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   1.1 Literature  

 

Evapotranspiration (ET) is a major component of the hydrologic system and it even exceeds rainfall in some 

environments (Brown et al., 2014). ET is strongly coupled to the type of natural environment, anthropogenic 

activities and changes in the soil-water-atmosphere system. Changes in ET can have therefore far reaching impacts 

on the environment, agriculture, water availability and climate. Due to these facts ET has been widely and 

extensively studied in the past century with several researchers developing methods for estimation. However, 

some pertinent challenges still plagues the science of evapotranspiration; (1) the cost of high temporal resolution 

measurements at point/field scale is still exorbitant; (2) the understanding of drivers of ET at high to low temporal 

resolutions to determine optimal temporal resolution of specific ET products across different climate and 

environmental conditions; (3) scale issues still abound - determination of optimal spatial resolution for ET 

measurements when using remote sensing data still requires qualitative analysis; (4) the currently available high 

spatial resolution ET products covering regional to continental scales have been determined to be inaccurate by 

several studies (Ramoelo et al., 2014, Di et al., 2015, Hu et al., 2015a, Du and Song, 2018) across various land 

covers, environmental conditions and/or climate; (5) the need for the development of separate evaporation (E) and 

transpiration (T) products tested across catchment and regional scales to understand the contributions of E and T 

to the total ET in the environment. While, it has been discussed that ET is perhaps the most complex hydrological 

component to fully understand in a hydrological system (Fisher et al., 2005), the need to confront the above 

challenges remain. In this thesis, I aim via the setup of a practical experimental field site to contribute to the 

science of ET regarding challenges 1 and 2 above, while an attempt to contribute to solving challenges 3, 4 and 5 

will be made as well. 

The dynamism of ET has seen the science approached from different conceptual methods, such as the mass 

transport method (Valipour, 2014), energy balance method (Bastiaanssen et al., 1998c), empirical method 

(Choudhury, 1999), and physical methods (Tyagi et al., 2000) amongst others. These methods have been 

successful to varying degrees. Several reviews of evapotranspiration methods have been undertaken (Dickinson 

et al., 1991, Rana and Katerji, 2000, Drexler et al., 2004a, Kalma et al., 2008, Wang and Dickinson, 2012) to 

improve our understanding of the strengths and weaknesses of these methods, which has led to the realization that 

the majority of the methods are not viable beyond a narrow range of topography, environmental condition (e.g. 

irrigation), climate and/or vegetation type. While some methods are only viable under certain conditions others 

can be improved or integrated in models for wider use.  



11 
 

Evapotranspiration over Australia has been of particular interest in recent years due to its net effect on total global 

ET (Jung et al., 2010). It was observed by Jung et al. (2010) that the global decline in ET was driven significantly 

by the decline in ET over Australia. The drought over Australia termed the “millennium drought” which occurred 

between the years 2000 – 2010 contributed immensely to the global decline in ET.  Hence, the need to accurately 

estimate ET over the dynamic Australian landscape at point, catchment and regional scales.  

Within the Australian context, several methods have been applied to measure ET at the point, catchment and 

regional scales. Lysimeters, and sap flow methods have been used at point or tree scale measurements. Although 

lysimeters, which function by measuring water percolation through a controlled experimental soil column over a 

period of time have been determined to be very accurate, they can be quite expensive to set up and often 

impractical to set up over large areas and for trees (Howell et al., 1991). The sap flow method on the other hand, 

which involves the injection of small heat into the stem of a plant or tree is very useful in studies focused on the 

transpiration component of ET (Glenn et al., 2011). The sap flow method is however inadequate where the total 

ET is the goal of the measurement.  

On the catchment scale, several ET estimation methods have been developed over the years. The methods can be 

broadly categorised into the Temperature-Vegetation Index methods (T-VI), Surface energy balance methods 

(SEB) and the water balance method. Some of other methods have been developed on the back of existing methods 

such as the Penman-Monteith and Priestley-Taylor methods. These methods principally exploit the advent of 

remote sensing data to estimate ET on catchment to regional scales. The science behind T-VI methods involves 

the understanding of the relationship between the spatio-temporal variations in land surface temperature and the 

vegetation index to partition the net radiation into the latent and sensible heat components (Price, 1990, Carlson 

et al., 1995, Nishida et al., 2003). While the T-VI method has the advantage of requiring few meteorological data 

to estimate ET, the relationship derived between T and VI over an area may not be valid across other land covers 

and climatic conditions.  

Developed SEB models are further divided into single-source (SSEB) and two-source (TSEB) energy balance 

models. SSEB models calculate ET as a residual of the energy balance and sensible heat from a heat transfer 

model equation. The SSEB models lump the evaporation and transpiration components of ET together as the 

thermodynamic system at the land surface is viewed as a single layer, while the TSEB models parameterise and 

estimate the evaporation and transpiration components of the ET separately. Several variations of the SSEB 

models have been developed, with the Surface Energy Balance for Land  (SEBAL) (Bastiaanssen et al., 1998a) 
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as one of the earliest SSEB models applicable on catchment scale. Many TSEB models have also been developed 

with the Two-Source Model (TSM) developed by Norman et al. (1995) as one of the earliest TSEB models. The 

SSEB and TSEB models have been widely used in ET estimation on catchment scales  but their significant reliance 

on the accuracy of land surface temperature and air temperature in parameterisation is a major challenge of the 

methods (Zhang et al., 2016). 

The water balance method is premised on the water balance equation, 𝑃𝑃 − 𝐸𝐸𝐸𝐸 − 𝑅𝑅 −  ∆𝑆𝑆 = 0. ET is calculated as 

a residual of the equation where P is precipitation, R is the runoff and ∆𝑆𝑆 is change in storage. The water balance 

method is simple to use, however obtaining accurate values for the parameters can be challenging. In recent years, 

the advances in remote sensing has made the method more accessible with different precipitation products 

available globally. Although the Gravity Recovery and Climate Experiment (GRACE) is the only widely known 

and freely available global change in storage product, with runoff also mostly available locally. While the water 

balance method is simple and easy to apply, errors in the precipitation component significantly impacts the ET 

estimation. Another major disadvantage of the method is the spatio-temporal coarseness of the estimation grid 

due to the grid size of the change in storage product. Hence the water balance method is mostly suitable for 

regional scale ET estimation.  

Few ET methods have been very successful such as the acclaimed eddy covariance (EC) method and the Penman-

Monteith (P-M) equation, which many ET models are built on, but not without extensive improvements by several 

research works and re-parameterisation of various components of the methodologies over the years.  Nevertheless, 

these methods still have limitations and challenges associated with them. For instance, the EC method has a spatial 

scale limitation, energy balance closure issues and high costs to set up. Hence, this EC method is most suitable 

for ground-truthing of other methods. The P-M method, which has been improved significantly since the advent 

of remote sensing and advanced spatial science by coupling the method with remote sensing input data to produce 

products like e.g. MOD16 ET data (Mu et al., 2007), has been reported to perform poorly over certain 

environmental conditions and/or land covers (Hu et al., 2015a, Miralles et al., 2016, de Arruda Souza et al., 2018). 

Most of the poor performances recorded were despite the improvements made to algorithms like the MOD16 

algorithm by Mu et al. (2011b), which included the re-parameterisation of several components of the method. 

These constant improvements are a necessity in the complex world of ET measurement and modelling. The EC 

system and MOD16 are arguably the most popular and widely accepted ground-truthing and global scale high 

resolution spatial ET product respectively. Regardless of the challenges and/or limitations of these methods, they 

have contributed immensely to the science of ET.  
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With the future of ET measurement clearly fused with remote sensing for regional scale estimations, there is the 

urgent need to develop, understand and improve the ET methods at optimal temporal and spatial resolutions. Scale 

issues have been identified as a challenge by studies using remote sensing data in ET models (Liu et al., 2016, 

Wang et al., 2016, Gaur et al., 2017). Notwithstanding the identified scale issues, there is paucity of research 

works that have evaluate the scale issue across remote sensing based ET models. Of the available studies that 

addressed the scale issues, Ruhoff et al. (2013) aggregated the high resolution MOD16 product to produce a better 

fit for the study area and Tang et al. (2015) observed better results from degrading the resolution of  MOD16 

product in validation exercises. Wang et al. (2016) used multi-scale remote sensing land cover images in 

modelling ET and observed an optimal image resolution for his datasets. While this study identifies the impact of 

the spatial component of remote sensing input data, analysis on spatio-temporal effects of scale is lacking in 

literature. With the increase in demand for higher resolution ET products, it is crucial to understand the spatio-

temporal effects of scale using a multi-model approach. Improved understanding of optimal scales for ET 

estimation will significantly benefit the science of ET especially with regards to remote sensing data and 

catchment scale ET estimations. 

ET is required for research, environmental, agricultural and other purposes, however the complexity of estimating 

ET significantly hinders these purposes. The development and free distribution of the MOD16 product, which has 

been extensively used in the last decade for comparison, validation and modelling hydrological systems, has 

significantly impacted the ET science positively. Evidently, the availability of such readily available, global ET 

data has aided researchers and other stakeholders requiring the use of ET data. The success of the MOD16 is 

premised on the availability, spatial resolution, coverage and relative accuracy. While a few other research efforts 

have created similar ET products such as the LSA-SAF MSG (Ghilain et al., 2011) over Europe and the AWRA-

L (Viney et al., 2014) over Australia. While these ET products have contributed immensely to global ET studies. 

They all lump together the evaporation and transpiration components of ET together. For studies/purposes specific 

to only evaporation or transpiration, these products are unsuitable. Unfortunately, this is a significant challenge, 

which hinders several specific E and T studies and research efforts on specific vegetation type, lakes, rivers and 

open water research.   

The Maximum Entropy Production (MEP) method is a relatively new approach to ET estimation developed by 

Wang and Bras (2011). The method can estimate E and T separately and is developed on the back of the 

information entropy principle (Shannon, 1948). The MEP method, which calculates the turbulent fluxes at the 

land surface as a function of temperature, specific humidity and available energy, is formulated on the principle 
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that the thermodynamic system at the land surface is constantly trying to achieve equilibrium through the 

maximisation of ET, subject to available energy at the land surface. The MEP method is a deviation from the 

conventional methods of ET estimation as it is the first ET estimation method which is primarily based on an 

information entropy model. The MEP’s deviation from the norm with focus on driving the thermodynamic system 

towards equilibrium using ET allows focus on the thermodynamic state of the system rather than on the various 

physical processes involved in conventional ET methods which is expected to solve some physical based approach 

challenges to ET estimation.  Some validation of the MEP model was conducted at the field scale (Wang et al., 

2017, Hajji et al., 2018b) with excellent results but no rigorous spatio-temporal analysis has been conducted. An 

attempt was made to create a global scale MEP model by Huang et al. (2017). However, the resolution of 10,000 

km2 is too coarse for catchment or even regional scale use and it was not further developed into a product. The 

MEP model has the potential to be developed into a method that can be used at field, catchment and continental 

scales, which is a challenge of many of the more prominent methods. The MEP is not heavily reliant on 

temperature, which is another significant challenge of the other methods and costs much less to set up at the field 

scale. While the P-M method is widely accepted to be one of the most accurate methods of estimating ET, the 

difficulty of parameterising its components using several not readily available meteorological data(McMahon et 

al., 2013) has seen attempts at coupling the method with remote sensing for catchment to regional scale estimation 

achieve mixed results over different land covers and climate. The MEP has a significant advantage due to its 

requirement of few meteorological forcings to estimate ET hence is expected to perform differently by avoiding 

the complexity and biases introduced by uncertainties associated with individual meteorological forcings required 

by the PM method. This study intends to rigorously evaluate the MEP at various spatio-temporal resolutions and 

to effectively improve and/or propose areas of further development. The study will also develop a continental 

scale product over Australia at high resolution. 

1.2 Research aims and PhD Contributions 

 

This PhD aims to contribute to the science of ET, through the evaluation of the strengths and weaknesses of the 

MEP ET method, the use of a multi-model approach to qualitatively analyse the scale issues in ET and 

development of a continental scale E and T product using the MEP model. This thesis is structured into three 

sections;  
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1. The setup of an MEP field experiment in a mangrove forest with challenging environmental conditions 

different from previously evaluated sites and climatic conditions to evaluate the MEP and contribute to 

the challenges 1 and 2 stated in the introduction section above. This section evaluates the MEP at the 

hourly, daily, weekly and monthly temporal resolutions in an environment where temporal changes in 

flux is prevalent due to its proximity to the ocean. The overall performance was evaluated using a 

dedicated eddy covariance system setup beside the MEP station for the purpose. The limitations of the 

MEP were identified as well as its strengths. 

2. The evaluation of four ET models on a catchment scale in a complex terrain. Scale challenges were 

evaluated and the drivers of different ET methods were analysed alongside possible challenges with the 

methods. Seasonal trends of the models were also analysed. 

3. A high resolution continental scale E and T product was developed through re-parameterising of the 

MEP model components. The product was evaluated using several EC systems for accuracy on the daily 

time scales and was compared to existing products. The E, T and ET products contribution to the science 

of ET has been made publicly available for scientific and educational purposes similar to the popular and 

widely used MOD16 and LSA-SAF MSG products.   

This PhD research work is a data intensive research where over 150 gigabyte (GB) of data was generated as part 

of the research output. A significant contribution of this research work is the creation of crucial continental wide 

datasets publicly available for research, environmental, agricultural, policy and climate studies. This research 

work will be the pedestal upon which other significant research works will build on. The produced datasets are 

freely available from the links below: 

https://dap.tern.org.au/thredds/catalog/MEP/catalog.html 

http://dx.doi.org/10.25901/5ce795d313db8 
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1 Evaluation of the MEP model for estimation of evapotranspiration 

over mangroves forest 

 

Manuscript 1 to be submitted to Hydrology and Earth System Sciences (HESS) 

Olanrewaju Abiodun1, Okke Batelaan1 Huade Guan1, and Jingfeng Wang2 

1. National Centre for Groundwater Research and Training, College of Science and Engineering, Flinders 

University, Australia 

2. School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, USA 

Corresponding author: 

Lanre Abiodun, College of Science and Engineering, Flinders University, Bedford Park, Australia, 

lanre.abiodun@flinders.edu.au 

Abstract 

The goal of this study is to evaluate the maximum entropy production (MEP) model and test its performance in a 

hydrologically complex wetland environment using the eddy covariance (EC) method. We setup a turbulent flux 

measurement site with an EC system and other ancillary sensors required to parameterise the MEP model over a 

homogenous mangrove forest. A year’s worth of data was collected from the MEP and EC systems and processed 

at an hourly temporal resolution. 

The MEP model did not effectively capture latent heat flux at hourly temporal resolution when compared to the 

EC system. The MEP showed a correlation coefficient of 0.76, mean absolute error (MAE) of 0.08 mm/hr, percent 

bias of 1.8%, Nash Sutcliffe Efficiency (NSE) of -0.19 and root mean square error (RMSE) of 1.24 mm/hr for an 

average hourly ET from the EC method of 1.25 mm/hr. When the fluxes were aggregated to daily, 8-day and 

monthly values, the performance of the MEP improved progressively and at monthly aggregation, the correlation 

coefficient improved to 0.99. At the 8-day aggregation, correlation coefficient improved to 0.91, MAE of 3.04 

mm/8-day, NSE of 0.76 and RMSE of 4.04 mm/8-day for an average ET of 21.5 mm/8-day. The diurnal influence 

of the horizontal advection and the systemic loss of the ground heat flux storage to tides are responsible for the 

reduced performances at the hourly temporal resolution. 

 

mailto:lanre.abiodun@flinders.edu.au
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2.1 Introduction 
 

The science of evapotranspiration (ET) estimation has been considered a black art especially due to the complexity 

of parameterizing the turbulence at the atmospheric boundary layer (Jeffreys, 1918, Foken, 2006). 

Evapotranspiration estimation has however advanced significantly in the past decades, particularly since the 

derivation of the Monin-Obhukov Similarity Theory (MOST) (Monin and Obukhov, 1954). The MOST succeeded 

in parameterizing the turbulent fluxes of heat and momentum as functions of temperature and humidity, upon 

which most evapotranspiration methods have been developed (Brutsaert and Mawdsley, 1976, De Bruin, 1989, 

Suleiman and Crago, 2004, Koloskov et al., 2007, Savage, 2017). The performances of these methods have been 

observed in literature to vary depending on parameters (Amatya et al., 1995, Rana and Katerji, 2000) such as 

climate, vegetation cover and other biophysical parameters of the environment. Some of the most successful 

methods of turbulent flux quantification such as the Bowen-ratio method (Tanner, 1960) have benefitted from the 

MOST.  

The Eddy Covariance (EC) method (Dyer and Hicks, 1970) has become the standard approach for validation of 

other emerging turbulent flux estimation methods (Cullen et al., 2017, Ruhoff et al., 2013). Although the EC 

method has been extensively tested, it has not been without challenges, with issues such as energy balance closure 

problems (Foken et al., 2006) and errors resulting from insensitivity of the EC system to high frequency turbulence 

(Loescher et al., 2006). While attempts have been made to address the challenges of the EC method over the years 

including several methods to solve the energy balance closure problem (Mauder et al., 2018), some concerns still 

remain (Widmoser and Wohlfahrt, 2018, Eshonkulov et al., 2019). Regardless of these challenges, the EC method 

has proven overwhelmingly popular due to the availability of equipment for measurement and the ease of 

calculation through proprietary processing software. 

 Since the turn of the millennium, remote sensing methods of ET estimation has evidently been the direction of 

the science due to the need of regional scale ET estimation for environmental planning, hydrological analysis, 

climate change modelling and other research needs. Many of the historically successful ET methods and emerging 

ones are coupled with remote sensing methods to produce the required evapotranspiration estimates. EC flux 

tower data is often used for ground-truthing the output of these remote sensing data driven models. FLUXNET, a 

network of continuous flux measurements from towers around the world at high temporal resolution has become 

the standard in ET flux validation (Running et al., 1999). Nevertheless, the high cost of setting up an EC system 

has impacted the growth of the network. The FLUXNET system has been successful in showing the need for 
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global flux measurement, hence more affordable methods of flux estimation without compromising the accuracy 

of the measured fluxes would be welcome. The maximum entropy production (MEP) model of surface heat fluxes 

(Sun et al. (2009) also benefits from the MOST for parameterizing thermal inertia of latent heat and sensible heat 

fluxes to use only three input variables (i.e. net radiation, surface temperature and surface specific humidity). The 

setup cost of the MEP estimation method is about 20% of the setup cost of the EC system. Although the MEP 

methodology is still considered an emerging technique, it has been very successful in macroscopic predictions of 

non-equilibrium systems (Dyke and Kleidon, 2010). The initial testings and validations of the MEP turbulent flux 

quantification method compared with measured data have been promising (Wang and Bras, 2011, Nearing et al., 

2012, Huang et al., 2017, Wang et al., 2017, Hajji et al., 2018a, Xu et al., 2019, Yang et al., 2013). A recent review 

of evapotranspiration methodologies over the past 50 years (Liu et al., 2016) describes the MEP as an “alternative 

way to derive heat fluxes without getting into microscopic details of molecular conduction”. The uniqueness of 

the MEP model method and the reported success in field tests warrant a rigorous review to determine if this is a 

viable ground-truthing method for evapotranspiration models. It must however be noted that the MEP model still 

requires comprehensive testing and validation across various environments to determine its strengths and 

weaknesses for further improvements. If the MEP is comprehensively tested and validated, it has the potential of 

complementing the EC method of flux validation in the future. 

The objectives of this study are; (1) to evaluate the MEP method of flux quantification in a challenging 

hydrological environment (a mangrove forest with strong advection from the Gulf St. Vincent and high soil 

salinity), which has not been comprehensively assessed previously, i.e. determine the strengths and weaknesses 

of the MEP to estimate ET in a wetland environment and propose solutions where necessary; and (2)  Evaluate 

the contributions of the sensible and latent heat fluxes to the energy balance as well as the evaporation and 

transpiration partitioning from the MEP model in the study area. 
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2.2 Model description 
 

2.2.1 MEP model 

 

The Maximum Entropy Model of turbulent flux estimation (hereafter referred to as MEP model) is developed on 

the back of the principle of Maximum entropy (MaxEnt) (Jaynes, 1957), which was advanced by Dewar (2003) 

and Dewar (2005) through the derivation of the Maximum Entropy Production theory as a subset of the MaxEnt. 

The MaxEnt is the maximization of the Shannon information entropy (Shannon, 1948) under a relevant constraint 

to develop a probability distribution from limited information. Dewar (2003) expatiated and expressed the link 

between the information entropy and thermodynamic entropy, where the Bayesian probabilities 𝑝𝑝𝑖𝑖 for a certain 

variable 𝑥𝑥𝑖𝑖  (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), are obtained through maximising the Shannon information entropy (𝑆𝑆𝐼𝐼) under 

constraints.   

 

  

                 (1) 

     

Constrained by    

         (2) 

   

 

Where 𝑓𝑓𝑘𝑘 are functions of 𝑥𝑥𝑖𝑖, 𝐹𝐹𝑘𝑘  are the constraints parameterized from the available information on the variable 

𝑥𝑥𝑖𝑖, 𝑚𝑚 (≪ 𝑛𝑛) is an integer, with the brackets denoting mathematical expectations. The MaxEnt probabilities 

distribution 𝑝𝑝𝑖𝑖  can be derived from maximising Equation (1) under the constraint of Equation (2), yielding    

    

         (3) 

 

𝑆𝑆𝐼𝐼 ≡ −�  𝑝𝑝𝑖𝑖In 𝑝𝑝𝑖𝑖 ,

𝑛𝑛

𝑖𝑖=1

 

�  𝑝𝑝𝑖𝑖  𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖) = 𝐹𝐹𝑘𝑘,,     1 ≤ 𝑘𝑘 ≤ 𝑚𝑚
𝑛𝑛

𝑖𝑖=1

 

 

𝑝𝑝𝑖𝑖 ∝ exp �� 𝜆𝜆𝑘𝑘  𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
𝑚𝑚

𝑘𝑘=1
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Where the 𝜆𝜆𝑘𝑘 (1 ≤ 𝑘𝑘 ≤ 𝑚𝑚) are the Lagrange Multiplier parameters, which are related with the 

constraint 𝐹𝐹𝑘𝑘  (Dewar, 2005). The MEP theory is a direct offshoot of Equation (3) for the scenario of antisymmetric 

functions 𝑓𝑓𝑘𝑘. Based on the specific scenario of the anti-symmetric function where the MaxEnt distribution is 

driven by the exponential function in Equation (3), the MaxEnt is mathematically expressed as the entropy 

production function (Dewar, 2005)    

         (4) 

 

Sun et al. (2009) parameterized the entropy production function (also referred to as the dissipation function) in 

terms of sensible heat flux and ground heat flux with their respective thermal inertia and further developed the 

method in Wang and Bras (2011) through the addition of the latent heat flux term. The inclusion of the latent heat 

flux term and its thermal inertia in the MEP model dissipation function over land surfaces  in Equation (5) is based 

on the theory that the macroscopic level turbulent thermodynamic system at the land surface is driven towards 

equilibrium stability by maximising evapotranspiration but constrained by available energy (Wang and Bras, 

2011). 

𝐷𝐷(𝐺𝐺,𝐻𝐻,𝐸𝐸) ≡ 2𝐺𝐺2

𝐼𝐼𝑠𝑠
+ 2𝐻𝐻2

𝐼𝐼𝑎𝑎
+ 2𝐸𝐸2

𝐼𝐼𝑒𝑒
          (5) 

where 𝐸𝐸,𝐻𝐻 and 𝐺𝐺 are latent heat (W/m2), sensible heat (W/m2) and ground heat (W/m2) fluxes, respectively. 

𝐼𝐼𝑒𝑒 , 𝐼𝐼𝑎𝑎 , and 𝐼𝐼𝑠𝑠 are thermal inertia parameters relative to latent heat, sensible heat and ground heat fluxes 

respectively. The parameterization of the thermal inertia of the respective fluxes are discussed in detail in Sun et 

al. (2009). 

The dissipation function derived in Equation (5) for the parameterisation of the land surface turbulent fluxes is 

constrained by the available energy on the land surface, given by the energy balance equation    

 𝑅𝑅𝑛𝑛 = 𝐸𝐸 +  𝐻𝐻 +  𝐺𝐺           (6) 

By optimizing Equation (5) through the Lagrange Multiplier method and solving the resultant partial derivatives 

of 𝐸𝐸,𝐻𝐻 and 𝐺𝐺, we obtain the MEP evaporation equations over bare soil, Equation (7), which can be solved 

numerically. 𝐸𝐸 and 𝐺𝐺  in Equations (7) are direct results of solving the dissipation function in Equation (5) under 

the constraint of Equation (6). The formulation of Equation (7) and (8), which are MEP model parameters, are 

described in Wang and Bras (2011). For vegetated land surfaces, the dissipation function in Equation (5) is 

𝐷𝐷 ≡ 2�𝜆𝜆𝑘𝑘𝐹𝐹𝑘𝑘,

𝑚𝑚

𝑘𝑘=1
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optimized using the Lagrange Multiplier under the energy balance constraint in Equation (6) after eliminating the 

ground heat flux from both equations. The resultant Equation (9) is easily solved for 𝐻𝐻 and 𝐸𝐸.  

𝐸𝐸𝑠𝑠 =  𝛽𝛽(𝜎𝜎)𝐻𝐻𝑠𝑠, 𝐺𝐺 = 𝛽𝛽(𝜎𝜎)
𝜎𝜎  𝐼𝐼𝑠𝑠𝐼𝐼𝑜𝑜  𝐻𝐻𝑠𝑠|𝐻𝐻𝑠𝑠|

−1
6, 𝑅𝑅𝑛𝑛,𝑠𝑠 = 𝐸𝐸𝑠𝑠 +𝐻𝐻𝑠𝑠 +𝐺𝐺      (7) 

𝜎𝜎 = 𝜆𝜆2

𝑐𝑐𝑝𝑝𝑅𝑅𝑣𝑣

𝑞𝑞𝑠𝑠
𝑇𝑇𝑠𝑠2

 , 𝛽𝛽(𝜎𝜎) = 6 ��1 +
11

36
𝜎𝜎 − 1�        (8) 

where 𝜎𝜎 is a dimensionless parameter characterizing the effect of surface thermal and moisture state on the energy 

budget (-), 𝑞𝑞𝑠𝑠 the soil surface specific humidity (kg kg-1), 𝐸𝐸𝑠𝑠 the soil surface temperature, 𝛽𝛽(𝜎𝜎) the inverse Bowen 

ratio (-), 𝑅𝑅𝑛𝑛,𝑠𝑠 net radiation, 𝐼𝐼𝑠𝑠 the thermal inertia of soil, 𝐼𝐼0 the apparent thermal inertia of air parameterized using 

the Monin-Obukhov similarity equation of boundary layer turbulence (Wang and Bras, 2009), 𝜆𝜆 the latent heat of 

vaporization of liquid water (J kg-1), 𝑐𝑐𝑝𝑝 is the specific heat of dry air at constant pressure (J kg-1 K-1), 𝑅𝑅𝑣𝑣 is the gas 

constant of water vapor (J kg-1 K-1). For vegetated surfaces Equation (7) becomes 

𝐸𝐸𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽−1(𝜎𝜎)

 ,𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽(𝜎𝜎)

         (9) 

where 𝐸𝐸𝑣𝑣 ,𝐻𝐻𝑣𝑣 are latent (transpiration) and sensible heat flux, respectively, 𝑅𝑅𝑛𝑛,𝑣𝑣 net radiation over canopy surface. 

The other variables are defined as previously except that 𝐸𝐸𝑠𝑠, and 𝑞𝑞𝑠𝑠 are canopy surface temperature and specific 

humidity, respectively. When calculating ET over canopy, where 𝐼𝐼𝑠𝑠 is zero, G becomes zero, hence Equation (6) 

becomes 𝑅𝑅𝑛𝑛 = 𝐸𝐸 +  𝐻𝐻. Combining 𝑅𝑅𝑛𝑛 = 𝐸𝐸 +  𝐻𝐻 and 𝐸𝐸 =  𝛽𝛽(𝜎𝜎)𝐻𝐻, we obtain expressions for E and H in 

Equation (9) as a function of 𝑅𝑅𝑛𝑛 and 𝛽𝛽(𝜎𝜎). Note that 𝐸𝐸𝑣𝑣 ,𝐻𝐻𝑣𝑣  in Equation (9) satisfy the energy balance equation 

for canopy surface 𝐸𝐸𝑣𝑣 + 𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛,𝑣𝑣  (Wang and Bras, 2011).  Equation (7) is used to calculate evaporation while 

(9) is used to calculate transpiration. A summation of the evaporation and transpiration is the total ET for a given 

location. 

The maximum entropy production (MEP) model of ET (Wang and Bras, 2011) was formulated based on the 

contemporary non-equilibrium thermodynamics, the Bayesian probability theory, information theory and the 

atmospheric boundary turbulence theory. The MEP theory has been applied to diverse fields of geosciences 

(Kleidon and Lorenz, 2005) including land surface hydrology (Kleidon and Schymanski, 2008), bio-ecological 

systems (Juretić and Županović, 2003, Kleidon and Fraedrich, 2004, Kleidon et al., 2010, Shipley, 2010) and 

surface heat fluxes at Earth-atmosphere interface (Wang and Bras, 2009, Wang and Bras, 2011, Wang et al., 



22 
 

2014). The formulation of MEP ET model encompasses the dominant physical mechanisms underlying ET 

processes by including the four essential aspects of the evaporation physics (supply of energy, supply of water, 

evaporation potential and turbulent transport of water vapour). The MEP theory synthesizes the parameterizations 

of the physical processes and extracts the most relevant information about ET from fewer input variables than the 

traditional models. The unique features of the MEP ET model include the simultaneous solution of ET and other 

surface heat fluxes, closure of the surface energy budgets at all space and time scales, independence of temperature 

and humidity gradients, wind speed and surface roughness, covering the full range of soil moisture, and free of 

tuning empirical parameters. 

The MEP model over water, snow and ice is different from the above described due to the energy budget 

calculations over water surfaces and the difference in thermal inertia of soil and water. Wang et al. (2014) 

optimized the dissipation function for the energy balance over water and derived unique equations below for the 

E, H and G over water, snow and ice; 𝑅𝑅𝑛𝑛 = �1 +  𝛽𝛽(𝜎𝜎) + 𝛽𝛽(𝜎𝜎)
𝜎𝜎

𝐼𝐼𝑤𝑤𝑠𝑠𝑤𝑤
𝐼𝐼𝑜𝑜

|𝐻𝐻|−
1
6� 𝐻𝐻; 𝐸𝐸 =  𝛽𝛽(𝜎𝜎)𝐻𝐻; 𝐺𝐺 =  𝑅𝑅𝑙𝑙𝑛𝑛 − 𝐸𝐸 − 𝐻𝐻; 

Where 𝐼𝐼𝑤𝑤𝑠𝑠𝑖𝑖  is the thermal inertia of the media (water, snow or ice); 𝑅𝑅𝑙𝑙𝑛𝑛 is the longwave radiated flux from the 

earth surface of medium water, snow or ice. 

The above equations were evaluated for our mangrove site, however, the authors observed that the inundation on 

our site occurs intermittently for only a few hours on the days we carried out surveillance, with the soil surface 

exposed as a marsh for the greater part of the day. As the data obtained did not monitor the short periods of 

inundation, the equations for moist or wet land surfaces were used in this study, hence an open water evaporation 

analysis was not conducted.    

 

2.2.2 Eddy covariance method 

 

The EC method has been iteratively developed by several researchers globally over the past seven decades with 

the foundational theoretical basis of the method developed by Montgomery (1948), Obukhov (1951) and 

Swinbank (1951). The EC method has since gone through several improvements (Webb et al., 1980, Foken and 

Oncley, 1995, Lee, 1998) including instrumentation design (McBean, 1972, Ohtaki and Matsui, 1982). A 

comprehensive overview of the EC method is given by Aubinet et al. (2012). 
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2.3 Materials and methods 

 

2.3.1 Study area and equipment 

 

The study area is covered with dense mangrove forest in a coastal wetland of South Australia. The mangrove 

species is the Avicennia marina also known as grey mangrove. The grey mangrove grows along the South 

Australian coastline from Barker inlet in the south to the Tourville Bay in the north-west of South Australia. The 

site location is the St Kilda Mangrove trail close to the Barker inlet of South Australia. It is an area of homogenous 

dense grey mangrove extending 300 metres from the coastline at an elevation of 2 mAHD (metres Australian 

Height Datum). The equipment is located at latitude: 34°44'47.07744"S and longitude 138°32'15.90072"E on the 

St Kilda Mangrove Trail (Fig. 1) where the vegetation height is 4 m. The soil at the location is hypersaline with 

intermittent inundation dependent on tidal flows.  

 

 

Figure 1: Equipment site location in mangrove forest 
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Two sets of equipment are installed at the site (Fig. 2); the EC system above the canopy to measure the turbulent 

fluxes and the “MEP station” which measures the meteorological variables required by the MEP method (net 

radiation, temperature and humidity at the canopy and soil surfaces). The EC system consists of the analyser 

interface unit, the gas analyser and the sonic anemometer installed at an elevation of 6.4 m above the soil surface, 

with the gas analyser set up at 15 degrees incline to align the air flow through it and the sonic anemometer. For 

the MEP station, infrared radiometer, net radiometer, relative humidity and air temperature sensors, are installed 

above the canopy, as well as just above the soil surface. Data from the MEP station sensors above the canopy are 

required for transpiration calculations while data from the sensors above the soil surface are required for 

evaporation calculations using the MEP model. The relative humidity, air temperature and infrared radiometer 

sensors above the canopy are installed at an elevation of 4.5 m above the soil surface while the net radiometer is 

installed at 5.5 m above the soil surface. The MEP station for measuring data above the soil surface is installed at 

0.3 m. A logger box for the MEP is attached to the support structure for the equipment. While the MEP system 

only requires target surface temperature, we included both infrared thermometers and air temperature sensors at 

both the canopy and soil surface levels to evaluate the sensitivity of the MEP model to temperature. 

The MEP model is very dependent on specific humidity data at the target surface hence the need to measure as 

close as possible to the target surface. However due to the intermittent inundation of the soil surface in the study 

location from tidal flows, sensors measuring near soil surface fluxes have been installed at the 0.3 m height.  

The MEP and EC data are stored in the data logger and analyser interface unit respectively and sample at a 

frequency rate of 1 Hz. 
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Figure 2: MEP and EC equipment installed at St Kilda Mangrove Trail 

 

Table 1: Installed instruments for MEP and EC 

Instrument type (installation location)  Observed component 

Infrared thermometer (canopy and soil surface)  

Campbell Scientific SI-111 

Field of View: 22o half angle 

 Target surface temperature 

Net radiometer (above canopy and soil surface) 

Kipp & Zonen NR-Lite2 

Field of View: 180o  

 net radiation over target surface 

Relative humidity and air temperature (soil surface) 

Vaisala HMP 155 

 Relative humidity and air 

temperature 

Air temperature (canopy) 

Environdata TA40 

 Air temperature 

Relative Humidity (canopy)  Relative humidity 
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Environdata RH40  

Logger Box 

Campbell Scientific CR1000 

 Data storage for all MEP data 

Open path gas analyser (above canopy) 

LiCOR Li-7500RS 

 Latent heat flux and sensible heat 

flux 

Anemometer (above canopy) 

Gill instruments Windmaster pro 3-Axis 

Anemometer 

 Wind speed and direction 

Logger Box 

LiCOR Li 7550 Analyzer interface 

 Data storage for EC data 

 

 

2.3.2 Data collection and processing 

 

2.3.2.1 MEP model 
 

The data collected from the MEP system were checked for quality but the net radiation data over the soil surface 

did not pass all quality checks. The net radiation over the canopy was preferred and a layer approach method 

described in Lhomme and Chehbouni (1999)was used in partitioning the net radiation between the canopy and 

soil surface. The Clausius-Clapeyron equation was used along with the relationship between relative humidity, 

vapour pressure and mixing ratio to obtain specific humidity over the target surfaces (Appendix A). Once the 

specific humidity is obtained, it is straight forward to compute the latent and sensible heat fluxes over the canopy 

using Eq. 9. The MEP model for evaporation over the soil surface was calculated using the “fsolve” function in 

Python programming language to solve the system of non-linear algebraic equation (7). The data stored in the 

MEP logger were averaged to 1-hourly interval for the flux computation.  
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2.3.2.2 EC method 
 

The equipment was installed and ready for reliable data collection in January 2018. Data for this study were 

collected between 12 January 2018 and 5th of February 2019. Intermittent equipment faults occurred between 

April and September. The EC data were processed in the EddyPro 6.2.0 proprietary software from LiCOR for 

computing the turbulent fluxes from the EC system. Data quality control protocols were followed in the processing 

of the data such as rejection of hourly data with more than 3% of missing data. Data collected during periods of 

equipment malfunction were totally removed from the analysis. The data were averaged to 1-hour temporal 

resolution to align with collected data from the MEP system.  

 

2.3.2.3 Flux footprint 
 

The flux footprint can be a source of discrepancies in flux data analysis (Schmid, 2002, Göckede et al., 2004). 

The MEP and EC stations were installed as close as practicable to reduce the impact of flux footprint 

discrepancies. The study site has been carefully located in the centre of a homogenous grey mangrove forest (Fig. 

2 and 3). Both the MEP and the EC equipment were installed at specific elevations to capture predominantly local 

flux footprints, with the grey mangrove forest stretching for several kilometres and a minimum radius of 200 m 

from the installed tower.  
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Figure 3: Average flux footprint for study period; Contour lines indicate radius of flux contributions to EC system 

 

Relative humidity and air temperature sensors of the MEP station were installed at 0.5 m and 0.3 m above the 

canopy and soil surface, respectively. The net radiometer sensors are also close to the target surfaces at 1 m and 

0.3 m above the canopy and soil surfaces respectively. From the EC flux footprint calculation, the Fig. 3 shows 

that 80% of the flux calculated by the EC system originates from a radius of about 100 m and the highest 

concentration of the measured fluxes occur within a 30 m radius. The flux footprints from the EC system were 

calculated using the methods by Hsieh et al. (2000), Kormann and Meixner (2001) and Kljun et al. (2004). The 

Kljun et al. (2004) method is the default method in the eddypro software but the method is subject to specific 

conditions, for instance, the friction velocity must be greater than 0.2 ms-1. Where these conditions are not met 

the Kormann and Meixner (2001) methods is considered next. The mean cross wind integrated (CWI) footprint 

(Fig. 4) for our site for the 2018 period shows that the EC flux in our site is particularly localized with majority 

of the contributory flux to the footprint originating within 10 m of the flux tower.  
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Figure 4: (a) Average crosswind integrated flux footprint vs distance from the EC tower over study period; (b) Cummulative 
flux footprint vs distance from EC tower. The thick blue line is the median, the upper and lower thin blue lines are the 75th 
and 25th quartile while the light blue spread is the range 
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2.4       Results and discussion 

 

The ET results calculated by the MEP and EC systems were checked for outliers and improbable results. A total 

of over 6000 hourly data points across 280 days were used in the flux computation for each model. A comparison 

was carried out on the hourly timescale using the root mean square error (RMSE), mean absolute error (MAE), 

correlation coefficient (R), Nash Sutcliffe Efficiency (NSE) and PBIAS after replacing negative latent heat flux 

in the results which indicate condensation is zero, the energy balance closure improves significantly. The RMSE 

was 0.125 mm/hr; MAE of 0.08 mm/hr; correlation coefficient of 0.76 and a PBIAS of 1.8% (Table 2). The 

average hourly ET flux from the EC system was 0.124 mm/hr indicating a high RMSE. The percent bias of less 

than 2% flux volume between the two products over the study period of 280 days suggests good agreement in the 

ET estimates of both products. The results from both methods were also aggregated to the daily time step (Table 

3), yielding RMSE of 1.19 mm/day, MAE of 0.9 mm/day, correlation coefficient of 0.65 and PBIAS of 1.8%. The 

RMSE improves significantly but the correlation coefficient degrades with the aggregation to daily timescale. The 

degradation of the correlation coefficient is attributed to the effect of the MEP latent heat data for night time which 

has poor statistics when compared to the EC (Table 2).  

 

Table 2: Statistical comparison of EC vs MEP measurements for the duration of the study period 

 Hourly (All)  Hourly (Day)  Hourly (Night)    

Average MEP ET (mm/hr) 0.127 0.24 0.0002  

Average EC ET (mm/hr) 0.125 0.19 0.05  

RMSE (mm/hr) 0.125 0.16 0.07  

R (mm/hr) 0.76 0.67 0.18  

MAE (mm/hr) 0.08 0.12 -0.05  

PBIAS (%) 1.8 22.7 99.6  

NSE -0.02 -0.57 -0.66  
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2.4.1 MEP ET vs EC ET at night time 

 

   

 Figure 5: EC vs MEP ET; (a) All hourly data; (b) Day time; (c) Night time; (d) Daily  

                   

At night time when the net radiation is negative, the MEP turbulent fluxes are automatically negative which may 

lead to erroneous results (Fig. 5c) as shown by the poor agreement with EC latent heat flux when compared using 

RMSE, PBIAS, R and MAE statistical metrics (Table 2). The EC latent heat flux results show positive latent heat 

through most nights (Fig. 5c), thereby suggesting evapotranspiration occurs through the night time at our flux 

tower location. When net radiation is negative at night and positive latent heat is measured by the EC system, the 

result indicates that energy has been introduced into the thermodynamic system from non-solar radiation sources. 
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The MEP model formulation considers the net radiation as the only source of energy into the system and as such 

does not consider energy from other sources. At our flux tower location, horizontal advection is a significant 

source of energy input into the system with the interaction of land and sea breeze.  

 

2.4.2 Sources of energy in the wetland environment 

 

Horizontal advection is a significant source of energy in and out of the thermodynamic system at the site. The flux 

tower site is located 300 m from the gulf with sea breeze typically blowing north eastwardly towards the inland 

areas at day time especially in the summer months as seen in Fig. (6). The inland bound cool sea breeze travelling 

during the day time which accounts for 60% (Fig. 6a) of the air passing through the open-path gas analyser and 

anemometer impacts the turbulent fluxes by reducing the heat energy available at the land and canopy surfaces. 

During the summer nights, warm breeze from the inland and city locations flows towards the gulf (Fig. 6b), thus 

injecting heat energy into the system which drives evaporation over the wetland. This phenomenon leads to the 

EC system detecting positive latent heat even when the net radiation is negative. However, due to the 

parameterisation of the MEP model, this energy input is not captured in the thermodynamic system 

characterization. From Fig. (5a) it is evident that the MEP underestimates ET at lower flux thresholds and 

overestimates at higher flux thresholds.  

Another possible explanation for the higher ET predicted by the MEP model during the daytime is the models 

high dependence on the accuracy of the humidity over the target surface. Typically, the specific humidity over the 

canopy surface usually represents the vapour sourced for transpiration but this is not the case for this location, due 

to the proximity to the sea where the humidity sensor may pick up water vapour over the canopy and from 

incoming wind from the sea.  
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.    

Figure 6: Summer wind rose driving horizontal advection; (a) Daytime; (b) Night time 
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Another source of energy inflow and outflow into the thermodynamic system at the site location is the flowing 

and ebbing tide. Due to the proximity of the site to the gulf, the site is intermittently flooded daily in cycles. This 

tide pattern influences the heat storage in the water and soil surface.  

The effect of the horizontal advection as well as the tidal cycle effects leads to the MEP model overestimating 

and underestimating the latent heat at day and night times respectively (Fig. 5b and 5c). The horizontal advection 

is driven by the land and sea breeze, which is a function of atmospheric conditions over the land and sea surfaces 

which can last for days. Figure 5d shows the daily scatter plot of the MEP vs EC ET data. The net effect of the 

land and sea breeze with however balance out over the course of a few days, which may explain the better 

correlation with aggregation. The MEP aggregated 8-day and monthly flux data compared with the EC data shows 

remarkable agreement with significant improvement in the statistical analysis (Table 3). The cumulative 8-day 

and monthly analysis show that the MEP is able to predict the latent heat flux effectively when data is aggregated 

over time thereby suggesting that the net effect of the energy introduced and removed from the system by the 

horizontal advection and the tidal effects cancel out over several daily cycles. This suggests that to improve the 

ET estimation of the MEP method at high temporal resolution, the inclusion of a term to account for advection 

may be necessary. Nevertheless, at coarser temporal resolutions of 8-daily ET measurements, the MEP methods 

accuracy aligns significantly to the EC method affirming the validity of the MEP. 

 

Table 3: ET aggregation statistical MEP ET table 

 Daily (mm/ day)  8-daily (mm/ 8-day) Monthly (mm/ month) 

Average MEP ET  2.73 21.8 58.8 

Average EC ET  2.68 21.5 57.8 

RMSE  1.19 4.04 1.47 

R  0.65 0.91 0.99 

MAE  0.9 3.03 4.06 

NSE 0.19 0.76 0.97 
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2.4.3      Sensible heat and latent heat contributions for daytime 

One of the significant advantage of the MEP method over other ET methods is the ability to estimate the H and E 

over the canopy and soil separately. This allows for further analysis of the contribution of each surface to the 

overall evapotranspiration in the system. Due to the challenges and discrepancies between the EC and MEP at 

night time, the analysis of the contribution of the H and E have been considered only during the daytime.  

In this environment, evaporation contributed 20% to the total evapotranspiration over the study period, with 

transpiration at 80% being the dominant contributor. This appears reasonable considering the dense vegetation 

cover at the site location.  

During the daytime the energy balance between the EC and MEP is within 7% over the period of the study. The 

latent and sensible heat contributions of both methods is almost even at about 50% each of the total energy balance 

calculated by each method. This even contribution and the close energy balance give confidence regarding the 

MEP ET at lower temporal resolutions. However, the MEP predicts slightly higher sensible heat than latent heat 

over the canopy while the reverse is the case over the soil surface. 

There is a percentage difference of 11% between the sensible heat from the MEP and EC with the MEP predicting 

higher sensible heat while also predicting higher latent heat by 3%. A possible explanation for this is the reduction 

of canopy surface energy by the incoming cool breeze from the sea during the daytime. The strength of the MEP 

is highlighted in this area by giving quantitative analysis on the latent and sensible heat fluxes at the canopy and 

soil surfaces separately. 

 

2.5 Conclusion 
The objectives of this study are to evaluate the performance of the MEP in a wetland environment adjacent to the 

gulf, compare the performance with the EC method and determine areas of improvement if any. Our study shows 

that the study environment is a complex thermodynamic system where diurnal horizontal advection and tides 

affect the fundamental characterization of the system. While the turbulent flux calculations from the MEP model 

on the hourly and daily timescales does not accurately characterize the thermodynamic system in the environment 

due to the effects of horizontal advection and tides, these influences are much less important over a few days of 

data aggregation. The results show the MEP can still be used in predicting fluxes over such environments but the 
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temporal resolution must be critically determined. Further studies are required on the performance of the MEP at 

higher temporal resolutions and in complex terrain regions. 

 

The study shows that the MEP model is not as robust as the EC method in capturing the microscopic details, 

which impact the fluxes at high temporal resolution. However, the MEP model, which was introduced as a method 

requiring few input data (net radiation, temperature and specific humidity) to characterize the thermodynamic 

system based on the energy balance equation was able to achieve this at the expense of high temporal resolution 

output. Due to the flexibility of the MEP equation derived from the information entropy principle, it is entirely 

possible to parameterise further information such as the effect of horizontal advection into the MEP model. While 

this is beyond the scope of this study, this will most likely impact the simplicity of the MEP model of effectively 

characterising the thermodynamic system at the land surface with few easily accessible data.  

The results of this study show the challenges of high temporal resolution ET modelling using the MEP model. 

Further study will seek to incorporate the parameterisation of the horizontal advection into the MEP model. 
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Abstract 

In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water 

balance, which are difficult to estimate, particularly over complex terrain. In complex terrain environments where 

ground based measurements are difficult, a multi-model approach to estimating ET can improve confidence on 

ET estimates  In recent decades, the advent of remotely-sensed data based ET algorithms and distributed 

hydrological models has provided improved spatially-upscaled ET estimates. However, information on the 

performance of these methods at various spatial scales is limited. This study compares the ET from the MEP, 

AWRA-L, MOD16 and SWAT in a complex terrain. The finer spatial resolution MOD16 and SWAT ET were 

analysed on graduated spatial scales for the complex terrain of the Sixth Creek Catchment of the Western Mount 

Lofty Ranges, South Australia. The MEP model was able to estimate ET to with 20% of the SWAT, AWRA-L 

and MOD16. At the catchment scale, the MEP model accurately simulated the expected ET seasonal patterns but 

the SWAT and AWRA-L models predicted higher ET in the spring compared to summer, while the MOD16 

predicted similar ET in spring and summer. At the sub-catchment scale, differences in ET estimation between the 

mailto:lanre.abiodun@flinders.edu.au
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SWAT and MOD16 methods of up to 31%, 19%, 15%, 11% and 9% were observed at respectively 1 km2, 4 km2, 

9 km2, 16 km2 and 25 km2 spatial resolutions. Based on the results of the study, a spatial scale of confidence of 4 

km2 for catchment scale evapotranspiration is suggested in complex terrain. Possible effects of drought on the 

specific humidity in the stomatal cavity as calculated in the MEP model, land cover differences, HRU 

parameterization in AWRA-L and catchment-scale averaging of input climate data in the SWAT semi-distributed 

model were identified as the principal sources of weaker correlations between the models.  

Key words: Evapotranspiration, MEP, MOD16, SWAT, AWRA-L, complex terrain, spatial scale 

 

3.1     Introduction 

 

In most hydrological systems, evapotranspiration (ET) and precipitation are the largest components of the water 

balance (Nachabe et al., 2005) and yet the most difficult to estimate particularly over complex terrains (Wilson 

and Guan, 2004). In arid and semi-arid environments ET is a significant sink of groundwater with ET often 

exceeding precipitation (Domingo et al., 2001, Cooper et al., 2006, Scott et al., 2008, Raz-Yaseef et al., 2012). 

Reliable estimation of ET is integral to environmental sustainability, conservation, biodiversity and effective 

water resource management (Cooper et al., 2006, Boe and Terray, 2008, Zhang et al., 2008a, Tabari et al., 2013). 

Moreover, ET will be one of the most severely impacted hydrological components of the water cycle alongside 

precipitation and runoff as a consequence of global climate change (Abtew and Melesse, 2013).  

Reliable, cheap and generally accessible methods of estimating ET are essential to understand its role in catchment 

processes. ET is principally measured and estimated using ground based measurement tools and/or through 

various modelling techniques often involving remote sensing (Drexler et al., 2004b, Tabari et al., 2013). Ground 

based measurement methods such as the Bowen Ratio Energy Balance (BREB), Eddy Covariance (EC), Large 

Aperture Scintillometers (LAS) and lysimeters have been regarded as the most accurate and reliable ET 

determination methods (Kim et al., 2012a, Rana and Katerji, 2000, Liu et al., 2013), but they are spatially and/or 

temporally limited (Wilson et al., 2001, Glenn et al., 2007). Despite the relative reliability of ground based 

measurement methods, there are inherent uncertainties associated with the different methods, which affect the 

accuracy of ET measurements (Baldocchi, 2003, Brotzge and Crawford, 2003, Drexler et al., 2004b, Zhang et al., 

2008a). Ground based measurement methods are particularly prone to significant errors related to instrument 

installation (Allen et al., 2011). Mu et al. (2011a) observed that multiple EC towers on a site can have uncertainties 
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ranging between 10-30% and Liu et al. (2013) documented uncertainty ranges of over 27% between EC and LAS 

measurements over the same site on an annual scale. EC towers have also been observed to encounter energy 

balance closure challenges (Wilson et al., 2002), while other challenges of the EC method such as inaccuracies 

due to complex terrains have been documented by Feigenwinter et al. (2008). Furthermore, Kalma et al. (2008), 

conducted a review of 30 remote sensing ET modelling results relative to ground based measurements and 

contended that the ground based measurement methods were not incontrovertibly more reliable than the remote 

sensing ET modelling methods. Moreover, most of the ground based measurement methods are usually cost 

intensive thereby constraining measurements over large areas and thus making spatial extrapolation difficult 

(Moran and Jackson, 1991, Verstraeten et al., 2008, Melesse et al., 2009, Fernandes et al., 2012).  

In more recent years, the spatial challenges associated with ET estimations are being eased by the increased 

availability of remotely-sensed data. The use of remotely-sensed input data in many surface energy balance 

algorithms and highly parameterized hydrological models have been extensively documented (Kalma et al., 2008, 

Hu et al., 2015a, Zhang et al., 2016). The advances in remote sensing have seen these methods become prominent 

in water resource assessment studies (Hong et al., 2009, Vinukollu et al., 2011, Anderson et al., 2011, Long et al., 

2014, Zhang et al., 2016).  

Several hydrological models and remotely-sensed based surface energy balance models are currently used in ET 

simulations globally (Zhao et al., 2013, Chen et al., 2014, Larsen et al., 2016, López López et al., 2016, Webster 

et al., 2017). However, the relative accuracy of these models relative to one another should be extensively explored 

to improve our understanding of the ET estimation from these algorithms.  

Four ET models will be evaluated in this study; The Maximum Entropy Production model (MEP) (Wang and 

Bras, 2011), The Soil and Water Assessment Tool (SWAT) (Neitsch et al., 2011), the Australian Water Resource 

Assessment model (AWRA_L) (Viney et al., 2014) and the MOD16 (Mu et al., 2013) derived from remotely-

sensed data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the National 

Aeronautics and Space Administration (NASA) Aqua and Terra satellites. Of the four ET models (two 

hydrological and two energy balance based) to be evaluated in this study, one hydrological (SWAT) and one 

remote sensing based (MOD16) which are available in high spatial resolution (1 km2) will be comprehensively 

evaluated at the catchment and sub-catchment scales. The sub-catchment scale analysis will include analysis at 

graduated spatial scales and the contributions of the temporal and spatial components to the variance.  The sub-

catchment scale analysis in this study was principally conducted between the SWAT and MOD16 due to the high 
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resolution of both products. The MEP and AWRA-L model analysis were conducted on catchment scale due to 

the coarser resolution of the products.    

 The MEP model which has been evaluated on the field scale at hourly, daily, 8-day and monthly temporal 

resolution in the previous chapter and will be evaluated on monthly temporal resolution at the catchment scale, 

i.e. 25 km2 spatial resolution, using available remote sensing data. The evapotranspiration product from the 

Australian Water Resource Assessment model (AWRA_L) with the same spatial resolution with the MEP will 

also be evaluated temporally at the catchment scale. 

While the MEP model is a relatively new algorithm derived from the information entropy principle (Shannon, 

1948), the MODIS ET (MOD16) is based on the Penman-Monteith equation, the AWRA-L uses the Penman 

equation, while the SWAT ET algorithm also has the Penman-Monteith equation as one of the three user-

selectable methods of estimating ET. In this study, the Penman-Monteith method in SWAT is used for a direct 

comparison with the MOD16 and the AWRA-L. However, to develop good confidence in ET estimations, 

especially in complex terrains where there are no ground-based measurements, a multi-model approach based on 

different parameterisation methodologies is required. The information entropy based MEP model uses an 

inference based methodology to estimate ET, the comparison of the results from the method with the three other 

methods with similar theoretical basis will significantly improve our confidence in the estimation. Although, the 

Penman-Monteith equation is regarded as one of the most reliable methods for ET estimation over various climates 

and regions (Allen et al., 2005, Allen et al., 2006), the MEP method has been shown to perform very well in 

various field tests (Wang and Bras, 2011, Hajji et al., 2018b). Moreover, although the performance of the MEP at 

the field scale in the previous chapter on a monthly timescale was excellent at the field spatial scale, it is imperative 

to evaluate the performance at the catchment scale with a greater complexity in ET estimation.  

Notwithstanding, the similarities in the MOD16 and SWAT ET, which both use the Penman-Monteith equation, 

the methods for estimating the parameters of the equation are significantly different between them. For instance, 

the SWAT Penman-Monteith implementation requires wind speed data for the computation of the aerodynamic 

resistance, while the MOD16 Penman-Monteith variant does not require wind speed data but instead uses the 

Biome-BGC model (Thornton, 1998) to estimate the aerodynamic resistance. This study does not seek to evaluate 

the individual accuracy of any method, but rather to compare the ET results from the water balance-based 

hydrological models AWRA-L and SWAT and the energy balance-based models (MEP and MOD16) over a 

complex terrain catchment. Two different land cover products will also be used in the SWAT model in this study 
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(The Geoscience Australia and the MODIS land cover products). The rationale for this is to analyse the effect of 

land cover on the ET modelling in SWAT and also the use of the MODIS land cover allows for a direct comparison 

with the MOD16 which uses the same land cover product.  The results will be compared temporally on catchment 

scale and spatio-temporally on sub-catchment scales to identify the effects of input data and other drivers of ET 

estimation in the MEP, MOD16, AWRA-L and SWAT ET algorithms.  

While the MODIS evapotranspiration has been widely studied and compared to other methods, this is much less 

the case for SWAT ET, MEP and the AWRA-L. Moreover, a graduated spatial scale comparison of these 

evapotranspiration methods is yet to be documented over a complex terrain. The objectives of this study are 

therefore: (1) To compare four ET products (MEP, SWAT, MOD16 and AWRA-L) on catchment scale in a 

complex terrain catchment while also evaluating the two finer resolution products (SWAT and MOD16) on 

graduated spatial scale to evaluate their relative accuracy.; (2) To analyse and determine the spatial scale at which 

the graduated spatial scale models tend towards agreement to enhance the confidence in ET estimation in a 

complex terrain. A significant challenge of current ET estimation is the challenge of determination of a spatial 

scale where the results of each product tends towards agreement due to the availability of several products at 

various spatial scale. This study seeks to determine a spatial scale of agreement where the compared products tend 

towards agreement, this scale will be termed the “spatial scale of confidence”. 

 

Table 4: Literature studies of MODIS and SWAT evapotranspiration (see Table 5 for climate classification) 

Study type Reference Method Climate Land Cover 
Cover 

Spatial and temporal 
extents 

 
MOD16 vs 
micrometeorolog
ical methods 

 
 
Ruhoff et al. 
(2013) 

 
 
EC validation at 
2 sites 

 
 
Cwa, Cfa 

 
 
 Savanna 

 
 
3 km x 3 km area, 8 day 

Liu et al. 
(2013) 

LAS validation 
at 3 sites 
 

Dwa, Cwa Orchards, 
Croplands 
 

1 km x 1 km, annual 

Mu et al. 
(2011a) 

EC validation at 
46 site 

Global Global Various 

Kim et al. 
(2012b) 

EC validation at 
17 sites 

Af, Dfb, 
Dwa, Cfa, 
Bsk, Am, 
ET, Aw, 
Dwc, Dfc, 
Dfd  

Forest, 
croplands, 
grassland 

3 km x 3 km area, 8 day, 
2000-2006 

Velpuri et al. 
(2013) 

EC validation at 
60 sites 

Bsk, Cfa, 
Csa, Csb, 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 

Point scale at EC sites across 
the United States of America, 
monthly, 2001 - 2007 
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Dfa, Dfb, 
Dfc 

Shrubland, 
Urban 

 

MOD16 vs 
energy balance 
models 

Jia et al. (2012) MOD16 
validation of 
ETWatch 
system 

Dwa, Cwa Farmland, 
Forest, 
Grassland,Shr
ub Forest, 
Beach land, 
Bare land, 
Urban, Paddy 
field  

(1 km x 1 km grid over 
318,000 km2 ), annual , 2002-
2009 

Velpuri et al. 
(2013) 

MOD16 vs 
Gridded Fluxnet 
ET (GFET) 

Bsk, Cfa, 
Csa, Csb, 
Dfa, Dfb, 
Dfc 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 
Shrubland, 
Urban 

50km, monthly, over the 
entire United States of 
America 

MOD16 vs 
hydrological 
models 

Ruhoff et al. 
(2013) 

MOD16 vs 
MGB-IPH 
model 

Cwa, Cfa Forest, 
Shrubland, 
Savanna, 
Woody 
Savanna, 
Grassland, 
Cropland, 
Urban, Barren 
land 

(1 km x 1 km grid over 
145,000 km2 ), 8 day, 2001 

Trambauer et 
al. (2014) 

MOD16 vs 
GLEAM, ERAI, 
ERAL, PCR-
GLOBWB, 
PCR-PM, PCR-
TRMM, PCR-
Irrig 

Various  Various 1km2, 0.25o, 0.5o, and ~0.7o 
resolutions over most of the 
African continent, daily and 
monthly, 2000 -2010 

Velpuri et al. 
(2013) 

MOD16 vs 
Water Balance 
ET (WBET) 

Bsk, Cfa, 
Csa, Csb, 
Dfa, Dfb, 
Dfc 

Cropland, 
Forest, Woody 
Savanna, 
Grassland, 
Shrubland, 
Urban 

 (1 km x 1 km over the entire 
United States of America), 
Annual, 2002-2009,  

SWAT vs energy 
balance models 

Gao and Long 
(2008) 

SWAT vs 
SEBS, SEBAL, 
P-TSEB, S-
TSEB 

Dwb Woodland, 
Grassland, 
Cropland 

1850 km2 , 23 June 2005 and 
25 July 2005 ( 2 days only) 

 

Table 5: Köppen-Geiger Climate Classification system (Kottek et al., 2006) 

Main climate Precipitation Temperature 
A – equatorial W – desert h – hot arid  
B – arid S – steppe k – cold arid 
C – warm temperate f – fully humid a – hot summer 
D – snow s – summer dry b – warm summer 
E – polar w – winter dry c – cool summer 
 m – monsoonal d – extremely continental 
  F – polar frost 
  T – polar tundra 

e.g Cwa – Warm temperate, winter dry, hot summer 
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3.2     Model Description 

 

3.2.1  MEP Model 

 

The MEP model predicts the turbulent heat fluxes (latent heat, sensible heat and ground heat) as a function of 

specific humidity (𝑞𝑞𝑠𝑠), temperature (𝐸𝐸𝑠𝑠) and net radiation (𝑅𝑅𝑛𝑛). The model predicts the partitioning of the turbulent 

heat fluxes based on the available energy information and the thermal inertia driving the production of each of the 

turbulent fluxes. The MEP model theorises that the thermodynamic system at the land surface uses 

evapotranspiration as the principal source of driving the system to equilibrium based on the available energy. The 

MEP model which was derived by optimizing the dissipation function described in Wang and Bras (2011), 

operates as a two sources energy balance (TSEB) model by calculating the latent heat (evapotranspiration) over 

the canopy and soil surfaces separately. Unique equations for the evaporation over the soil surface and 

transpiration over the canopy are described in the Appendix A. 

 

3.2.2 SWAT Model 

 

The Soil and Water Assessment Tool (SWAT) is a physically based, semi-distributed hydrological model 

designed on the water balance concept. SWAT simulates catchment processes such as evapotranspiration, runoff, 

crop growth, nutrient and sediment transport on basis of meteorological, soil, land cover data and operational land 

management practices (Neitsch et al., 2011). The SWAT model has been used in hydrological modelling from 

sub-catchment scales of under 1 km2 (Govender and Everson, 2005) to sub-continental scales (Schuol et al., 2008). 

The model discretises a catchment into sub-catchments and further into hydrological response units (HRU), which 

represent unique combinations of land cover, soil type and slope. The discretisation method employed by SWAT 

enables the model to simulate catchment processes in detail and to understand the response of unique HRU’s on 

hydrological processes. Evapotranspiration is simulated at the HRU scale. A comprehensive outline of ET 

calculations in SWAT is included in Appendix B and Fig. (7) summarizes in a flowchart the SWAT ET algorithm. 

Where PET is the potential evapotranspiration, Ecan is the evaporation from canopy surface, Et is the transpiration, 

Esoil  is the evaporation from the soil and Revap is the amount of water transferred from the underlying shallow 

aquifer to the unsaturated zone in response to water demand for evapotranspiration. 
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Figure 7: SWAT ET flowchart (Penman-Monteith method) 

 

3.2.3 MOD16 Model 

 

The MOD16 provides evapotranspiration estimates for 109.03 × 106 km2 of global vegetated land area at 1 km2 

spatial resolution at 8 day, monthly and yearly temporal resolutions since the year 2000 (Mu et al., 2013). The 

initial version of the MOD16 algorithm used MODIS imagery as part of a Penman-Monteith method as described 

in Cleugh et al. (2007a). The MOD16 algorithm was significantly improved by the inclusion of a sub-algorithm 

for estimating soil evaporation as a component of total ET (Mu et al., 2007). Further improvements on the MOD16 

algorithm such as the calculation and inclusion of night time evapotranspiration, partitioning of evaporation from 

moist and wet soils were incorporated in the newer version of the algorithm(Mu et al., 2013). In this study, the 

ET products from the newer version, are used. Details of ET calculations in MOD16 are included in Appendix C 

while Fig. (8) summarizes in a flowchart the MOD16 ET algorithm. 
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Figure 8: Flowchart of the MOD16 ET algorithm (Mu et al., 2011) 

 

3.2.4 AWRA-L Model 

 

The AWRA-L is a daily 25 km2 grid based hydrological model designed on the water balance concept over 

Australia. The model conceptualises each grid as two distinct HRU’s; shallow-rooted vegetation HRU and deep-

rooted vegetation HRU. The shallow-rooted vegetation corresponds to grass while the deep-rooted vegetation 

corresponds to trees. The model conceptualises the soil into three layers with water storage capacity. The soil 

surface storage with a 0.1 m depth, the shallow storage from 0.1m to 1m and the deep storage from 1 m to 6 m. 

The principal difference between the two HRU’s is that the shallow-rooted vegetation HRU can only access the 

first two soil storage layers while the deep-rooted vegetation HRU can access the 3 layers. The AWRA-L model 

simulates catchment hydrological processes such as evapotranspiration, infiltration, runoff, drainage, interflow, 

recharge and other catchment processes. 

Evapotranspiration in the AWRA-L is a sum of six processes; canopy evaporation from intercepted precipitation, 

evaporation from soil surface, groundwater evaporation, shallow storage transpiration, deep storage transpiration 

and groundwater transpiration. The evaporation in the model is constrained by the Penman equation (Penman, 

1948). For a detailed structure of the AWRA-L model, see Viney et al. (2014).  
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3.2.5 Penman-Monteith Algorithm Parameterization 

 

The MOD16 and SWAT ET algorithm, which are both based on the Penman-Monteith equation but parameterized 

differently, suggests there will be similarities and differences in the results from both methods. Both algorithms 

are principally limited on temporal timescales by the available energy to convert liquid water to atmospheric water 

vapour. Their transpiration and soil evaporation algorithms are also very dependent on vegetation/biome type, 

VPD, and the soil moisture constraint parameterization (Fig. 9).  

 

Figure 9: MOD16 and SWAT ET parameterization (Q: discharge, BPLUT: biome properties lookup table; VPD: vapour 
pressure deficit). 

 

 In the SWAT ET algorithm, the VPD significantly impacts the transpiration through the constraining of the 

stomatal conductance. Detailed soil data on HRU scale such as layer depth, number of layers, unsaturated 

hydraulic conductivity and water capacity are crucial for constraining the soil moisture content, which in turn 

regulates the percolation and recharge into the system. Similarly, the calculated MOD16 ET is significantly 

impacted by the biome properties lookup table (BPLUT) and the soil moisture constraint function. The BPLUT 

was calibrated using the response of biomes on flux tower sites globally. The BPLUT contains information on the 

stomatal response of each biome to temperature, VPD and biophysical parameters. The soil moisture constraint 

function is applied in the estimation of the soil evaporation and is an important parameter in regions where the 

saturated zone is close to the ground surface such as our study area. 
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3.3 Data and Methods 

 

3.3.1      Study Area 

 

The study area is the Sixth Creek Catchment of South Australia, located in the western part of the Mount Lofty 

Ranges, which is a range of highlands separating the Adelaide Plains in the west from the Murray-Darling basin 

in the east. The western part of the Mount Lofty Ranges runs 90 km north to south, its summit is at 680 mAHD 

(metres Australian Height Datum) (Sinclair, 1980). It extends from the southernmost part at McLaren Vale on the 

Fleurieu Peninsula to Freeling in the north over an area of 2189 km2. The Sixth Creek Catchment is a complex 

area, with acute elevation changes over few hundred metres (Fig. 10). The catchment is located close to the summit 

of the Western Mount Lofty Ranges. 

 

             

Figure 10: Digital elevation model of the Sixth Creek Catchment study area (Gallant et al., 2011) 
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It covers an area of 44 km2 between 34◦52′6.098″ to 34◦57′54.541″S and 138◦42′55.855″ to 138◦49′27.174″E and 

has an elevation range of 140 - 625 mAHD (Fig. 10). The land cover consists of 95% forestland with significant 

deep-rooted Eucalyptus plantation and 5% pasture, shrubs and grasslands (Fig. 11b). Most of the native vegetation 

is under conservation. The climate is Mediterranean, with warm dry summers and cool wet winters, and is of the 

type “Csb” according to the Köppen-Geiger classification. The Sixth Creek is a perennial stream with mean annual 

discharge of 0.25m3/s which accounts for 20 – 25 % of the mean annual rainfall in the catchment. The Sixth Creek 

did however experience a total of 35 days of no flow in the 13-year period of this study, which encompasses the 

“millennium drought years” (2000 – 2009) in Australia. The Sixth Creek is a gaining stream with groundwater 

discharging into the stream and sustaining it especially during the dry summer months. The depth to groundwater 

varies greatly across the complex terrain catchment, from less than 1 m to over 20 m across the seasons. 

The Sixth Creek Catchment’s complex terrain plays a significant role in its hydrology, with highly localised 

precipitation events recorded from the two weather stations in the catchment within the study period. The weather 

stations are located 4.5 km apart with elevation difference of over 200 metres (Fig. 10). Differences in annual 

rainfall of over 400 mm have been recorded between the two weather stations.   

The annual precipitation for the period 2002 till 2016 for Station A ranges between 500 – 900 mm and 750-1500 

mm for Station B, while the temperature ranges between 10.5 oC and 22.2 oC in the summer months and 3.4 oC 

and 10 oC in the winter months.   

 

(a)  (b)  

Figure 11: (a) MOD12 land cover used in MOD16 (Friedl et al., 2010); (b) Land Cover (Lymburner et al., 2010) 
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3.3.2      Input datasets 

 

3.3.2.1 MEP 
 

The MEP ET over the Sixth Creek Catchment was calculated at the 25 km2 resolution using (temperature, relative 

humidity and solar radiation) climate data from the Scientific Information for Land Owners (SILO) repository of 

Australian weather data. The relative humidity data was used in obtaining specific humidity, solar radiation data 

was used in calculating net radiation using the method described in Allen et al. (1994) and the temperature data 

from SILO was also used in calculating the evapotranspiration. The algorithms for producing the  SILO climate 

data over Australia are discussed in Jeffrey et al. (2001). 

 
3.3.2.2 SWAT 
 

The GIS interfaced version of SWAT (ArcSWAT) was used in the hydrological modelling. A 30 m Digital 

Elevation Model (DEM) (Dowling et al., 2011) of the Sixth Creek Catchment was used to extract the stream 

network and the catchment area. A detailed soil properties database for the catchment was created from the soil 

data obtained from the Australian Soil Resource Information System (Johnston et al., 2003a). The 250 m land 

cover map of Australia from Geoscience Australia’s Dynamic Land Cover database (Fig. 11b) is typically 

preferred to be used in the SWAT model ahead of the 500 m MOD12 land cover map (Fig. 11a) due to its finer 

spatial resolution and better biome match with local field knowledge but for direct comparison with MOD16 

which uses the MOD12 land cover, both maps are used to run separate SWAT models. In this study, the 1 km2 

wind speed data (McVicar et al., 2008), and the 25 km2 relative humidity, temperature, rainfall, solar radiation 

(Jeffrey et al., 2001) from SILO, were preferred to weather station data. Four 25 km2 gridded data cells fall within 

the boundaries of the catchment and are therefore comparable to the climate components of the two weather 

stations in the catchment while also maintaining uniformity of input data with the MEP model. Moreover, the 

gridded data used in this study are calibrated using the weather stations across Australia including the two weather 

stations in the Sixth Creek Catchment, thus maintaining excellent correlation when compared to the weather 

stations’ measured data. Details of the gridded data methodology and algorithm used in this study can be found 

in Jeffrey et al. (2001) and McVicar et al. (2008). The daily gridded climate datasets were simply averaged over 

the Sixth Creek Catchment, to obtain values used in this study.  
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The monthly MOD16 datasets for the years 2000 to 2013, at 1 km2 spatial resolution were used in this study(Mu 

et al., 2013). Catchment averages were calculated by simple averaging of all the 1 km2 cells that fall within the 

catchment area. AWRA-L ET data at the 25 km2 were also used in catchment scale comparison. A percentage 

area weighted average of the cells overlapping in the catchment was calculated and used in the analysis.   

 

3.3.3      SWAT Model Setup and Calibration 

 

The soil, land cover and DEM derived slope data were classified into classes and used to create 124 and 119 

unique HRU’s for the Geoscience Australia and MOD12 land covers respectively, ranging from 0.001 km to 6 

km in area. While each unique HRU has specific set of properties several small areas with the same land cover, 

slope and soil type make up the total area of a single HRU. The properties of each unique HRU determine how it 

responds to precipitation, and how different hydrological processes such as streamflow, runoff, lateral flow and 

evapotranspiration are modelled in the catchment. The runoff from each HRU is accumulated and routed through 

the river network to the outlet of the catchment. Driven by the meteorological input, the model simulates 

catchment hydrological processes with a daily time step for the period 2000 to 2013.  

The SWAT model is calibrated by fitting simulated streamflow to observed streamflow with the SUFI-2 

algorithm. This semi-automatic Latin hypercube sampling algorithm optimizes SWAT model parameters while 

attempting to fit the simulated data as close as possible to the observed data using the user preferred objective 

function from those detailed below  as measurement of simulation accuracy (Abbaspour, 2007).  Although a single 

user objective function is used in the calibration and validation, the results of the other objective functions are 

also recorded for the optimal model run. 

Nash Sutcliffe Efficiency (𝑁𝑁𝑆𝑆𝐸𝐸) (Nash and Sutcliffe, 1970), 

𝑁𝑁𝑆𝑆𝐸𝐸  = 1 − ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )2

 ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

          (10) 

where 𝑄𝑄𝑛𝑛 (m3s-1) is the measured discharge at time 𝑛𝑛, 𝑄𝑄𝑛𝑛�  (m3s-1) is the simulated discharge at time 𝑛𝑛, 𝑄𝑄 (m3s-1) 

is the mean measured discharge and 𝑁𝑁 is the number of time steps. 

Ratio of root mean squared error to the standard deviation of measured data (𝑅𝑅𝑆𝑆𝑅𝑅) (Moriasi et al., 2007),  

𝑅𝑅𝑆𝑆𝑅𝑅  =
�∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2

�∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

           (11) 
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Percent bias (𝑃𝑃𝐵𝐵𝐼𝐼𝐵𝐵𝑆𝑆),  

𝑃𝑃𝐵𝐵𝐼𝐼𝐵𝐵𝑆𝑆 = 100  ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )

 ∑ 𝑄𝑄𝑛𝑛𝑁𝑁
𝑛𝑛=1

           (12) 

 

Coefficient of determination (R2), 

𝑅𝑅2 = � �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
�

2

        (13) 

where Qn�  (m3s-1) is the mean simulated discharge. 

Kling-Gupta Efficiency (𝐾𝐾𝐺𝐺𝐸𝐸) (Gupta et al., 2009), 

𝐾𝐾𝐺𝐺𝐸𝐸 = 1 −  �(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝜔𝜔 − 1)2        (14) 

where 𝑟𝑟 is the linearcorrelation coefficient between the simulated and measured variable, 𝜔𝜔 = Qn�  
Q

  , 𝛼𝛼 = 𝜎𝜎𝑠𝑠
𝜎𝜎𝑚𝑚

, 𝜎𝜎𝑠𝑠 

and 𝜎𝜎𝑚𝑚 are the standard deviation of simulated and measured data.  

After obtaining a satisfactory fit between the simulated and observed streamflow data during calibration, the 

model is validated by running the model for a different time period using the same parameters from the calibration 

period. SUFI-2 further incorporates the unitless P and R-factor metric, which gives an indication of the confidence 

in the calibration exercise. The P-factor which is also referred to as the 95 Percent Prediction Uncertainty (95PPU), 

is the percentage fraction of observed data captured which falls between the 2.5 and 97.5 percentiles, while the 

R-factor is the width of the 95PPU. The P and R-factors are iteratively determined using Latin Hypercube 

Sampling. For streamflow calibration and validation to be considered reliable, combined satisfactory values 

should be obtained of P-factor (> 0.7), R-factor (< 1) (Abbaspour, 2007) and of one of the objective functions, 

𝑁𝑁𝑆𝑆𝐸𝐸 (> 0.5), 𝑅𝑅𝑆𝑆𝑅𝑅 (≤ 0.7) and 𝑃𝑃𝐵𝐵𝐼𝐼𝐵𝐵𝑆𝑆 (±25%) (Moriasi et al., 2007). In this study, the NSE objective function 

combined with the P and R factors are used. The result of the other objective functions at the optimal NSE are 

also recorded. For a comprehensive explanation of the SUFI-2 algorithm, see Abbaspour (2007). 

The calibration process was conducted on daily timescales for the years 2000 to 2005 while the validation was 

conducted for the years 2007 to 2013. A warm up period of 5 years between 1995 and 1999 was used in the SWAT 

model to equilibrate the model mass budget and internal reservoirs. The relatively long periods of streamflow 

calibration and validation on daily timescales were specifically used to address the potential problem of 

equifinality of parameters to be optimized. The principle of equifinality has been known to affect semi-distributed 
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models such as SWAT (Qiao et al., 2013). Nevertheless, the use of many observation points has been observed to 

effectively constrain it (Tobin and Bennett, 2017). In this study, 21 sensitive SWAT model parameters (Table 6) 

are optimized with SUFI-2 to fit simulated streamflow to the observed streamflow data. In the SUFI-2 algorithm 

preparation for calibration, an “r_” and a “v_” prefix before a SWAT model parameter (Table 6) are indicative of 

a relative change (a percentage increase or decrease in the SWAT modelled value) and replacement change of the 

original SWAT modelled values respectively. The relative change is often used to fine tune parameters that have 

been modelled within the acceptable range while the replacement change is used when modelled parameter values 

are at odds with local field knowledge or established values. 

The resultant SWAT simulated ET was compared with the MOD16 ET using the root mean square error (𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸), 

mean difference (𝑀𝑀𝐷𝐷), Pearson’s correlation coefficient (R) and coefficient of determination (R2) metrics. 

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝑥𝑥1,𝑛𝑛
𝑁𝑁
𝑛𝑛=1 −𝑦𝑦1,𝑛𝑛)

𝑁𝑁

2
           (15) 

Where 𝑥𝑥1 and 𝑦𝑦1 are SWAT and MOD16 monthly ET values respectively. 

𝑀𝑀𝐷𝐷 = �𝑥𝑥1+𝑥𝑥2…𝑥𝑥𝑁𝑁
𝑁𝑁

� − �𝑦𝑦1+𝑦𝑦2…𝑦𝑦𝑁𝑁
𝑁𝑁

�          (16) 

 

𝑅𝑅 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
          (17) 

 

Table 6: Optimized SWAT parameters and their final range 

Parameter Name Parameter Description Final Parameter Range 
r_CN2.mgt SCS Runoff Curve Number 

for moisture condition II 

[1 +  (−0.048 −  0.122)]  × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣  

v_ALPHA_BF.gw Baseflow recession constant 

 

0.58 −  0.93 

v_GW_DELAY.gw Groundwater delay time 

 

1.89 −  3.70 

v_GW_REVAP.gw Groundwater “Revap” 

 

0.12 −  0.2 

v_ESCO.hru Soil evaporation 

  

0.2 −  0.5 

v_CH_N2.rte Manning’s “n” value for the 

main channel 

0.05 −  0.15 

r_SURLAG.bsn Surface runoff lag 

 

[1 + (0.22 −  1.2)]  × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

v_ALPHA_BNK.rte Baseflow alpha factor for 

bank storage (days)  

0.5 −  1 
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v_SOL_AWC(..sol Available water capacity of 

the soil layer (mm/mm)  

0.24 −  0.71 

r_SOL_K(..).sol Saturated hydraulic 

conductivity (mm/hr) 

[1 + (−0.99 −  −0.39)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

r_SOL_BD(..).sol Moist bulk density (g/cm3) [1 + (−0.37 −  −0.04)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

r_SOL_Z(..).sol Depth from soil surface to 

bottom of layer (mm) 

[1 + (−0.25 −  −0.04)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

v_EPCO.bsn Plant uptake compensation 

 

0.77 –  1 

v_GWQMN.gw Threshold depth of water in 
the shallow aquifer required 
for return flow to occur 
( ) 

0 −  500 

v_DEEPST.gw  Initial depth of water in the 

shallow aquifer (mm) 

20000 −  30000 

v_SHALLST.gw Initial depth of water in the 

deep aquifer (mm) 

10000 −  20000 

r_HRU_SLP.hru Average slope steepness 

 

[1 + (−0.24 −  0.15)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

r_OV_N.hru Manning’s “n” value for 

  

[1 + (−0.84 −  −0.05)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

r_SLSUBBSN.hru Average slope length (m) [1 + (−0.9 −  −0.24)] × 𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑣𝑣   

v_REVAPMN.gw Threshold depth of water in 
the shallow aquifer required 
for Revap to occur (mm) 

0 −  100 

v_CH_K2.rte Effective hydraulic 
conductivity in main 
channel alluvium (mm/hr) 

6 − 30 

 

3.3 Results and Discussion 

 

3.4.1      Streamflow 

 

The streamflow was calibrated and validated on daily timescales according to the guidelines set out in Moriasi et 

al. (2007) and Abbaspour (2007) (Table 7, Fig. 12). The result indicates an observed data bracketing of between 

87% and 89% for both calibration and validation with R-factors under 1.  
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Table 7: Streamflow calibration and validation results 

Model  P-factor R-factor 𝑁𝑁𝑆𝑆𝐸𝐸 R2 𝐾𝐾𝐺𝐺𝐸𝐸  𝑅𝑅𝑆𝑆𝑅𝑅 𝑃𝑃𝐵𝐵𝐼𝐼𝐵𝐵𝑆𝑆 

SWAT with Geoscience Land    

Cover 

Calibration 0.89 0.66 0.61 0.62 0.71 0.62 -11.1 

Validation 0.87 0.91 0.78 0.78 0.88 0.47 -0.1 

SWAT with MOD12 Land 

Cover 

Calibration 0.88 0.69 0.62 0.64 0.74 0.61 -13.5 

Validation 0.87 0.98 0.79 0.80 0.87 0.46 -6.5 

 

Table (7) shows better results for the validation than calibration for the 𝑁𝑁𝑆𝑆𝐸𝐸, R2, 𝐾𝐾𝐺𝐺𝐸𝐸  and 𝑅𝑅𝑆𝑆𝑅𝑅 metrics, however 

slightly lower for the P-factors. The results of the calibration and validation exercise on daily timescales show 

that the model effectively represents the high and low flow periods (Fig. 12).  

 

 

Figure 12: Streamflow calibration (2000-2005) and validation (2007-2013) 
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3.4.2      Sub-catchment scale evapotranspiration  

 

The SWAT ET model is calculated at the HRU scale (Fig. 13a and 13b), however for direct comparison with the 

MOD16 ET (Fig. 13c), the HRU ET results were reprocessed into 1 km2 cells using simple averaging. For cells 

on the boundary, which do not aggregate up to the 1 km2 resolution, a percentage weighting based on the area 

covered is applied. Figure (13d) shows the mean annual difference between both SWAT models (the SWAT 

model with Geoscience land cover as SWATGEO and the SWAT model with MOD12 land cover as 

SWATMOD12) over the validation period at the 1 km2 spatial resolution. The SWATMOD12 and the MOD16 

maps (Fig. 13b and 13c) can be seen to show some spatial resemblance in the north, south, east and west corners 

of the catchment principally due to the use of the MOD12 map in both models. Generally, a trend of higher ET in 

the north-east and central part of the catchment is seen while lower ET is observed in the south-western parts of 

the catchment. The spatially distributed mean annual ET difference of the SWAT models compared to the MOD16 

show about 40% of the catchment with a difference of ±100 mm/year at the 1 km2 spatial scale. Clear spatial 

difference between the SWAT models are seen at the HRU scale but at the 1 km2 resolution, the maximum mean 

annual difference between the SWAT models is 12%.   
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Figure 13: (a) HRU scale SWATGEO mean ET (2007-2013); (b) HRU scale SWATMOD12 mean ET (2007-2013; (c) 1 km2 grid 
MOD16 mean ET (2007-2013); (d) Mean difference between SWATGEO and SWATMOD12 for corresponding 1 km2 grid cells 
(2007-2013); (e) Mean difference between MOD16 and SWATGEO  for corresponding 1 km2 grid cells (2007-2013); (f) Mean 
difference between MOD16 and SWATMOD12 for corresponding 1 km2 grid cells (2007-2013)  

(b) 

(d) (c) 

(a) (b) 

(e) (f) 
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Further analyses were carried out to determine the effect of spatial aggregation on the correspondence between 

the ET methods. For the spatial aggregation analysis, the SWATGEO model was used due to its improved land 

cover accuracy based on field knowledge. The box and whisker plot in Fig. (14) shows the spread of the difference 

between the SWAT ET and the MOD16, with the bottom, middle and top of the box indicating the 25th, 50th and 

75th quartiles of the distribution. The lowest and highest bars in the plot indicate the minimum and maximum 

differences between the ET products at the different spatial scales. Figure 14 shows that with increasing cell 

aggregation the difference in the ET between SWAT and MOD16 decreases. At 1 km2, 4 km2, 9 km2, 16 km2 and 

25 km2 the maximum cell difference between the SWAT and MOD16 ET are 31%, 19%, 15%, 11% and 9% 

respectively. 

 

Figure 14: Differences between SWATGEO ET and MOD16 for spatial aggregations between 1 and 25 km2. The bottom, 
middle and top of the whisker indicate the 25th, 50th and 75th quartiles of the distribution, the lowest and highest bars 
indicate the minimum and maximum differences. 
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The grand variances for the monthly data of the three models were calculated and partitioned into the spatial and 

temporal components at the 1 km2, 4 km2, 9 km2, 16 km2 and 25 km2 resolutions (Table 8) using the Time-First 

formulation described in Sun et al. (2010). The partitioning presents the average of the temporal variances for 

each of the regions in the catchment as the temporal component and the spatial variance of the evapotranspiration 

as the spatial component. The result shows the spatial component consistently higher across the three models. The 

partitioning shows that at the finer resolution the variance in the evapotranspiration in the models are principally 

associated with the spatial component but the temporal component of the variance increases with spatial 

aggregation. 

 

Table 8: Variance partitioning into space and time components at various spatial resolutions 

Spatial Resolution Model Spatial Component in mm2 

(%) 

Temporal Component in mm2 

(%) 

1 km2 SWATMOD12 74.4 (80.9) 17.6 (19.1) 

SWATGEO 75.5 (80.6) 18.2 (19.4) 

MOD16 82.5 (84.9) 14.7 (15.1) 

    

4 km2 SWATMOD12 239.9 (79.8) 60.6 (20.2) 

SWATGEO 241.1 (79.4) 62.72 (20.6) 

MOD16 265.0 (84.04) 50.34 (16.0) 

    

9 km2 SWATMOD12 434.4 (77.7) 124.9 (22.3) 

SWATGEO 434.8 (77.2) 128.4 (22.8) 

MOD16 479.2 (82.0) 105.1 (18.0) 

    

16 km2 SWATMOD12 586.2 (74.8) 198.0 (25.2) 

SWATGEO 590.7 (74.3) 204.8 (25.7) 

MOD16 637.3 (80) 159.4 (20) 

    

25 km2 SWATMOD12 665.9 (68.3) 308.7 (31.7) 

SWATGEO 669.9 (67.6) 320.6 (32.4) 

MOD16 738.8 (73.5) 266.4 (26.5) 
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Figure 15: Monthly Comparison of MEP, SWAT, AWRA-L and MOD16 at Catchment scale 

 

3.4.3      Spatial Aggregation 

 

The mean annual graduated spatial scale analysis across the SWAT models and the MOD16 for 2007-2013 

exhibits a wide spread at the 1 km2 spatial resolution with a maximum cell difference of 31%. When the data was 

aggregated to 4 km2 using the simple averaging method, the maximum difference reduced to an acceptable 19%. 

Further aggregation to 9 km2 reduced the maximum difference by a further 4% but also sees a significant 

degradation in the resolution of the evapotranspiration data. Table (8) also shows the impact of the spatial 

aggregation on the variance of the monthly ET data across the SWAT and MOD16 models. It is observed that the 
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aggregation from 1 km2 to 4 km2 altered the percentage variance between the spatial and temporal by about 1% 

across the three models but beyond the 4 km2 resolution the spatial component of the variance which accounts for 

the larger portion of the variance begins to degrade further. Hence our finest resolution spatial scale of confidence 

for catchment scale ET analysis is the 4 km2 resolution based on the comparison of the SWAT and MOD16 ET 

over a complex terrain. This result is supported by the findings of Tang et al. (2015) which found that MOD16 

performed better at coarser resolutions. The differences between regions in the catchment are more significant at 

finer spatial resolutions due to the diverse input data and their associated errors, these impacts become less 

significant as the outputs are up-scaled (Fig. 14). This trend was also observed by Hong et al. (2009). The simple 

averaging method was preferred in this study over the bilinear, cubic and other methods as the simple averaging 

method has been observed to be the best in flux aggregation after a study of various methods (Ershadi et al., 2013).  

 

3.4.4      Catchment Scale Evapotranspiration 

 

At catchment scale, the mean annual ET from the MEP, SWAT, AWRA-L and MOD16 models for the period of 

2007 – 2013 are 744, 873, 680 and 897 mm respectively. The highest correlations occur between the hydrological 

models and the energy balance based models (Fig 15). This may be related to the use of precipitation data and net 

radiation data as major constraints in hydrological and energy balance models respectively. The use of the same 

land cover product in the MOD16 and SWAT models are thought to contribute to good agreement. 

To compare the temporal dynamics of the MEP, MOD16, SWAT ET and the AWRA-L ET, the data were 

aggregated to catchment scale. As both SWAT models tend towards unity at the catchment scale with less than 

1% difference in their annual mean ET, only the SWATGEO model is evaluated at catchment scale as the more 

accurate model to keep with the philosophy of the study. 

 Monthly MOD16 ET, MEP and AWRA-L ET values were averaged to catchment scale values using the spatial 

analyst tools in ArcGIS, while ET values from the validated SWAT model on catchment spatial extent and daily 

timescales were aggregated to monthly timescales. Using the 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸   and R metrics the analysis shows a good 

correspondence between all the models (Fig. 15). The mean ET from the MEP model is within 20% of the other 

three models while all models are within a 25% range. The agreement in the ET results from the four models gives 

some confidence regarding the estimation in the complex terrain catchment, considering the error range observed 

in some ground-based measurements approach 30% (Liu et al., 2013).   
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3.4.4.1 Seasonal Trends 
 

Table 9: Seasonal ET trend across the models 

 MOD16 (mm) AWRA (mm) MEP ET (mm) SWAT ET (mm) 
Summer 296 209 299 274 
Autumn 182 117 142 155 
Winter 122 110 74 114 
Spring 297 243 220 330 

 

The four methods perform differently seasonally with the MOD16 having the highest mean ET estimate in the 

summer months while the MEP predicts the lowest ET in the winter months (Fig. 15). Although the MEP predicts 

the lowest ET in the winter months, its correlation with the three models is high with a minimum of 0.91 across 

the models when statistically analysed. The seasonal trend of the MEP also appears the most realistic with highest 

ET recorded in the summer, followed by the spring growing season, then the autumn when leaves fall and lastly 

the winter season (Table 9). The MOD16 calculates similar ET across the summer and spring seasons, with lower 

ET in the autumn and winter. The SWAT and AWRA-L water balance driven models estimate highest ET in the 

spring season followed by the summer season. This seems less plausible as the study area is classified as an 

evergreen broadleaved forested catchment with shallow groundwater suggesting that availability of moisture thus 

making solar radiation a principal driver of ET. The solar radiation in the summer months is usually significantly 

higher than other seasons making the MEP seasonal trend more agreeable.      

 

3.4.5      Sources of differences across the four models 

 

The possible principal sources of differences between the four ET methods are associated with specific humidity 

in the MEP, land cover, the Revap component in SWAT and the HRU parameterization in the AWRA-L; they are 

discussed in the following sections. 

 

3.4.5.1 Specific humidity in the MEP 
 

The MEP model is very dependent on the accuracy of the specific humidity data to effectively determine 

transpiration over the canopy. The specific humidity over the leaf surface is not always equal to the that in the 

stomatal cavity (Wang and Bras, 2011). A model parameter 𝜂𝜂𝑠𝑠 is proposed to constrain the specific humidity 

depending on the environment (see Appendix A). The parameter 𝜂𝜂𝑠𝑠 represents the opening and closing of the 



62 
 

stomatal cavity where complete closure is equivalent to 0 and totally opened cavity corresponds to 1. As the sixth 

creek catchment study area is underlain by a shallow aquifer, 𝜂𝜂𝑠𝑠 is assumed to be equal to 1. Nevertheless, the 

study period encompasses the “millennium drought period”, which may have some effect on the complete 

openness of the stomatal cavity even in the evergreen broadleaved forest. The analysis of the effect of drought on 

the degree of openness of the stomatal cavity for this specific catchment is however beyond the scope of this 

study. 

 

3.4.5.2     Land Cover 
 

The land cover is an important parameter in the MOD16 and SWAT ET algorithms as it determines the values 

allocated to biophysical properties such as leaf conductance and boundary layer resistance, which significantly 

impact ET calculations. The impact of the land cover on the SWAT models is evident from the spatially divergent 

high-resolution SWAT models (Fig. 13a and b), at the HRU scale, though the streamflow calibration and 

validation parameters and results were similar. With the spatial aggregation of the SWAT models to 1 km2 

resolution, the obvious spatial differences at the HRU scale reduces significantly and begins to disappear beyond 

the 1 km2 resolution. Differences in the land cover in the SWAT models were responsible for the difference spatial 

distribution of the ET across the catchment between the models. The effect of the land cover on the MOD16 was 

not evaluated, however, the SWATMOD12 model with the same land cover expectedly showed better agreement 

when compared with the MOD16 with mean for the period of 2007-2013 within 1 mm at the catchment scale. The 

Geoscience Land cover map has 95% percent forests, while the MOD12 has a classification of 67% forests and 

24% woody savanna, with most of the region misclassified as woody savanna having some similar properties of 

the forests. At catchment scale, the data averaging contributes to the convergence of the MOD16 and SWAT ET 

results albeit with closer agreement between the MOD16 and SWATMOD12, which share land cover. 

 

3.4.5.3    Revap 
 

The Revap component of the AET in SWAT is mostly significant in forested catchments with deep rooted trees 

that can access the saturated zone and as such are governed by land use parameters (Neitsch et al., 2011). However, 

the relative accuracy of the Revap component of the ET on HRU scales has been questioned (Liu et al., 2015) due 

to the linear relationship between the Revap coefficient and potential evapotranspiration in SWAT (see Eqn. B23). 

The Revap component in this study appears consistent with the studies by Benyon et al. (2006) in south-eastern 
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Australia with similar climatic condition as the Sixth Creek Catchment. Benyon et al. (2006) observed that under 

the combined conditions of highly permeable soils, available groundwater resources of low salinity (<2000 mg/L), 

a high transmissivity aquifer and groundwater of depths up to 6 m, annual groundwater ET contribution to total 

ET ranged from 13 – 72% for sampled Eucalyptus tree species. The Sixth Creek Catchment is principally 

underlain by the highly transmissive and permeable Aldgate Sandstone aquifer, with salinity levels well below 

2000 mg/L (Gerges, 1999). Monitoring bores in the Sixth Creek Catchment have recorded standing water levels 

of less than 1.5 metres at the end of the rainy winter months in parts of the catchment. The Sixth Creek Catchment 

has been identified as one of the principal recharge zones in the Western Mount Lofty Ranges based on the 

catchment geology and hydrochemical analysis (Green and Zulfic, 2008). A significant portion of the 95% 

forested part of the Sixth Creek Catchment is a mosaic of various Eucalyptus tree species, thereby corroborating 

the results of Benyon et al. (2006). However, the seasonal partitioning of the Revap component is questionable. 

The AWRA-L ET model does not appear to include a separate groundwater ET model in its algorithm such as is 

found in the SWAT model (B23-26), hence the correlation and strong agreement between the AWRA-L models 

when the Revap is unaccounted for in the SWAT ET. The results suggest the Revap is a significant contributor to 

ET in the Sixth Creek Catchment (Fig. 16) with mean annual contribution of 20% for the years 2007 – 2013, while 

monthly contributions ranged from 15 – 52 % over the same period. The possibility exists that the linear 

relationship with PET employed in its calculation on HRU scale may be contributory to the higher range of ET 

fluctuation seen in the SWAT model on the 1 km2 scale when compared to the MOD16, however, that is beyond 

the scope of this study.  
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Figure 16: Monthly comparison of Revap component of the ET and total ET in SWAT. 

      

On catchment scale, the results show that MOD16 simulates higher ET in the winter periods while SWAT 

simulates higher ET during the summer periods (Fig. 15). Generally, the agreement between the products is more 

consistent during the winter seasons when ET is lower. The lesser correlation during higher ET seasons may be 

related to the linearly determined Revap component of the ET, which is a more dominant process in the summer 

months when the demand for soil evaporation, plant transpiration and groundwater ET is significantly higher.  

 

3.4.5.4    HRU parameterization in AWRA-L       
 

The HRU parameterization method in AWRA-L significantly impacts the evapotranspiration modelling process. 

While the AWRA-L does not use a robust land cover product that distinguishes between vegetation including 

trees, it uses a fraction of tree cover product to parameterise the HRU. AWRA-L discretises each 25 km2 grid cell 

into two HRU’s; the shallow-rooted HRU and the deep-rooted HRU. The determination of the area of the grid 
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apportioned as deep-rooted and shallow rooted HRU are solely based on the satellite derived product of the 

persistent and recurrent photosynthetically active absorbed radiation (fPAR) from the Advanced Very High 

Resolution Radiometer (AVHRR) (Donohue et al., 2008). The fraction of the persistent fPAR is regarded as the 

fraction of tree cover, hence it is used as the fraction of the deep-rooted HRU in each grid cell. The Sixth Creek 

Catchment has an average of under 60% persistent fPAR according to the AVHRR fPAR product. The 

discretisation of the AWRA-L HRU in the Sixth Creek catchment which suggests only about 60% tree cover in 

the Sixth Creek Catchment severely limits the access of the model to groundwater ET computation in the 

catchment, hence the close correlation and agreement of the AWRA-L model with the SWAT model when the 

Revap (groundwater ET) is unaccounted for is reasonable.  

 

3.4.5.5     Input data Challenges 
 

The four methods have challenges associated with input data, which are subsequently propagated through the 

algorithms. The remote sensing based MOD16 have cloud cover challenges affecting input parameters. The MEP, 

SWAT and AWRA-L models use interpolated spatial data, which includes rainfall data specific to the SWAT and 

AWRA-L. These datasets have inherent uncertainties associated with them. For instance in semi-arid 

environments such as the Sixth Creek Catchment, high intensity rainfall events are common occurrences, which 

impacts hydrologic processes such as infiltration and evapotranspiration differently from if the precipitation were 

evenly distributed through the day (Syed et al., 2003). Yang et al. (2016) observed that the use of hourly rainfall 

in SWAT significantly improved the modelling of streamflow and hydrological processes. In this study, due to 

the unavailability of hourly precipitation data, daily precipitation data were used thus neglecting the impact of 

high intensity precipitation events in the catchment.  

Another challenge encountered with the SWAT model is associated with the semi-distributed model methodology.  

The use of a single value for wind speed, relative humidity and solar radiation for a sub-catchment with spatial 

scale, which could be in the order of tens of square kilometres, affects the accuracy of hydrological processes at 

the HRU scale. The “elevation band” method of temperature and precipitation distribution with respect to 

elevation changes across a catchment was introduced into the SWAT algorithm to attenuate orographic effects in 

complex terrain catchments (Neitsch et al., 2011). The elevation band algorithm in SWAT has performed well in 

predominantly snowy, complex terrain catchments, which are significantly larger than the Sixth Creek Catchment 

with elevation changes in the order of kilometres (Abbaspour et al., 2007, Zhang et al., 2008b, Pradhanang et al., 
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2011). However, the application of the elevation band algorithm in the non-snowy Odiel River basin (Spain) with 

Mediterranean climate similar to the Sixth Creek Catchment yielded less than satisfactory results (Galván et al., 

2014). In the non-snowy Sixth Creek Catchment, the orographic effects are a dominant atmospheric process when 

winds are moving from the lower elevations in the north of the catchment to the higher elevations in the South 

particularly during the winter months. The orographic lift leads to significantly higher precipitation in the south-

westerly direction in the Sixth Creek Catchment, which the elevation band algorithm in SWAT does not represent 

accurately in non-snowy catchments.  

The various meteorological and remote sensing input data used in the processing of the MOD16 all have their 

inherent uncertainties, with cloud cover challenges and coarse resolution resampling (Mu et al., 2011a), while 

errors have been associated with the land cover product used (Ruhoff et al., 2013). The land cover map (MOD12) 

used in MOD16 (Fig. 11a), in conjunction with the calibrated biome properties lookup table (BPLUT) 

significantly influences the ET output from the various land covers under different climatic conditions. A more 

detailed map and local knowledge of the Sixth Creek Catchment indicates that the MOD12 land cover spatially 

mismatches some biomes (Fig. 11a and b). Besides the obvious land cover mismatches that were observed 

between the input data of the two models, the variety of accepted national, regional and global land cover 

classification system contributes to the challenges of hydrological modelling. In this MOD12, the “mixed forest” 

category covered over 50% of the catchment while the category does not exist in the local field map land cover 

classification. The global standardization and harmonization of land cover maps and biome classification at high 

resolution may improve model performance. 

 

3.5      Conclusion 

 

The main objectives of this paper are to compare the four ET products (MEP, SWAT, MOD16 and AWRA-L) on 

catchment scale to evaluate their relatively accuracy particularly the performance of the newer MEP against 

conventional methods, while also evaluating the two finer resolution products (SWAT and MOD16) on graduated 

spatial scale. We also attempted to determine the spatial scale at which the models tend towards agreement. While 

also seeking to understand the sources of disagreements between the models. 

The four models could simulate ET to within a 25% difference range. The mean annual ET agreement across the 

models produced using different algorithms suggests that all four models have the capacity to estimate ET in the 
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complex terrain catchment. Although the terrain of the catchment is complex, the MEP, which does not 

parameterise the slope of the study area, was able to effectively model the catchment ET. Nevertheless, the models 

exhibited seasonal differences with the MEP model predicting plausible seasonal trends in the catchment, while 

the SWAT and AWRA-L appeared to underestimate in the summer and/or overestimate in the spring season. 

The calibrated SWAT model using the SUFI-2 algorithm and various objective functions could simulate ET to 

within 6% of the MOD16 on catchment scale, annually. The P and R factors metrics were observed to be very 

reliable indicators of a good calibration exercise. Abbaspour (2007) proposed P and R factor minimum 

benchmarks of >0.7 and <1 respectively for streamflow calibration, in this study the P and R factors >0.8 and <1 

were found to produce reliable ET estimates on catchment scales. We observed that at a spatial scale of 4 km2 we 

obtained cell differences of under 20% annually which gave confidence to our study in the complex terrain that 

the 4 km2 spatial resolution is our “spatial scale of confidence”. The result of the spatial resolution analysis 

corroborates the view that prevailing ET algorithms and measurement methods will have certain degree of 

variability due to the complexity of ET estimation and various drivers of the contributory processes. The study 

shows that correlation at catchment scale does not necessarily translate to correlation at finer spatial scales. 

However, our study shows that as ET is aggregated to a spatial scale of 4km2 and beyond, the results converge.   

At the catchment scale, the MEP and MOD16 energy balance models had very good agreement as well as the 

SWAT and the AWRA-L models. These agreements could be attributed to the solar radiation and precipitation as 

dominant drivers of the energy balance and water balance models respectively. Biome differences and input spatial 

scale contribute to poor agreement at finer spatial scales. The challenge of the lack of a globally accepted and 

harmonised land cover classification system at high resolution was encountered in the study, with two products 

derived from the MODIS satellite data classifying land cover differently and thus impacting the results from the 

SWAT models. The use of different land covers with different classification systems and parameters are observed 

to have limited impact on evapotranspiration modelling at coarse spatial resolutions due to spatial averaging. 

Nevertheless, the tree cover fraction used in place of a land cover product in the AWRA-L is also observed to 

impact the ET modelling, particularly in a groundwater dependent catchment like our study area.  The inherent 

differences and uncertainties associated with these land cover products will continue to be propagated through the 

models, thereby promoting divergence in the drive towards more accurate and finer resolution evapotranspiration 

data products.  While many concerted research efforts have been made in the past (Latham, 2009, Friedl et al., 

2010), a globally accepted harmonised world land cover database at high resolution can significantly improve 

correlation and confidence in high resolution ET products. It is however refreshing that the MEP model can predict 
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ET at the catchment scale effectively and does not suffer from the land cover challenges which plagues the SWAT 

and MOD16. 
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Abstract 

The aim of this research is to develop evaporation and transpiration products for Australia based on the maximum 

entropy production model (MEP). We introduce a method into the MEP algorithm of estimating the required 

model parameters over the entire Australia through the use of pedotransfer function, soil properties and remotely 

sensed soil moisture data. Our algorithm calculates the evaporation and transpiration over Australia on daily 

timescales at the 5 km2 resolution for 2003 – 2013.  

The MEP evapotranspiration (ET) estimates are validated using observed ET data from 20 Eddy Covariance (EC) 

flux towers across 8 land cover types in Australia. We also compare the MEP ET at the EC flux towers with two 

other ET products over Australia; MOD16 and AWRA-L products. The MEP model outperforms the MOD16 and 

AWRA-L across the 20 EC flux sites, with average root mean square errors (RMSE), 8.21, 9.87 and 9.22 mm/8 

days respectively. The average mean absolute error (MAE) for the MEP, MOD16 and AWRA-L are 6.21, 7.29 

and 6.52 mm/8 days, the average correlations are 0.64, 0.57 and 0.61, respectively. The percentage Bias of the 

MEP ET was within 20% of the observed ET at 12 of the 20 EC flux sites while the MOD16 and AWRA-L ET 

were within 20% of the observed ET at 4 and 10 sites respectively. Our analysis shows that evaporation and 

transpiration contribute 38% and 62%, respectively, to the total ET across the study period which includes a 

significant part of the “millennium drought” period (2003 – 2010) in Australia.  
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4.1    Introduction 

 

The use of remote sensing data in existing and new methods for evapotranspiration (ET) estimation is 

incontrovertibly the current and future trend of ET flux quantification on catchment, regional and continental 

scales (Bhattarai et al., 2016, Zhang et al., 2016, Najmaddin et al., 2017). The use of remote sensing observations 

is an unprecedented advancement in regional scale ET estimation due to its spatiotemporal flexibility and/or 

economic viability (Chirouze et al., 2014, Long et al., 2014, Xiong et al., 2014, Yang et al., 2015, Bhattarai et al., 

2016). Various methods have been developed for improving ET estimates (Allen et al., 2007, Cleugh et al., 2007b, 

Mu et al., 2011b, Xiong et al., 2014, Tang et al., 2009). However, the relative accuracy of these methods differ 

across different climates, vegetation and soil types (Jia et al., 2012, Kim et al., 2012b, Velpuri et al., 2013, 

Bhattarai et al., 2016). The performance of the ET models depends on the parameterization of physical processes 

underlying ET (Liaqat and Choi, 2017). A major challenge is to produce accurate ET estimates of various spatial 

and temporal resolutions (Senay et al., 2013, Wang et al., 2016, Gaur et al., 2017) when using remote sensing data 

(Kalma et al. (2008).  

A remote sensing based ET model is empirical or physically-based (Xiong et al., 2014). In the past two decades, 

several physically based ET models have been developed including the single source energy balance (SSEB) 

(Bastiaanssen et al., 1998b, Roerink et al., 2000, Allen et al., 2007) and two-source surface energy balance (TSEB) 

(Kustas and Norman, 1999, Norman et al., 2003, Sun et al., 2009) models using remote sensing input data. The 

SSEB models provide total ET without partitioning it into soil evaporation (E) and transpiration (T), while the 

TSEB models do the partition. The TSEB models have been shown to be more accurate over partially vegetated 

surfaces (Timmermans et al., 2007, Gao and Long, 2008, Choi et al., 2009). A fundamental challenge of TSEB 

models is their reliance on land surface temperature (LST) and the partitioning methodology of the LST into soil 

and canopy temperature components for modelling (Colaizzi et al., 2012, Yang et al., 2018). Different techniques 

have been applied to partition the canopy and soil temperatures from the LST in the TSEB models (Norman et al., 

2000, Zhang et al., 2005), with varying degree of success over different vegetation types (Chavez et al., 2009, 

Song et al., 2016, Diarra et al., 2017). The more pertinent challenge of the TSEB models becomes apparent when 

creating high resolution regional to continental scale ET, which requires accurate LST data as the principal input. 
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Frequent clouds plague remotely sensed LST products such as the widely accepted Moderate Resolution Imaging 

Spectroradiometer land surface temperature product (MODIS LST) (Wan et al., 2002).   

The limitations of the LST dependence of the traditional TSEB models was further highlighted by Mu et al. (2007) 

who found that the use of the 8-day composite of all cloud free data in the MODIS LST suite did not produce 

accurate estimates of global scale evapotranspiration. The MODIS LST yielded erroneous results of partitioned 

soil and canopy temperatures across various biomes, hence the development of a new algorithm is needed for 

estimating soil and canopy temperatures for improving the MODIS ET product (MOD16), which is widely 

accepted for comparison and validation purposes on catchment to continental scales. There are, however, 

unresolved issues of accuracy (Tang et al., 2015, de Arruda Souza et al., 2018, Khan et al., 2018). With the 

challenge surrounding the LST partitioning in TSEB models and the MOD16 challenges, a different perspective 

to the TSEB modelling on regional scale is required. 

The Maximum Entropy Production (MEP) model of ET (Wang and Bras, 2011) is a new approach to modelling 

ET. The MEP model was formulated as a unique TSEB model for soil and vegetated surface where ET and the 

other surface heat fluxes result from the partition of net radiation. The MEP model requires three main inputs: 

surface temperature, specific humidity and net radiation. A major departure of the MEP model from the traditional 

TSEB models is that the MEP model is less sensitive to temperature and more sensitive to the moisture content 

of immediately above the target surface and the available energy.  

Case studies have shown that the MEP ET for small catchments outperformed several other models (Nearing et 

al., 2012, Yang and Wang, 2014, Shanafield et al., 2015). However, the MEP ET model is yet to be 

comprehensively tested over various vegetation covers. A global product of the MEP ET at a 100 km2 spatial 

resolution has been produced (Huang et al., 2017). However, at this scale, individual vegetation cover type 

validation and analysis is problematic. The ET data over the diverse Australian landscape at catchment to 

continental scale has been produced by Guerschman et al. (2009) using MODIS surface reflectance data; by  Mu 

et al. (2011b) using MODIS remote sensing data (MOD16); and the Australian Water Resource Assessment 

Landscape (AWRA-L) model by Viney et al. (2014).  To the best knowledge of the authors, there is no dedicated 

evaporation (E) and/or transpiration (T) product over Australia available in the public domain at moderate to high 

spatial and temporal resolution. 
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The goal of this paper is to develop a daily MEP E & T product for Australia on a 0.05o spatial resolution. We 

have generated the data for 2003 – 2013 for demonstration and testing of result. The skill of the MEP ET model 

will be evaluated using eddy covariance tower data across various vegetation covers and compared with the results 

of the MOD16 and the AWRA-L products. The evaluation period covers the climatological highly variable 

“millennium drought” period (2003-2010).   

 

4.2    Method and data 

 

The energy balance equation over the land surface is expressed as, 

𝐸𝐸 +  𝐻𝐻 +  𝐺𝐺 =  𝑅𝑅𝑛𝑛          (18) 

where 𝐸𝐸,𝐻𝐻,𝐺𝐺 and 𝑅𝑅𝑛𝑛 are evapotranspiration (W/m2), sensible heat (W/m2), ground heat (W/m2) and net radiation 

(W/m2), respectively. The MEP ET model provides a solution of 𝐸𝐸𝑠𝑠,𝐻𝐻𝑠𝑠, and 𝐺𝐺 over non-vegetated land surface 

satisfying the energy balance equation Eq. (18) (Wang and Bras, 2011) for a given net radiation Rn, surface 

temperature T, and surface specific humidity q,  

𝜎𝜎𝑠𝑠 = 𝜆𝜆2

𝑐𝑐𝑝𝑝𝑅𝑅𝑣𝑣

𝑞𝑞𝑠𝑠
𝑇𝑇𝑠𝑠2

  , 𝛽𝛽(𝜎𝜎𝑠𝑠) = 6 ��1 + 11

36
𝜎𝜎𝑠𝑠 − 1�        (19) 

𝐺𝐺 = 𝛽𝛽(𝜎𝜎𝑠𝑠)
𝜎𝜎𝑠𝑠

 𝐼𝐼𝑠𝑠
𝐼𝐼𝑜𝑜

 𝐻𝐻𝑠𝑠|𝐻𝐻𝑠𝑠|−
1
6          (20) 

𝐸𝐸𝑠𝑠 =  𝛽𝛽(𝜎𝜎𝑠𝑠)𝐻𝐻𝑠𝑠             (21) 

where 𝜎𝜎𝑠𝑠 (Sigma) is a dimensionless parameter characterizing the effect of (soil or canopy) surface thermal and 

moisture state on the phase change of liquid water (-); 𝜆𝜆 is the latent heat of vaporization of liquid water (J kg-1); 

𝑐𝑐𝑝𝑝 is the specific heat of dry air at constant pressure (J kg-1 K-1); 𝑅𝑅𝑣𝑣 is the gas constant of water vapor (J kg-1 K-1); 

𝑞𝑞𝑠𝑠 the specific humidity at the soil or vegetation surface (kg kg-1); 𝐸𝐸𝑠𝑠 is the soil or canopy surface temperatures 

(K); 𝛽𝛽(𝜎𝜎𝑠𝑠) is the inverse Bowen ratio (-); 𝐼𝐼𝑠𝑠 is the thermal inertia of soil (J m-2 K-1 s-1/2); 𝐼𝐼𝑜𝑜 is the thermal inertia 

of turbulent air (J m-2 K-1 s-1/2). For vegetated land surface where 𝐺𝐺 is neglected, equations (19) – (21) become;  

𝐸𝐸𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝜎𝜎𝑠𝑠−1

 ,𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝜎𝜎𝑠𝑠

                     (22) 
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where 𝐸𝐸𝑣𝑣 is the canopy transpiration and 𝐻𝐻𝑣𝑣 sensible heat flux over canopy surface satisfying energy balance 

equation 𝑅𝑅𝑛𝑛 = 𝐸𝐸𝑣𝑣 + 𝐻𝐻𝑣𝑣.           

The MEP ET algorithm calculates soil evaporation and canopy transpiration separately. Total evapotranspiration 

is the sum of the two fluxes weighted by the fractional coverage of soil and canopy (Fig. 17). In this paper, we 

apply temporally varying vegetation fraction cover in the algorithm to partition the radiation energy for soil and 

canopy. 

 

 

                    

Figure 17: Flowchart of MEP ET algorithm; BetaSigma is the inverse Bowen ratio 

 



75 
 

 

4.2.1     Net radiation (𝑹𝑹𝑹𝑹) 

 

Daily net radiation at 0.05o spatial resolution over Australia is partitioned between soil and canopy within a grid 

cell according to vegetation fraction cover. Photosynthetically active radiation (FPAR) product MOD15A2H 

(Myneni et al., 2015)  is used in this study. While the MEP model is very sensitive to net radiation as a model 

input with pronounced diurnal cycle, 8-day vegetation cover data were used as vegetation cover changes at 

seasonal time scale. Net radiation over canopy and soil surface within a grid cell is expressed as, 

𝑅𝑅𝑛𝑛_𝑣𝑣 = 𝐹𝐹𝑐𝑐 𝑅𝑅𝑛𝑛  ,  𝑅𝑅𝑛𝑛_𝑠𝑠 = (1 − 𝐹𝐹𝑐𝑐) 𝑅𝑅𝑛𝑛         (23) 

where, 𝑅𝑅𝑛𝑛_𝑣𝑣 is the net radiation over vegetation (W/m2), 𝑅𝑅𝑛𝑛_𝑠𝑠 is the net radiation over soil (W/m2), and 𝐹𝐹𝑐𝑐 is the 

vegetation fraction (-). 

 

4.2.2     Evaporation 

 

The MEP model as in Eqs. 18, 20 and 21 provides a unique solution of E, G and H for given surface temperature 

(𝐸𝐸𝑠𝑠), soil/canopy surface specific humidity (𝑞𝑞𝑠𝑠), and 𝑅𝑅𝑛𝑛_𝑠𝑠. The land surface temperature (𝐸𝐸𝑠𝑠) is provided by the 

MOD11C1 product (Wan, 2014) derived from the MODIS observations. The daily data for Australia from 2003 

to 2013 was extracted from the global dataset. Missing 𝐸𝐸𝑠𝑠 data, due to cloud cover, were filled using the lowest 

value within a month for each grid cell. The rationale is that cloud cover reduces the amount of solar radiation 

reaching the land surface, hence the lowest observed 𝐸𝐸𝑠𝑠 value within a month is used.  

Due to the difficulty of obtaining 𝑞𝑞𝑠𝑠 over the entire Australia, an empirical equation is used to calculate 𝑞𝑞𝑠𝑠 as a 

function of soil surface relative humidity and land surface temperature. The soil surface relative humidity is 

calculated from the soil surface water potential. The Hutson and Cass function (Hutson and Cass, 1987) is used 

for estimating soil surface water potential. The Hutson and Cass function requires two empirical coefficients 

calibrated for each grid cell using two methods: the empirical equation derived in Williams et al. (1992), and the 

pedotransfer functions to estimate the soil water content at wilting point (-1.5MPa) and at field capacity (-10kPa). 

The water content at the wilting point and field capacity for each 0.05o grid cell, estimated from the pedotransfer 
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functions, are subsequently used to determine the coefficients, by applying the two-point method (Cresswell and 

Paydar, 1996) (see Section 4.2.2.1). Several pedotransfer functions for determining the wilting point and field 

capacity (Minasny et al., 1999, Minasny and Mcbratney, 2002, Rab et al., 2011) were considered. Eq. 12 and 13 

in Rab et al. (2011) were selected due to their minimal data requirement and relative accuracy. The pedotransfer 

function combined with the two point method was preferred to the empirical equations described in Williams et 

al. (1992) as they yielded significantly better estimates of ET after validation with flux tower data. Soil properties 

as the inputs of the pedotransfer functions and empirical equations are obtained from the Australian Soil Resource 

Information System (ASRIS) (Johnston et al., 2003b).  

An important parameter of the MEP model is the distance above target surface for which the Monin-Obukhov 

similarity theory is valid (z) in the formula of the thermal inertia of turbulent air above soil surface. Huang et al. 

(2017) suggested that the distance above target (𝑧𝑧) vary with the land cover types as shown in the look-up table 

(Table 10) used in this study. 𝑧𝑧 for each land cover is specified for each 0.05o grid cell using the MODIS land 

cover product (MOD12C1) (Mark and Damien, 2015) of the same resolution.  

Table 10: Distance above target surface (z) in (m) for Australian Land cover 

Land Cover Distance above target (z) in (m) 

Evergreen Needleleaf Forests (ENF) 10 

Evergreen Broadleaf Forests (EBF) 10 

Deciduous Needleleaf Forests (DNF) 10 

Deciduous Broadleaf Forests (DBF) 10 

Mixed Forests (MF) 10 

Closed Shrublands (CSH) 5 

Open Shrublands (OSH) 4 

Woody Savannas (WSA) 8 

Savannas (SAV) 7 

Grasslands (GRA) 5 

Croplands (CRP) 5 

Urban and Built up (URB) 3 

Cropland/Natural Vegetation Mosaics (CRV) 5 

 



77 
 

 

Figure 18: Target height (z) in (m) above vegetation with location of Eddy Covariance flux towers and the land cover types. 

 

4.2.2.1 Hutson and Cass function with the two-point method 
 

To determine the Hutson and Cass coefficients “a” and “b” (Eq. 24) for each 0.05o grid cell across Australia, we 

solve the pedotransfer with the two-point method. The two values used are the volumetric soil moisture 

(θ1 and θ2) at the field capacity and the wilting point soil water potentials (Ψ1 and Ψ2) of -10 kPa and 1500 

kPa respectively. Combining both equations, we obtain the model parameters “a” and “b” for each 0.05o grid cell. 

Ψ = 𝐴𝐴( 𝜃𝜃
𝜃𝜃𝑝𝑝

)−𝑏𝑏            (24) 

𝜃𝜃𝑝𝑝 = 1 - (ρ / ρs)           (25) 

where Ψ is the soil water potential (kPa); a (kPa) and b (-) are curve-fitting parameters; 𝜃𝜃𝑝𝑝 (-) is the porosity; ρ 

(kg/dm3) is the bulk density of soil; and ρs =2.65 (kg/dm3) is the mineral density.  
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4.2.2.2 Soil moisture 
 

The soil moisture data used in this study are obtained from the European Space Agency’s Climate Change 

Initiative Soil Moisture Project (ESA CCI SM) at 0.25o and daily resolution available from 1978 to 2018 (Dorigo 

et al., 2017), hereafter referred to as the ESA CCI SM. The ESA CCI SM consists of three products; Active, 

Passive and Combined (Liu et al., 2012, Gruber et al., 2017). The ESA CCI SM is preferred in this study as it 

offers the most suitable spatio-temporal resolution compared to other available soil moisture products. The ESA 

CCI SM was validated using ground-based soil moisture measurements (Dorigo et al., 2015), while the underlying 

methodology has been extensively evaluated by Gruber et al. (2019). The combined product is selected in this 

study as the validation exercise by Dorigo et al. (2015) suggests the combined product outperforms both the active 

and passive products and also because its algorithm unifies the Active and Passive products to have better spatial 

coverage than either the Passive or Active products with more stringent quality control. While the combined 

product has good spatial-temporal resolution for remote sensing applications, missing data are filled through an 

average of the day before and after. Multiple-days data gaps are filled using multiple-days average. The ESA CCI 

SM is also resampled at 0.05o resolution to be consistent with the spatial resolutions of the other input data.  

 

4.2.3     Transpiration 

 

The MEP method requires specific humidity and temperature very close to the target surface nevertheless Wang 

and Bras (2011) experimented with temperature profiles above and below the target surface and determined the 

use of air temperature as surrogates of leaf surface temperature had negligible effect on the ET measurements. By 

the MEP method. Hence, due to the difficulty of obtaining leaf surface temperature and specific humidity at 

regional scales, air temperature and air specific humidity are used as surrogates. Air temperature and relative 

humidity data above canopy are obtained from the interpolated field observations over Australia (Jeffrey et al., 

2001). The Clausius-Clapeyron equation is used in obtaining the specific humidity from air temperature and 

relative humidity. 
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4.2.4     Model Evaluation  

 

For the evaluation of the MEP model results over Australia, data from 20 eddy covariance (EC) flux towers across 

different land covers are used. The model performance is evaluated using six statistical metrics: the root mean 

square error (𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸), mean difference (𝑀𝑀𝐷𝐷), mean absolute error (𝑀𝑀𝐴𝐴𝐸𝐸), Pearson’s correlation coefficient (R), 

Nash-Sutcliffe Efficiency (𝑁𝑁𝑆𝑆𝐸𝐸) and Percent Bias (𝑃𝑃𝑃𝑃𝐼𝐼𝐴𝐴𝑆𝑆). 

The MEP ET product at 25 km2 resolution is validated across the 20 EC tower flux data with footprints ranging 

from 100 m2 up to about 2 km2 depending on the measuring height of the EC system and vegetation height. The 

effects of the differences in footprints of the EC towers and the data to be validated are not considered in this 

study. 

A three-product comparison (MEP, AWRA-L and MOD16) with the field data from the 20 EC flux towers across 

Australia was conducted as part of this study. While the MEP and the AWRA-L models are produced on daily 

timescales, the MOD16’s highest temporary resolution is an 8-day product. For a direct comparison, MEP and 

AWRA-L are aggregated to 8-day resolution. Since the MOD16 dataset has missing data points due to cloud cover 

or sensor failures, the days with missing data are removed across all models and the EC tower data before 

comparison. While the MEP model could be run with the field data at the EC sites, for a fair comparison of the 

three products, the Australia wide product for all three products were used in the comparisons.  

Mean annual maps are produced for the three products between 2003 and 2013 with the MOD16 resampled to the 

25 km2 resolution to match that of the MEP and AWRA-L data for direct comparison for 280,000 pixels covering 

the entire Australian using the R, RMSE, MAE and NSE statistical metrics.   

 

4.3    Results and discussion 

 

4.3.1     Mean spatial-temporal MEP ET Analysis  

 

The daily MEP evaporation and transpiration over Australia for 2003 – 2013 are relatively high in the northern 

vegetated parts of Australia (Fig. 19a and 19b) and around the eastern coastline (Fig. 19b). Evaporation and 
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transpiration account for 38% and 62% of total ET, respectively, over Australia. ET is highest in the high rainfall 

shrub-lands and forested regions in the northern Australia as well as around the coastline (Fig. 19c). The west 

central parts of Australia have the lowest ET with mean annual ET 440 mm for Australia for 2003-2013, while 

the mean ET along the coastline exceeds 1000 mm for the same period.  
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Figure 19: (a) Mean evaporation; (b) Mean transpiration; and (c) Mean evapotranspiration in mm/yr for 2003-2013 

  

 

Figure 20: MEP E and T vs rainfall 
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Annual ET fluctuates during the study period (Fig. 20) with the correlations for annual evaporation and 

transpiration relative to annual rainfall calculated to be 0.94 and 0.84, respectively. Although the MEP model does 

not use rainfall as an input, the strong correlation between rainfall and ET, the largest components of the 

hydrologic system in Australia, suggests the MEP model captures the Australian hydrological system effectively. 

These results are consistent with the findings of Jung et al. (2010) who observed a drop in the global 

evapotranspiration due to reduced ET over Australia between 1998 and 2008. The reduction in ET over Australia 

can be seen through the “millennium drought” years with the immediate increase in ET observed in 2010 at the 

end of the prolonged drought. 
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Table 11: EC validation of the MEP, MOD16 and AWRA-L products. Eddy Covariance Tower Site name (Site Name); Fluxnet site ID and IGBP land cover type (Site ID); Average observed ET at flux tower (OBS_ET); 
Root Mean Square Error (RMSE); Mean Absolute Error (MAE); Correlation Coefficient (R); Percent Bias (PBIAS); EC sites citations 

Site Name Site ID Obs_ET 
(mm/ 8 days) 

RMSE (mm/ 8 days) MAE (mm/ 8 days) R PBIAS (%) Citations 

   MEP MOD1
6 

AWRA-L MEP MOD1
6 

AWRA-L MEP MOD1
6 

AWRA-L MEP MOD1
6 

AWRA-L  

Adelaide River AU-Ade 
(WSA) 

15.34 9.06 11.09 9.65 7.04 9.22 5.73 0.64 0.57 0.71 26.18 -34.38 22.26 (Beringer, 2014a) 

Alice Springs AU-ASM 
(ENF) 

8.45 6.12 8.82 7.13 4.80 6.05 6.03 0.74 0.69 0.63 -6.78 -62.1 -23.9 (Derek and James, 2014a) 

Calperum AU-Cpr 
(SAV) 

8.39 3.38 4.69 3.55 1.01 2.79 1.27 0.62 0.33 0.72 -12.04 -33.25 -15.15 (Koerber, 2014) 

Daly River 
Cleared 

AU-DaS 
(GRA) 

18.6 4.62 9.74 6.05 3.63 8.21 4.43 0.88 0.74 0.78 -12.23 -38.6 0.21 (Beringer, 2014b) 

Daly River 
Savanna 

AU-DaP 
(GRA) 

12.24 10.43 10.75 9.78 8.64 6.93 6.89 0.63 0.74 0.77 17.32 13.86 41.49 (Beringer, 2014c) 

Dry River AU-Dry 
(SAV) 

19.55 9.95 13.63 12.58 4.7 8.14 5.02 0.62 0.43 0.58 -24.2 -41.77 -25.8 (Beringer, 2014c) 

Emerald AU-Emr 
(GRA) 

11.56 5.69 5.96 9.91 4.22 4.35 7.32 0.47 0.48 0.43 -10.92 -14.38 21.25 (Schroder, 2014) 

Fogg Dam AU-Fog 
(WET) 

35.35 15.45 22.53 18.9 13.97 20.72 16.33 0.26 0.6 0.61 -35.71 -58.4 -42.79 (Beringer, 2013a) 

Gingin AU-Gin 
(WSA) 

15.47 6.27 7.21 5.49 5.20 6.09 4.1 0.39 0.37 0.51 -3.0 -36.49 -17.02 (Silberstein, 2015) 

Great Western 
Woodlands,  

AU-GWW 
(SAV) 

7.65 2.78 5.15 3.47 2.04 3.9 2.62 0.63 0.08 0.37 11.08 -47.45 -11.06 (Craig, 2014) 

Howard Springs AU-How 
(WSA) 

24.96 7.13 9.92 7.96 5.53 8.13 6.18 0.67 0.79 0.79 -3.2 -30.0 -9.87 (Beringer, 2014d) 

Loxton AU-Lox 
(DBF) 

27.3 27.31 27.09 32.63 17.78 17.51 22.8 0.51 0.37 -0.12 -63.48 -60.0 -82.7 (Ewenz, 2008) 

Red Dirt Melon 
Farm 

AU-RDF 
(WSA) 

14.66 9.56 11.36 12.17 8.25 8.65 8.88 0.66 0.55 0.58 3.45 -25.39 12.53 (Beringer, 2013b) 

Riggs Creek AU-Rig 
(GRA) 

13.22 5.72 9.07 4.53 4.67 4.23 3.28 0.71 0.70 0.83 -14.96 -22.21 11.62 (Beringer, 2014e) 

Sturt Plains AU-Stp 
(GRA) 

10.24 7.95 8.20 8.5 6.17 5.64 4.79 0.73 0.79 0.78 25.77 -40.4 17.9 (Beringer, 2013c) 

Ti Tree East AU-TTE 
(OSH) 

2.81 4.45 4.32 6.99 3.69 2.63 4.95 0.43 0.08 0.20 96.17 -42.34 146.08 (Derek and James, 2014b) 

Tumbarumba AU-Tum 
(EBF) 

20.86 6.72 6.54 5.97 4.75 4.98 4.31 0.83 0.86 0.86 -13.82 14.07 -6.57 (Woodgate, 2014) 

Wallaby Creek AU-Wac 
(EBF) 

15.35 6.76 11.13 5.76 5.82 9.31 4.84 0.85 0.77 0.78 34.67 57.75 25.57 (Beringer, 2014f) 

Whroo AU-Whr 
(WSA) 

13.73 6.51 5.08 5.86 5.09 4.10 4.52 0.54 0.59 0.46 -2.54 -23.07 -10.8 (Beringer, 2014g) 

Wombat AU-Wom 
(EBF) 

23.28 8.24 5.13 7.45 7.11 4.16 6.02 0.89 0.88 0.81 -30.12 -0.29 -21.24 (Beringer, 2014h) 
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4.3.2     MEP, MOD16 and AWRA-L performances at the Eddy Covariance flux sites  

 

The 20 eddy covariance flux tower sites used for the validation of the MEP, MOD16 and AWRA-L products 

include 8 land cover types according to the International Geosphere-Biosphere Programme (IGBP), i.e. 4-

Evergreen Broadleaved Forest (EBF), 4-Woodland Savanna (WSA),4-Savanna (SAV), 1-Wetland (WET), 4-

Grassland (GRA), 1-Evergreen Needle Forest (ENF), 1-Deciduous Broadleaved Forest (DBF), and 1-Open 

Shrubland (OSH). The MEP model outperforms the MOD16 at 15, 13, 14 and 16 sites measured by the RMSE, 

MAE, R and PBIAS metrics respectively. The MEP also performed better than the AWRA-L at 13, 11, 11 and 12 

sites measured by the RMSE, MAE, R and PBIAS metrics, respectively. The MEP model also outperforms the 

MOD16 and AWRA-L measured by the average RMSE, MAE and R across the 20 EC flux sites. The average 

RMSE across the 20 EC flux sites for the MEP, MOD16 and AWRA-L are respectively 8.21, 9.87 and 9.22. The 

average MAE are respectively 6.21, 7.29 and 6.52 for the MEP, MOD16 and AWRA-L. The average correlations 

are 0.64, 0.57 and 0.61 for the MEP, MOD16 and AWRA-L, respectively. The MEP PBIAS was within 20% of 

the observed flux at 12 sites while the MOD16 and AWRA-L were within 20% of the observed flux at 4 and 10 

sites, respectively. 

Some consistency is seen across the models at many sites, with the three models seeming to perform best for the 

evergreen broadleaved forests with correlations ranging from 0.77 to 0.89 at the three sites. Similar correlation 

consistency of the models is obtained across the five grassland sites. Generally, the MOD16 underestimated ET 

significantly at most sites with 12 sites over 30%. Consistent underestimation is also observed across the Fogg 

Dam wetland site with the three models underestimating ET by 35% or higher. The MEP ET exhibited the lowest 

correlation at the Fogg Dam site. The Fogg Dam is a seasonally flooded wetland where water evaporation is a 

principal component of ET. However, due to the coarse resolution of the soil moisture data, the MEP model may 

not effectively capture the local evaporation, while scale mismatch may also contribute to the weaker performance 

of the MEP. Less accurate ET estimates were also observed at the Loxton site by the three models with 

underestimation at least 60%. The flux data at the Loxton site appear unrealistic presumably caused by sensor 

failures suggested by 1800 mm ET while only 500 mm rainfall is recorded at the site, unfortunately due to the 

closure of the site it was difficult investigating further.  
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Figure 21: Continuous plot of the MEP, EC, AWRA-L and MOD16 ET  

 

Figure (21) shows that the MEP model reasonably captures the temporal trends of ET relative to the EC flux at 

most sites. The MEP model appears to underestimate ET in the winter months and overestimate ET in the summer 

months at the Whroo site. A possible reason for this trend in the MEP model is the wrong classification of the 

vegetation at the Whroo site. The Whroo site, a box woodland revegetation from the gold mining era currently 

covered with pasture and eucalyptus species vegetation, is incorrectly classified by the IGBP as an evergreen 

broadleaved forest. The FPAR product used in partitioning net radiation between soil and canopy show large inter-

annual variation, leading to seasonal under- or overestimation of ET.  

The MOD16 performs the best at forested sites showing consistent temporal patterns relative to the EC 

observations. The calibrated AWRA-L model also effectively replicates the temporal trends across most sites and 

outperforms the MOD16 at most sites.  

The accuracy of the modelled ET is strongly affected by the estimated soil water potential using the pedotransfer 

function. The difference in the footprints of the flux towers may also contribute to the underestimation of ET 

particularly at flux tower sites with mixed vegetation. 
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4.3.3     Comparison of the MEP, MOD16 and AWRA-L at Continental scale 

 

A continental scale comparison of the MEP, MOD16 and AWRA_L ET products was carried out after calculating 

a mean annual ET over the study period from each product over the entire Australia. All 260,000 pixels of 5 km 

resolution across the three models are used in the analysis. Annual mean ET over Australia from the MEP, MOD16 

and AWRA_L products over the 11-year study period were calculated as 440, 262 and 428 mm, respectively. All 

the corresponding cells were also used to calculate the correlation R, RMSE, NSE and MAE (Table 12). The 

spatial agreements across the products was evident with all three products showing higher ET around the coastline 

and lower ET in inland Australia. The NSE between the MEP and AWRA-L shows a better agreement than 

between the MEP and MOD16 products, which have a negative NSE. The MAE and RMSE were also significantly 

lower between the MEP and AWRA-L. The total ET from the MEP and AWRA-L appears more reasonable 

relative to the annual rainfall over Australia (Fig. 20). The annual MEP ET as a percentage of rainfall (Fig. 20) is 

consistent with other studies that about 90% of annual rainfall in Australia is returned to the atmosphere through 

ET (Chiew et al., 2002, Prosser, 2011). Moreover, significant underestimation of ET by the MOD16 model was 

observed across the flux tower sites. 

 Spatial analysis of the three products were also carried out using the percentage difference for MEP vs MOD16, 

MEP vs AWRA-L and AWRA-L vs MOD16 (Fig. 22). MEP ET was significantly higher than MOD16 ET for 

large swaths of inland Australia while MOD16 was higher around the coastlines, particularly the eastern coastlines 

and Tasmania. The underestimation of the MOD16 ET at the EC flux tower sites (section 4.3.2) shows that 

MOD16 underestimated ET at 17 of the 20 flux sites and by more than 30% in 12 of the sites) is confirmed as 

shown in Fig. 22(a) and (c). The MOD16 performed better at the evergreen broadleaved forest tower sites close 

to the coastline where it has better agreement with the MEP. However due to mixed performance of the MEP and 

MOD16 model at the flux towers around the south-eastern coastline, it is difficult to draw a definite conclusion 

on which model performs better. The percentage difference between the MEP and AWRA-L model has a narrower 

range over large areas of Australia with both models within 50% for Australia. There are two large areas in the 

south-central to Western Australia where the AWRA-L model significantly underestimates ET. The AWRA-L 

ET is in the range of 1 – 10 mm/yr over large portion of Western Australia with numerous pixels having mean ET 

less than 1 mm/yr between 2003 and 2013, which may be due to water balance errors in the AWRA-L algorithm. 

The historic average precipitation in the partially vegetated region is in the range 200-500 mm/yr and it appears 

implausible for ET to be less than 10 mm/yr. The large swath is also conspicuous in the AWRA-L and MOD16 
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percentage difference map (Fig. 22c). The MOD16 model also produces higher ET than the MEP and AWRA-L 

specifically in regions classified as evergreen broadleaved forests along the coastlines. The overestimation of 

MOD16 at evergreen broadleaved forests has been documented in literature (Ruhoff et al., 2013, Hu et al., 2015b).  

 

Table 12: The correlation coefficient (R), Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) and Mean Absolute 
Error (MAE) for comparison of the MEP, MOD16 and AWRA_L products over the entire Australia 

                   RMSE (mm/yr)                             MAE (mm/yr) 

 

 

R 

 MEP MOD16 AWRA-L  

    

NSE 

 MEP MOD16 AWRA-L 

MEP  242 162 MEP  203 126 

MOD16 0.75  205 MOD16 -0.05  187 

AWRA-L 0.77 0.86  AWRA-L 0.51 0.25  
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Figure 22: Mean annual percentage difference between (a) MEP – MOD16; (b) MEP-AWRA-L; (c) AWRA-L- MOD16 
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4.3.4     Possible challenges with the MEP model 

 

The MEP model appears lacking spatial continuity, probably due to the use of pedotransfer functions to determine 

the wilting point and field capacity, since surface specific humidity is a crucial input of the MEP model. Hence, 

further improvement to the MEP model may be achieved by improving the parameterization of the pedotransfer 

functions for each soil type. Another challenge is the spatial resolution of soil moisture data for the regions where 

soil moisture is spatially more variable. The low correlation of the MEP model in the Fogg Dam wetlands may be 

related to high spatial variability of the soil moisture with intermittent flooding occurring at the site.  

 

4.4     Conclusion 

 

We have implemented the MEP model for estimating ET on a continental scale using readily available remote 

sensing datasets to produce daily evaporation and transpiration at 5 km2 resolution dataset over the entire Australia.  

The MEP modelled ET was validated at 20 EC flux tower sites and compared to the MOD16 and AWRA-L model 

ET. The MEP model outperforms both models at most EC flux sites with the AWRA-L model performing the 

next best. The MEP ET has the best average RMSE, MAE, R and PBIAS across all 20 EC flux sites. The MEP 

annual mean ET over Australia corroborates previous studies on the ET trend over Australia indicated by close 

correlation between MEP ET and rainfall during and after the “millennium drought” period.  

The MEP model is the simplest of the three models in terms of model formula and input data. This study shows 

that the MEP model as a two-source surface energy balance model effectively estimates ET on regional scales 

using fewer input data to produce evaporation and transpiration separately.  

The MEP method has the potential to be further improved for modelling ET. Further study will seek to improve 

the resolution of the MEP ET product while focusing on the development of a daily global MEP product. 
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5 Conclusions, data availability and future work 
 

5.1 Conclusions 

 

The specific findings of the three principal studies are condensed below: 

1. The MEP model at field scale in the mangrove forest was able to predict the ET with good accuracy on the 8 

day cycle when compared to the EC ET results. The results show that the MEP model only captures energy 

input through net radiation into the system. Other sources of energy are neglected. Horizontal advection from 

and to the sea, which is not captured in the MEP model is principally responsible for the weaker correlation 

of the MEP and the EC system at hourly resolution. In areas with strong advection, the advection cycle may 

impact the ET estimation negatively at high temporal resolutions. With aggregation of the data from hourly 

to 8 days, the MEP model results improved consistently until the effect of the advection was balanced out on 

the temporal scale. The MEP was determined to performefficiently at the 8-daily timescale 

 

2. In a homogenous Eucalyptus dominated catchment, with acute elevation changes and highly variable rainfall, 

mean annual ET from the MEP was within 20% of the SWAT, MOD16 and AWRA-L models. Such a mutli-

model approach is a way to gain confidence in ET measurements in challenging environments due to terrain. 

Seasonal variations differed between the four models with the MEP appearing to simulate the seasonal ET 

accurately. The spatio-temporal analysis on a graduated spatial scale show that the variance in the ET was 

dominated by the spatial component and with aggregation, the spatial component of the variance reduces. A 

spatial scale of confidence of 4 km2 was proposed for catchment to regional scale ET modelling based on the 

graduated spatial scale analysis of SWAT and MOD16. 

 
 

3. The MEP ET was developed into a continental scale product over Australia at the 0.05o resolution on daily 

timescales. The results of the E and T show that evaporation contributed 38% and 62% respectively to the 

ET for the period of 2003-2013. The MEP ET results were validated at 20 EC flux sites and simultaneously 

compared to the MOD16 and AWRA-L ET products. The MEP outperformed both models in the majority of 

the 20 flux sites as measured by four statistical metrics. The analysis of the MEP model and the findings at 

the field, catchment and continental scales will contribute to the knowledge base regarding the MEP model 
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method. The E, T and ET products will open up new frontiers of research and understanding of the 

contributions, behaviour and trends of the E and T component in different environments and land covers with 

the newly available data.  

 

5.2 MEP ET Product Data availability 
The MEP ET over Australia is the only known independently available E and T products over the entire Australia 

to the author. The initial dataset produced as part of this PhD research is on daily timescale covering the period 

of 2003 – 2013. The product required significant programming in the Python language which was principally used 

in creating the product. Some processing was also completed using the ArcGIS suite.  The product was created in 

the GeoTIFF raster format for easy import into GIS software for viewing and manipulation. The product is freely 

available for download at http://dx.doi.org/10.25901/5ce795d313db8 

 

 

5.3 Future Work 

 

This study has opened up further areas of research with the MEP performing very well at the field, catchment and 

continental scales.  

The first manuscript of this study identified the effect of advection when the MEP ET is estimated at high temporal 

resolution. The inclusion of a horizontal advection equation in the MEP model is entirely possible and would be 

a study that would be useful in improving the performance of the MEP under specific environmental conditions. 

Further development of the MEP ET from continental scale to global scale at a higher spatial resolution using data 

from satellites in orbit as well as the inclusion of the sensible heat fluxes is a priority future study. 

 

 

 

 

http://dx.doi.org/10.25901/5ce795d313db8
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Appendix A: MEP Model 
 

The MEP model of evaporation and transpiration was derived from the dissipation function in Equation (A1) in 

(Wang and Bras (2011) 

𝐷𝐷(𝐸𝐸,𝐺𝐺,𝐻𝐻) ≡ 2𝐸𝐸2

𝐼𝐼𝑒𝑒
+ 2𝐺𝐺2

𝐼𝐼𝑠𝑠
+ 2𝐻𝐻2

𝐼𝐼𝑎𝑎
         (A1) 

where 𝐼𝐼𝑒𝑒 , 𝐼𝐼𝑠𝑠 , and 𝐼𝐼𝑎𝑎 are the thermal inertia relative to latent heat, ground heat and sensible heat flux, respectively, 

 

𝐼𝐼𝑠𝑠 = �2.1𝜌𝜌�1.2−0.02� 𝜌𝜌
𝜌𝜌𝑤𝑤

�100𝜃𝜃�𝑣𝑣
�−0.007�100𝜃𝜃𝜌𝜌𝜌𝜌𝑤𝑤

−20�
2
�

+ 𝜌𝜌�0.8+0.02� 𝜌𝜌
𝜌𝜌𝑤𝑤

�100𝜃𝜃��
0.5

× �
�20𝜃𝜃𝜌𝜌𝑤𝑤

�𝜌𝜌2

0.01
�   (A2)  

𝐼𝐼𝑠𝑠 is parameterized as a function of soil moisture and water density and bulk density (Cai et al., 2007) where 𝜌𝜌𝑤𝑤 

is density of water (kg/m3); 𝜃𝜃 is the soil moisture content of the soil (m3/m3); 

𝐼𝐼𝑜𝑜 =  𝐶𝐶𝑜𝑜𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝√𝑘𝑘𝑧𝑧 �
𝑘𝑘𝑘𝑘𝑘𝑘

𝜌𝜌𝑎𝑎𝐶𝐶𝑝𝑝𝑇𝑇𝑟𝑟
�
1
6
                      (A3)           

𝐶𝐶𝑜𝑜 is the empirical constant characterizing the atmospheric stability (Businger et al., 1971): 𝐶𝐶𝑜𝑜 = 1.7 Unstable, 

1.2 Stable; 𝜌𝜌𝑎𝑎 is the density of air (Kgm-3); 𝑘𝑘 = 0.4 the von Kármán constant; 𝑧𝑧 is the distance above the target 

surface for which the Monin-Obukhov similarity theory is valid (m); 𝑔𝑔 = 9.8 m/s2 the acceleration due to gravity; 

𝐸𝐸𝑟𝑟 (~ 300 K) is an atmospheric reference temperature;  

 𝐼𝐼𝑎𝑎 =  𝐼𝐼𝑜𝑜|𝐻𝐻|−
1
6,  𝐼𝐼𝑒𝑒 = 𝜎𝜎𝐼𝐼𝑎𝑎 ,           (A4) 

In the MEP equation over vegetated land surface in Wang and Bras (2011), the reciprocal Bowen ratio; 𝛽𝛽(𝜎𝜎) =

6��1 + 11
36
𝜎𝜎 − 1� , was introduced to represent the target surface conditions as a function of specific humidity 

and temperature, where 𝜎𝜎 = 𝜆𝜆2

𝑐𝑐𝑝𝑝𝑅𝑅𝑣𝑣
𝑞𝑞𝑠𝑠
𝐸𝐸𝑠𝑠2

;  

where 𝑞𝑞𝑠𝑠𝑎𝑎𝑠𝑠  (saturated specific humidity in the stomatal cavity) is constrained by the opening and closing of the 

stomatal cavity defined by the parameter 𝜂𝜂𝑠𝑠. Where 𝜂𝜂𝑠𝑠 is a value between 0 and 1. When there is complete closure 

of the stomatal cavity, 𝜂𝜂𝑠𝑠 is 0 and when the stomatal cavity is completely open, 1.   

𝑞𝑞𝑠𝑠𝑎𝑎𝑠𝑠 = 𝜂𝜂𝑠𝑠(𝑞𝑞𝑠𝑠)            (A5) 

. Hence, the MEP flux equations over vegetated land can be written as,   

𝐸𝐸𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽(𝜎𝜎)𝑣𝑣

−1 , 𝐻𝐻𝑣𝑣 = 𝑅𝑅𝑛𝑛_𝑣𝑣
1+ 𝛽𝛽(𝜎𝜎)𝑣𝑣

         (A6) 
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At regional scales where air specific humidity and air temperature are used as surrogates of canopy surface specific 

humidity and temperature, 𝛽𝛽(𝜎𝜎) in equation A5 is replaced with  𝜎𝜎 

𝜃𝜃 @𝐹𝐹𝐶𝐶 =  7.561 +  1.176𝐶𝐶𝐴𝐴𝐴𝐴𝑦𝑦 –  0.009843𝐶𝐶𝐴𝐴𝐴𝐴𝑦𝑦2  +  0.2132𝑆𝑆𝑖𝑖𝐴𝐴𝐴𝐴     (A7) 

 𝜃𝜃 @𝑃𝑃𝑃𝑃𝑃𝑃 = – 1.304 +  1.117𝐶𝐶𝐴𝐴𝐴𝐴𝑦𝑦 –  0.009309𝐶𝐶𝐴𝐴𝐴𝐴𝑦𝑦2       (A8) 

Pedotransfer functions in Equations A6 and A7 are used to determine the soil moisture content at field capacity 

and permanent wilting point as the inputs into the Hutson and Cass model in Equation. FC is the field capacity (-

); Clay and Silt are the clay and silt fraction of the soil; and PWP is permanent wilting point (-).  

In calculating the specific humidity, the Clausius-Clapeyron equation is used to determine the saturated vapour 

pressure;     

𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠 = 0.611 × exp �( λ
𝑅𝑅𝑣𝑣

) × � 1
273

− 1
𝑇𝑇
��               (A9) 

where 𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠 is the saturated is vapour pressure (kPa); λ is the latent heat of vaporisation 2.5 × 106JKg-1; 𝑅𝑅𝑣𝑣 is the 

gas constant for moist air at 461 Jkg-1K-1 and T is temperature in Kelvin (K) 

𝑣𝑣𝑎𝑎𝑐𝑐𝑠𝑠 = RH ×  𝑣𝑣𝑠𝑠𝑎𝑎𝑠𝑠                      (A10) 

Where 𝑣𝑣𝑎𝑎𝑐𝑐𝑠𝑠 is the actual vapour pressure (kPa) and RH is the relative humidity in fraction 

𝑟𝑟 =  𝜀𝜀 × ( 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎
𝑃𝑃−𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎

)                      (A11) 

Where r is the mixing ratio in kg/kg, 𝜀𝜀 is 𝜀𝜀 = 𝑅𝑅𝑑𝑑
𝑅𝑅𝑣𝑣

 , the ratio of the specific gas constant for dry air (Jkg-1K-1) to the 

specific gas constant for water vapour (Jkg-1K-1).  

Once the mixing ratio is obtained, we solve for specific humidity (𝑞𝑞) 

𝑞𝑞 = 𝑟𝑟
𝑟𝑟+1

                       (A12) 

The MEP model was validated by the EC using the statistical metrics: RMSE, MAE, R, NSE and PBIAS, where;    

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛� )2𝑁𝑁
𝑛𝑛=1

𝑁𝑁
                      (A13) 

𝑀𝑀𝐴𝐴𝐸𝐸 = ∑ |𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛� |𝑁𝑁
𝑛𝑛=1

𝑁𝑁
                      (A14) 

𝑅𝑅 = �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄)(𝑁𝑁
𝑛𝑛=1 𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�  �

 �∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2�∑ (𝑄𝑄𝑛𝑛�−𝑄𝑄𝑛𝑛�𝑁𝑁

𝑛𝑛=1 )2
                     (A15) 

𝑁𝑁𝑆𝑆𝐸𝐸 = 1 − ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )2

 ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑁𝑁
𝑛𝑛=1 )2

                     (A16) 

𝑃𝑃𝑃𝑃𝐼𝐼𝐴𝐴𝑆𝑆 = 100 × ∑ (𝑄𝑄𝑛𝑛−𝑄𝑄𝑛𝑛�𝑁𝑁
𝑛𝑛=1 )

 ∑ 𝑄𝑄𝑛𝑛𝑁𝑁
𝑛𝑛=1

                    (A17) 
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where 𝑥𝑥𝑛𝑛 and 𝑦𝑦𝑛𝑛 are observed and simulated daily ET values (mm); 𝑁𝑁 is the number of observed or simulated ET 

values; 𝑄𝑄𝑛𝑛 (mm) is the measured ET at day 𝑛𝑛; 𝑄𝑄𝑛𝑛�  (mm) is the simulated ET at day 𝑛𝑛; 𝑄𝑄𝑛𝑛�  (mm) is the mean 

simulated discharge at day 𝑛𝑛; and 𝑄𝑄 (mm) is the mean ET. 

 

 

 

  



100 
 

Appendix B: Evapotranspiration in SWAT 
SWAT provides the user with three options of modelling ET at the HRU level and at daily temporal resolution 

(Penman-Monteith, Hargreaves or Priestly-Taylor methods). In this study, the Penman-Monteith method is used. 

SWAT initially calculates the potential evapotranspiration (PET) for a reference crop (Alfalfa) using the Penman-

Monteith equation for well-watered plants (Jensen et al., 1990), 

 𝜆𝜆𝐸𝐸0 =
∆(𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎−𝐺𝐺)+𝜌𝜌.𝑐𝑐𝑝𝑝.𝑒𝑒𝑠𝑠𝑎𝑎𝑎𝑎 −𝑒𝑒

𝑟𝑟𝑎𝑎
∆+𝛾𝛾(1+𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎

)
          (B1) 

 

where λ is the latent heat of vaporization (MJ kg-1); 𝐸𝐸0 is the potential evapotranspiration rate (mm/d); ∆ is the 

slope of the saturation vapor pressure vs temperature curve (kPa oC-1); 𝐻𝐻𝑛𝑛𝑒𝑒𝑠𝑠  is the net radiation at the surface (MJ 

m-2 d-1); 𝐺𝐺 is the heat flux density to the ground (MJ m-2 d-1); 𝜌𝜌 is the air density (kg m-3); 𝑐𝑐𝑝𝑝 is the specific heat of 

dry air at constant pressure (J kg-1 K-1); P is the atmospheric pressure (kPa); esat is saturation vapor pressure of air 

(kPa); 𝑣𝑣 is water vapor pressure (kPa); 𝑟𝑟𝑎𝑎 is the aerodynamic resistance (s m-1); 𝛾𝛾 is the psychometric constant 

(kPa oC-1) and 𝑟𝑟𝑐𝑐  is the canopy resistance (s m-1).  

 

Total ET (AET) in SWAT is made up of four components: canopy evaporation, transpiration, soil evaporation 

and groundwater ET (Revap). Revap is the movement of water from the saturated zone into the overlying 

unsaturated zone to supplement the water need for evapotranspiration. The Revap process may be insignificant in 

regions where the saturated zone is much deeper than the root zone and as such the result is separately reported 

from the ET result in the SWAT result database. As SWAT calculates Revap separately, for a calculation of AET 

in regions where the saturated zone is within the root zone, the user should add the Revap result column to the ET 

calculations. The AET components are calculated from the PET starting with the canopy evaporation. For this 

first component the following storage equations are used in determining the volume of water available for 

evaporation from the wet canopy in SWAT  

𝐶𝐶𝑑𝑑𝑎𝑎𝑦𝑦 =  𝐶𝐶𝑚𝑚𝑥𝑥  � 𝐿𝐿𝑎𝑎𝑤𝑤
𝐿𝐿𝑎𝑎𝑤𝑤_𝑚𝑚𝑚𝑚

�                       (B2) 

when R′day ≤ Cday − Rint(i): 

𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑓𝑓) =  𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑖𝑖) + 𝑅𝑅′𝑑𝑑𝑎𝑎𝑦𝑦  ; 𝐴𝐴𝑛𝑛𝑎𝑎 𝑅𝑅𝑑𝑑𝑎𝑎𝑦𝑦 = 0                     (B3) 

when  R′
day > Cday −  Rint(i): 

𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑓𝑓) =  𝐶𝐶𝑑𝑑𝑎𝑎𝑦𝑦;  𝑅𝑅𝑑𝑑𝑎𝑎𝑦𝑦 =  𝑅𝑅′𝑑𝑑𝑎𝑎𝑦𝑦 − � 𝐶𝐶𝑑𝑑𝑎𝑎𝑦𝑦 −  𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑖𝑖)�                    (B4) 
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where 𝐶𝐶𝑑𝑑𝑎𝑎𝑦𝑦 is the maximum amount of water that can be stored in the canopy on a given day (mm); 𝐶𝐶𝑚𝑚𝑥𝑥 is the 

amount of water that can be stored in the canopy when the canopy is fully matured (mm); 𝐿𝐿𝑎𝑎𝑖𝑖  is the leaf area index 

on a given day (); 𝐿𝐿𝑎𝑎𝑖𝑖_𝑚𝑚𝑥𝑥 is the maximum leaf area index when the plant is fully matured (-); 𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑖𝑖) is the initial 

amount of free water available in the canopy at the beginning of the day (mm); 𝑅𝑅𝑖𝑖𝑛𝑛𝑠𝑠(𝑓𝑓) is the final amount of free 

water available in the canopy at the end of the day (mm); 𝑅𝑅′𝑑𝑑𝑎𝑎𝑦𝑦 is the amount of precipitation on a given day 

before accounting for canopy interception (mm); and 𝑅𝑅𝑑𝑑𝑎𝑎𝑦𝑦 is the amount of precipitation reaching the soil on a 

given day (mm). 

 

The SWAT ET algorithm initially evaporates as much water as can be accommodated in the PET from the wet 

canopy. If the total volume of water in canopy storage equals or exceeds PET for the day, then ET is calculated 

as  

𝐸𝐸𝑎𝑎 = 𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛 = 𝐸𝐸0            (B5) 

where 𝐸𝐸𝑎𝑎 is AET (mm d-1); 𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛 is evaporation from canopy constrained by 𝐸𝐸0, i.e. PET (mm d-1). However, if 

the water in canopy storage is less than the PET for the day, transpiration, soil evaporation and Revap are 

constrained by 𝐸𝐸0′ , which is the potential evapotranspiration adjusted for the evaporation of the water on the 

canopy surface (mm d-1). 

𝐸𝐸0′ = 𝐸𝐸0 − 𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛            (B6) 

The second AET component (transpiration) of SWAT is calculated using the following equations; 

𝜆𝜆𝐸𝐸𝑠𝑠_𝑚𝑚𝑎𝑎𝑥𝑥 =
∆(𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎−𝐺𝐺)+𝛾𝛾K(0.622.𝜆𝜆.𝜌𝜌

𝑃𝑃 )𝑒𝑒𝑠𝑠𝑎𝑎𝑎𝑎 −𝑒𝑒
𝑟𝑟𝑎𝑎

∆+𝛾𝛾(1+𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎
)

         (B7) 

𝑃𝑃𝑘𝑘 = �𝐸𝐸𝑎𝑎_𝑚𝑚𝑎𝑎𝑚𝑚
1−𝑒𝑒−𝜏𝜏

�  × �1 − 𝑣𝑣(−𝜏𝜏 ×( 𝑧𝑧𝑧𝑧𝑟𝑟)�         (B8) 

𝑃𝑃′𝑙𝑙 = 𝑃𝑃𝑙𝑙 + (𝑃𝑃𝑑𝑑 × 𝑣𝑣𝑝𝑝𝑐𝑐𝑜𝑜)           (B9) 

𝑃𝑃"𝑙𝑙 =  𝑃𝑃′𝑙𝑙  ×  𝑣𝑣
�5×�

𝑆𝑆𝑤𝑤𝑤𝑤
�0.25×𝐴𝐴𝑤𝑤𝑎𝑎𝑤𝑤�

−1��
 𝑤𝑤ℎ𝑣𝑣𝑛𝑛 𝑆𝑆𝑤𝑤𝑙𝑙 < 25% 𝑜𝑜𝑓𝑓 𝐴𝐴𝑤𝑤𝑐𝑐𝑙𝑙                  (B10) 

𝑃𝑃"𝑙𝑙 =  𝑃𝑃′𝑙𝑙 𝑤𝑤ℎ𝑣𝑣𝑛𝑛 𝑆𝑆𝑤𝑤𝑙𝑙 > 25% 𝑜𝑜𝑓𝑓 𝐴𝐴𝑤𝑤𝑐𝑐𝑙𝑙                    (B11) 

𝐸𝐸𝑠𝑠,𝑙𝑙 =   min [𝑃𝑃"𝑙𝑙 , �𝑆𝑆𝑤𝑤𝑙𝑙 − 𝑃𝑃𝑝𝑝𝑙𝑙�]                    (B12) 

𝐸𝐸𝑠𝑠 = ∑ 𝐸𝐸𝑠𝑠,𝑙𝑙
𝑛𝑛
𝑙𝑙=1                       (B13) 

where  𝐸𝐸𝑠𝑠_𝑚𝑚𝑎𝑎𝑥𝑥 is the maximum transpiration rate (mm/d); 𝐾𝐾 =  8.64 × 104; P is the atmospheric pressure (kPa); 

𝑃𝑃𝑘𝑘 is the potential water taken up by plant from the soil surface to a specific depth (mm/d) 𝑧𝑧; τ is the plant water 

consumption distribution function; 𝑧𝑧 is the depth from soil surface (mm); 𝑧𝑧𝑟𝑟 is the plant root depth from soil 
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surface (mm); 𝑃𝑃𝑙𝑙 is the potential water consumption by plant in the soil layer 𝐴𝐴 (mm); 𝑃𝑃′𝑙𝑙  is the potential water 

consumption by plant in the layer 𝐴𝐴 adjusted for demand (mm); 𝑃𝑃𝑑𝑑 is the plant water consumption demand deficit 

from overlying soil layers (mm); 𝑣𝑣𝑝𝑝𝑐𝑐𝑜𝑜 is the plant water consumption compensation factor (-); 𝑃𝑃"𝑙𝑙 is the potential 

plant water consumption adjusted for initial soil water content (mm); 𝑆𝑆𝑤𝑤𝑙𝑙  is the soil water content of layer 𝐴𝐴 in a 

day (mm); 𝐴𝐴𝑤𝑤𝑐𝑐𝑙𝑙  is the available water capacity of layer 𝐴𝐴 (mm); 𝑃𝑃𝑝𝑝𝑙𝑙 is soil water content of layer 𝐴𝐴 at wilting point 

(mm); 𝐸𝐸𝑠𝑠,𝑙𝑙 is the actual transpiration water volume from layer 𝐴𝐴 in a given day (mm/d); 𝐸𝐸𝑠𝑠 is the total actual 

transpiration by plants in a given day (mm/d). Plant transpiration parameters such as stomatal conductance, 

maximum leaf area index and maximum plant height are retrieved from a SWAT database while climate data 

required by the Penman-Monteith method are sourced from input data. 

 

The third AET SWAT component, the soil evaporation on a given day, is a function of the transpiration, degree 

of shading and potential evapotranspiration adjusted for canopy evaporation. The maximum soil evaporation on 

a given day (𝐸𝐸𝑠𝑠) (mm d-1) is calculated as  

𝐸𝐸𝑠𝑠 = 𝐸𝐸0′𝑐𝑐𝑜𝑜𝑣𝑣𝑠𝑠𝑜𝑜𝑙𝑙                       (B14) 

𝑐𝑐𝑜𝑜𝑣𝑣𝑠𝑠𝑜𝑜𝑙𝑙 = 𝑣𝑣(−5.0 10−5𝐶𝐶𝐶𝐶)                     (B15) 

where 𝑐𝑐𝑜𝑜𝑣𝑣𝑠𝑠𝑜𝑜𝑙𝑙  is the soil cover index (-) and 𝐶𝐶𝑉𝑉 is the aboveground biomass for the day (kg/ha). The maximum 

possible soil evaporation in a day is then subsequently adjusted for plant water use (𝐸𝐸𝑠𝑠′) (mm d-1) 

𝐸𝐸𝑠𝑠′ = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝐸𝐸𝑠𝑠 , 𝐸𝐸𝑠𝑠 𝐸𝐸0
′

𝐸𝐸𝑠𝑠+ 𝐸𝐸𝑎𝑎
 �                     (B16) 

The SWAT ET algorithm then partitions the evaporative demand between the soils layers, with the top 10 mm of 

soil accounting for 50% of soil water evaporated. Equation 17 and 18 are used to calculate the evaporative demand 

at specific depths and evaporative demands for soil layers respectively.  

𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘 = 𝐸𝐸𝑠𝑠′′
𝑘𝑘

𝑘𝑘 + 𝑒𝑒(2.374−(0.00713 𝑧𝑧))                       (B17) 

𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘𝑙𝑙 − 𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘𝑧𝑧 . 𝑣𝑣𝑠𝑠𝑐𝑐𝑜𝑜                    (B18) 

𝐸𝐸′𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙  ×  𝑣𝑣
�2.5×�

𝑆𝑆𝑤𝑤𝑤𝑤−𝐹𝐹𝑎𝑎𝑤𝑤
�𝐹𝐹𝑎𝑎𝑤𝑤−𝑊𝑊𝑝𝑝𝑤𝑤�

−1��

 𝑤𝑤ℎ𝑣𝑣𝑛𝑛 𝑆𝑆𝑤𝑤𝑙𝑙 < 𝐹𝐹𝑐𝑐𝑙𝑙                 (B19) 

𝐸𝐸′𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 =  𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙  𝑤𝑤ℎ𝑣𝑣𝑛𝑛 𝑆𝑆𝑤𝑤𝑙𝑙 > 𝐹𝐹𝑐𝑐𝑙𝑙                    (B20) 

𝐸𝐸"𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 =   min [𝐸𝐸′𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 , 0.8�𝑆𝑆𝑤𝑤𝑙𝑙 − 𝑃𝑃𝑝𝑝𝑙𝑙�]                   (B21) 

𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 = ∑ 𝐸𝐸"𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙𝑛𝑛
𝑙𝑙=1                      (B22) 
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where 𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘 is the water demand for evaporation at depth 𝑧𝑧 (mm); 𝐸𝐸𝑠𝑠′′ is the maximum possible water to be 

evaporated in a day (mm); 𝑣𝑣𝑠𝑠𝑐𝑐𝑜𝑜 is the soil evaporation compensation factor; 𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 is the water demand for 

evaporation in layer 𝐴𝐴 (mm); 𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘𝑙𝑙 is the evaporative demand at the lower boundary of the soil layer (mm); 

𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑘𝑘𝑧𝑧 is the evaporative demand at upper boundary of the soil layer (mm); 𝐹𝐹𝑐𝑐𝑙𝑙 is the water content of the soil 

layer 𝐴𝐴  at field capacity (mm) and 𝐸𝐸"𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙,𝑙𝑙 is the volume of water evaporated from soil layer 𝐴𝐴 (mm/d); 𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙  is the 

total volume of water evaporated from soil on a given day (mm/d).  

 

The fourth component of the ET calculations in SWAT is referred to as “Revap”. Revap in SWAT is the amount 

of water transferred from the hydraulically connected shallow aquifer to the unsaturated zone in response to water 

demand for evapotranspiration. The Revap component in SWAT is akin to ET from groundwater. Revap is often 

a dominant catchment process in a groundwater dependent ecosystem and it is calculated at the HRU scale. Revap 

is estimated as a fraction of the potential evapotranspiration (PET) and it is dependent on a threshold depth of 

water in the shallow aquifer which is set by the user.  

𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥  =  𝛽𝛽𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝𝐸𝐸0                     (B23)  

𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝  =  𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥 − 𝐴𝐴𝑠𝑠ℎ𝑟𝑟   if 

 𝐴𝐴𝑠𝑠ℎ𝑟𝑟 <  𝐴𝐴𝑠𝑠ℎ < (𝐴𝐴𝑠𝑠ℎ𝑟𝑟 + 𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥)                                 (B24) 

𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝 = 0           if 𝐴𝐴𝑠𝑠ℎ ≤ 𝐴𝐴𝑠𝑠ℎ𝑟𝑟                               (B25) 

𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝 =  𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥         if 𝐴𝐴𝑠𝑠ℎ ≥ (𝐴𝐴𝑠𝑠ℎ𝑟𝑟 + 𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥)                            (B26) 

where 𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝,𝑚𝑚𝑥𝑥 is the maximum volume of water transferred to the unsaturated zone in response to water 

shortages for the day (mm);  𝛽𝛽𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝 is the Revap coefficient (-); 𝑤𝑤𝑟𝑟𝑒𝑒𝑣𝑣𝑎𝑎𝑝𝑝 is the actual volume of water transferred 

to the unsaturated zone to supplement water shortage for the day (mm); 𝐴𝐴𝑠𝑠ℎ is the water volume stored in the 

shallow aquifer at the beginning of the day (mm); and the 𝐴𝐴𝑠𝑠ℎ𝑟𝑟 is the threshold water level in the shallow aquifer 

required for Revap to occur (mm) (Neitsch et al., 2011).  
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Appendix C: MODIS Evapotranspiration 
 

ET in the MOD16 is a summation of three components: wet canopy evaporation, plant transpiration and soil 

evaporation. Wet canopy evaporation (𝜆𝜆𝑐𝑐𝑎𝑎𝑛𝑛) in MOD16 is calculated using a modified version of the Penman-

Monteith equation,  

𝜆𝜆𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛 =
(𝛥𝛥𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎  𝐹𝐹𝐶𝐶)+𝜌𝜌𝑐𝑐𝑝𝑝(𝑒𝑒𝑠𝑠𝑎𝑎𝑎𝑎 −𝑒𝑒)

 𝐹𝐹𝑝𝑝𝑎𝑎𝑟𝑟
𝑟𝑟𝑎𝑎

 𝐹𝐹𝑤𝑤𝑒𝑒𝑎𝑎

𝛥𝛥+�
𝑃𝑃 𝐶𝐶𝑝𝑝 𝑟𝑟𝑣𝑣𝑎𝑎
𝜆𝜆  𝜀𝜀  𝑟𝑟𝑎𝑎

�
         (C1) 

Where the parameters are as earlier defined, 𝜆𝜆𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛  is the latent heat flux (Wm-2); 𝐻𝐻𝑛𝑛𝑒𝑒𝑠𝑠 is net radiation relative to 

canopy (Wm-2);  𝐹𝐹𝑝𝑝𝑎𝑎𝑟𝑟 is the fraction of absorbed photosynthetically active radiation ; 𝐹𝐹𝑤𝑤𝑒𝑒𝑠𝑠  is the fraction of the 

soil covered by water; 𝑟𝑟𝑣𝑣𝑐𝑐  is the resistance to latent heat transfer (s m-1);  and 𝜀𝜀 is the emissivity.  

 

The plant transpiration (𝜆𝜆𝐸𝐸𝑠𝑠) is calculated using another variation of the Penman-Monteith equation,  

𝜆𝜆𝐸𝐸𝑠𝑠 =
(𝛥𝛥𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎  𝐹𝐹𝐶𝐶)+𝜌𝜌𝑐𝑐𝑝𝑝(𝑒𝑒𝑠𝑠𝑎𝑎𝑎𝑎 −𝑒𝑒) 𝐹𝐹𝐶𝐶

𝑟𝑟𝑎𝑎
(1− 𝐹𝐹𝑤𝑤𝑒𝑒𝑎𝑎)

∆+𝛾𝛾�1+ 𝑟𝑟𝑎𝑎 
 𝑟𝑟𝑎𝑎

� 
         (C2) 

The soil evaporation (𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙) is a summation of the potential soil evaporation (𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙_𝑃𝑃𝑃𝑃𝑇𝑇) limited by the soil 

moisture constraint function (Fisher et al., 2008) and the evaporation from wet soil (𝜆𝜆𝐸𝐸𝑤𝑤𝑒𝑒𝑠𝑠_𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙), 

𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 =  𝜆𝜆𝐸𝐸𝑤𝑤𝑒𝑒𝑠𝑠_𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 +  𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙_𝑃𝑃𝑃𝑃𝑇𝑇 �
𝑅𝑅ℎ
100
�
𝑉𝑉𝑃𝑃𝑃𝑃
𝜙𝜙          (C3) 

𝜆𝜆𝐸𝐸𝑤𝑤𝑒𝑒𝑠𝑠_𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙 =
(𝛥𝛥  𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎)+𝜌𝜌𝑐𝑐𝑝𝑝(1.0 − 𝐹𝐹𝐶𝐶)𝑉𝑉𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎

(𝐹𝐹𝑤𝑤𝑒𝑒𝑎𝑎)

𝛥𝛥+𝛾𝛾� 𝑟𝑟𝑎𝑎𝑜𝑜𝑎𝑎 
 𝑟𝑟𝑎𝑎

� 
        (C4) 

𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙_𝑃𝑃𝑃𝑃𝑇𝑇 =
(𝛥𝛥𝐻𝐻𝑛𝑛𝑒𝑒𝑎𝑎)+𝜌𝜌𝑐𝑐𝑝𝑝(1.0 − 𝐹𝐹𝐶𝐶)𝑉𝑉𝑃𝑃𝑃𝑃𝑟𝑟𝑎𝑎

(1−𝐹𝐹𝑤𝑤𝑒𝑒𝑎𝑎)

𝛥𝛥+𝛾𝛾� 𝑟𝑟𝑎𝑎𝑜𝑜𝑎𝑎 
 𝑟𝑟𝑎𝑎

� 
         (C5) 

where 𝐻𝐻𝑛𝑛𝑒𝑒𝑠𝑠 and  𝑟𝑟𝑎𝑎 are relative to the soil surface;  𝑟𝑟𝑠𝑠𝑜𝑜𝑠𝑠  is the total aerodynamic resistance to vapor transport (s m-

1); 𝑉𝑉𝑃𝑃𝐷𝐷 is the vapor pressure deficit (Pa); 𝑅𝑅ℎ is the relative humidity (%); and β is a dimnesionless coefficient 

defining the relative sensitivity of 𝑅𝑅ℎ to 𝑉𝑉𝑃𝑃𝐷𝐷. In MOD16 the constant ϕ is set to 200. 

Total evapotranspiration (𝜆𝜆𝐸𝐸) in MOD16 is thus calculated as  

𝜆𝜆𝐸𝐸 =  𝜆𝜆𝐸𝐸𝑐𝑐𝑎𝑎𝑛𝑛 + 𝜆𝜆𝐸𝐸𝑠𝑠 + 𝜆𝜆𝐸𝐸𝑠𝑠𝑜𝑜𝑖𝑖𝑙𝑙          (C6) 
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