

SCHOOL OF BIOLOGICAL SCIENCE FACULTY OF SCIENCE & ENGINEERING

The application of RNA interference to study the biology of the *Neoparamoeba* genus

Paula Cristina Walger de Camargo Lima (B.Sc, M.Sc.)

> Primary supervisor: Dr. James Harris (Flinders University) Associate supervisor: Dr. Mathew Cook (CSIRO)

A thesis submitted in fulfilment for the requirements of the Degree of Doctor of

Philosophy

ADELAIDE - AUSTRALIA JULY 2013

Thoughts to live by:

"ALL I REALLY NEED TO KNOW I LEARNED IN KINDERGARTEN" by Robert Fulghum

"Most of what I really need To know about how to live And what to do and how to be I learned in kindergarten. Wisdom was not at the top Of the graduate school mountain, But there in the sandpile at Sunday school.

These are the things I learned: Share everything. Play fair. Don't hit people. Put things back where you found them. Clean up your own mess. Don't take things that aren't yours. Say you're sorry when you hurt somebody. Wash your hands before you eat. Flush. Warm cookies and cold milk are good for you. Live a balanced life -Learn some and think some And draw and paint and sing and dance And play and work every day some. Take a nap every afternoon. When you go out into the world, Watch out for traffic. Hold hands and stick together......"

TABLE OF CONTENTS:

SUMMARYi
DECLARATIONiii
ACKNOWLEDGEMENTS iv
STATEMENT OF THE CONTRIBUTIONS OF JOINTLY AUTHORED PAPERSix
LIST OF FIGURESix
LIST OF TABLES
CHAPTER 1: General Introduction1
1.1. Amoebic gill disease 1
1.2. AGD treatment and monitoring
1.3. Tasmanian Atlantic salmon industry vs. AGD4
1.4. Attempts to control AGD5
1.5. Using RNAi to study gene function and validate new drug targets against
AGD
1.6. Aim of the study and thesis outline9
CHAPTER 2: Literature Review11
2.1. Introduction
2.1. RNA interference
2.3. RNAi as a natural antiviral defence mechanism in vertebrates and
invertebrates17
2.4. RNAi applied to aquaculture
2.4.1. RNAi as an antiviral tool in fish
2.4.1.1. RNAi-mediated viral immunity in fish

2.4.1.2. Gene silencing mediated by <i>in vitro</i> transcribed and chemically synthesized siRNAs	. 24
2.4.1.3. Gene silencing mediated by vector-based RNAi constructs	.26
2.4.1.4. Gene silencing mediated by other RNAi triggers	.27
2.4.1.5. In vitro delivery of RNAi into fish	.28
2.4.1.6. The future of RNAi to control viral diseases in fish	. 30
2.4.2. RNAi as an anti-parasitic tool in fish	.31
2.4.3. RNAi as an antiviral tool in shrimp	. 33
2.4.3.1. Stimulation of innate immunity and antiviral silencing by dsRNA	.35
2.4.3.2. Different factors influencing RNAi silencing in shrimp	. 38
2.4.3.3. Improving protection by simultaneous knockdown of shrim and virus specific genes	ıр 39
2.4.3.4. The ability of RNAi to induce preventive and therapeutic effect in shrimp	. 40
2.4.3.5. Seeking oral delivery of RNAi-based technology in shrimp	40
2.4.3.6. The future of RNAi to control viral diseases in shrimp	.41
2.4.4. RNAi technology applied to other crustaceans	.42
2.4.5. The early stages of RNAi application to shellfish aquaculture	.43
2.5. RNAi limitations and further perspectives	.45
2.5.1. General limitations	.45
2.5.2. RNAi limitations directly applied to aquaculture	. 50
2.6. Conclusions	. 52
CHAPTER 3: Experimental - 1	54
3.1. Introduction	. 56
3.2. Material and Methods	. 58
3.2.1. Dicer and Argonaute candidates	. 58
3.2.2. Amoeba culture conditions	. 59
3.2.3. RNA isolation and reverse transcription	. 59
3.2.4. Preparation of DNA template for dsRNA synthesis	. 60
3.2.5. In vitro transcribed dsRNA	.61

3.2.8. Gene silencing experiments	63
3.2.9. Total RNA extraction and semi quantitative RT-PCR	63
3.2.10. Quantitative RT-PCR	64
3.2.11. Up-regulation of Dicer and Argonaute in response to RNAi of	luplexes
	65
3.2.12. RNAse III activity assay	66
3.3. Results	66
3.3.1. Dicer and Argonaute homologues	66
3.3.2. dsRNA and esiRNA validation	71
3.3.3. RNA-duplex up-take	72
3.3.4. Dicer and Argonaute up-regulation	73
3.3.5. Gene silencing by in vitro transcribed dsRNA	74
3.3.6. Gene silencing by esiRNA pool	75
3.3.7. RNAse III activity	78
3.4. Discussion	79

4.1. Introduction	37
4.2. Material and Methods	39
4.2.1. Neoparamoeba pemaquidensis culture conditions	39
4.2.2. RNA extraction and reverse transcription	39
4.2.3. Synthesis of bacterially expressed dsRNA9) 0
4.2.4. Bacterial IPTG induction) 1
4.2.5. dsRNA purification from bacteria9	€
4.2.6. Delivery of bacterial dsRNA via soaking9) 2
4.2.7. Total RNA extraction and RT-PCR9) 3
4.2.8. Quantitative real time RT-PCR9) 3
4.2.9. Statistical analysis9) 4
4.2.10. Microscopy) 5
4.3. Results) 5
4.3.1. Verification of dsRNA integrity9) 5
4.3.2. dsRNA delivery by soaking and its effect on β -actin mRNA expression	n
levels) 6

4.3.3. dsRNA delivery by soaking and its effect on EF1 α mRNA express	ion
levels	99
4.3.4. Daily administration of dsRNA does not improve effectiveness of targeted genes knockdown	99
4.3.5. Suppression of β-actin mRNA levels induces unexpected phenotyp changes in <i>N. pemaquidensis</i>	ic 102
4.4. Discussion	103

CHAPTER 5: Experimental - 3......110

5.1. Introduction	112
5.2. Material and Methods	114
5.2.1. Neoparamoeba pemaquidensis culture conditions	.114
5.2.2. RNA isolation and reverse transcription	115
5.2.3. Synthesis of bacterially expressed dsRNA	115
5.2.4. dsRNA validation	116
5.2.5. Delivery of dsRNA-expressing bacteria via feeding	117
5.2.6. Total RNA extraction and RT-PCR	117
5.2.7. Quantitative real time RT-PCR	118
5.2.8. Statistical analysis	.119
5.2.9. Validation of dsRNA expressing bacteria ingestion	.119
5.3. Results	120
5.3.1. Verification of dsRNA integrity	120
5.3.2. Target genes downregulation by ingestion of bacterial dsRNA	121
5.3.3. Confirmation of bacteria ingestion	123
5.4. Discussion	124

CHAPTER 6: Experimental - 4......129

6.1. Validation of N. perurans in vitro culture	129
6.2. Identification of RNAi-associated genes in the N. perurans transcriptome	
database	130

6.3. Using the Entamoeba histolytica U6 promoter to drive the expression of sho	ort
hairpin RNAs in <i>N. perurans</i>	136
6.3.1. Preparation of the Entamoeba histolytica U6 promoter	138
6.3.2. Plasmid-based shRNA expression vector	138
6.3.3. Transfection and knockdown validation by fluorescent microscopy	140
6.4. Conclusions	142

CHAPTER 7: General Discussion......143

7.	1. Identification of putative proteins encoding conserved domains of Dicer an	d
A	go	143
7.	2. Functional evidence for the presence of active RNAi machinery in	
Ne	eoparamoeba spp	146
7.	3. Final conclusions and future directions	149
RE	FERENCES	151

PPENDIX	2
	۰.

SUMMARY:

RNA interference (RNAi) is a natural regulatory mechanism of most eukaryotic cells that uses small double-stranded RNA (dsRNA) molecules as triggers to direct homology-dependent control of gene activity. This technique has emerged as a powerful tool for rapid analysis of gene function in non-model organisms and has the potential to identify candidate targets for intervention against diseases of economic importance to aquaculture.

With regards to amoebic gill disease (AGD) of farmed Atlantic salmon, RNAi could become an invaluable research instrument to unravel the role of proteins involved in amoeba attachment and pathogenicity, as well as to validate important treatment targets by investigating the effect of specific gene knockdown on amoeba survival and physiology. Additionally, RNAi technology could greatly assist in the elucidation of possible factors associated with the loss of virulence in certain species from the *Neoparamoeba* genus.

However, before RNAi technology can be employed in *Neoparamoeba*, it is important to consider whether members of this genus possess the required set of proteins involved in the RNAi pathway. As a result, the main purpose of the present study was to use functional and comparative genomics approaches to investigate whether functional RNAi machinery has been retained or lost in species from the *Neoparamoeba* genus. As the *in vitro* culture of the causative agent of AGD (*Neoparamoeba perurans*) has been successfully achieved only recently, most of the gene regulation assays were performed using the closely-related *Neoparamoeba pemaquidensis*, which is readily amenable to culture.

Using a *N. perurans* and *N. pemaquidensis* transcriptome database we were able to identify putative proteins containing conserved domains of RNAi-related

i

genes, such as Dicer and Argonaute. For *N. pemaquidensis*, the candidates' involvement in the RNAi pathway was validated by assessing their levels of expression followed the administration of dsRNA and small interference RNA (siRNA), respectively. The presence of an active Dicer in both species was also corroborated by utilizing an RNAse III assay, which showed complete degradation of dsRNA following incubation in amoeba lysate. Further evidence for the presence of an active RNAi machinery was also supported by gene silencing experiments, where *N. pemaquidensis* specific genes (β -actin and EF1 α) were successfully downregulated by the administration of RNAi-trigger molecules. However, knockdown efficiency was dependent on dose, administration frequency, target gene, delivery method and RNAi molecule. Additionally, trophozoites soaked with bacterially expressed dsRNA targeting β -actin unexpectedly transformed into a cystlike stage, which has not been previously reported in this species. Unfortunately, the attempts to employ the *Entamoeba histolytica* U6 promoter to confirm the existence of a functional RNAi pathway in *N. perurans* haven't succeeded yet.

The results altogether provide strong evidence for the presence of functional RNAi machinery in *Neoparamoeba* spp. Despite being promising, these findings are still preliminary and the reality of applying RNAi technology to develop new treatment strategies against AGD still needs further effort. Therefore, more work needs to be undertaken in order to fully elucidate the RNAi mechanisms in *Neoparamoeba perurans*.

DECLARATION:

I certify that this thesis does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any university; and that to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Paula K. W. de C. Lima

Paula Cristina Walger de Camargo Lima

ACKNOWLEDGEMENTS:

This has been a long and sometimes difficult process, and without the following people I would not have completed the journey.

Firstly I should express my thanks and appreciation for my primary (and longdistance) supervisor Dr. James Harris. Thanks for believing in my capacity and accepting me as your student. We didn't get the chance to interact "face to face" as much as I wished, but your "cyber" supervision was crucial for the success of my PhD and you were there when I mostly needed (especially to help me see the light at the end of every scary tunnel of bureaucracy).

My respect and special thanks also go to my secondary (and day-to-day) supervisor Dr. Mathew Cook. Thanks for your invaluable guidance and support. Your confidence in my abilities gave me encouragement to swim in freedom and to challenge myself along the way. It was indeed a privilege to work with you.

I would like to acknowledge the generous financial support of The Commonwealth Scientific and Industrial Research Organisation (CSIRO), The Australian Seafood Cooperative Research Centre (CRC) and Flinders University in the form of scholarships, project funding and travel grants.

I also want to express my gratitude to Miss Natasha Botwright, not only for her skilful technical assistance, but also for her friendship and support. I literally never heard a "no" coming out of your mouth and I certainly wouldn't have made it without you!!! I thank my fellow Ph.D. students (Marina, Juca, Eddie, Omar and Sil) for making this crazy roller-coaster ride so much smoother. Thanks for the countless coffee breaks and for always cheering me up every time my experiments were falling apart.

To all my mates from Queensland Martial Art Academy, thanks for being my punching bags and literally letting me release all my stress and frustrations on you during our sparring sessions.

I must not forget to acknowledge all my friends (which I call my Australian family) for not having given up on me, even though I missed everyone's birthday, engagement and wedding in the past years. Thanks for helping me to stay sane and for always trying so hard to keep me out of the lab on weekends and holidays (although most of the times you were not successful whatsoever).

Big thanks to Genis Cafe for keeping me awake and providing my vital daily dose of caffeine.

To Santo Expedito, the Brazilian Saint of the desperate and impossible causes. Having to change the research topic 1.5 years into my candidature was definitely an impossible cause and somehow I made it. So thank you!!!

I cannot find words to express my gratitude to my beloved grandparents who passed away while I was pursuing my PhD in Australia. Vô Daga, Vó Rosinha and Vó Ana I miss you deeply and I wish you were here to see me crossing the finish line. I will always love you!

I owe my deepest gratitude to my parents, whose example throughout my life has inspired me to work hard and always put in my best effort. Thanks for giving me solid roots from which I can grow, for being a constant and active presence in my life, for accepting my dreams even if they were different from yours and for doing your best in helping me realize them. I've been so fortunate to be given all the chances in life you've provided me. Even from the other side of the world you always managed to find a way of give me love, support and encouragement.

In particular I would like to thank my better half Diego for leaving everything behind and moving to Australia with me. You made this journey so much easier and I don't think I could have done it without your support, encouragement, devotion and love. You can now have me back [©]

And last, but not least, Jai Guru Jai!!!

STATEMENT OF THE CONTRIBUTIONS OF JOINTLY AUTHORED PAPERS:

Literature Review:

CHAPTER 2

Lima, PC; Harris, JO; Cook, M. (2013). Exploring RNAi as a therapeutic strategy for controlling disease in aquaculture. *Fish and Shellfish Immunology*, 34(3), pp.729-743.

<u>Authors contribution:</u> Lima, P.C. surveyed the literature and composed the manuscript; Harris, J.O. and Cook M. contributed reviewing the manuscript structure and content.

Experimental Chapters:

CHAPTER 3

Lima, PC; Botwright, NA; Harris, JO; Cook, M. Towards the application of RNAi against Atlantic salmon Amoebic gill disease: Identifying key components of the RNAi machinery in the closely related species of the genus *Neoparamoeba* (submitted to Marine Biotechnology)

CHAPTER 4

Lima, PC; Botwright, NA; Harris, JO; Cook, M. First evidence of functional RNAi mechanism in *Neoparamoeba* genus (submitted to Parasitology)

CHAPTER 5

Lima, PC; Botwright, NA; Harris, JO; Cook, M. Ingestion of bacterially expressed dsRNA induces target gene-dependent knockdown in species from the genus *Neoparamoeba* (submitted to Aquaculture)

<u>Authors contribution:</u> Lima, P.C. assisted with experimental design, conducted the research experiments, analysed/interpreted the data and composed the manuscripts;

Botwright, N.A. provided assistance with laboratory and analytical tasks and reviewing the manuscripts; Harris, J.O. made contribution to the drafting and revising the manuscript; Cook M. participated on assay development and results interpretation, as well as revising the manuscripts structure and content.

The following authors agree that the Statement of the contributions of jointly authored papers accurately describes their contribution to research manuscripts 1, 2, 3, and 4 and give consent to their inclusion in this thesis.

Paula C.W. de D. Lima Lima, P.C

......Botwright Botwright, N.A.

All Cook M.

LIST OF FIGURES:

CHAPTER 1

Figure 1.1.Gross pathology and histopathology associated with Atlantic salmon	
AGD	. 2
Figure 1.2. Gills arch from AGD-infected Atlantic salmon and the corresponding	
gill score	.4

CHAPTER 2

Figure 2.1. A	simplified mod	for the endogenous RNAi pathway1	4
0	r r		

CHAPTER 3

Figure 3.1. Schematic representation of the domain architectures found in
eukaryotic RNAi-related proteins
Figure 3.2. Candidates sharing significant level of homology with conserved
motifs found in Dicer
Figure 3.3. Candidate sharing high levels of homology with proteins from the Ago
subfamily69
Figure 3.4. Candidate sharing high levels of homology with proteins from the Piwi
subfamily
Figure 3.5. Candidates partially covering the Piwi domain71
Figure 3.6. Validation of dsRNA and esiRNA synthesis by gel electrophoresis72
Figure 3.7. Validation of RNAi duplexes up-take by the amoeba73
Figure 3.8. Up-regulation of Dicer (NpDEXDc) and Ago (NpAGO-2) candidates
following the administration of dsRNA and esiRNA, respectively74
Figure 3.9. qRT-PCR analysis of β -actin and EF1 α relative expression levels in
amoebae treated with <i>in vitro</i> transcribed dsRNA via immersion76

Figure 3.10. qRT-PCR analysis of β -actin and EF1 α relative expression levels in
amoebae treated with esiRNAs via immersion and transfection77
Figure 3.11. Agarose gel demonstrating the RNAse III activity assay

CHAPTER 4

Figure 4.1. Agarose gel demonstrating dsRNA construct integrity90
Figure 4.2. Silencing of <i>N. pemaquidensis</i> β -actin gene expression by bacterially
expressed dsRNA
Figure 4.3. Silencing of <i>N. pemaquidensis</i> EF1 α gene expression by bacterially
expressed dsRNA
Figure 4.4. Inhibition of <i>N</i> . <i>pemaquidensis</i> β -actin and EF1 α by daily
administration of bacterially expressed dsRNA (20 µg/mL)10
Figure 4.5. Phenotypic changes of dsRNA-treated amoeba
Figure 4.6. Cyst-like amoeba under 100x magnification

CHAPTER 5

Figure 5.1. Agarose gel electrophoresis of dsRNA purified from the <i>E. coli</i>
HT115(DE3)
Figure 5.2. Validation of bacterially expressed dsRNA ingestion by fluorescent
microscopy122
Figure 5.3. Gene knockdown in N. pemaquidensis orally administrated with
bacteria expressing dsRNA designed against β-actin and EF1α

CHAPTER 6

Figure 6.1. Validation of cultured trophozoites identity by PCR analysis using A	N.
perurans and N. pemaquidensis specific primers	. 130
Figure 6.2. Candidate sharing significant level of homology with DEAD-like	
helicase (DEXDc) of Dicer	. 132

Figure 6.3. Candidate sharing high levels of homology with proteins from the Ago
subfamily
Figure 6.4. Candidate sharing high levels of homology with proteins from the Ago
subfamily134
Figure 6.5. Agarose gel demonstrating the RNAse III activity assay
Figure 6.6. Diagram demonstrating the one-step PCR method employed to produce
shRNA expression vectors
Figure 6.7. Validation of EGFP expression by fluorescence microscopy (40x
magnification)

LIST OF TABLES:

CHAPTER 1

Table 1.1. Gross gill score system used by farmers to assess the severity of	
infection	3
Table 1.2. RNAi-associated genes and functional studies undertaken in amoeba	
species	8

CHAPTER 2

Table 2.1. Summary of RNAi studies applied to fish viruses
Table 2.2. The applications of RNAi to investigate the interactions between shrimp
and viruses

CHAPTER 3

Table 3.1. Primer sequences used for dsRNA in vitro transcription (ds) and qRT	`-
PCR (q)	. 60

CHAPTER 4

Table 4.1. Primer sequence	ces used for construction of a	dsRNA-expression vectors
(ds) and qRT-PCR (q)		

CHAPTER 6

Table 6.1. Primer sequences used for construction of EhU6p-driven shRNAs....139