
 

 

 

 

 

Numerical investigations of contaminant transport 

in permeable rocks: examining the effects of 

discrete flow features in density-dependent and 

density-independent systems 

 

 

 

Megan Louise Sebben 

BSc. Env. Sci. (Hons), Dip. Lang. 

 

School of the Environment 

Faculty of Science and Engineering 

Flinders University 

 

 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

April, 2016

 

 



 

 

 

  



i 

 

 

Declaration 

 

I certify that this thesis does not incorporate without acknowledgment any material 

previously submitted for a degree or diploma in any other university; and that to the 

best of my knowledge and belief it does not contain any material previously 

published or written by another person except where due reference is made in the 

text. 

 

.............................................. 

Megan Sebben 

  



ii 

 

 

Acknowledgements 

 

I wish to acknowledge my principal supervisor, Professor Adrian Werner, for his 

scientific guidance and support throughout all aspects of this work. His passion, 

knowledge and enthusiasm for hydrogeology have been gratefully appreciated. It 

has been a pleasure working with you. 

 

I would like to thank my Co-Supervisor, Professor Craig Simmons, as well as the 

National Centre for Groundwater Research and Training (NCGRT), Flinders 

University, and the Goyder Institute for Water Research for their financial and 

administrative support. Without this, the work presented here would not have been 

possible. 

 

My sincere gratitude goes to Professor Thomas Graf for hosting me for 3 months at 

Leibniz University. The HGS modelling skills I obtained during this time were 

invaluable. In particular, I wish to thank Katharina Vujević, Jie Yang, and Eugenia 

Hirthe for their assistance with the model. I am also grateful to Carlos, Jan, 

Clemens, Alina, Vincent, Daniel and Leo for being part of this invaluable 

experience. 

 

Many thanks go to Dr Daniel Partington, Dr Perry de Louw and Dr Neville 

Robinson for their technical support and insightful scientific discussions. 

 

I wish to acknowledge my Flinders University/NCGRT colleagues and office mates 

(Matt, Cameron, Dan and Michelle) for making the experience an enjoyable one. 

In particular, I am grateful to Matthew Knowling, for sharing the Ph. D. experience. 

 

My heartfelt thanks go to my family and friends for their ongoing support and 

encouragement. 

  



iii 

 

 

Summary 

 

Discrete flow features (DFFs; e.g. fractures, faults, clay layers) are geological 

discontinuities of higher or lower permeability than the host rock that are of 

sufficient extent to impact groundwater flow. DFFs can provide preferential flow 

pathways (i.e. ‘preferential flow features’ (PFFs), wherein the permeability of the 

DFF is higher than the matrix), or flow barriers (i.e. ‘barrier flow features’ (BFFs), 

wherein the permeability of the DFF is lower than the matrix). The study of DFFs 

has thus far focussed on PFFs in low-permeability rock settings (e.g. granite, 

basalt), in which the majority of groundwater flow occurs within the PFF. There 

has been little research into the impact of both PFFs and BFFs on contaminant 

plume migration in otherwise permeable rocks (e.g. sandstone, limestone), despite 

that DFFs are widespread in high-yielding, permeable rock aquifers. The aim of this 

thesis is to examine within a modelling framework how DFFs influence the 

displacement and spreading of solute plumes, and the accompanying patterns of 

groundwater discharge, in idealised permeable rock aquifers. 

 

Firstly, the influence of PFFs is investigated in a complex groundwater setting, to 

evaluate whether PFFs impact solute transport within commonly encountered 

situations involving seawater-freshwater mixing, such as those found in most 

coastal aquifers. Aquifers containing single fractures or regularly spaced discrete 

fracture networks (DFNs) are examined using modified forms of the Henry (1964) 

seawater intrusion (SWI) benchmark problem. The applicability of equivalent 

porous media (EPM) models for representing simple DFNs in SWI simulations is 

also tested. This study demonstrates that fracture effects on SWI are likely to be 
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mixed, ranging from enhancement to reduction in seawater extent and the width of 

the mixing zone, depending on such factors as PFF location, orientation and density. 

EPM models are shown to be inadequate for inferring salinity distributions unless 

the density of orthogonal fractures is high and appropriate dispersivity values can 

be determined. 

 

While the study of SWI showed macro-scale plume behaviour, the role of individual 

PFFs on solute transport was uninterpretable under the complex density-dependent 

conditions of the Henry problem. Therefore, numerical investigations of solute 

plumes passing through an individual PFF are performed under simpler conditions, 

to explore the local-scale PFF effects on plume migration. The numerical modelling 

results show that individual-PFF impacts on plume displacement and spreading can 

be considerable. The attenuation of plumes is likely governed by PFFs rather than 

flow through the matrix, given that a single PFF (representing a medium-sized 

fracture) produces the equivalent spreading effects of 0.22-7.88 m of plume 

movement through the matrix only. 

 

Finally, the previous analysis is extended by accounting for DFFs as 2D flow 

features, and by including BFF situations. A simple analytical expression and 

numerical modelling are employed to quantify the displacement and spreading of a 

solute plume as it passes through a DFF. The results demonstrate that the 

attenuating influence of PFFs in permeable rocks is greater than for BFFs, and that 

PFFs are likely to have a more significant influence on plume distributions. DFF 

effects on plumes generally increase with increasing aperture.  
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Chapter 1 
 

1. Introduction 

 

Numerous problems of environmental concern (e.g. groundwater contamination, 

seawater intrusion) involve the transport of solutes in rocks containing discrete flow 

features (DFFs) such as fractures, faults, sand lenses and clay layers. DFFs can act 

as either preferential pathways (i.e. ‘preferential flow features’; PFFs) or barriers 

(i.e. ‘barrier flow features’; BFFs) to fluid flow and solute transport. DFFs are 

common geologic features in aquifers where the matrix permeability ranges from 

virtually impermeable (e.g. granite and basalt) to permeable (e.g. sandstone and 

limestone). Despite this, very little less research attention has been given to the 

transport of solutes in permeable rock aquifers containing PFFs, compared to low-

permeability rocks (Rubin et al., 1997; Odling and Roden, 1997). The influence of 

BFFs has been studied to an even lesser degree than PFFs. 

 

Amongst the various forms of geologic heterogeneity, PFFs that accompany 

fractured and karst (i.e. PFFs formed by fractures, faults and/or conduits) coastal 

aquifers present as the most challenging to characterise (e.g. Berkowitz, 2002; 

Bakalowicz, 2005). Case studies of groundwater contamination from seawater 

intrusion (SWI) in fractured or karst coastal aquifers include Leve (1983), Bonacci 

and Roje-Bonacci (1997), and Arfib et al. (2007). Leve (1983) suggested that high 

chloride concentrations in the Floridan aquifer system likely indicated the presence 

of faults or fractures that facilitate the upward leakage of saline waters. Bonacci and 

Roje-Bonacci (1997) and Arfib et al. (2007) investigated the mechanisms of SWI 

through coastal springs, wherein both studies demonstrated that PFFs can influence 
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the distribution of seawater in coastal aquifers in comparison to the classical 

description of a ‘seawater wedge’ in a homogeneous porous medium. Despite this, 

the relationships between PFF characteristics (e.g. PFF location, orientation and 

spacing) and the distribution of seawater in coastal aquifers have not been 

investigated. Therefore, the first objective of this thesis is to explore within a 

modelling framework, what SWI might look like in coastal aquifers containing 

networks of discrete PFFs, for a variety of PFF geometries. 

 

The transport of solutes in permeable rocks containing PFFs typically occurs via 

advection, mechanical dispersion and molecular diffusion in both the PFF and the 

rock matrix (Birkhölzer et al., 1993a). Previous studies of solute transport in 

permeable rocks containing PFFs generally consider formations that can be 

approximated using the equivalent porous media (EPM) approach, wherein 

individual PFFs are not represented explicitly in numerical models (e.g. Birkhölzer 

et al., 1993a; 1993b; Rubin and Buddemeier, 1996), or permeable rocks containing 

naturally occurring PFF geometries (e.g. Odling and Roden, 1997). As such, these 

studies do not provide insight into the effect of transport processes at the scale of 

an individual PFF, despite that these local-scale processes can have a dramatic 

influence on solute transport at larger scales (Grisak and Pickens, 1980). Therefore, 

the second objective of this thesis is to undertake quantitative analyses of solute 

plumes that pass through individual PFFs in permeable rocks, to numerically 

investigate the mechanisms that underlie solute plume behaviours observed in 

previous matrix-PFF studies. 
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In some cases, DFFs contain material that is less permeable than the rock matrix, 

and hence, form BFFs (e.g. Laubach, 2003; Bense and Person, 2006). Previous 

studies of permeable rocks containing BFFs have typically examined BFF effects 

on groundwater flow regimes rather than solute transport processes. Nonetheless, 

several studies of solute transport across BFFs (e.g. Johnson et al., 1989; Zhang and 

Qiu, 2010) have found that BFFs may not prevent contamination of underlying 

aquifers, and that the barrier’s depth and hydraulic conductivity are likely the key 

controls on the extent of contaminant migration. However, like the PFFs discussed 

above, the small-scale solute transport processes at the matrix-BFF interface remain 

essentially unexplored. Therefore, the third objective of this thesis is to quantify the 

solute plume changes where BFFs are encountered in otherwise permeable rock 

aquifers. 

 

In summary, numerical investigations that provide insight into the effects of DFFs 

on solute transport in permeable rocks (representative of sedimentary aquifers) are 

carried out. The general aims of this research project are to examine how DFFs 

influence the displacement and widening (or narrowing) of solute plumes in both 

density-dependent and density-independent systems. 

 

This thesis consists of five chapters inclusive of the current chapter. Chapter 1 

provides a brief background to the research project and summarises the contents of 

each chapter. Chapters 2, 3 and 4 are based on journal papers that are either 

published or in the publication process in international journals. A summary of the 

main conclusions from this research project is given in Chapter 5. 
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In Chapter 2, discrete fracture network (DFN) models are employed in a 

preliminary investigation of SWI in aquifers containing a single fracture (i.e. PFF) 

or networks of regularly spaced fractures. The objectives here are to explore the 

influence of fracture orientation, location and density on the extent of seawater and 

accompanying patterns of groundwater discharge in idealised coastal aquifers, and 

to test the applicability of equivalent porous media (EPM) models for representing 

simple fracture networks in steady-state simulations of SWI. 

 

Chapter 3 presents a quantitative analysis of solute plumes that pass through a single 

PFF in permeable rock. Numerical simulations are conducted (using the DFN 

approach, where PFFs are treated as 1D flow features) to explore the PFF’s 

influence on plume migration, for a variety of matrix-PFF permeability contrasts. 

The impact of PFFs on both the displacement and spreading of contaminant plumes 

in permeable rock matrices is ascertained through comparison with associated 

porous media only (PMO) models. 

 

Chapter 4 extends the analysis presented in Chapter 3 by accounting for DFFs as 

2D flow features, and including BFF situations. A simple analytical expression and 

numerical modelling are used to quantify how a single DFF influences the 

displacement and widening (or narrowing) of solute plumes in permeable rocks. A 

variety of matrix-DFF permeability contrasts and DFF apertures are considered. 

The potential role of ‘back dispersion’ on predictions of PFF effects on solute 

transport is also explored. 

 

Chapter 5 presents the main conclusions of this thesis.  
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Chapter 2 
 

2. Seawater intrusion in fractured coastal aquifers: A 

preliminary numerical investigation using a fractured Henry 

problem 

 

This chapter is based on the following published paper: 

 

Sebben, M. L., Werner, A. D., Graf, T., 2015. Seawater intrusion in fractured 

coastal aquifers: A preliminary numerical investigation using a fractured Henry 

problem. Adv. Water Resour. 85, 93-108, doi: 10.1016/j.advwatres.2015.09.013. 

 

2.1 Abstract 

 

Despite that fractured coastal aquifers are widespread, the influence of fracture 

characteristics on seawater intrusion (SWI) has not been explored in previous 

studies. This research uses numerical modelling in a first step towards 

understanding the influence of fracture orientation, location and density on the 

extent of seawater and accompanying patterns of groundwater discharge in an 

idealised coastal aquifer. Specifically, aquifers containing single fractures or 

networks of regularly spaced fractures are studied using modified forms of the 

Henry SWI benchmark problem. The applicability of equivalent porous media 

(EPM) models for representing simple fracture networks in steady-state simulations 

of SWI is tested. The results indicate that the influence of fractures on SWI is likely 

to be mixed, ranging from enhancement to reduction in seawater extent and the 

width of the mixing zone. For the conceptual models considered here, vertical 

fractures in contact with the seawater wedge increase the width of the mixing zone, 

whereas vertical fractures inland of the wedge have minimal impact on the seawater 

distribution. Horizontal fractures in the lower part of the aquifer force the wedge 
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seaward, whereas horizontal fractures located within the zone of freshwater 

discharge enhance the wedge. Inclined fractures roughly parallel to the seawater-

freshwater interface increase the landward extent of seawater and fractures 

perpendicular to the interface inhibit the wedge. The results show that EPM models 

are likely inadequate for inferring salinity distributions in most of the fractured 

cases, although the EPM approach may be suitable for orthogonal fracture networks 

if fracture density is high and appropriate dispersivity values can be determined. 
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2.2 Introduction 

 

Globally, coastal aquifers are under threat from seawater intrusion (SWI) (Chang 

and Yeh, 2010). SWI is caused by changes in coastal aquifer conditions resulting 

from groundwater extraction, climate drivers, sea-level rise, oceanic over-topping 

events, and land use change (Custodio and Bruggeman, 1987; Yang et al., 2013). 

Aquifer heterogeneities are also known to significantly influence the nature of SWI 

(e.g. Dagan and Zeitoun, 1998; Lu et al., 2013). Amongst the various forms of 

geologic heterogeneity, the preferential flow pathways accompanying fractured and 

karst coastal aquifers present as the most challenging to characterise (e.g. 

Berkowitz, 2002; Bakalowicz, 2005). Despite that fractured coastal aquifers are 

widespread and under increasing stress from extraction and development, the 

distribution of saltwater and the nature of SWI in fractured coastal systems remains 

poorly understood, particularly relative to unfractured aquifers (Werner et al., 

2013). 

 

In the absence of systematic studies of SWI in fractured rock settings, the findings 

from analyses of more generalised aquifer heterogeneity offer some preliminary 

insights into the expected role of fractures in coastal aquifers. Studies of random 

heterogeneity effects on SWI include the work of Dagan and Zeitoun (1998), Held 

et al. (2005), Kerrou and Renard (2010), and Lu et al. (2013). Dagan and Zeitoun 

(1998) examined the impact of horizontal layered heterogeneity on the shape of the 

seawater-freshwater interface and found that neglecting layered heterogeneity 

introduced large uncertainty in estimates of the seawater wedge toe position (i.e. 

the maximum inland extent of seawater). Their study assumed a sharp seawater-
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freshwater interface and, as such, did not evaluate the effects of stratified 

heterogeneity on the width of the mixing zone. Lu et al. (2013) later considered the 

impact of stratigraphic layers on the width of the steady-state seawater-freshwater 

mixing zone. Changes in permeability across layer boundaries were found to cause 

refraction of seawater and the separation of streamlines, resulting in broad mixing 

zones in the low permeability layers. Conversely, higher permeability layers caused 

streamlines to converge and produce narrower mixing zones. Dagan and Zeitoun 

(1998) and Lu et al. (2013) assumed that heterogeneity exists in the form of 

horizontal layers, reflecting idealised geologic formations in stratified (e.g. 

sedimentary) coastal aquifers. The effect of high permeability fractures that span a 

range of orientations embedded within a porous matrix (e.g. fractures within an 

otherwise porous rock matrix) on the shape of the interface remains unexplored. 

 

Held et al. (2005) employed homogenisation theory to examine upscaling of 

density-dependent flow in a heterogeneous version of the original (i.e. highly 

diffusive) Henry (1964) problem. They found that upscaled dispersivity coefficients 

were not necessary to reproduce SWI in a heterogeneous porous medium. However, 

Kerrou and Renard (2010) found that, in contradiction to Held et al. (2005), the 

increase in macrodispersion accompanying the upscaling process needed to be 

accounted for in a more realistic, dispersive form of the Henry (1964) problem. 

Their results demonstrated important differences between macrodispersion effects 

when upscaling SWI in dispersion-dominant versus diffusion-dominant problems. 

SWI in fractured settings is likely to differ from SWI in aquifers of random 

heterogeneity due to the high-permeability and low-porosity nature of fractures, and 

also fractures may act to either enhance fluid flow or form barriers to it (Odling and 
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Roden, 1997). Further, in fractured rock aquifers, molecular diffusion may 

dominate solute transport in the rock matrix if the matrix permeability (and hence, 

fluid velocity) is low, whereas transport within fractures is dominated by advection 

and dispersion (e.g. Tang et al., 1981; Zhou et al., 2007). Hence, the representation 

of dispersion in fractured-rock models is likely to influence prediction of SWI in 

more complex manners than that observed for cases of random heterogeneity. 

 

Case studies of SWI in fractured aquifers include Leve (1983), Spechler (1994), 

Park et al. (2012) and Lim et al. (2013). Leve (1983) and Spechler (1994) studied 

the mechanisms of SWI leading to increased chloride concentrations in the 

karstified Floridan aquifer system. Both authors concluded that high chloride 

concentrations in the upper zones of the aquifer likely indicate the presence of faults 

or fractures that breach confining beds within the aquifer and thus enable the 

upward leakage of saline waters. Park et al. (2012) demonstrated, using flow meter 

tests, groundwater levels and electrical conductivity measurements, that the extent 

of SWI in a coastal fractured aquifer in Jeollanam-Do, Korea, is highly dependent 

on the presence of conductive fractures and their hydraulic connection to pumping 

wells and the sea. Geochemical and isotopic indicators were used by Lim et al. 

(2013) to show that SWI through fractured bedrock was contributing to the 

salinisation of seepage waters around an oil storage cavern in Yeosu, Korea. From 

these studies, it is clear that fractures can have a significant impact on the extent of 

SWI in coastal aquifers by providing preferential flow and transport pathways. 

Despite this, field studies and numerical investigations that explore relationships 

between fracture network characteristics and the distribution of seawater in coastal 

aquifers are absent from the literature. Therefore, understanding how the various 
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structural properties of fracture networks (e.g. fracture location, orientation and 

spacing) influence density-driven flow and transport processes accompanying the 

location and movement of seawater in coastal aquifers is of paramount importance 

(e.g. Allen et al., 2002; Allen et al., 2003). 

 

While there are a lack of generalizable analyses of SWI in fractured systems, studies 

of top-down density-driven flow and transport in fractured rock, involving both free 

convection (i.e. caused by unstable density stratification) and mixed convection (i.e. 

free convection and advection) situations, provide useful insights. For example, 

Shikaze et al. (1998) numerically modelled solute plume migration under mixed 

convection in a low-permeability porous medium containing networks of 

continuous, orthogonal fractures. They found that fracture spacing was a key 

criterion for determining flow behaviour. Further, dense solute plumes were found 

to develop in highly complex patterns (relative to those observed in neutral-density 

simulations) in systems where free convection dominates the transport of solutes. 

Shikaze et al. (1998) concluded that limited knowledge of fracture characteristics 

in field settings likely precludes predictions of transport rates under free convection. 

It is yet to be demonstrated as to whether the capability to predict SWI in fractured 

systems is equally limited. Graf and Therrien (2005) simulated density-driven (free 

convective) flow and transport in a single 45°-inclined fracture, embedded in a low-

permeability matrix. They demonstrated that free convection in the matrix controls 

the transport rate in an inclined fracture. Graf and Therrien (2007) later extended 

the work of Shikaze et al. (1998) by showing that density-driven plume migration 

is highly sensitive to the geometry of irregular fracture networks and their 

connectivity to the solute source. Vujević et al. (2014) examined the impact of 
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fracture network geometry on free convective flow patterns and found that free 

convection was controlled more so by the fracture network structure, rather than the 

bulk permeability of the system. Continuous fracture circuits were identified as the 

most important geometric feature for determining the vigour of free convection (i.e. 

the ratio between total solute mass flux and diffusive mass flux through a surface, 

defined by the dimensionless Sherwood number; Graf (2005)). These top-down 

studies of density-driven transport in fractured systems suggest that the porous 

matrix is expected to influence the shape of the seawater wedge, even for matrices 

of low permeability, as will the geometry of fracture networks, including the inter-

connectivity between individual fractures. 

 

The purpose of the current study is to explore within a simple modelling framework, 

what SWI might look like in fractured coastal aquifers. Specifically, the influence 

of fracture location, orientation and density on the inland extent of seawater will be 

examined for steady-state groundwater flow and solute transport conditions. A 

range of simplistic fracture network geometries are added to modified forms of the 

Henry (1964) SWI benchmark problem. The original Henry (1964) problem 

considers only highly diffusive solute transport in a homogeneous porous medium. 

Therefore, we produce variations of the problem that, following the 

recommendations of Abarca et al. (2007), are less diffusive and include dispersive 

solute transport, to better reflect real-world conditions. Further, we adopt aquifer 

properties that more closely represent consolidated geological materials (e.g. 

limestone, sandstone, dolomite, etc.) in which both preferential flow due to 

fractures and flow through the matrix are known to occur. These types of settings 

are chosen because they represent common high-yielding forms of fractured 
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aquifers. Fracture networks similar to those employed in the free convection 

analysis of Vujević et al. (2014) are adopted, because these provide a methodical 

framework for model testing. The simulations presented in this study are the first 

step towards understanding how the structural properties of fracture networks might 

control the extent of seawater in fractured aquifers. 

 

2.3 Methodology 

 

2.3.1 Previous modelling approaches 

 

Groundwater flow and solute transport in fractured aquifers have been modelled 

previously using three alternative approaches: (1) equivalent porous medium 

(EPM) models, which consider a single continuum using surrogate aquifer 

properties (e.g. Scanlon et al., 2003); (2) dual-porosity models, which adopt two 

interacting continua, including the solid rock domain (primary porosity) 

represented by low permeability and high storage capacity, and the fracture domain 

(secondary porosity) with high permeability and negligible storage capacity 

(Barenblatt et al., 1960; e.g. Sudicky 1990); and (3) discrete fracture network 

(DFN) models, in which individual fractures are incorporated explicitly into an n-

dimensional model as (n-1)-dimensional features (e.g. Smith and Schwartz, 1984). 

 

Groundwater flow in fractured systems can be approximated adequately using the 

EPM (i.e. the most straightforward) approach if the representative elementary 

volume (REV) is large enough to approximate equivalent porous media (Pankow et 

al., 1986; Scanlon et al., 2003). Regional-scale EPM models have been employed 

successfully to simulate groundwater flow in fractured geologic media at risk of 
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SWI (e.g. Langevin, 2003; Giudici et al. 2012), and to quantify the impacts of sea-

level rise and changes to groundwater recharge on the extent of SWI (Rasmussen 

et al., 2013). However, accurate simulation of transport processes, such as those 

associated with SWI, remains problematic in fractured systems due to difficulties 

in characterising geologic controls (e.g. fracture spacing and aperture) (Krásný and 

Sharp, 2007). DFN models have been used in several studies to simulate SWI in a 

relatively small number of discrete fractures (e.g. Masciopinto, 2006; Barcelona et 

al., 2006; Dokou and Karatzas, 2012). For example, Dokou and Karatzas (2012) 

produced a hybrid EPM-DFN model (i.e. a 3D EPM model of the porous matrix 

combined with a 2D DFN model of the main fracture networks) to examine SWI in 

a karst coastal aquifer in Crete, Greece. The authors established that the presence 

of previously unknown fractures was the likely cause of the extremely high chloride 

concentrations (up to 17,300 mg/L) measured at several observation wells. By 

modifying the fracture network, the authors were able to obtain an improved match 

to chloride observations. They concluded that the aquifer under investigation could 

not be described adequately using an EPM model. Thus, DFN models may be 

necessary to simulate the density-driven groundwater flow and transport processes 

accompanying SWI in fractured porous media with reasonable accuracy. 

 

2.3.2 Conceptual model 

 

Fractured aquifer variations of the dispersive Henry (1964) SWI problem (Abarca 

et al., 2007) were employed in our analysis, using the DFN approach. Henry (1964) 

described SWI in a 2 m  1 m 2D cross section through a homogeneous, isotropic, 

confined aquifer. Transport in the original Henry (1964) problem occurs via 
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advection and exaggerated molecular diffusion, resulting in computed salinity 

isochlors that do not resemble those observed in real coastal aquifers. To address 

this limitation, Abarca et al. (2007) presented a more realistic and generalizable 

version of the Henry (1964) problem that included both velocity-dependent 

dispersion and anisotropy in hydraulic conductivity. We therefore modify the Henry 

(1964) problem to include more realistic molecular diffusion and dispersion. Flow 

and transport boundary conditions are shown in Figure 2.1. Various levels of 

anisotropy are considered, depending on the DFN being simulated. Fractures were 

then included in the problem to simulate SWI in discretely fractured aquifers. 

 

 

Figure 2.1 Problem domain and boundary conditions. 

 

The coupled surface-subsurface coastal boundary condition developed by Yang et 

al. (2013) was applied in our study (see Figure 2.1) to produce more realistic salinity 

distributions in the upper part of the near-shore aquifer relative to the original Henry 

(1964) problem. The vertically orientated surface domain at the (left) seaside 

boundary represents a vertical cross section below the shoreline across which 

surface-subsurface solute mass and water mass fluxes are calculated (Yang et al., 

2013). A hydrostatic pressure distribution is assumed along the (vertical) left 

surface domain. All surface domain nodes are assigned a constant concentration (C) 
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relative to seawater, i.e. C = 1. Water enters the aquifer at seawater concentration 

and discharges at the ambient groundwater concentration. 

 

The model domain was discretised into uniform block elements of sizes Δx = Δz = 

0.0125 m and Δy = 1 m. The 3D model has a unit width to replicate a 2D domain. 

We recognise that the grid discretisation employed here is large in comparison to 

the recommendations offered by Weatherill et al. (2008), who note that even their 

coarsest grid (100 times greater than the fracture aperture, i.e. 200b) is extremely 

fine in comparison to most groundwater models. However, a grid convergence test, 

in which other discretisations (i.e. Δx = Δz = 0.025 m, 0.0125 m and 0.00625 m) 

were evaluated, demonstrated that the chosen mesh resolution provides a grid-

independent result. Some fracture configurations were more finely discretised (Δx 

= Δz = 0.00625 m) to accommodate the higher density of fractures. Computational 

restrictions (i.e. avoiding excessively long run times) therefore limit our model 

domain size to small-scale SWI problems (e.g. the Henry problem) if grid-

independent results are to be achieved. The chosen grids produced grid Peclet 

numbers (Pe) between 0.125 and 0.2, satisfying the widely accepted stability 

criterion (Kinzelbach, 1986): 
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D

Lv
Pe

 (2.1) 

where ΔL (L) is the element length in the direction of flow, v (L/T) is the average 

linear velocity and D (L
2/T) is the dispersion coefficient. 

 

The simulation period of 69 days was subdivided using adaptive time-stepping 

based on a maximum 1% change of the salt concentration at any node. Simulations 
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were run in transient flow and transport mode until steady-state conditions were 

reached. 

 

We recognise that the various published forms of the Henry (1964) problem (e.g. 

Henry, 1964; Simpson and Clement, 2004; Abarca et al., 2007) are contrived 

representations of SWI in natural systems. However, the Henry (1964) problem 

(and modifications thereof) has been used extensively for analysing SWI processes, 

and its strengths and limitations are well-documented (see Croucher and 

O’Sullivan, 1995; Simpson and Clement, 2003). Hence, it serves as a useful basis, 

with some modification to consider fracture effects, for evaluating potential fracture 

effects on the extent of seawater in coastal aquifers. 

 

A total of four metrics (Figure 2.2) were analysed to evaluate fracture effects and 

to identify the key structural properties of fracture networks that influence seawater 

distribution. These are: (1) the seawater wedge toe location (where the 0.5 isochlor 

intersects the bottom model boundary, herein referred to as the toe), (2) the 

seawater-freshwater flux inflexion location at the seaward boundary (seawater 

flows inland beneath the inflexion point, and freshwater discharges above the 

inflexion point), (3) the centre of mass in the aquifer, and (4) the width of the mixing 

zone (the horizontal and vertical distances between the 0.1 and 0.9 isochlors at the 

bottom and seaward model boundaries, respectively). The impacts of discrete 

fractures on the equivalent freshwater hydraulic head distributions and flow fields 

were also evaluated. 
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Figure 2.2 Schematic description of the SWI comparison metrics: (a) the toe location, (b) 

the flux inflexion point, (c) the centre of mass (COM), and (d) the horizontal and vertical 

widths of the mixing zone (HMZ and VMZ, respectively). 

 

2.3.3 Numerical model 

 

The simulations presented here were conducted using HydroGeoSphere (HGS; 

Therrien et al., 2010). HGS is a physics-based integrated surface-subsurface 

hydrogeological model, which solves 3D variable-density flow and solute transport 

in discretely fractured porous media. HGS has been benchmarked previously 

against the Elder (1967) salt convection problem (e.g. Therrien et al., 2010) and the 

Henry (1964) problem (e.g. Yang et al., 2013) for variable-density flow and 

transport in porous media. The control volume finite-element method is applied to 

spatially discretise the governing flow and transport equations. Fractures are 

incorporated in HGS as 2D planes with uniform head across the fracture width 

(Therrien et al., 2010). The 2D fracture elements are superimposed onto 3D matrix 

elements in a manner that ensures continuity of the hydraulic heads and solute 

concentrations at the fracture-matrix interface (Graf and Therrien, 2008). In a 

fracture, solute transport is only simulated within the 2D plane of the fracture and 

as such, solute transport perpendicular to the fracture is controlled solely by the 
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matrix. Detailed descriptions of the governing equations in HGS and the discrete 

fracture approach are provided elsewhere (e.g. Therrien and Sudicky, 1996; Shikaze 

et al., 1998; Therrien et al., 2010), and are not repeated here. 

 

2.3.4 Fractured aquifer cases: Modified Henry problem 

 

Figure 2.3 illustrates the various fractured aquifer cases, which include aquifers 

containing a single transmissive fracture (Cases A and B; Figure 2.3) or a regular 

network of transmissive fractures (Cases C, D and E; Figure 2.3). Here, 

transmissive fractures are more conductive than the surrounding rock matrix. We 

neglect the situation of fractures that are less transmissive than the surrounding 

matrix (e.g. sealed fractures; Laubach, 2003), because HGS is presently unable to 

represent discrete fractures (i.e. where fracture flow is calculated according to the 

cubic law (Berkowitz, 2002; Graf and Therrien, 2007)) as barriers to flow. The 

location of a single vertical fracture (Case A) or horizontal fracture (Case B) was 

modified incrementally by moving the fracture in the horizontal (xfrac) or vertical 

(zfrac) directions (xfrac = 0.2 m, 1.0 m and 1.8 m for vertical fractures and zfrac = 0.2 

m, 0.5 and 0.8 m for horizontal fractures). Cases C, D and E were devised to 

examine the influence of both fracture spacing and inclination on the inland extent 

and distribution of seawater, for cases of uniformly distributed and continuous 

fractures. Case C includes various networks of orthogonal fractures, while Cases D 

and E involve fractures with inclinations of 45° and 135°, respectively. Level 3 to 

5 scenarios are included for completeness (i.e. to provide a wide range of aquifer 

conditions), albeit the fracture densities are arguably unrealistic compared to field-

scale conditions. For each DFN scenario, an EPM model (i.e. a homogenous porous 
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medium with the same bulk hydraulic conductivity (Kb) as the corresponding DFN 

model) was produced. Parameter values are given in Table 2.1. 
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Figure 2.3 Fracture network Cases A, B, C, D and E. The letter and number in the top right hand corner of each rectangle correspond to the fracture scenario 

(A-E) and fracture level (1-5). 
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Table 2.1 Model parameters used in the fractured forms of the Henry problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Case A 

 

Case B 

 

Case C, D and E 

 

Case A and B 

EPM 

Case C 

EPM 

Domain length (L, m) 2 2 2 2 2 

Aquifer thickness (d, m) 1 1 1 1 1 

Matrix porosity (θ, -) 0.2 0.2 0.2 0.2 0.2 

Horizontal hydraulic conductivity (Kx, m/s) 10-3 2.510-4 2.510-4 10-3 10-3 

Vertical hydraulic conductivity (Kz, m/s) 1.1710-4 2.510-4 2.510-4 2.510-4 10-3 

Free-solution diffusion coefficient (Dm, 

m²/s) 

10-9 10-9 10-9 10-9 10-9 

Freshwater flux (qf,, m/s) 6.610-6 6.610-6 6.610-6 6.610-6 6.610-6 

Freshwater density (ρf, kg/m³) 1000 1000 1000 1000 1000 

Seawater density (ρs, kg/m³) 1025 1025 1025 1025 1025 

Matrix longitudinal dispersivity (αL, m) 0.1 0.1 0.1 0.1 0.1 

Matrix transverse dispersivity (αT, m) 0.01 0.01 0.01 0.01 0.01 

Fracture aperture (2b, m) 6.8710-4 9.7110-4 3.8510-4 - 9.7110-4 - - 

Fracture conductivity (Kf, m/s) 0.385 0.772 0.122 - 0.772 - - 

Fracture longitudinal dispersivity (αLF, m) 0.1 0.1 0.1 - - 
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The matrix hydraulic properties used in Cases A and B have been set to produce the 

same EPM models. Conversely, the matrix properties of Cases C, D and E are the 

same, and therefore produce unique EPM models. An isotropic EPM model 

(Scenario C6) is representative of all orthogonal fracture network scenarios (C1 to 

C5), because the fracture aperture (2b) was reduced as the fracture spacing (2B) 

decreased to produce an identical Kb in all models. To achieve this, we used the 

approach of Vujević et al. (2014), wherein Kb values were calculated using 

volumetric fractions of fractures and matrix and their respective hydraulic 

conductivities (Km and Kf). That is, the arithmetic and harmonic means were used 

to determine the aperture of fractures parallel (e.g. Case B) and perpendicular (e.g. 

Case A) to the primary direction of groundwater flow, respectively. For fracture 

networks containing fractures both parallel and perpendicular to the primary 

direction of flow (e.g. Case C), Kb is given as (Vujević et al., 2014): 
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A unique, anisotropic EPM model is obtained for all scenarios in Cases D and E 

due to the different degrees of anisotropy in hydraulic conductivity that results from 

the inclusion of inclined fractures. For this reason, Equation (2.2) cannot be used to 

determine Kb of Cases D and E. The EPM hydraulic properties of Cases D and E 

were therefore determined numerically by performing Darcy tests to obtain Kb 

values in the horizontal and vertical directions. That is, additional simulations were 

performed wherein a hydraulic head difference (Δh) was prescribed across the 

model domain, and directional Kb values were calculated from the resulting flux 

rate (qx) using Darcy’s law. We note that, for Cases A, B, and C, the Darcy test 

method results in the same values of Kb that were obtained using either the 
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arithmetic and harmonic means, or Equation (2.2) (i.e. for Cases A, B and C, each 

Darcy model produced Δh/Δx = 0.5 and qx = 0.0005 m/s). The applicability of EPM 

models for approximating the extent of seawater in fractured aquifers was assessed 

by comparing the DFN model results with those obtained from the corresponding 

EPM model. 

 

2.3.5 Fractured aquifer cases: Field-scale settings 

 

While the fractured Henry problem provides a useful first step towards identifying 

the influence of various fracture networks on seawater distributions, the small 

spatial scale of the problem limits its suitability for examining fracture effects in 

natural systems. Therefore, models were developed to produce seawater 

distributions in simplified, field-scale fractured systems with aquifer conditions that 

are arguably more common than the Henry problem. The 1000 m  20 m 2D cross 

sections represent hypothetical consolidated carbonate aquifers containing 

regularly spaced, orthogonal fractures (i.e. 5 m horizontal and 10 m vertical 

spacing). Parameter values are given in Table 2.2. 
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Table 2.2 Model parameters used in the fractured field-scale problems. 

 

 Parameter Case 1 Case 2 Case 3 Case 4 Case 5 

Domain length (L, m) 1000 1000 1000 1000 1000 

Aquifer thickness (d, m) 20 20 20 20 20 

Matrix porosity (θ, -) 0.1 0.1 0.01 0.1 0.2 

Horizontal hydraulic conductivity (Kx, 

m/s) 

10-7 10-6 10-6 10-6 10-6 

Vertical hydraulic conductivity (Kz, m/s) 10-7 10-6 10-6 10-6 10-6 

Free-solution diffusion coefficient (Dm, 

m²/s) 

10-9 10-9 10-9 10-9 10-9 

Freshwater flux (qf,, m/s) 6.610-9 6.610-9 6.610-9 6.610-9 6.610-9 

Freshwater density (ρf, kg/m³) 1000 1000 1000 1000 1000 

Seawater density (ρs, kg/m³) 1025 1025 1025 1025 1025 

Matrix longitudinal dispersivity (αL, m) 2.0 2.0 2.0 0.2 2.0 

Matrix transverse dispersivity (αT, m) 0.2 0.2 0.2 0.02 0.2 

Fracture aperture (2b, m) 2.1310-4 2.1310-4 2.1310-4 2.1310-4 2.1310-4 

Fracture conductivity (Kf, m/s) 0.037 0.037 0.037 0.037 0.037 

Fracture longitudinal dispersivity (αLF, m) 2.0 2.0 2.0 0.2 2.0 
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Boundary conditions were identical to those used in the modified Henry problem 

(Figure 2.1). We note that due to the scale of the problem, the grid discretisation 

(Δx = Δz = 2.5 m) is large compared to the fracture aperture in order to avoid 

excessively long run times (e.g. halving the cell size to 1.25 m resulted in 138 hour 

run times for Case 1). Therefore, the results may not be grid-independent. 

Simulations were run in transient flow and transport mode for a period of 1,900 

years (Case 1), 3,150 years (Case 2), 910 years (Case 3), and 6,900 years (Cases 4 

and 5), until steady-state conditions were reached. Adaptive time stepping was 

employed to discretise the simulation time as per the Henry problem variants. Run 

time for the field-scale DFN models ranged from 15.5 hours to 125.4 hours on a 

64-bit Dell Inc. OptiPlex 990. A low matrix porosity simulation (1%, Case 3) is 

included in Figure 2.14 to extend the range of conditions to situations where a high 

proportion of the storage occurs within fractures, rather than the matrix. 

 

2.4 Results 

 

Figure 2.4 shows the salinity concentrations relative to seawater in all discretely 

fractured scenarios and their corresponding EPM models. Case F represents the 

results of EPM models that correspond to the fractured scenarios of Cases D and E 

(noting that each scenario in Cases D and E has a unique EPM). The seawater-

freshwater interfaces in Scenarios A4 and B4 are compressed relative to Scenarios 

C6 and F1-F5, demonstrating that the degree of anisotropy in hydraulic 

conductivity influences the position of the seawater-freshwater interface in the 

EPM models. In each case, intruding seawater flows inland in the lower half of the 

aquifer, and subsequently returns to the sea boundary as recirculated groundwater 
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flowing parallel to the seawater-freshwater transition zone. The recirculation 

associated with the seawater wedge forces fresh groundwater to discharge through 

the upper portion of the seaward boundary. 
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7
 

 

Figure 2.4 Steady-state salinity distributions in fractured aquifer Cases A, B, C, D and E. Case F represents the EPM results from corresponding scenarios in 

Cases D and E. Fractures are shown by white lines. 
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2.4.1 Single vertical fracture (Case A) 

 

The influence of adding a single vertical fracture at various locations is illustrated 

by the Case A salinity distributions shown in Figure 2.4 (A1-A3). The 

corresponding EPM model is represented by Scenario A4. Figure 2.4 shows that 

fractures located inside the seawater wedge will have a greater impact on the extent 

and distribution of seawater in the aquifer. 

 

The seawater wedge metrics for Case A scenarios are given in Figure 2.5. The toe 

location is shifted landward in the EPM model relative to the DFN models (Figure 

2.5a). Overestimation of the toe location by the EPM model is greatest 

(approximately 11%) when the fracture is positioned within the seawater wedge 

(Scenario A1) and decreases to approximately 5% (Scenario A3) as the fracture is 

positioned further inland of the wedge. The EPM model gives reasonable 

approximations of both the seawater-freshwater flux inflexion location (i.e. within 

4% of the DFN model predictions; Figure 2.5b) and the horizontal width of the 

mixing zone at the bottom boundary (i.e. within 7%; Figure 2.5e), for most DFN 

model cases. An exception is found in Scenario A2, where the EPM model 

overestimates the horizontal width of the mixing zone by approximately 10%. The 

vertical width of the mixing zone at the seaward boundary (Figure 2.5f) is 

considerably underestimated by the EPM model for Scenario A1, in which the 

fracture enhances vertical mixing and creates a wider mixing zone near the sea 

boundary. The vertical fracture in A1 also causes significant modification of the 

centre of mass (COM), which is approximately 20% further seaward (Figure 2.4c) 
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and 15% vertically upward (Figure 2.5d) in the EPM model compared to the DFN 

model. 

 

 
Figure 2.5 Influence of Case A fracture location on: (a) toe position, (b) flux inflexion 

location, (c) COM in the x direction, (d) COM in the z direction, and (e) and (f) mixing 

zone widths. 

 

Hydraulic head distributions in Case A scenarios are closely represented by the 

EPM model (root-mean-square errors of 0.00027 m, 0.00016 m and 0.00015 m for 

Scenarios A1, A2 and A3, respectively; results not shown for brevity). This result 

is expected given that flow in the aquifer is predominantly horizontal (i.e. 

perpendicular to the vertical fractures of Case A). 
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2.4.2 Single horizontal fracture (Case B) 

 

The Case B salinity distributions depicted in Figure 2.4 (B1-B3) demonstrate the 

influence of adding a single horizontal fracture at various depths within the aquifer. 

The corresponding EPM model is represented by Scenario B4. Figure 2.6 illustrates 

trends in seawater wedge metrics for Case B. The toe location (Figure 2.6a) in the 

EPM model is further landward (by 140%) relative to the DFN model, whereas the 

opposite is true for Scenario B3, in which the EPM toe is 11% further seaward than 

that of the DFN model. Where the fracture is centrally located, proximal to the point 

of flow inflexion at the coastal boundary (Scenario B2), the fracture has a more 

subtle influence on the seawater wedge. As such, the EPM and B2 models produce 

similar (within 3%) toe positions. 
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Figure 2.6 Influence of Case B fracture location on: (a) toe position, (b) flux inflexion 

location, (c) COM in the x direction, (d) COM in the z direction, and (e) and (f) mixing 

zone widths. 
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width of the mixing zone at the seaward boundary is overestimated (38-63% wider) 

by the EPM model for all Case B scenarios (Figure 2.6f). 

 

Figure 2.7 shows the significant disturbance to the hydraulic head field caused by 

the introduction and positioning of a horizontal fracture within the coastal aquifer. 

Unlike Case A, the hydraulic heads in Case B are represented poorly by the EPM 

model (root-mean-square errors of 0.0067 m, 0.0020 m and 0.0026 m for Scenarios 

B1, B2 and B3, respectively). The direction of velocity vectors from Scenarios B1 

and B3 are illustrated in Figure 2.8 to highlight the underlying mechanisms behind 

the considerable influence of horizontal fractures on seawater extent. Regardless of 

the fracture elevation, there is convergence of freshwater flow towards the fracture 

in the landward portion of the model domain. This causes freshwater discharge to 

the sea to occur preferentially through the horizontal fracture, creating a ‘freshwater 

channelling’ effect. The additional flow through the fracture has distinct influence 

on the wedge depending on whether freshwater flow within the part of the aquifer 

containing the wedge is enhanced or reduced by the fracture. When the fracture is 

located in the bottom half of the aquifer (Scenario B1), the wedge is effectively 

truncated, whereas freshwater channelling in the upper part of the aquifer (Scenario 

B3) enhances the extent of seawater due to the reduction in forces (i.e. freshwater 

discharge) that oppose seawater penetration in the lower domain. 
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Figure 2.7 Distribution of equivalent freshwater hydraulic heads at 0.005 m intervals in 

Case B. 

 

 

Figure 2.8 Concentrations relative to seawater (colours), equivalent freshwater hydraulic 

head contours (black lines), and the direction of velocity vectors (white arrows) for 

Scenarios B1 and B3. 
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2.4.3 Orthogonal fracture networks (Case C) 

 

Figure 2.9 illustrates trends in seawater wedge metrics for Case C. The toe location 

(Figure 2.9a) remains fairly constant for fracture densities greater than Scenario C2 

and is consistently overestimated (by approximately 20%) by the EPM model. The 

horizontal fracture in Scenario C1 has less of an influence on the seawater wedge 

(i.e. the EPM model overestimates the C1 toe position by 11%) because the fracture 

is centrally located, coincident with the flow inflexion point at the coastal boundary. 

A similar effect was also seen in Scenario B2 (refer to Figure 2.4). The seawater-

freshwater flux inflexion point (Figure 2.9b) is overestimated by the EPM model in 

all cases, although as the fracture spacing decreases, the inflexion points produced 

by the EPM and DFN approaches are in closer agreement. 
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Figure 2.9 Influence of Case C fracture spacing on: (a) toe position, (b) flux inflexion 

location, (c) COM in the x direction, (d) COM in the z direction, and (e) and (f) mixing 

zone widths. 
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the vertical width of the mixing zone increases (Figure 2.9f). 
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Figure 2.10 shows the hydraulic head fields, the direction of velocity vectors and 

the salinity isochlors for Scenarios C1 and C2. The hydraulic heads in Scenarios C1 

and C2 are represented poorly by the EPM model (root-mean-square errors of 

0.0019 m and 0.00091 m, respectively). However, as the fracture spacing decreases, 

the hydraulic head distribution can be approximated well by the EPM model (e.g. a 

root-mean-square error of 0.00033 m for Scenario C4). These results demonstrate 

that the flow system in the DFN models can be approximated sufficiently well using 

the EPM approach if fracture density is high. The salinity isochlors for Case C are 

highly irregular at low fracture levels (e.g. Scenario C1 and C2; Figure 2.10) and 

become smoother with increasing fracture density, until very little change is 

observed between Scenarios C4 and C5 (refer to Figure 2.4). However, unlike the 

groundwater flow system, the EPM model fails to represent adequately the 

distribution of salt in the aquifer, irrespective of fracture density. This result is 

expected given that vertical fractures inside the wedge increase dispersive mixing 

and create a (vertically) wider mixing zone (refer to Case A), and horizontal 

fractures either enhance or truncate the extent of the seawater wedge, depending on 

their elevation (refer to Case B). Further, it is well known that heterogeneity tends 

to enhance mixing effects (Kerrou and Renard, 2010), and hence the dispersiveness 

of the problem increases with the addition of fractures. The EPM model is unable 

to capture these processes, at least without modifying the solute transport 

parameters relative to the DFN cases. 
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Figure 2.10 Concentrations relative to seawater (colours), equivalent freshwater hydraulic 

head contours (black lines), and the direction of velocity vectors (white arrows) for 

Scenarios C1 and C2. 

 

Figure 2.11 shows the results of a sensitivity analysis evaluating fracture effects on 

the dispersivity ratio in EPM models of systems containing both vertical and 
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alternative EPM models for Scenario C4, wherein: (1) the transverse dispersivity is 
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dispersivity is equal to the longitudinal dispersivity (0.05 m, dashed black line). 
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solution can be achieved. The use of the dispersivity ratio as a calibration parameter 

may be dependent on whether or not the EPM approach can provide an appropriate 

representation of the flow field. 

 

 

Figure 2.11 Scenario C4 relative seawater concentrations (coloured bands). The width of 

the mixing zone is shown for the Case C EPM (white lines) and Case C EPM with modified 

transverse and longitudinal dispersivities (black solid and black dashed lines). 

 

2.4.4 Inclined fracture networks (Cases D and E) 

 

The influence of fracture spacing and inclination on the seawater distribution in 

regular, inclined fracture networks is shown in Figure 2.4, Cases D and E. The 

corresponding EPM models for each scenario are illustrated in Figure 2.4, Case F. 

Figure 2.4 clearly demonstrates that fracture orientation can have a considerable 

impact on the seawater distribution in fractured aquifers. 
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Figure 2.12 illustrates trends in seawater wedge metrics for Cases D and E. The toe 

locations in Case D (Figure 2.12a) are approximated more successfully by the EPM 

models (variations of < 10%) than the corresponding Case E scenarios (variations 

of 25-88%). As the fracture spacing in Cases D and E decreases, the EPM approach 

becomes less appropriate for determining the toe position. The toe location is 

underestimated by the EPM model when fractures in the DFN model are inclined 

45° (Case D), and overestimated when fractures are inclined 135° (Case E). The 

flux inflexion points are slightly underestimated (2-11%) by the EPM models for 

Case D (with the exception of Scenario D1, which is overestimated by 32%) and 

overestimated for Case E (39-86%). The inflexion point in Scenario D1 is 

considerably lower than D2-D5 because freshwater outflow converges on the single 

horizontal fracture and creates the same freshwater channelling effect and seawater 

wedge truncation that was observed in Scenarios B1 and C1. 
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Figure 2.12 Influence of 45° (Case D) and 135° (Case E) fracture inclination and spacing 

on: (a) toe position, (b) flux inflexion location, (c) COM in the x direction, (d) COM in the 

z direction, and (e) and (f) mixing zone widths. 
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scenarios. Only the lowest level DFNs (Scenarios D1 and E1) are overestimated by 

the EPM models (vertical COM location exceeded by 43% and 35%, respectively). 

The horizontal width of the mixing zone (Figure 2.12e) is underestimated by the 

EPM models for all fracture scenarios in Cases D and E. Similarly, the vertical 

width of the mixing zone (Figure 2.12f) is underestimated by the EPM models for 

Scenarios D3-D5 and E2-E5. For Scenarios D1 and E1, the vertical widths of the 

mixing zone are overestimated by the corresponding EPM models because the 

wedge is compressed beneath the single horizontal fracture in the DFN models. 

 

Figure 2.13 shows the hydraulic head distributions in Scenarios D2 and E2 (Figure 

2.13a) and D5 and E5 (Figure 2.13b). Figure 2.13b demonstrates that, unlike in 

Case C, the hydraulic head field in the higher-density Case D and E scenarios 

cannot be replicated by the EPM models (Scenario F5). The root-mean-square error 

for hydraulic head is slightly smaller for Scenario D2 than E2 (0.0011 m and 0.0020 

m, respectively), whereas the root-mean-square error for Scenario D4 is an order of 

magnitude smaller than E4 (0.00094 m and 0.0020 m, respectively). 
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Figure 2.13 Distributions of equivalent freshwater hydraulic heads in Cases D2, D5, E2 

and E5, and their respective EPMs. 

 

2.4.5 Field-scale settings 

 

Figure 2.14 shows the seawater distribution in simplified, field-scale fractured 

systems with aquifer conditions that are arguably more common than the Henry 

problem. Only the first 500 m of the aquifers are shown for clarity. Trends in 

seawater wedge metrics are illustrated in Figure 2.15 for Case 1 only, for brevity.
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Figure 2.14 Steady-state salinity distributions in: (a), (c), (e), (g), (i) the field-scale DFN models, and (b), (d), (f), (h), (j) the field-scale EPM models (Cases 1-

5, respectively). Fractures are shown by white lines. 
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Figure 2.15 Influence of Case 1 orthogonal fractures on: (a) toe position, (b) flux inflexion 

location, (c) COM in the x direction, (d) COM in the z direction, and (e) and (f) mixing 

zone widths. 
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of the COM (Figure 2.15c) and underestimates the width of the mixing zone at the 

seaward boundary (Figure 2.15f), as was observed in the majority of Case C 

scenarios. Discrepancies between the field-scale and Henry problem results were 

apparent for the vertical location of the COM (Figure 2.15d) and the horizontal 

width of the mixing zone (Figure 2.15e), which were respectively lower and 

narrower in the DFN model than the EPM model. 

 

The contours illustrated in Figure 2.14e show a rather subtle effect of reducing the 

porosity by an order of magnitude. That is, the seawater wedge toe intrudes 13.0 m 

and 20.7 m further inland in the low-porosity case (Figure 2.14e) compared to the 

associated higher matrix porosity simulations (i.e. Case 2 (Figure 2.14c) and Case 

5 (Figure 2.14i), respectively). 

 

2.5 Discussion 

 

The impacts of fractures on seawater wedge metrics resulting from the current study 

were similar to some of the findings from the heterogeneous porous media study by 

Kerrou and Renard (2010). For example, both studies demonstrate that geologic 

heterogeneity usually widens the seawater-freshwater mixing zone relative to 

homogeneous cases. This was observed in our study for Scenarios A1, C3-5, D3-

D5 and E2-5, in which fractures caused widening in the vertical extent, and for 

Scenarios B1 and C1-4, and Cases D and E, in which the mixing zone was widened 

in the horizontal extent. However, narrowing of the mixing zone occurred in 

Scenarios A2-3, C1-2, D1-2 and E1, and Case B (i.e. in the vertical extent), and in 

Case A, and Scenarios B2-3 and C5 (i.e. in the horizontal extent). Hence, compared 
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to random heterogeneities, it is likely that fractures will cause more complicated 

changes to salinity distributions. The causal factors for widening or narrowing of 

the mixing zone are discussed further below. 

 

Vertical fractures inside the seawater wedge were found to increase the vertical 

width of the mixing zone (e.g. Scenarios A1 and C3-C5) in comparison to the EPM 

(i.e. homogeneous) models. In the DFN models, the flows in vertical fractures were 

upwards, and where fractures intercepted the wedge, this resulted in upward 

transport of salt via advection, thereby widening the seawater-freshwater transition 

zone. For example, the fracture flow in Scenario A1 was 1.0810-6 m2/s vertical 

upwards, averaged along the fracture. Scenario A3 had a significantly smaller 

upwards flow of 1.5010-7 m2/s. The EPM model of Case A produced vertical flows 

approximately three orders of magnitude smaller than fracture velocities in Case A 

DFN models. Hence, where vertical fractures encounter seawater wedges, it is 

likely that EPM approaches are an inadequate approximation of SWI in fractured 

aquifers, even with modified dispersivity to account for the interface widening, 

because vertical fractures produce significant localised disturbance to the flow field 

and the seawater wedge. 

 

Examples of vertical fracture effects on mixing zones in real-world settings include 

several coastal aquifers throughout Florida (e.g. the Everglades National Park, Price 

et al., 2003; the Floridan and Biscayne aquifers, Barlow, 2003). Lu et al. (2009) 

noted that groundwater salinity measurements from the abovementioned aquifers 

indicate the presence of wide (6-24 km; Price et al., 2003) mixing zones. These 

predominately carbonate systems are characterised by highly permeable vertical 
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fractures and karst features that facilitate the upward migration of seawater (e.g. 

Barlow, 2003; Barlow and Reichard, 2010), and result in enhanced mixing and 

thicker mixing zones. 

 

In contrast to vertical fractures, systems characterised by only horizontal fractures 

(i.e. Case B) were found to produce narrower mixing zones at the sea boundary, 

compared to the EPM model (Figure 2.5f). That is, DFN models produced mixing 

zones with vertical widths of 0.13 to 0.15 m, whereas the EPM model mixing zone 

was 0.21 m wide at the sea boundary. In general terms, horizontal fractures are 

likely to have a greater impact than vertical fractures on the inland extent and 

distribution of seawater. The reason for this is explored by considering the effect of 

freshwater channelling through fractures on the overall flow field of the coastal 

aquifer. Horizontal fractures align with the general flow direction, and hence 

freshwater discharge to the sea occurs preferentially through the horizontal 

fractures. The freshwater discharge rate through a single horizontal fracture (qffrac) 

increases as the fracture’s elevation increases. For example, the ratio of qffrac to the 

inland freshwater flux (qf) increases from 0.25 in Scenario B1 to 0.44 and 0.66 in 

Scenarios B2 and B3, respectively. The accompanying reduction in discharge from 

the porous matrix (equal to qf - qffrac) in Scenarios B2 and B3 thus enables more 

seawater to penetrate the unfractured lower model domain, resulting in more 

extensive regions of seawater in Scenarios B2 and B3 compared to B1. The 

sensitivity of seawater extent to the fracture’s location highlights the limitations of 

the EPM approach, which may not be suitable for predicting the vertical and lateral 

extents of seawater in fractured aquifers if the primary orientation of fractures is 
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horizontal (e.g. such as the Nardò aquifer, Italy; Masciopinto et al., 2008; 

Chrysikopoulos et al., 2010). 

 

Horizontal fractures in DFNs containing vertical or inclined fractures with lower 

fracture densities (Scenarios C1, C2, D1, D2 and E1) also produce narrower mixing 

zones at the sea boundary, because horizontal fractures (rather than vertical or 

inclined fractures) dominate disturbances to the flow field. Here, the majority of 

incoming freshwater converges on either one (Scenarios C1, D1 and E1) or two 

(Scenarios C2 and D2) horizontal fractures, which become preferential pathways 

for freshwater discharge to sea, thereby tending to truncate the mixing zone at the 

fracture elevation. The freshwater channelling effect is stronger at low fracture 

densities, and EPM models of these are unable to approximate sufficiently well the 

narrowing of the interface that accompanies widely spaced horizontal fractures. 

 

The higher-density fracture scenarios, with orthogonal fractures (i.e. Scenarios C4 

and C5), produce a similar effect on the seawater wedge to the heterogeneities 

introduced by Kerrou and Renard (2010). Scenarios C4 and C5 produced seawater 

wedges that were shifted seaward and upward, widening the mixing zone relative 

to the EPM case. Hence, the fracture density is a key factor in determining whether 

the mixing zone will be wider or narrower than the EPM case. 

 

The EPM model of Case C is unable to reproduce the seawater distribution, 

regardless of the fracture density. At high fracture densities (Scenarios C4 and C5), 

the EPM model provides a reasonable estimate of the steady-state flow field but is 

unable to reproduce the salt distribution. Following the work of Rubin and 

http://pubs.acs.org/action/doSearch?action=search&author=Chrysikopoulos%2C+C+V&qsSearchArea=author
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Buddemeier (1996), it may be possible to reproduce the seawater distribution of 

high-density DFN models by adopting modified transverse and longitudinal 

dispersivities. Rubin and Buddemeier (1996) demonstrated that contaminant 

transport in some fractured porous formations can be represented by an EPM model 

using an appropriate value of transverse dispersivity. They showed that in fractured 

systems with high matrix permeability, the ratio between transverse and 

longitudinal dispersivity that is required to reproduce contaminant distributions 

using an EPM model is sensitive to the orientation of fractures. As the fracture angle 

relative to the direction of flow (θf) approaches 90°, transverse dispersivity may 

exceed longitudinal dispersivity. As θf approaches 0°, longitudinal dispersivity 

increases and advective fracture flow dominates (Rubin and Buddemeier, 1996). As 

expected from Rubin and Buddemeier (1996) for the case of non-density dependent 

transport, our results demonstrate that the ratio between transverse and longitudinal 

dispersivity is also an important factor when using the EPM approach to simulate 

density-dependent problems (i.e. SWI) in fractured systems. 

 

The results from Cases D and E highlight the effect of fracture inclination on 

seawater extent. Fractures almost parallel to the seawater interface (45° incline; 

Case D) facilitate SWI and increase the penetration length of the wedge, whereas 

fractures roughly perpendicular to the interface (135° incline; Case E) channel 

freshwater discharge to the sea and inhibit SWI. Transverse dispersion is enhanced 

by the perpendicular fractures, which increases the width of the mixing zone, as 

expected from the results for Case A. The results from the inclined fracture 

networks presented in this study indicate that generally, the EPM approach may 

provide more reliable approximations of seawater wedge metrics in cases where 
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fracture inclination is approximately parallel (rather than perpendicular) to the 

seawater-freshwater interface, and where fracture spacing is small. Further, the 

hydraulic head field in scenarios where fractures are orientated approximately 

perpendicular to the interface cannot be approximated using the EPM approach, 

regardless of fracture density. 

 

The results shown in Figure 2.14 indicate that the problem appears to be somewhat 

insensitive to the value of matrix porosity, and rather, matrix-fracture hydraulic 

conductivity contrasts are more important in controlling the characteristics of the 

seawater distribution. Notwithstanding differences between the Henry and field-

scale results, as mentioned above, the patterns in seawater distribution observed in 

the small-scale models may be amenable to upscaling under certain aquifer 

conditions. 

 

2.6 Conclusions 

 

In this study, the influence of simple fracture network geometries on the distribution 

of seawater in fractured coastal aquifers is investigated. We consider confined 

aquifers under equilibrium conditions, and a series of uniform fracture networks 

and boundary conditions. The simulation results presented here provide an 

important first step towards determining the distribution of seawater in more 

complex fractured coastal aquifer settings. The key findings of this study are: 

1) Vertical fractures within the seawater wedge will likely increase the width 

of the seawater-freshwater mixing zone, whereas vertical fractures inland of 
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the wedge have a minimal influence on the seawater distribution in the 

aquifer. 

2) Horizontal fractures in the lower part of the aquifer effectively truncate the 

seawater wedge, whereas horizontal fractures in the zone of freshwater 

discharge may enhance the inland extent of the wedge. 

3) Inclined fractures that are approximately parallel to the seawater-freshwater 

interface can facilitate SWI, whereas fractures roughly perpendicular to the 

interface inhibit SWI. 

4) Homogeneous EPM models using bulk hydraulic conductivities are not 

suitable for inferring the distribution of seawater in the majority of DFN 

scenarios, although the EPM approach may be adequate for high density, 

orthogonal fracture scenarios if the flow system can be well-represented and 

appropriate EPM dispersivity values can be determined. 

 

This study examines a range of simple regularly spaced fracture network 

geometries, yet a variety of complex salinity distributions were observed. In real-

world coastal aquifers, it is likely that this variability will be amplified due to the 

complexity of real-world fracture networks and the resulting variations in geologic 

heterogeneity. The results indicate that the fracture density and fracture orientation 

are important considerations in developing models that simulate the distribution of 

seawater in fractured aquifers. Substantial underestimations of seawater extent can 

arise if only the hydraulic properties of the aquifer matrix are considered. Similarly, 

simulations utilising only the combined (bulk) fracture and matrix hydraulic 

properties (i.e. the EPM approach) may lead in some cases to considerable 

overestimations of seawater extent. Persistent differences between the field and 
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Henry-scale models require additional investigation, but are attributable to non-

linear upscaling and grid resolution effects. Given these results, the use of EPM 

models to examine the distribution of seawater in fractured coastal aquifers is likely 

inapplicable in most cases. It would be useful to extend this study by investigating 

irregular fracture networks, i.e. where fracture length and fracture spacing are no 

longer uniform, to further ascertain how the structural properties of fracture 

networks impact the extent and distribution of seawater in fractured coastal 

systems. 
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Chapter 3 
 

3. A modelling investigation of solute transport in permeable 

porous media containing a discrete preferential flow feature 

 

This chapter is based on the following published paper: 

 

Sebben, M. L., Werner, A. D., 2016. A modelling investigation of solute transport 

in permeable porous media containing a discrete preferential flow feature. Adv. 

Water Resour. 94, 307-317, doi: 10.1016/j.advwatres.2016.05.022 

 

3.1 Abstract 

 

Preferential flow features (PFFs, e.g. fractures and faults) are common features in 

rocks that otherwise have significant matrix permeability. Despite this, few studies 

have explored the influence of a PFF on the distribution of solute plumes in 

permeable rock formations, and the current understanding of PFF effects on solute 

plumes is based almost entirely on low-permeability rock matrices. This research 

uses numerical modelling to examine solute plumes that pass through a PFF in 

permeable rock, to explore the PFF’s influence on plume migration. The study 

adopts intentionally simplified arrangements involving steady-state solute plumes 

in idealised, moderate-to-high-permeability rock aquifers containing a single PFF. 

A range of matrix-PFF permeability ratios (4.910-6 to 2.510-2), typical of 

fractured sedimentary aquifers, is considered. The results indicate that for 

conditions representative of high-to-moderate-permeability sedimentary rock 

matrices containing a medium-sized fracture, the effect of the PFF on solute plume 

displacement and spreading can be considerable. For example, plumes are between 

1.3 and 19 times wider than in associated porous media only scenarios, and 

http://dx.doi.org/10.1016/j.advwatres.2016.05.022
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medium-sized PFFs in moderately permeable matrices can reduce the maximum 

solute concentration by up to 104 times. Plume displacement and spreading is lower 

in aquifers of higher matrix-PFF permeability ratios, and where solute plumes are 

more dispersed at the point of intersection with the PFF. Asymmetry in the plume 

caused by the passage through the PFF is more pronounced for more dispersive 

plumes. The current study demonstrates that PFFs most likely govern solute plume 

characteristics in typical permeable matrices, given that a single PFF of aperture 

representing a medium-sized fracture (i.e. 5.010-4 m) produces the equivalent 

spreading effects of 0.22-7.88 m of plume movement through the permeable matrix. 

 

3.2 Introduction 

 

There are numerous problems of environmental concern that involve the transport 

of solutes in rocks containing preferential flow features (PFFs) such as fractures 

and faults. These include the long-term disposal of high-level radioactive waste 

(Reeves et al., 2008), groundwater contamination arising from urban development 

and industrialization (Birkhölzer et al., 1993a), amongst many others. In recent 

decades, considerable research attention has been given to the transport of solutes 

in aquifers of low-permeability rock matrices containing PFFs, where the transport 

of solutes occurs primarily via advection and dispersion within the PFF, and 

exchanges between PFFs and the rock matrix occur by molecular diffusion (e.g. 

Grisak and Pickens, 1981; Sudicky and Frind, 1982; Himmelsbach et al., 1998; 

Bense et al., 2013, Gassiat et al., 2013). This body of work has demonstrated that 

PFFs can provide pathways through which contaminated fluids can migrate rapidly 

relative to transport in the rock matrix (i.e. the primary porosity), which can 



55 

 

attenuate solute breakthrough curves and cause longer residence times than 

impermeable rocks containing PFFs (Bear et al., 1993; Singhal et al., 2010). 

 

Flow and transport in aquifers containing PFFs and with moderate-to-high matrix 

permeability requires consideration of solute advection, mechanical dispersion and 

molecular diffusion in both the PFF and the porous matrix (Birkhölzer et al., 

1993a). These conditions have received far less attention compared to low-

permeability matrix settings (Rubin et al., 1997; Odling and Roden, 1997). This is 

despite that PFFs are common features in high-yielding, permeable rock aquifers 

(e.g. fractured limestone and sandstone), and are critical factors in the occurrence 

of many groundwater-dependent ecosystems (e.g. springs and outflows along PFFs 

in carbonate rocks; Bauer-Gottwein et al., 2011). 

 

Studies of solute transport in permeable matrices containing PFFs include the work 

of Birkhölzer et al. (1993a; 1993b), Rubin and Buddemeier (1996), Rubin et al. 

(1997), Odling and Roden (1997), Sonnenborg et al. (1999) and Houseworth et al. 

(2013). Birkhölzer et al. (1993a; 1993b) presented an analytical model to describe 

advection-dominated solute transport (i.e. diffusion/dispersion is negligible) in a 

2D PFF network embedded in a permeable rock matrix. The authors developed a 

‘diffusion-advection number’ to determine the conditions for which diffusive 

exchange (via molecular diffusion) between the PFF and matrix is insignificant 

relative to advective PFF-matrix solute exchange. Results from numerical 

simulations (Birkhölzer et al., 1993b) indicated that solute transport in permeable 

rock matrices containing parallel, equidistant PFFs with uniform aperture can be 

represented using an equivalent porous media (EPM) approach if the representative 
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elementary volume of the network is large enough. Rubin and Buddemeier (1996) 

demonstrated that in permeable formations, the ratio of transverse to longitudinal 

dispersivity that is required to reproduce contaminant distributions in an EPM 

model is sensitive to the orientation of the PFF. Transverse dispersivity may exceed 

longitudinal dispersivity as the PFF angle relative to the direction of flow (αpff) 

approaches 90°. As αpff approaches 0°, longitudinal dispersivity increases and 

advection in the PFF dominates flow in the system. These studies consider 

formations that can be approximated using the EPM approach, and do not provide 

insight into the local-scale effects of individual, discrete PFFs on the distribution of 

solute plumes in permeable matrices. 

 

The methodology of Birkhölzer et al. (1993a; 1993b) was employed by Rubin et al. 

(1997) to examine solute transport in permeable media containing PFFs when the 

flow velocities inside PFFs are slow (i.e. the flow velocity inside the PFF is of the 

same order of magnitude as the matrix flow velocity). They found that the larger 

the deviation of the matrix-PFF velocity ratio from unity, the greater the effective 

dispersivity of the fractured permeable formation (Rubin et al., 1997). Odling and 

Roden (1997) used numerical modelling to study 2D flow and solute transport in 

permeable rock containing PFFs arranged according to naturally occurring 

geometries. They found that in permeable matrices (i.e. unlike for low-permeability 

rock), PFF orientation and density can be as influential as PFF connectivity on 

contaminant transport rates and solute plume heterogeneity. Hence, matrix-PFF 

hydraulic conductivity contrasts and PFF orientation are likely to influence the 

distribution of solutes in permeable rock matrices that are subject to both advective 

and dispersive transport processes. The effect of an individual PFF on solute 
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transport in permeable matrices was not considered in the abovementioned studies; 

despite that transport processes at small scales can influence dramatically solute 

transport at larger scales (Grisak and Pickens, 1980). 

 

Laboratory experiments and numerical modelling were carried out by Sonnenborg 

et al. (1999) to examine 2D flow and solute transport in a permeable matrix with 

variable aperture PFFs. They demonstrated that the EPM approach may be justified 

for modelling preferential flow systems where physically realistic values for macro-

porosity and macro-dispersivity could be obtained. Further experimental and 

theoretical work was recommended to test the range over which the EPM approach 

might be valid. Houseworth et al. (2013) obtained a closed-form analytical solution 

for solute transport during steady-state saturated flow in a single PFF embedded 

within a porous, permeable rock matrix. Unlike existing analytical solutions, 

Houseworth et al. (2013) incorporated lateral matrix diffusion, and flows through 

both the matrix and PFF. Their study considered the case where matrix diffusion 

dominates in comparison to matrix dispersion, and hence they did not provide 

insight into the effect of a PFF on a solute plume in a matrix that is subjected to 

both advection and dispersion. 

 

Case studies of solute transport in karst aquifers (i.e. PFFs that are formed by 

fractures, faults and/or karst conduits) include Bonacci and Roje-Bonacci (1997) 

and Arfib et al. (2007). Mechanisms of seawater intrusion (SWI) through coastal 

karst springs were investigated in Blaž, Croatia (Bonacci and Roje-Bonacci, 1997) 

and central Crete, Greece (Arfib et al., 2007). Both studies demonstrated that PFFs 

can alter the distribution of seawater in coastal aquifers compared with the classical 
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description of a ‘seawater wedge’ in porous media. A recent study by Sebben et al. 

(2015) employed numerical models to investigate the characteristics of SWI in 

permeable rock matrices containing simple PFF network geometries. Their study 

demonstrated that PFFs can either widen or narrow the seawater wedge relative to 

porous media only (PMO) formations, depending on the PFF location and 

orientation. While Sebben et al. (2015) offer macro-scale descriptions of PFF 

effects on SWI plumes, the mechanisms that underlie solute plume widening (or 

narrowing) as it passes through an individual PFF were not explored because of the 

complex effects of heterogeneities on the density-dependent flow field. 

Quantitative analyses of solute plumes that intercept a PFF are needed at local 

scales to explain the integrated, macro-scale solute behaviour of previous PFF-

permeable matrix studies. 

 

The purpose of the current study is to explore within a modelling framework the 

influence of a single PFF (representing a medium-sized fracture) on the distribution 

of solutes in a permeable rock matrix. Numerical simulations are conducted to 

investigate PFF effects on a 2D solute plume caused by a point source, under 

steady-state groundwater flow conditions where regional flow is oblique to the PFF. 

Results are compared with associated PMO models, to determine the influence of 

PFFs on both the horizontal displacement of peak solute concentrations and the 

spreading of contaminant plumes in permeable rock matrices. We examine the 

distribution of solutes for a variety of matrix-PFF permeability ratios (given in 

terms of hydraulic conductivity, i.e. the matrix hydraulic conductivity is modified) 

and contaminant source locations, adopting aquifer properties that are 

representative of sedimentary rocks (e.g. sandstone and limestone) in which 
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preferential flow through discrete features and flow in the matrix are known to 

occur (e.g. Webb et al., 2010; Al Ajmi et al., 2014). 

 

3.3 Methodology 

 

3.3.1 Conceptual model 

 

The discrete fracture network (DFN) approach, wherein individual PFFs are 

incorporated explicitly into an n-dimensional model as (n-1)-dimensional features 

(e.g. Smith and Schwartz, 1984), was employed in constant-density numerical 

modelling experiments. PFFs within a DFN are assumed to contain water that is 

fully-mixed across the PFF width, such that solute concentration is uniform across 

the PFF’s aperture. The model used here to evaluate PFF effects simulates 

groundwater flow and solute transport in a 1 m  1 m 2D cross section through a 

homogeneous, isotropic, confined aquifer containing a single, discrete horizontal 

PFF at z = 50 cm. The small domain size was chosen because very fine grid spacing 

perpendicular to the PFF-matrix interface (Δz ≈ PFF aperture) is required if grid-

independent results are to be achieved (Weatherill et al., 2008). Computational 

restrictions (i.e. avoiding excessively long run times) currently limit the application 

of DFN models to small-scale solute transport problems, if grid-independent results 

are sought (e.g. Tang et al., 1981; Graf and Simmons, 2009). 

 

The model set up, including flow and transport boundary conditions, is shown in 

Figure 3.1. Constant head boundaries are prescribed so that the groundwater flow 

direction (αf) is 45° relative to the orientation of the PFF. An αf of 45° was chosen 
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so that displacement of streamlines is expected to occur (i.e. 0° < αf < 90°). The 

flow field in the matrix is unaffected by the introduction of the PFF, because the 

model set up is such that the superposition principle applies to the flow field. A 

continuous mass flux of solute is assigned at x = 2.50 cm, and z = 50.4125 cm 

(Scenario 1), z = 54.8438 cm (Scenario 2), or z = 85.00 cm (Scenario 3) (i.e., 0.4125, 

4.8438 or 35.00 cm, respectively, above the PFF). Various ratios of matrix-to-PFF 

hydraulic conductivity (Km/Kf) are considered that produce flow velocity ratios less 

than unity (i.e. the velocity in the PFF is larger than in the permeable block). Km 

values were chosen to encapsulate a range of documented permeable matrix values, 

including limestone (e.g. 10-6 m/s ≤ Km ≤ 10-3 m/s; Geiger et al., 2010; Webb et al., 

2010), and sandstone (e.g. 10-8 m/s ≤ Km ≤ 10-5 m/s; Birkhölzer et al., 1993a; Al 

Ajmi et al., 2014). Values for PFF aperture (2b) are in the range of published values 

for PFFs in permeable matrices (e.g. 10-4 m to 10-3 m; Birkhölzer et al., 1993a; 

Sonnenborg et al., 1999; Geiger et al., 2010) and are representative of a medium-

sized fracture. PFF hydraulic conductivity (Kf) is given as (e.g. Graf and Therrien, 

2007): 

 




12

)2( 2 gb
K f   (3.1) 

where 2b [L] is PFF aperture, ρ [M/L3] is fluid density, g [L/T2] is gravitational 

acceleration, and μ [M/LT] is fluid dynamic viscosity. 
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Figure 3.1 Conceptual model of the DFN cases, where H is hydraulic head and f’m is 

contaminant mass flux. 

 

The model domain was discretised into variable block elements ranging from Δx = 

0.39 mm at the solute source to Δx = 6.25 mm at the right model boundary. Vertical 

layers were refined from Δz = 0.25 mm around the PFF to Δz = 1.25 mm the domain 

boundaries, leading to 627,984 nodes. Grid Peclet numbers ranged from 0.078 to 

1.25 (longitudinal), and 0.5 to 3.125 (transverse). The 3D model has a unit width to 

replicate a 2D domain. Simulations were first run in steady-state mode to produce 

equilibrium flow conditions with the PFF in place. Solute transport was then run in 

transient mode until steady-state conditions were reached. The simulation period of 

92 days was subdivided using adaptive time-stepping based on a maximum 1% 

change in salt concentration at any node. 

 

The displacement of peak solute concentrations as plumes pass through the PFF, 

the lateral extent of the solute plumes, and the solute concentrations above and 

below the PFF were analysed to evaluate the distribution of solutes in the aquifer 

for various parameter combinations. The locations of solute peaks at z = 49.975 cm 

1 m

1 m

PFF

H1 H2

H3 H4

f’m
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(i.e. directly beneath the PFF) were obtained for both DFN and PMO situations to 

assess the displacement distance of the plume (D, Figure 3.2) as is passes through 

the PFF. 

 

 

Figure 3.2 Schematic description of the peak solute concentration displacement, D. The 

solid black arrow represents the main plume trajectory in the PMO models. The black 

dashed arrow represents the plume trajectory at the maximum solute concentration beneath 

the PFF in the DFN model. 

 

The solute plume width (i.e. the horizontal width between concentration (C) values 

of 0.001 kg/m3 at the outer edges of the plume) was analysed directly beneath the 

PFF and compared with that obtained for the PMO models. Using the methods 

described above, we explore how a medium-sized PFF embedded in a permeable 

rock matrix can influence the distribution of a solute plume, for a range of 

conditions typical of fractured sedimentary aquifers. 

 

3.3.2 Numerical model 

 

The simulations presented here were conducted using HydroGeoSphere (HGS; 

Therrien et al., 2010). HGS is a physics-based hydrogeological model, which solves 

3D flow and solute transport in discretely fractured porous media. HGS has been 

2b

D

PFF

Matrix

Matrix
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benchmarked previously against the Tang et al. (1981) analytical solution for solute 

transport in a single PFF embedded within a porous, impermeable rock matrix (e.g. 

Weatherill et al., 2008). In that case, fluid flow occurs in the PFF only, and solute 

transport occurs in both the matrix (via molecular diffusion only) and the PFF (via 

advection, longitudinal mechanical dispersion and molecular diffusion). HGS has 

also been benchmarked against the Wilson and Miller (1978) analytical solution 

(e.g. Therrien et al., 2010) describing the 2D dispersion of a solute plume in porous 

media under uniform, steady-state flow conditions, given as: 
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where C [M/L3] is solute concentration, f’m [M/LT] is the contaminant mass flux 

per unit length, x [L] is the distance from the plume along the x-axis, z [L] is the 

distance from the plume along the z-axis, θ [-] is the matrix porosity, Dx [L
2/T] is 

the longitudinal dispersion coefficient, Dz [L2/T] is the transverse dispersion 

coefficient, V [L/T] is the seepage velocity in the direction of flow, and K0 is the 

modified Bessel function of the second kind. While there has been no benchmarking 

of HGS for a situation of solute transport in a permeable rock matrix containing a 

PFF, the previous model testing demonstrates numerical robustness for our 

purposes, in particular considering the lack of an analytical expression for the 

current problem. 
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Individual PFFs are incorporated in HGS as 2D planes with uniform head across 

the PFF width (Therrien et al., 2010). The 2D PFF elements are superimposed onto 

3D matrix elements such that continuity of the hydraulic heads and solute 

concentrations at the PFF-matrix interface is maintained (Graf and Therrien, 2008). 

Flow through PFFs is calculated according to the cubic law, i.e. Darcy’s law and 

Equation (3.1) (Berkowitz, 2002; Graf and Therrien, 2007). Solute transport within 

PFFs is only simulated within the 2D plane of the PFF and as such, solute transport 

perpendicular to the PFF is controlled solely by the matrix. Detailed descriptions of 

the governing equations in HGS and the discrete PFF approach are provided 

elsewhere (e.g. Therrien and Sudicky, 1996; Shikaze et al., 1998; Therrien et al., 

2010), and are not repeated here. 

 

3.3.3 Fractured aquifer scenarios 

 

Five different Km/Kf ratios are simulated (Cases A to E). A sixth case (Case F) with 

lower θ and smaller 2b is included to extend the range of situations considered. 

Within each of the six cases, three scenarios are examined wherein the solute plume 

source is located at various heights above the PFF (0.4125 cm (Scenario 1), 4.8438 

cm (Scenario 2) and 35 cm (Scenario 3). Each scenario contains a single, continuous 

horizontal PFF at z = 50 cm. All PFFs are more transmissive than the surrounding 

porous matrix because presently, HGS is unable to represent barrier PFFs (i.e. PFFs 

containing material with a lower permeability than the host rock; Neumann, 2005) 

using the DFN approach. f’m is modified in each case to maintain a constant 

concentration of 1.0 kg/m3 at the point source. For each DFN scenario, a PMO 

model with the same matrix properties is produced to assess PFF effects as the 
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difference between DFN and PMO solute distributions. Parameter values for each 

of the cases are listed in Table 3.1. 

  



66 

 

Table 3.1 Model parameters for Cases A to F. 

 

3.4 Results 

 

3.4.1 Visual inspection of PFF effects on solute plumes 

 

Figure 3.3 shows the direction of velocity vectors and the salinity isochlors for the 

PMO (Figure 3.3a) and DFN models (Figure 3.3b) of Scenario A1. Groundwater 

flows from the top left of the aquifer to the bottom right, at a 45° angle to the PFF 

Parameter Case A Case B Case C Case D Case E Case F 

Matrix porosity (θ, -) 0.2 0.2 0.2 0.2 0.2 0.1 

Matrix hydraulic 

conductivity 

(Km, m/s) 

5.010-3 1.010-3 5.010-4 2.510-4 1.010-6 1.010-5 

Matrix longitudinal 

dispersivity (αL, m) 
5.010-3 5.010-3 5.010-3 5.010-3 5.010-3 5.010-3 

Matrix transverse 

dispersivity (αT, m) 
5.010-4 5.010-4 5.010-4 5.010-4 5.010-4 5.010-4 

Darcy velocity in the 

matrix (qm, m/s) 

7.0710-

4 

1.4110-

4 

7.0710-

5 

3.5410-

5 
1.4110-7 

1.4110-

6 

PFF aperture (2b, m) 5.010-4 5.010-4 5.010-4 5.010-4 5.010-4 2.510-4 

PFF hydraulic 

conductivity (Kf, m/s) 
0.204 0.204 0.204 0.204 0.204 0.051 

PFF longitudinal 

dispersivity (αLF, m) 
5.010-3 5.010-3 5.010-3 5.010-3 5.010-3 5.010-3 

Darcy velocity in the 

PFF (qf, m/s) 

2.0410-

2 

2.0410-

2 

2.0410-

2 

2.0410-

2 
2.0410-2 

5.1110-

3 

Solute mass flux 

(f’m, kg/m/s) 

1.7510-

6 

3.5410-

7 

1.7810-

7 

8.9010-

8 
3.2810-10 

3.6610-

9 

Matrix-PFF hydraulic 

conductivity ratio 

(Km/Kf, -) 

2.510-2 4.910-3 2.410-3 1.210-3 4.910-6 2.010-4 



67 

 

and at a Darcy velocity (in the porous matrix) of 7.0710-4 m/s in the direction of 

flow. The solute plume develops from a continuous point source (at x = 2.5 cm, z 

= 50.4125 cm) above the PFF. 

 

Figure 3.3 Schematic description of the solute plume comparison metrics in: (a) the PMO 

model, and (b) the DFN model (shown for Scenario A1). Colours represent the solute 

concentrations. White arrows show the direction of velocity vectors. Black dashed arrows 

indicate the width of the solute plume. Black crosses highlight the location of maximum 

solute concentration immediately beneath the PFF. The PFF is shown by the white line. 

  

The metrics analysed in the current study are illustrated in Figure 3.3. The black 

dashed line indicates the location of comparison between solute plume widths in 

the PMO (Figure 3.3a) and DFN (Figure 3.3b) models. The black cross in Figure 

3.3 highlights the location of the maximum solute concentration beneath the PFF, 

from which D values are ascertained in the forthcoming analysis. 

 

The influence of a single horizontal PFF located within a moderate-to-high-

permeability porous matrix on solute plume spreading is illustrated in Figure 3.4, 
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for all cases (A to F). The corresponding PMO model is shown for Scenario A1 

only (Figure 3.3a), for brevity. 
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Figure 3.4 Steady-state salinity distributions in DFN Cases A, B, C, D, E and F. PFFs are shown by white lines. 
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Figure 3.4 shows that in all cases, the PFF causes widening of the solute plume in 

the region of the aquifer beneath the PFF. This effect becomes more pronounced as 

the ratio of Km/Kf decreases. That is, the solute plumes beneath the PFF are widest 

in Case E (Km/Kf = 4.910-6) and narrowest in Case A (Km/Kf = 2.510-2). The solute 

plumes in Cases D and F have spread to the model boundary (x = 1.0 m) in the 

region of the aquifer both beneath the PFF and downstream of the plume source, 

for all Scenarios 1 to 3. Relatively high solute concentrations (> 0.01 kg/m3) occur 

beneath the PFF in Cases A to C (Km/Kf = 2.510-2, 4.910-3 and 2.410-3, 

respectively), and for all scenarios. In Cases D to F (Km/Kf = 1.210-3, 4.910-6 and 

2.010-4, respectively), plumes beneath the PFF are more dispersed. As the plume 

crosses the Case E PFF, the degree of dispersion is such that solute concentrations 

beneath the PFF are below the threshold limit (C < 0.001 kg/m3) for visualisation 

in Figure 3.4. The apparent ‘wobble’ in the green isochlor, and to a lesser degree in 

the yellow isochlor of Cases C and D (Figure 3.4) is due to minor numerical errors 

resulting from low concentrations and increasing grid cell sizes beneath the PFF. 

 

Solute concentrations immediately below the PFF in the DFN models (CDFN) are 

compared to solute concentrations in the associated PMO models (CPMO) in Figure 

3.5.
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Figure 3.5 Comparison of solute concentrations immediately beneath the PFF in the DFN models (CDFN) and PMO models (CPMO), for all Cases A to F. The 

1:1 lines of equality between CDFN and CPMO are shown by the solid black lines. Squares above (below) the 1:1 line indicate that the PFF has caused an increase 

(decrease) in solute concentration compared to the PMO model. 
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The maximum CDFN and CPMO values in Figure 3.5 represent the peak solute 

concentrations beneath the PFF in the DFN and PMO models, respectively. The 1:1 

line, i.e. where CPMO = CDFN, is illustrated in Figure 3.5 for Cases A to D and Case 

F. The 1:1 line cannot be illustrated in Case E due the x- and y-axes scales that are 

required for visual inspection of the Case E solute concentrations. Data points that 

lie above the 1:1 line indicate that CDFN > CPMO (i.e. the PFF caused increased 

concentration), whereas data points that lie below the 1:1 line highlight regions 

where CDFN < CPMO (i.e. the PFF caused reduced concentration). 

 

The apparent ‘loop’ in the Figure 3.5 plots is caused by the relationship between 

plume distributions in the DFN and PMO models. The lower arm of each loop 

represents the region of the plume to the left (i.e. smaller x coordinates; see Figure 

3.3) of the position where the maximum CPMO occurs. These values lie below the 

1:1 line in all cases (Figure 3.5), indicating that the PFF reduces solute 

concentrations below the PFF, at least for values found to the left of the maximum 

CPMO value. 

 

The upper arm of the Figure 5 loops represent values to the right (i.e. a larger x 

coordinate; see Figure 3.3) of the peak CPMO value. The 1:1 line crosses the upper 

arm, indicating that in this region, the PFF generally causes both lower and higher 

concentrations relative to the PMO situation. The point where the 1:1 line crosses 

the upper arm defines the transition from increased to decreased concentrations 

relative to the PMO case. The increased concentrations (values above the 1:1 line) 

occur only to the right of the maximum CPMO value, because the PFF causing 

displacement (to the right; downstream within the PFF) of the peak concentration 
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within the plume. There is distinct asymmetry in the functions shown in Figure 3.5 

that is also apparent in the solute plumes of Figure 3.4. That is, the plumes have a 

significantly larger dispersed width to the right of the maximum CDFN value relative 

to the width of the dispersion zone to the left of the maximum CDFN value. This 

phenomenon has been documented for situations involving low-permeability 

matrix settings containing complex PFF networks (e.g. Berkowitz and Scher, 1998; 

Becker and Shapiro, 2000; Reeves et al., 2008). 

 

The curvature of the lines in Figure 3.5 is such that in all cases, the top branch of 

the loop descends steeply in an almost vertical line towards the origin, 

demonstrating that the plumes in the DFN models are spread by the PFF into regions 

of the model domain where CPMO is negligible. In Cases A to C (i.e. Km/Kf = 2.510-

2, 4.910-3 and 2.410-3, respectively), CDFN typically returns to ambient 

groundwater concentrations (i.e. the origin in Figure 3.5), whereas in Cases D to F 

(i.e. Km/Kf = 1.210-3, 4.910-6 and 2.010-4, respectively), the PFF generally 

disperses the plume through the entire model domain to the right model boundary 

(Figure 3.4). As such, CDFN along the descending arm of the curve (i.e. the top of 

the loop in Figure 3.5) does not return to ambient groundwater concentration, as is 

observed for the PMO scenarios. In Case E, CDFN remains relatively constant at the 

maximum value (3.2010-5 to 3.30 10-5 kg/m3) such that the upper limb of the 

curve does not descend towards the origin, as is observed for all other cases. That 

is, the PFF in Cases E and F dominates completely the transport of solutes, such 

that only low concentrations occur in the matrix beneath the PFF, notwithstanding 

the possibility of boundary effects on Case E DFN concentrations. 
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The Figure 3.5 results illustrate that solute concentrations in the DFN models are 

closer to the PMO model concentrations when the plume reaching the PFF is more 

dispersed. That is, the difference between the DFN and PMO solutions is greatest 

in Scenario 1 for all cases. This is demonstrated in Figure 3.5 (for all cases except 

Case E, where Km/Kf = 4.910-6), whereby the model data ‘rotates’ about the 1:1 

line (not visible for Case E) from Scenario 1 to Scenario 3, in which the 1:1 line is 

closer to passing through the maximum CPMO value. The data points are more 

symmetrically distributed around the 1:1 line in Scenario 3, compared with 

Scenarios 1 and 2. This pattern is quantified by the root-mean-square errors 

(RMSEs) of solute concentrations beneath the PFF in the DFN models versus PMO 

values, given in Table 3.2. Cases E is omitted from Table 3.2 because the Case E 

solute plumes extend laterally beyond the model boundaries, and therefore, the 

RMSE values are not informative. Case F (Km/Kf = 2.010-4) plumes are also in 

contact with the model boundary, and therefore the Case F RMSE should be treated 

with caution. Nonetheless, the RMSEs in Table 3.2 provide a quantitative measure 

of the enhanced effect of a PFF on the solute distribution in a permeable matrix as 

Km/Kf decreases (from Case A to Case F, with the exception of Case E). 
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Table 3.2 Root-mean-square errors for solute concentrations beneath the PFF in the DFN 

models, relative to PMO model values. 

 

Scenario 
RMSE (kg/m3) 

Case A Case B Case C Case D Case F 

1 0.019 0.025 0.026 0.027 0.028 

2 0.009 0.015 0.016 0.016 0.017 

3 0.004 0.008 0.009 0.010 0.011 

 

3.4.2 Quantification of PFF effects on solute plume characteristics below the 

PFF 

 

Figure 3.6 illustrates the key solute plume metrics: (a) displacement of the peak 

solute concentration (D), i.e. the distance that peak solutes (CDFN and CPMO) are 

offset in the direction perpendicular to flow, as shown in Figure 3.2, (b) ratio of 

DFN and PMO peak concentrations beneath the PFF (i.e. at z = 49.975 cm) 

(CDmax/CPmax), (c) ratio of DFN and PMO solute plume widths below the PFF 

(WDFN/WPMO), and (d) plume asymmetry ratio (WL/WR), i.e. the ratio of the width of 

the solute plume to the left of the maximum CDFN to the width of the solute plume 

to the right of the maximum CDFN. Plume width and symmetry are analysed along 

the alignment of the PFF (i.e. at 45° relative to the primary flow direction), and 

therefore, WL/WR < 1 even for PMO cases, in which plumes are symmetric 

perpendicular to the flow direction. WDFN/WPMO and WL/WR could not be obtained 

for Case E because solute concentrations beneath the PFF are too low (i.e. C = < 

0.001 kg/m3) to obtain a value for WPFF. Case F is omitted from Figure 3.6 because 

the smaller 2b and θ precludes direct comparison with other cases. 
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Figure 3.6 Influence of Km/Kf on: (a) D, (b) CDmax/CPmax below the PFF, (c) WDFN/WPMO, 

and (d) WL/WR, for Cases A to E. 

 

Figure 3.6a shows that displacement of the peak solute concentration (D) increases 

as Km/Kf decreases (i.e. from Case A to E) and for more dispersed plumes (i.e. from 

Scenario 1 to 3). For example, the ratio of plume displacement in Scenarios 1 and 

3 (i.e. D1/D3) ranges from 0.13 in Case B, to 0.25 for Case E. This result indicates 

that D1 < D3, for all cases. D1/D3 typically increases as Km/Kf decreases. An 

exception is found in Case A (i.e. Km/Kf = 2.510-2), where D1/D3 = 0.17, i.e. the 

ratio is larger than for Case B (0.13). For Case F (not included in Figure 3.6), 

displacement of the peak solute concentration in all scenarios is greater than in 

Cases A to D, and less than Case E. D ranges from 0.96 cm (Scenario F1) to 5.14 

cm (Scenario F3), i.e. between 0.43 and 6.0 times the D of the corresponding 

plumes in Cases A to E. 
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Attenuation of the peak solute concentration, caused by the PFF (i.e. CDmax/CPmax), 

is illustrated in Figure 3.6b for Cases A to E. Attenuation increases from Case A to 

E (i.e. as Km/Kf decreases) and from Scenario 3 to Scenario 1 (i.e. from more 

dispersed to less dispersed plumes). That is, the maximum solute concentrations in 

the DFN models range from one order of magnitude smaller (e.g. Case A, Scenarios 

B1 and B2, Scenarios C1 and C2) to four orders of magnitude smaller (e.g. 

Scenarios E1 and E2) than the corresponding PMO models. Within each case, 

attenuation of the peak solute concentration (CDmax/CPmax) is largest for Scenario 1 

(i.e. Scenario A1 (0.28) to Scenario D1 (0.02)) In Case E, CDmax/CPmax is uniform 

for all scenarios (< 0.001), because CDmax is negligible. These results demonstrate 

that the PFF has a greater effect on attenuation when solute plumes passing through 

a PFF are less dispersed. For Case F (not shown in Figure 3.6b), transects along z 

= 49.975 cm lie a distance b (i.e. half the PFF aperture) away from the edge of the 

PFF. Attenuation in Case F is greater than in Cases A to D (i.e. because Km/Kf is 

smaller), and is less than Case E (i.e. where Km/Kf is larger). Similar to Cases A to 

E, the greatest attenuation is observed for Scenario F1 (CDmax/CPmax = 0.01). 

 

Figure 3.6c illustrates the width of the solute plumes beneath the PFF in the DFN 

models compared to the associated PMO model (i.e. WDFN/WPMO). Plume widening 

is largest for smaller values of Km/Kf (i.e. Cases D and F). That is, the influence of 

the PFF on solute plume spreading increases as Km/Kf decreases. Within each case, 

plume widening is largest for less dispersed plumes (i.e. Scenarios A1, B1, C1, 

etc.). For example, the plume width ratio (WDFN/WPMO) is greatest in Scenarios A1 

(2.95), B1 (7.83), C1 (12.11) and D1 (17.96) and decreases by between 20.8% and 

42.6% to 1.26 (A3), 2.50 (B3), 3.67 (C3) and 3.73 (D3). These results demonstrate 



 78 

that the deviation of the DFN and PMO solute plume widths in Cases A to D 

decreases as the concentration of the solute plume decreases. The influence of the 

PFF on plume spreading in Case F (not shown in Figure 3.6c) is greater than in 

Cases A to D. Here, the plume width ratio ranges from WDFN/WPMO = 3.58 (Scenario 

F3) to 19.32 (Scenario F1), i.e. plume widening in Scenario F3 is 18.5% of the 

plume widening in Scenario F1. 

 

Plume asymmetry (i.e. WL/WR) for Cases A to D is illustrated in Figure 3.6d. Solute 

distributions immediately beneath the PFF are skewed to the right in all cases (i.e. 

WR > WL) such that the plume asymmetry ratio is always < 1. Within each scenario, 

a greater degree of asymmetry is imparted in more dispersed plumes (i.e. Scenarios 

D1, D2, D3, etc.). That is, for Scenarios A1 to D1 and F1 (Case F not shown in 

Figure 3.6d), WR is between 5.9 and 58.2 times larger than WL, and for Scenarios 

A3 to F3, WR is between 1.8 and 6.9 times larger than WL. The results obtained for 

Scenario D3 and Case F are likely inaccurate because the C = 0.001 kg/m3 isochlor 

intercepts the right model boundary and hence, values for WR may be 

underestimated. 

 

Table 3.3 provides the results of a sensitivity analysis evaluating the effects of PFF 

orientation on the four key solute plume metrics illustrated in Figure 3.6. Scenario 

C2 (Km/Kf = 2.410-3) was chosen for the analysis because the C2 plume in the 

scenarios adopting 45° flow does not intercept the model boundary, and the rock 

matrix in Case C has intermediate permeability relative to the other simulated cases. 

Two additional PFF orientations were considered: (1) 40° relative to the primary 

flow direction, and (2) 60° relative to the primary flow direction. WDFN/WPMO and 
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WL/WR could not be obtained for the 60° PFF because the solute plume intercepts 

the right model boundary. 
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Table 3.3 Solute plume metrics for Scenario C2 with varied PFF orientation. 

PFF 

orientatio

n 

(°) 

Plume metric 

D 

(cm) 

CDmax/CPma

x 

(-) 

WDFN/WPM

O 

(-) 

WL/WR 

(-) 

40 1.12 0.13 7.43 0.08 

45 1.45 0.12 7.54 0.06 

60 2.73 0.12 - - 

 

The results in Table 3.3 demonstrate that PFF effects on solute plumes are generally 

more pronounced as the angle of the PFF increases (i.e. the orientation of the PFF 

approaches the flow direction). For example, the 60° PFF causes a greater 

displacement of the peak solute concentration (D = 2.73 cm) compared to the 40° 

and 45° PFFs (D = 1.12 cm and 1.45 cm, respectively). Table 3.3 also shows that 

the peak concentration of a plume passing through a 60° or 45° PFF is likely to be 

slightly more attenuated than a plume passing through a 40° PFF. Further, plumes 

passing through a 45° PFF are likely to be wider and less symmetrical than plumes 

passing through a 40° PFF. 

 

3.4.3 Quantification of PFF effects on solute plume characteristics above the 

PFF 

 

For all cases explored in this study, solute distributions near the plume source are 

in good agreement with the solute distributions in the PMO scenarios (not shown 

here for brevity). That is, the plumes in the DFN case behave as if they were 

travelling through a homogeneous porous medium for most of the flow distance 

between the solute source and the PFF, i.e. following Equation (3.2). Scenario 1 in 

each case is an exception to this, because the plume source is located very close 
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(0.4125 cm) to the PFF, compared with Scenarios 2 and 3. As the plume approaches 

the top edge of the PFF (e.g. 50.0 cm < z < 51.5 cm in Scenario 2), the solute 

concentrations in the DFN models deviate substantially from the equivalent PMO 

models. Figure 3.7 demonstrates the effect of the PFF on solute distributions above 

the PFF in Scenario A2 (Km/Kf = 2.510-2). DFN and PMO model solute 

breakthrough curves are given at: (a) z = 51.250 cm, (b) z = 50.625 cm, (c) z = 

50.413 cm, and (d) z = 50.025 cm. 

 

 

Figure 3.7 Scenario A2 (Km/Kf = 2.510-2) solute concentrations above the PFF in the PMO 

model (solid black lines) and DFN model (dashed black lines). Solute concentrations are 

obtained at: (a) z = 51.250 cm, (b) z = 50.625 cm, (c) z = 50.413 cm, and (d) z = 50.025 cm. 

 

Figure 3.7a shows a near perfect agreement between the DFN and PMO solute 

concentrations, highlighting the minimum distance above the PFF where solute 

concentrations are not influenced by the PFF. Figures 3.7b to 3.7d demonstrate 

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20 0.25

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20 0.25

(b)

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20 0.25

(a)

(c) (d)

Distance (m)

C
(k

g
/m

3
)

0.00

0.05

0.10

0.15

0.00 0.05 0.10 0.15 0.20 0.25

PMO DFN



 82 

progressively stronger up-gradient effects of the PFF on the plume as it approaches 

the PFF. The attenuation of the plume includes a shift in the DFN peak 

concentration (CDmax) to the right, and a reduction in CDmax to 57% of the maximum 

PMO concentration (CDmax = 0.067 kg/m3 and CPmax = 0.118 kg/m3). The up-

gradient effects of the PFF also include enhanced asymmetry in the DFN case. 

 

3.5 Discussion 

 

Previous research into solute transport in permeable rock formations containing PF 

features (e.g. Birkhölzer et al. 1993a; 1993b; Odling and Roden, 1997) is extended 

in this study by quantifying the displacement and spreading of solute plumes 

passing through a PFF, and linking these to the main parameters of our idealised 

setting. This methodology allows for an examination of the effects of an individual 

PFF that are otherwise difficult to ascertain within the multi-PFF models of 

previous studies. The impact of a PFF on solute plume distributions resulting from 

the current study were similar to some of the findings from Odling and Roden 

(1997), who examined solute transport in natural PFF network geometries 

embedded within a permeable matrix. For example, both studies demonstrate that 

PFFs in permeable rock formations can enhance solute transport and dispersion 

within the rock matrix and thus, in both cases, a significant portion of the solute 

may reside within the matrix. In the current study, solute plumes in all Cases A to 

F were displaced to varying degrees, and the lateral extents of the plumes were 

greater than those in PMO rock matrices. Odling and Roden (1997) did not examine 

the effect of PFFs on solute plume displacement, and thus, to the best of the authors’ 

knowledge, this is the first numerical study to consider PFF effects on solute plume 
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displacement in permeable rock matrices. Such effects are probably more complex 

and widespread in real-world permeable rock aquifers, because PFFs usually occur 

as interconnected networks. Nonetheless, the results here identify key relationships 

between PFF effects and plume responses that have otherwise not been studied. 

 

For the conceptual models considered here, large values of Km/Kf (Case A) resulted 

in small values for D (0.16 cm to 0.96 cm), in comparison to smaller values of Km/Kf 

(i.e. Cases B to F). This result is expected, and can be explained in part by the 

refraction of flow lines (i.e. the change in flow direction due to a change in 

velocity). Refraction of a groundwater flow path will occur as water passes from 

one stratum to another with a different hydraulic conductivity (e.g. from the porous 

matrix to a PFF) (Hubbert, 1940). The change in flow direction is dependent on the 

angle of incidence (i.e. the angle between normal at the boundary and the incoming 

streamline (σ1; 45° in the current study); Kresic, 1997) and the ratio of the two strata 

hydraulic conductivities (K1 and K2), given as (Fetter, 2001): 

 
2

1

2

1

tan

tan






K

K
 (3.3) 

where σ2 [radians] is the angle of refraction (i.e. the angle between normal at the 

boundary and the outgoing streamline). In the current study, K1/K2 = Km/Kf. Thus, 

Equation (3.3) suggests that, where Km/Kf is closer to unity, the difference between 

σ1 and σ2 is smaller, leading to less displacement of the flow line. Conversely, 

decreasing Km/Kf will produce more flow line displacement, and consequently 

larger values of D. This concept is supported by the increasing trend in D obtained 

from Case A (largest Km/Kf) to Case E (smallest Km/Kf.). 
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Additional simulations that are modified forms of Scenario C2, with 60° and 40° 

PFF orientations, indicate that more oblique plumes (larger values of σ1) produce 

greater displacement (larger D). Larger flow line displacement is expected when 

the difference in σ1 and σ2 (i.e. the flow line deviation) is greatest. The flow line 

deviation is |σ2 – σ1|. Considering Equation (3.3), this becomes |σ2 – tan-1(Km/Kf tan 

σ2)|, which increases monotonically with σ2 (0 ≤ σ2 ≤ 90°). Thus, flow line refraction 

is likely the primary cause of greater peak concentration displacement (D) with 

increasing obliqueness of the PFF relative to the flow line. 

 

D was also found to vary in response to the degree of dispersion of the solute plume 

as it passes through the PFF. That is, for all Cases A to F, less dispersed plumes 

passing through the PFF (i.e. Scenarios A1 to F1) are displaced to a lesser degree 

than their more dispersed counterparts (i.e. Scenarios A2 to F2 and A3 to F3). 

Equation (3.2) implies that solute concentrations directly above the matrix-PFF 

interface increase as PFFs are located closer to the source. In Scenarios A1 to F1, 

the concentration gradients between the PFF and the matrix are therefore steeper 

than in Scenarios A2 to F2 and A3 to F3, because there is a greater variation 

between the incoming plume concentration and the incoming (fresh) groundwater 

concentration inside the PFF. The dispersive flux is proportional to the 

concentration gradient, according to Fick’s law for diffusion (Domenico and 

Schwartz, 1998), and hence, as the concentration gradient increases, solutes are 

moved via dispersive transport more rapidly between the PFF and the rock matrix. 

It follows that the more dispersed plumes in Scenarios A3 to F3 produce smaller 

concentration gradients and lower dispersive fluxes, which cause solutes to remain 

inside the PFF for longer distances. 
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It is worthwhile to note that the displacement of the plume’s centre of mass should 

be unaffected by the degree of dispersion of the plume as it passes through the PFF, 

following theory presented by Kitanidis (1988) and others. This is tested by 

considering the centres of mass of plumes passing through the PFFs in Case C, 

which were found to be displaced by 13.2 cm (± 1.1 cm). That is, the displacement 

of the plumes’ centres of mass varied by < 9% (relative to the average displacement) 

between Scenarios C1 to C3, whereas the displacement of the peak concentration 

differed by up to 88% between Scenarios C1 to C3. 

 

Maximum solute concentrations immediately beneath the PFF were found to be 

higher, relative to the associated PMO model (i.e. CDmax/CPmax; see Figure 3.6b), in 

aquifers characterised by larger Km/Kf ratios (e.g. Case A). This is because the 

smaller deviation of flow lines for higher Km/Kf ratios results in shorter distances of 

flow within PFFs, and subsequently the plumes are less dispersed on exit, leading 

to weaker attenuation of peak concentrations. In a similar manner, aquifers 

characterised by larger Km/Kf ratios were found to produce narrower solute plumes. 

 

Figure 3.8 illustrates the plume widening effect of the PFF in Cases A, B and C, 

given in terms of the length of matrix material required to produce a solute plume 

with an equivalent width to that of the PFF scenario. That is, we used the Wilson 

and Miller (1978) solution to determine the plume travel distance (through the 

matrix) required to create the same plume widening as caused by the PFF. Cases D 

to F are not included because in the majority of scenarios, the C = 0.001 kg/m3 

isochlor intercepted the right model boundary and hence the effect of the PFF on 
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the width of the solute plumes may be underestimated. The matrix-PFF ratio is 

given in terms of (Km/Kf)
-1 to highlight the linearity in the Figure 3.8 relationship. 

 

 

Figure 3.8 Equivalent length of porous media required to reproduce the solute plume 

widths in Cases A (Km/Kf = 2.510-2), B (Km/Kf = 4.910-3) and C (Km/Kf = 2.410-3). 

 

Figure 3.8 shows an almost linear increase in the equivalent length of homogeneous 

porous media required to produce the same degree of plume widening as the PFF 

in Cases A, B and C. Figure 3.8 highlights the considerable influence of the PFF on 

solute plume widths in Cases A to C, and demonstrates that the degree of spreading 

caused by a PFF, with an aperture of 0.5 mm, is similar to the dispersive effect of 

up to several metres of matrix material. We therefore anticipate that in most 

permeable rock matrices containing PFFs, whereby PFF spacing is less than several 

metres, the PFFs rather than the matrix material will dominate the spreading of 

solute plumes. 
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For all cases explored in this study, solute distributions are strongly asymmetric 

immediately beneath the PFF. For cases with larger contrasts between Km and Kf 

(i.e. smaller Km/Kf ratios), flow lines converge more closely at the matrix-PFF 

interface than for cases with larger Km/Kf ratios (noting that flow lines diverge on 

re-entry into the matrix). Therefore, flow lines inside the PFF are closer together 

(perpendicular to each other) than in the rock matrix. Dense flow lines enhance 

transverse dispersion (e.g. Werth et al., 2006; Cirpka et al., 2011), and the travel 

distance within the PFF also increases for these cases. Solutes that disperse to the 

left of the main plume trajectory have a shorter path to exit the PFF and thus, are 

transversely dispersed less than those that disperse to the right. As such, the 

breakthrough of the plume at the PFF exit has enhanced asymmetry relative to PMO 

simulations. More dispersed plumes produce smaller concentration gradients 

between the matrix and PFF, leading to lower dispersive fluxes, which cause solutes 

to remain inside the PFF for longer distances, which enhances the plume’s 

asymmetry. The enhancement of plume asymmetry caused by the PFF starts above 

the PFF, as is shown in Figure 3.7. 

 

It is hypothesised that the changes to the plume concentrations above the PFF 

(indicated in Figure 3.7) is potentially the consequence of a non-physical artefact 

of the advection-dispersion equation; a process we refer to as numerical ‘back 

dispersion’. That is, enhanced solute concentrations occur upstream of the PFF, i.e. 

within the matrix and against the direction of flow, because the direction of the 

concentration gradient drives solutes in the opposite direction to the flow. Back 

dispersion was also observed in the traditional form of the Henry (1964) seawater 

intrusion problem by Segol et al. (1975) and Frind (1982), who attributed it to the 
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fixed concentration sea boundary condition. Henry’s original sea boundary 

condition required an abrupt change from freshwater to seawater without dilution 

of the seawater outside the exit boundary (Frind, 1982). In our case, as solutes travel 

along the PFF, the concentration inside the PFF is greater than the solute 

concentration in the matrix above the PFF (i.e. upstream), and as such, solutes will 

disperse back into the matrix in the upstream flow direction and in the solute down-

gradient direction. Further testing is required to ascertain whether or not this is a 

physical process or a non-physical artefact of the numerical model, as was observed 

for the Henry (1964) problem by Segol et al. (1975) and Frind (1982). 

 

3.6 Conclusions 

 

In this study, the influence of a single, discrete PFF on the displacement and 

spreading of solute plumes in permeable rock matrices is investigated. We examine 

the steady-state distribution of solutes in sedimentary rocks aquifers with moderate-

to-high matrix permeability (e.g. sandstone and limestone), where solute plumes 

pass through a PFF representing a medium-sized fracture. The simulation results 

presented here provide important insights into the individual effect of a PFF. The 

key findings of this study are: 

1) Peak concentrations of plumes passing through a PFF embedded in a 

permeable rock matrix will be displaced to varying degrees, depending on 

Km/Kf and the concentration of the plume as it encounters the PFF. Peak 

concentrations of plumes crossing a PFF under high Km/Kf conditions will 

be displaced a smaller distance than those under lower Km/Kf conditions. 
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Furthermore, the peak concentrations in more dilute plumes passing through 

a PFF will be displaced to a larger degree than more concentrated plumes. 

2) Medium-sized PFFs in moderately permeable matrices (i.e. cases in the 

current study characterised by lower Km/Kf ratios, such as Case E) may 

dilute solute concentrations immediately beneath the PFF to < 1% of the 

solute concentration at the same location in associated PMO scenarios. 

Potential implications may therefore arise for contaminant spreading in 

permeable rock matrices containing networks of PFFs, where such 

substantial dilutions of solute plumes are achieved. 

3) Solute concentrations beneath a PFF are likely to be lower, and the plume 

is likely to be wider, than in a permeable, homogeneous porous medium. 

These effects are greater for lower values of Km/Kf. Solute distributions are 

likely to be more asymmetric and attenuated when solute plumes 

encountering a PFF are less dispersed. In permeable rock matrices 

containing PFFs, whereby PFF spacing is less than several metres, the PFFs 

(rather than the matrix material) will likely dominate the spreading of solute 

plumes.  

4) PFF effects on solute plumes are likely to be more pronounced in cases 

where the angle of the PFF approaches the flow direction. That is, the peak 

solute concentration of a plume passing through a PFF is likely to be 

displaced further in cases where the angle of incidence is large. In these 

cases, solute plumes are also likely to be wider, more attenuated, and less 

symmetrical. 

5) As solute plumes approach the PFF, and reach a critical distance above the 

PFF (approximately 1 cm for the cases explored in this study), solute 
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concentrations above the PFF in the DFN models are higher than in the 

PMO models. We hypothesise that this may be a non-physical phenomenon 

that is the result of ‘back dispersion’, which we suggest is an artefact of the 

advection-dispersion equation that has been observed in seawater intrusion 

studies, and that warrants further analysis. 

 

The individual effect of a single PFF embedded in a moderate-to-high permeability 

rock matrix has been demonstrated for a range of aquifer conditions. In real-world 

permeable rock aquifers, networks of interconnected PFFs are more likely to occur 

and as such, the PFF effects demonstrated by the current study will be more 

complex and widespread. The results indicate that PFFs can have a substantial 

influence on the distribution of solutes in permeable rock matrices. Solute 

concentrations in such aquifers may be overestimated if only the hydraulic 

properties of the porous matrix are considered. Similarly, the lateral extents of 

solute plumes may be largely underestimated if individual PFFs are not accounted 

for explicitly in numerical models. 
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Chapter 4 
 

4. On the effects of preferential or barrier flow features on solute 

plumes in permeable porous media 

 

This chapter is based on the following published paper: 

 

Sebben, M. L., Werner, A. D., 2016b. On the effects of preferential or barrier flow 

features on solute plumes in permeable porous media. Adv. Water Resour. 98, 32-

46, doi: 10.1016/j.advwatres.2016.10.011. 

 

 

4.1 Abstract 

 

Despite that discrete flow features (DFFs, e.g. fractures and faults) are common 

features in the subsurface, few studies have explored the influence of DFFs on 

solute plumes in otherwise permeable rocks (e.g. sandstone, limestone), compared 

to low-permeability rock settings (e.g. granite and basalt). DFFs can provide 

preferential flow pathways (i.e. ‘preferential flow features’; PFFs), or can act to 

impede flow (i.e. ‘barrier flow features’; BFFs). This research uses a simple 

analytical expression and numerical modelling to explore how a single DFF 

influences the distribution of solute plumes in permeable aquifers. The analysis 

quantifies the displacement and widening (or narrowing) of a steady-state solute 

plume as it passes through a DFF in idealised, 1 × 1 m moderately permeable rock 

aquifers. Previous research is extended by accounting for DFFs as 2D flow features, 

and including BFF situations. A range of matrix-DFF permeability ratios (0.01 to 

100) and DFF apertures (0.25 mm to 2 cm), typical of sedimentary aquifers 

containing medium-to-large fractures, are considered. The results indicate that for 
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the conceptual models considered here, PFFs typically have a more significant 

influence on plume distributions than BFFs, and the impact of DFFs on solute 

plumes generally increases with increasing aperture. For example, displacement of 

peak solute concentration caused by DFFs exceeds 20 cm in some PFF cases, 

compared to a maximum of 0.64 cm in BFF cases. PFFs widen plumes up to 9.7 

times, compared to a maximum plume widening of 2.0 times in BFF cases. Plumes 

passing through a PFF are less symmetrical, and peak solute concentrations beneath 

PFFs are up to two orders of magnitude lower than plumes in BFF cases. This study 

extends current knowledge of the attenuating influence of DFFs in otherwise 

permeable rocks on solute plume characteristics, through evaluation of 2D flow 

effects in DFFs for a variety of DFF apertures, and by considering BFF situations. 

 

4.2 Introduction 

 

Discrete flow features (DFFs) such as fractures, faults, sand lenses and clay layers 

are common geologic features in groundwater systems. DFFs can provide 

preferential pathways (i.e. ‘preferential flow features’; PFFs) or act as barriers (i.e. 

‘barrier flow features’, BFFs) to fluid flow and solute transport. DFFs are common 

in rock aquifers where the parent rock permeability ranges from virtually 

impermeable (e.g. granite and basalt) to permeable (e.g. sandstone and limestone). 

Considerably less research attention has been paid to the role of PFFs in modifying 

groundwater flow and solute transport in permeable rock aquifers, compared to 

low-permeability rocks (Rubin et al., 1997; Odling and Roden, 1997). The influence 

of BFFs has been studied to a lesser degree than PFFs. Nonetheless, previous 

studies of low-permeability rocks (e.g. Thoma et al., 1992; Kessler and Hunt, 1994) 



 93 

have shown that fluid flow and solute transport can be altered significantly by the 

restrictions to flow caused by BFFs. 

 

Solute transport in low-permeability rocks containing PFFs typically occurs via 

solute advection and mechanical dispersion within the PFF only, and exchanges 

between PFFs and the rock matrix occur by molecular diffusion (e.g. Grisak and 

Pickens, 1981; Sudicky and Frind, 1982). However, in permeable rock aquifers 

containing PFFs, solute transport more likely occurs via advection, mechanical 

dispersion and molecular diffusion in both the PFF and the rock matrix (Birkhölzer 

et al., 1993a). Hence, consideration of these transport processes is required to 

ascertain the impacts of PFFs on solute transport in otherwise permeable rocks. 

 

Previous studies of solute transport in permeable rocks containing PFFs include 

Birkhölzer et al. (1993b), Rubin and Buddemeier (1996), Odling and Roden (1997), 

Houseworth et al. (2013), Willmann et al. (2013), Sebben et al. (2015) and Sebben 

and Werner (2016). Birkhölzer et al. (1993b) examined solute transport in fractured 

rock formations and found that solute transport in permeable rocks containing 

parallel, equidistant PFFs with uniform aperture can be represented using the 

equivalent porous media (EPM) approach (i.e. PFFs are not incorporated explicitly 

into the model) if the representative elementary volume of the network is large 

enough. Rubin and Buddemeier (1996) found that the ratio of transverse to 

longitudinal dispersivity that is required to reproduce contaminant distributions in 

an EPM model is sensitive to the orientation of the PFF. Odling and Roden (1997) 

used numerical modelling to study 2D flow and solute transport in permeable rocks 

containing naturally occurring PFF geometries. They concluded that the orientation 
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and density of PFFs can be as influential as PFF connectivity on contaminant 

transport rates and solute plume heterogeneity. However, the effect of transport 

processes at the scale of an individual PFF was not considered, and therefore the 

key factors driving solute transport within their PFF networks were not revealed, 

despite that these small-scale processes can influence solute transport at larger 

scales (Grisak and Pickens, 1980). 

 

Houseworth et al. (2013) obtained a closed-form analytical solution for solute 

transport during steady-state saturated flow in a single PFF embedded within a 

porous, permeable rock matrix. The authors incorporated several factors not 

previously included in analytical solutions for comparable transport problems, 

including 2D flow in the matrix and a general solute source position. Houseworth 

et al. (2013) considered the case where advective velocities in the matrix are 

sufficiently small that matrix diffusion dominates in comparison to matrix 

dispersion. Hence, the effect of a PFF on a solute plume in a matrix that is subjected 

to both advection and dispersion remains unexplored. Willmann et al. (2013) 

developed a particle-tracking method that accounts for advection and diffusion 

explicitly in both the PFFs and surrounding matrix. Mass exchanges from the PFF 

into the matrix are dependent on the advective flux perpendicular to the matrix, the 

PFF aperture, and the diffusive component. The authors recommended further 

research to ascertain whether a transport-related PFF aperture should be used in 

preference to the hydraulic aperture. 

 

The influence of simple PFF network geometries on seawater intrusion in otherwise 

permeable coastal aquifers was examined by Sebben et al. (2015). They employed 
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discrete fracture network (DFN) modelling to demonstrate that PFFs can either 

widen or narrow the seawater wedge relative to homogenous porous media 

formations, depending on the location and orientation of the PFFs. Sebben et al. 

(2015) describe PFF effects on seawater intrusion at the macro-scale; however, the 

complex effects of heterogeneities on the density-dependent flow field precluded 

examination of the mechanisms that underlie solute plume widening (or narrowing) 

as it passes through an individual PFF. Sebben and Werner (2016) used DFN 

modelling to explore the influence of a single PFF on the distribution of solutes in 

moderate-to-high permeability rock matrices (10-6 m/s to 10-3 m/s, e.g. sandstone 

and limestone). Numerical simulations were performed to investigate PFF effects 

on a 2D solute plume under steady-state groundwater flow conditions. Their study 

considered the influence of PFFs that represent medium-sized fractures (0.25 mm 

to 0.5 mm fracture aperture). Further, PFFs were assumed to be fully mixed, open 

channels (i.e. flow through PFFs was calculated according to the cubic law 

(Berkowitz, 2002; Graf and Therrien, 2007)) that can be treated as 1D flow features. 

The authors found that the degree of spreading that occurs when solute plumes pass 

through medium-sized PFFs in moderate-to-high permeability matrices is highly 

dependent on the ratio of the matrix hydraulic conductivity (Km) to the hydraulic 

conductivity of the PFF (Kf), and on the concentration of the plume where it 

encounters the PFF. In cases with low Km/Kf values, PFFs were found to dilute 

solute plumes by factors of greater than 100. 

 

Sebben and Werner (2016) encountered seemingly anomalous behaviour arising 

out of the advection-dispersion equation in the form of higher-than-expected solute 

concentrations up-gradient of the PFF. It is hypothesised that these are non-physical 
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effects attributable to ‘back dispersion’ (termed ‘upstream dispersion’ by Konikow 

(2011)), which is the anomalous movement of solutes from the PFF back into the 

matrix against the direction of groundwater flow. Back dispersion has been 

recognised by Al-Niami and Rushton (1977), Marino (1978) and Kumar (1983). In 

reality, dispersion of solutes in opposition to the flow of groundwater is expected 

only in low-permeability sediments, where solute transport by molecular diffusion 

may exceed advective transport rates (e.g. Grisak and Pickens, 1980; Harrison et 

al., 1992). It is likely that this effect is not physically realistic for the PFF situations 

examined by Sebben and Werner (2016), given the moderate-to-high permeability 

of the rock matrices considered. Back dispersion has also been observed previously 

in numerical investigations of seawater intrusion (e.g. Segol et al., 1975; Frind, 

1982), solute transport in aquifers containing structured heterogeneities (e.g. Liu et 

al., 2014), and surface-subsurface solute exchanges in hillslope settings (e.g. 

Liggett et al., 2014). Presently, there is no guidance on the extent of errors in solute 

predictions for situations where back dispersion is thought to have impacted 

modelling results. Further analyses were recommended by Sebben and Werner 

(2016) to ascertain the extent to which back dispersion adversely impacts the results 

of numerical experiments of DFF situations. 

 

In some cases, DFFs contain material that is less permeable than the host rock, and 

hence, form BFFs (e.g. Laubach, 2003; Bense and Person, 2006). For example, 

fractures may be partially or completely clogged as a result of mineral deposition 

formed by weathering reactions (e.g. Thoma et al., 1992; Kessler and Hunt, 1994). 

Previous studies of BFFs in permeable rock matrices have focussed primarily on 

characterising the flow regime rather than solute transport processes. For example, 
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Antonelli and Aydin (1994) used mini-permeameters and image analysis to 

characterise the porosity and permeability of fault zones in sandstone outcrops. 

They found that low-permeability deformation bands (0.5 to 2 mm thick) can have 

permeabilities one to four orders of magnitude lower than the host rock. Bense et 

al. (2003) characterized faults in the Roer Valley Rift System (the Netherlands), 

and showed that in some cases, vertical faults may act as barriers to horizontal fluid 

flow (i.e. perpendicular to the fault). Groundwater level fluctuations, spring 

discharge rates and packer tests were analysed by Celico et al. (2006) to help refine 

the conceptual model of the Matese fractured limestone aquifer (Italy); in particular, 

by characterising the fault zone hydraulic conductivity. Their analyses highlighted 

the presence of low-permeability zones within the fault that act as barriers to 

groundwater flow perpendicular to the fault. 

 

Bense and Person (2006) examined the conduit-barrier behaviour of the Baton 

Rouge Fault, which traverses sedimentary sediments in south Louisiana (USA). 

Large changes in hydraulic head were observed across the fault, indicating low 

permeabilities normal to the fault, whereas geochemical data showed enhanced 

vertical fluid flows (i.e. along the fault). Numerical modelling of 2D steady 

groundwater flow and solute transport demonstrated that the anisotropic nature of 

faults can partly explain the dual conduit-barrier behaviour observed in field 

studies. 

 

Studies of solute transport across BFFs include analyses of contaminant migration 

across clay liners (e.g. Johnson et al., 1989) or barrier walls (e.g. Zhang and Qiu, 

2010). These studies found that low-permeability clay liners beneath waste disposal 
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sites may not prevent contamination of underlying aquifers (Johnson et al., 1989), 

and that contaminant migration is largely influenced by the barrier’s depth and 

hydraulic conductivity (Zhang and Qiu, 2010). However, small-scale solute 

transport processes at the matrix-BFF interface remain essentially unexplored. 

 

The primary objective of this study is to explore within a modelling framework how 

the steady-state distributions of solute plumes in permeable aquifers are influenced 

by a DFF. This study extends the work of Sebben and Werner (2016), who treated 

DFFs as 1D flow features, considered only medium-sized fractures, neglected 

situations of BFFs, and did not attempt to account for the influence of back 

dispersion in their numerical results. This is achieved by evaluating: (1) the impact 

of 2D flow effects within DFFs, (2) solute plume changes where BFFs are 

encountered in otherwise permeable rock aquifers, and (3) the potential role of back 

dispersion on predictions of PFF effects on solute transport. A simple analytical 

expression for the advective displacement of a solute plume encountering a DFF is 

also presented. We examine the distribution of solutes for a variety of matrix-DFF 

permeability ratios and DFF apertures, adopting aquifer properties that are 

representative of sedimentary rocks (e.g. sandstone and limestone) in which PFFs, 

BFFs, and flow in the matrix are known to occur (e.g. Webb et al., 2010; Al Ajmi 

et al., 2014; Mádl-Szőnyi and Tóth, 2015). 

 

4.3 Methodology 

 

4.3.1 Flow line refraction through discrete flow features 
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We initially investigate the problem of 2D flow effects in DFFs by offering a new 

and simple expression for the displacement of a flow line as it passes through a 

DFF. The expression is founded on the refraction that occurs as water flows 

between two strata with different hydraulic conductivities (Hubbert, 1940). The 

degree of refraction is dependent on the angle of incidence (σ1; Figure 4.1) and the 

ratio of the two strata hydraulic conductivities (K1 and K2), as (Rumer and Shiau, 

1968; Fetter, 2001): 
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where σ1 and σ2 are the angles of incidence and refraction, respectively (Figure 4.1), 

and K1 and K2 are the matrix hydraulic conductivity (Km) and the DFF hydraulic 

conductivity (Kf), respectively. 

 

Figure 4.1 Schematic description of the flow line displacement, DPT. The solid black line 

represents the groundwater flow trajectory without a DFF. The dashed lines represent the 

flow line trajectory after refraction at interfaces between the matrix and DFF. 

 

Considering the DFF aperture (2b) and the geometry of the problem (Figure 4.1), 

we obtain a simple analytic expression for the orthogonal displacement (DPT) of the 

flow line, as: 
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Flow line displacement is comparable to the displacement of peak solute 

concentration only where solute molecular diffusion and mechanical dispersion can 

be ignored. Equation (4.2) assumes stratified conditions (as opposed to the fully 

mixed conditions adopted by Sebben and Werner (2016); i.e. where solute 

concentration is uniform across the PFF’s aperture) within the DFF. The optimal 

choice of stratified or fully mixed assumptions is unclear, and is likely to depend 

on the characteristics of the system. 

 

It is noteworthy that the ratio of the components of groundwater flow (i.e. in the 

matrix and the DFF) parallel to the DFF is equal to the corresponding ratio of K 

values, based on Equation (4.1) and considering conservation of mass. That is, 

higher and lower Darcy velocities are expected in PFFs and BFFs, respectively, 

relative to the matrix velocity component in the DFF orientation immediately 

upstream of the DFF. This simple “rule of thumb” pertaining to groundwater flow 

in the vicinity of DFFs is important for the interpretation of numerical modelling 

results presented in later sections. 

 

Birkhölzer et al. (1993a) and Sebben and Werner (2016) show that the transport and 

spreading of solutes associated with PFFs is mainly linked to the Km/Kf ratio. Kf is 

commonly related to 2b via the cubic law where PFFs are open conduits. To allow 

for the investigation of both PFFs and BFFs, and to consider independently the 

effects of aperture and Kf, DFFs in the present study are assumed to contain porous 

material (i.e. are not open channels). Therefore, Kf is always less than the value 

obtained from the cubic law (i.e. the upper limit of Kf). This extends the analysis of 

Sebben and Werner (2016), who analysed only open-conduit PFFs. A range of 
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Km/Kf ratios is considered by modifying Kf within the range 10-7 m/s (BFF) to 10-3 

m/s (PFF), and maintaining Km at a value of 10-5 m/s, which represents a moderately 

permeable rock matrix in which DFFs are likely to occur (e.g. limestone, 10-6 m/s 

≤ Km ≤ 10-3 m/s; Geiger et al., 2010; Webb et al., 2010, and sandstone, 10-8 m/s ≤ 

Km ≤ 10-5 m/s; Birkhölzer et al., 1993a; Al Ajmi et al., 2014). 2b is varied between 

that of a medium-sized fracture (0.25 mm) and a wide fracture (2 cm) (e.g. Barton, 

1973). 

 

4.3.2 Numerical investigation of dispersive effects on solute transport 

 

4.3.2.1 Numerical model 

 

The simulations presented here were conducted using HydroGeoSphere (HGS; 

Therrien et al., 2010). HGS is a physics-based hydrogeological model, which solves 

3D flow and solute transport in discretely fractured porous media. Detailed 

descriptions of the governing equations in HGS are provided elsewhere (e.g. 

Therrien and Sudicky, 1996; Therrien et al., 2010), and are not repeated here. We 

use HGS to simulate flow and transport within permeable rock matrices containing 

a DFF. No benchmarking has been undertaken of HGS for this exact problem; 

however, the code has been tested against the various components of the problem. 

For example, HGS has been benchmarked against the Tang et al. (1981) analytical 

solution for solute transport in a single PFF embedded within a porous, 

impermeable rock matrix (e.g. Weatherill et al., 2008, using the DFN approach). 
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HGS has also been benchmarked previously against the Wilson and Miller (1978) 

analytical solution (e.g. Therrien et al., 2010) describing the 2D dispersion of a 

solute plume in porous media under uniform, steady-state flow conditions, given 

as: 
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where C [M/L3] is solute concentration, f’m [M/LT] is the contaminant mass flux 

per unit length, x [L] is the distance from the plume source parallel to the flow 

direction, z [L] is the distance from the plume source perpendicular to the flow 

direction, θm [-] is the matrix porosity, DL [L2/T] is the longitudinal dispersion 

coefficient, DT [L2/T] is the transverse dispersion coefficient, V [L/T] is the seepage 

velocity in the direction of flow, and K0 is the modified Bessel function of the 

second kind. The previous model testing discussed above demonstrates the 

numerical robustness of HGS for various situations of similar type to the current 

study (i.e. solute transport in fractured permeable rocks), notwithstanding that the 

influence of back dispersion on solute transport problems involving DFFs has not 

been systematically studied previously. 

 

4.3.2.2 Conceptual model 
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In this study, DFFs are incorporated in numerical modelling experiments as porous 

media layers, primarily because this representation allows for the evaluation of the 

effects of stratification within the DFF, which are otherwise neglected in the DFN 

approach. As mentioned above, stratification leads to displacement in flow lines 

that may not be adequately represented under the fully mixed conditions of the DFN 

approach of HGS. Also, this allows us to study BFFs, which are precluded by the 

DFN approach (Sebben and Werner, 2016). The model simulates groundwater flow 

and solute transport in a 1 m  1 m 2D cross section through a homogeneous, 

isotropic aquifer containing a single, straight DFF, located at z = 50 cm (i.e. halfway 

through the domain). The small domain size was chosen to accommodate the very 

fine grid spacing required perpendicular to the medium-sized fractures (i.e. Δz ≈ 

PFF aperture, following Weatherill et al. (2008)) if grid-independent results are to 

be achieved. 

 

The findings from preliminary testing of the porous media approach to simulating 

DFFs are illustrated in Figure 4.2, which demonstrates that for a medium-sized, 

open PFF (wherein flow is calculated according the cubic law), the DFN and porous 

media representations of DFFs produce almost identical results. The ratios of the 

matrix-PFF Darcy velocities parallel to the PFF (qmx/qfx) in both the DFN and 

porous media models follow the abovementioned “rule of thumb”, i.e. qmx/qfx are 

within 2% of the corresponding Km/Kf for each case. It can be inferred from this that 

2D effects (e.g. stratification) within open PFFs are small, at least for the cases 

illustrated in Figure 4.2. Therefore, the results of PFF simulations, which adopt the 

porous-medium representation of DFFs, are expected to be reasonably compatible 

with those obtained from DFN analyses. 
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Figure 4.2 Comparison of solute distributions involving a plume passing through a PFF 

that is oblique (45) to the groundwater flow direction. PFFs are incorporated in models 

using the DFN approach (a, c, e) or as a porous media layer (b, d, f). The solid white line 

in the DFN models represents the discrete PFF. 2b is 0.25 mm in (a) and (b) and 0.5 mm 

in (c) to (f). The Km/Kf ratios for each case are: (a) and (b) 2.010-4; (c) and (d) 2.410-3, 

and (e) and (f) 2.510-2. 
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The conceptual model, including flow and transport boundary conditions, is shown 

in Figure 4.3. Constant-head boundaries are prescribed so that the orientation of 

groundwater flows is 45° relative to the DFF alignment. The DFF influences the 

flow field within the matrix, although the effect is small in most cases, particularly 

for PFFs. Nonetheless, the constant-head boundary conditions impose head 

gradients that create essentially consistent domain-scale flow conditions. A 

continuous mass flux of solute of 3.7 × 10-9 kg/m/s is assigned at x = 10.0 cm, and 

at 4.8 cm above the DFF, such that the concentration at the source (C0) is 

approximately 1.0 kg/m3. 

 

 

Figure 4.3 Conceptual model of a permeable rock matrix containing a DFF (not to scale), 

where H is hydraulic head and f’m is contaminant mass flux. Adapted from Sebben and 

Werner (2016). 

 

The model domains were discretised into variable-block elements ranging from Δx 

= 0.39 mm (minimum block width; Scenario 1) to 2.5 mm (maximum block width; 

Scenario 4), and Δz = 0.13 mm (minimum block height; i.e. half the 2b of Scenario 

1) to 2.5 mm (maximum block height; Scenario 4). In all cases, Δz at the matrix-
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DFF interface is equal to half the aperture. A grid convergence test was undertaken 

in which other mesh resolutions were evaluated (i.e. the mesh size was increased 

by 66.7% (Scenarios B1, B3, B4 and D1) or decreased by 66.7% (Scenarios B3, 

B4, D3 and D4)). A finer grid produced peak solute concentrations beneath the DFF 

that varied by up to 0.82% (Scenario B3). Scenarios re-run with coarser grids 

produced peak solute concentrations that were different by up to 17.4% (Scenario 

B3). 

 

The 3D model has a unit width to replicate a 2D domain. Simulations were first run 

to produce steady-state flow conditions. Solute transport was then simulated in 

transient mode until steady-state conditions were reached. The simulation period of 

92 days was subdivided using adaptive time-stepping based on a maximum 1% 

change in salt concentration at any node. 

 

Sensitivity analyses were performed by modifying Km/Kf and 2b, to examine their 

impact on steady-state solute plume distributions. Additional simulations were 

performed to consider the influence of αL (longitudinal dispersivity) and αT 

(transverse dispersivity). The measurable aspects of each simulation are shown in 

Figure 4.4, which provides the solute plume distributions for the matrix-only (MO) 

model (Figure 4.4a) and Scenario A1 (Figure 4.4b) for illustrative purposes. 

Measured characteristics of plumes include: (1) solute plume width in the MO 

model (WMO) and in the DFF model (WDFF), (2) plume asymmetry ratio (WL/WR), 

i.e. the ratio of the width of the solute plume to the left of Cmax (WL), to the width 

of the solute plume to the right of Cmax (WR), and (3) maximum solute concentration 

beneath the DFF (Cmax). It is noteworthy that analyses of plume width and 
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symmetry are undertaken along the alignment of the DFF (i.e. at 45° relative to the 

flow direction), and therefore, WL/WR indicates an asymmetric plume even for MO 

cases (in which the plumes are symmetric perpendicular to the flow direction). 

 

 

Figure 4.4 Schematic description of the solute plume comparison metrics in: (a) the MO 

model, and (b) the DFF model. Colours represent the solute concentrations. White arrows 

show the direction of velocity vectors. Black dashed arrows indicate the width of the solute 

plume. Black crosses highlight the location of maximum solute concentration immediately 

beneath the DFF. 

 

Cmax (black crosses; Figure 4.4) is referred to herein as CPFF, CBFF and CMO in the 

PFF, BFF and MO models, respectively. The horizontal distance between the x-

location of CMO and that of CPFF or CBFF (DH; Figure 4.5) is used in the forthcoming 

analysis to calculate the displacement of peak solute concentration in the numerical 

models (DNM), given as: 
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Figure 4.5 Schematic description of the displacement of peak solute concentration, DNM. 

The solid black line represents the groundwater flow trajectory without a DFF. CMO is the 

peak solute concentration without a DFF and CDFF is the peak solute concentration beneath 

the DFF. DH indicates the horizontal distance between the x-location of CMO and CDFF. 

 

4.3.2.3 Fractured aquifer scenarios 

 

Six cases with different Km/Kf ratios were evaluated (Cases A to F). Cases A, B and 

C examined the effects of PFFs (i.e. Km/Kf = 0.01, 0.1 and 0.5, respectively), 

whereas Cases D, E and F considered the effects of BFFs (i.e. Km/Kf = 2, 10 and 

100, respectively). DFFs in all cases were considered to be filled to some degree 

with porous material, such that the DFF porosity (θf) was < 1. Within each case, 

four scenarios were tested using values for 2b of 0.25 mm (Scenario 1), 0.5 mm 

(Scenario 2), 1 cm (Scenario 3) and 2 cm (Scenario 4). All other parameter values 

are listed in Table 4.1. 
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Table 4.1 Simulation parameters for Cases A to F. 

 Cases A to F 

Matrix porosity (θm, -) 0.1 

Matrix hydraulic conductivity (Km, m/s) 10-5 

Matrix longitudinal dispersivity (αL, m) 5.010-3 

Matrix transverse dispersivity (αT, m) 5.010-4 

DFF aperture (2b, m) 2.510-4- 2.010-2 

DFF porosity (θf, -) 0.2 

DFF hydraulic conductivity (Kf, m/s) 10-7 - 10-3 

DFF longitudinal dispersivity (αLF, m) 5.010-3 

DFF transverse dispersivity (αTF, m) 5.010-4 

Solute mass flux (f’m, kg/m/s) 3.6610-9 

Darcy velocity in the matrix (qm, m/s) 1.41410-6 

Matrix-DFF hydraulic conductivity ratio 

(Km/Kf, -) 
10-2 – 102 

 

4.3.3 Back dispersion effects 

 

Back dispersion effects on solute plume distributions were evaluated by comparing 

the PFF simulations described above (i.e. using the conceptual model illustrated in 

Figure 4.3) with modified simulations that exclude back dispersion. This was 

achieved by imposing derived solute concentrations to the top of the PFF that were 

obtained from the Wilson and Miller (1978) solution. By fixing the concentrations 

at the upper boundary, back dispersion effects are avoided, because there are no 

downstream boundary effects within the simulation from which the concentration 

profile is obtained. This approach assumes that advection towards the PFF is 

sufficient to overcome dispersion in the upstream direction that might otherwise 

cause solutes to move from the DFF into the matrix in opposition to the flow 
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direction. It is acknowledged that without physical modelling, the occurrence and 

extent of back dispersion in real-world conditions is unclear, and therefore, the 

simulations that exclude back dispersion provide guidance that is conditional on the 

assumption that in some cases, no back dispersion would occur in reality. 

Simulations were undertaken using Scenarios A3, B3, C3, A4, B4 and C4, except 

with the model domain described above truncated at the top of the PFF, and with 

constant concentrations (according to Wilson and Miller (1978) values) prescribed 

along the top model boundary. Boundary conditions were otherwise the same as 

those illustrated in Figure 4.3. 

 

4.4 Results 

 

4.4.1 Analysis of flow line refraction through discrete flow features 

 

Table 4.2 shows the displacement resulting from refraction at matrix-DFF 

interfaces (DPT; i.e. Equation (4.2)) for the various cases and scenarios. The sign of 

the values listed in Table 4.2 indicate the direction of DPT, i.e. BFFs cause flow 

lines to refract in the opposite direction to PFFs. Positive DPT values represent 

displacement to the right in Figure 4.1. 
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Table 4.2 Displacement due to flow line refraction in Cases A to F. 

Case 
DPT (cm) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

A 1.75 3.50 70.0 140 

B 0.16 0.32 6.36 12.73 

C 0.02 0.04 0.71 1.42 

D -0.01 -0.02 -0.35 -0.71 

E -0.02 -0.03 -0.64 -1.27 

F -0.02 -0.04 -0.70 -1.40 

 

Table 4.2 shows that as Km/Kf increases in PFF cases (Cases A to C; Km/Kf = 0.01, 

0.1 and 0.5, respectively), the displacement due to refraction decreases, consistent 

with Rumer and Shiau, (1968) (i.e. Equation (4.1)). Conversely, the magnitude of 

displacement (|DPT|), caused by BFFs (Cases D to F; Km/Kf = 2, 10 and 100, 

respectively), increases as Km/Kf increases. The magnitude of BFF displacement 

ranges from 0.01 to 0.5 times the corresponding displacement (i.e. where BFF Km/Kf 

is the same as PFF Kf/Km) in PFF cases. For example, |DPT| in Scenario D1 (0.01 

cm) is approximately half that of Scenario C1 (0.02 cm), noting that Case C Km/Kf 

is equal to Case D Kf/Km. In all cases, |DPT| increases as 2b increases, i.e. |DPT| is 

greater in Scenario 4 than in Scenarios 1 to 3. The results in Table 4.2 suggest that, 

in the absence of dispersive effects and for the boundary conditions considered here, 

PFFs are likely to have a greater influence than BFFs on the displacement of solute 

plumes in moderately permeable rocks, at least for corresponding ratios of Km to Kf. 

 

4.4.2 2D effects of DFFs on solute transport 

 

4.4.2.1 PFFs 
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Figure 4.6 illustrates the steady-state solute plume distributions caused by different 

PFFs in a moderately permeable rock matrix. The corresponding MO model is 

shown in Figure 4.4a. Darcy velocity in the rock matrix is 1.4110-6 m/s in the 

direction of flow. Darcy velocities in the PFF are in the range of 2.2410-6 m/s 

(Case C; Km/Kf = 0.5) to 1.0010-4 m/s (Case A; Km/Kf = 0.01) in the direction of 

flow. 
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Figure 4.6 Steady-state salinity distributions for PFF Cases A (Km/Kf = 0.01), B (Km/Kf = 

0.1) and C (Km/Kf = 0.5). 

 

Visual inspection of the plumes in Figure 4.6 indicates that PFFs with larger 

aperture (i.e. Scenarios 3 and 4) generally produce a greater displacement than 

smaller PFFs (i.e. Scenarios 1 and 2). This is consistent with refraction theory, as 

indicated by the results of Table 4.2. For a given scenario, solute plumes are wider 

Case A

A1

A2

A3

A4

Case B

B1

B2

B3

B4

Concentration 

(kg/m3)

C1

Case C

C2

C3

C4

E
le

v
a

ti
o

n
 (

m
)

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

0.0 0.5 1.0 0.0 0.5 1.00.0 0.5 1.0

Distance (m)



 114 

in Case A (Km/Kf = 0.01) than in Cases B and C (Km/Kf = 0.1 and 0.5, respectively). 

The plume width also increases from Scenario 1 to Scenario 4, such that plumes 

immediately beneath the PFF intercept the right boundary (x = 1 m) in Scenarios 

A3 and A4. PFFs in Case A typically produce less-symmetric plumes than PFFs in 

Cases B and C, and PFFs in Scenarios 3 or 4 typically produce less-symmetric 

plumes than PFFs in Scenarios 1 and 2. The solute plumes in Scenarios A3 and A4 

are more dispersed than in Scenarios A1, A2, and all Cases B and C. The peak 

solute concentration beneath the PFF in Scenarios A3 and A4 is approximately 

0.001 kg/m3, whereas significantly higher solute concentrations (C > 0.01 kg/m3) 

occur beneath the PFF in all other scenarios. 

 

Specific aspects of the simulated plumes are evaluated in quantitative terms (e.g. 

displacement, width, asymmetry and attenuation), as illustrated in the graphs that 

follow. The modelled displacements (DNM) of solute plumes are shown in Figure 

4.7. 

 

 

Figure 4.7 Influence of Km/Kf (cases) and 2b (scenarios) on DNM in PFF cases. 
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Figure 4.7 shows that the magnitude of DNM decreases as Km/Kf increases (i.e. from 

Cases A to C) and 2b decreases (i.e. from Scenario 4 to Scenario 1). 

 

The effects of dispersion on the displacement of the peak concentration of a plume 

passing through a PFF are shown in Figure 4.8, which compares the displacement 

of peak concentration to the flow line displacement (i.e. DNM versus DPT). 

 

Figure 4.8 Comparisons of DNM and DPT for Cases A, B and C. Scenarios 1, 2, 3 and 4 are 

indicated by black, red, blue and green markers, respectively. Note that the marker for 

Scenario 1 is obscured by Scenario 2 in each case. The 1:1 line is illustrated in grey. 
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Case A suggest that Km/Kf is having a substantial influence on the role of dispersion 

in displacement (whereby the smaller ratios produce a larger deviation between DNM 

and DPT), relative to Cases B and C. In all PFF cases, DNM for Scenarios 1 and 2 are 

less than DPT, although the required scale of the x-axis in Figure 4.8 prohibits visual 

representation of this difference. Scenarios C1 and C2 are an exception, because 

the PFF displaces the solute plumes by less than the horizontal grid resolution (Δx), 

such that DNM ≈ 0 cm. Therefore, Km/Kf does not visibly impact the dispersive effect 

on the displacement of peak concentration for these scenarios. DNM and DPT are the 

most similar for Scenario C3 (a relative difference of 9%). This indicates a minor 

influence of the PFF in Case C on the role of dispersion in displacement. The small 

deviation in the flow line (i.e. DPT) for Scenario C3 means that DNM is well-

represented by DPT. 

 

The influence of dispersion on the displacement of peak concentration at the matrix-

PFF interface was further examined by modifying the matrix and PFF longitudinal 

and transverse dispersitvities (αL, αLF, αT and αTF, respectively) in Scenario B3 

(Km/Kf = 0.1; results not shown for brevity). Increasing the dispersivities (by a factor 

of 2) to αL = αLF = 0.01 m and αT = αTF = 0.001 m causes a reduction in the 

magnitude of displacement from DNM = 2.89 cm to DNM = 2.25 cm. Conversely, 

reducing the dispersivities to αL = αLF = 0.003 m and αT = αTF = 0.0003 m increases 

DNM to 3.37 cm. This result is expected, because lowering the dispersivity reduces 

the dispersiveness of the plume causing DNM to converge on the higher, non-

dispersive displacement value of DPT (6.36 cm). Numerical instabilities arising 

from very small dispersivities precluded the HGS simulation of non-dispersive 

solute transport (i.e. advection-only) scenarios. 
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Figure 4.9 illustrates the following key solute plume metrics: (a) plume widening 

due to the PFF, given as the ratio of PFF and MO solute plume widths immediately 

beneath the PFF (WPFF/WMO), (b) plume asymmetry in PFF simulations, given as 

the ratio WL/WR, and (c) attenuation of plume concentration attributable to the PFF, 

given as the ratio of PFF and MO peak concentrations immediately beneath the PFF 

(CPFF/CMO). Scenarios A3 and A4 are omitted from Figures 4.9a and 4.9b because 

the concentration isochlor used to define plume characteristics (i.e. C = 0.001 

kg/m3) intercepts the right model boundary and hence, WPFF and WR cannot be 

obtained. 
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Figure 4.9 Influence of Km/Kf and 2b on: (a) WPFF/WMO, (b) WL/WR, and (c) CPFF/CMO in 

PFF cases. 
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part by the more substantial influence of smaller Km/Kf ratios on the dispersive 

effects of PFFs. A similar pattern of results was observed by Sebben and Werner 

(2016), who demonstrated that under the same constant-head boundary conditions 

employed in the current study, medium-sized, open PFFs had a greater impact on 

plume spreading when Km/Kf was small. The results in Figure 4.9a also demonstrate 

(beyond the results of Sebben and Werner (2016)) that PFFs have a greater impact 

on solute plume width when 2b is larger (i.e. from Scenario 1 to Scenario 4). 

 

Asymmetry in the PFF model solute plumes (i.e. WL/WR) is illustrated in Figure 

4.9b. For the MO models, WL/WR = 0.72, 0.72, 0.64 and 0.70 for Scenarios 1 to 4, 

respectively. Figure 4.9b shows that plume asymmetry is more pronounced in cases 

characterised by smaller Km/Kf ratios (i.e. the plumes in Case A are less symmetric 

than in Cases B and C). Figure 4.9b also demonstrates that increasing 2b imparts a 

greater degree of asymmetry in the solute plumes. A similar pattern was observed 

for Case A, albeit Scenarios A3 and A4 are omitted for reasons given above. 

 

Attenuation of the peak solute concentrations in the PFF models is expressed in 

Figure 4.9c as the ratio of the maximum concentration beneath the PFF (CPFF) to 

the maximum solute concentration at the same elevation in the MO model (CMO), 

i.e. CPFF/CMO. Figure 4.9c demonstrates that smaller Km/Kf ratios (Case A) produce 

more attenuated plumes than larger Km/Kf ratios (Cases B and C). Increasing 2b also 

produces more attenuated plumes, i.e. CPFF/CMO decreases from Scenario 1 to 

Scenario 4. The impact of 2b on CPFF/CMO decreases as Km/Kf increases, i.e. from 

Case A (Km/Kf = 0.01) to Case C (Km/Kf = 0.5). 
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The results presented for PFF cases considered in this study demonstrate that cases 

characterised by smaller Km/Kf ratios (e.g. Km/Kf = 0.01; Case A) exhibit greater 

dispersive effects, in the form of wider, more asymmetric plumes, and a greater 

departure from non-dispersive displacement. 

 

4.4.2.2 BFFs 

 

Figure 4.10 illustrates the steady-state solute plume distributions caused by 

different BFFs in a moderately permeable rock matrix (corresponding MO model 

shown in Figure 4.4a). 
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Figure 4.10 Steady-state salinity distributions for BFF Cases D (Km/Kf = 2), E (Km/Kf = 10) 

and F (Km/Kf = 100). 

 

Figure 4.10 demonstrates that BFFs with larger 2b (e.g. Scenario 4) produce greater 

displacement. A similar pattern was observed for the PFF cases in Figure 4.6, and 
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have a lesser influence on plume spreading compared to PFFs. That is, the widths 

of the solute plumes do not vary greatly between cases, although in general terms, 

plumes are a little wider in Cases E and F (Km/Kf = 10 and 100, respectively) than 

in Case D (Km/Kf = 2). Changing 2b has only a minor effect on plume spreading, 

i.e. within each case, plume widths in Scenarios 2 to 4 are within 10% of Scenario 

1. Figure 4.10 also demonstrates that the peak solute concentrations beneath the 

BFFs are typically higher than those observed in the PFF cases (i.e. C < 0.25 kg/m3 

beneath BFFs, C < 0.12 kg/m3 beneath PFFs). In Scenarios F3 and F4, the solute 

plumes display a curved shape. A closer inspection of the flow field for Scenario 

F4 is given in Figure 4.11. 

 

 

Figure 4.11 Steady-state solute plume for Scenario F4 (Km/Kf = 100). White arrows 

indicate flow direction. 
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occur in real-world situations. Scenarios F3 and F4 were re-simulated using larger 

domain sizes (2 m  2 m and 4 m  4 m; results not shown) in an attempt to reduce 

the boundary effects on the solute distributions. The curvature of the plumes persists 

in the 2 m  2 m models, but is reduced significantly in the 4 m  4 m models. 

However, the domain size required a coarser grid discretization (Δx = 10 mm, Δz = 

3.1 mm to 6.8 mm) so that the maximum number of nodes was not exceeded, 

leading to significant numerical errors and results that were grid-dependent. The 

results for Scenarios F3 and F4 (Figure 4.10) are therefore omitted from the 

forthcoming analysis. 

 

The displacement, width, asymmetry and amplification of solute plumes, caused by 

BFFs, are evaluated in quantitative terms in the following sections. Figure 4.12 

shows the modelled displacements (DNM) of solute plumes. Negative values for DNM 

indicate that the plume is displaced in the opposite direction to the horizontal 

component of the regional groundwater flow (i.e. to the left in Figure 4.5). The 

Scenario 3 and Scenario 4 lines in Figure 4.12 are discontinuous because DNM for 

Scenarios F3 and F4 are not included. 

 

 

Figure 4.12 Influence of Km/Kf (cases) and 2b (scenarios) on DNM in BFF cases. 
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Figure 4.12 shows that the BFFs in Scenarios D1, D2, E1 and E2 do not displace 

the peak concentration as the plume passes through the BFF (i.e. DNM ≈ 0.0 cm). 

DNM is typically zero or negative for BFF cases because Km/Kf > 1 and σ2 < σ1 (i.e. 

Equation (4.1)) and hence DH (Figure 4.5) is negative. Scenarios F1 and F2 are 

exceptions, which is likely due to the interactions interaction between the low Kf of 

the BFFs and the model boundary, as was explored above for Scenarios F3 and F4. 

The general trend in Figure 4.12 demonstrates that as Km/Kf and 2b increase, DNM 

also increases. 

 

Dispersive effects on displacement as plumes encounter a BFF are shown in Figure 

4.13 as DNM versus DPT. 
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Figure 4.13 Comparisons of DNM and DPT for Cases D, E and F. Scenarios 1, 2, 3 and 4 are 

indicated by black, red, blue and green markers, respectively. Note that the marker for 

Scenario 1 is obscured by Scenario 2 in Cases D and E. Markers are not illustrated for 

Scenarios F3 and F4 because DNM has been omitted. The 1:1 line is illustrated in grey. 
 

 

Figure 4.13 shows that for all BFF cases, DNM > DPT (i.e. the coloured markers for 

each scenario are positioned above the 1:1 line). The relative differences between 
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peak solute concentration by less than Δx (i.e. DNM ≈ 0 cm) and thus, the dispersive 

effect on the displacement of peak concentration is not visibly impacted by Km/Kf 

for these scenarios. DNM and DPT are the most similar for Scenario D4 (a relative 

difference of 9%). 

 

Figure 4.14 illustrates the key solute plume metrics: (a) plume widening due to the 

BFF, given as the ratio of BFF and MO solute plume widths immediately beneath 

the BFF (WBFF/WMO), (b) plume asymmetry in BFF simulations, given as the ratio 

WL/WR, and (c) amplification of plume concentration attributable to the BFF, given 

as the ratio of peak BFF and MO concentrations immediately beneath the BFF 

(CBFF/CMO). 
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Figure 4.14 Influence of Km/Kf and 2b on: (a) WBFF/WMO, (b) WL/WR, and (c) CBFF/CMO in 

BFF cases. 
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Asymmetry in the BFF model solute plumes (i.e. WL/WR) is illustrated in Figure 

4.14b. The plume asymmetry ratio is always < 1 (i.e. WR > WL), as was observed 

for the PFF cases. Figure 4.14b demonstrates that all values of WL/WR are relatively 

high (i.e. WL/WR > 0.5), indicating that BFFs have a lesser influence on plume 

asymmetry than the PFFs examined above. In Scenarios D1, D2, D3, E4, F1 and 

F2, plumes beneath the BFFs are more symmetrical than in the associated MO 

models. The increased symmetry is likely due to the refraction of flow lines 

intercepting the BFF, which causes a simultaneous reduction in WR and increase in 

WL, such that WL approaches the value of WR. The influences of BFFs on WL/WR 

follow non-monotonic relationships for the remaining scenarios considered in the 

current study. Notably, Km/Kf has only a minor influence on WL/WR for Scenario 1 

(< 1% variation relative to the MO case for Cases D to F). 

 

Amplification of the peak solute concentration caused by the BFF is illustrated in 

Figure 4.14c. Figure 4.14c shows that the impact of BFFs on solute concentrations 

contrasts that of PFFs, which were shown in Figure 4.9c to attenuate (rather than 

amplify) the relative peak solute concentrations. That is, CBFF/CMO is always ≥ 1, 

whereas CPFF/CMO is always < 1. BFFs cause the greatest increase in solute 

concentrations in cases with larger Km/Kf and 2b values (i.e. from Case D to Case F 

and from Scenario 1 to Scenario 4). Medium-sized BFFs (D1, D2, E1, E2, F1 and 

F2) have either no impact on the peak solute concentration, such that CBFF/CMO ≈ 1 

(Scenarios D1, D2 and E1), or have a small (< 7%) strengthening effect on peak 

concentrations. 
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The results presented for the BFF cases considered in this study demonstrate that 

cases characterised by larger Km/Kf ratios (e.g. Km/Kf = 100; Case F) typically 

exhibit greater dispersive effects on plume width and displacement. The dispersive 

effects of Km/Kf on plume symmetry are unclear for BFF cases. 

 

4.4.3. Back dispersion 

 

The potentially non-physical effects of back dispersion (i.e. the anomalous 

movement of solutes from the PFF back into the matrix against the vertical direction 

of flow (qmz)) up-gradient of PFFs (Sebben and Werner, 2016) are investigated for 

Cases A to C (Scenarios 3 and 4 only). Concentrations along the top of the PFF are 

compared in Figure 4.15 for cases with back dispersion (i.e. BD) and without back 

dispersion (i.e. no BD). Solute plumes with and without back dispersion are 

illustrated in Figures 4.6 and 4.15, respectively. 
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Figure 4.15 Comparison of solute plume distributions with and without back dispersion in Cases A, B and C (Scenarios 3 and 4 only). Solute concentrations 

are compared along the top of the PFF in cases with back dispersion (black dashed line) and without back dispersion (solid black line). Solute concentrations 

in and beneath the PFFs in cases with no back dispersion are indicated by colours. 
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The concentration profiles illustrated in Figure 4.15 highlight an increase in back 

dispersion effects in cases with smaller Km/Kf ratios (i.e. Case A; Km/Kf = 0.01) 

compared to larger Km/Kf ratios (i.e. Cases B and C; Km/Kf = 0.1 and 0.5, 

respectively). That is, more back dispersion occurs in cases with larger dispersive 

effects. This is demonstrated in the concentration versus distance plots in Figure 

4.15, which show the difference between the peak solute concentrations along the 

top of the PFFs in cases with and without back dispersion. The solute concentrations 

along the top of the PFFs in Case C correspond approximately with those obtained 

using Equation (4.3), i.e. for MO conditions, and hence, it is unlikely that back 

dispersion plays an important role in the predictions. In Cases A and B, solute 

concentrations above the PFF are greater in cases with back dispersion, 

notwithstanding that the peak concentrations are attenuated in comparison to MO 

conditions. 

 

The solute plumes for Cases B and C, shown in Figure 4.15, differ considerably to 

those presented for the comparable scenarios in Figure 4.6. The elimination of back 

dispersion reduces WPFF/WMO markedly in some cases, e.g. by 33% and 19% in 

Scenarios B3 and B4, respectively. Solute plumes are more symmetrical in cases 

without back dispersion, except in Scenario C4. The results from the simulations 

with and without back dispersion suggest that, in general terms, back dispersion has 

a considerable influence on the solute distributions in the PFF cases considered 

here, particularly for cases characterised by smaller Km/Kf ratios. We note that, 

while back dispersion influences the peak concentration and width of the plumes 

for the cases explored here, the effect is minor in comparison to other factors such 

as Km/Kf and 2b. 



132 

 

 

4.5 Discussion 

 

The impact of Km/Kf on DPT resulting from the current study was similar to the 

findings of Sebben and Werner (2016), who partially attributed the displacement of 

the peak concentration of a solute plume passing through a medium-sized, open 

PFF to refraction at the matrix-PFF interfaces. Both studies show that, where Km/Kf 

is closer to unity (e.g. Cases C and D in the current study), |σ2 – σ1| is smaller, which 

leads to less displacement of the flow line (i.e. Equation (4.1)). A schematic 

description of the range of potential |DPT| for PFF and BFF cases is illustrated in 

Figure 4.16. 

 

Figure 4.16 Schematic description of potential |DPT| for solute plumes intercepting a DFF 

in a steady flow field oblique to the DFF (solid black and white dashed arrows). Dark blue 

shading indicates a PFF. Red shading indicates a BFF. Blue dashed arrows illustrate 

potential flow lines for PFF cases. Orange dashed arrows illustrate potential flow lines for 

BFF cases. Red arrows indicate the maximum |DPT|. 

 

Figure 4.16 shows that, as σ2 approaches 90° (i.e. as Km/Kf of PFF cases decreases), 

flow lines (and hence, pathlines for advective solute transport) are parallel to the 

PFF. As such, the maximum |DPT| for PFF cases theoretically approaches infinity, 

or practically, the end of the PFF. Conversely, as Km/Kf for BFF cases increases, σ2 

approaches 0°, i.e. pathlines of advective solute transport are perpendicular to the 
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BFF, and the theoretical maximum |DPT| is reached. Figure 4.16 demonstrates that 

in aquifers where groundwater flow is oblique to a DFF, |DPT| for PFF cases is 

typically greater than for BFF cases. For all cases explored in this study, |DPT| also 

increased from Scenario 1 (smallest 2b) to Scenario 4 (largest 2b) (i.e. Equation 

(4.2)). Sebben and Werner (2016) did not examine the impact of 2b on solute plume 

displacement, and thus, to the best of the authors’ knowledge, this is the first 

numerical study to consider the influence of 2b, independent of Kf, on solute plume 

displacement in permeable rock matrices. 

 

The previous work of Sebben and Werner (2016) demonstrated that the 

displacement of a plume’s centre of mass is largely unaffected by the degree of 

dispersion of the plume as it passes through a PFF. Therefore, it is hypothesised 

that the displacement of a plume’s centre of mass as it passes through a DFF is ≈ 

|DPT|. Table 4.3 shows the displacement of the plumes’ centres of mass (DCOM) for 

the various cases and scenarios explored in this study. Scenarios A3, A4, F3 and F4 

are omitted from Table 4.3 because the plumes intercept the right model boundaries 

(Case A), or are influenced by significant boundary effects (Case F). 

 

Table 4.3 Displacement of plume centre of mass for Cases A to F. 

Case 
DCOM (cm) 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 

A 1.75 3.45 - - 

B 0.16 0.32 6.20 12.2 

C 0.02 0.03 0.66 1.29 

D -0.01 -0.01 -0.28 -0.56 

E <0.01 <0.01 -0.18 -0.74 

F 0.14 0.26 - - 
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The results in Table 4.3 indicate that for most scenarios, DCOM and |DPT| (Table 4.1) 

are in good agreement. For example, DCOM for PFF cases (Cases A to C) are 

generally within 10% of |DPT|. The agreement between DCOM and |DPT| is less for 

BFF cases, in particular, for Cases E and F. DCOM for Case D is within the same 

order of magnitude as |DPT|, whereas |DPT| generally does not provide a good 

approximation of DCOM for Cases E and F. Causal factors of the disagreement are 

presently unclear, and warrant further analysis that is outside the scope of the 

current study. Despite this, the results in Table 4.3 suggest that the analytical 

solution in Equation (4.2) offers a reasonable approximation of the displacement of 

a plume’s centre of mass as it passes through a DFF. 

 

Numerical predictions for the displacement of peak solute concentrations (i.e. DNM) 

showed a similar pattern of results to those obtained from the refraction analyses of 

flow lines (i.e. DPT). That is, PFF cases characterised by larger Km/Kf ratios (Km/Kf 

= 0.5; Case C) were displaced to a lesser degree than in cases with small Km/Kf 

ratios (i.e. Km/Kf = 0.01 and 0.1; Cases A and B, respectively). For BFF cases, DNM 

was greater for cases with larger Km/Kf ratios (Km/Kf = 100; Case F). DFFs with 

larger 2b were also found to produce larger |DNM| than DFFs with smaller 2b. 

Comparisons of DNM and DPT (i.e. the difference between DNM and DPT) 

demonstrated that dispersion effects are greater in some cases than in others. A 

causal factor is that as Km/Kf increases (in PFF cases) or decreases (in BFF cases), 

the flow rate in the DFF (qf) approaches the flow rate in the matrix (qm; 1.4×10-6 

m/s), thus reducing the variation in flow velocities that occurs across the matrix-

DFF interface. Where the velocities are similar in the matrix and the DFF, there is 
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a reduced opportunity for DFF-based dispersion to occur (i.e. that would not have 

otherwise occurred without the DFF). 

 

Aquifers containing a PFF were found to produce wider solute plumes than those 

containing a BFF. The impacts of PFFs on plume width resulting from the current 

study were similar to the study of medium-sized, open PFFs by Sebben and Werner 

(2016). Both studies demonstrate that aquifers characterised by smaller Km/Kf ratios 

produce wider plumes. This is because of the larger deviation of flow lines for 

smaller Km/Kf ratios, which results in longer distances of flow within PFFs prior to 

re-entry into the rock matrix. In a similar manner, increasing 2b was found to 

increase the width of plumes in all PFF cases, because solutes will remain inside 

the PFF for longer before re-entering the rock matrix. The impacts of BFFs on 

plume width were found to be minor in comparison to PFF effects, because BFFs 

tend to change the angle of refraction (i.e. σ2; Figure 4.1) such that solutes cross the 

fracture through a shorter distance relative to flow angle changes caused by PFFs 

(i.e. Figure 4.16). 

 

For all cases explored in this study, DFFs were shown to influence the symmetry 

of solute plumes immediately beneath the DFF. Asymmetry caused by PFFs was 

found to be more pronounced for smaller Km/Kf (i.e. larger WPFF) and for PFFs with 

larger 2b. BFFs typically produced more symmetrical plumes beneath the BFF. 

Causal factors for the impact of DFFs on plume symmetry are that different parts 

of the plume intercept the DFF at different angles relative to the DFF alignment, 

whereby solutes to the left of the peak concentration arrive at a steeper angle and 

solutes to the right of the peak concentration arrive at a shallower angle. The 
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refraction and displacement therefore differs between the left and right of the peak 

concentration, which enhances the asymmetric effects. Solutes that disperse to the 

left of the main plume trajectory have a shorter path to exit the DFF (and hence, are 

transversely dispersed less) than solutes that disperse to the right, as was observed 

for PFF cases by Sebben and Werner (2016). As such, plumes beneath PFFs are 

less symmetrical than in MO cases. For BFF cases, refraction at the matrix-BFF 

interfaces causes a simultaneous reduction in WR and increase in WL, such that WL 

approaches the value of WR and hence, plumes beneath BFFs are typically more 

symmetrical than in MO cases. 

 

Peak solute concentrations were found to be lower beneath PFFs, and higher 

beneath BFFs, relative to the associated MO models. For the PFFs considered here, 

cases with smaller Km/Kf values (Case A) caused a greater attenuation of CPFF/CMO 

than those characterised by larger Km/Kf ratios (i.e. Cases B and C). This is because 

under low Km/Kf conditions, qf is considerably faster than qm such that the dispersive 

effect of the PFF is greater. Conversely, CBFF/CMO was found to be amplified in 

aquifers containing BFFs. That is, CBFF/CMO typically increased as Km/Kf increased 

(from Case D to Case F), although the impact of BFFs on CBFF/CMO was generally 

small for Scenarios 1 and 2 (i.e. CBFF/CMO ≈ 1). This is because qf (and hence, 

mechanical dispersion in the BFF) decreases under high Km/Kf conditions (Case F), 

which reduces the degree of plume spreading in the BFF compared to spreading in 

the rock matrix. 

 

The fixed concentration simulations presented here highlight the influence of back 

dispersion on plume concentrations immediately above PFFs. Back dispersion 
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effects were found to be more pronounced in cases characterised by smaller Km/Kf 

ratios (Case A) compared to larger Km/Kf ratios (i.e. Cases B and C). The causes of 

back dispersion are unclear, although in the case of seawater intrusion problems, 

back dispersion was eliminated by modifying the downstream boundary condition 

(e.g. Segol et al., 1975). The current research does not evaluate the causes of, or 

factors contributing to, back dispersion. This remains an area for further 

investigation. For example, the degree of back dispersion is likely influenced by the 

Peclet number (Pe), equal to VΔL/D, where V [L/T] is the seepage velocity in the 

direction of flow, ΔL [L] is the element length in the direction of flow, and D [L2/T] 

is the dispersion coefficient. 

 

4.6 Conclusions 

 

In this study, the influence of a single DFF on the distribution of solute plumes in 

permeable rocks is investigated. We quantify the displacement and widening (or 

narrowing) of a steady-state solute plume as it passes through a DFF (representing 

a medium-to-large fracture) in idealised, moderately permeable rock aquifers. The 

analytical and numerical simulation results presented here provide an important 

first step towards understanding plume behaviour in more complex, real-world 

aquifer settings. Matrix-DFF permeability contrasts and DFF aperture are shown to 

have a considerable influence on plume displacement and spreading, particularly 

for PFFs. The key findings of this study are: 

1) Solute plumes passing through a DFF embedded in a permeable rock matrix 

will be displaced to varying degrees, depending on Km/Kf and 2b. The 

magnitude of displacement of a plume passing through a PFF is larger in 
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cases characterised by smaller Km/Kf ratios, because the dispersive effect is 

greater. For plumes passing through a BFF, the influence of Km/Kf on the 

magnitude of displacement follows non-monotonic relationships. PFFs 

generally have a greater influence than BFFs on plume displacement in 

moderately permeable rocks, for the conceptual models considered here. In 

all cases, the degree of displacement increases as 2b increases. 

2) Medium-to-large PFFs embedded in moderately permeable rocks typically 

widen solute plumes. The increase in plume width is greatest when Km/Kf is 

smaller, and for larger 2b. Plumes passing through a BFF are widest when 

Km/Kf and 2b are large; however, they are generally narrow in comparison 

to PFF cases. 

3) The asymmetry of solute plumes passing through a PFF is greater for 

smaller Km/Kf ratios, and for larger 2b. Plume symmetry is largely 

unaffected by BFFs in comparison to PFFs. For the boundary conditions 

considered here, solute plumes beneath BFFs are in some cases more 

symmetrical than in the associated MO models. 

4) Peak solute concentrations are attenuated by PFFs, particularly in cases 

where Km/Kf is small. This effect is intensified as 2b increases from a 

medium-sized PFF to a large PFF. In contrast, peak solute concentrations 

are amplified by BFFs, such that plumes are typically more concentrated 

beneath BFFs compared to PFF or MO cases. Amplification of solute 

concentrations is minor beneath medium-sized BFFs, but increases 

significantly for larger BFFs. 

5) Back dispersion has a more pronounced effect on the solute concentrations 

upstream of a PFF in cases where Km/Kf is smaller. Reducing the influence 



139 

 

of back dispersion generally results in plumes that are narrower, more 

symmetrical, and more concentrated than in cases with back dispersion. 

 

The current study adds to the previous findings by Sebben and Werner (2016) by 

providing insights into role of BFFs, the effects of 2D flow in DFFs, and DFF 

aperture, on the distribution of solute plumes in permeable aquifers. The present 

study also offers a new, simple analytical expression for the advective displacement 

of a solute plume intercepting a DFF. 

 

A variety of complex concentration distributions have been demonstrated for a 

range of idealised aquifer conditions. In real-world aquifers, the variability in DFF 

size, location and orientation will likely amplify the complexity of the solute plumes 

presented in the current study. Substantial underestimations of plume extent may 

arise if PFFs are excluded from numerical models. The exclusion of BFFs is likely 

to be less impactful, notwithstanding that solute plumes are typically more 

concentrated beneath BFFs compared to in the matrix only. 
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Chapter 5 
 

5. Conclusions 

 

The three studies presented in this thesis examined the influence of discrete flow 

features (DFFs) on contaminant transport in permeable rocks. Numerical modelling 

was undertaken to investigate how preferential flow features (PFFs) and flow 

barriers (BFFs) impact the displacement and spreading of solute plumes, in either 

density-dependent (PFFs only) or density-independent systems. In Chapter 2, a 

preliminary numerical investigation of seawater intrusion (SWI) in fractured 

permeable rocks was performed using modified forms of the Henry (1964) SWI 

benchmark problem. This study provided new insights into the role of fracture 

location, orientation and density on the distribution of seawater in coastal aquifers, 

in a first step towards determining the distribution of seawater in more complex 

coastal aquifer settings (i.e. fractured-rock systems) than has previously been 

attempted through numerical analysis. Chapter 3 explored how PFFs can influence 

the migration of density-independent solute plumes in otherwise permeable rocks, 

to try to unravel the solute plume behaviour observed in the complicated coastal 

setting of Chapter 2. Numerical simulations demonstrated the local-scale effects on 

solute plumes passing through an individual PFF, for a variety of matrix-PFF 

permeability contrasts representative of sedimentary aquifers. The analysis of 

Chapter 4 extended the Chapter 3 results by considering BFF situations, and the 

impact of 2D flow effects within DFFs. A simple analytical expression and 

numerical modelling provided important preliminary insights into the displacement 

and spreading of a solute plume as it passes through a DFF, and the attenuating 

effects of DFFs, in permeable rock aquifers. 
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The key findings from each of the three Chapters are as follows: 

 

1) Chapter 2 demonstrates that vertical fractures within the seawater wedge are 

likely to increase the width of the seawater-freshwater mixing zone, whereas 

vertical fractures inland of the wedge have a minimal impact on the seawater 

distribution in the aquifer. Horizontal fractures in the zone of freshwater 

discharge may enhance the inland extent of seawater; whereas fractures in 

the lower part of the aquifer are likely to truncate the wedge and reduce the 

amount of seawater in the aquifer. Where inclined fractures are 

approximately parallel to the seawater-freshwater interface, SWI is likely to 

be enhanced. If fractures are roughly perpendicular to the interface, SWI 

tends to be inhibited. Homogeneous equivalent porous media (EPM) models 

based on the bulk hydraulic properties of the aquifer are likely to be 

unsuitable for inferring the distribution of seawater in the majority of 

fractured scenarios. The EPM approach may be applicable only to high-

density, orthogonal fracture scenarios if the flow system can be well-

represented by the EPM model, and if appropriate EPM dispersivity values 

can be determined. 

 

2) Chapter 3 concludes that the impacts of an individual PFF on solute plume 

distributions are similar to the multi-PFF study by Odling and Roden 

(1997). For example, both studies demonstrate that solute transport and 

dispersion within a permeable rock matrix can be enhanced by the presence 

of PFFs, and that a significant portion of the solute may reside within the 
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matrix. The analyses in Chapter 3 also show that solute plumes are likely to 

be wider and more attenuated (i.e. the peak solute concentration is reduced) 

beneath a PFF compared to the same location in associated porous media 

only (PMO) cases. If the matrix-DFF hydraulic conductivity ratio (Km/Kf) is 

smaller, then the displacement of the peak solute concentration passing 

through a PFF is likely to be larger. Plumes that are less dispersed as they 

encounter a PFF typically produce plumes that are more asymmetric and 

attenuated beneath the PFF. As the orientation of a PFF approaches the 

primary flow direction, PFF effects on solute plumes are likely to be more 

pronounced. PFFs (rather than the matrix material) generally dominate the 

spreading of solute plumes in permeable rock matrices wherein the PFF 

spacing is less than several metres. For some of the cases explored in this 

study, solute concentrations above the PFF in the DFN models were found 

to be higher than in the PMO models. It is hypothesised that ‘back 

dispersion’, i.e. the anomalous movement of solutes against the flow 

direction, may be the potential cause of these observations; however, further 

analyses are needed to confirm this. 

 

3) For the cases considered in Chapter 4, PFFs are shown to have a greater 

influence on the displacement of peak concentrations than BFFs, that is, for 

corresponding ratios of Km/Kf and Kf/Km. For PFF cases, the degree of 

displacement increases as Km/Kf decreases, and as the PFF aperture (2b) 

increases. Plumes encountering a medium-to-large PFF embedded in 

moderately permeable rock are generally wider beneath the PFF than at the 

corresponding location in the matrix only (MO) models. The increase in 
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plume width beneath PFFs is greatest when Km/Kf is smaller, and for larger 

2b. The attenuation effect of PFFs is intensified as 2b increases. When Km/Kf 

is smaller and 2b is larger, solute plumes passing through a PFF are 

generally more asymmetric. It is hypothesised that back dispersion is the 

cause of changes in solute concentration above PFFs. Back dispersion 

appears to have a greater influence on solute concentrations upstream of a 

PFF in cases where Km/Kf is smaller. Reducing the influence of back 

dispersion generally produces narrower, more symmetrical plumes that are 

more concentrated than in cases affected by back dispersion. For BFF cases, 

the influence of Km/Kf on the magnitude of displacement follows non-

monotonic relationships. The magnitude of displacement increases as 2b 

increases, similar to PFF cases. Plumes passing through a BFF are widest 

when Km/Kf and 2b are large, and are generally narrower than for PFF cases. 

Plume symmetry is largely unaffected by BFFs, although for some cases 

considered in this study, solute plumes beneath BFFs are more symmetrical 

than in the associated MO models. Plumes beneath BFFs are typically more 

concentrated compared to PFF or MO cases. This effect is also intensified 

as 2b increases. 

 

The numerical investigations presented in this thesis demonstrate a variety of 

complex salinity distributions for a range of idealised aquifer conditions involving 

DFFs. In real-world aquifers, the variability in DFF size, location, orientation and 

density will likely amplify the complexity of the relationships presented here. 

Nonetheless, this work has shown how DFFs can control the extent of contaminant 

migration in permeable rock aquifers. Substantial underestimations of plume extent 
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may arise if only the hydraulic properties of the aquifer matrix are considered in 

numerical investigations of solute transport. The influence of discontinuous DFFs 

was not considered in this thesis and hence, would be a useful direction for future 

research. It also remains to be confirmed whether ‘back dispersion’ is a physical 

process, or a non-physical artefact of the advection-dispersion equation. The current 

research has contributed to the development of an analytical solution (Robinson et 

al., in prep), which has allowed for the numerical results obtained in the current 

study to be benchmarked against a mathematical solution to DFF effects on solute 

plumes that is far less reliant on the numerical strategies of the HydroGeoSphere 

control-volume finite-element code. 
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