The purification and proteomic analysis of α-synuclein-containing inclusions in neurodegenerative disorders

A thesis submitted for the degree of Doctor of Philosophy, July 2013

Amellia McCormack, Bachelor of Science (Honours)

School of Medicine, Faculty of Health Sciences, Flinders University

Table of Contents

Title Page	i
Table of Contents	iii
Table of Tables	xi
Table of Figures	xiv
Summary	xviii
Declaration	XX
Acknowledgments	xxi
Abbreviations	xxii

1	Introdu	iction	1
1.1	Synucle	opathic neurodegenerative disorders	2
	1.1.1	Parkinson's Disease	2
	1.1.2	Dementia with Lewy Bodies	3
	1.1.3	Multiple System Atrophy	5
1.2	Inclusio	n bodies	6
	1.2.1	Lewy Bodies	6
	1.2.2	Glial Cytoplasmic Inclusions	8
	1.2.3	Other α -synuclein-containing inclusions in PD, DLB and MSA	9
1.3	Genetic	mutations in familial synucleopathies	10
	1.3.1	α-synuclein	10
	1.3.2	Leucine Rich Repeat Kinase 2	13
	1.3.3	Mitochondrial-related genes	14
	1.3.4	Protein degradation-related genes	16
1.4	Protein	degradation systems	17
	1.4.1	Ubiquitin-Proteasome System	17
	1.4.2	Autophagy Lysosomal Pathway	19
1.5	Hypothe	eses behind inclusion body formation	21
	1.5.1	UPS impairment	21
	1.5.2	ALP impairment	22
	1.5.3	Mitochondrial dysfunction & oxidative stress	24

1.6	Proteon	nic investigations into α-synucleopathic disorders	25
	1.6.1	Studies using animal models	25
	1.6.2	Studies using whole substantia nigra tissue	26
	1.6.3	Studies using purified inclusions	27
1.7	Previou	sly published inclusion purification methods	28
1.8	Project	aims and approaches	29
	1.8.1	Aim #1: To optimise the purification of inclusions for improved	
		yield and purity	31
	1.8.2	Aim #2: To elucidate the GCI proteome	32
	1.8.3	Aim #3: To compare LB and GCI proteins	32
-			•••
2	Materia	als and Methods	33
2.1	Materia	ls	34
2.2	Solution	18	37
2.3	Methods		41
2.4 Brain tissue preparation		41	
	2.4.1	Brain tissue specimens	41
	2.4.2	Brain tissue homogenisation	41
2.5	5 Inclusion purification		42
	2.5.1	Inclusion enrichment using a density gradient	42
	2.5.2	DNA digestion and limited tryptic digestion	43
	2.5.3	Immunomagnetic capture of inclusions	43
	2.5.4	Visualising inclusion capture	44
	2.5.5	Solubilising inclusions	45
2.6	Sample	preparation and quantitation	48
	2.6.1	EZQ Protein Quantitation Assay	48
	2.6.2	ReadyPrep 2-D Clean-Up Kit	48
2.7	1-DE ar	nd Western Blotting	49
	2.7.1	1-DE	49
	2.7.2	Western Blotting	49

2.8	2-D DI	GE	50
	2.8.1	DIGE minimal labeling	50
	2.8.2	1st dimension isoelectric focusing	51
	2.8.3	2nd dimension SDS-PAGE	51
	2.8.4	Staining and imaging	52
2.9	Immun	ohistochemistry	53
	2.9.1	DAB IHC of smears	53
	2.9.2	Nanozoomer analysis and inclusion counting	53
2.10) Immun	ofluorescence	56
	2.10.1	Immunofluorescence of smears	56
	2.10.2	Immunofluorescence of fixed sections	56
	2.10.3	Imaging immunofluoresence slides	57
2.11	l Tryptic	digestion	57
	2.11.1	Buffer-exchange prior to in-solution digestion	57
	2.11.2	In-solution tryptic digestion	58
	2.11.3	Tryptic digestion of 1D SDS-PAGE slices	58
	2.11.4	Tryptic digestion of 2D SDS-PAGE spots	59
2.12	2 LC MS	/MS	60
	2.12.1	HPLC linear ion trap / FTMS mass spectrometry	60
	2.12.2	Protein identification	60
3	Optim	isation of a GCI purification method	61
3.1	Introdu	ction	62
	3.1.1	Optimisation of a published GCI purification method	62
	3.1.2	Hypotheses	62
	3.1.3	Aim	64
3.2	Materia	als and Methods	65
	3.2.1	Inclusion purifications	65
	3.2.2	DAB immunohistochemistry	67
	3.2.3	1-DE and Western blotting	67
	3.2.4	2-DE – Ettan large format	68
	3.2.5	2-DE – medium format	68
	3.2.6	Tryptic digestion and mass spectrometry	69
	3.2.7	Protein identification	69

33	Results		71
5.5	3.3.1	Optimisation of inclusion purification method	
	3.3.2	Modification #1	74
	3.3.3	Modification #2	78
	3.3.4	Modification #3	85
	3.3.5	Modification #4	88
3.4	Discussi	on	91
	3.4.1	Modification #1	91
	3.4.2	Modification #2	92
	3.4.3	Modification #3	93
	3.4.4	Modification #4	94
3.5	Conclus	ion	95
4	Charac	terisation of optimised GCI purification method	. 97
4.1	Introduc	tion	98
	4.1.1	Characterisation of the newly optimised GCI purification method .	98
	4.1.2	Hypotheses	98
	4.1.3	Aims	98
4.2	Material	s and Methods	99
	4.2.1	Inclusion purification using published and optimised methods in	
		parallel	99
	4.2.2	DAB immunohistochemistry	. 100
	4.2.3	1-DE and Western blotting	. 100
	4.2.4	2D DIGE	. 101
	4.2.5	2D-DIGE analysis of multiple protein isoforms	. 102
4.3	Results.		. 104
	4.3.1	Comparison of published and optimised methods	104
	4.3.2	Characterisation of optimised method for GCI purification	. 112
4.4	Discussi	on	. 122
	4.4.1	Improvements in purity and yield using the optimised method	. 122
	4.4.2	Characterisation of the optimised method	. 123
	4.4.3	Critical review of the purification method	. 125
4.5	Conclus	ion	. 126

5	Identif	ication of Glial Cytoplasmic Inclusion proteins	127
5.1	Introdu	ction	128
	5.1.1	Identification of GCI proteins	128
	5.1.2	Identification of core and adherent GCI proteins	129
	5.1.3	Controls for purification process	130
	5.1.4	Biological variation in the GCI proteome	130
	5.1.5	Aims	131
5.2	Materia	ls and Methods	132
	5.2.1	Inclusion purifications	132
	5.2.2	2-DE	134
	5.2.3	2D DIGE	134
	5.2.4	1-DE	135
	5.2.5	DAB immunohistochemistry	136
	5.2.6	Tryptic digestion	136
	5.2.7	Mass spectrometry	136
5.3	Results		137
	5.3.1	Identification of GCI proteins	137
	5.3.2	Elucidation of core and adherent GCI proteins	149
	5.3.3	Control experiments for the GCI purification method	153
	5.3.4	2D-DIGE comparison of MSA cases	160
5.4	Discuss	ion	165
	5.4.1	Identification of GCI proteins from complex mixtures	165
	5.4.2	Vesicular proteins present in GCIs	167
	5.4.3	Identification of GCI proteins with prior 1-DE fractionation	170
	5.4.4	Identification of GCI proteins with prior 2-DE fractionation	171
	5.4.5	Elucidation of core and adherent GCI proteins	173
	5.4.6	Normal case controls	174
	5.4.7	Secondary antibody-only control	175
	5.4.8	2D-DIGE comparison of multiple MSA cases	177
5.5	Conclus	sion	178

6	Identifi	cation of Lewy Body proteins	181
6.1	Introduc	tion	. 182
	6.1.1	Aims	. 182
6.2	Materia	ls and Methods	. 184
	6.2.1	Adaptation of optimised GCI purification method to the	
		purification of Lewy Bodies from DLB brain tissue	. 184
	6.2.2	Inclusion purification for mass spectrometry and 2D-DIGE	. 184
	6.2.3	Immunofluorescence	. 185
	6.2.4	DAB immunohistochemistry	. 185
	6.2.5	1-DE and Western blotting	. 185
	6.2.6	2D DIGE	. 186
	6.2.7	Correlation analysis of relative protein abundance	. 187
	6.2.8	Tryptic digestion and mass spectrometry	. 187
6.3	Results.		. 189
	6.3.1	Application of optimised GCI purification method to Lewy body	
		purification	. 189
	6.3.2	Identification of Lewy Body proteins	. 198
	6.3.3	2D DIGE comparison of MSA, DLB and normal cases	. 201
	6.3.4	Quantitation of proteins of interest by 2D-DIGE	. 206
	6.3.5	Western blot comparison of MSA, DLB and normal cases	.212
6.4	Discuss	ion	.216
	6.4.1	Application of optimised GCI purification method for the	
		purification of Lewy Bodies	.216
	6.4.2	Identification of LB proteins by mass spectrometry	.217
	6.4.3	Comparison of inclusion types using 2D-DIGE	. 219
	6.4.4	Comparison of inclusion types using Western blotting	. 222
	6.4.5	Critique of α -synuclein quantification from inclusion preparations	224
6.5	Conclus	ion	. 226
7	Compa	rison of Lewy Bodies and Glial Cytoplasmic Inclusions	229
7.1	Introduc	tion	. 230

7.2	Materia	ls and Methods	231
	7.2.1	Immunofluorescence	231
7.3	Results.		232
	7.3.1	Comparison of Lewy Body and Glial Cytoplasmic Inclusion	
		proteins	232
	7.3.2	Comparison of GCI and LB protein identification to an	
		independent study	247
	7.3.3	Validation of selected vesicle-related protein identifications by	
		immunofluorescence	248
7.4	Discuss	ion	253
	7.4.1	Protein identifications and overlaps	253
	7.4.2	The cause of neurodegenerative disorders	254
	7.4.3	Potential mechanism of inclusion formation	255
	7.4.4	Alternative mechanism of inclusion formation	262
7.5	Conclus	ion	266
8	Fina	al Discussion	269
8.1	Intro	oduction	270
8.2	Opti	misation of an inclusion purification technique	270
8.3	Prot	eomic analysis of inclusions	271
8.4	The	formation of inclusions	272
8.5	Criti	cal review	273
8.6	Futu	re Directions	274
8.7	Con	clusion	275

Appendix A	277
Appendix B	
Appendix C	
Appendix D	
Appendix E	291
Appendix F	293
Appendix G	
Appendix H	310
Appendix I	314

Appendix J	317
Appendix K	321
Appendix L	
Appendix M	327
Appendix N	330
Appendix O	332
References	

Table of Tables

Chapter 1

Chapter 2

Table 2-1:	Primary antibodies	36
Table 2-2:	Secondary antibodies	36
Table 2-3:	Case details for post-mortem brain tissue used in this project	41
Table 2-4:	Microscopy fluorescence specifications	57

Chapter 3

Table 3-1:	Major modifications made in the optimisation of the published	
	inclusion purification method of Gai et al.	71
Table 3-2:	Inclusion protein yield from different fractions of the Percoll	
	gradient	74
Table 3-3:	Inclusion size after partial tryptic digestion	79
Table 3-4:	Improvement in yield of inclusion protein from modification #3	85

Chapter 4

Table 4-1:	DIGE experimental design for purification method comparison	101
Table 4-2:	Comparison of inclusion yields for published and optimised	
	purification methods	105
Table 4-3:	Abundance of proteins of interest in optimised and published GCI	
	purification methods	109
Table 4-4:	Abundance of proteins of interest in purified GCIs compared to	
	crude homogenate	113

Table 5-1:	Post-mortem brain tissue used for GCI purifications for biological
	variation analysis by 2D-DIGE and complex mixture analysis by
	mass spectrometry
Table 5-2:	DIGE experimental design for GCI biological variation comparison.135
Table 5-3:	Established GCI proteins identified by MS

Table 5-4:	MS Identification of 15 GCI proteins that are established synaptic	
	vesicle proteins	. 139
Table 5-5:	Number of proteins identified in each 1D fraction of purified GCIs.	.142
Table 5-6:	MS protein identifications from 2-D spot map of purified GCIs	. 146
Table 5-7:	Protein yields from carbonate stripping experiment	. 149
Table 5-8:	Number of proteins identified in each 1D fraction of core proteins	
	from purified GCIs	. 151
Table 5-9:	Protein yields from purification control experiments	.153
Table 5-10:	Protein yields from multiple MSA case purifications	.160
Table 5-11:	Technical variation in GCI purification as determined by 2D-DIGE	. 161
Table 5-12:	Technical variation when comparing gel replicates in 2D-DIGE	.162
Table 5-13:	Differences between GCIs purified from multiple MSA cases as	
	determined by 2D-DIGE	. 163
Table 5-14:	Abundance of proteins of interest in technical replicates of purified	
	GCIs	.164
Table 5-15:	Abundance of proteins of interest in biological replicates of purified	
	GCIs	.164
o l <i>i</i> o		
	A dentetion of entire is a COL and footien and the LD.	104
Table 6-1:	Adaptation of optimised GCI purification procedure to LBs	. 184
Table 6-2:	Post-mortem brain tissue used for inclusion purifications for	105
T 11 ()	2D-DIGE	. 185
Table 6-3:	DIGE experimental design for LB and GCI comparison	. 187
Table 6-4:	Established Lewy Body proteins identified by MS	. 198
Table 6-5:	MS Identification of 9 LB proteins that are established synaptic	
	vesicle proteins	.200
Table 6-6:	Protein yields from multiple DLB and normal case purifications	.201
Table 6-7:	Differences between LBs, GCIs and inclusions present in normal	

- Table 6-9:
 Abundance of proteins of interest in biological replicates of immunocaptured samples

 208

Table 6-10:	Analysis of correlation in protein abundance in nine	
	immunocaptured samples	.209
Table 6-11:	Abundance of proteins of interest in GCIs compared to LBs,	
	immunocaptured normal control and MSA homogenate	.210
Table 6-12:	Enrichment of α -synuclein in immunocaptured inclusions compared	
	to matched brain homogenates	.214
Table 6-13:	Comparison of DIGE and Western Blot quantitation of α -synuclein	
	content of inclusions	.215

Table 7-1:	MS Identification of 112 proteins identified consistently in both	
	GCIs (4+ cases) and LBs (2 cases)	234
Table 7-2:	MS Identification of 35 proteins consistently identified in GCIs	
	(4+ cases) but not consistently in LBs (1 case only)	239
Table 7-3:	MS Identification of 13 proteins consistently identified in GCIs	
	(4+ cases) but not in LBs (0 cases)	241
Table 7-4:	MS Identification of 49 proteins consistently identified in LBs	
	(2 cases) but not consistently in GCIs (\leq 3 cases)	242
Table 7-5:	MS Identification of 9 proteins identified in LBs (2 cases) but not	
	in GCIs (0 cases)	245
Table 7-6:	MS Identification of 12 vesicle-related proteins in both GCIs and	
	LBs, previously unestablished in inclusions	246
Table 7-7:	Established synaptic vesicle-related proteins chosen for validation	248

Table of Figures

Chapter 1

Figure 1-1:	Structure of α-synuclein protein	11
Figure 1-2:	Formation of α-synuclein aggregates	12
Figure 1-3:	Structure of LRRK2 protein	14
Figure 1-4:	UPS pathway	18
Figure 1-5:	The structure of the 26S proteasome	19
Figure 1-6:	Types of autophagy	20
Figure 1-7:	Macroautophagy	21
Chapter 2		
Figure 2-1:	Summary of optimised inclusion purification method	46
Figure 2-2:	ImageJ analysis of Nanozoomer digital images of purification	
	fractions	55
Chapter 3		
Figure 3-1:	2-D gel electrophoresis of solubilised immunopurified GCIs using	
	Gai et al. method	63
Figure 3-2:	Proposed explanation for the presence of tubulin in immunocaptured	
	inclusion preparations	63
Figure 3-3:	Summary of differences between published and optimised inclusion	

	purification methods	.72
Figure 3-4:	Percoll density gradient centrifugation (step 4) from inclusion	
	purification protocol	.75
Figure 3-5:	Immunohistochemistry of Percoll gradient fractions	.77
Figure 3-6:	Antibody detection of β -tubulin and α -synuclein in the optimisation	
	of partial tryptic digestion of the Percoll enriched fraction (n=1)	.81
Figure 3-7:	Quantitation of truncated β -tubulin from Western blotting of trypsin	
	time-course digestion	. 82
Figure 3-8:	Quantitation of monomeric α -synuclein from Western blotting of	
	trypsin time-course digestion	. 82

Figure 3-9: Immunohistochemistry of tryptic digestion time-course experiment....83

Figure 3-10:	2-DE of purified inclusions before (A) and after (B) the development	nt
	of modification #3	86
Figure 3-11:	: Immunofluorescence staining of GCIs during purification protocol	
	demonstrating the effect of additional antibody and magnetic beads.	89
Chapter 4		
Figure 4-1:	Workflow for 2D-DIGE analysis of multiple isoforms	.103
Figure 4-2:	Immunohistochemistry from parallel GCI purifications using the	
	published and optimised purification methods	.106
Figure 4-3:	2-D DIGE image of GCIs purified using the A) published method	
	and B) optimised method	.110
Figure 4-4:	2D-DIGE spot maps of inclusions purified using the optimised	
	method compared to brain homogenate	.115
Figure 4-5:	Antibody detection of A) α -synuclein and B) β -tubulin in fractions	
	from GCI purification using the optimised method	.117
Figure 4-6:	Quantitation from Western blotting of GCI purification fractions of	
	A) monomeric, polymeric and total α -synuclein, and B) full-length,	
	truncated and total β-tubulin quantities	.118
Figure 4-7:	Antibody detection of A) α - β -crystallin and B) TPPP in fractions	
	from a GCI purification using the optimised method	.121

Figure 5-1:	Venn diagram of GCI protein identifications from trypsin-digested	
	complex mixtures (n=5)13	8
Figure 5-2:	1-DE of GCI purification fractions14	1
Figure 5-3:	Venn diagram of GCI protein identifications by 1D fractionation	
	(n=1) compared to complex mixtures (n=5)14	2
Figure 5-4:	Venn diagram of GCI protein identifications from complex	
	mixtures (n=5), 1D fractionation (n=1) and 2D fractionation (n=1)14	3
Figure 5-5:	Venn diagram of vesicle-related protein identifications from	
	complex mixtures (n=5), 1D fractionation (n=1) and 2D	
	fractionation (n=1)14	3
Figure 5-6:	2-DE spot map of solubilised proteins from immunocaptured GCIs14	4
Figure 5-7:	1-DE of total, core and adherent GCI proteins	0

Figure 5-8:	Venn diagram of core and adherent GCI protein identifications from	
	complex mixtures and 1D fractionation	52
Figure 5-9:	Comparison of control experiment yields to GCI purification1	53
Figure 5-10:	Immunohistochemistry from secondary antibody only control	
	purification revealed no inclusions in immunocaptured control	
	fraction1	155
Figure 5-11:	Immunohistochemistry from normal control purification revealed	
	the presence of α -synuclein-positive inclusions in the	
	immunocaptured fractions1	157
Figure 5-12:	1-DE of normal control cases and secondary antibody only control 1	59
Figure 5-13:	Histogram from DIA analysis of GCI purification replicates 1	61
Figure 5-14:	Primary structures of SNAP25, syntaxin I and VAMP21	67
Figure 5-15:	Formation of a SNARE complex for membrane fusion1	68

Figure 6-1:	Successful purification of LBs shown with immunofluorescence	. 191
Figure 6-2:	Successful purification of LBs shown with immunohistochemistry	. 193
Figure 6-3:	Enrichment of A) α -synuclein and reduction of B) β -tubulin	
	associated with LB purification from DLB homogenate using the	
	optimised purification method	. 195
Figure 6-4:	Quantitation from Westerm blotting of LB purification fractions of	
	A) monomeric, polymeric and total α -synuclein, and B) full-length,	
	truncated and total β-tubulin	. 197
Figure 6-5:	LB protein identifications from complex mixtures (n=2)	. 199
Figure 6-6:	Comparison of LB proteins to GCI proteins by 2D-DIGE	.203
Figure 6-7:	2D-DIGE comparison of immunocaptured normal control proteins	
	to (A) GCI proteins and (B) LB proteins with changes in protein	
	abundance >3-fold or <-3-fold	.205
Figure 6-8:	Very strong correlation between relative abundance of α -synuclein	
	and α - β -crystallin in immunocaptured inclusions (n=9) as	
	determined by 2D-DIGE	.208
Figure 6-9:	Comparison of protein composition of GCIs, LBs, normal control	
	and MSA homogenate, relative to total protein	.211

Figure 6-10:	: Comparison of α -synuclein present in immunocaptured fractions	
Figure 6-11:	from normal control, DLB and MSA cases (n=1)	
	Western blot quantification of monomeric, polymeric and total	
	α -synuclein in immunocaptured inclusions and matched	
Figure 6-12:	homogenates	
	Comparison of 2D-DIGE and Western Blot quantification of	
	α-synuclein content of inclusions	215

Figure 7-1:	Venn diagram of GCI identifications from 4+ MSA cases and LB	
	protein identifications from 2+ DLB cases	232
Figure 7-2:	Venn diagram of vesicle-related proteins and established GCI and	
	LB proteins identified in 4+ MSA cases and 2 DLB cases	233
Figure 7-3:	Venn diagram of GCI and brainstem LB identifications from this	
	study with cortical LB identifications by Leverenz et al	247
Figure 7-4:	Immunofluorescence validation of the presence of synaptic	
	vesicle-related proteins in GCIs	249
Figure 7-5:	Immunofluorescence validation of the presence of synaptic	
	vesicle-related proteins in LBs	251
Figure 7-6:	Potential mechanism of inclusion formation via vesicle-mediated	
	transport of α-synuclein	256

Summary

Neurodegenerative disorders affect a large proportion of the elderly population. A group of disorders, known as the α -synucleinopathies, are characterised by the presence of α -synuclein-containing protein inclusions, such as Lewy Bodies (LBs) found in neurons from Parkinson's Disease (PD) and Dementia with Lewy Bodies (DLB), and Glial Cytoplasmic Inclusions (GCIs) found in oligodendrocytes from Multiple System Atrophy (MSA). Since the discovery of LBs 100 years ago, some major inclusion proteins such as α -synuclein have been identified, but a detailed understanding of their protein composition has yet to be achieved. It is still not known how or why inclusions form and what role they play in the disease process. One hypothesis is that damaged proteins, unable to be degraded by the cell due to underlying proteasomal system or autophagic defects, are selectively targeted to inclusions via vesicle-mediated transport as a protective mechanism.

The analysis of the protein composition of inclusions has been hindered by ineffective methods for isolating the inclusions from the surrounding tissue. This was addressed in this study by optimising a published method for GCI purification by Gai *et al.* (1999) that utilises Percoll gradient density centrifugation combined with magnetic immunocapture. The optimised method gave a 28-fold increase in yield compared to the published method and a 2D-DIGE comparison showed a 3.8-fold increase in α -synuclein enrichment (the major protein in GCIs) and a corresponding 5.2-fold reduction in tubulin contamination. The optimised GCI purification method was then successfully adapted to the purification of LBs from DLB tissue.

A 2D-DIGE comparison of purified GCIs (n=6) and LBs (n=2) revealed that GCIs consist of 11.9% α -synuclein, 2.8% α - β -crystallin and 1.7% 14-3-3 proteins compared to 8.5%, 2.0% and 1.5% in LBs, respectively. A positive linear relationship was found between the relative quantities of α -synuclein and α - β -crystallin in inclusions from each case. The remaining 83-88% of inclusion proteins consists of more than 150 proteins possessing a diverse range of biological functions, including vesicle trafficking, cytoskeletal structure, protein degradation, chaperones, mitochondrial proteins and endoplasmic reticulum proteins.

The GCI protein identifications were performed by sequencing peptides using nanospray Orbitrap mass spectrometry. Peptides were obtained from complex mixtures of trypsin-digested GCI extracts purified from five MSA cases and from trypsin-digested 1-DE gel slices and 2-DE gel spots of GCI proteins. 160 proteins were identified in at least 4 out of the 5 MSA cases analysed. 21% of these 160 proteins were synaptic vesicle-related. The identification of LB proteins was performed by mass spectrometry of complex mixtures of trypsin-digested LB extracts from two DLB cases. Of the 112 proteins identified in both DLB cases and a minimum of 4 out of 5 MSA cases, 25% were synaptic vesicle-related, including synaptosomal-associated protein 25 and V-type proton ATPases.

This study has generated an optimised method for the purification of inclusions to a purity not achieved previously with a yield sufficient for multiple forms of analysis. A comprehensive characterisation of the protein composition of both GCIs and LBs has been performed, including the relative quantification of the major inclusion proteins α -synuclein and α - β -crystallin. The identification of a large set of vesicle-trafficking proteins suggests that α -synuclein may be targeted to LBs and GCIs via a common vesicle trafficking mechanism.

Declaration

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Amellia McCormack

Acknowledgements

Firstly, I would like to thank my supervisor, Tim Chataway, for his unwavering support during the last seven years of honours, employment, and finally this PhD. Your guidance on both this project and life in general has been invaluable. Thank you to Flinders University and specifically the Flinders Proteomics Facility for providing the resources to make this project possible and thank you to the FMC Volunteer Service for providing me with my scholarship, with especial thanks to Simon Brookes for providing me with my last four months of funding to make completion possible.

Thank you to my co-supervisor Wei-Ping Gai and to Fariba Chegini for teaching me the original purification technique, to Mark Slee and Malgosia Krupa for their assistance with the Nanozoomer scanning, to Damien Keating for enlightening discussions on vesicle proteins, and to John Power and Daniel Jardine for reading final drafts of my thesis. I would also like to thank the SA Brain Bank, the Human Physiology Department and the Centre for Neuroscience for their support – which really means thank you to Robyn Flook, Karen Price and Kiley MacDonald. Robyn's assistance with brain tissue requests was especially appreciated.

Spending time in the lab wouldn't have been nearly as enjoyable without labmates like Georgia Arentz, Nusha Chegini, and Alex Collela, for discussions of all things science and mostly things that were not. Lastly, thank you to my husband Nigel for his patience during this process and to my mother Susan for looking after our son while I worked and wrote, I couldn't have done this without either of you. And to my darling boy Jake, this thesis has taken me away from you far more than I wanted, so I dedicate it to you and hope you'll understand why one day.

Abbreviations

%	percentage
x g	x gravity
°C	degrees Celcius
μg	microgram
μL	microlitre
μΜ	micromolar
1°	primary
1-DE	one-dimensional electrophoresis
2°	secondary
2-DE	two-dimensional electrophoresis
2D	two-dimensional
aa	amino acids
ACN	acetonitrile
BSA	bovine serum albumin
CHAPS	3-[3-cholamidopropyl)dimethylammonio]-1-propanesulphonate
CID	collision-induced dissociation
cM	centimeter
Da	Dalton
DAB	3,3'-Diaminobenzidine
DIGE	Difference Gel Electrophoresis
DNA	deoxyribonucleic acid
DTT	dithiothreitol
EDTA	ethylenediaminetetraacetic acid
EtOH	ethanol
FA	formic acid
GE	General Electric
H_2O	water
HCl	hydrochloric acid
HPLC	high performance liquid chromatography
IEF	isoelectric focusing
IPG	immobilised pH gradient

kDa	kilodalton
LB	Lewy body
М	molar
mA	milliampere
mL	milliliter
mm	millimetre
mМ	millimolar
mRNA	messenger RNA
MS	mass spectrometry
MS/MS	tandem mass spectrometry
m/Z	mass-to-charge ratio
NaCl	sodium chloride
ng	nanogram
nL	nanolitre
PAGE	polyacrylamide gel electrophoresis
pН	hydrogen ion concentration
pI	isoelectric point
PMSF	phenylmethanesulfonyl fluoride
ppm	parts per million
RNA	ribonucleic acid
rpm	revolutions per minute
SDS	sodium dodecyl sulphate
TBS	tris buffered saline
TBST	tris buffered saline Tween -20
Tris	Tris (hydroxymethyl) aminomethane
V	volts
v/v	volume per volume
W	watts
w/v	weight per volume