655 observations from the 

1st of January 2015 (when the registry began collecting body mass index (BMI)) to the 

end of December 2019, as there was a desire to include all the possible patient-related 

confounding factors. Because almost all patients who underwent primary total knee 

arthroplasty had a major diagnosis of OA (98%), the data were filtered to only include 

cases with primary diagnosis OA. This comprehensive database comprises 160 

unique prosthesis combinations, each of which consists of two major tibial and femoral 

components [5]. The same company's tibial/femoral components are typically 

combined and used in a total knee intervention, which was the reason for studying 

combinations rather than individuals [5]. 

Tibial/femoral components, device attributes, and patient characteristics are the 

inputs, and the time to the first revision surgery is the outcome of survival analysis. 

Each device component was clearly introduced to the model by an indicator variable 

showing the name of the model. Device attributes include prosthesis stability, bearing 

mobility, bearing surface, fixation, and use of patella (Table 6.1). The reason for using 

the covariates is to enable the algorithm to consider the linear and non-linear 



correlations. For example, the effect of fixation varies depending on prosthesis stability 

that needs to be considered in training [5]. 

Most patients were female (55.3%), had an American Society of Anesthesiologists 

(ASA) score of less than 3 (60.1%), the average age of 68.2 with a BMI of 32.1 kg/m². 

Patient covariates were age, gender, BMI, and American Society of Anesthesia (ASA) 

scores; all considered potential factors contributing to survival outcomes. Gender and 

ASA score (less than 3 vs. 3) were patient covariates defined in two levels. Age and 

BMI were categorized into three groups according to the distribution of our data. There 

were only missing values for BMI (6.26%) and ASA scores (0.41%) of patient data 

substituted using multiple imputation [174].  

Table 6. 1. Descriptive information of patient- and device-related covariates. 

Patient characteristics Level n (%) 

Age 

< 65 88,961 (33.5%) 

65-74 110,138 (41.5%) 

≥ 75 66,556 (25.0%) 

Gender 
Female 146,841 (55.3%) 

Male 118,814 (44.7%) 

BMI 

< 25 25,992 (9.8%) 

25-29.9 77,326 (29.1%) 

≥ 30 145,704 (54.8%) 

ASA score 
≥ 3 104,978 (39.5%) 

< 3 159,586 (60.1%) 

Device attributes Level n (%) 

Stability 

Fully Stabilised 1,378 (0.5%) 

Hinged 628 (0.2%) 

Medial Pivot Design 19,918 (7.5%) 

Minimally Stabilised 183,470 (69.1%) 

Posterior Stabilised 60,261 (22.7%) 

Bearing mobility 
Fixed 230,106 (86.6%) 

Mobile 35,549 (13.4%) 

Bearing surface 
Non XLPE 103,947 (39.1%) 

XLPE 161,708 (60.9%) 

Fixation 

Cemented 177,522 (66.8%) 

Cementless 31,398 (11.8%) 

Hybrid 56,735 (21.4%) 

Patella used 
Yes 177,660 (66.9%) 

No 87,995 (33.1%) 

Death was treated as a censored case, and survival time was calculated from the 

time of the primary implantation to the end of December 2019 for those patients who 

had not experienced revision or who had died. The main objective was to evaluate the 

use of ML to monitor primary total knee prostheses using data from the AOANJRR to 

control and reduce confounding. The exploration of the variable importance using ML 

techniques needs a model that includes carefully-selected hyperparameters [195]. A 

two-step ML approach was proposed for both the random survival and Cox models to 

ascertain the significance of variables in the presence of confounding effects. The 
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effectiveness was determined by the model’s ability to detect the same outliers 

identified after I and II stages of the AOANJRR standardised approach. 

The first stage of the standard is a screening test that identifies prostheses that 

exceed twice the combined revision rate per 100 observed component years of all 

other prostheses in the same class. In the second stage, age- and gender-adjusted 

HR is calculated to check whether there is a significant difference compared to the 

combined hazard rate of the comparator and take into consideration the impact of 

confounding. The comparator for the conventional practices contains all other 

prostheses designed with only PS and CR stability. In addition, the comparator for 

complex procedures used only for specific purposes in primary total knee replacement 

involves FS and hinged designs. These comparator groups are the modified final 

versions developed in Chapter 5. 

R Statistical software glmnet package [185] version 4.1-1 was used for the Cox 

elastic net, survival package [186] version 3.2-11 for the unregularized Cox and 

randomForestSRC [174] version 2.11.0 for random survival modelling and MICE 

package [187] version 3.14.0 for multiple imputations of missing values. 

6.3    Machine Learning Statistical Analyses 

The first method used was an extension of random forest called Random Survival 

Forest (RSF) to analyse survival data with right-censored cases [175, 176]. A forest is 

a group of 2,000 trees; each tree grows by iterating the binary split of the AOANJRR 

data using a log-rank test until a stopping rule is reached. A random set of variables 

splits the candidate-selected node into two daughter nodes from each parent node. 

This variable maximizes the log-rank statistic [177] until a terminal node has no fewer 

than two revisions. Because of a focus on feature selection rather than prediction, this 

study chose deep trees to improve the probability of reflecting variations between the 

predictors.  

Variable selection is randomized using the parameter ‘mtry’. The algorithm selects 

X of the maximum of the input variables (P) randomly on each node. The variables 

considered in each division of each tree were randomly selected, but the number of 

variables was fixed at ‘ P / 4’ [116]. The number of variables considered in each 



splitting is greater than the conventional (√P), as an increasing number of variables in 

each split is able to limit the bias in the selection of correlated input variables [178]. 

The method excluded noisy variables using a backward selection procedure in 

order to determine the most important variables. To obtain a reduced set of salient 

variables, the following stepwise selection method was implemented to systematically 

remove noise variables: (i) calculate RSF using all the covariates and all device 

components; (ii) evaluate the inputs and remove noisy variables; (iii) compute a new 

RSF using the remaining variables; and (iv) select a set of components with a higher 

risk of revision. Finally, a P-value cut-off of 0.05 was selected to characterize outliers. 

A similar algorithm was proposed by Ishwaran et al. [121] and Dietrich et al. [179]. 

Variables were ranked according to the minimal depth [180]. The minimal depth of 

a variable is the distance from the tree’s root node to the node where the variable is 

split first. The distance is recorded for each variable, and then their average within the 

forest is computed. Shorter distances show variables with more significant impacts. 

To determine whether the minimum depth of the device component exceeds the 

probability, a threshold P-value of 0.05 was determined according to the empirical null 

distribution for each variable [116, 181]. The null distribution is based on 1,000 

permutations of the response, grows a forest with 200 trees in each, and calculates 

the minimal depth of each variable. The adjusted P-values based on false discovery 

rate (FDR) were not calculated because of the small number of permutations 

implemented while it would incur a higher computational cost. A variable is considered 

significant if the permutation P-value was less than 0.05.  

Secondly, regularized/unregularized Cox was applied using an ML supervised 

algorithm combined with a well-known conventional method. The second step 

suggests a more understandable approach for the interpretation of outcomes and the 

reporting of statistical significance of inputs. Some of the device components that best 

predicted survival were selected using a standardized model with a combination of L1 

(lasso) and L2 (ridge) penalties. The elastic-net in the presence of lasso or ridge was 

chosen due to its superior performance with highly-correlated variables [182, 183]. 

The elastic-net was specified by a value (α = 0.5; ranged from 0 to 1) between ridge 

regression (α = 0) and LASSO (α = 1). The parameters determining the complexity of 

the model were chosen by 10-fold Cross-Validation [182]. No penalty was applied to 
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any of the four patient variables in the model, as the intention was to fully control the 

effects of a relatively small number of patient characteristics.  

The regularized Cox model does not report a P-value because it does not test the 

variable for the null hypothesis. This was the reason for using the second step, where 

the selected variables are included in the unregularized Cox proportional hazards 

model. Given a need to draw inferences while appreciating that a selection process 

was initially undertaken, P-values that maintain the FDR at 0.05 [184] were also 

discovered. This was done by using the total number of device components that were 

included in the regularized model (we set P-values ≈ 1 for unselected variables, as 

implied by zero coefficient in the model). Control over the FDR keeps the portion of 

false discoveries at the chosen nominal value among the rejected null hypotheses.  

6.4    Results 

Figure 6.1 shows the survival of devices over the period chosen for this study. 

Initially, the AOANJRR standard was employed as the metric to evaluate the 

performance of ML in the initial screening of knee prostheses. The prostheses 

identified as having higher-than-expected rates of revision according to the AOANJRR 

standard are listed in Table 6.2. The AOANJRR standardised approach identified five 

conventional/non-complex design combinations. From the prostheses listed below, 

the registry has reported all these devices through previous annual investigations with 

a greater number of observations. A device with a complex design is not generally 

identified as an outlier after all the stages due to an expected higher risk of revision 

for the use of these devices in primary total knee surgery. 

Table 6. 2. Identified outlier combinations by the 1st and 2nd stages of the AOANJRR standard. 

Femoral/Tibial Descriptive information 1st stage 2nd stage Comparator 

Conventional 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

HR - adjusted for age 

and gender, P-value 

 Other total knee  

(PS & CR) 

Device I 19 401 1068.8 1.78 (1.07, 2.78) 
2.33 (1.48, 3.65) 

p<0.001 
0.76 (0.74, 0.78) 

Device II 25 561 1405.8 1.78 (1.15, 2.62) 
2.23 (1.51, 3.31) 

p<0.001 
0.76 (0.74, 0.78) 

Device III 22 436 1416.4 1.55 (0.97, 2.35) 
2.07 (1.36, 3.15) 

p<0.001 
0.76 (0.74, 0.78) 

Device IV 116 2648 7109.6 1.63 (1.35, 1.96) 
2.21 (1.84, 2.66) 

p<0.001 
0.75 (0.73, 0.77) 

Device V 15 222 560.1 2.68 (1.50, 4.42) 
3.28 (1.97, 5.44) 

p<0.001 
0.76 (0.74, 0.78) 

Note. The comparator for conventional prostheses includes all other prostheses with PS and CR stability, and 

the comparator used for complex prostheses involves only FS and hinged designs.  



Table 6.3 indicates the extent to which outliers were detected using the RSF 

backward selection procedure and regularized/unregularized Cox. Devices IV and V 

were identified using both the ML methods, taking into account patient- and device-

related confounding. However, only one of the same outliers (IV) was detected when 

the FDR was maintained at 0.05 by regularized Cox. The Cox approach showed 

greater performance by reporting an additional device (III). 

 
Figure 6. 1. Time to first revision for the AOANJRR primary total knee dataset. 

In the case of RSF, closer proximity to the root node means a smaller average 

minimal depth and indicates a more significant contribution by the predictor. However, 

a lower minimal depth rank does not necessarily imply a poorer prosthesis. Since RSF 

cannot report the exact P-value, the distribution of importance under the null 

hypothesis of no association to the response was created by several replications of 

permutation responses. Note that the noisy variables were removed in an initial step 

and were not included in the second RSF model in order to avoid bias.  

Table 6. 3. Results for identified prosthesis combinations by RSF and regularised/unregularised Cox. 

Femoral/Tibial Descriptive information Random Survival Forest Regularized/Unregularized Cox  

Conventional 
N  

Revised 

N  

Total 
Obs.Years 

Minimal depth rank 

P-value 
P-value 

Device I 19 401 1068.8 - - 

Device II 25 561 1405.8 - - 

Device III 22 437 1417.8 - 0.018 

Device IV 116 2648 7109.6 
4 

P=0.009 
p<0.001 

Device V 15 222 560.1 
6 

P=0.009 
0.004 

Note. Regularized Cox model selected 85 components. P-values reported for the Cox technique are based on 

a Wald test from an unregularized Cox model with the selected variables. The rank column is based on the 

values for minimal depth. Ranks closer to zero indicate smaller minimal depths representing more substantial 

variable effects. In the case of the regularized/unregularized Cox, “‐” signifies that no P-value is provided, and 
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the prosthesis was not selected by the model. For the RSF, “‐” means that the prosthesis was not included in 

any trees of the second forest after removing noisy variables; thus, there is no rank or P-value. 

The AOANJRR gold standard provided an ideal means of evaluating the 

performance of ML in detecting outlier prostheses. Although the Cox method identified 

three of the same prostheses, only one of them was detected after controlling for the 

FDR. Due to the data-dependent nature of ML, a limited number of observations 

imposes practical constraints on the identification. The main reason for using ML is to 

control potential confounding. This was evaluated by comparing HR for specific 

components in two models: (a) the age and gender-adjusted Cox proportional hazard 

model with a variable representing the use of that component; and (b) the 

unregularized Cox model that includes all the variables selected using the elastic-net 

(i.e., when it was conditioned on the other components and selected covariates). 

Therefore, the difference in HRs between these two models indicates the extent of 

potential confounding with respect to the AOANJRR standard. Most prostheses have 

some reasonable evidence of confounding. The relative difference of 34%, 9%, and 

43% in model coefficients are shown in Figure 6.2 for Devices III, IV, and V, 

respectively.  

 
Figure 6. 2. HR comparison to illustrate the potential confounding. 

(Note. %Diff = [ln (HRAdj. for age and gender) – ln (HRAdj. for all potential confounding factors)]/[ln (HRAdj. for all potential confounding 

factors)]) 



An additional step (stage III) of the AOANJRR standard allows clinicians to obtain 

further information about the identified prosthesis derived from stages I and II. A full 

range analysis is conducted, and the results are discussed during a two-day workshop 

before the outliers are documented in the annual reports. Workshop participants 

consider the factors that could contribute to potential errors, such as the effect of a 

single surgeon, range of catalogue numbers, or a device having a specific purpose. 

This stage enables more real outliers to be recognised and additional confounding 

factors to be considered, supported by more robust evidence. As a result, this study 

designed a compelling and particular method for the comparative study of newly-

introduced prostheses with the view to assessing the impact of surgeons and 

catalogue ranges as a post-statistical analysis. The use of a current comparator leads 

to the identification of much more complex prostheses during the first and second 

stages, although most of them might not be true outliers as they are mostly used for 

specific purposes with an expected higher rate of revision. 

6.5    Subsets of Prosthesis – Catalogue Ranges 

There is a solid argument for using the identification method to examine catalogue 

ranges so as to detect the type of prosthesis that is likely to have a higher revision rate 

than the comparator. The results presented in Tables 6.5 and 6.7 show that Devices I 

and II might not be poor-performing prostheses, as only a subset of these prostheses 

has issues. There are significant variations in the performance of prosthesis subset 

designs (Tables 6.4-6.13). This shows strong evidence to suggest the role of 

confounding factors in detecting poor-performing prostheses. The clinicians should be 

informed about the current status of prostheses using a further analysis of all the 

potential confounders. 

Table 6. 4. Catalogue range description of Device I primary total knee replacement. 

Catalogue Range Catalogue Description Cement Coating Fixation 

Femoral  

KFTCPC0L-KFTCPC6R CR Porous Primary Femoral Component (Wright) NO - POROUS 

KFTCHA1L-KFTCHA6R CR HA Primary Femoral Component (Wright) NO HA Coated POROUS 

KFTCPN2L-KFTCPN4R Advance Stature CR Porous Femoral Component (Wright) NO - POROUS 

KFTCPC0L-KFTCPC6R CR Porous Primary Femoral Component (MicroPort) NO - POROUS 

KFTCPN2L-KFTCPN4R Advance Stature CR Porous Femoral Component (MicroPort) NO - POROUS 

Tibial  

KTSCFM10-KTSCFM51 BioFoam Tibial Base w/ Screwholes Ti (Wright) NO - - 

KTSCFM10-KTSCFM51 BioFoam Tibial Base w/ Screwholes Ti (MicroPort) NO - - 
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Table 6. 5. Revision rates of Device I by catalogue number range. 

Femoral range Tibial range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Yrs (95% CI) 

KFTCPC0L-KFTCPC6R KTSCFM10-KTSCFM51 7 89 372.8 1.88 (0.75, 3.87) 

KFTCPC0L-KFTCPC6R KTSCFM10-KTSCFM51 0 3 14.0 0.00 (0.00, 26.37) 

KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 2 5.0 0.00 (0.00, 74.22) 

KFTCPC0L-KFTCPC6R KTSCFM10-KTSCFM51 1 16 58.3 1.71 (0.04, 9.56) 

KFTCPC0L-KFTCPC6R KTSCFM10-KTSCFM51 0 16 50.9 0.00 (0.00, 7.24) 

KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 5 15.7 0.00 (0.00, 23.44) 

KFTCPC0L-KFTCPC6R KTSCFM10-KTSCFM51 11 259 535.7 2.05 (1.02, 3.87) 

KFTCPN2L-KFTCPN4R KTSCFM10-KTSCFM51 0 11 16.3 0.00 (0.00, 22.63) 

Total 19 401 1068.8 1.78 (1.16, 2.61) 

Table 6. 6. Catalogue range description of Device II primary total knee replacement. 

Catalogue Range Catalogue Description Cement Coating 

Femoral  

NO582K-NO688K FP/UC Cementless Femoral Component NO HA COATED 

NB702K-NB758K PS CoCr Cemented Standard Femoral Component YES - 

NO502Z-NO608Z AS FP/UC Cemented Premium Femoral Component YES - 

NB702Z-NB758Z AS PS CoCr Cemented Premium Femoral Component YES - 

NO502K-NO608K FP/UC Cemented Standard Femoral Component YES - 

Tibial  

NB731Z-NB788Z AS UC/PS Cemented Modular Tibial Plateau YES - 

NB741K-NB798K UC/PS Cementless Modular Tibial Plateau NO HA COATED 

NX731K-NX788K UC/PS Cemented Pro Modular Tibial Component YES - 

NB731K-NB788K UC/PS Cemented Modular Tibial Plateau YES - 

Table 6. 7. Revision rates of Device II by catalogue number range. 

Femoral range Tibial range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

NO582K-NO688K NB731Z-NB788Z 0 2 6.9 0.00 (0.00, 53.08) 

NO582K-NO688K NB741K-NB798K 14 130 458.3 3.05 (1.67, 5.12) 

NO582K-NO688K NX731K-NX788K 0 56 85.7 0.00 (0.00, 4.30) 

NO582K-NO688K NB731K-NB788K 0 1 4.8 0.00 (0.00, 76.37) 

NB702K-NB758K NB731Z-NB788Z 2 94 151.6 1.32 (0.16, 4.76) 

NB702K-NB758K NX731K-NX788K 0 15 4.0 0.00 (0.00, 92.68) 

NO502Z-NO608Z NB731Z-NB788Z 3 159 407.0 0.74 (0.15, 2.15) 

NO502Z-NO608Z NB741K-NB798K 0 1 4.2 0.00 (0.00, 88.67) 

NB702Z-NB758Z NB731Z-NB788Z 0 1 2.3 0.00 (0.0, 161.79) 

NB702Z-NB758Z NX731K-NX788K 0 4 19.3 0.00 (0.00, 19.11) 

NO502K-NO608K NX731K-NX788K 6 98 261.7 2.29 (0.84, 4.99) 

Total 25 561 1405.8 1.78 (1.24, 2.48) 

Table 6. 8. Catalogue range description of Device III primary total knee replacement. 

Catalogue Range Catalogue Description Cement 

Femoral  

196008400-196009400 PS RPF CoCr Femoral Component YES 

196040100-196050600 PS Cemented Femoral Component YES 

196004400-196005400 CS Cemented Femoral Component YES 

196081100-196091600 PS150 CoCr High Flex Femoral Component YES 

960042-960058 Cruciate Sacrificing NonPorous Femoral Component YES 

950010-950027 RPF CoCr Cemented Femoral Component YES 

Tibial  

129433110-129433170 Cemented Keel Tibial Tray YES 

129435215-129435415 Revision Cemented 15mm Tibial Tray YES 

129431110-129431170 Cemented Tibial Tray YES 

129435110-129435160 CoCr Revision Cemented Tibial Tray YES 

 

  



Table 6. 9. Revision rates of Device III by catalogue number range. 

Femoral range Tibial range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Yrs (95% CI) 

196008400-196009400 129433110-129433170 1 21 79.4 1.26 (0.3, 9.10) 

196040100-196050600 129433110-129433170 4 46 119.7 3.34 (0.91, 8.56) 

196040100-196050600 129435215-129435415 0 2 5.7 0.00 (0.00, 65.06) 

196040100-196050600 129431110-129431170 4 50 94.4 4.24 (1.15, 10.85) 

196040100-196050600 129431110-129431170 0 1 3.4 0.00 (0.0, 107.23) 

196040100-196050600 129435110-129435160 4 77 194.2 2.06 (0.56, 5.27) 

196004400-196005400 129431110-129431170 1 3 11.3 8.88 (0.22, 49.48) 

196081100-196091600 129433110-129433170 0 16 56.4 0.00 (0.00, 6.54) 

196081100-196091600 129431110-129431170 0 1 1 0.00 (0.0, 380.3) 

960042-960058 129431110-129431170 2 133 526.9 0.38 (0.04, 1.37) 

960042-960058 129435110-129435160 2 7 26.4 7.56 (0.91, 27.31) 

950010-950027 129433110-129433170 4 80 299 1.34 (0.36, 3.42) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

Table 6. 10. Catalogue range description of Device IV primary total knee replacement. 

Catalogue Range Catalogue Description Cement Coating 

Femoral  

10200201-10200217 CoCr Min. Stab. Femoral Component YES - 

10200101-10200117 CoCr Min Stab. HA Pegged Stippled Surface Femoral Component NO HA COATED 

Tibial  

10200501-10200507 CoCr Polished Tibial Baseplate YES - 

10200401-10200407 CoCr HA Stippled Surface Tibial Baseplate NO HA COATED 

Table 6. 11. Revision rates of Device IV by catalogue number range. 

Femoral range Tibial range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Yrs (95% CI) 

10200201-10200217 10200501-10200507 14 482 1323.2 1.06 (0.58, 1.77) 

10200201-10200217 10200401-10200407 0 3 9.6 0.00 (0.00, 38.27) 

10200101-10200117 10200501-10200507 51 1212 3338.5 1.53 (1.14, 2.01) 

10200101-10200117 10200401-10200407 51 951 2438.2 2.09 (1.56, 2.75) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 

Table 6. 12. Catalogue range description of Device V primary total knee replacement. 

Catalogue Range Catalogue Description Cement Fixation 

Femoral    

184500-184536 Vanguard PS Open Box Femoral Porous Coated/Bond Coated NO POROUS 

183100-183136 Vanguard PS Open Box Femoral Interlok YES MATT 

Tibial    

141270-141278 Porous Tibial Tray NO POROUS 

Table 6. 13. Revision rates of Device V by catalogue number range. 

Femoral range Tibial range 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

184500-184536 141270-141278 2 48 154.0 1.30 (0.16, 4.69) 

183100-183136 141270-141278 13 174 406.1 3.20 (1.70, 5.47) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

6.6    Number of Surgeons 

The registry is aware that a single surgeon may be responsible for a prosthesis that 

has a higher revision rate. This situation has occurred twice, and on both occasions, 

subsequent use of the femoral/tibial combination ceased following the publication of 

the Annual Report [5, 165]. Revision rates per 100 component years of the identified 

prostheses were evaluated to determine the effect that a surgeon had on the 

performance of prostheses. By investigating the revision rate of surgeons for each 
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identified device component, those who did not perform well with a device of interest 

can be determined (Table 6.14-6.18). The tables below show surgeon IDs and the 

results of surgical procedures.  

This analysis shows the most significant interactions of devices and surgeons using 

the first stage of the AOANJRR standardised approach. Only the surgeons who had 

performed more than 10 procedures using a device of interest were included. This 

status is significant for two reasons: (i) some surgeons may show a relatively 

acceptable performance with the same device component, or (ii) in the case when a 

device is still not being used to a great extent by various surgeons. All these knee 

prostheses show significant interaction with the experience and expertise of the 

surgeon. For example, surgeons 1177, 1218, 1745 could be responsible for a higher 

than expected rate of revision for Device IV, or the device might affect the performance 

of the surgeon (Table 6.14).  

Table 6. 14. Revision rates of Device I primary total knee replacement by surgeon id. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

283 

Device I 2 134 335.1 0.59 (0.07, 2.16) 

Overall 3 163 407.1 0.74 (0.15, 2.15) 

Ex. Outliers 1 29 72 1.39 (0.03, 7.73) 

482 

Device I 17 264 723.0 2.35 (1.37, 3.76) 

Overall 18 281 790.6 2.28 (1.35, 3.6) 

Ex. Outliers 1 17 67.7 1.48 (0.04, 8.23) 

Table 6. 15. Revision rates of Device II primary total knee replacement by surgeon id. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

101 

Device II 0 11 53.1 0.00 (0.00, 6.95) 

Overall 4 437 1224.9 0.33 (0.09, 0.84) 

Ex. Outliers 4 426 1171.8 0.34 (0.09, 0.87) 

153 

Device II 16 247 652.7 2.55 (1.40, 3.98) 

Overall 17 281 751.5 2.26 (1.32, 3.62) 

Ex. Outliers 0 11 9.3 0.00 (0.00, 39.54) 

975 

Device II 0 48 166.5 0.00 (0.00, 2.21) 

Overall 8 297 690.3 1.16 (0.50, 2.28) 

Ex. Outliers 7 237 492.3 1.42 (0.57, 2.93) 

1037 

Device II 2 107 276 0.72 (0.09, 2.62) 

Overall 2 107 276 0.72 (0.09, 2.62) 

Ex. Outliers - - - - 

1070 

Device II 2 115 159.2 1.26 (0.15, 4.54) 

Overall 4 272 674 0.59 (0.16, 1.52) 

Ex. Outliers 2 157 514.9 0.39 (0.05, 1.4) 

1290 

Device II 1 15 54.7 1.82 (0.05, 10.18) 

Overall 2 72 111.8 1.79 (0.22, 6.46) 

Ex. Outliers 1 57 57.1 1.75 (0.04, 9.75) 

Table 6. 16. Revision rates of Device III primary total knee replacement by surgeon id. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

3 

Device III 2 19 63.0 3.17 (0.38, 11.46) 

Overall 169 7408 21454.9 0.79 (0.67, 0.91) 

Ex. outliers 166 7364 21319.3 0.78 (0.66, 0.90) 

266 Device III 0 16 45.5 0.00 (0.00, 8.11) 



Overall 12 356 814.8 1.47 (0.76, 2.57) 

Ex. outliers 12 340 769.3 1.56 (0.80, 2.72) 

431 

Device III 3 80 239.8 1.25 (0.26, 3.65) 

Overall 3 80 239.8 1.25 (0.26, 3.65) 

Ex. outliers - - - - 

651 

Device III 1 14 33.5 2.98 (0.07, 16.63) 

Overall 7 603 1518.6 0.46 (0.18, 0.95) 

Ex. outliers 6 589 1485.1 0.40 (0.15, 0.88) 

810 

Device III 5 99 368.7 1.35 (0.44, 3.16) 

Overall 9 255 629.9 1.43 (0.65, 2.71) 

Ex. outliers 4 156 261.2 1.53 (0.42, 3.92) 

1167 

Device III 2 14 38.8 5.16 (0.62, 18.63) 

Overall 4 105 245.3 1.63 (0.44, 4.17) 

Ex. outliers 2 91 206.5 0.97 (0.12, 3.50) 

1372 

Device III 1 11 28.2 3.55 (0.09, 19.76) 

Overall 18 804 1622.1 1.11 (0.66, 1.75) 

Ex. outliers 17 793 1593.9 1.07 (0.62, 1.71) 

1434 

Device III 0 12 43.1 0.00 (0.00, 8.55) 

Overall 2 156 331 0.60 (0.07, 2.18) 

Ex. outliers 2 144 287.9 0.69 (0.08, 2.51) 

1721 

Device III 2 79 315.1 0.63 (0.08, 2.29) 

Overall 5 206 515 0.97 (0.31, 2.26) 

Ex. outliers 3 127 199.9 1.50 (0.31, 4.39) 

Table 6. 17. Revision rates of Device IV primary total knee replacement by surgeon id. 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

57 

Device IV 1 28 125.5 0.8 (0.02, 4.44) 

Overall 9 630 1496.1 0.6 (0.27, 1.14) 

Ex. outliers 8 602 1370.6 0.58 (0.25, 1.15) 

153 

Device IV 1 23 89.4 1.12 (0.03, 6.23) 

Overall 17 281 751.5 2.26 (1.32, 3.62) 

Ex. outliers 0 11 9.3 0.00 (0.00, 39.54) 

173 

Device IV 1 45 146.3 0.68 (0.02, 3.81) 

Overall 10 352 864.3 1.16 (0.55, 2.13) 

Ex. outliers 9 307 717.9 1.25 (0.57, 2.38) 

275 

Device IV 4 143 516.5 0.77 (0.21, 1.98) 

Overall 4 218 610.9 0.65 (0.18, 1.68) 

Ex. outliers 0 75 94.5 0.00 (0.00, 3.90) 

282 

Device IV 6 152 618 0.97 (0.36, 2.11) 

Overall 11 787 1993.2 0.55 (0.27, 0.99) 

Ex. outliers 5 635 1375.2 0.36 (0.12, 0.85) 

456 

Device IV 0 10 12.3 0.00 (0.00, 30.09) 

Overall 3 132 374.1 0.80 (0.16, 2.34) 

Ex. outliers 3 122 361.8 0.83 (0.17, 2.42) 

495 

Device IV 9 191 623.9 1.44 (0.66, 2.74) 

Overall 12 369 926.9 1.29 (0.67, 2.26) 

Ex. outliers 3 178 303 0.99 (0.20, 2.89) 

895 

Device IV 3 85 332.9 0.9 (0.18, 2.63) 

Overall 9 773 1763.3 0.51 (0.23, 0.97) 

Ex. outliers 6 688 1430.4 0.42 (0.15, 0.91) 

934 

Device IV 0 11 34.3 0.00 (0.00, 10.75) 

Overall 12 644 1498.7 0.8 (0.41, 1.40) 

Ex. outliers 12 633 1464.4 0.82 (0.42, 1.43) 

961 

Device IV 5 159 243.6 2.05 (0.67, 4.79) 

Overall 5 202 422.3 1.18 (0.38, 2.76) 

Ex. outliers 0 43 178.7 0.00 (0.00, 2.06) 

1009 

Device IV 2 58 239.5 0.83 (0.10, 3.02) 

Overall 18 1116 2610.4 0.69 (0.41, 1.09) 

Ex. outliers 16 1058 2370.9 0.67 (0.38, 1.09) 

1119 

Device IV 34 511 1637.8 2.07 (1.44, 2.9) 

Overall 37 826 2046.3 1.81 (1.27, 2.49) 

Ex. outliers 3 315 408.4 0.73 (0.15, 2.15) 

1149 

Device IV 16 379 716.9 2.23 (1.27, 3.62) 

Overall 23 566 1390.9 1.65 (1.05, 2.48) 

Ex. outliers 7 187 674 1.04 (0.42, 2.14) 

1177 

Device IV 15 197 649.9 2.31 (1.29, 3.81) 

Overall 21 219 721.5 2.91 (1.80, 4.45) 

Ex. outliers 6 22 71.6 8.38 (3.07, 18.24) 

1195 Device IV 0 38 111.6 0.00 (0.00, 3.30) 
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Overall 17 1154 2811.5 0.60 (0.35, 0.97) 

Ex. outliers 17 1116 2700 0.62 (0.37, 1.01) 

1218 

Device IV 7 439 414.4 1.69 (0.68, 3.48) 

Overall 39 921 1963.8 1.98 (1.41, 2.71) 

Ex. outliers 32 482 1549.4 2.06 (1.41, 2.91) 

1258 

Device IV 0 17 64.6 0.00 (0.00, 5.71) 

Overall 1 48 98.6 1.01 (0.02, 5.65) 

Ex. outliers 1 31 33.9 2.94 (0.07, 16.41) 

1745 

Device IV 12 106 374.5 3.2 (1.65, 5.6) 

Overall 15 231 561.7 2.67 (1.49, 4.40) 

Ex. outliers 3 125 187.2 1.60 (0.33, 4.68) 

1810 

Device IV 0 20 72.1 0.00 (0.00, 5.11) 

Overall 6 219 745.6 0.80 (0.29, 1.75) 

Ex. outliers 6 199 673.4 0.89 (0.33, 1.94) 

Table 6. 18. Revision rates of Device V primary total knee replacement by surgeon id. 

Surgeon ID 
 N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

253 

Device V 2 42 135.9 1.47 (0.18, 5.32) 

Overall 10 745 1742.5 0.57 (0.27, 1.05) 

Ex. outliers 8 703 1606.6 0.50 (0.21, 0.98) 

660 

Device V 13 172 401.2 3.24 (1.72, 5.54) 

Overall 17 260 670.2 2.54 (1.48, 4.06) 

Ex. outliers 4 88 269 1.49 (0.40, 3.81) 

6.7    Discussion 

The results of this chapter suggest that the proposed ML methods may be effective 

for the detection of poor-performing arthroplasty devices. ML methods do not require 

the analyst to know in advance the linear and non-linear relationships between 

variables over time. However, one single model could not be necessarily the best 

method to deal with a high-dimensional dataset with multicollinearity in a feature 

selection problem. Any inclusion or exclusion of noisy variables influences the 

outcome in terms of a given predictor's strength and sign. A backward selection step 

was added to illustrate the applicability of RSF to exploratory data analysis in a 

prospective cohort [179, 196]. This method allowed us to reduce the dimensions of a 

complex dataset and improve variable selection since many noisy variables are 

excluded.  

In some cases, the prosthesis identified after the second stage of the AOANJRR 

standard may not be a real outlier due to a single surgeon, or it might be a poor-

performing subset of a device with a specific attribute and design. Although the registry 

does not identify these prostheses, their ongoing real-time performance is monitored. 

There is evidence of the issue of having only a subset of unidentified prostheses 

(Device I and II) from the AOANJRR online documents provided to further indicate the 

performance of total knee prostheses. In addition, our investigation of the catalogue 



ranges showed significant variations in the revision rates with respect to design 

features. 

Regularized/unregularized Cox produced results more comparable to the 

AOANJRR standard in detecting the same total knee devices, whereas there was not 

a significant difference in the performance of the proposed methods. Using an 

unregularized step for the Cox enabled us to apply a more conventional method of 

documenting confounding and reducing the mistrust in the black-box nature of ML 

analysis. To handle multicollinearity which may increase the risk of selecting an 

arbitrary predictor [196], the two-step approach was proposed for RSF modelling to 

reduce the dimension by removing the noisy variables. In addition, RSF grows the tree 

using a random subset of variables per node and splitting the nodes by independently 

selecting the input variables [188]. This feature provides random survival attractive for 

exploratory variable selection, where false-positive discovery due to overfitting is still 

an important issue [189].  

One of the key aims of the current work was to limit the confounding that was 

handled by both the ML methods used. The regularized/unregularized Cox conditions 

simultaneously in device- and patient-related factors. With the RSF approach, it is 

assumed that many variables are competing at the same time in the splitting process. 

The Cox approach showed significant advantages in terms of reducing computational 

time, interpreting variable effects, and documenting confounding effects. The random 

survival reduces variance and bias using many variables and automatically assesses 

linear or complex non-linear interactions. Various extensions of random forests have 

been successfully employed in clinical studies [197, 198]. This research shows that 

correlated variables can be dealt with more effectively when elastic-net is used for 

regularisation. This study also showed that the regularisation technique performed 

better than the RSF using the AOANJRR knee data.  

More studies are needed to further document the potential role of ML in clinical 

settings. Machine learning may be able to act as a supplementary initial screen with 

increased sensitivity in detecting outlier prostheses. One of the considerations is that 

the success of the screening process is dependent on having a pre-knowledge of 

clinical parameters, as this contributes significantly to the accuracy of results. In other 

words, the process will be compromised if some attributes that contribute to the 
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survival of the device are not accounted for (see Appendix B). This study comprised 

all the recognized clinical attributes, and the most significant covariates included 

stability and fixation. However, other factors related to the surgeon and the subset 

design of devices could be investigated to study the effect of design modifications and 

the surgeon’s performance and experience. 

Registries are recommended to use a transparent and accountable process to 

identify an outlier prosthesis. Aligned with the Australian standardised registry 

approach, time to first revision (all-cause) was the principal measure of primary joint 

replacement surgery. This measure is a clear indication of a problem with the primary 

procedure, where both the patient and surgeon have agreed that it is serious enough 

to require further surgical intervention [79, 199]. However, there is still scope for future 

studies to investigate other outcome measures for a fairer reflection of implant failure 

and limit the clinical end-point to specific implant-related causes. One of the principal 

objectives of this study was to improve the sensitivity of the initial screening rather 

than that of the entire identification process. Moreover, further analyses were also 

conducted on the prostheses identified by both the conventional and the ML 

approaches to determine the extent of the difference with the comparator, and the 

possible explanations for the variation in outcomes related to reasons for revision, type 

of revision, number of surgeons, etc. (detailed more in Chapter 7). 

Effective feature selection techniques need to be employed for the early detection 

of arthroplasty devices that are at high risk of revision. Future studies can apply the 

proposed method to various classes of device components used for arthroplasty 

surgeries. The concept of prediction models to understand the significance of variables 

may have considerable potential to provide important context for the initial screening 

of prosthetic devices. The identification process developed over this comprehensive 

research can reduce the number of patients at risk of receiving potentially harmful 

devices. 

6.8    Summary 

The two-step feature selection may be promising as an intuitive method of outlier 

identification, and the Cox produced results comparable to the AOANJRR standard. 



However, there was not a significant difference in the ability of the proposed 

techniques to detect total knee outliers. 





  

 

 

 

 

 

Chapter 7. Investigations of Identified Outlier Prostheses 
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7.1    Overview 

An exceptional and significant function of registries is that they are able to prepare 

population-based data on the comparative outcome of prostheses. Outcome data are 

required to assist an evidence-based approach to poor-performing prosthesis 

selection. The only source of survival outcome data for many prostheses is joint 

registry reports, and it is apparent that most prostheses have comparable outcomes. 

However, a number of them statistically have a much higher revision rate than other 

prostheses within the same class. The registry categorizes these prostheses as 

‘prostheses with higher than anticipated rates of revision’.   

The Australian Orthopaedic Association National Joint Replacement Registry 

(AOANJRR) has the capacity to evaluate the outcome of individual prostheses or 

prosthesis combinations used in a surgical procedure. It seems that individual 

prostheses that perform well in one combination may not perform well in another 

combination of prosthesis construct. Therefore, the performance of a device 

component is relatively reliant on the prosthesis construct. The registry approach 

involves examining the impact of associated device components and a limited number 

of other confounders such as age, gender and primary diagnosis. However, it does 

not consider all the potential confounders simultaneously in the initial screening of total 

hip and knee prostheses. 

The identified prostheses can be categorised according to specific groups: i) newly-

identified prostheses that have been identified for the first time and are still being used; 

(ii) prostheses that are re-identified through the yearly statistical analysis and are still 

being used; and (iii) prostheses that have a much higher revision rate and are no 

longer available on the market. This chapter investigates the prostheses detected by 

all the approaches in Chapters 4 and 6. Furlong Evolution and Minimax, in addition to 

Score/Score and VanguardPS/Regenerex were listed in the group of re-identified 

devices and are still being used. However, the Emperion primary total hip replacement 

is no longer on the market [5].  

Given the dependency of the standardised approach on the sample size and the 

length of follow-up time, it is becoming evident that this approach cannot as readily 

identify prostheses that have a delayed onset of higher rates of revision. Therefore, 

the registry planned to develop further strategies to solve the challenge with these 



poor-performing prostheses. This is why other approaches are being explored to 

generate comparative outcomes of primary total hip and knee prostheses. 

7.2    Statistical Method 

The output of our survival analyses was time-to-first-revision surgery, defined as 

reoperations of previous hip and knee replacements where one or more of the 

prosthetic components are replaced, removed, or added. The study period was 1st 

January 2015 to 31st December 2019. Patients with no revision or death had implant-

survival times based on the time that elapsed between their initial implantation date 

and the end of the follow‐up period. By means of the Kaplan-Meier (KM) survival 

analysis, five identified prostheses in primary total conventional hip and knee for OA 

were studied further based on their corresponding modified comparator groups 

developed in Chapters 3 and 5. In addition, the impact of confounding factors is 

examined by calculating age- and gender-adjusted hazard ratios (HRs) to check if 

there is a significant difference compared to the combined hazard rate of the 

comparator group. The unadjusted cumulative percent revision (CPR), with an 

accompanying 95% confidence interval (CI), was calculated after the primary surgery. 

This was also calculated for primary total hip and knee replacements according to 

each of the patient factors (i.e., age, gender, BMI, and ASA). The cumulative incidence 

of reasons for revisions was analysed to look at the risk associated with the most 

common reasons for the identified prostheses. A descriptive comparative analysis was 

also conducted to examine the most common types of revisions. Lastly, other potential 

device-related confounding impacts were investigated separately using the first stage 

of the AOANJRR standard. This is done by calculating revisions per 100 observed 

component years of the identified prostheses. The statistical analysis was performed 

using R software [158], including the packages Survival [159] version 3.2-11 and 

Survminer [160] version 0.4.9.  

7.3    Identified Prostheses Investigation (follow-up 

limited to 5 years) 

This section compares the identified prostheses with all other total conventional hip 

and knee prostheses. All the applied techniques (including Random survival and Cox 

regression) identified the same five prostheses as having a significantly higher rate of 

revision over the five-year period. These prostheses, detected by both the machine 
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learning (ML) techniques and the standard approach, are listed in Table 7.1. Their 

names are given for the first time in this research as the registry reports have already 

reported them. Note that these devices were all detected using a greater number of 

observations and length of follow-up time at the time of identification. 

Table 7. 1. Results for the identified prostheses detected by all the approaches. 

Component 

Descriptive information AOANJRR standard RSF Cox 

N 

Revised 

N 

Total 
Obs.Years Stage I Stage II 

Minimal depth rank  

Permutation P-

value 

P-value 

Total Hip     

Emperion 8 71 245.4 3.26 (3.01, 3.56) 
4.34 (2.17, 8.68) 

p<0.001 

2 

0.009 
0.009 

Furlong Evolution 18 288 458.7 3.92 (3.59, 4.31) 
3.28 (2.06, 5.21) 

p<0.001 

14 

0.029 
<0.001 

MiniMax 17 320 374.7 4.54 (4.25, 4.87) 
3.02 (1.87, 4.86)  

p<0.001 

3 

0.009 
0.012 

Total Knee    

Score/Score 116 2648 7109.6 1.63 (1.35, 1.96) 
2.21 (1.84, 2.66) 

p<0.001 

4 

P=0.009 
p<0.001 

VanguardPS/ 

Regenerex 
15 222 560.1 2.68 (1.50, 4.42) 

3.28 (1.97, 5.44) 

p<0.001 

6 

P=0.009 
0.004 

This analysis compares the total hip and knee prostheses identified as having a 

significantly higher revision rate with all other total prostheses correspondingly. In 

addition, hazard ratios are reported for the entire period to enable more specific and 

valid comparisons of the level of risk of revision over the entire period (Figures 7.1 to 

7.5).  

 
Figure 7. 1. CPR of Emperion vs modified hip comparator. 



 
Figure 7. 2. CPR of Furlong Evolution vs modified hip comparator. 

 
Figure 7. 3. CPR of MiniMax vs modified hip comparator. 

 
Figure 7. 4. CPR of Score/Score vs conventional knee comparator. 



 _____________________________________________________Investigations of Identified Outlier Prostheses 

101 
 

  
Figure 7. 5. CPR of Vanguard PS/Regenerex vs conventional knee comparator. 

7.4    Reason for Revision 

The competing risk of reasons for revisions is shown in Figures 7.6 to 7.9. These 

results can be used to estimate the risk of requiring revision for each of the listed 

diagnoses such as infection, loosening, prosthesis dislocation, and fracture. Different 

outcomes for the reasons for revision with the same distribution of follow-up time may 

identify problems of concern. Given the criterion that a diagnosis should require more 

than two revisions, the most common revision diagnosis is dislocation for the Emperion 

femoral stem, infection for Furlong Evolution, and fracture for MiniMax primary total 

hip outliers. Infection appears to be the most probable cause of revision for both of the 

identified primary total knee outliers. The figures below detail the cumulative incidence 

of the most common reasons for revisions. The most common reasons for revision are 

included if each of these reasons accounts for more than two procedures. For 

example, two of the outlier prostheses have only one revision diagnosis according to 

the criterion.  

 

Figure 7. 6. Cumulative incidence of most common revision diagnosis for Emperion. 



 
Figure 7. 7. Cumulative incidence of most common revision diagnosis for Furlong Evolution. 

 

Figure 7. 8. Cumulative incidence of most common revision diagnosis for MiniMax. 

 
Figure 7. 9. Cumulative incidence of most common revision diagnosis for Score/Score. 
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Figure 7. 10. Cumulative incidence of most common revision diagnosis for Vanguard PS/Regenerex. 

7.5    Type of Revision  

This section discusses the type of revision or the components responsible for 

revising the total hip and knee outlier prostheses. This part undertook this comparison 

to determine whether one or more of the components that are replaced differ from the 

components replaced in revisions of the corresponding comparator groups. The most 

common major types of revisions were the femoral component for the hip outliers and 

‘TKR (tibial/femoral)’ for the knee outlier prostheses. In addition, the hip prostheses 

had minor revisions for ‘head/insert’ or ‘head only’, and the knee outliers for ‘insert 

only’. These descriptive analyses show the same outcomes for the corresponding 

comparator groups.  

Table 7. 2. Type of revision performed for primary total conventional hip replacement. 

 Emperion Modified hip comparator 

Type of Revision Number Percent Number Percent 

Femoral Component 2 25.0 1076 31.7 

Acetabular Component - - 569 16.8 

THR (Femoral/Acetabular) 1 12.5 290 8.5 

Cement Spacer - - 102 3.0 

Removal of Prostheses - - 22 0.6 

Reinsertion of Components - - 9 0.3 

Bipolar Head and Femoral - - 1 0.0 

N Major 3 37.5 2069 61.2 

Head/Insert 4 50.0 995 29.3 

Head Only 1 12.5 216 6.4 

Minor Components - - 57 1.7 

Insert Only - - 45 1.3 

N Minor 5 62.5 1313 38.8 

Total 8 100.0 3382 100.0 

 

  



Table 7. 3. Type of revision performed for primary total conventional hip replacement. 

 Furlong Evolution Modified hip comparator 

Type of Revision Number Percent Number Percent 

Femoral Component 7 38.9 1071 31.8 

Acetabular Component 4 22.2 565 16.7 

THR (Femoral/Acetabular) 2 11.1 289 8.6 

Cement Spacer 2 11.1 100 3.0 

Removal of Prostheses - - 22 0.6 

Reinsertion of Components - - 9 0.3 

Bipolar Head and Femoral - - 1 0.0 

N Major 15 83.3 2057 61.0 

Head/Insert 2 11.1 997 29.6 

Head Only 1 5.5 216 6.4 

Minor Components - - 57 1.7 

Insert Only - - 45 1.3 

N Minor 3 16.7 1315 39.0 

Total 18 100.0 3372 100.0 

Table 7. 4. Type of revision performed for primary total conventional hip replacement. 

 MiniMax Modified hip comparator 

Type of Revision Number Percent Number Percent 

Femoral Component 9 52.94 1069 31.7 

Acetabular Component 1 5.88 568 16.8 

THR (Femoral/Acetabular) - - 291 8.6 

Cement Spacer 1 5.88 101 3.0 

Removal of Prostheses - - 22 0.6 

Reinsertion of Components 1 5.88 8 0.2 

Bipolar Head and Femoral - - 1 0.0 

N Major 12 70.6 2060 61.1 

Head/Insert 2 11.76 997 29.5 

Head Only 3 17.65 214 6.3 

Minor Components - - 57 1.7 

Insert Only - - 45 1.3 

N Minor 5 29.4 1313 38.9 

Total 17 100.0 3373 100.0 

Table 7. 5. Type of revision performed for primary total conventional knee replacement. 

 Score/Score Modified conventional knee comparator 

Type of Revision Number Percent Number Percent 

TKR (Tibial/Femoral)  50 43.1 890 20.5 

Tibial Component 4 3.4 305 7.0 

Cement Spacer 8 6.9 234 5.4 

Femoral Component 4 3.4 223 5.1 

Removal of Prostheses - - 31 0.7 

Total Femoral - - 3 0.1 

Reinsertion of Components - - 1 0.0 

N Major 66 56.9 1687 38.8 

Insert Only  33 28.4 1710 39.3 

Patella Only 15 12.9 637 14.6 

Insert/Patella 2 1.7 302 6.9 

Minor Components - - 9 0.2 

Cement Only - - 3 0.1 

N Minor 50 43.1 2661 61.2 

Total 116 100.0 4,348 100.0 
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Table 7. 6. Type of revision performed for primary total conventional knee replacement. 

 Vanguard PS/Regenerex Modified conventional knee comparator 

Type of Revision Number Percent Number Percent 

TKR (Tibial/Femoral)  7 46.7 933 21.0 

Tibial Component - - 309 6.9 

Cement Spacer 3 20.0 239 5.4 

Femoral Component 2 13.3 225 5.0 

Removal of Prostheses - - 31 0.7 

Total Femoral - - 3 0.1 

Reinsertion of Components - - 1 0.0 

N Major 12 80.0 1741 39.1 

Insert Only  3 20.0 1740 39.1 

Patella Only - - 652 14.6 

Insert/Patella - - 304 6.8 

Minor Components - - 9 0.2 

Cement Only - - 3 0.1 

N Minor 3 20.0 2708 60.9 

Total 15 100.0 4,449 100.0 

7.6    Prosthesis-related Confounding Factors 

Revision Rates of Outlier Prostheses by Fixation  

Tables 7.7 to 7.11 present revision rates of primary total hip and knee outliers by 

fixation as several prostheses have more than one option for fixation. Moreover, 

prostheses with an alternative fixation may be used by surgeons regardless of the 

recommended approach (e.g., a cementless prosthesis that is cemented or 

cementless). Total hip outliers were used only with a recommended cementless 

fixation. However, there are variations in the outcome of total knee outliers by fixation. 

The hybrid fixation was the most chosen option by surgeons for the total knee outliers.  

Table 7. 7. Revision rates of Emperion primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100  

Obs. Years (95% CI) 

Cementless 8 71 245.4 3.26 (3.01, 3.56) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 7. 8. Revision rates of Furlong Evolution primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100  

Obs. Years (95% CI) 

Cementless 18 288 458.7 3.92 (3.59, 4.31) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 7. 9. Revision rates of MiniMax primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100  

Obs. Years (95% CI) 

Cementless 17 320 374.7 4.54 (4.25, 4.87) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Table 7. 10. Revision rates of Score/Score primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100  

Obs. Years (95% CI) 

Cemented 14 497 1366.9 1.02 (0.56, 1.72) 

Cementless 50 932 2390.8 2.09 (1.55, 2.76) 

Hybrid (Tibial cemented) 51 1213 3330.4 1.53 (1.14, 2.01) 

Hybrid (Tibial cementless) 1 6 21.5 4.65 (0.12, 25.91) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 



Table 7. 11. Revision rates of Vanguard PS/Regenerex primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100  

Obs. Years (95% CI) 

Cemented 0 2 4.8 0.00 (0.00, 76.53) 

Cementless 2 48 154 1.30 (0.16, 4.69) 

Hybrid (Tibial cementless) 13 172 401.2 3.24 (1.72, 5.54) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Revision Rates of Outlier Prostheses by Bearing Surface  

This analysis was conducted because some prostheses had a combination of 

various bearing surfaces. All bearing surfaces used with these outlier prostheses are 

listed below in Tables 7.12 to 7.16. The investigation of the revision rates according to 

the bearing surface indicates the role of material designs in the performance of 

prostheses. This information is expected to lead to better long-term outcomes for 

prostheses with modern bearing surfaces (including ceramic/ceramic and the femoral 

head materials in conjunction with XLPE) [112, 200]. However, this outcome was not 

obtained through our comparative analyses because of a significant sample 

size/follow-up variation. The limited five-year follow-up may be a constraint preventing 

the accurate reflection of the difference between the bearing couples. 

Table 7. 12. Revision rates of Emperion primary total conventional hip replacement by bearing 

surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 4 54 191.2 2.09 (0.57, 5.35) 

Ceramicised Metal/XLPE 3 12 37.6 7.97 (1.64, 23.30) 

Metal/XLPE 1 5 16.5 6.06 (0.15, 33.79) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 7. 13. Revision rates of Furlong Evolution primary total conventional hip replacement by bearing 

surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 10 142 235.8 4.24 (2.03, 7.80) 

Ceramic/Non-XLPE 7 114 129.6 5.40 (2.17, 11.13) 

Ceramic/XLPE 0 13 23.9 0.00 (0.00, 15.46) 

Ceramic/XLPE + Antioxidant 0 4 12.3 0.00 (0.00, 29.97) 

Metal/Non-XLPE 1 15 57.2 1.75 (0.04, 9.74) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 7. 14. Revision rates of MiniMax primary total conventional hip replacement by bearing surface. 

 Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 8 163 161.6 4.89 (2.14, 9.75) 

Ceramic/Non-XLPE 5 111 179.2 2.79 (0.90, 6.51) 

Ceramic/XLPE 3 43 31.8 9.43 (1.94, 27.57) 

Metal/Non-XLPE 0 1 0.2 0.00 (0.00, 1676.76) 

Metal/XLPE  1 2 1.8 55.55 (1.41, 309.53) 

Total 17 320 374.7 4.54 (4.25, 4.87) 
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Table 7. 15. Revision rates of Score/Score primary total conventional knee replacement by bearing 

surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non-XLPE 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 

Table 7. 16. Revision rates of Vanguard PS/Regenerex primary total conventional knee replacement 

by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non-XLPE 15 218 543.1 2.76 (1.54, 4.55) 

XLPE + Antioxidant 0 4 17 0.00 (0.00, 21.75) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Revision Rates of Outlier Prostheses by Surgeon ID  

The surgeon IDs were used to determine the number of surgeons who used the 

outlier prostheses in the primary total joint procedures. The aim was to find whether 

there was a correlation between surgeons and the outlier prostheses they used. To 

the best of our information, this is the first research designed to investigate the role of 

a single surgeon in outlier identification. Results show that Furlong Evolution, MiniMax, 

Score/Score, and Vanguard PS/Regenerex have a higher-than-expected rate of 

revisions for most surgeons (Tables 7.17-7.21). This can be an indication of the poor-

performing prostheses regardless of the expertise or experience of the surgeon. 

However, the interaction between the Emperion femoral stem and the surgeons needs 

further analysis as this hip prosthesis had been used by only one surgeon (685).  

Table 7. 17. Revision rates of Emperion primary total conventional hip replacement by surgeon id. 

Surgeon ID 
N 

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

685 4 53 188.3 2.12 (0.58, 5.44) 

Table 7. 18. Revision rates of Furlong Evolution primary total conventional hip replacement by 

surgeon id. 

Surgeon ID 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

587 1 19 38.4 2.6 (0.6, 14.5) 

1246 2 17 26.8 7.46 (0.9, 26.95) 

1357 1 27 105.4 0.95 (0.2, 5.29) 

1421 0 19 9 0.00 (0.00, 41.13) 

1726 1 61 56.9 1.76 (0.04, 9.79) 

1745 9 112 144.4 6.23 (3.32, 12.74) 

Table 7. 19. Revision rates of Minimax primary total conventional hip replacement by surgeon id. 

Surgeon ID 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

804 2 93 94.2 2.12 (0.26, 7.67) 

1041 5 110 173.7 2.88 (0.93, 6.72) 

1195 2 17 5.1 39.19 (4.75, 141.57) 

1421 1 22 29.1 3.43 (0.09, 19.14) 

1529 2 20 28.7 6.96 (0.84, 25.14) 

1717 0 10 13  0.00 (0.00, 28.36) 

1914 1 13 6 16.68 (0.42, 92.92) 



Table 7. 20. Revision rates of Score/Score primary total knee replacement by surgeon id. 

Surgeon ID 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

57 1 28 125.5 0.8 (0.02, 4.44) 

153 1 23 89.4 1.12 (0.03, 6.23) 

173 1 45 146.3 0.68 (0.02, 3.81) 

275 4 143 516.5 0.77 (0.21, 1.98) 

282 6 152 618 0.97 (0.36, 2.11) 

456 0 10 12.3 0.00 (0.00, 30.09) 

495 9 191 623.9 1.44 (0.66, 2.74) 

895 3 85 332.9 0.9 (0.18, 2.63) 

934 0 11 34.3 0.00 (0.00, 10.75) 

961 5 159 243.6 2.05 (0.67, 4.79) 

1009 2 58 239.5 0.83 (0.10, 3.02) 

1119 34 511 1637.8 2.07 (1.44, 2.9) 

1149 16 379 716.9 2.23 (1.27, 3.62) 

1177 15 197 649.9 2.31 (1.29, 3.81) 

1195 0 38 111.6 0.00 (0.00, 3.30) 

1218 7 439 414.4 1.69 (0.68, 3.48) 

1258 0 17 64.6 0.00 (0.00, 5.71) 

1745 12 106 374.5 3.2 (1.65, 5.6) 

1810 0 20 72.1 0.00 (0.00, 5.11) 

Table 7. 21. Revision rates of Vanguard PS/Regenerex primary total knee replacement by surgeon id. 

Surgeon ID 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

253 2 42 135.9 1.47 (0.18, 5.32) 

660 13 172 401.2 3.24 (1.72, 5.54) 

 

The criterion that was taken into account was twice the modified comparator over a 

five-year follow-up. This can also be modified to 1.5 times the comparator to better 

reflect the role of surgeons when using a specific hip or knee outlier. Results show 

that the same surgeons (1195 and 1745) used most of the outlier prostheses and 

provided significant interactions on Furlong Evolution, MiniMax and Score/Score 

performance. These surgeons recorded revision rates much higher than twice the 

comparator and even higher than most of the other surgeons who used the same 

device components, such as for the MiniMax primary total hip replacement. 

Number of Total and Revision of Outlier Prostheses by Year of Implant 

Table 7.22 shows the number of primary joint procedures performed annually using 

the outlier prostheses and the number revised. There is less follow-time for the primary 

operations performed in later years; consequently, the number revised is estimated to 

be less than the number of revisions in earlier years. For example, a primary procedure 

performed in 2018 has a maximum of two years to be revised although a primary 

procedure performed in 2016 has a maximum of four years until a potential revision 

surgery.  
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Table 7. 22. Number of total and revision of total hip outliers by year of implant. 

 Emperion Furlong Evolution MiniMax 

Year of implant 
N  

Revised 

N  

Total 

N 

 Revised 

N  

Total 

N  

Revised 

N  

Total 

2015           4 32 2 31 0 0 

2016 4 29 0 11 0 4 

2017  0 10 3 52 3 37 

2018 0 0 7 94 6 155 

2019 0 0 6 100 8 124 

Total 8 71 18 288 17 320 
 

 Score/Score 
Vanguard 

PS/Regenerex 

Year of implant 
N  

Revised 

N  

Total 

N  

Revised 

N  

Total 

2015           36 703 0 18 

2016 34 579 5 76 

2017  22 527 10 58 

2018 19 419 0 56 

2019 5 420 0 14 

Total 116 2648 15 222 

Revision Rates of Total Hip Outlier Prostheses by Associated Component 

An individual total hip prosthesis may be combined and used with several 

components. This analysis has been conducted to investigate whether the revision 

rate varies according to the combined component. This part of the analysis was 

conducted to investigate the individual hip outliers (femoral stems) combined with 

acetabular cups. Tables 7.23-7.25 show that the issue could be related to outlier 

femoral stems rather than the matched acetabular cups. The higher-than-expected 

revision rate is not significantly correlated with the performance of acetabular cups. 

The Emperion femoral stem was mainly combined with‘R3’ cup, Furlong Evolution with 

the Furlong cup, and Minimax with a broader range of cups such as ‘Mpact’, 

‘Versafitcup CC’, and ‘Versafitcup DM’.  

Table 7. 23. Revision rates of Emperion primary total conventional hip replacement by acetabular 

component.  

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

R3 8 70 240.6 3.32 (1.43, 6.55) 

Trabecular Metal (Shell) 0 1 4.8 0.00 (0.00, 77.17) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 7. 24. Revision rates of Furlong Evolution primary total conventional hip replacement by 

acetabular component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Acetabular Shell (Global) 0 4 17.5 0.00 (0.00, 21.11) 

Adaptive 0 4 12.3 0.00 (0.00, 29.97) 

Delta-TT 0 2 4.3 0.00 (0.00, 85.99) 

Furlong 18 241 381.7 4.71 (2.79, 7.45) 

Logical G 0 14 24.6 0.00 (0.00, 14.97) 

Mpact 0 18 9.1 0.00 (0.00, 40.63) 

PINNACLE 0 1 0.2 0.00 (0.00, 1676.76) 

Trident/Tritanium (Shell) 0 1 3.4 0.00 (0.00, 109.46) 

Versafitcup CC 0 3 5.7 0.00 (0.00, 65.06) 

Total 18 288 458.7 3.92 (3.59, 4.31) 



Table 7. 25. Revision rates of MiniMax primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Agilis 0 1 0.2 0.00 (0.00, 1756.61) 

Mpact 8 123 99.5 8.04 (3.47, 15.85) 

Trinity 0 1 3.4 0.00 (0.00, 106.92) 

Versafitcup CC 4 87 98.9 4.05 (1.10, 10.36) 

Versafitcup DM 5 108 172.7 2.89 (0.94, 6.76) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Revision Rates of Total Hip Outlier Prostheses by Head Size 

To assess the effect of head size on the prosthesis survillance, an analysis was 

conducted to compare head size groups (<32mm versus ≥32mm) for the total hip 

outliers. The Emperion femoral stem with head sizes ≥32mm has a higher revision 

rate than the other constructs of this device with smaller head sizes. Larger head sizes 

showed better outcomes for Furlong Evolution, although our sample size was less 

than 10 for both Emperion and Furlong Evolution primary total hip replacements 

(Tables 7.26 and 7.27). However, in the case of Minimax, there was a higher revision 

rate for larger head sizes over the 5-years follow-up (Table 7.28). The results illustrate 

that the outcomes of outlier prostheses vary according to head size, although better 

outcomes are expected for larger head sizes as there could be a lower risk of early 

dislocation [153, 157].  

Table 7. 26. Revision rates of Emperion primary total conventional hip replacement by head size. 

Patella used 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

< 32 0 4 14.9 0.00 (0.00, 24.77) 

>= 32 8 67 230.5 3.47 (1.50, 6.84) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 7. 27. Revision rates of Furlong Evolution primary total conventional hip replacement by head 

size. 

Patella used 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

< 32 1 6 11.4 8.77 (0.22, 48.87) 

>= 32 17 282 447.3 3.80 (2.21, 6.08) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 7. 28. Revision rates of MiniMax primary total conventional hip replacement by head size. 

Patella used 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

< 32 5 113 179.7 2.78 (0.90, 6.49) 

>= 32 12 207 194.9 6.16 (3.18, 10.75) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Revision Rates of Total Knee Outlier Prostheses by Patella Usage 

According to the AOANJRR reports, primary total knee procedures with patellar 

component have less overall revision rate than procedures without patellar resurfacing 

[201, 202]. This is also indicated by the results provided in Table 7.29 for Score/Score 
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primary total conventional knee replacement. However, when the patella is resurfaced, 

the revision rate of Vanguard PS/Regenerex was much higher than that of with no 

patella (Table 7.30). Overall, patellar resurfacing effects vary dependent on the outlier 

prosthesis used, as other factors can potentially contribute to the outcome.  

Table 7. 29. Revision rates of Score/Score primary total knee replacement by patella usage.  

Patella used 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

YES 97 2232 6210.5 1.56 (1.27, 1.90) 

NO 19 416 899 2.11 (1.27, 3.30) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 

Table 7. 30. Revision rates of Vanguard PS/Regenerex primary total knee replacement by patella 

usage. 

Patella used 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

YES 15 200 495.2 3.03 (1.69, 5.00) 

NO 0 22 64.9 0.00 (0.00, 5.69) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Revision Rates of Total Knee Outlier Prostheses by Bearing Mobility 

Revision rates of primary total knee outliers by bearing mobility were calculated as 

some prosthesis constructs are combined with various bearing mobilities. All the 

mobilities used with these two outlier combinations are listed in Tables 7.31-7.32. 

Fixed-bearing prostheses include non-modular tibial knee constructs and those 

prostheses with fixed inserts without the ability to move relative to the baseplate. 

According to the registry report, fixed designs have a lower revision rate than do mobile 

designs during the first seven years [5]. However, the identified outliers were only used 

by one specific mobility design.  

Table 7. 31. Revision rates of Score/Score primary total knee replacement by bearing mobility. 

Bearing mobility N Revised N Total Obs.Years 
Revisions/100 

Obs. Years (95% CI) 

Rotating 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 

Table 7. 32. Revision rates of Vanguard PS/Regenerex primary total knee replacement by bearing 

mobility. 

Bearing mobility N Revised N Total Obs.Years 
Revisions/100 

Obs. Years (95% CI) 

Fixed  15 222 560.1 2.68 (1.50, 4.42) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Revision Rates of Total Knee Outlier Prostheses by Stability Design 

This analysis was conducted because some prostheses are combined with various 

stability designs. All stabilities used with these outlier combinations are listed in Tables 

7.33 and 7.34. Stability denotes specific prosthetic features proposed to substitute for 



the intrinsic stability of knee ligaments. The five groups are: minimally stabilised, 

medial pivot design, posterior stabilised, fully stabilised, and hinged prostheses. The 

two knee outliers were manufactured only by standard stability; Minimally stabilised 

was the design used for ‘Score/Score’ and posterior stabilised for the ‘Vanguard 

PS/Regenerex’. 

Table 7. 33. Revision rates of Score/Score primary total knee replacement by stability. 

Stability 
N  

Revised 
N  

Total 
Obs.Years 

Revisions/100 
Obs. Years (95% CI) 

Minimally Stabilised 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2648 7109.6 1.63 (1.35, 1.96) 

Table 7. 34. Revision rates of Vanguard PS/Regenerex primary total knee replacement by bearing 

mobility. 

Bearing mobility 
N  

Revised 
N  

Total 
Obs.Years 

Revisions/100 
Obs. Years (95% CI) 

Posterior Stabilised 15 222 560.1 2.68 (1.50, 4.42) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

7.7    Patient Characteristics 

CPR of Outlier Prostheses by Age and Gender  

The identified femoral stems were most commonly implanted for primary total hip 

replacement in patients younger than 65-years (Figures 7.11-7.13). This is also more 

common for patients aged 65 to 74, where outlier prosthesis combinations were mainly 

used in primary total conventional knee surgeries (Figures 7.14 and 7.15). In the short 

term (less than three months), older patients who underwent an outlier total hip 

replacement had a higher rate of revision, while this risk is higher in younger patients 

over the long term. This is because younger patients could potentially engage in a 

higher level of routine activities that increase revision risk. When the Furlong Evolution 

stem or the Score/Score were used, female patients showed a higher number at risk 

with lower overall CPR compared to male patients. However, female patients showed 

higher rates of revision than males for the other outlier prostheses, including 

Emperion, MiniMax, and Vanguard PS/Regenerex.  
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Figure 7. 11. CPR of Emperion primary total conventional hip by age and gender. 

 

Figure 7. 12. CPR of Furlong Evolution primary total conventional hip by age and gender. 

 
Figure 7. 13. CPR of MiniMax primary total conventional hip by age and gender. 

Figure 7. 14. CPR of Score/Score primary total conventional knee by age and gender. 



  
Figure 7. 15. CPR of Vanguard PS/Regenerex primary total conventional knee by age and gender. 

CPR of Outlier Prostheses by BMI and ASA Score 

The CPR rates of the identified prostheses according to the classified levels of Body 

Mass Index (BMI) and the American Society of Anesthesiologists (ASA) are shown in 

Figures 7.16-7.20. Patients with ASA scores less than 3, and BMI equal to or greater 

than 30, usually had operations using outlier prostheses identified. Except for the 

Emperion femoral stem, no difference is observed in the CPRs for outlier prostheses 

by ASA scores (Figures 7.16-7.20). For the hip and knee replacements where poorly-

performing prostheses were used, most procedures involved patients with high levels 

of obesity. Overall, there was a difference in the outcome of outlier prostheses when 

the classified BMI values were compared. Although our understanding of patient-

reported knee and hip replacement outcomes has progressed, it still needs to be 

refined. National registries are helping us learn more about knee replacements, and 

new statistical approaches should be used to derive the most from collected data.  

 

Figure 7. 16. CPR of Emperion primary total conventional hip by BMI and ASA score. 
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Figure 7. 17. CPR of Furlong Evolution primary total conventional hip by BMI and ASA score. 

 
Figure 7. 18. CPR of MiniMax primary total conventional hip by BMI and ASA score. 

  
Figure 7. 19. CPR of Score/Score primary total conventional knee by BMI and ASA score. 

 

Figure 7. 20. CPR of Vanguard PS/Regenerex primary total conventional knee by BMI and ASA 

score. 



7.8    Discussion  

This study analysed the three poor-performing total hip femoral stems and two 

identified total knee prosthesis combinations. Emperion, Furlong Evolution, and 

MiniMax were detected by both the ML techniques as well as the standard approach. 

This was done by utilising the modified comparator groups developed in Chapters 3 

and 5 and by taking into account the confounding presented in Chapters 4 and 6. Non-

contemporary practices have been excluded from the comparator for all primary total 

conventional hip studies. Complex procedures were excluded from the comparator 

group of total conventional knee prostheses. The revision rates of the detected 

prostheses exceeded twice that of the modified comparator groups. In addition, the 

proposed ML techniques detected these outliers, taking into account the four available 

patient factors and prosthesis-related confounding factors. 

Many factors may impact the effectiveness of joint replacement surgery over time. 

Joint replacement registries are able to detect differences in outcomes based on 

patient-, surgery-, or prosthesis-specific factors [203-206]. The comparative analyses 

presented in this chapter were designed to study the outlier prostheses, taking into 

account the potential confounding. Arthroplasty registries critically play a role in 

preparing post-market surveillance, helping practitioners to comprehend prosthetic 

use and positively affect patient outcomes [81, 207, 208]. Registries should use a 

precise and reliable approach to identify an outlier. This chapter was an attempt to 

evaluate the extent of confounding and determine the possible impacts of confounding 

on outlier prosthesis survival. The details regarding the prostheses with higher-than-

expected revision rates are far less widely reported. Therefore, there is a need to 

investigate the various device- and non-device-related factors that may clinically affect 

the survival outcome.  

This research showed that routine screening might require a specific post-analysis 

that includes more confounding factors. In addition, ML is able to assist the process 

by considering more salient factors and evaluating their interactions. The registry will 

improve the identification approach progressively, considering that decreasing the 

number of procedures available may adversely affect statistical accuracy. Two 

different statistical methods were used for this comparative post-analysis with respect 

to the available number of observations. The component year formula is able to 
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provide better comparative outcomes of study populations when there are limitations 

related to sample sizes. However, a more precise rate of revision was obtained by 

undertaking KM survival analyses for a number of confounding factors with reasonable 

sample sizes and follow-ups.  

7.9    Summary 

In this chapter, the performance of outlier prostheses was studied in terms of 

clinically-known confounding factors to determine the impact of design- and patient-

related variables on the performance of outlier prostheses. The results showed 

variations in the outcome of identified total hip and knee outliers in regard to bearing 

surfaces. In addition, the longevity of total knee outliers was associated with the 

method of fixation and the patella that was used. There was also a significant variation 

in the surveillance of total hip prostheses with the femoral head size and the 

associated device component. 

  



  

 

 

 

 

 

Chapter 8. Discussion  
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8.1    Joint Registry Approach for the Identification 

of Outlier Prostheses 

Arthroplasty registries differ in their approaches to identifying outlier prostheses 

within the community. The Swedish hip arthroplasty register circulates survivorship 

curves but there is no specific comparison of the prostheses performance [170]. The 

Norwegian registry documents the surveillance of prostheses and distributes 

outcomes in peer-reviewed journals, but the annual report does not include any 

particular survivorship curves [209]. The New Zealand registry publishes tables of 

prostheses outcomes but does not identify outlier prostheses [40]. The National Joint 

Registry for England and Wales has developed a subcommittee to discuss unique 

strategies for each prosthesis [5]. The Swedish Knee Arthroplasty Register uses an 

implant as a reference when comparing the outcomes of other prostheses [34]. The 

main challenge of all these approaches is to identify the most appropriate comparator 

for a liable comparative study of prostheses performance. 

A number of devices are identified annually as poor-performing prostheses given 

the post-surgery outcomes. Joint registries (JRs) need to apply appropriate and 

effective methods to recognize poor-performing prostheses and evaluate all the 

potential variables impacting the monitoring process of total joint prostheses. JRs can 

identify variations in the outcome by estimating time to first revision using Kaplan-

Meier survival analyses [203-206]. The variation in the performance of prostheses 

indicates the necessity for thorough pre-market evaluation and careful post-market 

assessment.  

Joint registries assist the community in understanding the use of prosthetic devices 

and improve patient outcomes by providing high-quality post-market survival results 

[207, 208]. Individuals or prosthesis combinations are regularly identified if they 

indicate a much higher revision rate than others within the same broad class [210, 

211]. Outlier detection will continue to improve with the application of more effective 

strategies. Many approaches have been investigated for systematically reducing the 

revision rate but the details were far less widely reported. International collaborations 

can improve the identification by sharing data and assessing the surveillance of 

prostheses using a more extensive database.   



The Australian Orthopaedic Association National Joint Replacement Registry 

(AOANJRR) determines the possible reasons for higher-than-expected revision rates 

of outlier prostheses. The registry developed a standardized multi-stage approach with 

an initial screening analysis that automatically identifies an outlier individually or in 

combination with the associated components. This occurs when the revision rate per 

100 component years exceeds twice that of all others [212]. Then, a limited number of 

potential confounding factors (including age, gender, and primary diagnosis) are 

reviewed as a part of this early assessment [15].   

The registry assesses patient-, surgeon- and device-related variables that may 

significantly contribute to the observed higher revision rate. For example, some 

prostheses may be detected by the initial screening test but not be reported for various 

reasons such as inadequate sample size, their use in complex primary situations or 

when combined with a poor-performing component. However, there are several 

limitations with the standardised approach as it is not able to consider all the known 

confounding factors simultaneously. The method has significant limitations when 

handling interactions of highly-correlated variables.  

Joint replacement registries are able to identify differences in such outcomes based 

on patient-, surgery- and prosthesis-specific factors [167-169]. An important part of 

this study was the analysis conducted to examine the impact of potential confounders 

which are known to influence implant survival. This analysis sought to identify patient 

and surgeon factors, as well as prosthesis-related variables that may have contributed 

to the observed higher rate of revisions. This research studied a number of surgeons 

(after applying the exclusion criteria) to determine whether the poor results of outlier 

prostheses were influenced by one or a few surgeon(s). However, a more detailed 

analysis on the experience of surgeons and their surgical load (e.g. number of 

replacements performed per year) was not conducted due to some major limitations, 

such as the complexity of converting such information into classified meaningful 

inputs. This is a limitation in this study that needs further investigation in future work. 

This research identified hip and knee outlier prostheses, taking into consideration 

all the known confounding factors such as the number of surgeons and the subset 

designs. A particular surgeon or a specific design of device could be responsible for a 

higher-than-anticipated rate of revision (HTARR). These two factors were not included 
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in the model training but were studied through a careful post-analysis of the surgeon 

effects and subset details. This study also identified the surgeons with the most 

contribution to the performance of identified total hip and knee prostheses. The 

outcomes of the outlier prostheses by these surgeons are shown in Table 8.1. 

Table 8. 1. The most significant interactions between surgeon IDs and prostheses. 

Primary Total Conventional Knee for OA (1st January 2015 to 31st December 2019) 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

1177 

Device IV 15 197 649.9 2.31 (1.29, 3.81) 

Overall 21 219 721.5 2.91 (1.80, 4.45) 

Ex. outliers 6 22 71.6 8.38 (3.07, 18.24) 

1218 

Device IV 7 439 414.4 1.69 (0.68, 3.48) 

Overall 39 921 1963.8 1.98 (1.41, 2.71) 

Ex. outliers 32 482 1549.4 2.06 (1.41, 2.91) 

1745 

Device IV 12 106 374.5 3.2 (1.65, 5.6) 

Overall 15 231 561.7 2.67 (1.49, 4.40) 

Ex. outliers 3 125 187.2 1.60 (0.33, 4.68) 

Primary Total Conventional Hip for OA (1st January 2015 to 31st December 2019) 

Surgeon ID  
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

1745 

Device I 9 113 144.5 6.23 (2.85, 11.82) 

Overall 10 145 258.4 3.87 (1.85, 7.12) 

Ex. outliers 1 28 95.6 1.04 (0.03, 5.83) 

1177 

Device VI 6 134 275.7 2.17 (0.8, 4.74) 

Overall 30 425 1303.9 2.30 (1.55, 3.28) 

Ex. outliers 24 291 1028.2 2.72 (1.49, 3.47) 

1218 

Device VI 16 366 404.2 3.96 (2.26, 6.43) 

Overall 43 763 1666.6 2.58 (1.87, 3.47) 

Ex. outliers 27 397 1262.4 2.14 (1.41, 3.11) 

1745 

Device V 9 112 144.4 6.23 (3.32, 12.74) 

Overall 10 145 258.4 3.87 (1.85, 7.12) 

Ex. outliers 1 28 95.6 1.04 (0.03, 5.83) 

 

8.2    Primary Total Hip Comparator  

Given the advancements in the design and use of hip prostheses, this research 

aimed first to develop a specific comparator for the early assessment of total hip 

prostheses. Currently, the standard hip prosthesis is constructed with modern bearing 

surfaces. Hence, all non-modern bearing surfaces were excluded in order to identify 

a modern comparator. Then devices with modular neck-stem design or those used for 

specific purposes including constrained, dual mobility, and head size smaller than 28 

mm were excluded. Lastly, all remaining prostheses previously identified as having 

HTARR were also excluded. These exclusions progressively reduced the revision rate 

of the comparator. Therefore, contemporary device components can be a more 

effective and relevant comparator with greater sensitivity for the early assessment of 

newly-introduced prostheses.  

The AOANJRR standardised approach detected additional femoral stems and 

acetabular components using the final modified comparator. The registry takes into 



account the complexities with small sample sizes, the effect of a single surgeon, and 

the confounding impact of associated device components [164, 165]. Therefore, these 

devices were investigated further to determine the effect of surgeons and subset 

designs. Such identification usually has a significant positive influence on the clinical 

outcomes of patients. However, a careful comparative analysis needs to be 

undertaken to monitor and record the performance of joint arthroplasty prostheses. 

Surgeons, regulatory authorities, and industry should be aware of individual hip 

prostheses identified through a practical and modern initial screening test.   

8.3    Primary Total Knee Comparator 

There are variations in primary total knee outcomes by stability design referring to 

certain prosthetic structures designed to substitute for the inherent stability of knee 

ligaments. Most of the implanted prostheses are established cruciate retaining (CR) 

or posterior stabilised (PS) prostheses with long-term follow-ups [4]. These two 

designs remained the most popular and were used in 90.8% of all the primary 

procedures [34, 40, 66]. The current knee comparator does not differentiate amongst 

other total complex or conventional procedures. This may cause the detection of less 

conventional and more complex design devices within the community. Our results 

showed that the final conventional comparator, which includes only the conventionally-

designed prostheses, has a lower revision rate than the current comparator. A 

comparator of complex prostheses was also identified with a higher revision rate than 

the current comparator to better reflect high-risk devices used for specific purposes.  

The use of the modified comparator groups resulted in more conventional and less 

complex prostheses detected by the AOANJRR standardised approach. Although the 

comparator was modified in terms of the stability design, there was no further 

subdivision by patella, fixation, mobility, or technology assist (including robotic 

assistance, image-derived instrumentation, or computer navigation). Further 

subdivisions may provide meaningless comparator groups with too-small sample sizes 

at the time of writing this study. However, the registry is aware that other factors can 

be further investigated for more relevant and specific comparator groups. For example, 

using only the total knee prostheses with patellar resurfacing components may 

improve the sensitivity of the conventional comparator [5, 34, 40]. Regular 
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reconsiderations of initial screening are needed as modifications occur in the use and 

design of total knee prostheses.  

8.4    Methods for Outlier Detection 

Many diverse models exist for analysing and studying high-dimensional survival 

data. While some statistical models and implementations contain tuning automatism 

of a parameter internally, others may necessitate the user to modify defaults 

accurately. Survival analysis agreements with the analysis of failure times or time to 

events are observed in various application fields, such as medical statistics. The main 

interest of researchers usually is in computing the effect of other variables on the 

survival time. For example, the Cox proportional hazards model is a standard method 

used to analyse the impact of clinical variables on the outcome. 

An established research method is the development of appropriate multivariate 

survival models in addition to the comparative study of their potential to generalize 

using unseen data. However, new challenges have appeared in recent years due to 

the quick expansion of data collection technologies and computer science. One 

particular challenge involves the reliable and simultaneous measurement of 

thousands of variables such as patient data and prosthesis attributes. Common 

techniques comprise linear regression methods that penalize extreme parameter 

estimates with a shrinkage format such as a Ridge penalty [213], a Lasso penalty [214] 

or a combined version called elastic net [215]. The last two have the advantage of 

automatically implementing feature selection for subsequent interpretation. However, 

it has been found that Ridge regression – which keeps all parameters in its final 

coefficient vector –often performs superior with a greater power of prediction [216, 

217].  

Although comprehensive comparisons have been performed between ML statistical 

methods, comparative study of survival methods is still commonly conducted. There 

is a strong need for reproducible and objective comparative studies in the field of joint 

arthroplasty surgeries. Despite the aforementioned penalized approaches, survival 

trees/forests seem promising approaches that have not been severely compared in 

the high-dimensional survival setting. The effectiveness of the developed models may 

vary by tuning of hyper-parameters, as the default settings are often not optimal. Even 

experts might struggle with the tuning process but prefiltering has been recommended 



and proven to be effective. For example, most variables are unrelated to survival 

outcomes in typical signal detection and can be regarded as irrelevant or even 

detrimental to prediction. 

Various filtering methods can be used, requiring the analyst to set the respective 

control parameters. The in-depth evaluation of all algorithm and parameter 

combinations is impractical even if parallelisation is employed, especially for the high-

dimensional structures. A modern approach to solving this dilemma is to make all 

choices through an efficient black-box optimisation that considers the desired 

performance measure. Modern methods are exclusively customised for the 

characteristics of optimisation problems. The emerging research field has become 

known as a hot modern topic called algorithm configuration. Two leading procedures 

are iterated racing [218] and model-based optimization [219].  

8.5    Survival Analysis  

In survival analysis, the time to a particular event (first revision) is observed. The 

predefined event may not be observable due to the censoring for a patient who may 

die or survive until the end of this study. This important concept is called right-

censoring and holds essential information about the event that did not occur before a 

certain point. Therefore, one primary goal is to involve both non-censored and 

censored observations. This research assumed that there are n patients with a survival 

time “ti” for each of them. These survival times are supposed to be generated from a 

non-negative random variable T with cumulative distribution function F(t) and density 

f(t). The probability of surviving more than t is specified by the survival function S(t): 

𝑆(𝑡) =  𝑃({𝑇 >  𝑡}) = ∫ 𝑓(𝑢) 𝑑𝑢
∞

𝑡

 =  1 −  𝐹(𝑡) 

The number of observations is defined as ni and also, when it is still under risk at ti 

is defined as the number of risk at ti. The Kaplan–Meier estimator can estimate hazard 

function λ(t) that is closely associated with the survival function and express the risk 

for an event (revision) at a definite point in time t with respect to surviving until t and 

the cumulative hazard function Λ(t):  

𝜆(𝑡)  =  lim
𝛥𝑡→0

𝑆(𝑡)  −  𝑆(𝑡 + 𝛥𝑡)

𝛥𝑡 𝑆(𝑡) 
=  

𝑓(𝑡)

𝑆(𝑡)
 , 𝛬(𝑡) = ∫  𝜆(𝑢) 𝑑𝑢

𝑡

0

 =  − 𝑙𝑜𝑔 𝑆(𝑡) 
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This study assumed the censoring to be non-informative, which means that the 

censoring distribution of data contains no information about the surveillance. In 

addition, a covariate vector xi ∈ Rp was observed for each patient, which then formed 

the (n × p)-matrix by all covariate vectors. The covariates can only include a limited 

number of variables (e.g., age and gender) or constantly a large number of 

orthopaedic variables. They are mostly considered to predict the risk of occurring an 

event expressed by λ(t) or Λ(t). The concordance index (C-index) is a standard 

performance measure to assess survival models [220]. The C-index, including a 

correction for ties, is estimated by maximizing the partial log-likelihood.  

8.6    Feature Selection and Algorithms 

As a strategy for mining high-dimensional datasets, feature selection shows this 

ability to be efficient and effective. The aim of feature selection is to build more 

straightforward and understandable models and improve data-mining performance. 

The current proliferation of big data is suggested considerable challenges and 

research opportunities. It is required to apply data mining strategies to discover 

knowledge from big data. Learning models tend to overfit with many features, leading 

to performance decay on unseen data. High-dimensional data can considerably 

increase the memory storage necessities and computational requirements.  

Real-world data hold a large number of unrelated, redundant, and noisy variables 

that can be handled by one of the most influential tools called dimensionality reduction. 

On the one hand, feature extraction changes the dataset with original high-

dimensional variables to a new space with lower dimensionality. The newly-created 

variable space can typically be a nonlinear or linear combination of the original 

variables. On the other hand, feature selection directly chooses a subgroup of relevant 

variables for model development [195, 221].  

Basic filtering methods exist to handle the correlations and there are more elaborate 

alternates that demand extensive computational resources. The pre-selection of 

features is a two-edged sword: the model may be untrustworthy as it might not reveal 

potentially useful information. By contrast, limiting the features to a logical subset can 

meaningfully increase the performance of models and preliminary dimension reduction 

decreases the computational necessities [21]. A backward selection procedure may 

help provide a more informative subset of variables. 



The removal of noisy variables also decreases computational cost and 

simultaneously prevents significant information loss or degradation of learning 

performance. Both feature selection and extraction can improve learning performance, 

reduce memory storage, and fit models with better generalization. Feature selection 

keeps the physical meanings of the original variables and provides models with greater 

interpretability, and is frequently desired in many applications such as medical 

analytics.  

Algorithms have different unique implementations. Survival trees use binary 

selections to split data into sets of similar hazard rates recursively. A rule for binary 

splits is to search all variables and their corresponding probable cut points to minimize 

the P-value of the log-rank test [222]. For prediction purposes, new data are released 

to the tree and a cumulative hazard function Λ(t) is created for each separate terminal 

node. This function can be used to compute the risk of revision with respect to the 

follow-up time. Random survival forests are built by fitting survival trees on 

bootstrapped data samples and randomly sampling candidate feature sets for each 

node.  

In the case of Cox regression, Lambda represented the complexity of the model 

determined via 10-fold Cross-Validation (CV). An acceptable value for lambda is 

typically identified using CV to provide a stable model with the minimum variance in 

the reported outcomes. This occurs by a random subdivision of the dataset into ten 

parts, and each block then acts as the test set per CV iteration. Cross-validation is a 

common resampling process for the assessment and comparative evaluation of the 

model [223]. A rather high number of folds was selected as there were enough 

samples to evaluate the C-index in a meaningful way. Note that the proposed models 

were all developed with a tuning of the most critical parameters using CV.  

8.7    Machine Learning Approach for the Identification of 

Outlier Prostheses 

The AOANJRR multi-stage approach ignores the order of time. This means that 

although the registry is successful at evaluating the performance of recently-

introduced devices, those with delayed onset of higher revision rates are not simply 

detected by the same method. It also does not limit the confounding effect of the 

potential factors. Ideally, a survival method to identify outliers should determine the 
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confounding effects of patient characteristics and other associated components using 

a time-to-first revision outcome. Stage I of the standardised approach does not 

account appropriately for the changes in the rate of revision over time. This constraint 

may cause difficulty in detecting the outlier prostheses later in the follow-up period 

[173]. In addition, stage II is a further analysis only on a limited number of confounding 

variables such as age, gender and primary diagnosis.  

In medical research, predictive models are often used to derive patterns from 

diagnoses and treatments. Examples include data-driven predictions of drug effects, 

the detection of comorbidity groups in autism spectrum disorders, and the identification 

of type 2 diabetes subgroups [97, 98]. Machine learning (ML) seems promising for 

solving complex problems as many variables can be considered simultaneously and 

learning patterns are produced from empirical data. However, more investigations are 

needed to document the ability of feature selection in orthopaedics and the monitoring 

of joint arthroplasty, particularly total joint replacement. For example, the success of 

outlier detection relies on detecting appropriate component characteristics, and the 

process is compromised in the absence of relevant attributes. The contrary may be a 

concern because when too many features are used to describe components, outliers 

may be difficult to detect. One possibility to address this issue is to use data from 

several joint registries with information about the components of the same prostheses. 

In medical sciences, supervised ML is widely used to train models with a known set 

of predictors and outcomes. The supervised algorithms are able to identify the 

predictors most strongly associated with the outcome. Larger sample sizes may 

improve the performance of ML in the variable selection or prediction problems. The 

potential to handle big data with high-correlated structures may assist clinicians by 

providing information about the components of the medical device. In addition, 

retrieval studies add significant insights on the mechanisms of failed implants, and 

should be used in conjunction with joint replacement registry reports [224, 225]. 

Implant retrieval studies and joint registry data analysis of THR and TKR are 

multidisciplinary areas that require contributions from clinicians, engineers and data 

scientists. To date, multivariable predictive models have been developed for THR and 

TKR using patient-reported factors and image-based data. Perhaps now is the right 

time to enter a new era of THR and TKR by developing decision-making support 

systems.  



The principal objective of evaluating ML techniques was to investigate their potential 

in monitoring the performance of joint arthroplasty components. There was variation 

in the outcome of methods employed to detect hip and knee outliers with respect to 

the standardised approach. Hip models were trained with smaller sample sizes and 

more highly-correlated inputs than the knee models due to entering the individual 

components rather than combinations. By contrast, more covariates were defined in 

the case of total knee replacements in order to consider further complex interactions. 

It is noted that the ML approach necessitates clinical knowledge prior to selecting a 

reasonable number of input factors. 

More feature selection techniques could be evaluated using shared data from joint 

registries to improve signal detection efforts. Machine learning has limitations in 

identifying outlier prostheses with concerns about accurately interpreting statistics to 

indicate the impact of variables on the outcome [226, 227]. Random forests are unable 

to specify variable effects in a substantively meaningful approach, and it is also more 

challenging to achieve a substantive understanding of variable effects [6].   

The AOANJRR standard provided an acceptable criterion by which to assess the 

effectiveness of the methods on both reported and non-reported prostheses. We 

suggest that ML can be used as a supplementary approach in the outlier detection 

and tree-based methods offer better performance for data mining [175, 227]. To date, 

several techniques (e.g., permutation importance) have been used to interpret variable 

effects determined by random survival modelling [227]. Permutation importance does 

not characterize variable effects, and it only describes a conditional strength.  

This study found that the estimate of variable importance is less biased and more 

accurate when the sample size is increased with a corresponding increase in the 

computational time. Both of the proposed ML methods reduced the dimensionality of 

our complex data to a subset of more informative inputs. This was done by excluding 

noisy variables that could possibly improve the prediction error rate to select the most 

significant predictors. Hyperparameters were also tuned carefully to achieve the most 

informative predictors. Random forests require the user to examine the impact of tuned 

hyperparameters on the error rate. A more computational cost should be expected for 

RSF than for the parametric or semi-parametric models.  
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The conventional parametric models such as multiple linear regression necessitate 

a correct model specification. To the extent that the fitted Cox models rely on a more 

conventional approach of measuring variable significance, it may be a more desirable 

option for similar feature selection problems. However, limitations exist for the Cox 

modelling regarding the extrapolation and model misspecification [228]. Other 

advantages of the Cox models include higher efficiency in computational time and 

reporting the adjusted predictor’s strength when there is a need to maintain the false 

discovery rate (FDR) at 0.05. Conversely, calculating a sufficient number of 

permutations with respect to the FDR rate was computationally too burdensome for 

the RSF approach. 

In future applications, Cox and random survival may support the initial screening 

test to effectively monitor the performance of prostheses. A single model is not 

necessarily the best as the inclusion or exclusion of predictors can affect the strength 

and sign of predictors. Some points of the two methods are sorted in order. First, more 

components were detected using RSF within the total conventional hip community. 

Second, the primary motivation of this study was to limit both device‐ and patient‐level 

confounding when identifying harmful prostheses, and the two approaches could 

handle this difficulty. The Cox was conditioned on device and patient characteristics 

simultaneously while the RSF had many competing variables for splitting.  

Overall, the RSF backward selection was more aligned with the AOANJRR 

standard as random subsets of variables were used per node to grow trees. In 

addition, the correlated variables were selected independently, leading to the 

interruption of multicollinearity [188]. This feature of the RSF provides an attractive 

approach for explorative variable selection; however, false-positive discoveries due to 

overfitting are still considered a major problem [189]. Machine learning identified 

additional hip prostheses to the AOANJRR standard, and some of those were newly 

detected for the first time based on the registered historical data. Future studies can 

apply the developed approaches to monitor other arthroplasty devices such as those 

for shoulders. Utilizing prediction to understand the link between inputs and the 

outcome may improve decision makings for the early identification of outlier 

prostheses.  

  



 

  

 

 

 

 

 

Chapter 9. Conclusions 
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9.1    Conclusion remarks 

One of the main functions of all joint registries (JRs) is to enable the comparison of 

the performance of individuals, prosthesis combinations, or an entire class of devices. 

This study illustrates that increasing the relevance of the comparator could be helpful 

for the early identification of a higher number of outlier prostheses. In addition, the 

most challenging part was the reduction of the confounding effects by taking into 

account the patient factors and prosthesis attributes. For example, several total knee 

replacements (TKRs) have a higher revision rate only with posterior stabilized or 

cementless versions, and total hip replacements (THRs) show the same risk with 

smaller head sizes. The results enable surgeons to make an informed choice of 

devices, and are essential for registries to identify variations, leading to the adoption 

of best practices.  

Several prostheses currently being used extensively in the Australian market were 

identified for the first time. The use of modified comparator groups led to identifying 

fewer complex knee designs and additional conventional hip and knee prostheses that 

pose a risk. The final comparator groups had an estimated 10-year CPR of 4.3% (4.2, 

4.41) for conventional THR, 5.2% (5.1, 5.3) for conventional TKR, and 10.3% (8.6, 

12.0) for Complex TKR. The publication of these data could contribute to better clinical 

outcomes by reducing the revision rate. This research studied in detail and statistically 

reported the performance of prostheses utilising the modified comparator. This 

includes patient factors, prosthesis attributes, and the potential interaction between 

the confounding factors.  

This study evaluated random survival forest (RSF) and Cox regression based on 

their ability to detect the outliers identified by the standardised approach. In addition, 

the performance of these hip and knee devices was assessed with a view to limiting 

the effect of potential confounding factors. This study showed that the random survival 

approach was more comparable to the Australian Orthopaedic Association National 

Joint Replacement Registry (AOANJRR) standard in terms of detecting more outlier 

prostheses. However, the Cox regression has a significant advantage in terms of 

computational cost, interpreting variable effects, and documenting confounding 

effects. Overall, five prostheses met all the criteria established by the approaches (P 

value < .05) and several devices had higher than expected revision rates. 



The registries have the common goal of improving joint arthroplasty outcomes over 

time. The early identification of outliers may be associated with a substantial reduction 

in usage of a certain prosthesis and the subsequent withdrawal of the device from the 

Australian market. The registry and NICE (National Institute for Health and Care 

Excellence) currently recommend the modern comparator for the early detection of 

primary total hip and knee prostheses. In addition, random survival and Cox regression 

techniques might offer a supplementary approach to improve the statistical process 

strengthened by the registry. The AOANJRR verifies this research findings that 

sensitively improved the early assessment of prostheses. 

A number of total knee prostheses were identified as combinations but more 

consideration should be given to reporting the individual components. Monitoring the 

real performance of prostheses with more combinations can better reflect the 

performance of individual components. Further weight is also given to the argument 

that the non-modern bearing surfaces were an issue with a broad range of joint 

arthroplasty prostheses. To the best of our knowledge, this is the first comparative 

study to report the poorer performance of non-modern THR compared to the modern 

bearing surfaces. The continued use of such prostheses may increase the risk of using 

poor-performing prostheses for more patients with osteoarthritis.  

The AOANJRR aims to develop a better understanding of confounding factors 

associated with outlier detection. According to the machine learning chapters, the most 

significant device-related covariates include head size for the initial screening of hip 

devices, and the stability and fixation for that of knee prostheses. Moreover, the 

conventional statistical analyses showed variations in the outcome of identified total 

hip prostheses with the femoral head size, bearing surface and the associated device 

component, and knee outliers in regard to bearing surfaces, method of fixation and the 

patella usage.  

This finding suggests the importance of identifying the confounding factors and 

evaluating their impacts on the detection. Machine learning seems promising as an 

initial screening method for a more effective assessment of prostheses. Utilizing 

prediction to understand the variables linked with the outcome may improve shared 

decision-making, leading to fewer patients at risk of receiving poor devices. The 



 _______________________________________________________________________________ Conclusions 

133 
 

outcome may cause a considerable reduction in the number of patients exposed to 

the outlier prostheses.  

9.2    Suggestions for future works 

The AOANJRR has been instrumental in improving the joint arthroplasty outcomes, 

and this research on the registry data could have an increasingly widespread global 

influence. The registry has worked closely with all stakeholders involved in THRs and 

TKRs including industry, surgeons, hospitals, government and regulatory bodies, 

medical insurers and patients. Collaboration between JRs for the purpose of sharing 

data, will enable researchers to conduct for more extensive analyses of the prosthesis 

outcomes of surgery performed internationally. Future studies can apply the proposed 

method to various classes of device components used for arthroplasty surgeries. The 

concept of prediction models to understand the significance of variables may have 

considerable potential to provide important context for the initial screening of prosthetic 

devices. In addition, this research included significant clinically-known attributes but 

other factors related to surgeons and subset designs can be investigated. 
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Primary Total Hip Prostheses 

Device I 

 

Figure 1. Cumulative percent revision of Device I. 

Table 1. Revision rates of Device I primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 21 296 572.6 3.67 (2.27, 5.60) 

Hybrid (Femur cemented) 0 4 15 0.00 (0.00, 24.58) 

Total 21 300 587.6 3.57 (3.29, 3.91) 

Table 2. Revision rates of Device I primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 13 147 296.4 4.39 (2.33, 7.50) 

Ceramic/ Non XLPE 7 136 223.7 3.13 (1.26, 6.45) 

Metal/Non XLPE 1 17 67.5 1.48 (0.04, 8.25) 

Total 21 300 587.6 3.57 (3.29, 3.91) 

Table 3. Revision rates of Device I primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 13 158 243.3 5.34 (2.84, 9.14) 

Lateral 4 34 101.3 3.95 (1.07, 10.11) 

Posterior 4 96 187.7 2.13 (0.58, 5.46) 

Total 21 300 587.6 3.57 (3.29, 3.91) 

 

 

 

 

 



Table 4. Reason for revision (follow-up limited to 5 years). 

 Device I 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 5 1.67 23.81 

Prosthesis Dislocation 2 0.67 9.52 

Fracture 4 1.33 19.05 

Loosening 5 1.67 23.81 

Leg Length Discrepancy 1 0.33 4.76 

Instability 1 0.33 4.76 

Pain - - - 

Malposition 2 0.67 9.52 

Incorrect Sizing 1 0.33 4.76 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other - - - 

N Revision 21 7.0 100.0 

N Primary 300   

 
Figure 2. Cumulative incidence revision diagnosis for Device I. 
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Table 5. Type of revision performed for primary total conventional hip replacement. 

 Device I 

Type of Revision Number Percent 

Femoral Component 9 42.85 

Acetabular Component 5 23.81 

THR (Femoral/Acetabular) 2 9.52 

Cement Spacer 2 9.52 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 18 85.71 

Head/Insert 2 9.52 

Head Only 1 4.76 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 3 14.28 

Total 21 100.0 

Table 6. Revision rates of Device I primary total conventional hip replacement by femoral stem. 

Femoral stem 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Exeter V40 0 1 2.8 0.00 (0.00, 132.22) 

Furlong 1 18 72.5 1.38 (0.03, 7.68) 

Furlong Evolution 18 241 381.7 4.71 (2.79, 7.45) 

GTH 0 3 12.2 0.00 (0.00, 30.19) 

Linear 2 15 26 7.68 (0.93, 27.73) 

Novation 0 21 91.2 0.00 (0.00, 4.04) 

Origin 0 1 1.1 0.00 (0.00, 320.77) 

Total 21 300 587.6 3.57 (3.29, 3.91) 

Table 7. Number of revisions of Device I primary total conventional hip replacement by year of 

implant. 

Acetabular component 
N  

Revised 

N  

Total 

2015 3 63 

2016 0 11 

2017 3 53 

2018 9 93 

2019 6 80 

Total 21 300 

 

  



Device II 

 

Figure 3. Cumulative percent revision of Device II. 

Table 8. Revision rates of Device II primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 5 59 228.8 2.18 (2.03, 2.36) 

Total 5 59 228.8 2.18 (2.03, 2.36) 

Table 9. Revision rates of Device II primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/XLPE 5 59 228.8 2.18 (2.03, 2.36) 

Total 5 59 228.8 2.18 (2.03, 2.36) 

Table 10. Revision rates of Device II primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 1 32 128.3 0.78 (0.02, 4.34) 

Posterior 1 2 1.9 53.76 (1.36, 299.55) 
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Table 11. Reason for revision (follow-up limited to 5 years). 

 Device II 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 1 1.7 20.0 

Prosthesis Dislocation - - - 

Fracture 1 1.7 20.0 

Loosening 2 3.4 40.0 

Leg Length Discrepancy 1 1.7 20.0 

Instability - - - 

Pain - - - 

Malposition - - - 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other - - - 

N Revision 5 8.5 100.0 

N Primary 59   

 

Figure 4. Cumulative incidence revision diagnosis for Device II. 

 

 

 

 

 

 

 



Table 12. Type of revision performed for primary total conventional hip replacement. 

 Device II 

Type of Revision Number Percent 

Femoral Component 2 40.0 

Acetabular Component 1 20.0 

THR (Femoral/Acetabular) - - 

Cement Spacer - - 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 3 60.0 

Head/Insert 1 20.0 

Head Only 1 20.0 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 2 40.0 

Total 5 100.0 

Table 13. Revision rates of Device II primary total conventional hip replacement by femoral stem. 

Femoral stem 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Novation stem 5 59 228.8 2.18 (2.03, 2.36) 

Total 5 59 228.8 2.18 (2.03, 2.36) 

Table 14. Number of revisions of Device II primary total conventional hip replacement by year of 

implant. 

Acetabular component 
N  

Revised 

N  

Total 

2015 3 39 

2016 1 18 

2017 1 1 

2018 0 1 

2019 0 0 

Total 5 59 
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Device III 

 

Figure 5. Cumulative percent revision of Device III. 

Table 15. Revision rates of Device III primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 34 684 1598.9 2.13 (1.47, 2.97) 

Hybrid (Femur cemented) 1 76 136.8 0.73 (0.02, 4.07) 

Total 35 760 1735.6 2.02 (1.93, 2.11) 

Table 16. Revision rates of Device III primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Non XLPE 31 710 1623.3 1.91 (1.30, 2.71) 

Metal/Non XLPE 4 50 112.3 3.56 (0.97, 9.12) 

Total 35 760 1735.6 2.02 (1.93, 2.11) 

Table 17. Revision rates of Device III primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 26 576 1410.4 1.84 (1.20, 2.70) 

Lateral 0 25 47.8 0.00 (0.00, 7.71) 

Posterior 8 150 245.3 3.26 (1.41, 6.42) 

 

  



Table 18. Reason for revision (follow-up limited to 5 years). 

 Device III 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 7 0.92 20.0 

Prosthesis Dislocation 2 0.26 5.71 

Fracture 13 1.71 37.14 

Loosening 7 0.92 20.0 

Leg Length Discrepancy - - - 

Instability - - - 

Pain 1 0.13 2.86 

Malposition 1 0.13 2.86 

Incorrect Sizing 2 0.26 5.71 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other 2   

N Revision 35 4.6 100 

N Primary 760   

 

Figure 6. Cumulative incidence revision diagnosis for Device III. 
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Table 19. Type of revision performed for primary total conventional hip replacement. 

 Device III 

Type of Revision Number Percent 

Femoral Component 15 42.86 

Acetabular Component 7 20.0 

THR (Femoral/Acetabular) 4 11.43 

Cement Spacer 1 2.86 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 27 77.14 

Head/Insert 7  

Head Only - - 

Minor Components 1 2.86 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 8 22.86 

Total 35 100.0 

Table 20. Revision rates of Device III primary total conventional hip replacement by femoral stem. 

Femoral stem 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

AMIStem H 1 35 68.8 1.45 (0.04, 8.09) 

CORAIL 0 3 4.4 0.00 (0.00, 83.65) 

GHE 2 9 34.7 5.76 (0.70, 20.83) 

M/L Taper 0 4 13.7 0.00 (0.00, 26.87) 

MasterLoc 0 3 3 0.00 (0.00, 124.20) 

MiniMax 5 108 172.7 2.89 (0.94, 6.76) 

Modulus 0 1 4.7 0.00 (0.00, 78.32) 

Polarstem 0 1 2.4 0.00 (0.00, 154.99) 

Quadra-C 0 61 97.9 0.00 (0.00, 3.77) 

Quadra-H 26 501 1240.5 2.09 (1.37, 3.07) 

Revision Hip 0 2 1.6 0.00 (0.00, 236.47) 

S-Rom 0 1 2.8 0.00 (0.00, 129.43) 

Taperloc 0 16 49.6 0.00 (0.00, 7.44) 

X-Acta 1 15 38.8 2.57 (0.06, 14.34) 

Total 35 760 1735.6 2.02 (1.93, 2.11) 

Table 21. Number of revisions of Device III primary total conventional hip replacement by year of 

implant. 

Acetabular component 
N  

Revised 

N  

Total 

2015 6 116 

2016 8 163 

2017 11 173 

2018 7 160 

2019 3 148 

Total 35 760 

 

  



Device IV 

 

Figure 7. Cumulative percent revision of Device IV. 

Table 22. Revision rates of Device IV primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 8 71 245.4 3.26 (3.01, 3.56) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 23. Revision rates of Device IV primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 4 54 191.2 2.09 (0.57, 5.35) 

Ceramicised Metal/XLPE 3 12 37.6 7.97 (1.64, 23.30) 

Metal/XLPE 1 5 16.5 6.06 (0.15, 33.79) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 24. Revision rates of Device IV primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Lateral 4 41 140.5 2.85 (0.77, 7.29) 

Posterior 3 25 87 3.45 (0.71, 10.07) 
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Table 25. Reason for revision (follow-up limited to 5 years). 

 Device IV 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 2 2.82 25.0 

Prosthesis Dislocation 3 4.22 37.5 

Fracture - - - 

Loosening 1 1.41 12.5 

Leg Length Discrepancy - - - 

Instability - - - 

Pain - - - 

Malposition - - - 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem 1 1.41 12.5 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other 1 1.41 12.5 

N Revision 8 11.27 100.0 

N Primary 71   

 

Figure 8. Cumulative incidence revision diagnosis for Device IV. 

 

 

 

 

 

 

 



Table 26. Type of revision performed for primary total conventional hip replacement. 

 Device IV 

Type of Revision Number Percent 

Femoral Component 2 25.0 

Acetabular Component - - 

THR (Femoral/Acetabular) 1 12.5 

Cement Spacer - - 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 3 37.5 

Head/Insert 4 50.0 

Head Only 1 12.5 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 5 62.5 

Total 8 100.0 

Table 27. Revision rates of Device IV primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

R3 8 70 240.6 3.32 (1.43, 6.55) 

Trabecular Metal (Shell) 0 1 4.8 0.00 (0.00, 77.17) 

Total 8 71 245.4 3.26 (3.01, 3.56) 

Table 28. Number of revisions of Device IV primary total conventional hip replacement by year of 

implant. 

Femoral stem 
N  

Revised 

N  

Total 

2015 4 32 

2016 4 29 

2017 0 10 

2018 0 0 

2019 0 0 

Total 8 71 
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Device V 

 

Figure 9. Cumulative percent revision of Device V. 

Table 29. Revision rates of Device V primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 18 288 458.7 3.92 (3.59, 4.31) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 30. Revision rates of Device V primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 10 142 235.8 4.24 (2.03, 7.80) 

Ceramic/Non XLPE 7 114 129.6 5.40 (2.17, 11.13) 

Ceramic/XLPE 0 13 23.9 0.00 (0.00, 15.46) 

Ceramic/XLPE + Antioxidant 0 4 12.3 0.00 (0.00, 29.97) 

Metal/Non XLPE 1 15 57.2 1.75 (0.04, 9.74) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 31. Revision rates of Device V primary total conventional hip replacement by approach. 

Approach N Revised N Total Obs.Years 
Revisions/100 

Obs. Years (95% CI) 

Anterior 11 166 230.9 4.76 (2.37, 8.52) 

Lateral 4 15 28.3 14.14 (3.85, 36.21) 

Posterior 3 100 167.7 1.79 (0.37, 5.23) 

 

 

 

 

 

 



Table 32. Reason for revision (follow-up limited to 5 years). 

 Device V 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 5 1.74 27.78 

Prosthesis Dislocation 1 0.35 5.55 

Fracture 4 1.39 22.22 

Loosening 3 1.04 16.67 

Leg Length Discrepancy 1 0.35 5.55 

Instability 1 0.35 5.55 

Pain - - - 

Malposition 2 0.69 11.11 

Incorrect Sizing 1 0.35 5.55 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other - - - 

N Revision 18 6.25 100 

N Primary 288   

 

Figure 10. Cumulative incidence revision diagnosis for Device V. 
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Table 33. Type of revision performed for primary total conventional hip replacement. 

 Device V 

Type of Revision Number Percent 

Femoral Component 7 38.89 

Acetabular Component 4 22.22 

THR (Femoral/Acetabular) 2 11.11 

Cement Spacer 2 11.11 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 15 83.33 

Head/Insert 2 11.11 

Head Only 1 5.55 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 3 16.67 

Total 18 100.0 

Table 34. Revision rates of Device V primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Acetabular Shell (Global) 0 4 17.5 0.00 (0.00, 21.11) 

Adaptive 0 4 12.3 0.00 (0.00, 29.97) 

Delta-TT 0 2 4.3 0.00 (0.00, 85.99) 

Furlong 18 241 381.7 4.71 (2.79, 7.45) 

Logical G 0 14 24.6 0.00 (0.00, 14.97) 

Mpact 0 18 9.1 0.00 (0.00, 40.63) 

PINNACLE 0 1 0.2 0.00 (0.00, 1676.76) 

Trident/Tritanium (Shell) 0 1 3.4 0.00 (0.00, 109.46) 

Versafitcup CC 0 3 5.7 0.00 (0.00, 65.06) 

Total 18 288 458.7 3.92 (3.59, 4.31) 

Table 35. Number of revisions of Device V primary total conventional hip replacement by year of 

implant. 

Femoral stem 
N  

Revised 

N  

Total 

2015 2 31 

2016 0 11 

2017 3 52 

2018 7 94 

2019 6 100 

Total 18 288 
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Figure 11. Cumulative percent revision of Device VI. 

Table 36. Revision rates of Device VI primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 48 1265 2269.2 2.11 (1.56, 2.80) 

Reverse Hybrid (Femur cementless) 0 1 1.8 0.00 (0.00, 203.80) 

Total 48 1,266 2271 2.11 (2.04, 2.2) 

Table 37. Revision rates of Device VI primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 5 152 403.9 1.24 (0.40, 2.89) 

Ceramic/Non XLPE 1 174 400.1 0.25 (0.01, 1.39) 

Ceramic/XLPE 38 805 1082.1 3.51 (2.48, 4.82) 

Ceramic/XLPE + Antioxidant 1 59 258.6 0.39 (0.01, 2.15) 

Metal/Non XLPE 3 39 62.5 4.80 (0.99, 14.04) 

Metal/XLPE 0 35 57.2 0.00 (0.00, 6.45) 

Metal/XLPE + Antioxidant 0 2 6.7 0.00 (0.00, 55.30) 

Total 48 1,266 2271 2.11 (2.04, 2.2) 

Table 38. Revision rates of Device VI primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 9 329 551.6 1.63 (0.75, 3.1) 

Lateral 1 215 599.3 0.17 (0.00, 0.93) 

Posterior 37 698 1023.2 3.62 (2.55, 4.98) 
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Table 39. Reason for revision (follow-up limited to 5 years). 

 Device VI 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 12 0.95 25.0 

Prosthesis Dislocation 10 0.79 20.83 

Fracture 16 1.26 33.33 

Loosening 3 0.24 6.25 

Leg Length Discrepancy - - - 

Instability 2 0.16 4.17 

Pain 2 0.16 4.17 

Malposition 1 0.08 2.08 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem 1 0.08 2.08 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other 1 0.08 2.08 

N Revision 48 3.79 100 

N Primary 1,266   

 
Figure 12. Cumulative incidence of revision diagnosis for Device VI. 

 

 

 

 

 

 

 



Table 40. Type of revision performed for primary total conventional hip replacement. 

 Device VI 

Type of Revision Number Percent 

Femoral Component 15 31.25 

Acetabular Component 17 0.35 

THR (Femoral/Acetabular) 7 0.14 

Cement Spacer 2 4.17 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 41 85.42 

Head/Insert 6 12.5 

Head Only 1 2.08 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 7 14.58 

Total 48 100.0 

Table 41. Revision rates of Device VI primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

C2 2 62 165.5 1.2 (0.15, 4.36) 

Fin II 0 5 0.6 0 (0.00, 614.81) 

Logical G 41 855 1113.1 3.68 (2.64, 5.0) 

Marathon 0 1 1.8 0 (0.00, 204.94) 

PINNACLE 0 4 18.3 0 (0.00, 20.16) 

R3 0 1 2.6 0 (0.00, 144.1) 

Saturne 4 213 462.6 0.86 (0.23, 2.21) 

Trident/Tritanium (Shell) 0 6 5.1 0 (0.00, 71.91) 

Trinity 1 119 501.4 0.2 (0.00, 1.11) 

Total 48 1,266 2271 2.11 (1.56, 2.8) 

Table 42. Number of revisions of Device VI primary total conventional hip replacement by year of 

implant. 

Acetabular component 
N  

Revised 

N  

Total 

2015 1 144 

2016 1 92 

2017 15 236 

2018 12 419 

2019 19 375 

Total 48 1,266 
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Device VII 

 

Figure 13. Cumulative percent revision of Device VII. 

Table 43. Revision rates of Device VIII primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 13 195 666.5 1.95 (1.86, 2.05) 

Total 13 195 666.5 1.95 (1.86, 2.05) 

Table 44. Revision rates of Device VII primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 7 93 323.8 2.16 (0.87, 4.45) 

Ceramic/XLPE 2 39 135.6 1.47 (0.18, 5.33) 

Metal/XLPE 4 63 207.2 1.93 (0.53, 4.94) 

Total 13 195 666.5 1.95 (1.86, 2.05) 

Table 45. Revision rates of Device VII primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 7 104 365.6 1.91 (0.77, 3.94) 

Lateral 2 38 121.2 1.65 (0.20, 5.96) 

Posterior 1 23 62.3 1.60 (0.04, 8.94) 

 

 

 

 

 

 

 



Table 46. Reason for revision (follow-up limited to 5 years). 

 Device VII 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 1 0.51 7.69 

Prosthesis Dislocation 3 1.54 23.08 

Fracture - - - 

Loosening 4 2.05 30.77 

Leg Length Discrepancy 1 0.51 7.69 

Instability 2 1.02 15.38 

Pain 1 0.51 7.69 

Malposition 1 0.51 7.69 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other - - - 

N Revision 13 6.67 100 

N Primary 195   

 

Figure 14. Cumulative incidence revision diagnosis for Device VII. 
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Table 47. Type of revision performed for primary total conventional hip replacement. 

 Device VII 

Type of Revision Number Percent 

Femoral Component 5 38.46 

Acetabular Component 3 23.08 

THR (Femoral/Acetabular) 3 23.08 

Cement Spacer - - 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 11 84.62 

Head/Insert 2 15.38 

Head Only - - 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 2 15.38 

Total 13 100.0 

Table 48. Revision rates of Device VII primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Acetabular Shell (Global) 7 81 325.2 2.15 (0.86, 4.43) 

FMP 3 42 157.8 1.90 (0.39, 5.56) 

Furlong 2 15 26.0 7.68 (0.93, 27.73) 

Logical G 1 57 157.5 0.63 (0.02, 3.54) 

Total 13 195 666.5 1.95 (1.86, 2.05) 

Table 49. Number of revisions of Device VII primary total conventional hip replacement by year of 

implant. 

Femoral stem 
N  

Revised 

N  

Total 

2015 5 85 

2016 5 68 

2017 1 26 

2018 2 12 

2019 0 4 

Total 13 195 
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Figure 15. Cumulative percent revision of Device VIII. 

Table 50. Revision rates of Device VIII primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 17 320 374.7 4.54 (4.25, 4.87) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Table 51. Revision rates of Device VIII primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 8 163 161.6 4.89 (2.14, 9.75) 

Ceramic/Non XLPE 5 111 179.2 2.79 (0.90, 6.51) 

Ceramic/XLPE 3 43 31.8 9.43 (1.94, 27.57) 

Metal/Non XLPE 0 1 0.2 0.00 (0.00, 1676.76) 

Metal/XLPE 1 2 1.8 55.55 (1.41, 309.53) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Table 52. Revision rates of Device VIII primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Yrs (95% CI) 

Anterior 17 308 355.4 4.78 (2.79, 7.66) 

Posterior 0 12 19.2 0.00 (0.00, 19.17) 
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Table 53. Reason for revision (follow-up limited to 5 years). 

 Device VIII 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 2 0.65 11.76 

Prosthesis Dislocation - - - 

Fracture 9 2.81 52.94 

Loosening 1 0.31 5.88 

Leg Length Discrepancy 2 0.62 11.76 

Instability - - - 

Pain - - - 

Malposition - - - 

Incorrect Sizing 1 0.31 5.88 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other 2 0.62 11.76 

N Revision 17 5.31 100 

N Primary 320   

 

Figure 16. Cumulative incidence revision diagnosis for Device VIII. 

 

 

 

 

 

 

 



Table 54. Type of revision performed for primary total conventional hip replacement. 

 Device VIII 

Type of Revision Number Percent 

Femoral Component 9 52.94 

Acetabular Component 1 5.88 

THR (Femoral/Acetabular) - - 

Cement Spacer 1 5.88 

Removal of Prostheses - - 

Reinsertion of Components 1 5.88 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 12 70.59 

Head/Insert 2 11.76 

Head Only 3 17.65 

Minor Components - - 

Insert Only - - 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 5 29.41 

Total 17 100.0 

Table 55. Revision rates of Device VIII primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Agilis 0 1 0.2 0.00 (0.00, 1756.61) 

Mpact 8 123 99.5 8.04 (3.47, 15.85) 

Trinity 0 1 3.4 0.00 (0.00, 106.92) 

Versafitcup CC 4 87 98.9 4.05 (1.10, 10.36) 

Versafitcup DM 5 108 172.7 2.89 (0.94, 6.76) 

Total 17 320 374.7 4.54 (4.25, 4.87) 

Table 56. Number of revisions of Device VIII primary total conventional hip replacement by year of 

implant. 

Femoral stem 
N  

Revised 

N  

Total 

2015 0 0 

2016 0 4 

2017 3 37 

2018 6 155 

2019 8 124 

Total 17 320 
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 Device IX 

 

Figure 17. Cumulative percent revision of Device IX. 

Table 57. Revision rates of Device IX primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cemented 0 1 0.7 0.00 (0.00, 519.56) 

Cementless 28 554 1424 1.97 (1.88, 2.07) 

Hybrid (Femur cemented) 0 2 5.6 0.00 (0.00, 65.75) 

Reverse Hybrid (Femur cementless) 0 4 8.4 0.00 (0.00, 43.71) 

Total 28 561 1438.8 1.95 (1.29, 2.81) 

Table 58. Revision rates of Device IX primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 11 181 527.6 1.31 (1.04, 3.73) 

Ceramic/Non XLPE 0 4 10.5 0.00 (0.00, 35.2) 

Ceramic/XLPE 13 226 605.7 1.22 (1.14, 3.67) 

Ceramic/XLPE + Antioxidant 0 50 59.4 0.00 (0.00, 6.21) 

Metal/Non XLPE 1 7 16.4 2.88 (0.15, 33.89) 

Metal/XLPE 2 85 212.3 0.50 (0.11, 3.4) 

Metal/XLPE + Antioxidant 1 8 6.8 2.99 (0.37, 81.34) 

Total 28 561 1438.8 1.95 (1.29, 2.81) 

Table 59. Revision rates of Device IX primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 1 16 36.6 2.73 (0.07, 15.21) 

Lateral 4 108 302.7 1.32 (0.36, 3.38) 

Posterior 20 416 1025 4.81 (1.19, 3.01) 

 

 

 

 



Table 60. Reason for revision (follow-up limited to 5 years). 

 Device IX 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 6 1.1 21.4 

Prosthesis Dislocation 6 1.1 21.4 

Fracture 4 0.7 14.2 

Loosening 8 1.4 28.6 

Leg Length Discrepancy 1 0.2 3.6 

Instability - - - 

Pain - - - 

Malposition - - - 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem 1 0.2 3.6 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology 1 0.2 3.6 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other 1 0.2 3.6 

N Revision 28 5.1 100 

N Primary 561   

 
Figure 18. Cumulative incidence of revision diagnosis for Device IX. 
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Table 61. Type of revision performed for primary total conventional hip replacement. 

 Device IX 

Type of Revision Number Percent 

Femoral Component 15 53.6 

Acetabular Component 2 7.1 

THR (Femoral/Acetabular) 4 14.3 

Cement Spacer 2 7.1 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 23 82.1 

Head/Insert 4 14.3 

Head Only - - 

Minor Components - - 

Insert Only 1 3.6 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 5 17.9 

Total 28 100.0 

Table 62. Revision rates of Device IX primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Acetabular Shell (Global) 0 9 11.6 0.00 (0.00, 31.85) 

C2 0 1 3.1 0.00 (0.00, 119) 

Continuum 1 3 7.2 13.87 (0.35, 77.28) 

Custom Made (Lima) 0 1 2.4 0.00 (0.00, 151.8) 

Delta-TT 1 4 1.2 83.33 (2.11, 464.30) 

DeltaMotion 1 9 22.7 4.39 (3.23, 6.9) 

Dual Mobility Cup 0 2 3.2 0.00 (0.00, 115.64) 

G7 1 19 19.1 5.22 (4.02, 7.5) 

Mallory-Head 0 1 1.6 0.00 (0.00, 226.31) 

Muller 0 2 5.2 0.00 (0.00, 70.26) 

Novae 0 4 13.4 0.00 (0.00, 27.43) 

PINNACLE 21 414 1163.2 1.8 (1.72, 1.9) 

R3 0 4 11.1 0.00 (0.00, 33.23) 

Trabecular Metal (Shell) 1 7 21 4.77 (3.38, 8.07) 

Trident (Shell) 1 14 35.1 2.85 (2.14, 4.28) 

Trident/Tritanium (Shell) 0 4 11 0.00 (0.00, 33.44) 

Trinity 1 62 103.6 0.96 (0.81, 1.2) 

Versafitcup DM 0 1 2.8 0.00 (0.00, 129.43) 

Total 28 561 1438.8 1.95 (1.29, 2.81) 

Table 63. Number of revisions of Device IX primary total conventional hip replacement by year of 

implant. 

Acetabular component 
N  

Revised 

N  

Total 

2015 10 153 

2016 9 112 

2017 3 99 

2018 3 102 

2019 3 95 

Total 28 561 
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Figure 19. Cumulative percent revision of the Device X. 

Table 64. Revision rates of Device X primary total conventional hip replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cemented 1 4 6 16.52 (8.62, 203.25) 

Cementless 15 182 549.3 2.73 (2.56, 2.92) 

Hybrid (Femur cemented) 0 13 33.6 0.00 (0.00, 10.96) 

Total 16 199 589 2.72 (1.55, 4.41) 

Table 65. Revision rates of Device X primary total conventional hip replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Ceramic/Ceramic 0 1 5 0.00 (0.00, 74.37) 

Ceramic/XLPE 0 4 17.8 0.00 (0.00, 20.77) 

Ceramic/XLPE + Antioxidant 0 1 5 0.00 (0.00, 74.07) 

Metal/Non XLPE 1 3 14.1 7.07 (0.18, 39.40) 

Metal/XLPE 15 188 566.3 2.65 (1.48, 4.37) 

Metal/XLPE + Antioxidant 0 2 9.9 0.00 (0.00, 37.07) 

Total 16 199 589 2.72 (1.55, 4.41) 

Table 66. Revision rates of Device X primary total conventional hip replacement by approach. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Anterior 0 1 4.4 0.00 (0.00, 84.22) 

Lateral 2 32 96.8 2.07 (0.25, 7.46) 

Posterior 14 150 421.8 3.32 (1.81, 5.57) 
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Table 67. Reason for revision (follow-up limited to 5 years). 

 Device X 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 2 1.0 12.5 

Prosthesis Dislocation 6 3.0 37.5 

Fracture 6 3.0 37.5 

Loosening 2 1.0 12.5 

Leg Length Discrepancy - - - 

Instability - - - 

Pain - - - 

Malposition - - - 

Incorrect Sizing - - - 

Implant Breakage Acetabular Insert - - - 

Implant Breakage Stem - - - 

Lysis - - - 

Implant Breakage Acetabular - - - 

Wear Head - - - 

Metal Related Pathology - - - 

Wear Acetabular Insert - - - 

Implant Breakage Head - - - 

Tumour - - - 

Heterotopic Bone - - - 

Wear Acetabulum - - - 

Synovitis - - - 

Osteonecrosis - - - 

Progression Of Disease - - - 

Other - - - 

N Revision 16 8.0 100 

N Primary 199   

 

Figure 20. Cumulative incidence revision diagnosis for Device X. 

 

 

 

 

 

 

 



Table 68. Type of revision performed for primary total conventional hip replacement. 

 Device X 

Type of Revision Number Percent 

Femoral Component 8 50.0 

Acetabular Component 1 6.25 

THR (Femoral/Acetabular) 1 6.25 

Cement Spacer 2 12.5 

Removal of Prostheses - - 

Reinsertion of Components - - 

Total Femoral - - 

Bipolar Head and Femoral - - 

Saddle - - 

N Major 12 75.0 

Head/Insert 1 6.25 

Head Only 1 6.25 

Minor Components 1 6.25 

Insert Only 1 6.25 

Head/Neck/Insert - - 

Head/Neck - - 

Bipolar Only - - 

Neck Only - - 

Cement Only - - 

Neck/Insert - - 

N Minor 4 25.0 

Total 16 100.0 

Table 69. Revision rates of Device X primary total conventional hip replacement by acetabular 

component. 

Acetabular component 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Allofit 0 1 4.9 0.00 (0.00, 74.67) 

Continuum 0 2 5.9 0.00 (0.00, 62.1) 

Fitmore 0 2 5.8 0.00 (0.00, 63.71) 

G7 0 3 2.4 0.00 (0.00, 155.65) 

PINNACLE 0 1 3.6 0.00 (0.00, 103.04) 

Trabecular Metal (Shell) 0 3 5.3 0.00 (0.00, 69.08) 

Trilogy 15 183 555 2.7 (2.54, 2.9) 

ZCA 1 4 6 16.52 (8.62, 203.25) 

Total 16 199 589 2.72 (1.55, 4.41) 

Table 70. Number of revisions of Device X primary total conventional hip replacement by year of 

implant. 
Acetabular component N Revised N Total 

2015 6 61 

2016 4 60 

2017 2 39 

2018 3 35 

2019 1 4 

Total 16 199 
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Primary Total Knee Prostheses 

Device I 

 

Figure 1. Cumulative percent revision of Device I. 

Table 1. Revision rates of Device I primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cementless 19 399 1060.0 1.79 (1.08, 2.80) 

Hybrid (Tibial cemented) 0 1 4.7 0.00 (0.00, 77.66) 

Hybrid (Tibial cementless) 0 1 4 0.00 (0.00, 92.45) 

Total 19 401 1068.8 1.78 (1.07, 2.78) 

Table 2. Revision rates of Device I primary total knee replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non XLPE 19 401 1068.8 1.78 (1.07, 2.78) 

Total 19 401 1068.8 1.78 (1.07, 2.78) 

Table 3. Revision rates of Device I primary total knee replacement by bearing mobility. 

Bearing mobility 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Fixed  19 401 1068.8 1.78 (1.07, 2.78) 

Total 19 401 1068.8 1.78 (1.07, 2.78) 

Table 4. Revision rates of Device I primary total knee replacement by stability. 

Stability 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Medial Pivot Design 19 401 1068.8 1.78 (1.07, 2.78) 

Total 19 401 1068.8 1.78 (1.07, 2.78) 

 

 

 

 



Table 5. Reason for revision (follow-up limited to 5 years). 

 Device I 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 7 1.7 36.8 

Fracture - - - 

Loosening 3 0.7 15.8 

Instability 3 0.7 15.8 

Patella Erosion - - - 

Pain - - - 

Bearing Dislocation - - - 

Malalignment 1 0.2 5.3 

Implant Breakage Tibial Insert - - - 

Incorrect Sizing - - - 

Patellofemoral Pain 1 0.2 5.3 

Patella Maltracking - - - 

Prosthesis Dislocation - - - 

Implant Breakage Femoral - - - 

Lysis - - - 

Implant Breakage Tibial - -  

Heterotopic Bone - - - 

Arthrofibrosis 4 1.0 21.1 

Wear Tibial Insert - - - 

Metal Related Pathology - - - 

Implant Breakage Patella - - - 

Synovitis - - - 

Osteonecrosis - - - 

Wear Patella - - - 

Tumour - - - 

Wear Tibial - - - 

Progression Of Disease - - - 

Wear Femoral - - - 

Incorrect Side - - - 

Post Operative Haematoma - - - 

Patella Dislocation - - - 

Other - - - 

N Revision 19 4.7 100.0 

N Primary 401   

 

Figure 2. Cumulative incidence revision diagnosis for Device I. 
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Table 6. Type of revision (follow-up limited to 5 years). 

 Device I 

Type of Revision Number Percent 

TKR (Tibial/Femoral)  10 2.5 

Tibial Component - - 

Cement Spacer - - 

Femoral Component 3 0.7 

Removal of Prostheses - - 

Total Femoral - - 

Reinsertion of Components - - 

N Major 13 3.2 

Insert Only  3 0.7 

Patella Only 3 0.7 

Insert/Patella - - 

Minor Components - - 

Cement Only - - 

N Minor 6 1.4 

Total 19 4.7 

Table 7. Revision rates of Device I primary total knee replacement by state. 

State 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

NSW 2 134 335.1 0.59 (0.07, 2.16) 

SA 17 267 733.7 2.32 (1.35, 3.71) 

Total 19 401 1068.8 1.78 (1.07, 2.78) 

Table 8. Number of revisions of Device I primary total knee replacement by year of implant. 

Year of implant 
N  

Revised 

N  

Total 

2015           6 91 

2016 6 97 

2017  5 89 

2018 1 68 

2019 1 56 

Total 19 401 

 

 

 

 

 

 

 

 

 

 

 

 



Device II 

 

Figure 3. Cumulative percent revision of Device II. 

Table 9. Revision rates of Device II primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cemented 14 373 855.3 1.64 (0.89, 2.75) 

Cementless 11 128 449.8 2.44 (1.22, 4.37) 

Hybrid (Tibial cemented) 0 59 96.5 0.00 (0.00, 3.82) 

Hybrid (Tibial cementless) 0 1 4.2 0.00 (0.00, 88.67) 

Total 25 561 1405.8 1.78 (1.15, 2.62) 

Table 10. Revision rates of Device II primary total knee replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non XLPE 25 561 1405.8 1.78 (1.15, 2.62) 

Total 25 561 1405.8 1.78 (1.15, 2.62) 

Table 11.  Revision rates of Device II primary total knee replacement by bearing mobility. 

Bearing mobility 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs.Years (95% CI) 

Rotating 25 561 1405.8 1.78 (1.15, 2.62) 

Total 25 561 1405.8 1.78 (1.15, 2.62) 

Table 12.  Revision rates of Device II primary total knee replacement by stability. 

Stability 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Minimally Stabilised 16 303 729.2 2.19 (1.25, 3.56) 

Posterior Stabilised 9 258 676.5 1.33 (0.61, 2.52) 

Total 25 561 1405.8 1.78 (1.15, 2.62) 
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Table 13. Reason for revision (follow-up limited to 5 years). 

 Device II 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 7 1.2 28.0 

Fracture - - - 

Loosening 6 1.1 24.0 

Instability - - - 

Patella Erosion 1 0.2 4.0 

Pain 1 0.2 4.0 

Bearing Dislocation - - - 

Malalignment 1 0.2 4.0 

Implant Breakage Tibial Insert - - - 

Incorrect Sizing 2 0.4 8.0 

Patellofemoral Pain - - - 

Patella Maltracking - - - 

Prosthesis Dislocation - - - 

Implant Breakage Femoral - - - 

Lysis 2 0.4 8.0 

Implant Breakage Tibial - - - 

Heterotopic Bone - - - 

Arthrofibrosis 4 0.7 16.0 

Wear Tibial Insert - - - 

Metal Related Pathology 1 0.2 4.0 

Implant Breakage Patella - - - 

Synovitis - - - 

Osteonecrosis - - - 

Wear Patella - - - 

Tumour - - - 

Wear Tibial - - - 

Progression Of Disease - - - 

Wear Femoral - -  

Incorrect Side  - - 

Post Operative Haematoma - - - 

Patella Dislocation - - - 

Other - - - 

N Revision 25 4.5 100.0 

N Primary 561   

 

Figure 4. Cumulative incidence revision diagnosis for Device II. 

 

 

 

 

 



Table 14. Type of revision (follow-up limited to 5 years). 

 Device II 

Type of Revision Number Percent 

TKR (Tibial/Femoral)  7 1.2 

Tibial Component 1 0.2 

Cement Spacer 1 0.2 

Femoral Component 4 0.7 

Removal of Prostheses - - 

Total Femoral - - 

Reinsertion of Components - - 

N Major 13 2.3 

Insert Only  7 1.2 

Patella Only 5 0.9 

Insert/Patella - - 

Minor Components - - 

Cement Only - - 

N Minor 12 2.1 

Total 25 4.5 

Table 15. Revision rates of Device II primary total knee replacement by state. 

State 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

NSW 21 552 1381.6 1.52 (0.94, 2.32) 

WA 4 9 24.1 16.57 (4.51, 42.42) 

Total 25 561 1405.8 1.78 (1.24, 2.48) 

Table 16. Number of revisions of Device II primary total knee replacement by year of implant. 

Year of implant 
N  

Revised 

N  

Total 

2015           6 112 

2016 14 125 

2017  5 140 

2018 0 94 

2019 0 90 

Total 25 561 
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Device III 

 

Figure 5. Cumulative percent revision of Device III. 

Table 17. Revision rates of Device III primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cemented 22 436 1416.4 1.55 (0.97, 2.35) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

Table 18. Revision rates of Device III primary total knee replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non XLPE 22 436 1416.4 1.55 (0.97, 2.35) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

Table 19. Revision rates of Device III primary total knee replacement by bearing mobility. 

Approach 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Rotating 22 436 1416.4 1.55 (0.97, 2.35) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

Table 20. Revision rates of Device III primary total knee replacement by stability. 

Stability 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Posterior Stabilised 22 436 1416.4 1.55 (0.97, 2.35) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

 

 

 

 

 



Table 21. Reason for revision (follow-up limited to 5 years). 

 Device III 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 10 2.3 45.4 

Fracture 1 0.2 4.5 

Loosening 5 1.1 22.7 

Instability - - - 

Patella Erosion - - - 

Pain - - - 

Bearing Dislocation - - - 

Malalignment 2 0.5 9.1 

Implant Breakage Tibial Insert - - - 

Incorrect Sizing - - - 

Patellofemoral Pain 2 0.5 9.1 

Patella Maltracking 1 0.2 4.5 

Prosthesis Dislocation - - - 

Implant Breakage Femoral - - - 

Lysis - - - 

Implant Breakage Tibial - - - 

Heterotopic Bone - - - 

Arthrofibrosis 1 0.2 4.5 

Wear Tibial Insert - - - 

Metal Related Pathology - - - 

Implant Breakage Patella - - - 

Synovitis - - - 

Osteonecrosis - - - 

Wear Patella - - - 

Tumour - - - 

Wear Tibial - - - 

Progression Of Disease - - - 

Wear Femoral - - - 

Incorrect Side -  - 

Post Operative Haematoma - - - 

Patella Dislocation - - - 

Other - - - 

N Revision 22 5.0 100.0 

N Primary 436   

 

Figure 6. Cumulative incidence revision diagnosis for Device III. 
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Table 22. Type of revision (follow-up limited to 5 years). 

 Device III 

Type of Revision Number Percent 

TKR (Tibial/Femoral)  5 1.1 

Tibial Component 3 0.7 

Cement Spacer 1 0.2 

Femoral Component 1 0.2 

Removal of Prostheses - - 

Total Femoral - - 

Reinsertion of Components - - 

N Major 10 2.3 

Insert Only  8 1.8 

Patella Only 4 0.9 

Insert/Patella - - 

Minor Components - - 

Cement Only - - 

N Minor 12 2.8 

Total 22 5.0 

Table 23. Revision rates of Device III primary total knee replacement by state. 

State 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

NSW 0 82 242.3 0.00 (0.00, 1.52) 

VIC 4 33 85.5 4.68 (1.27, 11.98) 

QLD 14 272 968.1 1.45 (0.79, 2.43) 

WA 4 41 103.2 3.88 (1.06, 9.92) 

SA 0 8 17.4 0.00 (0.00, 21.20) 

Total 22 436 1416.4 1.55 (0.97, 2.35) 

Table 24. Number of revisions of Device III primary total knee replacement by year of implant. 

Year of implant N Revised N Total 

2015           7 165 

2016 7 127 

2017  5 70 

2018 2 50 

2019 1 24 

Total 22 436 
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Figure 7. Cumulative percent revision of Device IV. 

Table 25. Revision rates of Device IV primary total knee replacement by fixation. 

Fixation 
N  

Revised 
N  

Total 
Obs.Years 

Revisions/100 
Obs. Years (95% CI) 

Cemented 14 497 1366.9 1.02 (0.56, 1.72) 

Cementless 50 932 2390.8 2.09 (1.55, 2.76) 

Hybrid (Tibial cemented) 51 1213 3330.4 1.53 (1.14, 2.01) 

Hybrid (Tibial cementless) 1 6 21.5 4.65 (0.12, 25.91) 

Total 116 2,648 7109.6 1.63 (1.35, 1.96) 

Table 26. Revision rates of Device IV primary total knee replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non XLPE 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2,648 7109.6 1.63 (1.35, 1.96) 

Table 27. Revision rates of Device IV primary total knee replacement by Bearing mobility. 

Bearing mobility 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Rotating 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2,648 7109.6 1.63 (1.35, 1.96) 

Table 28. Revision rates of Device IV primary total knee replacement by stability. 

Stability 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Minimally Stabilised 116 2648 7109.6 1.63 (1.35, 1.96) 

Total 116 2,648 7109.6 1.63 (1.35, 1.96) 
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Table 29. Reason for revision (follow-up limited to 5 years). 

 Device IV 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 39 1.5 33.6 

Fracture 5 0.2 4.3 

Loosening 29 1.1 25.0 

Instability 13 0.5 11.2 

Patella Erosion 4 0.2 3.4 

Pain 12 0.5 10.3 

Bearing Dislocation 1 0.0 0.9 

Malalignment 4 0.2 3.4 

Implant Breakage Tibial Insert - - - 

Incorrect Sizing - - - 

Patellofemoral Pain 2 0.1 1.7 

Patella Maltracking 2 0.1 1.7 

Prosthesis Dislocation - - - 

Implant Breakage Femoral - - - 

Lysis - - - 

Implant Breakage Tibial - - - 

Heterotopic Bone - - - 

Arthrofibrosis 1 0.0 0.9 

Wear Tibial Insert - - - 

Metal Related Pathology 2 0.1 1.7 

Implant Breakage Patella - - - 

Synovitis - -  

Osteonecrosis - - - 

Wear Patella - - - 

Tumour - - - 

Wear Tibial - - - 

Progression Of Disease - - - 

Wear Femoral - - - 

Incorrect Side - - - 

Post Operative Haematoma - - - 

Patella Dislocation - - - 

Other 2 0.1 1.7 

N Revision 116 4.4 100.0 

N Primary 2,648   

 
Figure 8. Cumulative incidence revision diagnosis for Device IV. 

 

 

 

 

 



Table 30. Type of revision (follow-up limited to 5 years). 

 Device IV 

Type of Revision Number Percent 

TKR (Tibial/Femoral)  50 1.9 

Tibial Component 4 0.2 

Cement Spacer 8 0.3 

Femoral Component 4 0.2 

Removal of Prostheses - - 

Total Femoral - - 

Reinsertion of Components - - 

N Major 66 2.5 

Insert Only  33 1.2 

Patella Only 15 0.6 

Insert/Patella 2 0.1 

Minor Components - - 

Cement Only - - 

N Minor 50 1.9 

Total 116 4.4 

Table 31. Revision rates of Device IV primary total knee replacement by state. 

State 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

NSW 18 578 2189.6 0.82 (0.49, 1.3) 

QLD 0 58 183.3 0.00 (0.00, 2.01) 

WA 55 1293 2415 2.28 (1.71, 2.96) 

SA 43 719 2321.7 1.85 (1.34, 2.49) 

Total 116 2,648 7109.6 1.63 (1.35, 1.96) 

Table 32. Number of revisions of Device IV primary total knee replacement by year of implant. 

Year of implant 
N  

Revised 

N  

Total 

2015           36 703 

2016 34 579 

2017  22 527 

2018 19 419 

2019 5 420 

Total 116 2,648 
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Device V 

 

Figure 9. Cumulative percent revision of Device V. 

Table 33. Revision rates of Device V primary total knee replacement by fixation. 

Fixation 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Cemented 0 2 4.8 0.00 (0.00, 76.53) 

Cementless 2 48 154 1.30 (0.16, 4.69) 

Hybrid (Tibial cementless) 13 172 401.2 3.24 (1.72, 5.54) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Table 34. Revision rates of Device V primary total knee replacement by bearing surface. 

Bearing Surface 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Non XLPE 15 218 543.1 2.76 (1.54, 4.55) 

XLPE + Antioxidant 0 4 17 0.00 (0.00, 21.75) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Table 35. Revision rates of Device V primary total knee replacement by bearing mobility. 

Bearing mobility 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Yrs (95% CI) 

Fixed  15 222 560.1 2.68 (1.50, 4.42) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

Table 36. Revision rates of Device V primary total knee replacement by bearing mobility. 

Bearing mobility 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

Posterior Stabilised 15 222 560.1 2.68 (1.50, 4.42) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

 

 

 

 



Table 37. Reason for revision (follow-up limited to 5 years). 

 Device V 

Revision diagnosis Number % Primaries revised % Revisions 

Infection 7 3.2 46.7 

Fracture 1 0.5 6.7 

Loosening 6 2.7 40.0 

Instability - - - 

Patella Erosion -  - 

Pain -  - 

Bearing Dislocation -  - 

Malalignment - - - 

Implant Breakage Tibial Insert - - - 

Incorrect Sizing - - - 

Patellofemoral Pain - - - 

Patella Maltracking - - - 

Prosthesis Dislocation - - -- 

Implant Breakage Femoral - - - 

Lysis - - - 

Implant Breakage Tibial - - - 

Heterotopic Bone - - - 

Arthrofibrosis 1 0.5 6.7 

Wear Tibial Insert - - - 

Metal Related Pathology - - - 

Implant Breakage Patella - - - 

Synovitis - - - 

Osteonecrosis - - - 

Wear Patella - - - 

Tumour - - - 

Wear Tibial - - - 

Progression Of Disease - - - 

Wear Femoral - - - 

Incorrect Side - - - 

Post Operative Haematoma - - - 

Patella Dislocation - - - 

Other - - - 

N Revision 15 6.8 100.0 

N Primary 222   

 

Figure 10. Cumulative incidence revision diagnosis for Device V. 
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Table 38. Type of revision (follow-up limited to 5 years). 

 Device V 

Type of Revision Number Percent 

TKR (Tibial/Femoral)  7 3.2 

Tibial Component - - 

Cement Spacer 3 1.4 

Femoral Component 2 0.9 

Removal of Prostheses - - 

Total Femoral - - 

Reinsertion of Components - - 

N Major 12 5.4 

Insert Only  3 1.4 

Patella Only - - 

Insert/Patella - - 

Minor Components - - 

Cement Only - - 

N Minor 3 1.4 

Total 15 6.8 

Table 39. Revision rates of Device V primary total knee replacement by state. 

State 
N  

Revised 

N  

Total 
Obs.Years 

Revisions/100 

Obs. Years (95% CI) 

NSW 2 47 150.3 1.33 (0.16, 4.81) 

VIC 13 175 409.8 3.17 (1.69, 5.42) 

Total 15 222 560.1 2.68 (1.50, 4.42) 

 Table 40. Number of revisions of Device V primary total knee replacement by year of implant. 

Year of implant 
N  

Revised 

N  

Total 

2015           0 18 

2016 5 76 

2017  10 58 

2018 0 56 

2019 0 14 

Total 15 222 

 


