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Abstract

The incompressible Bingham fluid can be found in various chemical, metal, and food

industries, e.g., margarine, mayonnaise and ketchup. The flow field of a Bingham fluid is

divided into two regions: the first is an unyielded zone where the fluid is at rest or undergoes

a rigid motion, and the second where the fluid flows like a viscous liquid. In the unyielded

zone, the second invariant of the extra stress tensor is less than or equal to the yield stress

and a constitutive relation does not exist. In the yielded region, this invariant exceeds the

yield stress and a constitutive relation exists for the extra stress tensor. Thus, the location

and shape of the yield surface(s), i.e., the interface between these two sets, is also a part

of the solution of flow problems of such fluids. The hydrodynamic and thermal effects

are two interesting aspects arising in the research of the flows of incompressible Bingham

fluids. This thesis is concerned with macroscopic and mesoscopic numerical investigations of

isothermal (lid-driven cavity, steady flow in a pipe) and non-isothermal (natural convection in

an enclosure and mixed convection in a lid-driven cavity) problems of Bingham fluids. Firstly,

a general mesoscopic method based on Lattice Boltzmann Method (LBM) is derived which

can be applied to all fluids, whether they be Newtonian, or power law fluids, or viscoelastic or

viscoplastic fluids. In fact, an innovative model for the distribution functions, which leads to

the conservation of mass, momentum, and energy equations, and applicable to incompressible

fluids without any drawbacks, is introduced. The Finite Difference Lattice Boltzmann Method

(FDLBM) and the Thermal Difference Discrete Flux Method (TDDFM) are derived, using

vector analysis and linear algebra. The applied algorithm for solving the main equations of



x

the discrete particle distribution function in the FDLBM and the internal energy distribution

function in the TDDFM is explained. The required equations for compressible fluids are also

derived and thereafter the method is extended to the flows of every type of fluid, compressible

or incompressible, in three dimensions. In addition, the Courant-Friedrichs-Lewy (CFL)

condition for the method is derived. The mesoscopic and macroscopic numerical methods for

the cited isothermal and non-isothermal problems are described in detail, using the Bingham

model and also a regularisation based on the Papanastasiou model. The lid-driven cavity flow

and the steady flow in a pipe have been studied by other researchers before, employing ALM

(Augmented Lagrangian Method) and OSM (Operator Splitting Method) respectively and

the obtained results by the mesoscopic method in the problems are compared with them. In

the case of the natural convection in a cavity, the problem had not been considered at the start

of the thesis by other researchers and therefore this problem has been solved by applying

the OSM to the Bingham model. Thereafter, the mesoscopic method has been applied to the

non-isothermal problem to simulate the natural convection in a cavity and mixed convection

in a lid-driven cavity, employing the Bingham and regularised Papanastasiou models.
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Chapter 1

Introduction

1.1 Background

1.1.1 Extra stress tensor

Stress is a measure of the forces transmitted when external forces are applied to a continuous

medium, whether it be a liquid or a solid. These forces are classified into two groups: body

forces and surface forces (contact forces). Body forces are applied on the elements of mass

like gravity and have the units force per mass. The contact forces act on the surface and are

expressed in stresses, i.e., in force per unit area. As a result, there are nine stresses including

three stresses (two shear stresses and a normal stress) in each of the x, y and z planes which

form the stress tensor (T); for example see Kennedy and Zheng (2013). Since there are no

body couples and couple stresses, this tensor is symmetric. In an incompressible fluid at rest,

the stress tensor is isotropic and given by (Huilgol (2009)):

T =−p1 , (1.1)

where p is the pressure.
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Additional stresses are generated as the fluid moves and the extra stress term must be

added to the pressure:

T =−p1+τττ. (1.2)

Note that 1 : τττ = 0 is true for all of the fluids studied in this thesis. Thus, the pressure is

uniquely defined as follows:

p =−(1/3)1 : T. (1.3)

The tensor τττ is called the extra stress tensor in incompressible material and can depend

on the unique pressure (p) as well (Huilgol (2009)). The extra stress tensor (τττ) must be

computed from the constitutive equation when the motion is known, and the traction is either

prescribed or calculated from the momentum equations and the applied boundary conditions.

1.1.2 The rate of deformation tensor

The motion of a fluid is in three forms of velocity, deformation, and rotation. From the

velocity vector, the deformation and rotation of the fluid are determined from the velocity

gradient tensor. The velocity gradient tensor L is defined through

Li j =
∂vi

∂x j
. (1.4)

The velocity gradient tensor is decomposed into a symmetric part (The rate of deformation

tensor (D)), defined through

D =
1
2
(L+LT ). (1.5)

The anti-symmetric part, which is called the spin tensor (W), is defined through

W =
1
2
(L−LT ). (1.6)
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There is another kinematic tensor utilised in the extra tensor of some fluids. It is the first

Rivlin-Ericksen tensor (Rivlin and Ericksen (1955)) and is equal to

A1 = 2D = L+LT . (1.7)

Later on, we will use the first Rivlin-Ericksen tensor in the definition of the constitutive

equation of the Bingham fluid.

We study incompressible flows only here, and the velocity field and the Rivilin-Ericksen

tensor must satisfy

∇ ·v = 0, tr A1 = A1 : 1 = 0. (1.8)

1.1.3 Newtonian and non-Newtonian fluids

Generally, fluids are classified into two main groups: Newtonian and non-Newtonian fluids.

In most fluids without memory, the main difference between Newtonian and non-Newtonian

fluids is the relationship between the extra stress tensor (τττ) and the rate of strain tensor (D), or

the first Rivlin-Ericksen tensor (A1 = 2D)). The constitutive equation of an incompressible

Newtonian fluid is written in the following form:

τττ = 2ηD = ηA1 , (1.9)

where η is the viscosity. Eq.(1.9) shows that the extra tensor has a linear relation with the

rate of deformation tensor or the first Rivlin-Ericksen tensor.

1.1.4 Bingham fluids

Viscoplastic fluids form a special sub-class of non-Newtonian fluids in which the flow field is

divided into two regions: the first is an unyielded zone where the fluid is at rest or undergoes
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a rigid motion, and the second where the fluid flows like a viscous liquid (Bingham (1922)).

In the unyielded zone, the second invariant of the extra stress tensor is less than or equal to

the yield stress and a constitutive relation is undefined. In the yielded region, this invariant

exceeds the yield stress and a constitutive relation exists for the extra stress tensor. Thus, the

location and shape of the yield surface(s), i.e. the interface between these two sets, is also

a part of the solution of flow problems of such fluids. Viscoplastic fluids occur in various

chemical, metal, and food industries, e.g., margarine, mayonnaise and ketchup. Viscoplastic

models include the Bingham model, Herschel-Bulkley model, and the Casson model.

The constitutive equation of an incompressible Bingham fluid is based on the assumption

that the fluid remains at rest or moves as a rigid body if the second invariant of the extra

stress tensor τττ is less than or equal to the yield stress τy. If the second invariant exceeds the

yield stress, the material flows like a fluid. The second invariants of the extra stress tensor τττ

and the first Rivlin-Ericksen tensor A1 are defined through

II(τττ) = (1/
√

2)
√

τττ : τττ , (1.10)

II(A1) = (1/
√

2)
√

A1 : A1 · (1.11)

Hence, using the first Rivlin-Ericksen tensor A1, the rigidity condition is given by

A1 = 0, II(τττ)≤ τy. (1.12)

When the second invariants of the extra stress tensor exceeds the yield stress, one defines the

Bingham stress tensor τττ as a function of the tensor A1 leading to the following relation:

τττ = ηA1 +
τy

II(A1)
A1, II(τττ)> τy. (1.13)
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1.1.5 Different models of Bingham fluids

The simulation of the flows of a Bingham fluid is a challenging problem and researchers

have proposed and applied various models (Mitsoulis (2007)) to simulate these flows and the

studies into this topic continue to attract a great deal of interest. The models can be divided

into using the strict Bingham model and several different modifications. In the strict Bingham

model, there is a transition from solid to fluid behaviour; whereas in all other regularized

models, it is replaced by a very viscous to viscous transition.

Bingham model for Dirichlet problems

Duvaut and Lions (1972, 1976) demonstrated that variational inequalities (VIs) are

appropriate methods for steady and unsteady flow problems in incompressible Bingham

fluids. They also proved the existence of a symmetric second order tensor field throughout

the flow domain under Dirichlet boundary conditions. This tensor, called a multiplier (the

ΛΛΛ in (1.14)) , is such that its ‘magnitude’ is less than one where the Bingham fluid exhibits

rigidity and equal to one where it has yielded. The solution of the flow problems employs the

Augmented Lagrangian Method (ALM) (Fortin and Glowinski (1983); Glowinski (1984)),

or the Operator Splitting Method (OSM) (Dean and Glowinski (2002); Huilgol and You

(2009); Sanchez (1998)) to solve different flow problems in Bingham fluids. The constitutive

equation of a Bingham fluid in this model is as follows:

T = ηA1 +
√

2τyΛΛΛ, 1 : ΛΛΛ = 0. (1.14)

The properties and the application of the tensor ΛΛΛ for different problems will be discussed in

chapters 4 and 5 in detail.



6 Introduction

Papanastasiou model

Papanastasiou (1987) proposed an exponential regularisation, by introducing a parameter

m, which controls the exponential growth of stress and has the dimension of time. In addition,

it is applicable in all regions, both in yielded and unyielded parts. In the Papanastasiou

model, the constitutive equation of the incompressible Bingham fluid is replaced by that of a

material with a non-Newtonian viscosity. That is,

τττ = η(II(A1))A1, (1.15)

where the viscosity η is the sum of the constant Newtonian viscosity η0, and the parameter

(m) dependent term. To be specific,

η(II(A1)) = η0 +
τy

II(A1)

[
1− exp(−mII(A1))

]
, m > 0, (1.16)

where m > 0 is a parameter which can be chosen arbitrarily. Note that the viscosity function

in Eq.(1.16) is a smooth function of its argument. As far as numerical modelling is concerned,

one can employ Eq.(1.16) and choose an appropriate value for the parameter m. A search

through the literature shows that m can be between 0.1 and 106.

Bercovier and Engelman model

Bercovier and Engelman (1980) analyzed a Bingham fluid in a two dimensional lid-driven

cavity, applying a different type of regularisation. However, the model did not have the ability

to define the yielded/unyielded sections clearly. They proposed a regularisation parameter

(The e in 1.17) which is very small and prevents the denominator of the fraction to become

zero. The proposed constitutive equation is



1.1 Background 7

τττ = ηA1 +
τy

II(A1)+ e
A1, II(τττ)> τy. (1.17)

As e → 0, this model turns into the Bingham fluid.

O’Donovan and Tanner model

O’Donovan and Tanner (1984) regularized the Bingham model with the so-called bi-

viscosity model, having two finite viscosity slopes. The model is written as

τττ = ηyieldA1, II(A1)≤
τy

ηyield
. (1.18)

τττ = τy +η(A1 −
τy

ηyield
), II(A1)>

τy

ηyield
(1.19)

where ηyield and η are the yield stress and the plastic viscosity, respectively. In fact, this

model replaces the unyielded material by a fluid of high viscosity. Thus, the nature of the

solid - fluid transition is lost as well.

In this thesis, we study the Bingham model and the Papanastasiou model in isothermal

and non-isothermal flow problems.

1.1.6 Lattice Boltzmann Method

Lattice Boltzmann Method (LBM), unlike macroscopic numerical methods; based on LBM,

which are based on discretization of macroscopic continuum equations (FEM, FVM, FDM,

and so on), and unlike molecular dynamics methods, which are based on atomic representation

with molecular collision rules, is based both on microscopic models and mesoscopic kinetic

equations. Currently, LBM is recognized as another powerful method in the Computational

Fluid Dynamics (CFD) area. This method has been applied to various problems of fluid
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dynamics and has delivered effective and appropriate results. Nevertheless, improvement in

the method is continuing in order to augment its ability to solve more complicated problems.

The derivation of the LBM is based on the Lattice Gas Cellular Automata (LGCA), first

presented by Hardy et al. (1973). The LGCA contains two steps: streaming and collision.

In streaming, each particle moves to the nearest node in the direction of its velocity. As

particles arrive at a node, collisions occur and their velocities change directions according

to scatter rules. However, this does not lead to Cauchy equations for a continuous medium

in the macroscopic limit. This problem was resolved by Frisch et al. (1987, 1986) who

proposed a higher symmetry hexagonal lattice model than the square lattice model of Hardy

et al. (1973). Even so, the LGCA suffered from statistical noise which prevented researchers

from employing it practically.

The nature of LBM is similar to LGCA and has been formed from the mentioned two steps

of LGCA (streaming and collision). However, LBM differs from LGCA in that instead of

Boolean variables representing particle occupation at the nodes, LBM uses a single-particle

distribution. This particle distribution denotes the density or the number per unit volume of

particles. LBM benefits from this replacement due to the elimination of statistical noise. The

cited issues were identified and corrected by McNamara and Zanetti (1988) in their work on

LBM. The equations and further studies in LBM are mentioned in the third chapter in detail.

1.2 Objective

The main objective of this thesis is to introduce a mesoscopic numerical method based

on LBM which can solve a variety of isothermal and non-isothermal flow problems of a

Bingham fluid. In addition, previous successful macroscopic numerical methods for Bingham

fluids are also examined. The relations between the mesoscopic and macroscopic variables

will be mentioned clearly and the main reason, in contrast with the previous applied LBM,

that the new approach can be successful in the simulation of isothermal and non-isothermal
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flows of Bingham fluids, is stated in this thesis. In addition, it is demonstrated that the

mesoscopic numerical method has the ability to be applied to the Bingham model as well

as the different regularised models. Hence, two important and widely studied isothermal

problems (steady flow in a lid-driven cavity and in a pipe of square cross-section) and a

non-isothermal problem (natural convection in a cavity) for Bingham fluids were selected

to be scrutinized by both macroscopic and mesoscopic numerical methods. The previously

solved isothermal Bingham fluid flow problems in a lid-driven cavity and in a pipe of square

cross-section flows using the OSM (Operator Splitting Method) and the ALM (Augmented

Lagrangian Method), respectively are studied and next, the mesoscopic method is applied to

these problems, comparing the obtained results with the cited macroscopic methods. For the

natural convection of Bingham fluids in a cavity, the macroscopic method based on the OSM,

has been used for the first time in this thesis. It provides a validation of the mesoscopic results.

In the next step, the results of the mesocopic simulation of isothermal and non-isothermal

flows of Bingham fluids have been compared with the ALM and OSM results. Finally, the

mixed convection of a Bingham fluid in a lid-driven cavity using the modified model of

Papanastasiou is studied using the mesoscopic method.
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1.3 Outline of the thesis

This thesis is divided into the following chapters:

Chapter Two

This chapter contains a review of the previous studies into four scrutinized problems in

this thesis, using macroscopic and mesoscopic methods. First, the flow in a lid-driven cavity

and that in a pipe using different macroscopic methods are discussed. In the next step, the

work done on non-isothermal problems of natural convection of Bingham fluids in a cavity,

utilising different numerical methods is mentioned as well as the previous work on mixed

convection of Bingham fluid in a cavity. Finally, the simulations of the flows of Bingham

fluids in several problems, applying mesoscopic methods, are reported to clarify the limited

studies in this area.

Chapter Three

A brief introduction about the history of the Lattice Boltzmann equation and the Bhat-

nagar–Gross–Krook (BGK) approximation in order to derive Cauchy’s equations of motion

for a compressible medium is explained. In addition, the method of deriving the incom-

pressible equations, using the BGK approximation and the main drawbacks of the method

including the weakness in simulation of non-Newtonian fluids flows are described. Hence,

an innovative model for the distribution functions, which leads to the conservation of mass,

momentum, and energy equations, and applicable to incompressible fluids without the cited

drawbacks, is introduced. The Finite Difference Lattice Boltzmann Method (FDLBM) and

the Thermal Difference Discrete Flux Method (TDDFM) are derived, using vector analysis
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and linear algebra. The applied algorithm for solving the main equations of the discrete

particle distribution function in the FDLBM and the internal energy distribution function in

the TDDFM is explained. The required equations for compressible fluids are also derived

and thereafter the method is extended to the flows of every type of fluid, compressible or

incompressible, in three dimensions. Finally, the Courant-Friedrichs-Lewy (CFL) condition

for the method is derived.

Chapter Four

In this chapter, isothermal flows of Bingham fluids in two different problems are stud-

ied. In the first case, the flow inside a lid-driven cavity is simulated. First, the Newtonian

fluid in the lid-driven cavity, employing the mesoscopic method, is scrutinized and the

obtained results are compared with those of previous studies to confirm the accuracy of the

mesoscopic method. Thereafter, the OSM for the simulation of the flow of the Bingham

fluid in the lid-driven cavity, which had been investigated by others, is explained. This flow

in the cavity, using the Bingham and the Papanastasiou models is simulated, applying the

mesoscopic method and the results are verified by previous investigations for the both models.

In the second case, the steady flow of a Bingham fluid in a pipe of square cross-section

is studied. In the first step, the ALM, which was applied to solve the problem by other

researchers, is defined. Then, the mesoscopic method is applied to simulate the problem,

employing the Bingham model and the results are validated by those obtained by ALM.

Chapter Five

Non-isothermal flows of Bingham fluids are studied in two different problems. The first
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problem is the natural convection of a fluid in a cavity. The flow of the Newtonian fluid is

simulated, using the mesoscopic method and the accuracy of the method is confirmed by

previous studies. Next, the OSM is employed to simulate the flows of Bingham fluids in

the natural convection for a wide range of non-dimensional parameters where the Bingham

model is applied. In the following part, the mesoscopic results in the natural convection of

the Bingham fluid flow, using the Bingham and Papanastasiou models are compared with

those derived by OSM. The second non-isothermal problem is the mixed convection of a

Bingham fluid in a lid-driven cavity. The mesoscopic method is applied to study the mixed

convection of the Bingham fluid, applying the Bingham and the Papanastasiou models.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, a brief description of the previous studies into Bingham fluids for two

isothermal (steady flow in a pipe and in a lid-driven cavity) and two non-isothermal (natural

convection and mixed convection) problems are given.

The steady flow of a Bingham fluid in a pipe is important in understanding the effects of

yielded/unyielded zones in the velocity profile. Hence, several studies into this topic have

been conducted.

The lid-driven flow in a cavity is the motion of a fluid inside a rectangular cavity created

by a constant translational velocity of one side while the other sides remain at rest. Such a

flow has been the subject of extensive computational and experimental studies over the past

few years and many studies into a lid-driven cavity filled with a Newtonian fluid have been

conducted (Ghia et al. (1982), Botella and Peyret (1998), Bruneau and Jouron (1990), Deng

et al. (1994), Sahin and Owens (2003), Hou et al. (1995)). The flow in a lid-driven cavity has

been used as a benchmark problem for many numerical methods as it covers a wide range of

complex hydrodynamics encompassing recirculation, different vortex structures, singularity,

transition and instability.
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Analysis of natural convection in enclosures has been extensively conducted using

different numerical techniques and experiments because of its wide applications and interest

in engineering such as nuclear energy, double pane windows, heating and cooling of buildings,

solar collectors, electronic cooling, and so on. The wide range of studies into this topic has

led to the natural convection in a cavity to become a common benchmark among researchers

in the field of CFD (Computational Fluid Dynamics). It consists of a two-dimensional cavity

and the temperature of the heated section on the left is maintained at a higher temperature

and the right wall is held at a lower temperature. The horizontal walls are considered to be

adiabatic and the density variation is approximated by the standard Boussinesq model. The

natural convection flow of a Newtonian fluid has been studied numerically by de Vahl Davis

(1983), Quéré and de Roquefort (1985), Quéré (1991).

Convection involving both free and forced convection is generally referred to as mixed

convection, which occurs when the buoyancy effects are superposed on a forced flow. Mixed

convection in a fluid-filled square cavity plays an important role in the area of heat and mass

transfer and has also been given a considerable attention over the past several years due to

the wide variety of its applications in science and engineering ( Waheed (2009), Iwatsu et al.

(1993), Khanafer and Chamkha (1999), Sharif (2007), Khanafer et al. (2007), Tiwari and

Das (2007), Abdelkhalek (2008)). For example, the flow is present in materials processing,

flow and heat transfer in solar ponds, dynamics of lakes, reservoirs and cooling ponds, crystal

growing, float glass production, metal casting, food processing, galvanizing, and metal

coating. However, most of the research has been limited to incompressible Newtonian fluids.
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2.2 Macroscopic simulation of Bingham fluids

2.2.1 Steady flows of Bingham fluids in a pipe

Mosolov and Miasnikov (1965, 1966, 1967) analysed mathematically the steady flow of

Bingham plastics in a pipe of arbitrary cross-section and proved several existence and

uniqueness theorems for the solution. They established the existence of a rigid core region

and those of stagnant regions near the corners with convex boundaries toward the corners.

They also obtained interesting results for the shape of the unyielded zones in the flow field

and the critical value of the pressure gradient below which the flow does not occur.

Atkinson and El-Ali (1992) carried out a local analysis of the pressure-driven Bingham

flow near the corners and showed the possible existence of ‘plug’ regions in the neighbour-

hood of acute corners.

Huilgol and Panizza (1995) applied variational inequalities to solve the Poiseuille flow

of a Bingham plastic through a duct of an L-shaped cross-section. They reported that the

stagnant zones are near the acute-angled corners in agreement with the theoretical predictions

of Mosolov and Miasnikov (1965, 1966, 1967) and Atkinson and El-Ali (1992).

Taylor and Wilson (1997) solved numerically the flow of a Bingham fluid in rectangular

ducts by means of finite differences using the regularisation of the constitutive equation

proposed by Bercovier and Engelman (1980). They noted, however, that their numerical

scheme could not work for small values of the regularisation parameter. As a consequence,

the computed yielded and unyielded regions were not accurate. In addition, they pointed

out that in agreement with the theory, that there would be stagnant regions at the corners

depending on the flow parameters.

Pham and Mitsoulis (1998) solved the flows of a Bingham plastic in ducts of various

cross-sections using the Papanastasiou regularisation. However, their results for the flow in a
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square duct were similar to those of Taylor and Wilson (1997) due to the low value of the

regularisation parameter employed.

Wang (1998) studied the flow of generalized viscoplastic fluids in a square duct and in an

eccentric annulus using the finite element method and tracking the yield surface by means

of a regularisation technique based on the theory of variational inequalities. He reported

that the plug zones are almost identical for various plastic models despite their different

shear-thinning behavior.

Frigaard (1998) considered the buoyancy driven flows of two Bingham fluids in an

inclined slot, providing a simplified model for the plug cementing process. These flows were

supposed to be near uniaxial and stratified, with the heavier fluid (cement) initially placed

above the lighter fluid (mud). Under the action of gravity, the cement slides down the lower

wall of the slot displacing the mud upwards, against the upper wall of the slot. The fluids

were assumed to be miscible, but not mixed. The perturbation solutions were utilised to

analyze the axial propagation of the interface height profile along the slot.

Accurate solutions of the steady Poiseuille flow of a Bingham fluid in a square duct were

obtained by Saramito and Roquet (2001) by means of a new mixed anisotropic auto-adaptive

finite element method, coupled with the Augmented Lagrangian Method (ALM). It was

found that calculating the location of the yield surface was not precise.

Huilgol and You (2005) applied the Augmented Lagrangian Method to the steady flow

problems of Bingham, Casson and Herschel-Bulkley fluids in pipes of circular and square

cross-sections.The plug flow velocity, the flow rate, the flow pattern, the velocity profile,

the locations of yielded/unyielded surfaces, the stopping criteria and the friction factor were

presented.

Huilgol (2006) developed a systematic procedure to determine the critical pressure

gradient for the initiation of viscoplastic flow as well as the shape of the yield surface when

the flow is about to commence in pipes of symmetric cross-section, such as a rectangle.
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It was also shown that the Mosolov–Miasnikov approach (Mosolov and Miasnikov (1965,

1966, 1967)) can be applied to all viscoplastic fluids with a constant yield stress, such as

Herschel-Bulkley and Casson fluids.

Moyers-Gonzalez and Frigaard (2004) studied the numerical solution of the flows in a duct

of multiple visco-plastic fluids using both the regularisation technique and the Augmented

Lagrangian Method (ALM). They demonstrated that the ALM was superior for the studied

problem.

Damianou and Georgiou (2014) solved numerically the Poiseuille flow of a Herschel

Bulkley fluid in a duct of rectangular cross section under the assumption that slip occurs

along the wall, using a slip law involving a non-zero slip yield stress. The constitutive

equation was regularized as proposed by Papanastasiou (1987). They studied four different

flow regimes defined by three critical values of the pressure gradient. Both Newtonian and

Bingham fluid flows were investigated. They compared their results with theoretical and

numerical results in the literature obtained with both the regularisation and the Augmented

Lagrangian Method. They reported that the unyielded regions were found accurately using

the Papanastasiou model, but the regularisation parameter should be sufficiently high, of the

order of 106 or higher.

Damianou et al. (2015) simulated numerically the cessation of the pressure driven

Poiseuille flow of a Bingham plastic under the assumption that slip occurs along the wall

following a generalized Navier-slip law involving a non-zero slip yield stress.The constitutive

and the slip equations were regularized by using the Papanastasiou model.

2.2.2 Lid-Driven cavity flows of Bingham fluids

Sanchez (1998) employed a first order operator splitting method (OSM) for the solution of

the time dependent variational inequality modeling of Bingham fluids in a lid-driven cavity.

This work included acceleration terms as well and is a benchmark study.
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Mitsoulis and Zisis (2001) studied the same problem. The Bingham constitutive equation

was modified by the Papanastasiou model (Papanastasiou (1987)). The constitutive equation

was solved together with the conservation equations using the finite element method (FEM)

as the Bingham number varied between Bn = 0 and 1000. It should be noted that just the

creeping flow of the fluid (Re = 0) was conducted in this study.

Dean and Glowinski (2002) studied computational methods for numerical simulation of

the unsteady flow of Bingham viscoplastic fluids in a lid-driven cavity. The operator splitting

method was utilised for the time-discretization.

Neofytou (2005) investigated the flow of non-Newtonian fluids with generalised Newto-

nian constitutive equations using a numerical scheme based on the finite volume formulation.

Among the studied non-Newtonian fluids, the modified and regularized Bingham model

based on the Papanastasiou model (Papanastasiou (1987)) was analysed in a lid-driven cavity.

Vola et al. (2003) proposed a numerical method to calculate the unsteady flows of

Bingham fluids without any regularisation of the constitutive law in a lid-driven cavity. The

strategy was based on the combination of the characteristic/Galerkin method to cope with

convection and of the Fortin–Glowinski decomposition/coordination method (Fortin and

Glowinski (1983)) to deal with the non-differentiable and nonlinear terms that derive from

the constitutive law. The results were presented for both creeping and non-creeping flows.

Huilgol and You (2009) studied the flows of incompressible and compressible Bingham

fluids in a lid-driven cavity, using the Bingham model for the constitutive equation and the

operator-splitting method was applied to solve the problem. Here, variational inequalities

for incompressible viscoplastic fluids depending largely on the existence of the viscoplastic

constraint tensor were used.

Olshanskii (2009) applied the semi-staggered finite-difference method to simulate the flow

of a Bingham fluid in a lid-driven cavity using the Bingham model. A special stabilization

was introduced to achieve optimal approximation properties of the scheme.
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Zhang (2010) applied the Augmented Lagrangian Method for Bingham fluid flows in a

lid-driven square cavity. Equal-order piecewise linear finite element spaces were employed

for both the velocity and pressure approximations. A mesh adaptive strategy was also

proposed based on the regularity of the numerical solutions.

Aposporidis et al. (2011) studied and simulated the Bingham fluid flow problem, consid-

ering both the Bingham and a regularized model in a lid-driven cavity. They introduced a

new formulation for the regularized Bingham flow equations. In addition, their applied mixed

formulation was compared to a non-regularized solver based on the Augmented Lagrangian

Method.

Santos et al. (2011) investigated the effect of inertia and rheology parameters on the flow

of viscoplastic fluids inside a lid-driven cavity using a stabilized finite element approximation.

The viscoplastic material behavior was simulated through the de Souza Mendes and Dutra

model (Mendes and Dutra (2004)) which is called the SMD fluid. The SMD model is

essentially based on a regularized viscosity function involving the rheological properties

of the material. The balance equations were coupled with the non-linear SMD model and

were approximated by a multi-field Galerkin least-squares method in terms of extra-stresses,

pressure and velocity. The numerical simulations were validated through the comparison

with the results in the literature for the flows of Bingham fluids.

Syrakos et al. (2013) studied the creeping flow of a Bingham plastic in a lid-driven square

cavity as the test case and the constitutive equation was regularised by the Papanastasiou

model. They utilised the the standard SIMPLE pressure-correction algorithm, which was

used to solve the algebraic system of equations produced by the finite volume discretisation.

It was shown that using the SIMPLE algorithm in a multigrid context dramatically improved

the convergence, although the multigrid convergence rates were much worse than those for

Newtonian fluids. The numerical results were compared with the reported results of other

methods. However, they noted that the convergence of the method becomes slow at high
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values of the Bingham number and the regularisation parameter. In addition, with the use of

a modified multigrid method, convergence was accelerated considerably compared to the

single-grid SIMPLE method.

Syrakos et al. (2014) extended their previous work on the creeping flow of a Bingham

fluid in a lid-driven cavity to include inertial effects, using a finite volume method and the

Papanastasiou regularisation of the Bingham constitutive model. They emphasized that the

equations become stiffer and more difficult to solve, while the discontinuity at the yield

surfaces causes large truncation errors using the finite volume method (FVM). It was added

that by regularising the Bingham constitutive equation, it was easy to extend such a solver to

other flows since all that this requires is a modification of the viscosity function. In this study,

they attempted to investigate the strengths and weaknesses of this method by applying it to

the lid-driven cavity problem for a wide range of Bingham and Reynolds numbers (up to 100

and 5000 respectively). By employing techniques such as multigrid, local grid refinement,

and an extrapolation procedure, they reduced the effect of the regularisation parameter on the

calculation of the yield surfaces. Nevertheless, it was reported that the weakness of FVM

becomes more noticeable with the rise of the Bingham number.

Muravleva (2015) implemented the Uzawa-like algorithm to simulate the flows of a

Bingham fluid in a lid-driven cavity and the Bingham model was applied in the simulation. In

addition, the operator-splitting method was used, employing different time-discretization and

space-discretization. The results for the steady flow problem were verified by comparison

with those in the literature for the shape and locations of the yield surface.

2.2.3 Natural convection of Bingham fluids in a cavity

Vola et al. (2003) studied the natural convection in a cavity filled with a Bingham fluid

using the Bingham model without any regularisation of the constitutive law. They applied a

numerical method based on the combination of the characteristic/Galerkin method to cope
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with convection and of the Fortin–Glowinski decomposition/coordination method (Fortin

and Glowinski (1983)) to deal with the non-differentiable and nonlinear terms that derive

from the constitutive law. However, the streamlines and isotherms for various yield stress

values were limited to one value of the Rayleigh number (Ra = 104).

Turan et al. (2010) conducted a study into the simulations of natural convection in square

enclosures filled with an incompressible Bingham fluid. The considered flow was laminar

and steady. The commercial package FLUENT was utilised to solve the problem. In this

study, a second-order central differencing scheme was used for the diffusive terms and a

second order up-wind scheme for the convective terms. Coupling of the pressure and velocity

fields was achieved using the SIMPLE algorithm. It should be noted that the default Bingham

model in FLUENT is a bi-viscosity model (O’Donovan and Tanner (1984)). The heat transfer

and the flow velocities were investigated over a wide range of Rayleigh and Prandtl numbers.

They found that the average Nusselt number augments with the rise of the Rayleigh number

for both Newtonian and Bingham fluids, whereas the Nusselt numbers of Bingham fluids

were smaller than those in Newtonian fluids for a fixed nominal Rayleigh number. They also

mentioned that the mean Nusselt number of Bingham fluids decreased with an increase in the

Bingham number. Moreover, it was observed that the conduction dominated regime occurs

at large values of Bingham numbers. Finally, they reported that for low Bingham numbers,

the mean Nusselt number increases with the enhancement of the Prandtl number; by contrast,

the opposite behaviour was observed for large values of Bingham numbers.

Turan et al. (2011) continued their studies with analysing the effect of different aspect

ratios (the ratio of the height to the length) of the cavity, adding to their previous results that

the average Nusselt number follows a non-monotonic pattern with the aspect ratio for specific

values of the Rayleigh and Prandtl numbers for both Newtonian and Bingham fluids. At

small aspect ratios, the conduction is dominant whereas convection remains predominantly

responsible for the heat transfer for large values of aspect ratios. In addition, it was found
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that the conduction dominated regime occurred at higher values of the Bingham numbers for

increasing values of the aspect ratio for a given value of the Rayleigh number.

Turan et al. (2012) scrutinised the laminar Rayleigh-Bénard convection of yield stress

fluids in a square enclosure. The applied method and the achieved results were similar to the

two previous studies.

2.2.4 Mixed convection of Bingham fluids in a lid-driven cavity

No studies into this topic have been found in the literature.

2.3 Mesoscopic simulation of the flows of Bingham fluids

Wang and Ho (2008) presented a lattice Boltzmann method for viscoplastic materials. The

technique of the Chapman Enskog multiscale expansion was employed to demonstrate that

the proposed method macroscopically matches the governing equations for the flows of a

Bingham plastic to the second order. The continuum-based Bingham constitute equation was

modified by the Papanastasiou model (Papanastasiou (1987)) with an exponential growth

term to make the continuous transitions between both the yielded and unyielded regions.

The benchmark problem of an expansion flow in planar channels was studied. However, the

relation between the relaxation time and the viscosity limited the study to a specific range of

viscosities.

Tang et al. (2011) studied the flow of a Bingham fluid numerically using the Lattice

Boltzmann method by incorporating the Papanastasiou regularisation (Papanastasiou (1987)).

They employed an incompressible Lattice Boltzmann model based on the proposed model

of He-Luo (He and Luo (1997)). They analysed the effect of the regularisation parameter

(m) on the simulation of the flow of a Bingham fluid. However, the relationship between the

viscosity and the relaxation time restricted the studied viscosity to a limited range.
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Ohta et al. (2011) analysed the results of the Lattice Boltzmann (LB) simulations for

the planar-flow of viscoplastic fluids through complex shaped channels. The Papanastasiou

model was employed in the LB simulations. First, the simple problem of the channel flow

between the parallel plates was considered to verify the effectiveness of the LBM with

modified viscoplastic models and the validity of the LBM was established for both of the

viscoplastic models. Fluid-solid boundary conditions at circular obstacles were handled

through the linearly interpolated bounceback scheme.

Vikhansky (2010) considered the problem of the initiation of thermal convection in

rectangular cavities filled with viscoplastic material. A two-sided asymptotic expansion was

combined with numerical modelling in order to obtain an expression for the critical yield num-

ber. In this work, the mass and momentum equations were solved using a Lattice–Boltzmann

(LB) method combined with a finite difference method for the energy equation. Nevertheless,

the method was not explained in detail and limited results were illustrated since the paper

was a short communication.

2.4 Concluding Remarks

The literature review reveals that there are many studies into isothermal problems of Bingham

fluids using macroscopic methods. However, in several publications, regularized Bingham

models have been usually applied instead of the Bingham model. When the thesis was begun

in 2013, no studies into non-isothermal problem of natural convection existed using the

Bingham model, while there were some researches into the natural convection of Bingham

fluids, employing the bi-viscosity model. Hence, we have studied the natural convection of

a Bingham fluid in a cavity, employing the Operator Splitting Method based on the Finite

Element Method (Huilgol and Kefayati (2015)) and the Bingham model was used. Thereafter,

Karimfazli et al. (2015) analysed the same problem, introducing a novel regulation of heat

transfer across a cavity. In addition, the literature review has demonstrated that mesoscopic
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simulations of Bingham fluids are rare and limited to some isothermal problems and in all of

them regularized models have been employed. As a result, the new mesoscopic method has

been applied to simulate the isothermal and non-isothermal flow problems (steady flow in a

pipe, lid-driven cavity, natural convection), employing both the Bingham and regularized

models and validated by comparison with the previous results of the cited macroscopic

methods. Finally, after proving the accuracy of the mesoscopic method, it has been used to

solve the mixed convection flow of Bingham fluids using the regularized model.



Chapter 3

From mesoscopic models to continuum

mechanics

In this chapter, a review of the BGK approximation to obtain the equations of motion for an

incompressible fluid is presented and its drawbacks are revealed. In order to overcome these

inherent problems, new models for the particle distribution functions are needed. Using the

Finite Difference Lattice Boltzmann Method (FDLBM) due to Fu and So (2009) and the

Thermal Difference Discrete Flux Method (TDDFM) proposed by Fu et al. (2012), it is shown

that the newer distribution functions lead to the mass conservation equation, the equations

of motion and the energy balance equation for incompressible fluids in two dimensions,

employing the D2Q9 lattice as the model. This derivation is extended to compressible fluids

as well. Next, using the D3Q15 lattice as an example, the three dimensional equations

of continuum mechanics are derived. Since no restrictions are placed on the constitutive

equations, the theoretical development applies to all fluids, whether they be Newtonian, or

power law fluids, or viscoelastic and viscoplastic fluids. Finally, some comments are offered

regarding the numerical scheme to calculate the particle distribution functions to determine

the velocity and temperature fields.
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3.1 Introduction

From the Lattice Boltzmann equation, it is possible to derive the continuity equation and

Cauchy’s equations of motion for a compressible medium, when one uses the Bhatnagar-

Gross-Krook (BGK) approximation. From this, one can obtain equations relevant to incom-

pressible fluids. However, these require that the pressure be proportional to the density and

the viscosity be dependent on the collision relaxation time (Guo et al. (2000)); see Section

3.2 below. Clearly, these restrictions on the pressure and the viscosity are unacceptable in

modelling the flows of non-Newtonian, incompressible fluids.

In order to overcome these inherent problems, new models for the particle distribution

functions are needed. In the Finite Difference Lattice Boltzmann Method (FDLBM) due to

Fu and So (2009) , the particle distribution function leads to the conservation of mass and the

equations of motion applicable to incompressible fluids, when the flows are assumed to occur

in a two dimensional setting underpinned by a D2Q9 lattice. Our derivation of these results

is succinct and is more transparent, for it uses vector analysis and linear algebra. In addition,

the energy equation is also obtained from the Thermal Difference Discrete Flux Method

(TDDFM) proposed by Fu et al. (2012) ; once again, simple results from vector analysis and

linear algebra are employed. The important point to note is that the previous restrictions on

the pressure and the viscosity are eliminated in these derivations, meaning that one is free

to choose a constitutive equation. That is, one can model a Newtonian fluid, or power law

fluids, or viscoelastic and viscoplastic fluids. Moreover, we point out in section 3.3 that it is

quite easy to incorporate Dirichlet type boundary conditions into the numerical scheme to

determine the particle distribution functions for the velocity and temperature fields.

In Section 3.4, the method is extended to the flows of all fluids in three dimensions, using

the D3Q15 lattice as an example. Once again, the particle distribution functions are such that

every type of fluid, compressible or incompressible, can be employed.
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Finally, in Section 3.5, some remarks are offered on the numerical scheme employed to

determine the particle distribution functions for the velocity and the temperature fields. The

CFL condition for the stability of the numerical scheme is also derived.

3.2 BGK approximation to continuum mechanics

Beginning in 1986, Lattice Boltzmann equation (LBE) models evolved from their Boolean

counterparts, viz., the lattice-gas-automata (LGA). The theoretical framework of the LBE

was underpinned by the Chapman-Enskog analysis of the LGA models (Frisch et al. (1987,

1986); Wolfram (1986)). That is, the statistical mechanics of the LGA played a crucial role

in these developments. A decade later, He and Luo (1997) proved that the LBE is a specific

discretised form of the continuous Boltzmann equation using the Bhatnagar-Gross-Krook

(BGK) approximation Bhatnagar et al. (1954). As an application, He and Luo (1997) derived

the Lattice Boltzmann BGK (LBGK) equation for the D2Q9 lattice model. It is worth noting

that Welander (1954) published an approximation to the Boltzmann equation at the same

time as BGK and applied it to a rarefied monatomic gas exchanging heat with an adjacent

wall. In several aspects, his treatment of this problem is exemplary and anticipates by several

decades the subsequent Lattice formulation. However, we shall use the more commonly used

acronym LBGK equation in the sequel.

From the LBGK equation, Cauchy’s equations of motion for compressible fluids can be

derived under the assumption that the Mach number is small and that the density variation is

small. Attempts to derive the equations for incompressible fluids from the foregoing end in

physically unacceptable requirements, viz., that the pressure be proportional to the density

and that the viscosity depends on the collision relaxation time (Guo et al. (2000)).

To render these remarks transparent, let f = f (x,ξξξ , t) be the probability of finding a

particle with the velocity ξξξ near the point x at time t. The Boltzmann equation for this

distribution function, in the absence of external forces, is given by
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∂ f
∂ t

+(∇ f ·ξξξ )+ 1
λ

f = N( f ), (3.2.1)

where ξξξ is the microscopic velocity, λ is the relaxation time due to collision and N( f ) is

a measure of the net number of molecules which disappear from the region due to inter-

molecular collisions; see Welander (1954), for example. This is not applied to the problem

at hand, for it depends upon an approximation to this measure of collisions; see Eq.(3.2.3)

below.

The macroscopic variables are the density of mass ρ, the velocity field u and the absolute

temperature T. These are related to the distribution function f through the following integrals

in momentum space:

ρ =
∫

f dξξξ , ρu =
∫

ξξξ f dξξξ , ρε =
1
2

∫
|ξξξ −u|2 f dξξξ , (3.2.2)

where ε = DRT/2, with D being the number of degrees of freedom of a particle and R is the

ideal gas constant. Note that we have used dξξξ = dξ1 · · ·dξD, where D ∈ [2,3] stands for the

dimension of the physical space.

In the BGK approximation, the collision operator is assumed to be given by N( f ) =

g(u,ξξξ )/λ , where the collision function g(u,ξξξ ) has the form:

g(u,ξξξ ) =
ρ

(2πRT )D/2 exp
[
− |ξξξ −u|2

2RT

]
. (3.2.3)

Next, using (3.2.3) and integrating (3.2.1) formally over a time interval △t with et/λ as

the integrating factor, one obtains He and Luo (1997):

f (x+ξξξ△t,ξξξ , t +△t) = e−△t/λ f (x,ξξξ , t)

+
1
λ

e−△t/λ

∫ △t

0
et ′/λ g(x+ξξξ t ′,ξξξ , t + t ′)dt ′. (3.2.4)
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Assuming that the time interval △t is small enough and linearising in terms of this time

interval, one has:

f (x+ξξξ△t,ξξξ , t +△t)− f (x,ξξξ , t) =−1
τ
[ f (x,ξξξ , t)−g(u,ξξξ )], (3.2.5)

where τ = λ/△t is the non-dimensional relaxation time. Next, suppose that the collision

function g(u,ξξξ ) can be expanded as a Taylor series in u, retaining terms up to order |u|2.

Identifying this as the equilibrium distribution function f (0), the following can be derived

from (3.2.1):

f (0) =
ρ

(2πRT )D/2 exp(−|ξξξ |2/2RT )
[

1+
ξξξ ·u
RT

+
(ξξξ ·u)2

2(RT )2 −
|u|2

2RT

]
. (3.2.6)

To derive Cauchy’s equations of motion for a continuous medium, exact evaluation of the

following momentum integrals

I =
∫

|ξξξ |m f (0) dξξξ =
∫

exp(−|ξξξ |2/2RT )ψ(ξξξ )dξξξ , m = 0,1,2, (3.2.7)

is required. Using a Cartesian coordinate system and noting that the physical dimension of

the space D = 2, one can express the microscopic velocity as ξξξ = (ξx,ξy). Using this, ψ(ξξξ )

is expressed as a polynomial of the form ψ(ξξξ ) = ξ r
x ξ s

y .

The integrals in (3.2.7) can be evaluated through a Gaussian-type quadrature (Davis and

Rabinowitz (1984)) and lead to

I = ∑
α

Wα exp(−|ξξξ α |2/2RT )ψ(|ξξξ α |), (3.2.8)

where Wα are the weights and ξξξ α are the discrete velocities of the quadrature. In the D2Q9

model, there are nine discrete velocities: {ξξξ α , α = 0,1, · · · ,8}. The configuration space

is discretised into a square lattice with a lattice constant △x =
√

3RT △t. In fact, in an
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isothermal problem, the temperature T has no physical significance and thus, one can choose

△x as a fundamental quantity instead, leading to
√

3RT = c =△x/△t, where the lattice

speed c is related to the speed of sound cs through c2 = 3c2
s . Thus, RT = c2

s = c2/3.

The nine lattice points are located at the centre of the lattice, at the four midpoints of

the edges of the square and at the four vertices. One identifies α0 = (0,0) as the centre

of the lattice, {α1,α3,α5,α7} as the midpoints of the four sides: (±1,0),(0,±1), and

{α2,α4,α6α8}= (±1,±1) as the vertices. The lattice velocity vector at the centre is given

by ξξξ 0 = 0. Next, the velocities for α = 1,3,5,7, have the form c(±1,0),c(0,±1), and for

α = 2,4,6,8, they have the form c(±1,±1). In other words, except at the centre, at each

lattice point α j, j = 1, · · · ,8, the velocity vector points away from the lattice in the direction

from α0 to α j.

The weights Wα in (3.2.8) can now be computed through quadrature and one obtains (He

and Luo (1997)):

Wα = 2πRT exp(|ξξξ α |2/2RT )wα , (3.2.9)

where

wα =


4/9, α = 0,

1/9, α = 1,3,5,7,

1/36, α = 2,4,6,8.

(3.2.10)

The equilibrium distribution function for the D2Q9 model is given by

f (0)α = ρwα +ρsα(u(x, t)), (3.2.11)

where

sα(u) = wα

[
3(ξξξ α ·u)

c2 +
9(ξξξ α ·u)2

c4 − 3|u|2

2c2

]
, (3.2.12)
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with

ξξξ α =


(0,0), α = 0,

c(cosθα ,sinθα) α = 1,3,5,7,

c
√

2(cosθα ,sinθα), α = 2,4,6,8.

(3.2.13)

Here, the angles θα are defined through θα = (α −1)π/4, α = 1, · · · ,8.

Introducing a Mach number M = |u|/cs, one can see that the equilibrium distribution

function can be written in the form:

f (0)α = f 0
α +M f 1

α +M2 f 2
α , (3.2.14)

where

f 0
α = ρwα , f 1

α = ρwα . (3.2.15)

Assuming that the distribution function fα can be found from the equation corresponding

to (3.2.5), the momentum space integrals in (3.2.2) lead to the following results for the

macroscopic variables:

ρ = ∑
α

fα , ρu = ∑
α

fαξξξ α , ρε =
1
2 ∑

α

fα |ξξξ α −u|2. (3.2.16)

When multi-scaling using the Mach number is employed, these equations lead to Cauchy’s

equations for a compressible continuous medium of the following form:

∂ρ

∂ t
+∇ · (ρu) = 0, (3.2.17)

∂ (ρu)
∂ t

+∇ · (ρu⊗u) = −∇p+ν [∇2(ρu)+∇(∇ · (ρu))]. (3.2.18)

While the first equation delivers the correct form of the equation for the conservation of

mass, the second leads to the equations of motion for an artificial compressible fluid because

the pressure p = ρc2
s has a thermodynamic form only, with cs being the speed of sound. Of
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course, this form of the pressure is not surprising due to the absence of any external forces

in the original formulation (3.2.1). However, the expression for the kinematic viscosity

is unusual for it is given by ν = (2τ − 1)c2△t/6, and depends on the non-dimensional

relaxation time τ and the time step △t.

Turning to incompressible fluids, we note that the pressure p must be independent of

the density. To derive such a model, Guo et al. (2000) found that a new type of distribution

function gα(x, t) is required. The important point is that this new distribution function is

patterned along the lines of the BGK model; however, there is no statistical mechanical basis

for this formulation. To understand this, one notes that the new equilibrium distribution

function g(0)α (x, t)is defined through

g(0)α =


−4σ(p/c2)+ sα(u), α = 0,

λ (p/c2)+ sα(u) α = 1,3,5,7,

γ(p/c2)+ sα(u), α = 2,4,6,8,

(3.2.19)

where σ ,λ and γ are parameters satisfying

λ + γ = σ , λ +2γ = 1/2. (3.2.20)

This new distribution function satisfies the following conservation laws:

8

∑
α=0

gα =
8

∑
α=0

g(0)α , (3.2.21)

8

∑
α=0

ceαgα =
8

∑
α=0

ceαg(0)α . (3.2.22)

The evolution equation for the system is given by

gα(x+ ceα△t, t +△t)−gα(x, t) =−1
τ
[gα(x, t)−g(0)α (x, t)]. (3.2.23)
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The velocity and pressure of the flow are given by

u =
8

∑
α=0

ceαgα , (3.2.24)

p =
c2

4σ

[ 8

∑
α=1

gα + s0(u)
]
. (3.2.25)

From the chosen distribution function, a multi-scale expansion as described in full in the

Appendix of the paper by Guo et al. (2000), leads to the following set of equations applicable

to an incompressible fluid:

∇ ·u = 0, (3.2.26)

∂u
∂ t

+∇ · (u⊗u) = −∇p+ν∇
2u. (3.2.27)

While p can now be arbitrary, the kinematic viscosity ν is still relaxation time and grid-

dependent, for it is given by

ν =
(2τ −1)

6
· (△x)2

△t
. (3.2.28)

In this context, it is necessary to recall that in addition to the work cited earlier (Frisch

et al. (1987, 1986)), attempts to derive the Navier-Stokes equations for compressible or

incompressible fluids have been made (Dubois (2008, 2009); Dubois and Lallemand (2009);

Guo et al. (2002); Junk et al. (2005); Junk and Yong (2003)). In addition, thermal stability

of the hydrodynamic equations has also been investigated (Lallemand and Luo (2003)). It

is important to note that hydrodynamic equations deal, at most, with a restricted class of

fluids, viz., the ideal gas or fluids with constant viscosity. Secondly, to obtain the equations

for a Newtonian fluid, second and higher order lattice Boltzmann schemes have to employed

(Dubois (2009); Dubois and Lallemand (2009)). The derivations given here in Section 3 are

based on the results in (Fu and So (2009); Fu et al. (2012)) and are applicable to all fluids,

compressible or incompressible. Secondly, the equations of continuum mechanics appear at
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the expansion of the particle distribution functions at the first order, as described in full in

(3.3) - (3.50) below.

Turing our attention to non-Newtonian fluids, we note that the relationship between the

relaxation time and the viscosity means that the relaxation time has to be prescribed over a

specific range only; hence, the viscosity function is restricted and cannot describe a wide

range of non-Newtonian fluid models. This is clear from the previous studies employing LBM

for non-Newtonian fluids; for example, see the work on power-law fluids (Boyd et al. (2006);

Buick (2009); Gabbanelli et al. (2005); Nejat et al. (2011); Psihogios et al. (2007); Sullivan

et al. (2006, 2007); Yoshino et al. (2007)) and Bingham fluids (Ohta et al. (2011); Tang et al.

(2011); Wang and Ho (2008)). Even though a second order LBM scheme has been proposed

in (Boyd et al. (2006)) to solve problems in power-law fluids, the kinematic viscosity is still

related to the relaxation time. Hence, a new approach to deriving the equations of continuum

mechanics applicable to all fluids is needed, and we turn to this next, employing the TDDFM

due to Fu et al. (2012).
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3.3 Thermal Difference Discrete Flux Method (TDDFM)

to continuum mechanics

First of all, the lattice counterpart of (3.2.1) with the assumption that the collision term

N( f ) = f eq/λ can be written as follows:

∂ fα

∂ t
+ξξξ α ·∇x fα =− 1

ε τ
( fα − f eq

α ), (3.3.1)

where ε is a small parameter to be prescribed when numerical simulations are considered and

f eq is the equilibrium lattice function. To proceed, one assumes that fα has the following

expansion:

fα = f eq
α + ε f (1)α + ε

2 f (2)α +O(ε3). (3.3.2)

The novelty of the approach by Fu and So (2009) lies in expanding the equilibrium lattice

function f eq
α as a quadratic in the particle velocity ξξξ α :

f eq
α = Aα +ξξξ α ·Bα +(ξξξ α ⊗ξξξ α) : Cα , (3.3.3)
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where Bα is a vector and Cα is a 2×2 symmetric matrix. Before defining these entities,

the following relations must hold (cf. (3.2.16)):

8

∑
α=0

f eq
α = ρ, (3.3.4)

8

∑
α=0

f eq
α ξξξ α = ρu, u = ui+ vj, (3.3.5)

8

∑
α=0

f eq
α ξξξ α ⊗ξξξ α = M, (3.3.6)

8

∑
α=0

f (n)α = 0, n ≥ 1, (3.3.7)

8

∑
α=0

f (n)α ξξξ α = 0, n ≥ 1. (3.3.8)

In (3.3.6), M has the matrix form

M =

ρu2 + p− τxx ρuv− τxy

ρuv− τxy ρv2 + p− τyy

 . (3.3.9)

In the above set, ρ is the density, u and v are the components of the velocity field u in the x

and y directions respectively, τxx,τxy = τyx,τyy are the stresses which can be defined through

any relevant constitutive relation.

For a D2Q9 lattice, in (3.3.3), there are nine coefficients: Aα ,Bα , and Cα . However, when

α = 0, only the coefficient A0 is required. Regarding the others, one makes the assumption

that the coefficients having the same energy shell of the lattice velocities are equal. Thus,

Aα = A1, α = 1,3,5,7; Aα = A2, α = 2,4,6,8.

Since B0 and C0 do not affect the value of f eq
0 in (3.3.3), they can be put equal to

zero. By the just mentioned assumption about certain coefficients being equal, we see that

Bα = B1, α = 1,3,5,7; Bα = B2, α = 2,4,6,8. Similarly, Cα = C1, α = 1,3,5,7; Cα =

C2, α = 2,4,6,8. Keeping in mind that the matrices are symmetric, there are thirteen
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independent quantities: three scalars in A0, A1, A2; four components of the vectors B1, B2;

three components each in C1, C2. Looking at (3.3.4) - (3.3.6), it is obvious that the number

of available constraints is six only. Thus, there is a lot of latitude in choosing the variables.

Following Fu and So (2009), we shall assume that

A0 = ρ − 2p
σ2 −

ρ|u|2

σ2 +
τxx + τyy

σ2 , A1 = A2 = 0, (3.3.10)

and

B1 =
ρu
2σ2 , B2 = 0. (3.3.11)

Next,

C1 =

C11 0

0 C22

 , C11 =
1

2σ4 (p+ρu2 − τxx), C22 =
1

2σ4 (p+ρv2 − τyy), (3.3.12)

and

C2 =

 0 C12

C21 0

 , C12 =C21 =
1

8σ4 (ρuv− τxy). (3.3.13)

Here, σ is a constant to be determined keeping in mind that the vectors ξξξ α have been

redefined so that in (3.2.13), c = σ , the lattice speed. Since the value of σ affects numerical

stability, its choice depends on the problem at hand. For instance, in their solution to the

Stokes second problem, Fu and So (2009) recommend varying it at every iteration step. This

matter is briefly addressed in Section 5 below.

Before deriving the macroscopic equations of continuum mechanics for incompressible

fluids, we note that in several fluids, such as viscoplastic fluids, the pressure p has to be

defined uniquely. This requires that the trace of the extra stress tensor should be zero. For

a proof, see Rajagopal and Srinivasa (2005), Huilgol (2009) and Huilgol (2015). Thus, in
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(3.3.10), τxx + τyy = 0, and, in these models, the coefficient A0 has the simple form:

A0 = ρ − 2p
σ2 − ρ|u|2

σ2 . (3.3.14)

We shall now demonstrate that the macroscopic equations for an incompressible continu-

ous medium can be derived from (3.3.1) - (3.3.9). To make the calculations more transparent,

it is helpful to note that

f eq
0 = A0, f eq

1 =
ρ

2σ
u+σ

2C11, f eq
5 =− ρ

2σ
u+σ

2C11, (3.3.15)

f eq
3 =

ρ

2σ
v+σ

2C22, f eq
7 =− ρ

2σ
v+σ

2C22, (3.3.16)

f eq
2 = f eq

6 =C12, f eq
4 = f eq

8 =−C12. (3.3.17)

Hence, Eqs. (3.3.4) - (3.3.9) follow from the substitution of (3.3.10) - (3.3.13) into (3.3.4)

- (3.3.6), which is as expected. Secondly, substituting the expression for fα in (3.3.2) into

(3.3.1), we find that
∂ f eq

α

∂ t
+ξξξ α ·∇x f eq

α =−1
τ

f (1)α +O(ε). (3.3.18)

Since the velocity vectors ξξξ α do not depend on the spatial coordinates, one sees that

∇ · ( f eq
α ξξξ α) = ξξξ α ·∇x f eq

α . (3.3.19)

Hence, (3.3.18) can be rewritten as

∂ f eq
α

∂ t
+∇ · ( f eq

α ξξξ α) =−1
τ

f (1)α +O(ε). (3.3.20)
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Summing the equation above, we obtain

∂

∂ t

( 8

∑
α=0

f eq
α

)
+∇ ·

( 8

∑
α=0

f eq
α ξξξ α

)
=−1

τ

8

∑
α=0

f (1)α +O(ε). (3.3.21)

Appealing to (3.3.4), (3.3.5), (3.3.7) and recalling that ρ is a constant, the above equation

reduces to

ρ(∇ ·u) = O(ε), (3.3.22)

or the continuity equation for an incompressible medium is satisfied to O(ε). Next,

∇ · ( f eq
α ξξξ α ⊗ξξξ α) = (ξξξ α ·∇x f eq

α )ξξξ α . (3.3.23)

Hence, multiplying (3.3.18) throughout by ξξξ α , summing over α, and appealing to (3.3.5) -

(3.3.8), one obtains to O(ε).

ρ
∂u
∂ t

+∇ ·M = O(ε). (3.3.24)

Rearranging, one obtains the equations of motion for an incompressible fluid:

ρa+∇p−∇ ·τττ = O(ε), a =
∂u
∂ t

+(u ·∇)u. (3.3.25)

Thus, the set of equations (3.3.1) - (3.3.13) deliver Cauchy’s equations of motion for an

incompressible medium to O(ε). Clearly, one can specify the material through a chosen

constitutive equation for the extra stress tensor τττ, whether the fluid be Newtonian, or non-

Newtonian. At this juncture, it has to be noted that in the equations of motion (3.3.25),

the body force term is missing. It is possible to do so by altering the evolution equation,

suggested in the work by Fu et al. (2012).

If the body force is given by ρb, it has to be incorporated into the evolution equation

(3.3.1) in such a way that (3.3.4) - (3.3.9) are unaffected. Since we are dealing with a D2Q9
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lattice, the following modification is made:

∂ fα

∂ t
+ξξξ α ·∇x fα −Fα =− 1

ε τ
( fα − f eq

α ). (3.3.26)

The new set of functions Fα must be such that

8

∑
α=0

Fα = 0, (3.3.27)

which guarantees that the mass conservation equation (3.3.22) is unchanged. Next, one

requires that
8

∑
α=0

Fαξξξ α = ρb, (3.3.28)

so that the momentum equation (3.3.25) has the form

ρa+∇p−∇ ·τττ −ρb = O(ε). (3.3.29)

Thus, one choice for the set of Fα is:

F0 = 0, F1 =
1

2σ2 ρb ·ξξξ 1, F3 =
1

2σ2 ρb ·ξξξ 3, (3.3.30)

F5 =
1

2σ2 ρb ·ξξξ 5, F7 =
1

2σ2 ρb ·ξξξ 7, (3.3.31)

Fα = 0, α = 2,4,6,8. (3.3.32)

To verify (3.3.27) - (3.3.28), one observes that F1 =−F5, F3 =−F7.
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The Energy Equation

In order to obtain the energy equation, an internal energy distribution function gα is

introduced and it is assumed to satisfy an evolution equation similar to that for fα . Thus,

∂gα

∂ t
+ξξξ α ·∇xgα −Gα =− 1

ετ
(gα −geq

α ). (3.3.33)

Here, geq
α has a linear form in the lattice velocity vector as follows:

geq
α = Dα +ξξξ α ·Eα . (3.3.34)

And,

gα = geq
α + εg(1)α + ε

2g(2)α +O(ε3), (3.3.35)

with the requirement that
8

∑
α=0

g(n)α = 0, n ≥ 1. (3.3.36)

The energy equation applicable to an incompressible continuous media is given by

ρ
de
dt

=
1
2

τττ : A1 −∇ ·q+ρr, (3.3.37)

where e is the internal energy, A1 is the first Rivlin-Ericksen tensor (Rivlin and Ericksen

(1955)), q is the heat efflux vector and r is the external supply. The derivation of this equation

can be found in standard books on continuum mechanics and rheology; for example, see

Tanner (2000).

In order to derive the above equation from the internal energy distribution function, it is

assumed that et is the total energy given by the sum of the internal and kinetic energies, i.e.,

et = e+
1
2
|u|2. (3.3.38)
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Next, the following consistency relations must hold:

8

∑
α=0

geq
α = ρet , (3.3.39)

8

∑
α=0

geq
α ξξξ α =

(
p+ρe+

1
2

ρ|u|2
)

u−τττu+q, (3.3.40)

8

∑
α=0

Gα = ρb ·u−ρr. (3.3.41)

One way of satisfying the above is to assume, as before, that Dα = D1, α = 1,3,5,7, and

Dα = D2, α = 2,4,6,8, and set

D0 = ρet , D1 = 0, D2 = 0. (3.3.42)

In addition, it is assumed that E0 = 0, Eα = E1, α = 1,3,5,7;Eα = E2, α = 2,4,6,8, where

E1 =
1

2σ2

(
p+ρe+

1
2

ρ|u|2
)

u−τττu+q, E2 = 0. (3.3.43)

Finally, G0 = 0, and

Gα =
1

2σ2 ρb · (ξξξ α ⊗ξξξ α)u− 1
4σ2 ρr(ξξξ α ⊗ξξξ α) : 1, α = 1,3,5,7, (3.3.44)

Gα = 0, α = 2,4,6,8. (3.3.45)

Letting b = bxi+byj, it is easy to verify that

b · (ξξξ 1 ⊗ξξξ 1)u = b · (ξξξ 5 ⊗ξξξ 5)u = σ
2bxu, (3.3.46)

b · (ξξξ 3 ⊗ξξξ 3)u = b · (ξξξ 7 ⊗ξξξ 7)u = σ
2byv, (3.3.47)

(ξξξ α ⊗ξξξ α) : 1 = σ
2, α = 1,3,5,7, (3.3.48)

which means that (3.3.41) is satisfied.
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Finally, summing Eq. (3.3.33) over all α, and using (3.3.34) - (3.3.36), one finds that

ρ
de
dt

+ρ
∂u
∂ t

·u+∇ ·
( 8

∑
α=0

geq
α ξξξ α

)
−ρb ·u = O(ε). (3.3.49)

Next,

∇ ·
(

p+ρe+
1
2

ρ|u|2
)

u =

(
∇p+ρ∇e+ρ(u ·∇)u

)
·u, (3.3.50)

because ∇ ·u = 0. Finally, using indicial notation for convenience and noting the symmetry

of the stress tensor,

(τi ju j),i = τi j,iu j + τi jui, j = τ ji, jui +
1
2

τi j(A1)i j. (3.3.51)

Thus,

∇ · (τττu) = (∇ ·τττ) ·u+
1
2

τττ : A1. (3.3.52)

Combining all of the above, we obtain

ρ
de
dt

+

(
ρa+∇p−∇ ·τττ −ρb

)
·u− 1

2
τττ : A1 +∇ ·q−ρr = O(ε), (3.3.53)

which reduces to (3.3.37) when one appeals to the equations of motion (3.3.29).

Algorithm

The main equations of the discrete particle distribution function and the internal energy

distribution function are solved by the splitting method of Toro (1999). Hence, the equations

can be separated into two parts. The first one is the streaming section which is written as

∂ fα

∂ t
+ξξξ α ·∇x fα −Fα = 0. (3.3.54)
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∂gα

∂ t
+ξξξ α ·∇xgα = 0. (3.3.55)

Eqs.(3.3.54) and (3.3.55) have been solved with the method of Lax and Wendroff (1960)

and the following equations are used.

f n+1
α (i, j) = f n

α (i, j)− ∆t
2∆x

ξα (i) [ f n
α (i+1, j)− f n

α (i−1, j)]

− ∆t
2∆y

ξα ( j) [ f n
α (i, j+1)− f n

α (i, j−1)]+

∆t2

2∆x2 ξα
2 (i) [ f n

α (i+1, j)−2 f n
α (i, j)+ f n

α (i−1, j)]+Fα(i)∆t+

∆t2

2∆y2 ξα
2 ( j) [ f n

α (i, j+1)−2 f n
α (i, j)+ f n

α (i, j−1)]+Fα( j)∆t , (3.3.56)

and

gn+1
α (i, j) = gn

α (i, j)− ∆t
2∆x

ξα (i) [gn
α (i+1, j)−gn

α (i−1, j)]

− ∆t
2∆y

ξα ( j) [gn
α (i, j+1)−gn

α (i, j−1)]+

∆t2

2∆x2 ξα
2 (i) [gn

α (i+1, j)−2gn
α (i, j)+gn

α (i−1, j)]+

∆t2

2∆y2 ξα
2 ( j) [gn

α (i, j+1)−2gn
α (i, j)+gn

α (i, j−1)] (3.3.57)

In Eqs.(3.3.56) and (3.3.57), we have put

ξα(i) = ξξξ α · i, ξα( j) = ξξξ α · j, Fα(i) = Fα · i, Fα( j) = Fα · j. (3.3.58)

The second part is the collision section which is as follows:
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∂ fα

∂ t
=−1

τ
( fα(x, t)− f eq

α (x, t)), (3.3.59)

∂gα

∂ t
=−1

τ
(gα(x, t)−geq

α (x, t)). (3.3.60)

Eqs.(3.3.59) and (3.3.60) can be solved by using the Euler method and the choice of τ is

taken as the time step (∆t). That is

fα(x, t +∆t)− fα(x, t)
∆t

=−1
τ
( fα(x, t)− f eq

α (x, t)), (3.3.61)

gα(x, t +∆t)−gα(x, t)
∆t

=−1
τ
(gα(x, t)−geq

α (x, t)), (3.3.62)

from which one obtains

fα(x, t +∆t) = f eq
α (x, t), (3.3.63)

and

gα(x, t +∆t) = geq
α (x, t). (3.3.64)

The numerical procedures are summarised below.

Initial stage

(a) Initial conditions for all macroscopic quantities (u0,v0, p0) including the boundary points

are given. The initial values of f 0,eq
α and g0,eq

α including the boundary points are determined

using Eqs.(3.3.3 - 3.3.13) and Eqs. (3.3.34 - 3.3.45) respectively. These are used as initial

values to start the calculation.
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Streaming stage

(b) With fα and gα at time t (including the boundary points) known, intermediate val-

ues f I
α and gI

α are calculated by solving Eqs.(3.3.56) and (3.3.57) respectively.

(c) Using these f I
α and gI

α , the corresponding macroscopic quantities (uI,vI, pI,TI) for all

interior grid points are calculated.

(d) The boundary conditions for the macroscopic level are then set as in any finite difference

method.

(e) Using the macroscopic quantities thus determined over the complete domain including

the boundary points and invoking Eqs.(3.3.3 - 3.3.13) and Eqs. (3.3.34 - 3.3.45), the corre-

sponding f I,eq
α and gI,eq

α are obtained, including all of the boundary points.

Collision stage

(f) Due to Eqs.(3.3.63) and (3.3.64), the collision step is completed by setting the new

value at time t +∆t as f I,eq
α . Since each set of macroscopic quantities will map uniquely to

an equilibrium distribution function and vice versa, the macroscopic quantities thus obtained

are, in fact, the values at time t +∆t, i.e., (u,v, p,T )t+∆t = (uI,vI, pI,TI).

(g) Time marching proceeds by repeating steps (b)-(f).

Compressible Fluids

The continuity, the equations of motion and the energy equations for compressible fluids

can be derived quite easily. First of all, Eqs. (3.3.4) - (3.3.8) remain unchanged, while the
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matrix M in Eq. (3.3.9) has the form:

M =

ρu2 −Txx ρuv−Txy

ρuv−Txy ρv2 −Tyy

 , (3.3.65)

where Txx,Txy,Tyy are the components of the total stress tensor. A glance at Eqs. (3.3.10) -

(3.3.13) shows that A1,A2,B1,B2 are unchanged, while one needs the following:

A0 = ρ − ρ|u|2

σ2 +
Txx +Tyy

σ2 , (3.3.66)

C11 =
1

2σ4 (ρu2 −Txx), C22 =
1

2σ4 (ρv2 −Tyy), (3.3.67)

C12 = C21 =
1

8σ4 (ρuv−Txy). (3.3.68)

Next, the energy equation (3.3.37) is now given by

ρ
de
dt

=
1
2

T : A1 −∇ ·q+ρr. (3.3.69)

Thus, one requires the following changes be made:

8

∑
α=0

geq
α ξξξ α =

(
ρe+

1
2

ρ|u|2 −T
)

u+q, (3.3.70)

E1 =
1

2σ2

(
ρe+

1
2

ρ|u|2 −T
)

u+q. (3.3.71)

Boundary conditions

One of the main advantages of the current approach is that boundary conditions can be

incorporated in a manner similar to macroscopic methods, in contrast with other methods

utilised for solving LBM equations. The latter employ complicated special relationships for

the discrete particle distribution function ( fα) and the internal energy distribution function

(gα) for each kind of boundary conditions and problems (Guo et al. (2002); Zou and He
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(1997)). For example, methods such as on-grid and mid-grid bounce back are used when

the velocity is zero on the boundary; when the boundary is in motion, bounce-back is used

along with a set of linear equations to determine the boundary values fα . In the method used

here, the boundary conditions of fα and gα can be obtained directly from the macroscopic

values on the boundaries due to the relationships of the macroscopic values with fα as seen

from (3.3.3) - (3.3.7); in the case of gα , see (3.3.34), (3.3.38)) - (3.3.41). As a result, in this

method, boundary conditions, especially the Dirichlet conditions, can be included in various

problems similar to macroscopic methods and no special equations for fα and gα are needed

to incorporate the boundary conditions.

3.4 Three dimensional equations for continua

In order to derive the equations of continuum mechanics applicable to motions in three

dimensions, one can employ a D3Q15 lattice (Fu et al. (2012)). Of course, any space-filling,

symmetric lattice can be used for the derivation of the equations of continuum mechanics,

since the method relies on the expansion of the particle distribution function as a polynomial

in the particle velocity; see (3.4.2) below. In the case of the D3Q15 lattice, there are 15

nodes and one lies at the centre of a cube with a side of 2 units each; six are chosen from the

midpoints of the faces of the cube and the remaining eight are the vertices. In the Table, the

positions of the nodes and the corresponding microscopic velocities ξξξ α , divided by σ for

convenience, are given.

In order to obtain the continuity equation and the equations of motion, we observe that

Eqs. (3.3.2 ) and (3.3.3) hold and the evolution equation for the particle distribution function

is once again given by (cf. (3.3.26)):

∂ fα

∂ t
+ξξξ α ·∇x fα −Fα =− 1

ε τ
( fα − f eq

α ), (3.4.1)
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with the following quadratic form:

f eq
α = Aα +ξξξ α ·Bα +(ξξξ α ⊗ξξξ α) : Cα , (3.4.2)

Table of Nodes and Microscopic Velocities

Node Location ξξξ α/σ

α0 (0, 0, 0) 0

α1 (1, 0, 0) i

α2 (0, 1, 0) j

α3 (-1, 0, 0) −i

α4 (0, -1, 0) −j

α5 (0, 0, 1) k

α6 (0, 0, -1) −k

α7 (1, 1, 1) i+ j+k

α8 (-1, 1, 1) −i+ j+k

α9 (-1, -1, 1) −i− j+k

α10 (1, -1, 1) i− j+k

α11 (1, 1, -1) i+ j−k

α12 (-1 , 1, -1) −i+ j−k

α13 (-1, -1, -1) −i− j−k

α14 (1, -1, -1) i− j−k
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Next, Eqs. (3.3.3) - (3.3.9) are modified as follows:

14

∑
α=0

f eq
α = ρ, (3.4.3)

14

∑
α=0

f eq
α ξξξ α = ρu, u = ui+ vj+wk, (3.4.4)

14

∑
α=0

f eq
α ξξξ α ⊗ξξξ α = M, (3.4.5)

14

∑
α=0

f (n)α = 0, n ≥ 1, (3.4.6)

14

∑
α=0

f (n)α ξξξ α = 0, n ≥ 1. (3.4.7)

In (3.4.5), M has the matrix form

M =


ρu2 −Txx ρuv−Txy ρuw−Txz

ρuv−Txy ρv2 −Tyy ρvw−Tyz

ρuw−Txz ρvw−Tyz ρw2 −Tzz

 . (3.4.8)

In the above set, ρ is the density, u,v and w are the components of the velocity field u in

the x,y and z directions respectively, Txx,Txy,Txz,Tyy,Tyz,Tzz are the stresses which can be

defined through any relevant constitutive relation for the continuous medium. The body force

distribution functions now satisfy
14

∑
α=0

Fα = 0, (3.4.9)

and
14

∑
α=0

Fαξξξ α = ρb. (3.4.10)
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As before, one choice for the set of Fα is:

F0 = 0, F1 =
1

2σ2 ρb ·ξξξ 1 =−F3, (3.4.11)

F2 =
1

2σ2 ρb ·ξξξ 2 =−F4, (3.4.12)

F5 =
1

2σ2 ρb ·ξξξ 5 =−F6, (3.4.13)

Fα = 0, α = 7, · · · ,14. (3.4.14)

Finally, in (3.4.2), one has to specify the scalars Aα , the vectors Bα and the matrices Cα . We

assume that A1 = Aα , α = 1, · · ·6;A2 = Aα = 7, · · ·14, and define

A0 = ρ − ρ|u|2

σ2 +
Txx +Tyy +Tzz

σ2 , A1 = A2 = 0. (3.4.15)

Next, B0 = 0, and B1 = Bα , α = 1, · · ·6;B2 = Bα = 7, · · ·14, and

B1 =
ρu
2σ2 , B2 = 0. (3.4.16)

Next, once again, C0 = 0, and C1 = Cα , α = 1, · · ·6;C2 = Cα = 7, · · ·14, and

C1 =


C11 0 0

0 C22 0

0 0 C33

 , C11 =
1

2σ4 (ρu2 −Txx), (3.4.17)

C22 =
1

2σ4 (ρv2 −Tyy), C33 =
1

2σ4 (ρw2 −Tzz). (3.4.18)
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Finally,

C2 =


0 C12 C13

C21 0 C23

C31 C32 0

 , C12 =C21 =
1

16σ4 (ρuv−Txy), (3.4.19)

C23 = C32 =
1

16σ4 (ρvw−Tyz), C13 =C31 =
1

16σ4 (ρuw−Txz). (3.4.20)

Repeating the calculations employed in Section 3, one can now derive the continuity equation

and the equations of motion for a continuous medium, valid in three dimensions.

In order to obtain the energy equation, one begins with

∂gα

∂ t
+ξξξ α ·∇xgα −Gα =− 1

ετ
(gα −geq

α ), (3.4.21)

where geq
α has a linear expansion:

geq
α = Dα +ξξξ α ·Eα . (3.4.22)

And,

gα = geq
α + εg(1)α + ε

2g(2)α +O(ε3), (3.4.23)

with the requirement that
14

∑
α=0

g(n)α = 0, n ≥ 1. (3.4.24)

The energy equation applicable to a continuous media is given by

ρ
de
dt

=
1
2

T : A1 −∇ ·q+ρr. (3.4.25)
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In order to derive the above equation from the internal energy distribution function, it is

assumed that et is the total energy given by the sum of the internal and kinetic energies, i.e.,

et = e+
1
2
|u|2. (3.4.26)

Next, the following consistency relations must hold:

14

∑
α=0

geq
α = ρet , (3.4.27)

14

∑
α=0

geq
α ξξξ α =

(
ρe+

1
2

ρ|u|2
)

u−Tu+q, (3.4.28)

14

∑
α=0

Gα = ρb ·u−ρr. (3.4.29)

One way of satisfying the above is to assume, as before, that Dα = D1, α = 1, · · · ,6, and

Dα = D2, α = 7, . . .14, and set

D0 = ρet , D1 = 0, D2 = 0. (3.4.30)

In addition, it is assumed that E0 = 0, Eα = E1, α = 1, · · · ,6;Eα = E2, α = 7, · · · ,14,

where

E1 =
1

2σ2

(
ρe+

1
2

ρ|u|2
)

u−Tu+q, E2 = 0. (3.4.31)

Finally, G0 = 0, and

Gα =
1

2σ2 ρb · (ξξξ α ⊗ξξξ α)u− 1
6σ2 ρr(ξξξ α ⊗ξξξ α) : 1, α = 1, · · · ,6, (3.4.32)

Gα = 0, α = 7, · · · ,14. (3.4.33)

Once again, repeating the calculations in Section 3, the energy equation (3.4.25) can be

derived.
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3.5 Concluding remarks

Using an evolution equation for the modified particle distribution functions, equations

of continuum mechanics in two and three dimensions have been derived. It is obvious

that the choice of the constitutive equation for the incompressible or compressible fluid

is unrestricted. Focussing attention on two-dimensional flows for convenience, it can be

seen from the definition of the matrix M in (3.3.9) that the extra stresses τxx,τxy,τyy, in an

incompressible fluid, can be chosen at will. That is, the fluid model can be Newtonian or

non-Newtonian. Similar observations apply to the matrix M in (3.4.8). The derivations

given here, based on that in (Fu and So (2009); Fu et al. (2012)), are applicable to all fluids,

compressible or incompressible. Secondly, the equations of continuum mechanics appear at

the expansion of the particle distribution functions at the first order, as described in full in

(3.3.3) - (3.3.53) and (3.4.1) - (3.4.33).

Next, some remarks regarding the numerical scheme are in order. As is well known, there

are two main categories of flows in fluid mechanics. One is where the pressure gradient is

specified, which occurs in the case of the flow in a pipe. The second is where the pressure

field has to be determined as a part of the solution; consider the flow in a lid-driven cavity as

an example. Both types of problems have to be solvable with the chosen numerical scheme

for the determination of the distribution functions fα and gα .

For instance, consider the evolution equation for fα in (3.2.23). This is solved by using

the splitting method of Toro (1999) and explained in detail in Fu and So (2009); Fu et al.

(2012). Briefly, the evolution equation is split into two parts. The first one is called the

streaming section, equivalent to solving the homogeneous equation:

∂ fα

∂ t
+ξξξ α ·∇x fα −Fα = 0. (3.5.1)
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In order to solve this equation, an initial value for f eq
α is required. To determine this,

one begins with an assumed velocity distribution in the domain, say u0, from which one

determines the initial stress field through the designated constitutive equation. If the pressure

field is prescribed, this can be used to calculate the matrix M from (3.3.9) and the initial

value of f eq
α from (3.3.3). If the pressure has to be determined as a part of the solution, one

assumes that, in addition to u0, a value of f eq
α is given. From (3.3.9), the pressure p can be

determined from the trace of the matrix M in (3.3.9).

Next, using the initial value of f eq
α , determined from the given initial macroscopic

variables as in (3.3.3)- (3.3.9), the intermediate value of f I
α is calculated by solving the

homogeneous equation; for instance, the Lax-Wendroff scheme can be employed. Using this,

the intermediate macroscopic value of the velocity field uI is determined from (3.3.5).

The second one is called the collision section, equivalent to solving the time-dependent

equation:
∂ fα

∂ t
=− 1

ετ
( fα(x, t)− f eq

α (x, t)). (3.5.2)

Using the previously determined f I
α as the initial condition, the collision equation is now

solved; for instance, the Euler method can be used.

To reiterate, considering two-dimensional flows for convenience, we note that the matrix

M in (3.3.9) can be used in two different ways. If the pressure p is specified and the initial

velocity vector u0 is known, one uses the relevant constitutive equation in this matrix to find

the initial value of f eq
α . On the other hand, if the pressure field has to be determined, the

trace of the matrix can be employed; see Eqs. (18a) - (18c) in Fu and So (2009). Clearly, the

constant density assumption is met, for it is inherent in the Eqs. (3.3.3) - (3.3.13). Moreover,

at each iteration, a new value of the lattice speed σ is chosen employing (3.5.8) or (3.5.9)

below.

Next, we shall discuss the stability of the numerical scheme. Multiplying (3.3.26) with

|ξξξ |2/2 and the utilisation of (3.3.4) leads to
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8

∑
α=0

1
2

fα |ξξξ α |
2 = p+

1
2

ρ |u|2 −
τxx + τyy

2
. (3.5.3)

Next, it is easy to verify from (3.3.27) - (3.3.28) that

8

∑
α=0

Fα |ξξξ α |2 = 0. (3.5.4)

Hence, (3.3.26) becomes

∂

∂ t

[
p+

1
2

ρ|u|2 −
τxx + τyy

2

]
+

σ2

2
ρ(∇ ·u) = O(ε) . (3.5.5)

The Courant-Friedrichs-Lewy (CFL) condition states that (Blazek (2001) and Cebeci

et al. (2005))

K =
u∆t
∆x

+
v∆t
∆y

≤ 1. (3.5.6)

This can be used in (3.5.5) and we obtain

[
|u|2 +

2p− τxx − τyy

ρ

]
+σ

2K = O(ε) (3.5.7)

Thus, the lattice speed σ must satisfy

σ = Kc

√∣∣∣∣τxx + τyy −2p
ρ

−|u|2
∣∣∣∣ , Kc =

1√
K

≥ 1. (3.5.8)

If the pressure p has to be uniquely defined, one requires that τxx + τyy = 0; see (3.3.14).

Thus, in these fluid models, (3.5.8) reduces to

σ = Kc

√∣∣∣∣−2p
ρ

−|u|2
∣∣∣∣ , Kc =

1√
K

≥ 1 (3.5.9)

As a result, the value σ is modified and changes in each iteration as defined through (3.5.9).
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Finally, in the Finite Difference Lattice Boltzmann Method (FDLBM) adopted here, the

iteration and recovery of the pressure field is similar to the SIMPLE method of Patankar and

Spalding (Patankar (1981); Patankar and Spalding (1972)). As is well known, the SIMPLE

method is a guess-and-correct procedure for the calculation of the pressure field. In each

iteration, the velocity field is obtained from the first guessed pressure field. Next, using the

corrected velocity field, it is possible to find the corrected pressure and this process continues

till a very small or zero mass residual is obtained, since the zero mass residual demonstrates

that the divergence of the velocity vector field is zero. In FDLBM, the criteria, which is the

mass residual in the SIMPLE method, is the difference between the sum of the distribution

functions and the fixed density; see Eq. (3.3.4). Thus, the correction of the pressure field and

the subsequent correction of the velocity field continues till a small or zero difference exists

between this sum and the density.





Chapter 4

Isothermal flows of Bingham fluids:

steady flow in a lid-driven cavity and in a

pipe of square cross-section

4.1 Simulation of the flow of a Newtonian fluid in a lid-

driven cavity with FDLBM

Flows of fluids inside lid driven cavities have been the subject of extensive computational

and experimental studies over several decades (Ghia et al. (1982), Botella and Peyret (1998),

Bruneau and Jouron (1990), Deng et al. (1994), Sahin and Owens (2003), Hou et al. (1995)).

The lid-driven square cavity flow has been used as a benchmark problem for many numerical

methods as it covers a wide range of complex hydrodynamics encompassing recirculation,

different vortices structures, singularity, transition, and instability. The lid-driven cavity flow

is the motion of a fluid inside a square cavity created by a constant translational velocity of

one side while the other sides remain at rest (Fig.4.1). In the present analysis, we have taken
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Fig. 4.1 Geometry of lid-driven cavity

the fluid to be the incompressible Newtonian fluid and the flow as laminar. Further, the flow

is steady, isothermal, two dimensional and the velocity field is divergence free.

4.1.1 Dimensional equations

Based on the above assumptions, denoting by ū = ui+ vj the velocity field, ρ the density, τi j

the stresses and p is the pressure, Cauchy’s equations for an incompressible fluid are:

∂u
∂x

+
∂v
∂y

= 0 , (4.1.1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+

(
∂τxx

∂x
+

∂τxy

∂y

)
, (4.1.2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+

(
∂τxy

∂x
+

∂τyy

∂y

)
+ρg· (4.1.3)
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Now, let pressure (p) be written as the sum p = ps+ pd , where the static part ps accounts

for gravity alone, and pd is the dynamic part. Thus,

− ∂ ps

∂y
= ρg · (4.1.4)

The extra stresses are obtained as follows:

τxx = 2η

(
∂u
∂x

)
, τyy = 2η

(
∂v
∂y

)
, τxy = η

(
∂u
∂y

+
∂v
∂x

)
, (4.1.5)

where η is the dynamic viscosity.

4.1.2 Dimensional boundary conditions

The flow domain is given by Ω = (0,L)× (0,L), and the boundary Γ = ∂Ω. Γ1 is the subset

Γ1 = {x|x = {x,y} ,x = 0 or L,0 ≤ y ≤ L}. Γ2 = {x|x = {x,y} ,0 ≤ x ≤ L,y = 0} and Γ3 =

{x|x = {x,y} ,0 ≤ x ≤ L,y = L}. The boundary condition for the velocity is straightforward:

u|
Γ1

= u|
Γ2

= 0 and u|
Γ3

= uri ·

4.1.3 Non-Dimensional equations

In order to proceed to the numerical solution of the system (Eqs.(4.1.1),(4.1.2), and (4.1.3))

with the boundary conditions, the following non dimensional variables are introduced:

x̄ =
x
L
, ȳ =

y
L
, ū =

u
ur
, v̄ =

v
ur
, p̄d =

pd

ρu2
r
, (4.1.6)
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where ur is the the speed of the upper wall. By substitution of Eq.(4.1.6) in Eqs.(4.1.1),(4.1.2),

(4.1.3), and dropping the bar notation for convenience, the following system of non-dimensional

equations is derived:

∂u
∂x

+
∂v
∂y

= 0 , (4.1.7)

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂ pd

∂x
+

1
Re

(
∂ 2u
∂x2 +

∂ 2u
∂y2

)
, (4.1.8)

(
u

∂v
∂x

+ v
∂v
∂y

)
=−∂ pd

∂y
+

1
Re

(
∂ 2v
∂x2 +

∂ 2v
∂y2

)
. (4.1.9)

The Reynolds number is given by:

Re =
ρ ur L

η
· (4.1.10)

4.1.4 Non-Dimensional boundary conditions

The flow domain is given by Ω = (0,1)× (0,1), and the boundary Γ = ∂Ω. Γ1 is the subset

Γ1 = {x|x = {x,y} ,x = 0 or 1,0 ≤ y ≤ 1}. Γ2 = {x|x = {x,y} ,0 ≤ x ≤ 1,y = 0} and Γ3 =

{x|x = {x,y} ,0 ≤ x ≤ 1,y = 1}. The boundary condition for the velocity is straightforward:

u|
Γ1

= u|
Γ2

= 0 and u|
Γ3

= 1 ·



4.2 Simulation of the flow of a Bingham fluid in a lid driven cavity using the FDLBM 63

4.1.5 Results and validation

The FDLBM has been utilised to simulate the lid-driven cavity flow problem at different

Reynolds numbers (Re = 100, 400 and 1000). An extensive mesh testing procedure has also

been conducted to guarantee a grid independent solution. Four different mesh combinations

were explored for the case of Re = 1000. It was confirmed that the grid size (200*200) ensures

a grid independent solution as portrayed in Fig.4.2. To check the accuracy of the present

results, the code was validated with published studies in the literature on the lid-driven cavity

flow (Ghia et al. (1982) - Hou et al. (1995)). The results in Table 4.1 show a good agreement

to within 2-3 significant figures in all cases. Finally, the streamlines for the studied Reynolds

numbers have been presented in Fig.4.3.

4.2 Simulation of the flow of a Bingham fluid in a lid driven

cavity using the FDLBM

In this section, the flow of a Bingham fluid in the cavity is simulated, using the Bingham and

Papanastasiou models. The main difference between Newtonian and non-Newtonian fluids

is observed in the stresses. However, the dimensional and the non-dimensional variables as

well as non-dimensional equations are similar to those for Newtonian fluids. As a result, the

forms of the constitutive equations and stresses of the Bingham and Papanastasiou models

are explained in the following part.

The constitutive equation for an incompressible Bingham fluid is based on the assumption

that the fluid remains at rest or moves as a rigid body if the second invariant of the extra

stress tensor τττ is less than or equal to the yield stress τy. If the second invariant exceeds the

yield stress, the material flows like a fluid. This second invariant is defined through
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Fig. 4.2 Comparison of velocity distribution for Newtonian fluids at x = 0.5 and y = 0.5 at
different mesh combinations for (a) u and (b) v respectively.
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Table 4.1 (a) minimum values of u computed along x = 0.5 and the corresponding ordinate
ymin, (b) maximum values of v computed along y = 0.5 and the corresponding abscissa
xmax, (c) minimum values of v computed along y = 0.5 and the corresponding abscissa xmin,
(d) minimum values of stream function and the corresponding coordinates xmin, ymin for
Newtonian fluids.

Reference umin ymin vmax xmax vmin xmin ψmin
Re=100
Present -0.2111 0.4591 0.1802 0.2358 -0.2571 0.8121 -0.1031

Ghia et al. (1982) -0.2109 0.4598 0.1809 0.2354 -0.2566 0.8127 -0.1035
Botella and Peyret (1998) -0.2140 0.4581 0.1796 0.2370 -0.2538 0.8104 -

Bruneau and Jouron (1990) -0.2106 0.4531 0.1786 0.2344 -0.2521 0.8125 -0.1026
Deng et al. (1994) -0.2131 - - 0.2354 - - -

Sahin and Owens (2003) -0.2139 0.4598 0.1808 0.2354 -0.2566 0.8127 -0.1035
Hou et al. (1995) - - - - - - -0.1030

Re=400
Present -0.3296 0.2882 0.3083 0.2291 -0.4601 0.8911 -0.1162

Ghia et al. (1982) -0.3273 0.2813 0.3020 0.2266 -0.4499 0.8594 -0.1139
Hou et al. (1995) - - - - - - -0.1121
Deng et al. (1994) -0.3275 - 0.3027 - -0.4527 - -

Sahin and Owens (2003) -0.3283 0.2815 0.3044 0.2253 -0.4563 0.8621 -0.1139

Re=1000
Present -0.3840 0.1721 0.3765 0.1586 -0.5279 0.9105 -0.1184

Sahin and Owens (2003) -0.38810 0.1727 0.3769 0.1573 -0.5285 0.9087 -0.1188
Ghia et al. (1982) -0.3829 0.1719 0.3709 0.1563 -0.5155 0.9063 -0.1179

Botella and Peyret (1998) -0.3886 0.1717 0.3769 0.1578 -0.5271 0.9092 -0.1189
Hou et al. (1995) - - - - - - -0.1178

Bruneau and Jouron (1990) -0.3764 0.1602 0.3665 0.1523 -0.5208 0.9102 -0.1163
Deng et al. (1994) -0.38511 - 0.3769 - -0.5228 - -
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                      Re=100                                  Re=400                                  Re=1000 

Fig. 4.3 Comparison of streamlines at different Reynolds numbers

II(τττ) = (1/
√

2)
√

τττ : τττ. (4.2.1)

Hence, using the first Rivlin-Ericksen tensor A1 (Rivlin and Ericksen (1955)), the rigidity

condition is given by

A1 = 0, II(τττ)≤ τy. (4.2.2)

When the second invariant of the extra stress tensor exceeds the yield stress, one defines

τττ as a function of the tensor A1 leading to the following relation:

τττ = ηA1 +
τy

II(A1)
A1, II(τττ)> τy , II(A1) = (1/

√
2)
√

A1 : A1 · (4.2.3)

In the Papanastasiou model, which is of interest here, the constitutive equation for

the incompressible Bingham fluid is replaced by that of a material with a non-Newtonian

viscosity. That is,

τττ = η(II(A1))A1, (4.2.4)
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where the viscosity η is the sum of the constant Newtonian viscosity η0, and a parameter

dependent term. To be specific,

η(II(A1)) = η0 +
τy

II(A1)

[
1− exp(−mII(A1))

]
, (4.2.5)

where m > 0 is the parameter which can be chosen arbitrarily. Note that the viscosity

function in Eq.(4.2.5) is a smooth function of its argument. As far as numerical modelling is

concerned, one can employ Eq.(4.2.5) and choose an appropriate value for the parameter m.

A search through the literature shows that m can be as large as 106. Here, we examine the

consequences of m = 1000 only.

Under Dirichlet boundary conditions for the velocity field which applies to the flow in a

cavity, a new constitutive equation for a Bingham fluid fully equivalent to the original form

can be used. This idea is due to Duvaut and Lions (1972) and Glowinski (2003) and the

constitutive equation takes the form

τττ = ηA1 +
√

2 τy ΛΛΛ, 1 : ΛΛΛ = 0, (4.2.6)

where one may call the second order, symmetric, tensor ΛΛΛ the viscoplasticity constraint

tensor (Huilgol (2015)). Note that the traceless condition 1 : ΛΛΛ = 0 has been imposed on this

tensor so that the stress tensor τττ satisfies the condition tr τττ = 0. In order to demarcate the

flow field into unyielded/yielded zones, one requires that the tensor ΛΛΛ meet the following

conditions:

ΛΛΛ : ΛΛΛ =

 < 1, A1 = 0,

1, A1 ̸= 0.
(4.2.7)

These conditions are equivalent to those imposed on the stress tensor, viz., II(τττ) ≤ τy

when A1 = 0, and τy < II(τττ) when A1 ̸= 0. The problem of determining where the flow is

rigid and where it is liquid-like has been shifted to finding the tensor ΛΛΛ in the flow field such



68
Isothermal flows of Bingham fluids: steady flow in a lid-driven cavity and in a pipe of square

cross-section

that is satisfies Eq.(4.2.7). Moreover, just as the magnitude of the shear stress σ satisfies

0 ≤ σ < τy in the rigid core in a shearing flow, it is found that 0 ≤ ||ΛΛΛ||< 1 in the rigid core

regions. What has been proposed is important for the following reasons:

1. The constitutive equations Eqs.(4.2.6) - (4.2.7) are defined over the entire flow domain,

not just where the fluid has yielded.

2. One searches for the solution velocity field u and the viscoplasticity constraint tensor

ΛΛΛ to determine the yielded/unyielded regions. There are no singularities because one

is not trying to find the location of the yield surface(s) through the limit of A1/II(A1)

as A1 → 0·

3. However, the equations of motion now involve two unknown fields: a vector field u,

and a symmetric tensor field ΛΛΛ. The latter requires that there should exist a connection

between the velocity field u and ΛΛΛ. Under Dirichlet boundary conditions, it is possible

to prove such a relation; see Duvaut and Lions (1972), Glowinski (2003), Huilgol

(2015). Here, we provide a summary of the results. First, we define a set

M =
{

µµµ|µµµ = µµµT , µµµ = (µi j)1≤i, j≤2 ∈ (L2(Ω))2, ||µµµ|| ≤ 1 a.e. on Ω
}

and a projec-

tion operator PM through

PM (q) =
q

max(1, ||q||)
, a. e. in Ω, ∀q ∈ (L2(Ω))2. (4.2.8)

Thus, let ΛΛΛ
0 be given, say it is 0. If ΛΛΛ

n is known, use the constitutive relation Eq.(4.2.7) to

solve for the velocity field un, and find ΛΛΛ
n+1 through the projection:

ΛΛΛ
n+1 = PM

(
ΛΛΛ

n + rτyAn
1

)
, (4.2.9)

where r > 0 is a real number to be specified (It should be noted that the acceptable values of r

were reported between 0 < r < η/2τ2
y in Dean et al. (2007) and 0 < r < 2η/τ2

y in Muravleva

(2015)). Successive iterations are performed till convergence is achieved to the desired level
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of accuracy. Note that the yield surface is the boundary between ||ΛΛΛ|| < 1 and ||ΛΛΛ|| = 1.

Hence, the solution of the boundary value problem delivers in the limit both the velocity field

as well as the shape and location of the yield surface.

In the case of the Papanastasiou model (Papanastasiou (1987)), the non-dimensional

apparent viscosity is given by

η = 1+
Bn

II(A1)

[
1− exp(−mII(A1))

]
, (4.2.10)

Hence, the stresses are:

τxx = 2η

(
∂u
∂x

)
, τyy = 2η

(
∂v
∂y

)
, τxy = η

(
∂u
∂y

+
∂v
∂x

)
, (4.2.11)

where

II(A1) =

{
2

[(
∂u
∂x

)2

+

(
∂v
∂y

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
} 1

2

· (4.2.12)

In the case of the Bingham model (Huilgol (2015)), the non-dimensional stresses are

given by

τxx =

[
2
(

∂u
∂x

)
+
√

2 BnΛxx

]
, (4.2.13a)

τyy =

[
2
(

∂v
∂y

)
+
√

2 BnΛyy

]
, (4.2.13b)

τxy =

[(
∂u
∂y

+
∂v
∂x

)
+
√

2 BnΛxy

]
, (4.2.13c)
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The non-dimensional parameters for the problem are as follows:

Reynolds number:

Re =
ρ urL

η
, (4.2.14)

Bingham number:

Bn =
τy L
η ur

. (4.2.15)

4.2.1 Simulation of the flow of a Bingham fluid in a lid driven cavity

using the OSM

The lid-driven cavity filled with a Bingham fluid using the Bingham model was solved by

several researchers (Sanchez (1998), Dean and Glowinski (2002), Huilgol and You (2009))

by applying the Operator Splitting Method (OSM) to solve the problem. Here, a brief

explanation about the OSM is given here.

The equations of motion for an incompressible Bingham fluid are:

−∇p+η△u+
√

2τy∇ ·ΛΛΛ+ρb = ρa , (4.2.16)

where △ is the two-dimensional laplacian. Let U and L be the velocity and length scales

respectively. Then, set u =Uu∗, x = Lx∗, t = (L/U)t∗, the Reynolds number Re = ρUL/η

and the Bingham number Bn =
√

2τyL/ηU, with the pressure term p = (ηU/L)p∗, and the

body force term b = (U2/L)b∗. After inserting these into the equations of motion, drop the

asterisks. On noting that the tensor ΛΛΛ is non-dimensional, and dividing both sides of Eq.

(4.2.16) through by ηU/L2, one obtains:

Re
(

∂u
∂ t

+(u ·∇)u
)
−△u−Bn ∇ ·ΛΛΛ+∇p = Re b, (4.2.17)
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where ΛΛΛ ∈ M (4.2.9), and

M = {µi j = µ ji, µii = 0, ||µ||=√
µi jµi j ≤ 1}. (4.2.18)

In Eq. (4.2.17), we have three unknowns: the velocity field u, the tensor ΛΛΛ and the pres-

sure term p. So, it is best to decompose this into three separate problems for numerical

computation. In order to simplify these further, we replace p by p/Re in what follows.

In the numerical scheme, we divide the time interval from n△t to (n+1)△t into three

subintervals of equal length △t/3. Let u0 = u0,ΛΛΛ0, p0 be given, with ∇ ·u0 = 0. For n ≥ 0,

compute the following set {un+1/3, pn+1}, {un+2/3} and {un+1,ΛΛΛn+1} through

un+1/3 −un

△t
− 1

3Re
△un+1/3 +∇pn+1 = fn+1, (4.2.19)

∇ ·un+1/3 = 0, (4.2.20)

un+2/3 −un+1/3

△t
− 1

3Re
△un+2/3 +

(
un+2/3 ·∇

)
un+2/3 = 0, (4.2.21)

un+1 −un+2/3

△t
− 1

3Re
△un+1 − Bn

Re
∇ : ΛΛΛ

n+1 = 0, , (4.2.22)

Λ
n+1
i j (A1)i j

(
un+1

)
=

[
(A1)i j

(
un+1

)
(A1)i j

(
un+1

)]1/2

. (4.2.23)

It is important to note that if we add Eqs. (4.2.19), (4.2.21) and (4.2.22), we get

un+1 −un

△t
+

(
un+2/3 ·∇

)
un+2/3 − 1

3Re
△
[

un+1/3 +un+2/3 +un+1
]

−Bn
Re

∇ : ΛΛΛ
n+1 + ∇pn+1 = fn+1, (4.2.24)

which is an excellent approximation to Eq. (4.2.17). In Eqs. (4.2.19) - (4.2.23), note that

uk = u(x,k△t), where k ≥ 0 is an integer. We shall now discuss the above three problems in

detail.
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1. The generalised Stokes problem

The first problem in Eqs. (4.2.19) and (4.2.20) constitute a problem of the Stokes type:

αu−ν△u+∇p = f, (4.2.25)

∇ ·u = 0, (4.2.26)

where

α =
1
△t

, ν =
1

3Re
, u = un+1/3, f = fn+1 +(un/△t), (4.2.27)

with f1 = b. We carry forward the final solution for u obtained here to the next problem

as un+1/3.

2. The transport problem

Now, Eq. (4.2.21) is a nonlinear elliptic problem of the following type:

αu−ν△u+

(
u ·∇

)
u = f, (4.2.28)

where

α =
1
△t

, ν =
1

3Re
, u = un+2/3, f =

un+1/3

△t
. (4.2.29)

It is possible to turn Eq.(4.2.28) into a linear problem by replacing (u ·∇)u with

(w ·∇)u, where w is the previous value of u. We solve this modified problem until

convergence occurs, say in m+1 steps, and then take un+2/3 = um+1 into the problems

in Eqs. (4.2.22) and (4.2.23).



4.2 Simulation of the flow of a Bingham fluid in a lid driven cavity using the FDLBM 73

3. The multiplier problem

Finally, Eqs. (4.2.22) and (4.2.23) are of the following type:

αu−ν△u−β∇ ·ΛΛΛ = f, (4.2.30)

ΛΛΛ : A1(u) =

[
A1(u) : A1(u)

]1/2

, (4.2.31)

where

α =
1
△t

, β =
Bn
Re

, ν =
1

3Re
, (4.2.32)

u = un+1, ΛΛΛ =ΛΛΛ
n+1, f =

un+2/3

△t
. (4.2.33)

The iteration to find ΛΛΛ
n+1 is based on using Eqs. (4.2.7) and (4.2.18). That is, for any

r ≥ 0, we define

ΛΛΛ
m+1 = PM

(
ΛΛΛ

m + rβA1(um)

)
, (4.2.34)

where PM is the projection operator on the space M , defined so that PM (µµµ) = µµµ, if

||µµµ||< 1, and PM (µµµ) = µµµ/||µµµ|| otherwise. Note that if we choose the initial value of

the multiplier ΛΛΛ0 such that 1 : ΛΛΛ0 = 0, all other iterations will also have zero trace.

As far as ΛΛΛ
n+1 is concerned, it forms the initial value ΛΛΛ0 when n is upgraded to n+1.

4.2.2 Results and validation

The FDLBM has been utilised to simulate the lid-driven cavity flow problem of a Bingham

fluid at different Reynolds numbers. An extensive mesh testing procedure was conducted to

guarantee a grid independent solution. Seven different mesh combinations were explored for

the case of Re = 1000 and Bn = 10. The present code was tested for grid independence by

calculating the u and v velocities in the middle of the cavity. It was confirmed that the grid
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size (250-250) ensures a grid independent solution as portrayed by Fig.4.4 . The accuracy of

the applied code in a lid-driven cavity using the Papanastasiou model is validated through

a comparison with Neofytou (2005) who chose a smaller grid size (200-200). The results

are shown in Fig.4.5 where the u and v velocities profiles demonstrate the accuracy of the

present simulation for Bn = 1 and Re = 100. In addition, the yielded/unyielded region and

the streamlines of the FDLBM using the Papanastasiou model are validated by comparison

to those of Syrakos et al. (2014) at Re = 1000 and Bn = 10 in Fig.4.6. Results of the FDLBM

using the Bingham model is compared with Dean and Glowinski (2002). The streamlines

and the yielded/unyielded regions in Fig.4.7 are depicted at Re = 0.53, Bn = 0.1 which refer

to the values of U = 1, µ (η) =1, g (τy) = 0.1 in the study of Dean and Glowinski (2002)

for the dimensional values of Reynolds and Bingham numbers found by Huilgol and You

(2009). They stated that the acceptable values of r lie between 0 < r < η/2τ2
y . For the

studied parameters U = 1, η =1, τy = 0.1, r lies between 0 < r < 50. Hence, in this study, we

have selected r = 1.

The validation and results demonstrate that FDLBM is an appropriate method to simulate

the lid-driven flow of Bingham fluids in a cavity using the Bingham model as well as the

Papanastasiou model. In the case of the Bingham model, the OSM was the only applied

method for the problem. Two important drawbacks of the method are the running time

and the complicated algorithm. On the other hand, the only difference between the utilised

algorithms of Newtonian and Bingham fluids in the FDLBM appears in the stresses; however,

there is not a significant difference between the running time of the simulations of the flows

of Newtonian and Bingham fluids. In the case of the Papanastasiou model, the situation is

simpler, for the only difference with the Newtonian fluid in the algorithm is observed in the

exponential equation of viscosity instead of a fixed value. Moreover, Syrakos et al. (2014)

reported a necessary requirement for very fine grids in high values of Bingham and Reynolds
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                   (a)                                                                                     (b) 

Fig. 4.4 Comparison of velocity distribution at x=0.5 and y=0.5 for (a)u and (b) v respectively
at Re=1000 and Bn=10 using the Papanastasiou model ·

numbers (Re = 1000, Bn = 10) in the lid-driven cavity flow as they employed a finite volume

method to solve the problem. They stated that “there is observable improvement of the yield

surface as the grid density is increased, even up to the 2048*2048 grid”. But, in FDLBM,

Fig.4.8 shows that no changes were observed in the form and shape of the yielded/unyielded

regions due to the increase in the grid sizes more than 250*250. In other words, the cited

grid (250*250) is suitable for a wide range of Reynolds and Bingham numbers.

4.3 Simulation of the steady fluid flow of Bingham fluid in

a pipe of square cross-section

As mentioned in the second chapter, the steady flow of a Bingham fluid in pipes has attracted

the attention of many researchers in this field. In some the cited studies into the topic, the

Augmented Lagrangian method (ALM) has been applied to solve the problems, for the

ALM has been an effective and reliable numerical technique for solving viscoplastic flow
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Fig. 4.5 Comparison of u and v velocities profiles in the middle of the cavity between the
present results with the results of Neofytou (2005) for Re = 100 and Bn = 1 ·

problems. In fact, the method decouples the computation of the nonlinearity introduced by

the complex rheological behaviour of the fluid from that of the velocity. Hence, the ALM

provides us with a tool for solving the flow of a Bingham fluid, avoiding the applications of

different regularised models. Moreover, it leads to an accurate prediction of the locations

of the yielded and unyielded zones. Here, the steady flow of Bingham fluid in a pipe of

a square cross-section (Fig.4.9), is studied by applying the method of ALM and FDLBM.

First, we explain briefly the methodology of the ALM for the selected problem using the

previous study by Huilgol and You (2005). Next, the problem is formulated by FDLBM and

the FDLBM results are demonstrated and compared with the results obtained by Huilgol and

You (2005) using ALM.

The cross-section of the pipe of infinite length with a square cross-section is shown in

Fig.4.9. The flow is governed by the momentum equation as follows:

∂

∂x
τzx +

∂

∂y
τzy =−d p

dz
, (4.3.1)

where the deviatoric stresses are given by
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Fig. 4.6 Comparisons of the yielded/unyielded regions and streamlines between (a) the
present study with the results of (b) Syrakos et al. (2014) for Re = 1000 and Bn = 10 ·
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(b) 

Fig. 4.7 Comparisons of the yielded/unyielded regions and streamlines between (a) the
present study with the results of (b) Dean and Glowinski (2002) for Re = 0.53, Bn = 0.1
corresponding to U = 1, µ =1, g = 0.1 in Dean and Glowinski (2002) ·
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Fig. 4.8 Comparison of the yielded/unyielded regions boundaries for different grids at Re =
1000 and Bn = 10 ·

 

Fig. 4.9 Geometry of a pipe of square cross-section
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 A1 = 0, II(τττ)≤ τy,

τττ = ηA1 +
τy

II(A1)
A1, II(τττ)> τy,

(4.3.2)

It should be noted that the pressure (p) is independent of (x,y) and depends on the z

direction. As a result, the negative gradient of the pressure is equal to a positive constant

value(−d p
dz = c,c > 0). Moreover, w(x,y) is the axial velocity and is independent of the z

direction.

The non-dimensional parameters are as follows:

x̄ =
x
L
, ȳ =

y
L
, w̄ =

w
W

, p̄ =
p

cL
, τ̄ττ =

τττ

cL
, Ā1 =

A1L
W

, (4.3.3)

where L is the length of the side of the square and W is the the characteristic velocity given

by

W =
cL2

η
· (4.3.4)

The flow rate (Q) is obtained through

Q =WL2 · (4.3.5)

The hydraulic diameter of a pipe (DH) is calculated as follows:

DH =
4A
P

· (4.3.6)

where A is the area section of the pipe and P is the wetted perimeter of the pipe. For a pipe of

square cross-section, DH is the same as the length of each side. Dropping the bar notation for

convenience, the following system of non-dimensional equations is derived for the Bingham

model.
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 A1 = 0, II(τττ)≤ Od,

τττ = A1 +
Od

II(A1)
A1, II(τττ)> Od,

(4.3.7)

The Od parameter is the the Oldroyd number and is expressed as

Od =
τy

cL
· (4.3.8)

While Od is the same as the Bingham number, Od is used here for it appears in Huilgol

and You (2005).

For the given problem, the first Rivlin-Ericksen tensor (A1), the second invariants of the

extra stress tensor (II(τττ)), and the (II(A1)) are set as follows:

II(τττ) =
√

τzx2 + τyx2 , (4.3.9)

A1 =∇∇∇w =
∂w
∂x

i+
∂w
∂y

j , (4.3.10)

II(A1) = |∇w|=

√(
∂w
∂x

)2

+

(
∂w
∂y

)2

· (4.3.11)

Note that in this problem, the normal stresses τxx, τyy and τzz are zero.

4.3.1 ALM for this problem

The problem was solved by Huilgol and You (2005) and here a brief explanation about the

method is provided. It is assumed that all velocity fields have a non-zero component in the

axial direction only and that they vanish on the boundary of the pipe. Let w = w(x,y) be the

true streamwise velocity, v = v(x,y) be any trial velocity field, and Ω be the cross-section of



82
Isothermal flows of Bingham fluids: steady flow in a lid-driven cavity and in a pipe of square

cross-section

a pipe, bounded in R2. The viscous dissipation functional is given by

a(w,v−w) =
∫

Ω

η(γ̇)∇w ·∇(v−w)da · (4.3.12)

The yield stress dissipation functional has the form

j(w) = Od
∫

Ω

|∇w|da, (4.3.13)

and the pressure drop functional is given by

(c,v−w) =
∫

Ω

c(v−w)da · (4.3.14)

In Eqs (4.3.12)–(4.3.14), ∇ is the two-dimensional gradient operator, the shear rate is given

by γ̇ = |∇w|, and η(γ̇) equals to one.

It can be shown that the solution w = w(x,y) across the cross-section of the pipe satisfies

the following variational inequality (Duvaut and Lions (1972)):

a(w,v−w)+ j(v)− j(w)≥ (c,v−w). (4.3.15)

In addition, it is demonstrated from the variational inequality that the true velocity field

satisfies the energy equation:

a(w,w)+ j(w) = (c,w). (4.3.16)

Thus, the true velocity field w can be obtained by minimising the functional

Φ(v) =
1
2

∫
Ω

|∇v|2 da+Od
∫

Ω

|∇v|da−
∫

Ω

vda · (4.3.17)
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However, the functional Φ(v) cannot be minimised directly because the yield stress dissi-

pation functional j(v) is a non-differentiable function of v, when the fluid moves as a rigid

body or is at rest, where |∇v|= 0. This difficulty can be circumvented by using a Lagrangian

functional.

Thus, let q be any two-dimensional vector field and the constraint be ∇v−q = 0. The

associated Lagrangian functional is:

L(v,q,λλλ ) = Φ(v,q)+(λλλ ,∇v−q), (4.3.18)

where

(λλλ ,∇v−q) =
∫

Ω

λλλ · (∇v−q)da, (4.3.19)

and λλλ is a Lagrange multiplier. Clearly, this Lagrangian functional is linear in v. In order to

obtain a quadratic form to improve the convergence of the iterative scheme, the augmented

Lagrangian is introduced. It is taken to be

Lr(v,q,λλλ ) = L(v,q,λλλ )+
1
2

r
∫

Ω

|∇v−q|2 da, (4.3.20)

where r is a non-negative parameter. In the above scheme, u is the solution of the problem

under examination and q = ∇w.

The iteration scheme using the algorithm ALG (Glowinski (1984)) is implemented as

follows:

1. q0 and λλλ 1 are arbitrarily given in the (x,y) plane such that both vectors are square

integrable over the domain Ω.
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2. With qm−1, λλλ m known, find wm such that

− r∆wm = 1+∇ ·λλλ m − r∇ ·qm−1, (4.3.21)

where wm = 0 on ∂Ω, m = 1,2,3, . . .

3. The vector qm is obtained as follows:

 qm = 0, if Od ≥ |λλλ m + r∇wm| ,

qm = λλλ m+r∇wm

1+r (1− Od
|λλλ m+r∇wm|), elsewhere ·

(4.3.22)

4. Get λλλ m+1 from

λλλ
m+1 = λλλ

m +ρm(∇wm −qm), (4.3.23)

where ρm is a sequence of constants. The parameters r and ρm are set to unity to

acquire an optimal convergence performance (Glowinski (1984)).

4.3.2 FDLBM for this problem

With consideration to the problem, Eqs. (3.4.7) - (3.4.20) are modified as follows:

14

∑
α=0

f eq
α = ρ, (4.3.24)

14

∑
α=0

f eq
α ξξξ α = ρu, u = wk, (4.3.25)

14

∑
α=0

f eq
α ξξξ α ⊗ξξξ α = M, (4.3.26)

14

∑
α=0

f (n)α = 0, n ≥ 1, (4.3.27)

14

∑
α=0

f (n)α ξξξ α = 0, n ≥ 1. (4.3.28)
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Here,

M =


−Txx 0 Txz

0 −Tyy Tyz

Txz Tyz ρw2 −Tzz

 . (4.3.29)

Hence, we have

A0 = ρ − ρw2

σ2 +
Txx +Tyy +Tzz

σ2 , A1 = A2 = 0. (4.3.30)

B1 =
ρw
2σ2 k, B2 = 0. (4.3.31)

C1 =


C11 0 0

0 C22 0

0 0 C33

 , C11 =− 1
2σ4 (Txx), (4.3.32)

C22 = − 1
2σ4 (Tyy)., C33 =

1
2σ4 (ρw2 −Tzz). (4.3.33)

Finally,

C2 =


0 C12 C13

C21 0 C23

C31 C32 0

 , C12 =C21 = 0, (4.3.34)

C23 = C32 =− 1
16σ4 (Tyz), C13 =C31 =− 1

16σ4 (Txz). (4.3.35)

It has been mentioned earlier that τxx = τyy = τzz = 0 . Hence, we have

Txz = τxz, Tyz = τyz, Txx = Tyy = Tzz =−p · (4.3.36)
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The Bingham model is utilised for the constitutive equation using the Eqs.(4.2.6) - (4.2.9) .

τxz =

[(
∂w
∂x

)
+
√

2 OdΛxz

]
, (4.3.37)

τyz =

[(
∂w
∂y

)
+
√

2 OdΛyz

]
· (4.3.38)

We update the tensor ΛΛΛ using the projection operator.

ΛΛΛ
n+1 = PM

(
ΛΛΛ

n + rOdAn
1

)
· (4.3.39)

The chosen value of r is given below.

4.3.3 Results of the simulation using FDLBM

The FDLBM has been applied to simulate the steady flow of a Bingham fluid in a pipe of

square cross-section. In contrast with the ALM, a 3D simulation was utilised for this problem.

However, it should be noted that the running time for the 3D simulation and an appropriate

mesh (50-50-50) was not excessive and was just 584 seconds, using a PC. The present code

was tested for grid independence by calculating the plug velocity in the middle of the pipe. It

was confirmed that the grid size (50-50-50) ensures a grid independent solution as portrayed

in Table 4.2.

Figs. (4.10, 4.11, 4.12, and 4.13) demonstrate the effect of the increase in the Od number on

the velocity profile in two and three dimensional contours and also the yielded/ unyielded

regions have been found using the the tensor ΛΛΛ. The Figs. (4.10, 4.11, 4.12, and 4.13) display

the unyielded regions in the shape of a circular plug zone in the centre and also in the corners

of the cavity. The cited parts extend and the velocity magnitude drops as the Od number

increases from Od = 1 to 5. The accuracy of the applied code in the problem is validated

through a comparison with the results due to Huilgol and You (2005). The velocity profile
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in the square pipe at Od = 0.2 in Fig.4.11 demonstrates a great deal of similarity with the

Figs.8 in the study of Huilgol and You (2005). In addition, the plug velocity and the flow rate

for different Od numbers in the Table. 4.3 show a good agreement with the Table. 7 in the

study of Huilgol and You (2005). Finally, the velocity surface and the 3D and 2D contours of

velocities at Od = 0.4 evidently confirm the accuracy of the values in the Table. 4.3.

In addition, we define SP as the distance along the diagonal direction from the centre of

the square pipe to the border of the yielded zone, and Sd as the distance along the diagonal

direction from the centre of the square pipe to the border of the dead zone (Fig. 4.14). The

values of Sp and Sd for different Od numbers are compared in the Table.4.4 with the Fig.16

in the study of Huilgol and You (2005). It was mentioned that the acceptable values of r in

Eq. 4.3.39 lie between 0 < r < η/2τ2
y and the studied parameters are Od = 0.2 and 0.4, c=1,

η = 1. Thus, 0 < r < 50 for Od = 0.1, 0 < r < 12.5 for Od = 0.2, 0 < r < 3 for Od = 0.4,

and 0 < r < 2 for Od = 0.5. Hence, in this study, we have selected the r = 1.

In addition, our results have been compared with the study of Moyers-Gonzalez and Frigaard

(2004) where they studied the problem for the hydraulic diameter of DH = 1. In Fig. 4.15,

we show the obtained results for Od = 0.2 and demonstrate that the velocity surfaces have

a good agreement with those in Fig. 4 in Moyers-Gonzalez and Frigaard (2004). It should

be noted that the Bingham number B defined in Moyers-Gonzalez and Frigaard (2004) is

identical to the Oldroyd number Od used here. On the other hand, the comparison between

Figs. 4.11 and 4.15 indicates that the decrease in the hydraulic diameter from DH = 2 to 1

causes the unyielded sections to enlarge and the plug velocity to fall considerably.

The comparison between the ALM and the FDLBM demonstrates the advantages of the

FDLBM clearly. In contrast with the ALM, the Bingham model is applied directly to the

stresses in FDLBM and the unyielded region is shown clearly. In addition, the 3D simulation

generates a better vision of the velocity profile and the plug velocity in the z direction, not

only in the cross-section of the pipe. Moreover, in ALM, a very fine triangle mesh and a high
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Table 4.2 Comparison between the plug velocities of different grid sizes at Od = 0.2

Grid sizes 20-20 30-301 40-40 50-50 60-60
Plug velocity(wp) 0.147 0.135 0.128 0.121 0.121

Table 4.3 Comparison between the results of the present study usisng the FDLBM and the
ALM which is studied by Huilgol and You (2005)

Od number Plug flow velocity (wp) Flow rate (Q)
Present study 0.2 0.121 0.292

Huilgol and You (2005) 0.2 0.117 0.286
Present study 0.4 1.98×10−2 6.12×10−2

Huilgol and You (2005) 0.4 1.92×10−2 6.07×10−2

computational process (4225 nodes) were employed in the results due to Huilgol and You

(2005). This grid size increases the required computational capacity and time running vastly.

But, in FDLBM, we applied a simple coarse square mesh which drops the running time and

the CPU considerably when compared with ALM. The results compare very favorably with

those in Table.7 of Huilgol and You (2005).

Table 4.4 Comparison between the present study and the results of Huilgol and You (2005)
for the location of yielded/unyielded surfaces

Od number Sp Sd
Present study 0.2 0.42 1.38

Huilgol and You (2005) 0.2 0.41 1.39
Present study 0.4 0.83 1.31

Huilgol and You (2005) 0.4 0.82 1.33
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 (c)                                   (d) 

Fig. 4.10 (a) 3D contour of the square pipe flow (b) 2D contour of the square pipe flow (c)
Velocity surface (d) The yielded/unyielded zones for Od = 0.1 and DH = 2
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 (c)                                   (d) 

Fig. 4.11 (a) 3D contour of the square pipe flow (b) 2D contour of the square pipe flow (c)
Velocity surface (d) The yielded/unyielded zones for Od = 0.2 and DH = 2
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 (c) (d) 

Fig. 4.12 (a) 3D contour of the square pipe flow (b) 2D contour of the square pipe flow (c)
Velocity surface (d) The yielded/unyielded zones for Od = 0.4 and DH = 2
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 (c)                                   (d) 

Fig. 4.13 (a) 3D contour of the square pipe flow (b) 2D contour of the square pipe flow (c)
Velocity surface (d) The yielded/unyielded zones for Od = 0.5 and DH = 2
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 (a)   (b)  

Fig. 4.14 The location of the yielded/unyielded surfaces (a) the border of plug flow zone
(Sp); (b) the border of dead zone (Sd)
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 (c)                                   (d) 

Fig. 4.15 (a) 3D contour of the square pipe flow (b) 2D contour of the square pipe flow (c)
Velocity surface (d) The yielded/unyielded zones for Od = 0.2 and DH = 1



Chapter 5

Non-isothermal flows of Bingham fluids:

natural convection and mixed convection

in a cavity

5.1 Natural convection of a Newtonian fluid using the meso-

scopic method

The geometry of the chosen problem is shown in Fig.5.1. It consists of a two-dimensional

cavity with a height L. The temperature of the left wall is maintained at a higher temperature

TH and the right wall is fixed at a lower temperature TC. The horizontal walls are considered

to be adiabatic and the cavity is filled with an incompressible Newtonian fluid. The density

variation is approximated by the standard Boussinesq model. Finally, the viscous dissipation

is neglected in the energy equation.
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Fig. 5.1 Geometry of natural convection problem

Dimensional equations

Based on the above assumptions, denoting by u = ui+ vj the velocity field, ρ the den-

sity, T the temperature field, and applying the Boussinesq approximation, Cauchy’s equations

for an incompressible fluid are (de Vahl Davis (1983); Quéré (1991); Quéré and de Roquefort

(1985)):

∂u
∂x

+
∂v
∂y

= 0 , (5.1.1)

ρ

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+

(
∂τxx

∂x
+

∂τxy

∂y

)
, (5.1.2)

ρ

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+

(
∂τxy

∂x
+

∂τyy

∂y

)
+ρg [1+β (T −TC)] , (5.1.3)
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∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

= α

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
. (5.1.4)

where α is the conductivity coefficient and β is the coefficient of thermal expansion. Now,

let the pressure (p) be written as the sum p = ps + pd , where the static part ps accounts for

gravity alone, and pd is the dynamic part. Thus,

− ∂ ps

∂y
= ρg · (5.1.5)

The extra stresses are defined as follows:

τxx = 2η

(
∂u
∂x

)
, τyy = 2η

(
∂v
∂y

)
, τxy = η

(
∂u
∂y

+
∂v
∂x

)
, (5.1.6)

where η is the dynamic viscosity.

Dimensional boundary conditions

The flow domain is given by Ω = (0,L)× (0,L), and the boundary Γ = ∂Ω, with a

subset Γ1 = {x|x = {x,y} ,0 < x < L,y = 0 or L}. The boundary condition for the velocity is

straightforward: u|
Γ
= 0. The thermal boundary conditions are

T |x=0 = TC, T |x=1 = TH ,
∂T
∂y

∣∣∣∣
Γ1

= 0. (5.1.7)
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Non-dimensional equations

In order to proceed to the numerical solution, the following non-dimensional variables are

introduced (Quéré (1991); Quéré and de Roquefort (1985)):.

x̄ =
x
L
, ȳ =

y
L
, ū =

u
(α/L ) Ra0.5 , v̄ =

v
(α/L ) Ra0.5 , (5.1.8a)

p̄ =
p

ρ(α/L )2 Ra
, t̄ =

t
(L2/α ) Ra−0.5 , T̄ =

T −TC

TH −TC
· (5.1.8b)

By substitution of Eqs. (5.1.8) into Eqs.(5.1.1)-(5.1.4), and dropping the bar notation for

convenience, the following system of non-dimensional equations is derived:

∂u
∂x

+
∂v
∂y

= 0 , (5.1.9)

(
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+

Pr√
Ra

[(
∂ 2u
∂x2

)
+

(
∂ 2u
∂y2

)]
, (5.1.10)

(
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+

Pr√
Ra

[(
∂ 2v
∂x2

)
+

(
∂ 2v
∂y2

)]
+PrT , (5.1.11)

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

=
1√
Ra

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
. (5.1.12)
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The non-dimensional parameters for the problem under consideration are the Rayleigh

number

Ra =
βgL3(TH −TC)

ν α
, (5.1.13)

and the Prandtl number

Pr =
ν

α
. (5.1.14)

Non-dimensional boundary conditions

The flow domain is given by Ω = (0,1)× (0,1), and the boundary Γ = ∂Ω, with a

subset Γ1 = {x|x = {x,y} ,0 < x < 1,y = 0 or 1}. The boundary condition for the velocity is

straightforward: u|
Γ
= 0. The thermal boundary conditions are

T |x=0 = 0, T |x=1 = 1,
∂T
∂y

∣∣∣∣
Γ1

= 0. (5.1.15)

TFDDFM

The mass and momentum equations in the absence of the buoyancy force term (Eqs.

5.1.1-5.1.2) are solved by applying Eqs. (3.3.4)-(3.3.13). Moreover, the energy equation

(Eq.5.1.3) can be solved by using Eqs. (3.3.39)-(3.3.46).

The buoyancy force term effect as a body force in the momentum equation has been

studied using the Eqs.(3.3.29)-(3.3.32) and the following equations are obtained.

Fα = 0 α = 0,2,4,6,8 , (5.1.16a)

Fα = ξξξ α . M α = 1,3,5,7 , (5.1.16b)
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M =
PrT
2σ2 j · (5.1.16c)

The corresponding polynomial of the equilibrium distribution function for the energy

equation using the Eqs. (3.3.39)-(3.3.52) can be written as follows:

geq
α = Dα +ξξξ α ·Eα , (5.1.17a)

D0 = T D1 = D2 = 0 , (5.1.17b)

E1 =
1

2σ2

(
T u− 1√

Ra
∇T

)
, E2 = 0 · (5.1.17c)

Results and validation

The Thermal Finite Difference Discrete Flux Method (TFDDFM) has been employed to

simulate the flow under study and investigated at different Rayleigh numbers (Ra = 103, 104,

and 105) and Prandtl numbers (Pr = 0.71, 5 and 10). To check the accuracy of the results, the

present code is validated with published studies of Fu et al. (2012) where the average Nusselt

number on the hot wall is compared at Pr = 0.71. The results are exhibited in Table.5.1

and show a good agreement between the compared studies. Since the Nusselt number (Nu)

is one of the most important dimensionless parameters in describing the convective heat

transport, the local and the average Nusselt numbers at the hot wall with the utilization of the

dimensionless parameters are calculated through

Nu =−∂T
∂x

, x = 0, (5.1.18)
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Nuavg =
∫ 1

0
Nudy. (5.1.19)

In addition, streamlines and isothermal contours as well as the velocities and temperatures

in the middle of the cavity have been drawn to demonstrate the effects of the alterations of

Prandtl and Rayleigh numbers.

Fig.5.2 shows the streamlines and isotherms of different Rayleigh numbers at Prandtl

number of Pr = 5. As the Rayleigh number increases, the shape of the isotherms between the

cold and hot walls change significantly and they become progressively curved. Moreover,

the gradient of temperature on the hot wall augments with the rise of the Rayleigh number.

In fact, the thermal boundary layer thickness on the side walls decreases with increasing

Rayleigh number. The streamlines exhibit that the convection process has been enhanced

by the growth of Rayleigh numbers as the core of the streamline changes from the circular

shape to elliptical one gradually and the streamlines move into the cavity.

Fig.5.3 shows the vertical velocity and temperature components along the horizontal

mid-plane of the cavity as the local Nusselt number changes. Different Rayleigh numbers are

used when Pr = 5. At Ra = 103, the distribution of the temperature is nearly linear and the

vertical velocity component is essentially negligible due to a very weak flow as the effects

of buoyancy forces are dominated by viscous effects. Under this circumstance, the heat

transfer takes place entirely by conduction across the enclosure, although the vertical velocity

magnitude does indeed augment with augmentation of Rayleigh number. The distribution

of the temperature becomes increasingly non-linear with the strengthening of convective

transport for higher values of Rayleigh numbers. The local Nusselt number on the hot wall

for Ra = 103 is roughly equal to one which demonstrates that the heat transfer takes place

with the pure conduction process. The effects of buoyancy force strengthen in comparison to

the viscous effects with increasing Rayleigh numbers. Therefore, as Rayleigh number rises,
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Table 5.1 Comparison of the average Nusselt number between the present result and Fu et al.
(2012) for Pr = 0.71·

Ra 103 104 105 106

Present 1.116 2.241 4.520 8.901
Fu et al. (2012) 1.117 2.246 4.518 8.906

the magnitude of the local Nusselt number is enhanced notably.

Fig.5.4 exhibits the isotherms and streamlines for various Prandtl numbers at Ra = 105. It

illustrates that the gradient of the isotherms on the hot wall is enhanced as the Prandtl number

increases. This trend has been confirmed by the streamlines in the core which demonstrates

that the convection process augments with the rise of the Prandtl number.

The influence of Prandtl numbers can be observed on the vertical velocity in the middle

of the cavity and the local Nusselt number on the hot wall at Fig.5.5. It is evident that an

increase in the Prandtl number enhances the local Nusselt number significantly in the first

half of the hot wall. However, the rise of the Prandtl number is nearly ineffective on the

second part of the hot wall. In addition, the increase in the Prandtl number from Pr = 5 to 10

alters the local Nusselt number marginally. In other words, the enhancement of the Prandtl

number from Pr = 5 to 10 does not influence heat transfer considerably. The vertical velocity

distributions in the middle of the cavity indicate that the growth of Prandtl number raises

the vertical velocity in the cavity although the mentioned trend is weakened from Pr = 5 to 10.

Table.5.2 reveals the average Nusselt number on the hot wall for different Rayleigh and

Prandtl numbers. It demonstrates that the average Nusselt number rises as the Prandtl number

increases while the augmentation is marginal from Pr = 5 to 10.
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Fig. 5.2 Comparison of streamlines and isotherms for different Rayleigh numbers at Pr = 5·
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Table 5.2 Comparison of the average Nusselt numbers for different Prandtl numbers·

Pr=0.71 Pr=5 Pr=10
Ra=103 1.116 1.130 1.131
Ra=104 2.241 2.295 2.298
Ra=105 4.520 4.926 4.938

 

Fig. 5.3 Comparison of velocities and temperatures in the middle of the cavity and the local
Nusselt number on the hot wall for different Rayleigh numbers·
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Fig. 5.4 Comparison of streamlines and isotherms for different Prandtl numbers at Ra = 105·
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Fig. 5.5 Comparison of velocities in the middle of the cavity and the local Nusselt number
on the hot wall for different Prandtl numbers·

5.2 Natural convection of a Bingham fluid using the Oper-

ator Splitting Method

The natural convection of a Bingham fluid is supposed to take place in an upright square

cavity with an edge length of L (Fig. 5.6). The horizontal walls are insulated, and the vertical

left and right walls are at temperatures TH and TC < TH , respectively. The flow velocity is

zero on all the walls. The gravity vector g =−ge2 is directed in the negative y-coordinate

direction, with e2 the unit vector in the y direction. Following the conventional Boussinesq

approximation (Li and Glowinski (1996)), we consider small temperature variations only,

i.e., the relative change in temperature δT/T ≪ 1. The density ρ , thermal conductivity k,

the heat capacity cp and viscosity η are set to be constants here. For completeness, let us

mention that in the extended Boussinesq or more general models, k and η are defined as

functions of T , e.g., obeying the Sutherland law (Chenoweth and Paolucci (1985, 1986)),

which leads to an enlarged range of validity when η has a strong temperature dependence

(Gartling and Hickox (1985); Gray and Giorgini (1976); Li and Glowinski (1996)).
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Fig. 5.6 The geometry of natural convection of Bingham fluid

5.2.1 Constitutive model

The Bingham model is utilised here and therefore the constitutive relation can be described

as follows:

S = ηA1(v)+
√

2τyΛΛΛ , (5.2.1)

where

ΛΛΛ : ΛΛΛ ≤ 1, 1 : ΛΛΛ = 0, (5.2.2)

ΛΛΛ : A1(v) ≤ [A1(v) : A1(v)]1/2, (5.2.3)

ΛΛΛ : A1(u) = [A1(u) : A1(u)]1/2, (5.2.4)

where u is the solution vector, and v is any trial velocity field.

It is important to note that the tensor ΛΛΛ has zero trace. Secondly, the real advantage of

the tensor ΛΛΛ becomes obvious when ΛΛΛ : ΛΛΛ < 1. In this case, we see through Eq. (5.2.4) and
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the Cauchy-Schwarz inequality that

[A1(u) : A1(u)]1/2 =ΛΛΛ : A1(u)≤ [ΛΛΛ : ΛΛΛ]1/2[A1(u) : A1(u)]1/2

< [A1(u) : A1(u)]1/2. (5.2.5)

The only solution to this inequality is that A1(u) = 0. That is, wherever ΛΛΛ : ΛΛΛ < 1, the motion

must be rigid. This shows that the fluid domain is now decomposed into two sets: one where

ΛΛΛ : ΛΛΛ < 1 and where ΛΛΛ : ΛΛΛ = 1. In the latter case, the fluid has yielded. That is, by finding

the tensor ΛΛΛ throughout the flow domain, one overcomes the difficulty associated with the

Bingham model.

The tensor ΛΛΛ can be obtained from a simple projection operation as follows (Huilgol and

You (2009)):

ΛΛΛ = PM

(
ΛΛΛ+ rτyA1(v)

)
∀r > 0, (5.2.6)

where M =
{

µµµ|µµµ = (µi j)1≤i, j≤2 ∈ (L2(Ω))4,∥µµµ∥ ≤ 1 a.e. on Ω
}

and

PM : (L2(Ω))4 → M (5.2.7)

is the projection operator defined so that PM (µµµ) = µµµ, if ∥µµµ∥ ≤ 1, and PM (µµµ) = µµµ/∥µµµ∥

otherwise. Note that in the context of Eq. (5.2.6), the tensor µµµ = ΛΛΛ+ rτyA1(v) and it is

symmetric. Further, the tensor µµµ must be dimensionless for ΛΛΛ is also dimensionless. In the

Appendix A, this property of µµµ is shown to lead to its non-dimensional form.

5.2.2 Dimensional governing equations

The governing equations for the buoyancy driven natural convection problem have the

following form:
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• Continuity equation

∇ ·u = 0. (5.2.8)

• Momentum equation

ρ

[
∂u
∂ t

+(u ·∇)u
]
−∇ ·S+∇p = ρb, (5.2.9)

where the body force b is the sum of that due to gravity and the buoyancy effects. That

is,

b = [1+β (Tr −T )]g, (5.2.10)

where g =−ge2. Now, let p be written as the sum p = ps + pd, where the static part

ps accounts for gravity alone, and pd is the dynamic part. Thus,

−∇ps −ρg = 0, (5.2.11)

so that ps =−ρgy. Hence, the momentum equation incorporates the dynamic part only,

and is of the form

ρ

[
∂u
∂ t

+(u ·∇)u
]
−∇ ·S+∇pd = ρβ (Tr −T )g · (5.2.12)

• Energy equation

ρcp

[
∂T
∂ t

+(u ·∇)T
]
− k∇

2T = 0, (5.2.13)

where ∇2 is the two dimensional Laplacian.

• Constitutive equation

S = ηA1(u)+
√

2τyΛΛΛ. (5.2.14)
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In the above equations, u, p and T stand for the unknown velocity, pressure and temperature,

respectively. Tr is the reference temperature defined as Tr = (TH +TC)/2; β is the coefficient

of thermal expansion. The right hand side of Eq. (5.2.12) accounts for the buoyancy effect

under the Boussinesq approximation, which allows only small temperature deviations from

the reference temperature.

5.2.3 Non-dimensionalisation

Letting L be the length scale, the average temperature Tr = (TH +TC)/2 the temperature

scale, and δT = TH −TC, we define the buoyancy velocity scale U =
√

gLβδT , and the

three dimensionless numbers as follows:

Bn =

√
2τyL
ηU

, Ra =
gβρL3δT

αη
, Pr =

ηcp

k
, (5.2.15)

where α = k/ρcp is the thermal diffusivity. The numbers Bn, Ra and Pr are known as the

Bingham, Rayleigh and Prandtl numbers respectively. Next, set

u =Uu∗, x = Lx∗, t =
L
U

t∗, pd =
ηU
L

p∗, T = Tr +δT ·T ∗. (5.2.16)

The following non-dimensional governing equations are obtained by applying Eq. (5.2.16)

to the dimensional equations (5.2.8)-(5.2.14) and dropping the asterisks:

∇ ·u = 0, (5.2.17)

√
Ra
Pr

[
∂u
∂ t

+(u ·∇)u
]
−∇ ·A1(u)+∇p−Bn∇ ·ΛΛΛ =

√
Ra
Pr

T e2, (5.2.18)

∂T
∂ t

+(u ·∇)T − 1√
RaPr

∇
2T = 0. (5.2.19)
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Now, let the flow domain Ω = (0,1)× (0,1), and the boundary Γ = ∂Ω, with a sub-

set Γ1 = {x|x = {x,y} ,0 < x < 1,y = 0 or 1}. The boundary condition for the velocity is

straightforward: u|
Γ
= 0. The thermal boundary conditions are

T |x=0 =
1
2
, T |x=1 =−1

2
,

∂T
∂y

∣∣∣∣
Γ1

= 0. (5.2.20)

Finally, it is worth noting that if the Bingham number Bn = 0, the fluid is a Newtonian

fluid. Thus, there is no need to find the viscoplastic constraint tensor ΛΛΛ. It can be put to zero

everywhere in the numerical scheme to derive the results for the Newtonian fluid.

5.2.4 Numerical Procedure

In this section, we shall explain the numerical scheme we have used to solve the problem

(5.2.17)-(5.2.20).

Time discretisation by operator-splitting method

Based on the operator-splitting method discussed in Huilgol and You (2009), Li and

Glowinski (1996), a new scheme has been designed to examine the non-isothermal viscoplas-

tic problem, and the algorithm has been written in variational form in order to facilitate the

finite element implementation.

Let ∆t be the time step and f n denote the value of function f (t) at time t = tn. As usual,

tn+γ = (n+ γ)∆t. Assuming that un, pn,T n,ΛΛΛn are known, the numerical scheme works in

an iterative way:

Step 1. The temperature problem:
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Solve the energy equation together with boundary conditions for T n+1:

1
∆t

∫
Ω

(T n+1 −T n)ϕ da +
∫

Ω

(un ·∇)T n+1
ϕ da

+χ

∫
Ω

∇T n+1 ·∇ϕ da = 0, ∀ϕ ∈ H1
0 (Ω). (5.2.21)

Step 2. The generalised Stokes problem:

Find
{

un+1/3, pn+1
}
∈ (H1

0 )
2 ×L2 such that

α

∆t

∫
Ω

(un+1/3 −un) ·vda+
1
3

∫
Ω

∇un+1/3 : ∇vda−
∫

Ω

pn+1
∇ ·vda

= α

∫
Ω

T n+1 +T n

2
e2 ·vda, ∀v ∈ (H1

0 (Ω))2, (5.2.22)

∫
Ω

∇ ·un+1/3q = 0da, ∀q ∈ L2(Ω). (5.2.23)

Step 3. The convected derivative problem:

Solve for un+2/3 ∈ (H1
0 )

2:

α

∆t

∫
Ω

(un+2/3 −un+1/3) ·vda+α

∫
Ω

(un+1/3 ·∇)un+2/3 ·vda

+
1
3

∫
Ω

∇un+2/3 : ∇vda = 0, ∀v ∈ (H1
0 (Ω))2. (5.2.24)

Note that in Eq. (5.2.24), (un+1/3 ·∇)un+2/3 is the linearised form of the original

nonlinear term (un+2/3 ·∇)un+2/3. By this simplification, we can take the advantage

of saving computation cost without losing the accuracy.

Step 4. The viscoplasticity constraint tensor problem:
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Given un+2/3, solve for
{

un+1,ΛΛΛn+1
}
∈ (H1

0 )
2 ×M :

α

∆t

∫
Ω

(un+1 −un+2/3) ·vda+
1
3

∫
Ω

∇un+1 : ∇vda

+Bn
∫

Ω

ΛΛΛ
n+1 : ∇vda = 0, ∀v ∈ (H1

0 (Ω))2, (5.2.25)

ΛΛΛ
n+1 = PM

(
ΛΛΛ

n +Pr ·BnA1(un+2/3)

)
. (5.2.26)

As mentioned after Eq. (5.2.7), the new value of ΛΛΛ
n+1 depends on the magnitude of ΛΛΛ

n +Pr ·

BnA1(un+2/3). That is, we use PM (µµµ) = µµµ, if ∥µµµ∥ ≤ 1, and PM (µµµ) = µµµ/∥µµµ∥ otherwise, to

find the new value of ΛΛΛ
n+1.

Again, recall from the comments made that if the Bingham number Bn = 0, then one can

put ΛΛΛ
n = 0 in Eq. (5.2.26). Then, it follows that ΛΛΛ

n+1 = 0 automatically and in Eq. (5.2.25),

we can omit the integral involving this tensor. Thus, Eq. (5.2.25) becomes a sub-problem for

finding un+1 only.

Finally, one should note that we have taken α =
√

Ra/Pr in Eqs. (5.2.21), (5.2.24) and

(5.2.25), and χ = 1/
√

Ra ·Pr in Eq. (5.2.21) for convenience.

It is clear that the original complicated problem has been split into four subproblems

in each time step and solved by an iterative algorithm. In Step 1, the updated temperature

in the new time step T n+1 is calculated from the values of last time step T n and un. Then

the pressure in the new time step pn+1 is updated and the intermediate velocity un+1/3 is

solved in Step 2. Step 3 gives the intermediate velocity un+2/3 and finally the velocity in the

new time step un+1 together with Λ
n+1 is updated in Step 4. The stopping criterion for the

iteration is
∥∥un+1 −un

∥∥
L2 +

∥∥T n+1 −T n
∥∥

L2 < ε , in which ε is a convergence parameter.



114
Non-isothermal flows of Bingham fluids: natural convection and mixed convection in a

cavity

Spatial discretisation by finite element method

For the spatial discretisation, we employ the finite element method using the P2–P1

element pair, the same as in Huilgol and You (2009). With Th a standard finite element

triangulation of Ω and h the maximum length of the edges of Th, we define the discrete

spaces Ph for pressure, Wh for temperature and Vh for velocity approximations as

Ph =
{

qh|qh ∈C0 (
Ω
)
,qh|T ∈ P1,∀T ∈ Th

}
, (5.2.27)

Wh =
{

wh|wh ∈C0 (
Ω
)
,wh|T ∈ P2,∀T ∈ Th

}
, (5.2.28)

Vh =
{

vh|vh ∈
(
C0 (

Ω
))2

,vh|T ∈ (P2)
2 ,∀T ∈ Th

}
. (5.2.29)

The corresponding boundary conditions can be imposed on the basic spaces Wh and Vh. Note

that we have chosen the same finite element spaces for the temperature and the velocity

components to achieve better performance.

5.2.5 Code validation and grid independence

This problem has been investigated at different Rayleigh numbers of Ra = 103 −105 and

Prandtl numbers of Pr = 0.1− 10 as Bingham number is studied in different ranges for

various Rayleigh numbers. The Operator Splitting Method based on FEM has been utilized

to perform the numerical simulations. A uniform triangulation mesh has been applied to the

problem and the maximum length of the edges is fixed at h = 0.01. Moreover, the time step

is 0.001 and the convergence parameter is ε = 10−6. To check the accuracy of the present

results, the present code for Newtonian fluid has been validated with published studies on the

natural convection in a cavity. The results are compared in Table 5.3 and they show a close
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agreement between present and previous studies. Moreover, the results for the Bingham fluid

on natural convection in an enclosure have been tested against the work of Turan et al. (2010,

2011) in Table 5.4. Although they utilized the regularised bi-viscosity model, the comparison

shows that the average Nusselt number is nearly the same for low Bingham numbers as

evident in Table 5.4. However, the differences between the present results and those of Turan

et al. (2010, 2011) increase gradually as the Bingham number increases. In fact, the different

methods result in the observed differences at high Bingham numbers.

Table 5.3 Comparison of the present study with the results of de Vahl Davis (1983) for
different Rayleigh numbers at Pr = 0.71·

Present study de Vahl Davis (1983)
Ra = 103 Nu 1.118 1.118

Numax 1.505 1.505
Umax 3.644 3.649
Vmax 3.690 3.697

Ra = 104 Nu 2.243 2.243
Numax 3.528 3.528
Umax 16.170 16.178
Vmax 19.613 19.617

Ra = 105 Nu 4.519 4.519
Numax 7.717 7.717
Umax 34.725 34.730
Vmax 68.588 68.590

Table 5.4 Comparison of present study with the results of Turan et al. (2010) on the average
Nusselt number at the hot wall for Pr = 1 and Rayleigh numbers of Ra = 104 and 105·

Bn = 0 Bn = 0.5 Bn = 1 Bn = 1.5 Bn = 2 Bn = 2.5 Bn = 3
Ra = 104

Turan et al. (2010) 2.23 2.00 1.70 1.43 1.21 1.10 1.00
Present study 2.23 1.91 1.65 1.49 1.34 1.21 1.1

Ra = 105

Turan et al. (2010) 4.60 3.89 3.45 2.95
Present study 4.60 3.89 3.46 3.16
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5.2.6 Results and Discussion

Rayleigh number effect

The Fig. 5.7 illustrates the isotherms and streamlines as the yielded and unyielded zones

have been clarified evidently for different Rayleigh numbers at Bn = 3 and Pr = 0.1. At

Ra = 103, the temperature contours are parallel to the wall which demonstrate that conduc-

tion dominates in the enclosure. As the Rayleigh number increases, the movements of the

isotherms between the cold and hot walls change significantly and they become progressively

curved. Moreover, the gradient of temperature on the hot wall augments with the rise of the

Rayleigh number, for the thermal boundary layer thickness on the side walls decreases with

increasing Rayleigh numbers. The streamlines exhibit that the convection process has been

enhanced by the growth of Rayleigh numbers as the core of the streamline changes from

the circular shape to elliptical one gradually and the streamlines traverse further into the

cavity. The last column displays the yielded (White) and unyielded (Black) regions for the

studied Rayleigh numbers at Bn = 3. It is clear that the proportion of the unyielded sections

in the enclosure has increased with the fall in the Rayleigh numbers markedly. Therefore,

for constant Bingham and Prandtl numbers, the increase in Rayleigh number causes the

unyielded zones to decline.

The Fig. 5.8 indicates the vertical velocity and temperature along the horizontal mid-plane of

the cavity as the local Nusselt number has been varied for different Rayleigh numbers at Bn

= 3 and Pr = 0.1. At Ra = 103, the distribution of T is nearly linear and the vertical velocity

component is essentially negligible due to a very weak flow as the effects of buoyancy forces

are dominated by viscous effects. Under this circumstance, the heat transfer takes place

entirely by conduction across the enclosure. The vertical velocity magnitude does indeed

increase with augmentation of the Rayleigh number and the distribution of the temperature

becomes increasingly non-linear with the strengthening of convective transport for higher
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values of Rayleigh numbers. The local Nusselt number on the hot wall for Ra = 103 is

roughly equal to one which demonstrates that the heat transfer occurs by conduction only.

The effects of buoyancy force strengthen in comparison to the viscous effects with increasing

Rayleigh numbers. Therefore, as the Rayleigh number rises, the magnitude of the local

Nusselt number increases markedly.

Bingham number effect

The Bingham number influence on the isotherms, streamlines and the proportion of the

unyielded regions has been depicted by Fig. 5.9 for Ra = 105 and Pr = 0.1. It shows that

the curved shape of the isotherm declines with an increase in the Bingham number. This

process causes the gradient of temperature on the hot wall to drop and therefore heat transfer

decreases with the rise of the Bingham number. The streamlines prove the decrease in the

convection process with the growth of the Bingham number as the inclined elliptical form of

the core of the cavity alters to a circular shape. The pattern in the streamlines was metioned

by Turan et al. (2010). Table 5.5 corroborates the mentioned effects of the Bingham numbers

clearly for the maximum strength of the streamline decreases with the augmentation of the

Bingham numbers. Moreover, the maximum vertical and horizontal velocities in the middle

of the cavity have declined and the average Nusselt number decreases with the rise of the

Bingham number. As a result, the convection process decreases with the enhancement of the

Bingham number. The unyielded sections occupy larger regions in the cavity as the Bingham

number increases. In fact, the rise of the Bingham number causes the yielded regions to

disappear gradually. However, there is a critical Bingham number at which the flow would be

fully unyielded. This value is named as the maximum Bingham number and is specified in

Table 5.6 for different Prandtl and Rayleigh numbers. Furthermore, the relationship between
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Fig. 5.7 Comparison of the streamlines, isotherms and yielded/unyielded zones for various
Rayleigh numbers at Bn = 3 and Pr = 0.1 (Black: unyielded zone; white: yielded zone)·
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Fig. 5.8 Vertical velocity and temperatures in the middle of the cavity and local Nusselt
number on the hot wall for different Rayleigh numbers at Bn = 3 and Pr = 0.1 ·
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the maximum Bingham, Rayleigh and Prandtl numbers appears to be given by:

Bnmax ≃ Ra0.5Pr−0.5 , (5.2.30)

similar to that found by Karimfazli et al. (2015).

The Fig. 5.10 depicts the vertical velocity and temperature along the horizontal mid-plane

of the cavity as the local Nusselt number changes for different Bingham numbers at Ra

= 105 and Pr = 0.1. The temperature profile becomes linear when the Bingham number

increases which shows the effects of the Bingham number leading to a drop of the convection

process. This pattern is followed by the vertical velocity in the middle of the cavity where its

magnitude drops significantly with the increase in the Bingham number. The local Nusselt

number decreases with the enhancement of the Bingham number. In fact, for high values of

the Bingham number, the viscous force overcomes the buoyancy force and as a result of this,

no significant flow is induced within the enclosure.

Table 5.5 Effect of Bingham number on different parameters at Pr = 0.1 and Ra = 105 ·

Bn = 1 Bn = 3 Bn = 6 Bn = 9 Bn = 18 Bn = 27
|ψmax| 7.457 7.406 6.958 6.481 5.144 4.578
Nuavg 3.393 3.263 3.083 2.898 2.402 2.143
Umax 33.762 29.051 23.873 20.615 15.483 14.131
Vmax 41.255 37.563 32.580 28.217 19.866 16.709

Prandtl number effect

The Fig. 5.11 shows the isotherms and streamlines and the yielded and unyielded zones

have been displayed clearly for various Prandtl numbers at Bn = 1 and Ra = 105. It illustrates

that the gradient of the isotherms on the hot wall decreases as the Prandtl number increases.

This trend has been confirmed by the streamlines as the core demonstrates that the convection
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Fig. 5.9 Comparison of the isotherms, streamlines and yielded/unyielded zones for various
Bingham numbers at Ra = 105 and Pr = 0.1 (Black: unyielded zone; white: yielded zone)·
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Fig. 5.10 Vertical velocity and temperatures in the middle of the cavity and local Nusselt
number on the hot wall for various Bingham numbers at Ra = 105 and Pr = 0.1·
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process decreases with the rise of the Prandtl number. Further, the Fig. 5.11 shows that the

unyielded section for a fixed Bingham and Rayleigh numbers increases with the augmenta-

tion of the Prandtl number. In fact, the increase in the unyielded sections at higher Prandtl

numbers causes the heat transfer to drop.

The influence of the Prandtl number can be observed on vertical and horizontal velocities

and temperature in the middle of the cavity in Fig. 5.12. It is evident that the effect of the

Prandtl number on the temperature is marginal although the increase in this number alters

the curved shape of the temperature slightly and therefore drops the convection process. The

vertical and horizontal velocity distributions in the middle of the cavity indicate that the

growth of the Prandtl number lowers the velocity in the cavity drastically. It demonstrates

that the development of the unyielded sections, which increase at higher Prandtl numbers,

causes the velocities to drop markedly.

Table 5.6 Maximum Bingham numbers (Bnmax) for different Rayleigh and Prandtl numbers·

Ra = 103 Ra = 104 Ra = 105

Pr = 0.1 5 12 37
Pr = 1 2 4.5 11

Pr = 10 1 1.5 4.5

Concluding Remarks

In this study, the OSM based on the Finite Element Method has been utilized to simulate

the laminar natural convection of a Bingham fluid in a cavity. The Bingham model for the

constitutive equation has been used in the problem without any regularization in contrast

with previous research. In fact, Vola et al. (2003) and Turan et al. (2010) have studied the

mentioned flow; however, Vola et al. (2003) showed restricted results on the topic and Turan

et al. (2010) utilized the regularised bi-viscosity model.
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Fig. 5.11 Comparison of the isotherms, streamlines and yielded/unyielded zones for various
Prandtl numbers at Ra = 105 and Bn = 1 (Black: unyielded zone; white: yielded zone)·
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Fig. 5.12 Vertical and horizontal velocities and temperatures in the middle of the cavity for
various Prandtl numbers at Ra = 105 and Bn = 1·
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The pertinent parameters have been scrutinized in the following ranges: the Rayleigh number

between, Ra = 103 −105, Prandtl number between 0.1 and 10 while the Bingham number

is changed over a wide range of Rayleigh numbers. This investigation has been performed

for various mentioned parameters and the following conclusions have been reached. The

validation with the previous numerical investigations demonstrates that the Operator Splitting

Method (OSM) is an appropriate method for the studied problem. It is found that the rise of

the Rayleigh number increases the heat transfer as it causes the unyielded zones to decline

for various Bingham and Prandtl numbers. The increase in the Bingham number decreases

the heat transfer as it enlarges the unyielded sections. The unyielded regions enhance with

the augmentation of the Prandtl number for certain Rayleigh and Bingham numbers.

5.3 Natural convection of Bingham fluids using the meso-

scopic method

5.3.1 Formulation

In this section, a partial investigation of the natural convection of a Bingham fluid is simulated

using the mesoscopic method in order to verify that the results of using the macroscopic OSM

are identical to those of the mesoscopic results, when the Bingham constitutive equation is

used. Moreover, the mesoscopic method reveals the differences between the Bingham and

the Papanastasiou (Papanastasiou (1987)) models. The main difference between this problem

and the natural convection of the Newtonian fluid in section 5.1 is observed in the stresses,

while the dimensional and non-dimensional variables, and the non-dimensional equations are

similar to those for Newtonian fluids. We now list the non-dimensional constitutive equations

and stresses of the Bingham and Papanastasiou models.

In the case of the Papanastasiou model (Papanastasiou (1987)), the non-dimensional

apparent viscosity is given by
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η = 1+
Bn

II(A1)

[
1− exp(−mII(A1))

]
· (5.3.1)

Hence, the extra stresses are:

τxx = 2η

(
∂u
∂x

)
, τyy = 2η

(
∂v
∂y

)
, τxy = η

(
∂u
∂y

+
∂v
∂x

)
, (5.3.2)

where

II(A1) =

{
2

[(
∂u
∂x

)2

+

(
∂v
∂y

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
} 1

2

· (5.3.3)

In the case of the Bingham model (Huilgol (2015)), the non-dimensional stresses are

given by

τxx =

[
2
(

∂u
∂x

)
+
√

2 BnΛxx

]
, (5.3.4a)

τyy =

[
2
(

∂v
∂y

)
+
√

2 BnΛyy

]
, (5.3.4b)

τxy =

[(
∂u
∂y

+
∂v
∂x

)
+
√

2 BnΛxy

]
· (5.3.4c)

The non-dimensional parameters for the problem are as follows:

Bn =
τy L
η U

, (5.3.5)

Ra =
βgyL3(TH −TC)

ν α
, (5.3.6)
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Pr =
ν

α
. (5.3.7)

The numerical simulations using the two different models and methods have been com-

pared in Fig. 5.13 and Fig. 5.14. The figures show the yielded/unyielded zones in the natural

convection problem when Bn = 0.1 and Bn = 1. It is seen that the results of the Bingham

model using the OSM and the mesoscopic method are identical for both Bingham numbers,

whereas these for the regularised model are not so when Bn = 1, which is to be expected.

Those comparisons show that one can apply the mesoscopic method to study convection

problems in yield stress fluids.

5.4 Mixed convection of a Bingham fluid using the meso-

scopic method

5.4.1 Theoretical formulation

The geometry of the present problem is shown in figure 5.15. It consists of a two-dimensional

cavity with a height L. The temperature of the left wall is maintained at a higher temperature

than the right wall. The horizontal walls are adiabatic and impermeable, and the top wall is

driven from the left to right at a constant speed. The cavity is filled with a Bingham fluid. The

fluid is incompressible, and the flow is laminar. The Grashof number is kept at Gr = 10000,

while the Reynolds number varies from Re = 100 to 500, and 1000, while the Prandtl number

takes on the values 0.1, 1, and 10. The buoyancy force is approximated by the standard

Boussinesq model.
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Fig. 5.13 Comparison of yielded and unyielded sections at Bn = 0.1, Pr = 0.71, and Ra = 103

for (a) The Bingham model using the Operator Splitting Method (b) The Bingham model
using the mesoscopic method (c) The Papanatasiou model using the mesoscopic method,
showing slightly larger yielded zones·
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Fig. 5.14 Comparison of yielded and unyielded sections at Bn = 1, Pr = 0.71, and Ra = 105

for (a) The Bingham model using the Operator Splitting Method (b) The Bingham model
using the mesoscopic method (c) The Papanatasiou model using the mesoscopic method,
showing a slight decrease in the site of the yielded region·
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Fig. 5.15 Geometry of mixed convection

5.4.2 Dimensional equations

Based on the above assumptions, denoting by u = ui+ vj the velocity field, ρ the density,

and T the temperature field, and applying the Boussinesq approximation, Cauchy’s equations

for the steady flow of an incompressible fluid are:

∂u
∂x

+
∂v
∂y

= 0, (5.4.1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
=−∂ p

∂x
+

∂τxx

∂x
+

∂τxy

∂y
, (5.4.2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
=−∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+ρg [1+β (T −TC)] , (5.4.3)

where β is the coefficient of thermal expansion. Next, ignoring viscous dissipation,

u
∂T
∂x

+ v
∂T
∂y

= α

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
, (5.4.4)
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where α is the conductivity coefficient. Let the pressure p be written as the sum p = ps + pd ,

where the static part ps accounts for gravity alone, and pd is the dynamic part. Thus,

− ∂ ps

∂y
= ρg · (5.4.5)

The flow domain is given by Ω = (0,L)× (0,L), and the boundary Γ = ∂Ω. It is the

union of four disjoint subsets:

Γ1 = {(x,y),x = 0,0 ≤ y ≤ L} , Γ2 = {(x,y),x = L,0 ≤ y ≤ L} , (5.4.6)

Γ3 = {(x,y),0 ≤ x ≤ L,y = 0} , Γ4 = {(x,y),0 ≤ x ≤ L,y = L} . (5.4.7)

The boundary condition for the velocity is straightforward:

u|
Γ1

= u|
Γ2

= u|
Γ3

= 0, u|
Γ4

=U0i. (5.4.8)

The boundary conditions for the temperature are:

T |
Γ1

= TH , T |
Γ2

= TC, ∂T/∂y|
Γ3

= 0, ∂T/∂y|
Γ4

= 0. (5.4.9)

5.4.3 Non-dimensional equations

In order to proceed to the numerical solution of the system, the following non dimensional

variables are introduced.

t̄ = tU0/L, x̄ = x/L, ȳ = y/L, ū = u/U0, v̄ = v/U0. (5.4.10)

p̄d = pd/ρU0
2, T̄ = (T −TC)/(TH −TC) , (5.4.11)
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where U0 is the speed of the upper wall.

By substitution of Eqs. (5.4.10) and (5.4.11) into Eqs. (5.4.1) - (5.4.4) and dropping the

bar notation for convenience, the following system of non-dimensional equations is derived:

∂u
∂x

+
∂v
∂y

= 0, (5.4.12)

u
∂u
∂x

+ v
∂u
∂y

=−∂ pd

∂x
+

1
Re

(
∂τxx

∂x
+

∂τxy

∂y

)
, (5.4.13)

u
∂v
∂x

+ v
∂v
∂y

=−∂ pd

∂y
+

1
Re

(
∂τxy

∂x
+

∂τyy

∂y

)
+

Gr
Re2 T, (5.4.14)

u
∂T
∂x

+ v
∂T
∂y

=
1

RePr

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
. (5.4.15)

In the case of the Papanastasiou model (Papanastasiou (1987)), the non-dimensional

apparent viscosity is given by

η = 1+
Bn

II(A1)

[
1− exp(−mII(A1))

]
· (5.4.16)

Hence, the extra stresses are:

τxx = 2η

(
∂u
∂x

)
, τyy = 2η

(
∂v
∂y

)
, τxy = η

(
∂u
∂y

+
∂v
∂x

)
, (5.4.17)

where
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II(A1) =

{
2

[(
∂u
∂x

)2

+

(
∂v
∂y

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
} 1

2

· (5.4.18)

In the case of the Bingham model, the non-dimensional stresses are given by

τxx =

[
2
(

∂u
∂x

)
+
√

2 BnΛxx

]
, (5.4.19a)

τyy =

[
2
(

∂v
∂y

)
+
√

2 BnΛyy

]
, (5.4.19b)

τxy =

[(
∂u
∂y

+
∂v
∂x

)
+
√

2 BnΛxy

]
· (5.4.19c)

The non-dimensional parameters for the problem are as follows:

Grashof number:

Gr =
ρ2 βgyL3(TH −TC)

η2 , (5.4.20)

Prandtl number:

Pr =
η

ρ α
, (5.4.21)

Reynolds number:

Re =
ρ U0L

η
, (5.4.22)

Bingham number:

Bn =
τy L
η U0

. (5.4.23)

5.4.4 Applied parameters

With consideration to the dimensionless equations, the cited stresses in the fourth section

Eqs.(5.4.17) and (5.4.19) should be divided by the Reynolds number (Re) and applied to the
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mentioned stresses in Eqs.(3.3.10)- (3.3.13).

The buoyancy force acts as the external force and with consideration to Eqs.(3.4.9)-

(3.4.14), the non-dimensional form of the functions Fα are given by

Fα = 0, α = 0,2,4,6,8, (5.4.24a)

Fα = ξξξ α ·N , α = 1,3,5,7, (5.4.24b)

N =
1

2σ2

(
GrT
Re2

)
j · (5.4.24c)

The parameters of the internal energy distribution function which are given by Eqs.(3.3.42)

and (3.3.43) are as follows:

D0 = T, D1 = D2 = 0, (5.4.25a)

E1 =
1

2σ2

(
T u− 1

RePr
∇T

)
, E2 = 0. (5.4.25b)

The local and the average Nusselt numbers at the hot wall with the utilization of the

dimensionless parameters are obtained from

Nuh =−∂T
∂x

, x = 0, (5.4.26)

Nuavg =
∫ 1

0
Nuh dy. (5.4.27)

5.4.5 Parameters and grid independence

The Thermal Finite Difference Discrete Flux Method (TFDDFM) scheme based on Lattice

Boltzmann Method (LBM) has been employed in the numerical simulation of a laminar
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mixed convection flow in a lid-driven cavity filled with a Bingham fluid. This problem

has been investigated at different Reynolds numbers (Re = 100, 500 and 1000), Bingham

numbers (Bn = 0, 1, 5 and 10), and Prandtl numbers (Pr = 0.1, 1, and, 10) while the Grashof

number is fixed at Gr = 10,000. An extensive mesh testing procedure was conducted to

guarantee a grid independent solution. Seven different mesh combinations were explored for

the case of Re = 1000, Pr = 1 and Bn = 10 using the Papanastasiou model. It was confirmed

that the grid size (200*200) ensured a grid independent solution as portrayed in figure 5.16

and Table 5.7. In addition, we set ∆t = 0.0001 and the value of σ was varied in each iteration

according to Eq. (A7). To check the accuracy of the present results, the code was validated

with the published studies on mixed convection in a cavity; see Table 5.8. Secondly, the

accuracy of the applied code in a lid-driven cavity in the absence of the energy equation

using the Papanastasiou model was validated through a comparison with Neofytou (2005).

The results are shown in figure 4.5 where the u and v velocities profiles demonstrate the

accuracy of the present simulation for Bn = 1 and Re = 100. Finally, in figure 5.13, the results

obtained by Huilgol and Kefayati (2015) in their study of the natural convection in a cavity

of a Bingham fluid based on the finite element method are compared with those obtained in

the current study. Both the and the regularised models are considered when the Bingham

number is 0.1. The agreement is found to be excellent.

Table 5.7 Grid independence study at Re= 1000, Bn=1, and Pr=1

Mesh size Nuavg |ψmax|
120*120 8.609 0.0859
140*140 8.591 0.0864
160*160 8.576 0.0868
180*180 8.562 0.0870
200*200 8.549 0.0872
220*220 8.549 0.0872
240*240 8.549 0.0872
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Table 5.8 Comparison of average Nusselt number with results available in the literature

Re = 1 Re = 100 Re = 400 Re = 1000
Present work 1.0094 2.09 4.0808 6.5469

Waheed (2009) 1.0003 2.03116 4.0246 6.48423
Tiwari and Das (2007) - 2.10 3.85 6.33

Abdelkhalek (2008) - 1.985 3.8785 6.345
Khanafer et al. (2007) - 2.02 4.01 6.42

Sharif (2007) - - 4.05 6.55
Khanafer and Chamkha (1999) - 2.01 3.91 6.33

Iwatsu et al. (1993) - 1.94 3.84 6.33

 
Fig. 5.16 Comparison of velocity distribution at x = 0.5 and y = 0.5 for (a) u and (b) v
respectively at Re = 1000, Pr = 1 and Bn = 10

5.4.6 Results and discussion

The numerical simulation has been conducted using the Papanastasiou model only because

the required number of iterations is less than that using the Bingham model. However, it

has to emphasised that as the Bingham number increases, the results of the two models

diverge. For example, see Figs. 5.13 and 5.14 where the yielded/unyielded zones in the

natural convection problem are depicted when the Bingham number Bn = 0.1 and when Bn =

1. It is seen that the results for the model using the finite element method and the current
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one are identical, whereas those for the regularised model are not so when Bn = 1. While it

is generally believed that increasing the value of the parameter m will bring the predictions

of the Papanastasiou model closer to that of the Bingham model, discrepancies arise with

an increase in the Bingham number. As shown by Glowinski (2003), for the solution uε of

the regularised model to be a good approximation to the exact solution u, the regularisation

parameter ε has to be small; for our purposes, one can take ε = 1/m. However, when this

parameter is small, the initial/boundary value problem is badly conditioned whenever the

unyielded zone is large. Since an increase in the Bingham number results in a larger unyielded

zone, it is clear that increasing the value of m may not provide quantitatively accurate results.

This can be seen in Figs. 5.17 and 5.18, for an increase in m from 100 to 1000 when Bn = 1

and 10 does not produce any significant improvement in the predictions of the regularised

model as far as the yielded/unyielded regions are concerned. Similar observations regarding

the streamlines and the isotherms can be made as seen in Figs. 5.17 and 5.18 respectively.

Finally, it can be seen in Fig. 15(b) in Dimakopoulos et al. (2013) that even when m = 106,

there is a fair amount of divergence between the predictions of the Papanastasiou model

and the results derived from ALM, as the Bingham number increases. Hence, the results

presented here have to be accepted as being qualitatively accurate to those obtained by using

the exact constitutive equation.

The figure 5.19 presents the isotherms for different Bingham and Reynolds numbers at

Prandtl number of Pr = 1 using the Papanastasiou model with the regularisation parameter of

m = 1000. At Bn = 0, it is evident that the increase in the Reynolds number alters the shape

of the isotherms significantly since the isotherms on the hot wall come together more and

more. In fact, the augmentation of the forced flow in the fixed buoyant flow causes the cited

pattern to be created. In other words, the trend demonstrates that the convection process has

strengthened with the increase in Reynolds number. However, it also shows that the effect of

Reynolds number enhancement is more noteworthy from Re = 100 to 500 while the changes
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Fig. 5.17 Comparison between the streamlines and the isotherms of the Bingham model (The
Black line) and the Papanastasiou model for different m parameters of m = 100 (The red line)
and m = 1000 (The green line) at Bn = 1, Re = 500, and Pr = 1 ·
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Fig. 5.18 Comparison between the streamlines and the isotherms of the Bingham model
(Simple red line) and the Papanastasiou model (Dashed blue line) at Bn = 10, Re = 500, and
Pr = 1 ·

are insignificant from Re = 500 to 1000. Increasing the Bingham number to Bn = 1 affects the

isotherms for various Reynolds numbers marginally, although the isotherms demonstrate that

the heat transfer decreases slightly; this is can be seen from the isotherms of T = 0.3 and 0.2

for Re = 500 and 1000 respectively. However, at Bn = 5, the isotherms, most notably when

Re = 500 and 1000 are of a different form entirely. The increase in the Bingham number

has caused the isotherm gradients on the hot wall to decline and as a result, the convection

process is weakened. Obviously, as the Bingham number increases, conductive heat transfer

dominates the region next to the hotter wall, while next to the cooler one, convective heat

transfer occurs. However, the movement of the upper plate to the right means that convective

heat transfer can never disappear totally, for any finite Bingham number.

The figure 5.20 illustrates the streamlines for different Bingham and Reynolds numbers

at the Prandtl number Pr=1 using the Papanastasiou model with the regularisation parameter

of m = 1000. For Bn = 0, a clockwise circulation has occupied the cavity at Re = 100 where
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Fig. 5.19 Comparison of the isotherms for different Reynolds and Bingham numbers at Pr =
1·
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the buoyancy effect is dominant. But, at Re = 500, the forced flow enhancement results in

a secondary counterclockwise circulation at the bottom right corner of the enclosure. The

presence of the secondary vortex proves that the convection procedure has been intensified

by the rise of the Reynolds number. This can be observed clearly at Re = 1000 with another

weaker circulation in the bottom left corner of the cavity which rotates counterclockwise. In

fact, the intensity of the inertia force causes the core of the main circulation to move to the

middle of the cavity while opposite circulations form at the bottom corners of the enclosure.

For Bn = 1, the observed effect of the inertia force due to the rise of Reynolds number

declines as the secondary circulation disappears at Re = 500 and a very small secondary

vortex appears at Re = 1000. The inclination of the streamlines cores to the upper right wall

at Bn = 5 confirms that natural convection has weakened and the role of the forced flow has

become significant; however, the removal of the minor opposite vortices at the bottom of the

cavity demonstrates that the convection process has fallen generally. At Bn = 5 and 10, it is

clear that the core of the main circulation becomes closer to the upper section and therefore it

can be stated that the increase in the Bingham number decreases the free convection influence

generally and ameliorates the forced flow effect. On the other hand, with an increase in the

Reynolds number, the core of the main circulation moves close to the upper wall.

Next, the figure 5.21 indicates the yielded and unyielded zones for different Bingham

and Reynolds numbers at a Prandtl number Pr=1 using the Papanastasiou model with the

regularisation parameter of m = 1000. It shows that the rise of the Bingham number for

various Reynolds numbers enhances the unyielded zone steadily.

The figures 5.22, 5.23, and 5.24 demonstrate the effect of the Bingham number using

the Papanastasiou model with the regularisation parameter of m = 1000 on the local Nusselt

number on the hot wall, vertical and horizontal velocities in the middle of the cavity as well

as the temperature profile at y = 0.5 in different Reynolds numbers. The local Nusselt number

increases with the rise of the Reynolds number clearly for each Bingham number. Moreover,
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Fig. 5.20 Comparison of the streamlines for different Reynolds and Bingham numbers at Pr
= 1·
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Fig. 5.21 Comparison of the streamlines for different Reynolds and Bingham numbers at Pr
= 1·
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as the Bingham number augments from Bn = 0 to 1, the local Nusselt number drops while the

velocity profiles follow the same trend. However, the local Nusselt number shows a different

pattern at higher Bingham numbers where the maximum amount is observed close to the top

wall in contrast with Bn = 0 and 1. In other words, for Bn ≥ 5, the local Nusselt number is flat

at y < 0.5 and thereafter enhances gradually. The main reason for the pattern is the shape of

the unyielded section at y < 0.5 which results in a considerable drop in the heat transfer. It is

noticeable that the vertical velocity in the middle of the cavity drops as the Bingham number

increases. It indicates that the strength of the natural and forced convection forces becomes

increasingly weak in comparison to the viscous flow resistance for increasing values of the

Bingham number. Hence, the fluid movement becomes more sluggish and eventually it leads

to a drop in convection with the rise of Bingham number. This statement is further supported

by the dimensionless temperature profiles as they become smoother in the middle of the

cavity with declining Bingham numbers. The decrease in the curvature of the temperature

and velocity distributions demonstrates that the convection process weakens as the Bingham

number enhances. In addition, the increase of forced convection is clearly noticeable with

the enhancement of the Reynolds number as the temperature profile becomes flatter. In fact,

it proves that the convection process increases with the rise of the Reynolds number. Another

phenomenon which has the potential to distinguish the role the Bingham number plays in

decreasing the convection transport is the horizontal velocity in the middle of the cavity. The

horizontal velocity progressively becomes linear with the rise of the Bingham number as a

result of the weakening of convective transport. Further, the maximum value of the horizontal

velocity increases in the first half of the cavity (x < 0.5) as the Reynolds number increases.

The influence of the Prandtl number on the streamlines, the isotherms, and the yielded/unyielded

sections for different Reynolds numbers at Bn = 5 using the Papanastasiou model with the

regularisation parameter m = 1000 is exhibited in figure 5.25. It illustrates that the gradient

of the isotherms on the hot wall increases markedly with the rise of the Prandtl number
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Fig. 5.22 Vertical velocity (v) and temperature distribution (T ) at y = 0.5, horizontal velocity
profile (u) at x = 0.5 and the local Nusselt number at the hot wall for different Reynolds and
Bingham numbers at Pr = 1 and Re=100·
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Fig. 5.23 Vertical velocity (v) and temperature distribution (T ) at y = 0.5, horizontal velocity
profile (u) at x = 0.5 and the local Nusselt number at the hot wall for different Reynolds and
Bingham numbers at Pr = 1 and Re=500·
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Fig. 5.24 Vertical velocity (v) and temperature distribution (T ) at y = 0.5, horizontal velocity
profile (u) at x = 0.5 and the local Nusselt number at the hot wall for different Reynolds and
Bingham numbers at Pr = 1 and Re=1000·
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and therefore heat transfer enhances. However, it can be observed that the Prandtl number

alterations do not create significant changes in the streamlines. In fact, the Prandtl number

just influences the flow field in the added force term in Eq. (5.4.14), for the temperature

modification affects it. The absence of the Prandl number parameter in the shear stresses in

Eqs. (5.4.13 - 5.4.14) causes the unyielded/yielded zones to be the same for various Prandtl

numbers. However, the Reynolds number has a crucial role in the shapes of the unyielded

regions; see Eqs. (5.4.13 - 5.4.14), in contrast with the natural convection in which the

Prandtl number plays the significant role. That is, the Prandtl number affects the streamlines

and unyielded/yielded zones only in natural convection significantly; cf. Huilgol (2015) and

Turan et al. (2010).

Next, the figure 5.26 reveals the velocity, temperature and local Nusselt number profiles

for different Prandtl numbers at Bn = 10 and Re = 100 using the Papanastasiou model with

the regularisation parameter m = 1000. As mentioned earlier, the Prandtl number influences

the vertical velocity with the added force term while the horizontal one is not affected by this

parameter (Eq. 5.4.14). These trends are evident in the velocity distributions in the middle of

the cavity clearly. The horizontal velocity is nearly the same for different Prandtl numbers

while its increase diminshes the vertical velocity drastically. In contrast, the temperature

profile curves with the rise of the Prandtl number demonstrating the increase in the convection

process. The local Nusselt number also exhibits this pattern for it drops considerably with

the enhancement of the Prandtl number although the trend is stronger between Pr = 1 to 10.

The Table 5.9 lists the average Nusselt number and the dimensionless average Nusselt

number for various Bingham, Reynolds and Prandtl numbers using the Papanastasiou model

with the regularisation parameter m = 1000. In typical engineering process calculations, the

mean value of the Nusselt number is often required either to estimate the rate of heat transfer

between the fluid and the heated surface, or conversely, to evaluate one of the temperatures

if the heat flux is known from other considerations. The mean Nusselt number is expected
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Fig. 5.25 Comparison of the streamlines for different Reynolds and Bingham numbers at Pr
= 1·
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Fig. 5.26 Comparison of the streamlines for different Reynolds and Bingham numbers at Pr
= 1·
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to be a function of the Reynolds number (Re), the Prandtl number (Pr), and the Bingham

number (Bn), offering the reason behind the calculation of the average Nusselt number over

a wide ranges of these parameters. The average Nusselt number shows that the heat transfer

increases with the rise of the Reynolds number generally. Furthermore, it demonstrates that

the rise of the Bingham number decreases the heat transfer markedly. Moreover, the results

in Table 5.9 show that the heat transfer increases with the enhancement of the Prandtl number

for multitudinous Reynolds and Bingham numbers. However, the effect of the Bingham

number on the decrease in heat transfer is different for various Reynolds and Prandtl numbers

as shown by the dimensionless average Nusselt numbers. It is obvious the least effect of the

Bingham number on the drop of heat transfer is obtained at Pr = 10 for different Reynolds

numbers. At Re = 500 and 1000, the increase in the Prandtl number causes the influence of

the Bingham number on heat transfer to decrease in general.

Finally, the Table 5.10 shows that the average Nusselt number does not change consider-

ably as the regularisation parameter is altered. Hence, the regularisation parameter of the

Papanastasiou model does not play a crucial role in the rate of heat transfer and the size of

the yielded/unyielded zones, when the parameter m is varied between 100 and 1000; see Figs.

7 and 8 as well.
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Table 5.9 Comparison of the average Nusselt number and dimensionless average Nusselt
number on the hot wall for different Reynolds, Bingham and Prandtl numbers

Nuavg Pr = 0.1 Pr = 1 Pr = 10 Nuavg∗ Pr = 0.1 Pr = 1 Pr = 10
Re = 100

Bn = 0 1.3029 3.33921 9.2580 1 1 1
Bn = 1 1.2346 3.1330 8.7821 0.9476 0.9382 0.9486
Bn = 5 1.0941 2.5078 7.7273 0.8379 0.7510 0.8347

Bn = 10 1.0537 2.2385 7.7126 0.8087 0.6704 0.8331
Re = 500

Bn = 0 2.3469 6.4231 17.8781 1 1 1
Bn = 1 2.1510 6.0129 16.9603 0.9165 0.9361 0.9866
Bn = 5 1.500 4.6243 13.9534 0.6391 0.7199 0.7805

Bn = 10 1.3495 4.3866 13.9534 0.5750 0.6829 0.7654
Re = 1000

Bn = 0 3.2552 8.9140 24.1483 1 1 1
Bn = 1 3.0916 8.5491 22.9788 0.9497 0.9591 0.9516
Bn = 5 2.1668 6.5581 18.6648 0.6656 0.7357 0.7729

Bn = 10 1.7301 5.9815 17.7998 0.5315 0.6710 0.7371

Table 5.10 Comparison of average Nusselt number for various regularisation parameters (m)
and Bingham numbers (Bn)

Bn = 10
m 100 500 1000

Nuavg 4.3783 4.3866 4.3866

5.4.7 Concluding Remarks

The mixed convection of a Bingham fluid in a lid-driven cavity has been analysed by the

Thermal Finite Difference Discrete Flux Method (TFDDFM) based on the Lattice Boltzmann

Method (LBM). The present study has been conducted with the main parameters lying in the

following ranges: the Reynolds number, Re = 100 to 1000, the Bingham number between Bn

= 0 and 10, the Prandtl number from Pr = 0.1 to 10 while the Grashof number is fixed at Gr

= 10000. In addition, a comparison between the predictions of the Bingham model and the
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Papanastasiou model has been made.This investigation is performed for various values of the

mentioned parameters and the conclusions are summarised as follows:

a) The agreement with the previous numerical investigations demonstrates that the applied

method is appropriate for the studied problem.

b) The enhancement of the Reynolds number increases the heat transfer for different Prandtl

and Bingham numbers and causes the yielded/unyielded sections to alter.

c) The rise of the Prandtl number augments the heat transfer while it does not influence the

yielded/unyielded zones.

d) The augmentation of the Bingham number reduces the heat transfer and increases the

unyielded section in the cavity.

e) The least effect of the Bingham number on heat transfer is observed at Pr = 10 among the

studied Prandtl numbers.

f) The comparison between the Bingham model and the Papanastasiou model demonstrates

that divergences exist between the predictions of the two models when the Bingham number

is large, which is as expected.
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Appendix A

The non-dimensional constant r∗

From the constitutive equation Eq. (5.2.1), we see that the tensor ΛΛΛ is dimensionless. Thus,

from Eq. (5.2.6), where the projection operator PM is defined, we see that rτyA(v) must

be non-dimensional. Since A(v) is of dimension U/L = t−1, where t denotes time, one can

find quite easily that r has the dimension M−1Lt3. The question is how one can define this

constant r. From Eq. (5.2.15), we have the following:

Bn =

√
2τyL
ηU

, Ra =
gβρL3δT

αη
, Pr =

ηcp

k
. (A.0.1)

It is easy to show that

Bn ·Pr =
cp

k
·
√

2τyL
U

. (A.0.2)

Obviously,
k
cp

· Bn· Pr√
2

· U2

L2 = τy
U
L
. (A.0.3)

Here, the Bingham and Prandtl numbers are dimensionless. Since U =
√

gLβδT , we find

that rτy(U/L) is dimensionless if

r =

√
2cp

k
· L2

U2 =

√
2cp

k
· L

gβδT
. (A.0.4)



164 The non-dimensional constant r∗

When we want to replace τy by Bn, and A(v) by its non-dimensional version, we begin with

∇xv and obtain that it is equal to (U/L)∇x∗v∗, where the latter gradient is of zero dimension.

See Eq. (5.2.16) in this connection.

Thus, in Eq. (5.2.26), we need

rτyA(u) = rτy(U/L)A∗(u∗) = r∗BnA∗(u∗), (A.0.5)

from which it follows that

r∗ =
ηU2
√

2L2
r =

ηU2
√

2L2
·
√

2cp

k
· L

gβδT
=

ηcp

k
= Pr. (A.0.6)

That is, the constant r∗ in Eq. (5.2.26) is the Prandtl number.
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In this Appendix, the first pages of the three journal articles are attached.
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In this paper, natural convection in a square cavity with differentially heated vertical sides and filled with
a Bingham fluid has been studied without any regularisation. The finite element method (FEM) based on
the operator splitting method is utilised to solve the problem. This study has been conducted for the per-
tinent parameters in the following ranges: Rayleigh number Ra ¼ 103—105 and the Prandtl number
between 0.1 and 10. Moreover, the Bingham number is studied in wide ranges for different Prandtl
and Rayleigh numbers. Results indicate that the heat transfer increases with the enhancement of the
Rayleigh number, with a decrease in the size of the unyielded zones. For specific Rayleigh and Prandtl
numbers, the increase in the Bingham number decreases the heat transfer. Furthermore, as expected,
the growth of the Bingham number expands the unyielded sections in the cavity. Finally, for fixed
Rayleigh and Bingham numbers, the unyielded regions grow with the augmentation of the Prandtl
number. Comparisons with the previously published work, based on the augmented Lagrangian method,
and the bi-viscosity model respectively are made.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

For nearly three decades, it has been recognised that the buoy-
ancy-driven flow in a square cavity with vertical sides which are
differentially heated is a bench mark problem [1] for testing and
validating numerical schemes for a wide variety of practical prob-
lems such as ventilation of rooms, air flow inside a combustion
engine, crystal growth, nuclear reactors, and electronic cooling
devices, to name a few. This natural convection problem has
inspired much research, especially since 1983, in the field of
Newtonian and power-law fluid mechanics.

For instance, de Vahl Davis [1] adopted the stream function-
vorticity formulation and obtained some benchmark solutions
using a second-order finite difference scheme as well as the Rich-
ardson extrapolation. The results in the Rayleigh number range
Ra ¼ 103 � 106 were presented. Subsequently, Le Quéré and Alz-
iary de Roquefort [2], and Le Quéré [3] produced their solutions
to the same problem but with a totally different method, i.e., the
semi-implicit Chebyshev spectral method. Chenoweth and
Paolucci [4,5] employed an explicit predictor–corrector finite dif-
ference method on the staggered grid to examine the gas motion

in a cavity, including the effect of the aspect ratio A
(1 6 A 6 102). Barakos et al. [6] studied both laminar and turbulent
flows in the cavity using a finite volume approach for
Ra ¼ 103—1010. Zienkiewicz et al. [7] developed a characteristic-
based split algorithm combined with the finite element method
and applied it to the square cavity flow. The non-uniform struc-
tured mesh was used in their computation. More recently, Gjesdal
et al. [8] performed spectral element simulations on both square
and rectangular cavities. For square cavity problem, some results
under Ra ¼ 104—108 were listed. El-Amrani and Seaïd [9] used a
semi-Lagrangian Galerkin-characteristic method on the natural
convection problem in a square cavity and compared results with
those from Eulerian-based Galerkin finite element solvers. They
provided results in the range Ra ¼ 103—108.

In a similar vein, Lamsaadi et al. [10–12] have examined the
flow of power law fluids in vertical and tilted rectangular slots,
and when the fluid is subjected to both horizontal and vertical uni-
form heat fluxes. More recently, Turan et al. [13] have studied the
convection problem for a power law fluid in a square cavity.

While the above methods are eminently suitable for solving the
cavity flow problems for a variety of Boussinesq incompressible
fluids under steady conditions, they cannot be applied directly to
the flows of viscoplastic fluids. The main reason is that in the flows
of Bingham and other yield stress fluids, the flow domain is decom-
posed into two disjoint regions: one where the fluid has yielded
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a b s t r a c t 

A review of the BGK approximation to obtain the equations of motion for an incompressible fluid is pre- 

sented and its drawbacks are revealed. In order to overcome these inherent problems, new models for the 

particle distribution functions are needed. Using the Finite Difference Lattice Boltzmann Method (FDLBM) 

due to Fu and So (2009) [1] and the Thermal Difference Discrete Flux Method (TDDFM) proposed by Fu et 

al. 2012 [2], it is shown that the newer distribution functions lead to the mass conservation equation, the 

equations of motion and the energy balance equation for incompressible fluids in two dimensions, em- 

ploying the D2Q9 lattice as the model. This derivation is extended to compressible fluids as well. Next, 

using the D3Q15 lattice as an example, the three dimensional equations of continuum mechanics are de- 

rived. Since no restrictions are placed on the constitutive equations, the theoretical development applies 

to all fluids, whether they be Newtonian, or power law fluids, or viscoelastic and viscoplastic fluids. Fi- 

nally, some comments are offered regarding the numerical scheme to calculate the particle distribution 

functions to determine the velocity and temperature fields. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

From the Lattice Boltzmann equation, it is possible to derive 

the continuity equation and Cauchy’s equations of motion for a 

compressible medium, when one uses the Bhatnagar–Gross–Krook 

(BGK) approximation. From this, one can obtain equations relevant 

to incompressible fluids. However, these require that the pressure 

be proportional to the density and the viscosity be dependent on 

the collision relaxation time [3] ; see Section 2 below. Clearly, these 

restrictions on the pressure and the viscosity are unacceptable in 

modeling the flows of non-Newtonian, incompressible fluids. 

In order to overcome these inherent problems, new models for 

the particle distribution functions are needed. In the Finite Differ- 

ence Lattice Boltzmann Method (FDLBM) due to Fu and So [1] , the 

particle distribution function leads to the conservation of mass and 

the equations of motion applicable to incompressible fluids, when 

the flows are assumed to occur in a two dimensional setting un- 

derpinned by a D2Q9 lattice. Our derivation of these results is suc- 

cinct and is more transparent, for it uses vector analysis and linear 

algebra. In addition, the energy equation is also obtained from the 

Thermal Difference Discrete Flux Method (TDDFM) proposed by Fu 

et al. [2] ; once again, simple results from vector analysis and lin- 
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ear algebra are employed. The important point to note is that the 

previous restrictions on the pressure and the viscosity are elimi- 

nated in these derivations, meaning that one is free to choose a 

constitutive equation. That is, one can model a Newtonian fluid, 

or power law fluids, or viscoelastic and viscoplastic fluids. More- 

over, we point out in Section 3 that it is quite easy to incorporate 

Dirichlet type boundary conditions into the numerical scheme to 

determine the particle distribution functions for the velocity and 

temperature fields. 

In Section 4 , the method is extended to the flows of all fluids 

in three dimensions, using the D3Q15 lattice as an example. Once 

again, the particle distribution functions are such that every type 

of fluid, compressible or incompressible, can be employed. 

Finally, in Section 5 , some remarks are offered on the numerical 

scheme employed to determine the particle distribution functions 

for the velocity and the temperature fields. The CFL condition for 

the stability of the numerical scheme is also derived. 

2. BGK approximation to continuum mechanics 

Beginning in 1986, Lattice Boltzmann equation (LBE) mod- 

els evolved from their Boolean counterparts, viz., the lattice-gas- 

automata. The theoretical framework of the LBE was underpinned 

by the Chapman–Enskog analysis of the LGA models (Frisch et al 

[4,5] ; Wolfram [6] ). That is, the statistical mechanics of the LGA 

played a crucial role in these developments. A decade later, He and 

http://dx.doi.org/10.1016/j.jnnfm.2016.03.002 
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In this paper, a two-dimensional simulation of steady mixed convection in a square enclosure with dif-
ferentially heated sidewalls has been performed when the enclosure is filled with a Bingham fluid. The
problem has been solved by the Binghammodel without any regularisations and also by applying the reg-
ularised Papanatasiou model. An innovative approach based on a modification of the Lattice Boltzmann
Method (LBM) has been applied to solve the problem. Yield stress effects on heat and momentum trans-
port using the Papanatasiou model are investigated for certain pertinent parameters of the Reynolds
number (Re = 100, 500, and 1000), the Prandtl number (Pr = 0.1, 1, and 10) and the Bingham number
(Bn = 0, 1, 5 and 10), when the Grashof number is fixed at Gr = 10,000. Results show that a rise in the
Reynolds number augments the heat transfer and changes the extent of the unyielded section.
Furthermore, for fixed Reynolds and Prandtl numbers, an increase in the Bingham number decreases
the heat transfer while enlarging the unyielded section. Although an increase in the Prandtl number
enhances heat transfer, it does not affect the proportions of the unyielded/yielded regions in the cavity.
Finally, the results of the Bingham and Papanatasiou models are compared and it is found that there is a
visible difference between the two models especially in the yielded/unyielded sections.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Convection involving both free and forced convection is gener-
ally referred to as mixed convection, which occurs when buoyancy
effects are superposed on a forced flow. Mixed convection in fluid-
filled square cavities plays an important role in the area of heat and
mass transfer and has been given a considerable attention over the
past several years due to the wide variety of applications in science
and engineering [1–7]. For example, the flow is present in materi-
als processing, flow and heat transfer in solar ponds, dynamics of
lakes, reservoirs and cooling ponds, crystal growing, float glass
production, metal casting, food processing, galvanizing, and metal
coating. However, most of the research has been limited to
incompressible Newtonian fluids, although in a few cases, non-
Newtonian fluids have also been considered. Viscoplastic fluids
form a special sub-class of non-Newtonian fluids in which the flow
field is divided into two regions: the first is an unyielded zone
where the fluid is at rest or undergoes a rigid motion, and the sec-
ond where the fluid flows like a viscous liquid. In the unyielded
zone, the second invariant of the extra stress is less than or equal

to the yield stress and in the yielded region, this invariant exceeds
the yield stress. Thus, the location and shape of the yield surface(s),
i.e. the interface between these two sets, is also a part of the solu-
tion of flow problems of such fluids. This is a challenging problem
and research has been divided into using the Binghammodel with-
out any regularisations, or the modification due to Papanastasiou
[8], or the bi-viscosity model due to O’Donovan and Tanner [9].

Here, we solve the flow of a Bingham fluid in a lid driven
square cavity with differentially heated sidewalls using a new
numerical approach, based on the Lattice Boltzmann Method
(LBM). This technique is applied to the Bingham model and the
Papnasatasiou model so that a comparison between their predic-
tions can be made. As far as the LBM is concerned, it has been
demonstrated to be a very effective mesoscopic numerical method
to model a broad variety of complex fluid flow phenomena. It has
developed into an alternative powerful numerical solver for the
Navier–Stokes (N–S) equations applicable to incompressible
Newtonian fluids. In comparison with traditional methods in the
field, the LBM algorithms are much easier to implement, especially
in complex geometries and multi-component flows. This is because
the main equation of the LBM is hyperbolic and can be solved
locally, explicitly, and efficiently on parallel computers. However,
it has had to overcome three main drawbacks in passing from
the compressible to incompressible models. The first one arises
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